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Abstract: In areas of geometric modeling and wavelets, one often needs to construct a
compactly supported refinable function ¢ with sufficient regularity which is fundamental
for interpolation (that means, ¢(0) = 1 and ¢(«) = 0 for all o € Z*\{0}).

Low regularity examples of such functions have been obtained numerically by several
authors and a more general numerical scheme was given in [RiS1]. This paper presents
several schemes to construct compactly supported fundamental refinable functions with
higher regularity directly from a given continuous compactly supported refinable funda-
mental function ¢. Asymptotic regularity analyses of the functions generated by the con-
structions are given. The constructions provide the basis for multivariate interpolatory
subdivision algorithms that generate highly smooth surfaces.

A very important consequence of the constructions is a natural formation of pairs of
dual refinable functions, a necessary element in the construction of biorthogonal wavelets.
Combined with the biorthogonal wavelet construction algorithm for a pair of dual refinable
functions given in [RiS2], we are thus able to obtain symmetric compactly supported
multivariate biorthogonal wavelets with arbitrarily high regularity. Several examples are
computed.
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1. Introduction

Let M be an s x s dilation matrix, that is, an s X s integer matrix whose eigenvalues
lie outside the closed unit disk. The compactly supported distribution ¢ is M-refinable
with finite mask sequence a, when ¢ satisfies the refinement equation

(1.1) ¢=> |det Mla(a)p(M - —a)

aELS

for a finitely supported sequence a. When M = 21, we simply say ¢ is refinable. In
most of the applications, ¢ should be a function with some regularity (smoothness). If ¢
is continuous and equal to 1 at the origin and 0 at the other integers:

1, if a=0;
(1.2) pla) = ba = {o, if @ € Z°\{0},

then ¢ is called fundamental (because any sequence of data can be interpolated at the
lattice by an infinite linear combination of the shifts of ¢ with the data as coefficients).
All the essential information about the M-refinable function ¢ is carried in the refinement
mask a.

The construction of compactly supported fundamental M-refinable functions with de-
sirable regularity properties is motivated from needs arising in geometric modeling and the
application of wavelet theory to signal processing (as well as in many other applications of
wavelets and biorthogonal wavelets). It is also the logical starting point for the construc-
tion of biorthogonal wavelets. The generator for the wavelets and its dual function is in
some sense a “splitting” of a fundamental M-refinable function with the regularity of the
resulting pair at least partially determined by the original function.

Examples in the univariate case were first given by [Du]. Daubechies in [D] obtained
a general construction and also provided a good asymptotic regularity analysis. For higher
dimensions this analysis has been limited to a few cases that can be reduced to a univariate
setting.

The goal of the present paper is to carry out the following program: (i) “Iterate” a
fundamental M-refinable function of known smoothness to obtain a smoother fundamental
M -refinable function. An asymptotic analysis of the regularity of the new function can be
given in terms of the regularity of the original function and the number of steps taken.
The latter quantity can be related in turn to other quantities, such as the length of the
refinement mask. (ii) “Split” the new function into a pair of dual functions, for purposes of
generating biorthogonal wavelets in such a way that the original function is one of the pair.
This provides compactly supported M-refinable functions of arbitrary regularity which are
dual to a given compactly supported fundamental M-refinable function. Combined with
the biorthogonal wavelet construction for a pair of dual refinable functions given in [RiS2],
we are able to obtain symmetric compactly supported multivariate biorthogonal wavelets
with arbitrarily high regularity.



We next motivate the construction of such functions by a brief description of how
they arise in geometric modeling and signal processing. After that we provide the basic
notation and Fourier analysis formulations that will be used in the sequel. The remainder of
the introductory section will discuss more fully earlier work and the connections between
fundamental M-refinable functions and biorthogonal wavelets. In §2, we will give the
implementable constructions alluded to above, while the asymptotic analysis of regularity
for these constructions is derived in §3. How the constructions can be used for the formation
of dual pairs of functions is the topic of §4. Finally, in §5 we will illustrate our methods
by examples.

