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1. IntroductionLet M be an s� s dilation matrix, that is, an s� s integer matrix whose eigenvalueslie outside the closed unit disk. The compactly supported distribution � is M -re�nablewith �nite mask sequence a, when � satis�es the re�nement equation(1:1) � = X�2Zs j detM ja(�)�(M � ��)for a �nitely supported sequence a. When M = 2Is�s, we simply say � is re�nable. Inmost of the applications, � should be a function with some regularity (smoothness). If �is continuous and equal to 1 at the origin and 0 at the other integers:(1:2) �(�) = �� := � 1; if � = 0;0; if � 2 Zsnf0g,then � is called fundamental (because any sequence of data can be interpolated at thelattice by an in�nite linear combination of the shifts of � with the data as coe�cients).All the essential information about the M -re�nable function � is carried in the re�nementmask a.The construction of compactly supported fundamentalM -re�nable functions with de-sirable regularity properties is motivated from needs arising in geometric modeling and theapplication of wavelet theory to signal processing (as well as in many other applications ofwavelets and biorthogonal wavelets). It is also the logical starting point for the construc-tion of biorthogonal wavelets. The generator for the wavelets and its dual function is insome sense a \splitting" of a fundamental M -re�nable function with the regularity of theresulting pair at least partially determined by the original function.Examples in the univariate case were �rst given by [Du]. Daubechies in [D] obtaineda general construction and also provided a good asymptotic regularity analysis. For higherdimensions this analysis has been limited to a few cases that can be reduced to a univariatesetting.The goal of the present paper is to carry out the following program: (i) \Iterate" afundamentalM -re�nable function of known smoothness to obtain a smoother fundamentalM -re�nable function. An asymptotic analysis of the regularity of the new function can begiven in terms of the regularity of the original function and the number of steps taken.The latter quantity can be related in turn to other quantities, such as the length of there�nement mask. (ii) \Split" the new function into a pair of dual functions, for purposes ofgenerating biorthogonal wavelets in such a way that the original function is one of the pair.This provides compactly supportedM -re�nable functions of arbitrary regularity which aredual to a given compactly supported fundamental M -re�nable function. Combined withthe biorthogonal wavelet construction for a pair of dual re�nable functions given in [RiS2],we are able to obtain symmetric compactly supported multivariate biorthogonal waveletswith arbitrarily high regularity. 1



We next motivate the construction of such functions by a brief description of howthey arise in geometric modeling and signal processing. After that we provide the basicnotation and Fourier analysis formulations that will be used in the sequel. The remainder ofthe introductory section will discuss more fully earlier work and the connections betweenfundamental M -re�nable functions and biorthogonal wavelets. In x2, we will give theimplementable constructions alluded to above, while the asymptotic analysis of regularityfor these constructions is derived in x3. How the constructions can be used for the formationof dual pairs of functions is the topic of x4. Finally, in x5 we will illustrate our methodsby examples.In geometric modeling, subdivision algorithms are de�ned by re�nement masks. Forsimplicity, assume that the dilation matrix is M = 2I. Subdivision algorithms begin withsome initial set of discrete data, c := fc� : � 2 Zsg, called control points, which can bevisualized as the vertices of a given polyhedral surface. The subdivision operator S isde�ned by the mask a as(1:3) S(c)� := X�2Zs a(�� 2�)c� ; � 2 Zs:This gives 2s sets of new control pointsc1�+2� = X�2Zs a(� + 2�� 2�)c� ; � 2 f0; 1gsThus, the new control point sequence c1 is determined linearly from c by 2s di�erentconvolution rules, and the sequence c1 consists of 2s di�erent copies of the original controlpoint sequence c which are averaged by di�erent dyadic cosets of the mask. With thescaling factor 2, the new control polygon is parameterized so that the points c1� correspondto the �ner grid 2�1Zs. Continuing this process, we get control point sequences cn = Snccorresponding to the grids 2�nZs. If the mask a is well chosen, these data sets will approachsome continuous limiting surface in a computationally stable manner. The subdivisionoperator can be visualized as an operator which smoothes the corners of a given polyhedralsurface.If the mask a comes from a fundamental re�nable function, then from (1.1) and (1.2)we �nd a(2�) = �� . Thus, c12� = c(�), and the new control point sequence interpolatesthe previous one on the grid Zs. More generally, the sequences cn = Snc correspondingto the grids 2�nZs interpolate the previous control points cn�1 on the grids 2n�1Zs. Thisiterative process is called an interpolatory subdivision algorithm. The limiting surface canbe written as X�2Zs c(�)�(� � �);and thus has the same regularity as the function �. That is, smoother surfaces requiresmoother fundamental re�nable functions. We refer the reader to [CDM] for the details.As mentioned earlier, the construction of interpolatory subdivision algorithms is di-rectly connected to construction of orthogonal and biorthogonal wavelets which providesthe second motivation described next. We refer to [St], [M] and [RiS2] for the more details.2



Biorthogonal wavelets start with the construction of a dual pair of compactly sup-ported re�nable functions, � and �d in L2(Rs) such that(1:4) h�; �d(� � �)i = ��; � 2 Zs:To construct orthogonal wavelets, � should be equal to �d.The functions � and �d are then used to construct biorthogonal wavelets (cf. x4).If � and �d are compactly supported, then the wavelet families they generate will alsobe compactly supported and will have the same regularity as their respective generator.When the wavelet transform is used to analyze signals, the compactness gives localizationin the time domain, while the regularity provides localization in the frequency domain.Ideal wavelets would possess high regularity and small support. However, the Heisenberguncertainty principle asserts the contrary; higher regularity leads to larger support. Abalance between the time-frequency localization requirements is often needed. By con-structing wavelets with larger support to increase the regularity, we lose accuracy in timedomain to gain accuracy in frequency domain. Given one of the dual re�nable functions �or �d, we may wish to choose the approximate regularity of the other, which is preciselywhat our method allows.The construction of dual re�nable functions, or what is the same, the choice of twomasks a and ad, can be used to design a pair of (biorthogonal) low pass �lters. Thecorresponding construction of the wavelet masks from a and ad given in x4 can be used toconstruct the biorthogonal high pass �lters. The �lters constructed by the methods in thispaper are linear phase (symmetric) �lters. Wavelet construction and �lter bank design insignal processing are interrelated subjects; see [SN] and [VH].We now turn to the Fourier analysis formulations needed in the paper. A compactlysupported continuous function � is fundamental if and only if(1:5) X�2Zs b�(! + 2��) = 1:Applying the Fourier transform to the re�nement equation (1.1) give the relation(1:6) b�(!) = â(M t�1!)b�(M t�1!);where â(!) =P�2Zs a(�) exp(�i�!) and M t�1 is the inverse of the transpose M t of thematrix M . We also call â the mask (sometimes it is called the symbol of the mask) andoften �nd it convenient to write it as a Laurent polynomialA(z) = X�2Zs a(�)z�:When â(0) = 1, then there is a unique compactly supported distributional solution ofre�nement equation (1.1) with b�(0) = 1. The Fourier transform of the solution � of theM -re�nement equation (1.1) can be obtained as the in�nite product(1:7) b�(!) := 1Yj=1 â(M t�j!):3



