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1. Introduction

The multiresolution analysis starts with a compactly supported refinable function
¢ € La(IR), whose shifts form a Riesz basis or an orthonormal basis of the closed shift
invariant subspace S(¢) of Lo(IR) generated by ¢. Recall that a compactly supported
function ¢ € Ly(IR) is m-refinable, if the function ¢ satisfies the following refinement
equation with dilation factor m:

(1.1) b= Z ma(a)p(m - —a)

for a finitely supported sequence a. The sequence a is called the mask of ¢. When m = 2,
we simply call ¢ refinable. Taking the Fourier transform of (1.1), the refinement equation
(1.1) can be written as

(1.2) b(w) = a(w/m)d(w/m),

where a(w) = oz a(a) exp(—iaw). We also call & the mask of the refinable function ¢.
It was shown in [BDR] (also see [JS]) that the sequence of subspaces of Ly (IR) defined
by
SH(¢) = {f(m"): f€S(9)}; ke,

satisfies
UrezS*($) = Lo(R) and  Niez S*(4) = {0}.

Hence, if ¢ and its shifts form an orthonormal or a Riesz basis of S(¢), the sequence of
the subspaces S¥(¢), k € 7Z forms a multiresolution of Ly(IR). Here we recall that a
sequence S¥(¢$) forms a multiresolution, when the following conditions are satisfied: (i)
SH(¢) C S*1(9); (i) UrezS*(9) = La(R) and MyezS™(¢) = {0}; (iii) ¢ and its shifts
form an orthonormal or a Riesz basis of S(¢).

If ¢ € Ly(IR) and its shifts form a Riesz basis of S(¢), we call ¢ is stable, and if
¢ € La(IR) and its shifts form an orthonormal basis of S(¢), then ¢ is called orthonormal.
Finally, we say a continuous function ¢ is interpolatory, when ¢ satisfies ¢p(a) = b4,
a € 7.

In practice, a signal is sampled by an element in S* for some k. Hence we call S*,
k € 7/ sampling spaces. This sampling process is done by using another set of sampling
basis to form a projection. This sampling basis is normally generated by kth dilation of
another refinable function ¢? and its proper shifts. The function ¢¢ is also required to
satisfy the following dual conditions:

(1.3) (6, ¢'(- — a)) = ba; a €.
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A stable function ¢? € Ly(IR) is called a dual function of ¢, when (1.3) holds.

It is clear that when ¢ is orthonormal, ¢ = ¢%. When ¢ is only stable, then ¢¢ is not
equal to ¢ and ¢¢ may or may not be in the space S(¢).

Images are often first represented by samples in the sampling space S¥(¢$). When the
pixel values of an image f are given, an image is normally (or easily) represented by

fo="Y_ fla/mF)m*?¢(m* - —a),

aEXUS

for a certain dilation level k. However, to apply the decomposition and reconstruction
algorithm, one should use the function

D (frm 2PN (mF - —a))ym* P g(mF - —a).

aEXUS

This function is not the function f, unless the refinable function ¢ satisfies the condition
#(c) = b,. Hence, by using the sampling space generated by interpolatory refinable
functions, one simplifies (or reduces the errors of) the first step of the decomposition and
reconstruction algorithm.

In §3, we will construct examples of smooth compactly supported interpolatory or-
thonormal symmetric refinable functions ¢ with the dilation factor > 3 from a general
method. However, as it was shown in [D1], [GM] and [L], it is impossible to construct any
compactly supported real orthonormal symmetric or interpolatory orthonormal refinable
functions with the dyadic dilation other than the characteristic function of [0, 1]. Hence, to
construct wavelets with dyadic dilation from compactly supported interpolatory refinable
functions, one has to construct biorthogonal wavelets. The key step to this is to construct
a compactly supported dual function for a given interpolatory refinable function. In §2,
we will give two general constructions of compactly supported refinable functions with a
required regularity which is dual to a given interpolatory refinable function.

Examples of compactly supported interpolatory refinable functions were first given
in [Du] in the context of interpolatory subdivision schemes, and a general construction of
interpolatory refinable functions was given by [D1] in the context of wavelets. Examples of
compactly supported orthonormal symmetric refinable functions with the dilation factor 3
were given in [CL]. Examples of compactly supported interpolatory orthonormal refinable
function with dilation factor > 3 were given in [BDS]. Both examples in [CL] and [BDS]
are continuous. Examples in [CL] are not interpolatory, while examples in [BDS] are not
symmetric. Biorthogonal wavelet theory was established in [CDF] and [CD]. Methods
of constructions of biorthogonal wavelets were also given in [CDF]. Here we focus on
constructions of dual refinable functions from given interpolatory refinable functions. In
[Sw] a lifting scheme was used to construct a “dual” mask a? to the mask @ of an given
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interpolatory refinable function. The dual mask constructed satisfies

(1.4) a(w)at(w) + a(w + m)at(w + m) = 1.