In geometric modeling, subdivision algorithms are defined by refinement masks. For
simplicity, assume that the dilation matrix is M = 2I. Subdivision algorithms begin with
some initial set of discrete data, ¢ := {¢, : @ € Z*}, called control points, which can be
visualized as the vertices of a given polyhedral surface. The subdivision operator S is
defined by the mask a as

(1.3) S(e)a =Y ala—2B)cg, o € L.

Bezs

This gives 2° sets of new control points

Chton = Z a(v+2a —20)cg, v € {0,1}°
BEZLS®

Thus, the new control point sequence ¢! is determined linearly from ¢ by 2°¢ different
convolution rules, and the sequence ¢! consists of 2° different copies of the original control
point sequence ¢ which are averaged by different dyadic cosets of the mask. With the
scaling factor 2, the new control polygon is parameterized so that the points ¢l correspond
to the finer grid 27!'Z?%. Continuing this process, we get control point sequences ¢” = S™c
corresponding to the grids 27 "Z?*. If the mask a is well chosen, these data sets will approach
some continuous limiting surface in a computationally stable manner. The subdivision
operator can be visualized as an operator which smoothes the corners of a given polyhedral
surface.

If the mask a comes from a fundamental refinable function, then from (1.1) and (1.2)
we find a(283) = 63. Thus, C%B = ¢(f), and the new control point sequence interpolates
the previous one on the grid Z*. More generally, the sequences ¢” = S™c¢ corresponding
to the grids 27"Z? interpolate the previous control points ¢! on the grids 2" ~1'Z*. This
iterative process is called an interpolatory subdivision algorithm. The limiting surface can

be written as
> @)p(- — ),

aELS

and thus has the same regularity as the function ¢. That is, smoother surfaces require
smoother fundamental refinable functions. We refer the reader to [CDM] for the details.
As mentioned earlier, the construction of interpolatory subdivision algorithms is di-
rectly connected to construction of orthogonal and biorthogonal wavelets which provides
the second motivation described next. We refer to [St], [M] and [RiS2] for the more details.
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Biorthogonal wavelets start with the construction of a dual pair of compactly sup-
ported refinable functions, ¢ and ¢¢ in Ly(R?®) such that

(1.4) (6, ¢"(- —a)) = b6a; @€’

To construct orthogonal wavelets, ¢ should be equal to ¢?.

The functions ¢ and ¢ are then used to construct biorthogonal wavelets (cf. §4).
If ¢ and ¢¢ are compactly supported, then the wavelet families they generate will also
be compactly supported and will have the same regularity as their respective generator.
When the wavelet transform is used to analyze signals, the compactness gives localization
in the time domain, while the regularity provides localization in the frequency domain.
Ideal wavelets would possess high regularity and small support. However, the Heisenberg
uncertainty principle asserts the contrary; higher regularity leads to larger support. A
balance between the time-frequency localization requirements is often needed. By con-
structing wavelets with larger support to increase the regularity, we lose accuracy in time
domain to gain accuracy in frequency domain. Given one of the dual refinable functions ¢
or ¢%, we may wish to choose the approximate regularity of the other, which is precisely
what our method allows.

The construction of dual refinable functions, or what is the same, the choice of two
masks a and a?, can be used to design a pair of (biorthogonal) low pass filters. The
corresponding construction of the wavelet masks from a and a? given in §4 can be used to
construct the biorthogonal high pass filters. The filters constructed by the methods in this
paper are linear phase (symmetric) filters. Wavelet construction and filter bank design in
signal processing are interrelated subjects; see [SN] and [VH].

We now turn to the Fourier analysis formulations needed in the paper. A compactly
supported continuous function ¢ is fundamental if and only if

(1.5) 3 bw+2ma) =1,

Applying the Fourier transform to the refinement equation (1.1) give the relation
(1.6) pw) = a(M' w)p(M' ™ w),

where 4(w) = 3,z a(a) exp(—iow) and M*~" is the inverse of the transpose M* of the
matrix M. We also call a the mask (sometimes it is called the symbol of the mask) and
often find it convenient to write it as a Laurent polynomial

A(z) = Z a(a)z®.

When a(0) = 1, then there is a unique compactly supported distributional solution of

refinement equation (1.1) with ¢(0) = 1. The Fourier transform of the solution ¢ of the
M -refinement equation (1.1) can be obtained as the infinite product

(1.7) Ha (Mt w).