Let � be a compactly supported fundamental M -re�nable function with the mask â.Condition (1.5) has consequences for the mask â which result from applying (1.6). Beforedescribing this result, we need some notation. The integers Zs can be decomposed into thedisjoint sets (cosets) f� +M tZsg, � 2 ZsMt, where ZsMt = Zs=�M tZs�. Combining (1.6)and (1.5) using this decomposition of the sum, we �nd that if the M -re�nable compactlysupported continuous function � is fundamental, then its mask â satis�es(1:8) X�2ZsMt â�! + 2�M t�1�� = 1; ! 2 Rs ; or, equivalently,X�2ZsMtA(��z) = 1; jzj = 1;where �� := exp �� 2�iM t�1��:Condition (1.8) is called the interpolatory condition for the mask on ZsMt.It was shown in [LLS1] that a continuous re�nable function � is fundamental if andonly if � is stable and its mask, â, satis�es the interpolatory condition (1.8). Here, werecall that � is stable, when � 2 L2(Rs) and its shifts form a Riesz basis of S(�), whereS(�) is the shift invariant subspace in L2(Rs) generated by �. A function � 2 L2(Rs) isstable if and only if the inequality(1:9) c � X�2Zs jb�(! + 2��)j2 � C; a:e: ! 2 Rsholds for some constants 0 < c � C � 1. A compactly supported distribution � ispre-stable, if the inequality c �X�2Zjb�(! + 2��)j2holds for some constant 0 < c, or equivalently, if b� has no 2�-periodic zeros. If a compactlysupported pre-stable function is in L2(Rs), then it is stable.The construction of compactly supported fundamental functions starts with the con-struction of masks that satisfy the interpolatory condition (1.8). Since the masks con-sidered here are Laurent polynomials, the problem of constructing masks to satisfy theinterpolatory condition (1.8) can be reduced to a problem of solving a system of equations.However, this is not enough for the corresponding re�nable function to be fundamental asthe following examples will show that the interpolatory condition (1.8) is only a necessarycondition. The �rst simple example shows that the corresponding re�nable function canbe stable and have a mask that satis�es the interpolatory condition (1.8), but may not becontinuous.Example 1.10. Let â(!) = (1+exp(�i!))2 . Then â satis�es the interpolatory condition(1.8) and the corresponding re�nable function is the characteristic function on [0; 1], whichis not continuous.The next example shows that the mask can satisfy the interpolatory condition and thecorresponding re�nable function can be very smooth, however, it may not be fundamental.4



Example 1.11. Let â := cos2(3!=2). Then â satis�es the interpolatory condition (1.8).Since the corresponding re�nable function � is the autocorrelation function of the charac-teristic function of [0; 3], it is not stable, hence not fundamental. Further, letâk := â2k�1(3� 2âk�1); k � 0where â0 = â. Then, by Theorem 2.15 of [JiS], âk satis�es the interpolatory condition(1.8) and the regularity of the corresponding re�nable function �k of the mask âk can bemade as high as we wish by taking k su�ciently large. However, the function �k cannotbe fundamental, since b�k has b�0 = b� as a factor which implies that �k is not stable.The procedure commonly used in the literature to construct examples of compactlysupported fundamental re�nable functions is:(i) Solve a system of equations derived from the interpolatory condition (1.8) to obtaina mask satisfying (1.8).(ii) Check the stability and calculate the regularity of the corresponding re�nable functionvia the transition operator.This procedure faces the following di�culties: First, except in very few cases, themasks obtained from the system of equations are numerical in nature and have no explicitclosed form. Secondly, after the numerical solutions are obtained, one still needs to checkwhether the corresponding re�nable functions are fundamental and to determine theirregularity. A general method of construction should not only build the masks to satisfythe interpolatory condition (1.8), but also should provide the analysis of (a) whether theresulting functions are fundamental and (b) the asymptotic regularity.In this regard, there are few such constructions available. Daubechies in [D] obtainedsuch a general construction for the univariate case where each mask is explicitly given asthe convolution of the mask of a B-spline with a mask of a re�nable distribution. It isthis construction that leads to the general construction of compactly supported orthogonalwavelets, and later to the construction of compactly supported biorthogonal wavelets (see[CDF]). This construction also is the basis of the bivariate constructions in [CD] and [HL],where the bivariate problem is reduced to a univariate problem to which the Daubechies'construction can be applied directly. Strictly bivariate examples of continuous and contin-uously di�erentiable compactly supported bivariate fundamental re�nable functions wereobtained by [DDD] and [DGL] respectively. A set of examples of compactly supportedbivariate fundamental re�nable functions with increasing regularity was provided in [RiS1]from masks formed by the convolution of box spline masks with masks of re�nable dis-tributions. A construction was given in [HJ2] for examples of continuous fundamentalre�nable functions with various optimal properties.Several iterative methods for the construction of compactly supported fundamentalre�nable functions were obtained in [JiS] in their construction of univariate biorthogonalwavelets from a multiresolution generated by fundamental re�nable function. In x2, theideas of [JiS] are more fully developed to obtain methods for the construction of compactlysupported fundamental M -re�nable functions for any dilation matrix and in any numberof variables starting from a given compactly supported M -re�nable fundamental function.The examples mentioned in the previous paragraph provide a su�cient number of startingpoints to justify our methods. 5