A similar construction of [Sw] was also given in [R]. We remark that (1.4) is only a
necessary condition that the mask a® should satisfy, to make the corresponding refinable
function ¢? a dual function of ¢.

The constructions of refinable functions with orthonormal shifts corresponding to an
arbitrary dilation m were also discussed in [Ha]. However, here we are interested in those
constructions of refinable functions which not only have orthonormal shifts, but also are
interpolatory.

In the rest of this section, we collect some basic facts that will be used in this paper.

First, a function ¢ € Lo(IR) is stable, if and only if the inequality

(1.5) c< Y |pw+2ra)P <C; ae weR

a€eZ
holds for some constants 0 < ¢ < C' < co. We say a compactly supported distribution ¢ is
pre-stable, if the inequality

¢ <Y |d(w + 2ma)?

a€eZ

holds for some constant 0 < c. It is clear that if a compactly supported pre-stable function
is in Ly(IR), then it is stable.
A function ¢ € Lo(IR) is orthonormal, if and only if the equality

Z p(w +21a)>=1; ae welR
a€eZ
holds.
A compactly supported continuous function is interpolatory, if and only if the equality

Z b(w + 2ma) = 1
=Y/
holds.

From the above observations, one can obtain easily that a compactly supported inter-
polatory function is stable; and the autocorrelation of an orthonormal function is interpo-
latory.

Let ¢ € Ly(IR) be an m-refinable function with the mask a. If ¢ is orthonormal, then
its mask a satisfies

(1.6) Z la(w+ )P =1, weR,
VEXim



where 7., = 7Z./m7Z is a quotient group (7 over the subgroup m7Z). The integers 7Z can
be decomposed into thee disjoint sets (cosets) {v + mZZ}, where v € 7ZZ/mZL.

If the m-refinable compactly supported continuous function ¢ is interpolatory, then
its mask a satisfies

(1.7) Y awtmr)=1, wel.
VEXim

Condition (1.7) is called the interpolatory condition for the mask on 7Z,,. Here we
remark that Condition (1.7) is only a necessary condition for the corresponding refinable
function is interpolatory. A necessary and sufficient condition in terms of the refinement
mask is given in [LLS2] (cf §3).

2. Dual functions of interpolatory refinable functions

We start with the refinable functions provided in [D1] and [D2] whose mask is given
by

N/2—1

(2.1) Hy(w) := (cosw/2)N Z <N/2 _kl + k) sin?*(w/2) | ,

k=0

where N is an even number. The number N is the order of Hy. It was shown in [D1]
and [D2] that the corresponding refinable function ¢ for the nonnegative mask Hy is
interpolatory and symmetric. It was further shown in [D1] [D2] that the regularity of ¢
increases linearly with N. The Fourier transform of the corresponding refinable function
¢ is given by

(2.2) & = IR, Hy (w/2").

The main purpose of this section is to find compactly supported symmetric dual
functions of a given interpolatory refinable function ¢, such as the one defined in (2.2).

2.1. Construction

The constructions of compactly supported refinable functions that are dual to a given
compactly supported interpolatory refinable function ¢ are based on the following propo-
sition:



Proposition 2.3. Let P and () be two 27 periodic functions that satisfy the interpolatory
condition (1.7) on ZZy. Define H by either

(2.4) H:=P+2Q(1—P),
(2.5) H:=P?+3Q(1-P).

Then the function PH satisfies the interpolatory condition (1.7) on 7.
Proof. Let H be the function defined as (2.4). Then

P(w)H(w) = P(w)(=2P(w)Q(w) + 2Q(w) + P(w))

= 2P(w)Q(w)(1 - P(w)) + P*(w)
= 2P(w)P(w + m)Q(w) + P*(w),
and
Plw+m)H(w+ ) =2P(w + 1)P(w)Q(w + 7) + P*(w + 7).
Therefore
P(w)H(w)+ P(w+ m)H(w + )
= 2P(w)P(w + m)Q(w) + P*(w) + 2P(w + 7)P(w)Q(w + 7) + P*(w + 7)
=1.
The proof for the H defined by (2.5) is similar. O

Remark. If P = @, then the definitions of H in (2.4) and (2.5) coincide and

H = P(3-2P).