Let ¢ be a compactly supported fundamental M-refinable function with the mask a.
Condition (1.5) has consequences for the mask a which result from applying (1.6). Before
describing this result, we need some notation. The integers Z* can be decomposed into the
disjoint sets (cosets) {v + M'Z*}, v € Z3,,, where Z3,, = Z°/(M'Z?). Combining (1.6)
and (1.5) using this decomposition of the sum, we find that if the M-refinable compactly
supported continuous function ¢ is fundamental, then its mask a satisfies

Z d(w + 27th_1y) =1, w € R®, or, equivalently,

vEZS
(1.8) et

Y AL =1 |zl =1,

uGZLt

where )
(= exp (= 2miM* v).

Condition (1.8) is called the interpolatory condition for the mask on Z3,.

It was shown in [LLS1] that a continuous refinable function ¢ is fundamental if and
only if ¢ is stable and its mask, a, satisfies the interpolatory condition (1.8). Here, we
recall that ¢ is stable, when ¢ € Lo(R®) and its shifts form a Riesz basis of S(¢), where
S(¢) is the shift invariant subspace in Lo(R®) generated by ¢. A function ¢ € Ly(R®) is
stable if and only if the inequality

(1.9) c< ) |plw+2ma)?<C; ae weR
aELS

holds for some constants 0 < ¢ < C < oo. A compactly supported distribution ¢ is
pre-stable, if the inequality
¢ <3 (3w + 2ma)

(e 1Y/

holds for some constant 0 < ¢, or equivalently, if $ has no 2m-periodic zeros. If a compactly
supported pre-stable function is in Lo(R®), then it is stable.

The construction of compactly supported fundamental functions starts with the con-
struction of masks that satisfy the interpolatory condition (1.8). Since the masks con-
sidered here are Laurent polynomials, the problem of constructing masks to satisfy the
interpolatory condition (1.8) can be reduced to a problem of solving a system of equations.
However, this is not enough for the corresponding refinable function to be fundamental as
the following examples will show that the interpolatory condition (1.8) is only a necessary
condition. The first simple example shows that the corresponding refinable function can
be stable and have a mask that satisfies the interpolatory condition (1.8), but may not be
continuous.

Example 1.10. Let a(w) = (HL;_W)). Then a satisfies the interpolatory condition
(1.8) and the corresponding refinable function is the characteristic function on [0, 1], which
is not continuous.

The next example shows that the mask can satisfy the interpolatory condition and the
corresponding refinable function can be very smooth, however, it may not be fundamental.
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Example 1.11. Let G := cos?(3w/2). Then a satisfies the interpolatory condition (1.8).
Since the corresponding refinable function ¢ is the autocorrelation function of the charac-
teristic function of [0, 3], it is not stable, hence not fundamental. Further, let

ag :=a;_(3 —2ap_1), k>0

where ag = a. Then, by Theorem 2.15 of [JiS], aj, satisfies the interpolatory condition
(1.8) and the regularity of the corresponding refinable function ¢ of the mask ay can be
made as high as we wish by taking k sufficiently large. However, the function ¢y cannot
be fundamental, since ¢y has ¢y = ¢ as a factor which implies that ¢y, is not stable.

The procedure commonly used in the literature to construct examples of compactly
supported fundamental refinable functions is:
(i) Solve a system of equations derived from the interpolatory condition (1.8) to obtain
a mask satisfying (1.8).

(ii) Check the stability and calculate the regularity of the corresponding refinable function
via the transition operator.

This procedure faces the following difficulties: First, except in very few cases, the
masks obtained from the system of equations are numerical in nature and have no explicit
closed form. Secondly, after the numerical solutions are obtained, one still needs to check
whether the corresponding refinable functions are fundamental and to determine their
regularity. A general method of construction should not only build the masks to satisfy
the interpolatory condition (1.8), but also should provide the analysis of (a) whether the
resulting functions are fundamental and (b) the asymptotic regularity.