For dual pairs of M -re�nable functions, � and �d in L2(Rs), we require that thefunctions be stable and satisfy the biorthgonality relation (1.4). Then the function �din L2(Rs) is called a dual function to �. Often, one of these two functions is given.For a given stable function � 2 L2(Rs), it is possible to �nd noncompactly supporteddual re�nable functions �d, but the construction of compactly supported dual re�nablefunctions requires more as proved in [BR]: A compactly supported function has a compactlysupported (not necessary re�nable) dual function if and only if its shifts are linearlyindependent, that is, if and only if for an arbitrary sequence a, the equalityX�2Zs a(�)�(� � �) = 0implies that a = 0. The linear independence of the function � 2 L2(Rs) and its shifts is astronger requirement than the stability of �.One method for the construction of a dual pair of re�nable functions is as follows:First, �nd a �nitely supported mask â whose corresponding compactly supported re�nablefunction ' is fundamental. To obtain a dual pair, one factors the mask â in an appropriateway and then separates the factors into two masks. In the univariate case, when ' isfundamental, the mask â always has the mask of a B-spline as a factor and this methodleads to the construction of the biorthogonal wavelets in [CDF]. Further, in the univariatecase, when â = â(��) and is non-negative, one can separate the mask into identical pairsof factors to obtain a re�nable function with orthonormal shifts. That is the case inDaubechies' construction of compactly supported orthonormal wavelets.For the multivariate case, we do not have factorization of the mask any more. In[CS], an example of biorthogonal bivariate wavelets with dilation matrix M = 2I wasconstructed where one basis is continuous piecewise linear polynomials while its dual basisis a compactly supported L2 function found by solving linear equations. In [RiS2], pairs ofdual re�nable functions are obtained by separating the masks from [RiS1] where â are theproducts of box splines masks with trigonometric polynomials. Thus, one set of waveletsconsisted of �nite linear combinations of box splines while various dual functions of di�eringsmoothness were obtained. In some cases, the construction of compactly supported M -re�nable dual functions can be reduced to the problem of the construction of compactlysupported fundamentalM -re�nable functions as follows: If the re�nable M -function � haslinearly independent shifts, then one �nds a compactly supported M -re�nable function�d 2 L2(Rs), so that the function ' = � � �(��)d is fundamental. Then �d is a dualfunction of �. In this regard, our particular methods will lead naturally to the constructionof dual functions, as we will show in x4.2. Methods for Constructions of MasksSuppose we have a fundamentalM -re�nable function in hand, there are two questionswe wish to address here. (1) If the smoothness of the given re�nable function is not highenough, can we \iterate" in some fashion to obtain a smoother one from it while stillpreserving the interpolatory property for the new mask? One likely way to obtain higher6



smoothness is to obtain higher powers of the given mask as a factor of the mask obtainedthrough the iterative procedure. This would require controlling the remaining factor soas to not detract too much from the advantage gained. If such is the case, then there ishope that after removing one power of the original mask from the new mask, what remainswill be a mask which answers the second question: (2) Can we �nd a dual function withsmoothness as high as we wish?The constructions of new compactly supported M -re�nable fundamental functionsfrom a given one and the construction of a dual re�nable function given below are basedon the following simple idea: Let P0 be the mask symbol â of the given fundamentalM -re�nable function �. De�ne(2:1) P�(z) := P0(��z); � 2 ZsMt; jzj = 1:Then the interpolatory condition (1.8) becomes
(2:2) X�2ZsMt P�(z) = 1; jzj = 1; which implies� X�2ZsMt P�(z)�mN = Xj
j=mN  C
mN Y�2ZsMt P 
�� (z)! = 1; jzj = 1for any integerN andm. In particular, we takem = j detM j. Since we mainly consider thispolynomial on the torus, we shall abuse notation and write P�(!) instead of P�(exp(�i!)).Theorem 2.3. Let P = P0 be a Laurent polynomial satisfying (2.2) (i.e. (1.8)) for adilation matrix M with m = j detM j. De�neG0 := n
 2 INm0 :j
j = mN; 
0 > N and 
0 > 
� ; � 2 ZsMtnf0goGj := n
 2 INm0 :j
j = mN; 
0 > N and 
0 � 
� ; � 2 ZsMtnf0g;with exactly j equalitieso; j = 1; : : : ;m� 2:and de�neH := m�2Xj=0 1j + 1 X
2Gj C
mNP 
0�10 Y�2ZsMtnf0gP 
�� !+ C(N;:::;N)mN Y�2ZsMt PN� ;where C
mN are the multinomial coe�cients. Then, as a symbol, the Laurent polynomialPH also satis�es (1.8).Remark. It should be noted that some of the sets Gj , j = 1; : : : ;m � 2, may be emptyfor particular choices of m and N . In this case, the corresponding terms in the de�nitionof H are zero. 7



Proof. Let Q�(z) := (PH)(��z), � 2 ZsMt. Observe that the mapping � 7! � + �is one-to-one and onto ZsMt for each �xed � 2 ZsMt. Hence, when z is replaced by ��z inthe sequence �P���2ZsMt only a permutation of the sequence is obtained. For the last termof P�2ZsMt(PH)�, we �ndC(N;:::;N)mN X�2ZsMt PN+1� Y� 6=�PN� = C(N;:::;N)mN  Y�2ZsMt PN� ! X�2ZsMt P�= C(N;:::;N)mN Y�2ZsMt PN�by (1.8) for P .The term in PH corresponding to j, 0 � j � m� 2 with Gj 6= ;, is(2:4) 1j + 1 X
2Gj C
mNP 
00 Y�2ZsMtnf0gP 
�� !:When z is replaced by ��z, we obtain a similar sum with Gj replaced byGj(�) := n
 2 INm0 :j
j = mN; 
� > N and 
� � 
� ; � 2 ZsMtnf�g;with exactly j equalitieso:Summing over � 2 ZsMt, we obtain1j + 1 X�2ZsMt X
2Gj(�)C
mN Y�2ZsMt P 
�� ! = X
2G�j  C
mN Y�2ZsMt P 
�� !;where G�j := n
 2 INm0 : j
j = mN; with exactly j + 1 of the 
� equal to j
j1o;(because Gj(�), � 2 ZsMt covers G�j exactly j + 1 times). Thus for jzj = 1,X�2ZsMtQ� = m�1Xj=0 X
2G�j  C
mN Y�2ZsMt P 
�� !+ C(N;:::;N)mN Y�2ZsMt PN�= Xj
j=mN  C
mN Y�2ZsMt P 
�� ! =  X�2ZsMt P�!mN = 1:
8