Remark. In general, for each given integer K define

(2.6) H— Ig <2f> P2K-1=i(1 — p)i 4 <2§> PE(1 = P)X.

Then, the mask PH satisies (1.7), whenever P satisfies (1.7). Furthermore, assume that
P > 0 and the corresponding refinable function ¢ is interpolatory, then the corresponding
refinable function ¢? with mask H is a dual function of ¢ whenever it is in Lo(IR). The
regularity of ¢¢ increase as K does. This is the starting point of [JRS], where more
general multivariate cases with an arbitrary dilation matrix are studied. In fact, [JRS]
was motivated by the observation here. The interested reader should counsult [JRS] for
the details. Since it is complicated to extract mask coefficients from H, when K is large,
we suggest here some iterative constructions from (2.6) for lower K below. O



Let ¢ be the symmetric interpolatory refinable function whose mask a := Hy. We
use Proposition 2.3 to construct the dual function of ¢. First, pick a mask Hpy+ defined by
(2.1) with order N’. Then define the dual mask either by

a™ .= —2aHN' + 2HpN' + a

or by
&d2 = —3&HNI +3Hpn: + &2.

Since @ is nonnegative and satisfies the interpolatory condition (1.7) on ZZo, we have that
0 < a < 1. Therefore a*' and a? are nonnegative by the fact that both ¢ and Hx: are

nonnegative.

Proposition 2.7. Suppose that the functions ¢ and ¢* defined by
oM =T am(/2Y), P =TRZa"(/2Y)
are in Ly(IR). Then ¢*' and ¢*? are dual functions of ¢.

Proof. It follows from Proposition 2.3 that aa?' satisfies the interpolatory con-
dition (1.7) for Zs. A result of [CD] (see also Theorem 3.14 of [S]) states that if aa®!
satisfies the interpolatory condition (1.7) for 7, then the corresponding refinable function
¢ is a dual function of ¢ if and only if ¢9! is stable. Since ¢#' € Ly(IR) is compactly
supported function, the right hand side inequality of (1.5) holds. Therefore, to show that
#?" is a dual function of ¢, one only needs to show that ¢ is pre-stable.

The proof for $¢ is the same, replacing d; by ds everywhere. Since 0 < Hy+ < 1, the
set of zeros of a%! (a92) is a subset of zeros of a. Since the refinable function ¢ corresponding
to the mask a is stable, the refinable function ¢?' (¢??) corresponding to the mask a?!
(a@%?) is stable. O

Next, we provide two iterative methods. Each of them gives a construction of com-
pactly supported dual refinable functions of a given interpolatory refinable function. We
will further show in the next subsection that the dual functions can be constructed to have
a required regularity.

Iterative Construction 1. Let ¢ be a given interpolatory refinable function whose mask
a of order N is given by (2.1). Let Py = a. For k= 1,2,... do
(i) define
Py =P (3—2P,_1),

(ii) define a¢' := Zr = Tn
(iii) define
b (W) = TI52,a (w/27).
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Iterative Construction 2. Let ¢ be a given interpolatory refinable function whose mask
a of order N is given by (2.1). Let Py = a and Hsr 14y be the mask of the order (3¥~1)2N
defined by (2.1). For k =1,2,... do

(i) define

(2.8) Py := Py—1(—3Px_1Hgr-1on5 + 3Hgr-1on5 + PkQ_l),

(ii) define a¢? := L& = T
(iii) define

() 1= T2 a2 (0/2).
Proof and explanation of the both constructions. It follows from Proposition 2.3
that each Py, k = 1,2, ... satisfies the interpolatory condition (1.7) for ZZs. Since each Py,
k=1,2,...has a as a factor, a¢! (ad?) is a real valued trigonometric polynomial for all k.
By Proposition 2.7, the corresponding refinable function ¢¢* (¢9?) is a dual function of ¢

whenever ¢¢! (¢42) is in La(IR). 0

Remark. In Construction 2, Py is constructed by Px_1 and Hszr—155. With this choice of
the order of the mask Hskr—155 defined by (2.1), we are able to show in the next subsection
that the regularity of the the dual function ¢g2 increases linearly with its support.

The following lemma will be used in the next section.

Lemma 2.9. Let P, k =0,1,... be the masks defined in above two constructions. Then
0< P <1.
Proof. We first note that Py is nonnegative, whenever Pj_1 is nonnegative. Since

P, is nonnegative, the mask P, is nonnegative for all k. The inequality P, < 1 follows
directly from the facts that Pj is nonnegative and Pj(w) 4+ Pg(w + 7) = 1. O

An immediate consequence of this lemma is that the mask a%! (a??) is real. Hence the
Fourier transform of ¢?! (¢%2) is real. Therefore the dual function ¢9! (¢9?) is symmetric.