In this regard, there are few such constructions available. Daubechies in [D] obtained
such a general construction for the univariate case where each mask is explicitly given as
the convolution of the mask of a B-spline with a mask of a refinable distribution. It is
this construction that leads to the general construction of compactly supported orthogonal
wavelets, and later to the construction of compactly supported biorthogonal wavelets (see
[CDF]). This construction also is the basis of the bivariate constructions in [CD] and [HL],
where the bivariate problem is reduced to a univariate problem to which the Daubechies’
construction can be applied directly. Strictly bivariate examples of continuous and contin-
uously differentiable compactly supported bivariate fundamental refinable functions were
obtained by [DDD] and [DGL] respectively. A set of examples of compactly supported
bivariate fundamental refinable functions with increasing regularity was provided in [RiS1]
from masks formed by the convolution of box spline masks with masks of refinable dis-
tributions. A construction was given in [HJ2] for examples of continuous fundamental
refinable functions with various optimal properties.

Several iterative methods for the construction of compactly supported fundamental
refinable functions were obtained in [JiS] in their construction of univariate biorthogonal
wavelets from a multiresolution generated by fundamental refinable function. In §2, the
ideas of [JiS] are more fully developed to obtain methods for the construction of compactly
supported fundamental M -refinable functions for any dilation matrix and in any number
of variables starting from a given compactly supported M-refinable fundamental function.
The examples mentioned in the previous paragraph provide a sufficient number of starting
points to justify our methods.



For dual pairs of M-refinable functions, ¢ and ¢? in Ly(R®), we require that the
functions be stable and satisfy the biorthgonality relation (1.4). Then the function ¢¢
in Ly(R®) is called a dual function to ¢. Often, one of these two functions is given.
For a given stable function ¢ € Ly(R?), it is possible to find noncompactly supported
dual refinable functions ¢%, but the construction of compactly supported dual refinable
functions requires more as proved in [BR]: A compactly supported function has a compactly
supported (not necessary refinable) dual function if and only if its shifts are linearly
independent, that is, if and only if for an arbitrary sequence a, the equality

> a(@)p(- —a) =0

aELS

implies that a = 0. The linear independence of the function ¢ € Ly(R®) and its shifts is a
stronger requirement than the stability of ¢.

One method for the construction of a dual pair of refinable functions is as follows:
First, find a finitely supported mask a whose corresponding compactly supported refinable
function ¢ is fundamental. To obtain a dual pair, one factors the mask @ in an appropriate
way and then separates the factors into two masks. In the univariate case, when ¢ is
fundamental, the mask a always has the mask of a B-spline as a factor and this method
leads to the construction of the biorthogonal wavelets in [CDF]. Further, in the univariate
case, when a = a(—-) and is non-negative, one can separate the mask into identical pairs
of factors to obtain a refinable function with orthonormal shifts. That is the case in
Daubechies’ construction of compactly supported orthonormal wavelets.

For the multivariate case, we do not have factorization of the mask any more. In
[CS], an example of biorthogonal bivariate wavelets with dilation matrix M = 2I was
constructed where one basis is continuous piecewise linear polynomials while its dual basis
is a compactly supported Ly function found by solving linear equations. In [RiS2], pairs of
dual refinable functions are obtained by separating the masks from [RiS1] where G are the
products of box splines masks with trigonometric polynomials. Thus, one set of wavelets
consisted of finite linear combinations of box splines while various dual functions of differing
smoothness were obtained. In some cases, the construction of compactly supported M-
refinable dual functions can be reduced to the problem of the construction of compactly
supported fundamental M-refinable functions as follows: If the refinable M-function ¢ has
linearly independent shifts, then one finds a compactly supported M-refinable function
¢? € Ly(R?), so that the function ¢ = ¢ * ¢(—-)¢ is fundamental. Then ¢? is a dual
function of ¢. In this regard, our particular methods will lead naturally to the construction
of dual functions, as we will show in §4.

2. Methods for Constructions of Masks

Suppose we have a fundamental M-refinable function in hand, there are two questions
we wish to address here. (1) If the smoothness of the given refinable function is not high
enough, can we “iterate” in some fashion to obtain a smoother one from it while still
preserving the interpolatory property for the new mask? One likely way to obtain higher
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smoothness is to obtain higher powers of the given mask as a factor of the mask obtained
through the iterative procedure. This would require controlling the remaining factor so
as to not detract too much from the advantage gained. If such is the case, then there is
hope that after removing one power of the original mask from the new mask, what remains
will be a mask which answers the second question: (2) Can we find a dual function with
smoothness as high as we wish?