Here are a few cases that will be used in later examples:

(2:5)
m = 2; N = 1 :H = P0 + 2P0P1 = P0�1 + 2P1�:m = 2; N = 2;H = P 20 (P0 + 4P1 + 6P 21 ):m = 2; N = 3;H = P 30 (P 20 + 6P0P1 + 15P 21 + 20P 31 ):m = 2; N = 4;H = P 40 (P 70 + 8P 60P1 + 28P 50P 21 + 56P 40P 31 + 70P 40P 41 ):m = 3; N = 1;H = P0�P0 + 3(P1 + P2) + 6P1P2�:m = 3; N = 2;H = P 20 �P 30 + 6P 20 (P1 + P2) + 15P0(P1 + P2)2+ 60(P 21P2 + P1P 22 ) + 10(P 31 + P 32 ) + 90P 21P 22 �:m = 4; N = 1;H = P0�P 20 + 4P0(P1 + P2 + P3) + 12(P1P2 + P2P3 + P1P3)+ 3(P 21 + P 22 + P 23 ) + 24P1P2P3�:Of course, to make use of these equations, we must assign some ordering to the cosetrepresenters �, � 2 ZsMtnf0g, say �1; : : : ; �m�1, and set Pj = P�j , j = 1; : : : ;m� 1.The Theorem will be used in the following ways: Since PH satis�es the interpolatorycondition for a mask, PH is a candidate as a mask for a new fundamental function withhopefully higher smoothness, whileH would then be the mask for a dual function. The trickof placing the extra power of P0 in the last term in H means that H has the factorizationPN0 T . With good initial choice of P = P0, the power of P0 will add to the smoothnessof the functions generated from the masks PH and H, provided that T can be boundedsuitably. The next result addresses the bounds on T .Lemma 2.6. On jzj = 1, if P = P0 is non-negative, then the function H of Theorem 2.3has the form H = PNT where0 � T (!) � CN+1mN + C(N;:::;N)mN (m� 1)�(m�1)N ;with the zero set of T being a subset of the zero set of P0. Therefore,(2:7) �N;m := max! T (!) � C(N;m) mNm+1=2pN(m� 1)N(m�1)�1=2where C(N;m) � 1:9542 if N = 1; m � 2 and C(N;m) � 5:1 if N � 2; m � 2.9



Proof. Since P0 + : : : + Pm�1 = 1 and P0 is non-negative, we conclude that0 � P� � 1. The conclusion ensures that T is the sum of non-negative terms hence, thezero set of T is a subset of P0, since the term with highest power of P0 has only P0 as afactor.Note further that PH contains only \monomials" in the expansion �P�2ZsMt P��mNwith 
0 � N but perhaps with smaller coe�cients (even zero in some cases). Since 1�P0 =P�2ZsMtnf0g P�, we may use instead the expansion of (P0 + (1� P0))mN to obtain
(2:8) T � mNXj=N+1CjmNP j�1�N0 (1� P0)mN�j + C(N;:::;N)mN Y�2ZsMtnf0gP�� mNXj=N+1CjmNP j�1�N0 (1� P0)mN�j + C(N;:::;N)mN �1� P0m� 1 �(m�1)N ;where the last inequality comes from the fact that the maximum of Q�2ZsMtnf0g P� subjectto the constraintsP� � 0 and X�2ZsMtnf0gP� = const; (namely, the constant 1� P0 � 0,)occurs when all the P� are equal.Since the derivative with respect to P0 of the �rst term on the right hand side of (2.8)is (after a regrouping)mN�1XN+1 hCk+1mN (k �N)P k�1�N0 (1� P0)mN�k�1 � CkmN (mN � k)P k�1�N0 (1� P0)mN�k�1i= (�N � 1)mN�1XN+1 Ck+1mN P k�1�N0 (1� P0)(mN�k�1) < 0;the right hand side is decreasing on 0 � P0 � 1. Therefore, the right hand side of (2.8)has its maximum when P0 = 0. That gives the desired bound.The bound (2.7) follows from the strong form of Stirling's formula���� �(x+ 1)xxe�xp2�x � 1���� < 2p2�x; x � 1:Indeed, applying this formula, we �nd that

C(N;m) �
8>>>>>>>>>><>>>>>>>>>>:

�1+ 2p2�m�2e�1� 2p2�(m�1)� + p2��1+ 2p2�m�empm�1 ; when N = 1 and m � 2;N�1+ 2p2�Nm�(N+1)p2��1� 2p2�N(m�1)��1� 2p2�Nm�+ �1+ 2p2�Nm�p2�(m�1)�1� 2p2�N �2�p2�N�2�m�2 ; if N � 2 and m � 2.10



Another consideration is whether good properties of P are passed on to the newlyde�ned PH and H. The next lemma will be useful in establishing the stability of thefunctions generated by masks PH and HLemma 2.9. Suppose theM -re�nable functions �1 and �2 have Fourier transforms whichare continuous and non-vanishing at 0. Suppose further that the zero set of the mask â�1contains the zero set of the mask â�2 . If �1 is pre-stable, then �2 is pre-stable.Proof. The pre-stability of �2 will follow from the fact that any zero for b�2 is azero for b�1. Suppose b�2(!0) = 0. Then for k large enough,b�2(!0) =  kYj=1 â�2�M t�j!0�!b�2�M t�k!0�with b�2�M t�k!0� 6= 0 by the nonvanishing and continuity the origin and the fact thatM t�k!0 ! 0 as k ! 1. Hence, M t�j!0 is a zero of â�2 for some j. But then the sameM t�j!0 is a zero of â�1 as well, which implies !0 is a zero of b�1.Corollary 2.10. If P = â is the non-negative mask of a continuous compactly supportedfundamental M -re�nable function �, then the M -re�nable functions generated by themasks PH and H in Theorem 2.3 are pre-stable.Proof. We have noted already that such a � is stable. Clearly b� is continuoussince � is compactly supported. Since P is non-negative, Lemma 2.6 implies that the zerosets of P , PH and H coincide. Hence, the result follows from Lemma 2.9.We have clearly established that Theorem 2.3 provides a family (indexed by N) offunctions H so that PH and H preserve many of the good properties inherent in P ; posi-tivity, interpolatory condition (for PH) and pre-stability. Further, we have the followingresult:Corollary 2.11. Let P = â be the non-negative mask of a continuous compactly sup-ported fundamental M -re�nable function �. If the M -re�nable function corresponding tothe mask PH is continuous, then it is fundamental. If the M -re�nable function corre-sponding to the mask H is in L2(Rs), then it is stable and dual to �.Further, since both PH and H are real, we have the following corollary:Corollary 2.12. Let P = â be the non-negative mask of a continuous compactly sup-ported fundamentalM -re�nable function �. Then theM -re�nable functions correspondingto the mask PH and to the mask H are symmetric to the origin.In the next section, we will discuss the question of gain in smoothness by this proce-dure. Since larger N gives higher powers of P in PH, this may already be a method ofbuilding smoothness and indeed, it is! But, a quick glance at the examples (2.5) showsthat with larger m or N , the complexity of H increases rapidly. Hence, it may be betterto obtain the higher smoothness through iteration.11