Next, we calculate the supports of the dual functions obtained by Construction 1 and
2. For a given trigonometric polynomial

p= pla)exp(—iow),
o€

the length of p, denoted by len(p), is the difference between the highest degree and the
lowest degree of p. If a refinable function ¢ is symmetric to the origin, the supports of the
refinable function ¢ and its mask @ are [—len(a)/2,len(a)/2] and [—len(d)/2,len(d)/2] NZZ.
For example, the length of Hy is 2(N — 1) (see e.g. [D2]).

To obtain the support of the symmetric refinable functions in Construction 1 and 2,
one only needs to calculate the length of the corresponding masks.
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Proposition 2.10. Let a{' and a%? be the mask constructed at the kth iterate in Con-
struction 1 and 2. Then for k > 1,

len(af') = (3% — 1)(2N — 2)

and
len(af?) = 4N(3k — 2871 —1/2) — (282 — 4).

Proof. We only give the proof of the second identity here, the proof of the first
being even easier.

Let Py be the mask defined by (2.8) in Construction 2. Then a{* = Py/a = Py/Hy.
The length of Py, satisfies

(2.11) len(Py) < len(Hszkon).

Indeed, (2.11) is true, when & = 1. Suppose (2.11) holds for the case k — 1. Then the
longest length term of Py defined by (2.8) is P2 Hsr-1,y. Hence

len(Pk) = 2len(Pk_1) + len(H3k712N) S 3len(H3k712N) S len(H3k2N).

Therefore the longest length term of Py defined by (2.8) is always P2 | Hsr-1,y for all k.
Using this fact, we can prove inductively that

(2.12) len(Py) = 4N(3k —2k=1) — (2KF2 —92) Kk =1,2,....
The identity of the length of &gQ follows directly from the identity
len(af?) = len(Py) — (2N — 2)

and (2.12). O

Finally, we remark that for a given pair of the dual refinable functions ¢ and ¢ with
masks @ and a?, the construction of the corresponding biorthogonal wavelets is straight-
forward. Let

P(w) = exp(—iw)ad(w + T)p(w);  PHw) = exp(—iw)a(w + m)$ (w).

It is easy to show that the functions ¢ and i and their shifts form a dual Riesz basis
of the functions ¢¢ and 1 and their shifts (see e.g. [CDF], [RiS2]). To show that ¢ and
)? are the biorthogonal wavelets, it remains to check whether the functions

ok 22k . —a); keZl,a el



and
ok 2yd(2k . —0); kel,aecl

form a biorthogonal Riesz basis of Ly (IR).
It was shown in [RiS2] that as long as the functions

Rp(w):= > |pw+a), Rhw) = Y [P w+a)l,

aE2T €2

and

Rp(w):= Y [h(2"w); Rp(w):= Y [9"(2"w)|

ke ke

are in L., the functions

ok 2(2% . —a); keZl,a €l
and

ok 22k . —0); kel ol

form a biorthogonal basis of Ly(IR)

The conditions Rg and R}‘_fj in Lo (IR) are clearly satisfied, since 1) and ¢ are stable.
The conditions Rp and RdD in Lo (IR) will be satisfied, provided the functions ¢ and ¢
have certain decay at the infinity and have a zero of certain order at origin. Both conditions

are satisfied in our constructions.

2.2. Regularity

In this subsection, we will give an asymptotical analysis of the regularity of the two
constructions.
A function ¢ € C* for n < a < n + 1, provided that ¢ € C™ and

(2.13) |DYo(x+t) — D7(x)| < Clt|*™™, forally=mnand |t| <1
for some constant C' independent of z. It is well known that
(2.14) Bw)| < C(L+ )1~ = p e O,
The analysis of the first construction depends on the following proposition. Since all

the choice of the constants in the following proposition do not depend on w, for simplicity,
we denote all the constants by C' even though the value C' may change with each occurance.
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Proposition 2.15. Let ¢} be the refinable function corresponding to the mask Py in
Construction 1. Suppose that

Pr(w) < O+ |w|)™.
Then
Pra1(w) < O+ Jw|)72mFEE,
Proof. Define
Ly =3—-2PF;.
Observe that 0 < P, <1, 1 < Li(w) <3 < 216 and P,(0) = 1 implies Ly (0) = 1. Hence,
Li(w) <1+ C|wl|, consequently,

sup H?‘;lLk(w/Qj) < sup II52, exp(|C277wl|) < C.
lw|<1 lw|<1

For any 2K~ < |w| < 2% we have that
%2, Li(w/27) < TS Lip(w/2)I52 g exp(|C27 7 w]) < C2% < C(1 4 |w|)"°.