The constructions of new compactly supported M-refinable fundamental functions
from a given one and the construction of a dual refinable function given below are based
on the following simple idea: Let P, be the mask symbol a of the given fundamental
M -refinable function ¢. Define

(2.1) P,(z) :== Py(¢,2), v E Ly, |z]=1
Then the interpolatory condition (1.8) becomes

Z P,(z) =1, |z| =1, which implies
(2.2) N
( Y P,,(z)) > (cgm I1 Pgu(z)) =1, |z/=1

VELS ly|=mN HEZLS

for any integer N and m. In particular, we take m = | det M|. Since we mainly consider this
polynomial on the torus, we shall abuse notation and write P, (w) instead of P, (exp(—iw)).

Theorem 2.3. Let P = P, be a Laurent polynomial satisfying (2.2) (i.e. (1.8)) for a
dilation matrix M with m = | det M|. Define

Go := {’y € INJ' :|y| = mN, v > N and yo > 7,V € wa\{()}}
Gy = {7 € NI :]p| = mN, 70 > N and 70 > 3, € Zi\ {0},
with exactly j equa]ities}, j=1,...,m—2.
and define

m—2
H = Z%( S a1 va)w;%"“ 1 r,

j:O ’YEG]' VEZL;wt\{O} VEZ?Mt

B

where C1 . are the multinomial coefficients. Then, as a symbol, the Laurent polynomial
PH also satisfies (1.8).

Remark. It should be noted that some of the sets G;, j = 1,...,m — 2, may be empty
for particular choices of m and N. In this case, the corresponding terms in the definition
of H are zero.



Proof. Let Q,(z) := (PH)((y%2), v € Z5;:. Observe that the mapping v — v +
is one-to-one and onto Z3,, for each fixed u € Z3,,. Hence, when z is replaced by (,z in

the sequence (P”)u cs only a permutation of the sequence is obtained. For the last term
Mt

of Zuezj\ﬂ(PH)“’ we find

CT(,.LA][\}M’N) Z P;iv-l-lHszV:Cfri\]r\,rm’N)( H Pi_iv) Z Pu

MGZ;/N vER NGZ?\N Nezj\lt
=N H Pu
U'EZLt

by (1.8) for P.
The term in PH corresponding to j, 0 < j <m — 2 with G, # 0, is

1
(2.4) m( Sonky 1 Py%).
VEG, veZs, \{0}
When z is replaced by (,,z, we obtain a similar sum with G; replaced by
Gi(n) = {v € NI :p| =mN, 7, > N and 7, > v € Zis\{},
with exactly 7 equalities}.
Summing over p € Zj,., we obtain

34%1( > > o 11 PJ”)z > (C;N I1 ng>,

KELS, ¢ YEG (1) veLZ; vEG] veLs ,
where
G} = {’y € ING' : || = mN, with exactly j + 1 of the v, equal to |fy|oo},

(because Gj(p), p € Zj. covers G exactly j + 1 times). Thus for |z| =1,

m—1
Yo=> Y (C;N I1 PJ”)-I—C’,(n]\,r\’,”"N) I PY

HEZ;/N 7=0 'yEG; VEZ;/N uEZj\/[t
mN
— Y ol — —
= > (CmNHPN*L)_(E:P,,) = 1.
lv|=mN S VELS ¢



Here are a few cases that will be used in later examples:

m=2 N=1:

H = Py+2PyP, = Py(1+2Py).
m=2, N=2;

H = P}(Py + 4P, + 6P7).
m=2, N=3;

H = PJ(P; + 6PyPy + 15P7 + 20P}).
m =2, N=4;

H = P}(P{ + 8PSPy + 28P) P} + 56 P3P} + T0P;} P}).

(2:5) m=3, N=1;

H = Py(Py + 3(Py + Py) + 6P P,).

m=3, N =2;

H = P§(Py + 6P5(Py + P2) + 15P(Py + P»)?
+ 60(PPy + P Py) + 10(P} + P3) + 90PL Py).

H="r (PO2 + 4Py(Py + Py + P3) + 12(Py Py + PoPs + P Ps)
+ 3(P} + Py + P}) + 24P, P, P3).