The Iteration Algorithm 2.13. Given a mask a for anM -re�nable continuous function� with a mask â � 0 which satis�es the interpolatory condition (1.5). Fix an N � 1 andset P = â, k = 0. DO:Step 1. Set k = k + 1, P0 = P , and compute P� , � 2 ZsMtnf0g as in (2.1).Step 2. Form H according to Theorem 2.3 (as in (2.5)).Step 3. Set P = P0H and/or when k > 1, set Hd = P0H=â.Step 4. De�neb�N;k(!) := 1Yj=0P (M t�j!) and/or b�dN;k�1(!) := 1Yj=0H(M t�j!); and/orb�d;N;k(!) := 1Yj=0Hd(M t�j!):Step 5. STOP if the smoothness of the desired function(s) ( �N;k and/or �dN;k�1and/or �d;N;k) is reached, ELSE repeat Steps 1{5.A word about the choices of output. The function �N;k will be a new, smootherfunction with a non-negative mask which satis�es the interpolatory condition (1.5). Thefunction �dN;k�1 is a candidate for a dual function to �N;k�1 since the product of the maskof �N;k�1 (P0 in Step 3) and the mask of �dN;k�1 (H in Step 3) satis�es the interpolatorycondition (1.5) (we elaborate on this in Section 4). For a similar reason, the functions�d;N;k are candidates (with smoothness increasing in k) for a dual function to the original�. The �rst three steps in Algorithm 2.13 are easy to implement in symbolic softwaresuch as MAPLE. Step 5 can also be carried out with only the information provided by thenew masks through the procedure described in the next section.Remark 2.14. The bivariate fundamental re�nable functions constructed by [RiS1] pro-vide us many initial functions for the construction here. In general, one can use box splineas suggested by [RiS1] to generate examples of the fundamental re�nable function with lowregularity numerically by solving a system of equations, or one can always obtain examplesby using tensor product of fundamental re�nable functions with lower regularity. Thenapply the constructions in this section on those fundamental re�nable functions to buildnonseparable fundamental re�nable functions with higher regularity.3. RegularityWe �rst show that provided the initial function � with mask â = P is suitably smooth,then the regularity of PH will increase with N or with each iteration in Algorithm 2.13.A function � belongs to C� for n < � < n+ 1, provided that � 2 Cn and(3:1) jD
�(x+ t)�D
�(x)j � const jtj��n; for all j
j = n and jtj � 112



for some constant independent of x. The number � is related to weighted L1 exponents �de�ned as(3:2) �sup := supf� : ZRs(1 + j!j)�jb�(!)j d! <1g:The relation is given by the inequality sup� � �sup.Therefore, an increase in the decay rate of the Fourier transform at in�nity will meanthat the corresponding function will have increased smoothness. We say b� has decay rate
 if jb�(!)j � C(1 + j!j)�
:Our object is to show that the constructions in the last section lead to smoother functionsprovided the original functions have su�cient smoothness. We will show that the Fouriertransforms of the constructed functions have increasing decay rate provided the Fouriertransform of the initial function has su�cient rate of decay.The analysis depends on the factorization of H as PNT , the estimates on T as givenin Lemma 2.6, and on the characteristics of the dilation matrix M t. For simplicity, werequire thatM has a complete orthonormal set of eigenvectors. Then there is an equivalentnorm on Rs for which j�minj jj!jj � jjM t!jj � j�maxj jj!jj;where j�minj (respectively, j�maxj) is the minimum (respectively, maximum) modulus ofthe eigenvalues of M t. Hence, if B := B(Rs) is the closed unit ball in Rs , then(3:3) ! 2M tK+1Bn�M tKB� =) j�minjK � jj!jj � j�maxjK+1:The matrix M will remain �xed, but we must label the various elements of the con-struction in the last section to identify how they arise. We do this with a subscript Ndenoting the choice of N and a subscript k to denote the iteration step k. Thus, we useHN;k with a factorization �PN;k�1�NTN;k to obtain the function b�N;k, while b�dN;k�1 is thefunction obtained from the mask PN;k = PN;k�1HN;k. We make use of the bound on TN;kfound in Lemma 2.6.We follow the well-known analysis of [D2] for the univariate case. We begin with theobservation that PN;k�1(0) = PN;k(0) = 1 implies that TN;k(0) = 1. This in turn impliesthat TN;k(!) � 1 + Cj!j, and consequently allows the estimate,(3:4) supj!j�1 1Yj=1TN;k(M t�j!) � supj!j�1 1Yj=1 exp(jCM t�j!j) � C:Therefore, when ! 2M tK+1Bn�M tKB�, we have that1Yj=1TN;k(M t�j!) = KYj=1TN;k(M t�j!) 1Yj=1TN;k(M t�j�K!) � C�KN;m= Cj�minjK log ��N;m�= log �j�minj� � C(1 + j!j)log ��N;m�= log �j�minj�;13