Since
Prir (W) = (PL(w)) T2 Ly (w/27),
we have that
¢11c+1(w) < C(1 + |w|) 727 HL6, ]

Proposition 2.15 shows that as long as the Fourier transform of refinable function
corresponding to the mask Py has the decay component larger than 1.6, then ¢, will have
an arbitrary large decay component for the sufficiently large k. By (2.14), we obtain that
function ¢} can have an arbitrary high regularity as long as k is sufficiently large. Note
that

ok = 9o * O
we conclude that ¢g1 has an arbitrary high regularity as long as k is sufficiently large.
Altogether, we have the following result:

Theorem 2.16. Let ¢ be a given interpolatory refinable function with mask a = Hy
satisfying
[$(w)] < C(1+ [w]) =0T,

For an arbitrary v > 0, there exists a constant K such that for all k > K, the refinable
function ¢} corresponding to the mask Py, and the dual function ¢%' corresponding to the
mask &g1 constructed in Construction 1 are in C7.

We use the decay estimates from the invariant cycles to give an asymptotical analysis
of the regularity of Construction 2. Our analysis is based on the following result which
was stated in Lemma 7.16 of [D2].
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Result 2.17. Let a be the mask of the refinable function ¢. The mask a is factorized to
the form

a(w) := (cos(w/2)) L(w).

Suppose that [—m,w] = Dy U Dy and that there exists ¢ > 0 such that
|L(w)| < ¢, w € Di;

|L(w)L(2w)| < ¢*, w € Ds.

Then |p(w)| < C(1 + |w|)~7*+*, with k = logq/log2. In particular, when q = 27(1=m=1
with > 0, ¢ € CH—¢,

Example 2.18. Let the mask @ = Hy be the one given by (2.1), i.e.,
N/2—1
N/2—-1+Ek
a(w) := (cosw/2)N Z < / i * ) sin?*(w/2) | =: (cosw/2)NQ(w),
k=0
where N is an even number. It was shown in [D2] that

(2.19) Qw) <2V 72, forw € [—m, 7],

and that always

1 10 2
Qw) < 522062 N, [w] < Zr and - Q(W)Q(2w) <

Therefore the corresponding refinable function ¢ € C*N | with p =1 — 2lfogg32 ~ .2075.

The mask Pj, obtained in Construction 2 can be factorized to the form
Py(w) = (cos(w/2))*" N Ly, (w).
It can be shown easily by part (i) of Construction 2 that
(2.20) L= Ly_1(—3Ps—1Qp-1+3Qr-1+Li_y), k=1,2,--,

where Q1 = Hgk—12N/(COS(CU/2))3k712N.

Proposition 2.21. Let
Py(w) = (cos(w/2))* N Ly (w)

be the mask obtained by the kth iterates in Construction 2.
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Then

2
Li(w) < 2(1—7’)3’“N—1, w| < 57”

(2.22)

2
A (w) :=|Ly(w) Ly (2w)| < 20-732N=2 ) 5 3

with 7 < 0.05.

Proof. First, we prove the first inequality in (2.22) with the larger constant 7, =
0.1. It is easy to show that the inequality holds for £ = 1 and 7 = 7. Suppose that
Li—1(w) < 2(1-m)3* T IN-1 lw| < 7. Applying (2.20) and Lemma 2.9 and Example 2.18,
we have
L = Li—1(3Qu—1(1 = Pe—1) + Li_y)
< Lp—1(3Qr—1 + Lj_y)

—7y)3k - —p - —T1

< 9(1-71)3 “IN 1(2(1 y3k—1aN + 12(1 )3’“’12N)
- 4

< 2(1—7-1)3’“N—1

for all w| < 2.

Next, we show that

Lip(w) <28V k=12,

It is clear that the inequality holds for & = 1. Suppose that Lj_1(w) < 23" 7'N=1_ Applying
(2.20), (2.19) and Lemma 2.9, we have that for all w € [—m, 7],

Li < Lp—1(3Qp—1 + Li_,)
< 23’“’1N—1(3 . 93¢ T2N -2 + 23’“’12N—2)