by (3.4) and (3.3). For brevity in the ensuing expressions, we set(3:5) �N := log��N;m)= log(j�minj�:If we assume that b�N;k�1 has rate of decay 
N;k�1 (with 
N;0 := 
0, the decay rateof the original �), then sinceb�N;k(!) = 1Yj=1�PN;k�1�M t�j!��N+1TN;k�M t�j!�=�b�N;k�1(!)�N+1 1Yj=1TN;k�M t�j!�; and, similarlyb�dN;k�1(!) =�b�N;k�1(!)�N 1Yj=1TN;k�M t�j!�we �nd that(3:6) b�N;k(!) � C(1 + j!j)�(N+1)
N;k�1+�N ; andb�dN;k�1(!) � C(1 + j!j)�N
N;k�1+�N :It is easy to show inductively from the estimate (3.6) that the following formulas fordecay rates hold for b�N;k and b�dN;k�1 respectively:(3:7) 
N;k = (N + 1)k�
0 � �N=N�+ �N=N and
dN;k = N(N + 1)k�1�
0 � �N=N�:For the decay rate of b�d;N;k, we take b�d;N;1 = b�dN;1 and observe via induction thatb�d;N;k(!) = b�d;N;k�1(!)b�dN;k�1(!) = kYj=1 b�dN;j(!):Hence, from (3.7), we obtain the decay rate of b�d;N;k as
d;N;k = �(N + 1)k � 1��
0 � �N=N� for k > 1.It follows from (2.7) that �N=N is bounded by a constant dependent only on thematrix M . Hence, we have establishedTheorem 3.8. Let � be an M -re�nable function with non-negative mask P = â. If thedecay rate 
0 of b� is su�ciently large, then the decay rate of b�N;k, b�dN;k�1 and b�d;N;k canbe made arbitrarily large by increasing N or k. In particular, a decay rate of
0 > log ��N;m�=N log �j�minj�;14



will su�ce, where �N;m can be bounded as in (2.7).Remark. We note that with k = 1 and N increasing, both the diameter of the support ofthe mask and the rate of decay of the Fourier transform are increasing linearly in N . Fora �xed N and increasing k, both the diameter of the support and the rate of decay of theFourier transform are increasing geometrically with k. Therefore, to increase regularitye�ciently while maintaining control on the size of the support, it is better to increase N .On the other hand iteration with low values of N is easier to implement by (e.g.) MAPLE,because of the complexity of H for large N .Example.3.9 Let � be the the simplest fundamental function constructed in [RiS1] whichis obtained by convolving the mask of a three direction box spline of equal multiplicity2 in each direction with a distribution (see x5). The mask â of � is non-negative. Bychoosing a su�ciently large N , or a su�ciently large iteration k, we get fundamentalre�nable functions with high order box spline factor. Further, the regularity of the re�nablefunction grows linearly with N (geometrically with k). Hence, the constructions given in x2together with the constructions given in [RiS1] provide several methods for the constructionof fundamental re�nable functions with high order box spline factor. The regularity of there�nable function increases as the order of the box spline factor does.The crude bounds on TN served their purpose to establish Theorem 3.8, but they maymislead one to believe that the starting point needs to be unrealistically high. However,in practice things are better since the smoothness can be assessed much more accurately.Here we summarize the approach to be used in our examples at the end. By now it hasreceived treatment at many levels, by several people [CGV], [CD], [E], [H], [J], [RiS1],[RS4] and [V].The criterion to be used to bound �sup from below is contained in the followingstatement: For an integer r, letVr := �v 2 `0(Zs) : X�2Zs p(�)v(�) = 0; 8 p 2 �r	;where �r denotes the polynomials of total degree r. Assume M is a dilation matrix witha complete set of orthonormal eigenvectors. If the mask â for the stable fundamental M -re�nable function � satis�es(3:10) â � 0; â(0) = 1; and D� â�2�M t�1�� = 0 for j�j � r and � 2 ZsMtnf0g;then for a suitable choice of 
 with supp a � 
, Vr is invariant under the matrixIH := ha(M�� �)i�2
;�2
:Let �IHjVr be the spectral radius of IHjVr . Then the exponent �sup satis�es(3:11) �sup � � log ��IHjVr �log �j�maxj� :15



The proof of this statement can be obtained by modifying the proof in [RiS1] or from[CGV], [J] and [RS4]. The invariant set 
 was de�ned in [LLS1] and [LLS2] and [HJ1].An explicit formula for the invariant set was given in [HJ1, Theorem 4.2]:(3:12) 
 := 1Xj=1M�j supp a:
4. Dual Functions and Biorthogonal WaveletsIn this section we combine the construction of biorthogonal wavelets in our previouspaper [RiS2] with the constructions of fundamental re�nable functions in section 2 toconstruct dual functions of arbitrary smoothness.Suppose that � is a continuous, compactly supported, M -re�nable function on Rs ,and the set of functions f�(� � �)g�2Zs are linearly independent. We want to construct astable compactly supported M -re�nable function �d in L2(Rs) so that the set of functionsf�d(� � �)g�2Zs forms a Riesz basis of S(�d) and(4:1) h�; �d(� � �)i = ��; � 2 Zs:The latter equations hold (see e.g. [RS1]) if and only if the Fourier transform for � and�d respectively satisfy(4:2) X�22�Zs b�(! + �)c�d(! + �) = 1; ! 2 TTs:Therefore, when (4.1) holds, the masks â and âd must satisfy the following necessarycondition:(4:3) X�2ZsMt â(�+ 2�M t�1�)âd(�+ 2�M t�1�) = 1:This can be used to advantage when compared to the interpolatory condition (1.8), becauseif the mask ĥ for a fundamental M -re�nable function factors into a product of two masksĥ = ââd, then â and âd can be considered as candidates for the masks of an M -re�nablefunction and its dual function. In our case, we will deal only with real masks and thereforecan dispense with the conjugation.It was shown in [S] that � and �d are a dual pair if and only if � and �d are stable andtheir masks satisfy (4.3). Therefore, if masks â and âd satisfy (4.3), then one needs showthat the re�nement equations of both masks â and âd have compactly supported solutions(�, �d, respectively) in L2(Rs), and that the functions � and �d are stable.16