< 23’CN—1_

Note that when |w| > 27, we have |2w| C [~2m, 27] (modulo27). Hence

max Q(2w) < max Q(w), and max L(2w) < max L(w).
jw|>2n w<2n jw|>2n jw|<2n

Finally, we prove the second inequality in (2.22). When k = 1, the second inequality
in (2.22) holds. Assume that the second inequality in (2.22) holds for £ — 1. For any
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w| > 3,

qi(w) = |Li(w) Lk (2w))|
< 1 (W) (9Qp—1(w)Qr—1(2w) + 3Qp—1(w)Li_, (2w)
+3Qk-1(2w) Ly, (w) + qi_; (w))
< Q-1 (W) (9Qk-1(w)Qr-1(2w) + 3Qp—1 (w) max Li_,(w)

lw|<3m
+ 3(| D|fl<a§ Qk—1(W))Lz_1(w) + qi_l(w))
w _§7r
S Gk 1(“’)(2(1_“)3“14]\[ + §23’%121\’2(1—71)3’“*12N—2
- 1
4 gl aNgs N2y o ()
- 3 1 _ 1 B
< @ (w) (207N E2(1—7)3’“ N 12(1_%)316 N g}y ()

3 4 Tiyqk—1
< g () (G201 gt )

< 2(1—7)3’“*121\’—2(32(1—%)3’“*14N + 12(1—7)3’“*14N)

4
- 2(1—7)3'“7121\’—2(32(1—7)3’“*14N + 12(1—7)3’“*14N)

4
_ 2(1—7)3’“2N—2.

Proposition 2.21 together with Result 2.17 gives the following corollary.

Corollary 2.23. The refinable function ¢ corresponding to the mask Pj obtained at the
kth iterate of Construction 2 is in C™'N with r = 0.05.

Proposition 2.10 and Corollary 2.23 indicate that the support of the refinable function
@2 corresponding to the mask Pj and its regularity have the same growth order. Hence
the regularity of (7 increases linearly with its support.

Corollary 2.24. Let ¢ be the interpolatory refinable function with the mask a of order
N defined by (2.1). Let ¢%2, k = 1,2,... be the dual functions of ¢ constructed at the
kth step of Construction 2. The regularity of the function ngQ increases linearly with its
support.

Theorem 2.16 and Corollary 2.24 show that for a given interpolatory refinable function
with mask @ = Hy defined by (2.1), dual refinable functions with the required regularity
can be obtained by using either Construction 1 or Construction 2.

Remark. Construction 1 and 2 also say that interpolatory refinable functions with desired
regularity can be constructed iteratively from a simple interpolatory refinable function.
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Theorem 2.16 and 2.23 provide an asymptotical regularity analysis for both construc-
tions. However, we use the following sharper estimates to calculate the regularities of the
examples given in this paper.

The quantities to be used to measure smoothness are the ones used in [D2], [RiS1],
[J], [CGV] and [RS]. Define

(2.25) Kp = sup{x : /]R(l + |w[P)|P(w)|P dw < o0}

We are only concerned with x; and k3. When p = 2, finiteness of the integral in (2.25)
defines the function ¢ to be in the Sobolev space W4 (IR®), and the critical exponent is
taken as a measure of the Ly smoothness of ¢. Further, ¢ is at least in € C"*~¢. Since
K1 > ko — 1/2, ¢ is always in C*2—1/2,

The criterion to be used to find the critical exponents is contained in the following
statement( see [J], [RiS3]): For an integer k, let

Vi :={v € Uy(7Z) - Z p(a)v(a) =0, Vpell},

where Il denotes the polynomials of degree k. If for the m-refinable function ¢ the mask
a satisfies

>

(0) =1; DPa(vr) =0 for |B| < pand v € Zy,,

then (i) V,_; is invariant under the matrix

H := [a(ma - 5)]

a€[—N,N]

where the mask a of ¢ is supported in [N, N], and (ii) V5,_1 is invariant under the matrix

Hay o= [h(ma B B>]a€[—2N,2N]
for the mask of ¢ * ¢(—-)
al? /m = Z h(a) exp(—iow).

a€eZ

Let A and M., be the spectral radius of H|y, _, and Hay|v,, ,, respectively. The critical
indices satisfy

log(Aau)
> __ovau)
r2(9) 2 2log(m)’
and the equality holds, when ¢ is stable. If the mask a is nonnegative,
log(A)
> — .
w1(9) > log(m)

14
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2.3. Examples

Let a be the mask of order 4 defined by (2.1), and let ¢ be the corresponding interpo-

latory refinable function. Figures 2.1, 2.2, and 2.3 are the function ¢ and its dual functions

91 and ¢¢? from Construction 1 and Construction 2 respectively. Finally, r1(¢%!) = 0.8582
and r(4%?) = 2.1704.

3. Interpolatory refinable function with orthonormal shifts

Let ¢ be an m-refinable function satisfying the equation

(3.1) $=> bla)p(m —a),

aEXL

15



where b is a finitely supported sequence. The sequence b is also called the mask of ¢.
Define

B(z) := Z b(a)z™, ze€C,

aEX

and for each v, v =1,2,...m — 1, define Laurent polynomials

(3.2) B,(z) = Z b(v + ma)z®, z€C.

Denote B(exp(—iw)) by b(w). Bach of the functions B(z) and b(w) will also be called
the mask of ¢. We note that the righthand side of refinement equation (3.1) differs from
that of (1.1) by a constant m. In particular, we have the identity ma(w) = b(w).

It follows from (1.6) that the orthonormality of the refinable function ¢ implies

(3.3) > IB.(2)P=m, |2]=1

vEMim

If the refinable function ¢ is interpolatory, then (1.7) gives

(3.4) Bo(z) = 1.

3.1. Construction

Our idea here is to use masks of some orthonormal (m — 1)-refinable functions to
construct masks satisfying (3.3) and (3.4). The details of the construction are as follows:

Construction 3. Let

aEXL

be the mask of an orthonormal (m — 1)-refinable function ¢, i.e., the function ¢ satisfies
p=> q@)p((m—1)-—a).
a€Z

Define

Do:

(i) define Bo(z) =1 and B, =Q,_1,v=1,2,...,m —1;
(i) define B(z) = 7' 2V B, (2%);

)
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(iii) define b(w) = B(exp(—iw)) and

b(w) = T2, (b(w/m") /m).

The mask B and the corresponding B, satisfy both (3.3) and (3.4). Since B is a
Laurent polynomial, the mask b is finitely supported. We assume that the support of b is
ZZN[—N, N]. Ofthand, ¢ defined as above may only be a distribution supported on [—N, N]|
and its mask satisfies (3.3) and (3.4). Hence ¢ is a possible candidate of an interpolatory
orthonormal m- refinable function.

To show that the function ¢ is interpolatory, one first needs to show that ¢ is contin-
uous. We use the method briefly described at the end of §2.2 to check the regularities of
our examples in the next subsection. All examples in the next subsection are continuous.

After knowing that ¢ is continuous, we use Theorem 2.3 of [L1.S2] to check whether the
function ¢ is interpolatory. It was proven in [LLS2] that a continuous m-refinable function,
whose mask satisfies (3.4), is interpolatory if and only if 1 is the simple eigenvalue of the

matrix

(3.5) ((1/m)b(mp = ) -N<pa<n-

Once we know ¢ is interpolatory, we further check whether function ¢ is orthonormal.
This can be done immediately by a result of [LLS2] again. Indeed, Proposition 2.1 of
[LLS2] states that a refinable function ¢ is orthonormal if and only if (i) ¢ is stable,
(ii) the corresponding mask satisfies (3.3). Since the interpolatory function is stable and
since the mask of ¢ satisfies (3.3), ¢ is orthonormal. Altogether, we have the following
proposition:

Proposition 3.6. Let ¢ be a continous m-refinable function with the mask B(z) =
Z]_VN b(a)z*. Suppose B(z) satisfies the conditions (3.3) and (3.4). Then ¢ is inter-
polatory and orthonormal if and only if 1 is the simple eigenvalue of the matrix (3.5).

Finally, the algorithm in [LLS1] can be used to construct the corresponding orthonor-
mal wavelets from a given orthonormal refinable function. However, for our examples in
the next subsection, we use a direct method to construct the corresponding wavelets. This
method constructs symmetric (or anti-symmetric) wavelets from the symmetric refinable

functions.

3.2. Examples

In this section, we give examples of interpolatory orthonormal 3-refinable functions
and interpolatory orthonormal symmetric 4-refinable functions with a proper regularity.
The corresponding wavelets are also constructed.

17
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As suggested by Construction 3, we use orthonormal dyadic refineble functions to
construct interpolatory orthonormal 3-refinable functions. By using Daubechies 6 points
orthonormal refinable functions, we construct an example of interpolatory orthonormal
3-refinable function. Figures 3.1, 3.2 and 3.3 are the interpolatory refinable function ¢ and
its wavelets ¢1 and 5. The corresponding Sobolev exponents is 1.0981.

Next, we give three examples of interpolatory orthonormal symmetric 4-refinable func-
tions. The corresponding masks have the factors (1 — 2*)N /(1 — 2)N for N = 2,3, 4.

In each example, we first construct an orthonormal symmetric 3-refinable function,
then we use Construction 3 to obtain an interpolatory orthonormal symmetric 4-refinable
function. The corresponding Sobolev exponent ko of each example is 0.8904, 1.0057 and
1.3034 respectively.