These veri�cations are much easier through the constructions and results of x 2. Webegin with a continuous, compactly supported fundamental M -re�nable function � withmask â = P . An application of the constructions provide new mask PH which alsosatis�es the interpolatory condition (1.5), and therefore, we have (4.3) with â := P , ouroriginal mask, and âd := H. The existence and stability for � are given while the existencein L2(Rs) of the solution �d is assured if � is smooth enough, and the stability of �dis assured if the mask â in non-negative (by Corollary 2.10). Thus, if we begin with acontinuous, compactly supported fundamental M -re�nable function � with mask â � 0,then the existence of L2(Rs) solutions and the stability of �d are essentially automatic(one may have to iterate a few times or choose a larger N to ensure that �d is in L2(Rs),but as Theorem 3.8 shows, we may then achieve any regularity we wish for the dual).Here is a summary of two constructions for dual functions and biorthogonal waveletsusing the results of x 2. The two constructions di�er only in how the â and âd are chosenin Step 1 of Algorithm 4.5 to commence the actual construction.The �rst assumes that we want to �nd a dual function for the given fundamentalfunction � (which may have been arrived at after an iterative procedure to gain smoothness)with the smoothness of the dual function to be determined solely by the choice of N ,namely, the case k = 1 and N �xed. In this case, we take â = P and âd = H.In the second construction, we want to �nd a dual function for the given fundamentalfunction � with the smoothness of the dual enhanced by repeated iterations. In this case,after a suitable number of iterations to obtain the smoothness of the candidate for thedual function, we take â and set the dual mask âd = PHd=â, since â is a factor of theiterations.Let � and �d be a dual pair. Then, it was shown in [BDR] (also see [JS]) that thesequence of subspaces de�ned bySk(�) := ff(Mk�) : f 2 S(�)g; k 2 Z;and the sequence of subspaces de�ned bySk(�d) := ff(Mk�) : f 2 S(�d)g; k 2 Z;form a `dual' pair of multiresolutions of L2(Rs). Here we recall that a sequence Sk(�)forms a multiresolution, when the following conditions are satis�ed: (i) Sk(�) � Sk+1(�);(ii) [k2ZSk(�) = L2(Rs) and \k2ZSk(�) = f0g; (iii) � and its shifts form a Riesz basis ofS(�).Once a dual pair of the multiresolutions are available, the construction of the biorthog-onal wavelets from the pair of multiresolutions is equivalent to a problem of the matrixextension. The algorithm presented here for biorthogonal wavelet construction makes useof an algorithm for design of matrix pairs provided in [RiS2]:Algorithm for Matrix Pairs 4.4. For given 1 � m vectors of Laurent polynomialsP = [P1; P2; : : : ; Pm] and Q with P (z)QT (z) = 1 for all z 2 fC nf0ggs , DO:Step 1. Extend the row P to an m �m matrix K in P, where P is the set of all �niteorder matrices with entries being Laurent polynomials in (C nf0g)s .17



Step 2. Alter the last m � 1 rows of K to be orthogonal to Q: Let Kj, j = 2; : : : ;m, bethe last m� 1 rows of the matrix K and de�neGj := Kj � (KjQT )P; j = 2; : : :m:Step 3. De�ne X := �PT ; GT2 ; : : : ; GTm�T . Then X 2 P and is nonsingular on (C nf0g)s .Step 4. Find X�1 := �FT1 ; FT2 ; : : : ; FTm� and set Y T := �QT ; FT2 ; : : : ; FTm� Then Y 2 Pand X(z)Y T (z) = Im; z 2 (C nf0g)s :Step 1 is de�nitely trivial here, since � is fundamental, for then substituting �(�) =�(�) into the re�nement equation (1.1) shows that a(M�) = �(�)=jdet(M)j. Hence,X�2Zs a(M�)zM� = 1=jdet(M)j:Thus, if � = 0 is the �rst element in our ordering of ZsMt, then the matrix can be extendedsimply by placing 1=j det(M)j's in the diagonal. Once the step one is ready, the other stepscan be implemented easily.Remark. If each entry of the polynomial vectors P and QT are real on jzj = 1, and if P1is a real constant (as in the case just described), then each entry of X is real on jzj = 1and each entry of Y is real on jzj = 1 except that the rows 2; : : : ;m may be multipliedby j detXj which is a monomial, that is, a real constant times an exponential exp(�i�!)on jzj = 1. Therefore, if we start with a fundamental M -re�nable function and a dualfunction both symmetric to the origin, then the wavelets and dual wavelets constructed inthe next algorithm will also be symmetric.Algorithm for Biorthogonal Wavelets from Interpolatory Subdivision 4.5. Fora given continuous, compactly supported fundamental M -re�nable function � with maskâ � 0. DO:Step 1. Apply Algorithm 2.13 to a desired level k to obtain H or Hd as required. Wetake â and âd = H for k = 1 or âd = Hd for k > 1. Letb�d(!) := 1Yj=1 âd�M t�j!�:Step 2. De�ne polynomials corresponding to the masks restricted to the cosets of Zs=MZsby A0;�(z) := X�2Zs a(� +M�)zM�; � 2 Zs=MZs;and Ad0;�(z) := X�2Zs ad(� +M�)z�M�; � 2 Zs=MZs:Step 3. Apply Algorithm 4.4 to P (z) := A0(z) := (A0;�(z))�2Zs=MZs, and Q(z) := Ad0 :=(Ad0;�(z))�2Zs=MZs to obtain matrices X and Y .18