Table 3.1 lists half of the masks of the interpolatory orthonormal symmetric 4-refinable
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functions and the corresponding wavelets for N = 2, 3, 4. The whole mask of each example
can be obtained according to the symmetry or antisymmetry of the mask. We note here
that ¢, 15 and 93 are symmetric. v, is antisymmetric.

Figures 3.4, 3.5, 3.6, 3.7 give interpolatory orthonormal symmetric 4-refinable function
¢ with N = 4 and the corresponding wavelets 11, 92, 13.

Finally, we describe the method used to construct the symmetric (anti-symmetric)
wavelets from the symmetric refinable functions constructed. Suppose that the m-refinable
function ¢ and its mask B are constructed from an (m — 1)-refinable function and the
corresponding mask () by Construction 3. The Laurent polynomials B,,, v =0,2,...,m—1
are defined as (3.2) and the Laurent polynomials Q,, v =0,1,...,(m—1) are defined as in
Construction 3. It is known that the construction of wavelets from an m-refinable function
is equivalent to extending the polyphase 1 x m row 1/y/m(B,(z)) to a paraunitary matrix
(see e.g. [LLS1]). Such extensions become simplier for our examples, because of the fact
By(z) = 1.

The idea here is similar to that of Construction 3. In fact, we will use the paraunitary
matrix E™~! of order m —1 with the first row 1//(m — 1)@, to construct the paraunitary
matrix E™ of order m with the first row 1/y/mB,,. Suppose that we have the paraunitary
matrix E™~1 with first row 1/mQy in hands. The matrix E™ is constructed as
following:

E™(1) = 1/v/m(By);
(3.7) E™(2) =m™ V2 (—/m =1, E™1(1));
E™( )= (0,E™'(j—1)); j=3,---,m,

where E™(j) and E™~1(j) are the j-th rows of E™ and E respectively. One can verify
that E™ is the paraunitary matrix. Therefore we can obtain the wavelets easily. Further,
if E(m=1) leads symmetric or antisymmetric wavelets, so does E™ in all our examples.
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Table 3.1. The centered masks of 4-refinable functions and wavelets

N J ¢ Y1 P2 ¥s3
2 -7 00136994542  -.001369945366 0007909383568
-6 02219632712 -.02219632706 01281505543

- -. 1798162725 1798162720 006575504759 -.1038169733

-4 .0000000000 .0000000000 1065385948 .0000000000

-3 06744383661 -.08322448894 -.08630875230 03893871721

-2 4778036728 -.7334872395 .0000000000 .2758600790

-1 1.111002491 9603341642 1494052376 6414375870

0 1.000000000 .0000000000 1.201136375 -1.732050808

3 -11 -.02503989158 -.02503602134 -.01445678814
-10 .03407840260 03407309542 01967517491

-9 02318969100 02318610889 1706725185 01338857434

-8 .0000000000 .0000000000 -.2322789604 .0000000000

-7 .07060913900 -.5111290409 -.1580615204 .04076620540

-6 -.1647352120 6269956681 .0000000000 -.09510991896

-5 -.1588085600 3799561257 8656580561 -.09168816484

-4 .0000000000 .0000000000 -.7102589035 .0000000000

-3 07147210000 -.7118398990 -.1649414440 .04126443616

-2 6306568090 1019633067 .0000000000 3641098783

-1 1.018577500 -.4264023249  -.006215638203 5880759936

0 1.000000000 .0000000000 4708673599 -1.732050808

4 -15 002583256408  -.002583571458 001491443782
-14  -.003409971160 .003410386733 -.001968747767

-13 -.002250628523 002250903031 -.03068840418 -.001299400983

-12 .0000000000 .0000000000 .04050955362 .0000000000

-11 -.02576255772 -.15650224014 02673687302 -.01487401963

-10 03982846718 2007656697 .0000000000 .0000000000

-9 03012940119 1286656285 -.4492439380 01739521788

-8 .0000000000 .0000000000 .5238605493 .0000000000

-7 .05928205306 -. 7838137817 3001126678 03422650928

-6 -.1615255652 7072100429 .0000000000 -.09325682852

-5 -.1681283527 .2572091065 -.7666165500 -.09706894966

-4 .0000000000 .0000000000 2991928958 .0000000000

-3 08376910294 -.1768222273 -.1950449473 04836411412

-2 6251070818 -.3557274930 .0000000000 3609057418

-1 1.020377721 -.2831027482 4076364047 0891153517

0 1.000000000 .0000000000 -.3129135448 -1.732050808
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