Step 4. Label the rows and columns of X and Y by Zs=MZs with the �rst row labeled by0 and the remaining rows in some �xed order (e.g. by the lexicographic order).For the �-th rows A� = (A��)�2Zs=MZs and Ad� := (Ad��)�2Zs=MZs respectively ofX and Y , de�neA�(!) := X�2Zs=MZs exp(�i�!)A��(exp(�iM t!));and Ad�(!) := X�2Zs=MZs exp(�i�!)Ad��(exp(�iM t!)):Step 5. De�ne two sets of functions(4:6) b �(M t!) := A�(!)b�(!); and b d�(M t!) := Ad�(!)b�d(!); � 2 Zs=MZs:Then(i)  0 = � and  d0 = �d.(ii) The functions  �, � 2 Zs=MZsnf0g, are called the wavelets for the re�nablefunction �.(iii) The functions  d�, � 2 Zs=MZsnf0g, are called the dual wavelets, that is, thewavelets of the dual function �d.Finally, as was noted in [RiS2] and in a more general setting for dilation matrices Mas discussed here in [RS3], the systems(4:7) n �(Mk � ��) : � 2 ZsMnf0g; k 2 Z; � 2 Zsoand(4:8) n d�(Mk � ��) : � 2 ZsMnf0g; k 2 Z; � 2 Zso;are the biorthogonal wavelet systems from the above construction, i.e.h (Mk1 � ��1);  d(Mk2 � ��2)i = ��1;�2�k1;k2 ; �1; �2 2 Zs; k1; k2 2 Z:Further, they form a biorthogonal Riesz basis of L2(Rs) if they are Bessel systems (see[RS3]. Let 	 := � � : � 2 ZsMnf0g	 and 	d := � d� : � 2 ZsMnf0g	. It was shown in[RS2],[RS3] that the dilations and shifts of functions in 	0 form a Bessel system if thefunctions(4:9) RE := max 2	0 X�22�Zs j b (�+ �)j;and(4:10) RD := X 2	0;k2ZZ j b (M tk�)j19



are in L1. This will be true provided the functions have certain decay rates at in�nityand a certain order of the zeros at the origin.Remark. Let � be an arbitrary given compactly supported fundamental M -re�nablefunction with mask â non-negative. By the methods given in this paper, we are ableto construct a compactly supported dual re�nable function with any desired regularityand the corresponding biorthogonal wavelet systems. Further, since we can construct there�nable fundamental function to have arbitrary regularity in any number of variables byRemark 2.14, we are able to construct multivariate biorthogonal wavelets with arbitraryregularity by the methods given here.Remark. In the bivariate case, for an arbitrary given three direction mesh box spline onecan construct dual re�nable function with arbitrary regularity by Example 2.14. Therefore,biorthogonal wavelet systems with arbitrary regularity such that one of the bases is formedby piecewise polynomials can be constructed.Remark. Let � be a given M -re�nable function with mask â that is not fundamental.Assume that � and its shifts are linearly independent. One may �nd a re�nable dualfunction �d with mask âd that has a lower regularity numerically by solving a system ofequations. If the mask ââd is non-negative, then we can use the constructions of x2 to �nda mask P with â as a factor and for which the compactly supported M -re�nable functioncorresponding to P=â has high regularity. Hence, smoother biorthogonal wavelets can beobtained. When � is a linearly independent box spline in Rs , we may get a compactlysupported dual re�nable function with any desired regularity. Therefore, the problem of theconstruction of a compactly supported dual re�nable function with any desired regularityfor a given linearly independent re�nable function � is reduced to the problem of either�nding numerically a distributional dual function or �nding numerically a dual functionwith a lower regularity.
5. ExamplesIn this section we apply the techniques developed in the paper to illustrate the theoryin concrete cases. We have chosen bivariate examples with di�erent dilation matrices. The�ndings are summarized in Table 1.Bivariate example with dilation matrix M = 2I2�2. For the �rst examplewe use the simplest of the fundamental functions constructed in [RiS1]. It was foundby multiplying the mask of a three direction box spline of equal multiplicity 2 in eachdirection by a suitable factor to give a mask satisfying (1.5) with smallest support andwith the same symmetries as the box spline. The mask for the fundamental function, call20
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(1,1)Figure 1. The interpolatory re�nable function �2;2;2 and the wavelets from it asderived in Algorithm (4.5).it �2;2;2, is reproduced below:
(5:1) a2;2;2 = 14
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37777777777775 :The mask â2;2;2 is� cos �!12 � cos �!22 � cos �!1 + !22 ��2�5� cos(!1)� cos(!2)� cos(!1 + !2)�=2;21



which is clearly non-negative. The support of a is in [�3; 3]2 and it has maximum value atthe origin. In [RiS2], the corresponding function � was shown to have smoothness C2�"for any " > 0.
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we have that â = 12 + 14 cos(!1) + 14 cos(!2) � 0. Therefore, the methods of x2 apply tobuild smoother fundamental functions and for those smoother functions we can try to �nddual functions as well. Let �M be the fundamental function corresponding to the mask(5.2).Since â is non-negative, we may apply the smoothness criterion given at the end ofx3. For the matrix M , j�minj = j�maxj = p2 and therefore, �N;k is in C��", where� � � := �2 log ��IHjVr �= log(2) and where Vr is to be determined for each choice of N andk. Table 1 summarizes our calculations for N = 1; 2; 3; 4 with k = 1 and N = 1; k = 2.Consulting Table 1 we see quite clearly the increasing smoothness with N . An iterate,(k = 2 for N = 1), also shows the increasing smoothness with the iteration. For the dualfunctions however, one must progress further to obtain smoothness. With N = 1, we donot get an L2(R2) function for �d1;1, but with increasing N we do get existence in L2(R2)for the dual functions �d2;1, �d3;1, and a continuous dual function in �d4;1.Function N; k r in Vr �N;k 2 C��" with � � �d;N;k�2;2;2 N = 0; k = 0 r = 3 � = 2:0000 : : : |N = 1; k = 1 r = 7 � = 3:6594 : : : �d;1;1 2 C0:8581�ten N = 0; k = 0 r = 1 � = 1:0000 : : : |N = 1; k = 1 r = 3 � = 2:0000 : : : �d;1;1 2 L2(Rs)�ten1 N = 0; k = 0 r = 2 � = 2:0000 : : : |N = 1; k = 1 r = 7 � = 3:6841 : : : �d;1;1 2 C0:8578�M N = 0; k = 0 r = 1 � = 0:6115 : : : |N = 1; k = 1 r = 3 � = 1:3581 : : : �d;1;1 62 L2(R2)N = 2; k = 1 r = 5 � = 1:9908 : : : �d;2;1 2 L2(R2)N = 3; k = 1 r = 7 � = 2:5474 : : : �d;3;1 2 L2(R2)N = 4; k = 1 r = 9 � = 3:0509 : : : �d;4;1 2 C0:31326N = 1; k = 2 r = 7 � = 2:6387 : : : �d;1;2 2 L2(R2)Table 1. Results of applying the constructions in x2 to the Examples of this sectionReferences[BR] A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function:dual bases and linear projectors, SIAM J. Math. Anal. 21(1990), 1550-1562.24
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