Of course, to make use of these equations, we must assign some ordering to the coset
representers v, v € Z3,,\{0}, say vi,...,Um—1,and set P; =P, ,j=1,...,m— 1.

The Theorem will be used in the following ways: Since PH satisfies the interpolatory
condition for a mask, PH is a candidate as a mask for a new fundamental function with
hopefully higher smoothness, while H would then be the mask for a dual function. The trick
of placing the extra power of P, in the last term in H means that H has the factorization
PNT. With good initial choice of P = Py, the power of Py will add to the smoothness
of the functions generated from the masks PH and H, provided that T" can be bounded
suitably. The next result addresses the bounds on T'.

Lemma 2.6. On |z| =1, if P = P, is non-negative, then the function H of Theorem 2.3
has the form H = PNT where

0<T(w)< Cﬁ]“\}l + Cfnl\]’\}---’N)(m _ 1)—(m—1)N,
with the zero set of T being a subset of the zero set of Py. Therefore,

mNm-|-1/2

\/N(m _ 1)N(m—1)—1/2

(2.7) TN m 1= m‘?xT(w) < C(N,m)

where C(N,m) < 1.9542 if N =1, m > 2 and C(N,m) < 5.1 if N > 2, m > 2.
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Proof. Since Py + ...+ P,_1 = 1 and P, is non-negative, we conclude that
0 < P, < 1. The conclusion ensures that T is the sum of non-negative terms hence, the
zero set of T' is a subset of P, since the term with highest power of Py has only P, as a
factor.

Note further that PH contains only “monomials” in the expansion (Zyezs ) P,
M

with 79 > N but perhaps with smaller coefficients (even zero in some cases). Since 1 — P, =

Y ez {0} P, we may use instead the expansion of (Py + (1 — P))™ to obtain
M

)mN

mN
T< Y ONPTNA-PyN I oM T R

' mN . . {_ p.\ (m—1ON
3 o ot (1)
j=N+1

where the last inequality comes from the fact that the maximum of [T, . \{0} P, subject
Mt

to the constraints

P,>0 and Z P, = const, (namely, the constant 1 — Py > 0,)
vez;, \{0}
occurs when all the P, are equal.
Since the derivative with respect to Py of the first term on the right hand side of (2.8)

is (after a regrouping)
mN—1

S [ChR G~ NYPEI N (1= PRt B (N — R)PETIN (1 R

N+1

mN—1
=(—-N—1) Z CrHIph—1-N(1 — Py)(mN=k=1)
N+1

the right hand side is decreasing on 0 < P, < 1. Therefore, the right hand side of (2.8)
has its maximum when Py = 0. That gives the desired bound.
The bound (2.7) follows from the strong form of Stirling’s formula

[(z+1) 2
el Sl > 1.
rTe T\ 2mx < Vs’ v
Indeed, applying this formula, we find that
( 2 2
(1+m) + mil-l-m), when N =1 and m > 2;
26(1—\/ﬁ) emvm—1
N(1+—2—)
C(N,m) < ! e
( ) (N+1)\/ﬂ(1—\/ﬁ) (-72e)
N () s, iN>2andm> 2.
(VoD (1s) (vorN—2) -
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Another consideration is whether good properties of P are passed on to the newly
defined PH and H. The next lemma will be useful in establishing the stability of the
functions generated by masks PH and H

Lemma 2.9. Suppose the M -refinable functions ¢ and ¢ have Fourier transforms which
are continuous and non-vanishing at 0. Suppose further that the zero set of the mask ag,
contains the zero set of the mask ag,. If ¢ is pre-stable, then ¢, is pre-stable.

Proof. The pre-stability of ¢, will follow from the fact that any zero for <$2 is a
zero for ¢y. Suppose ¢o(wp) = 0. Then for k large enough,

(}S\z(wo) = ( f[ agp, (Mt_jw0)> (ZQ (Mt—kw0>

with 52 (M t_kw0> # 0 by the nonvanishing and continuity the origin and the fact that

M7 uy — 0 as k — oco. Hence, M* 7wy is a zero of a¢, for some j. But then the same

Mt 7w, is a zero of ag, as well, which implies wy is a zero of ¢;. O

Corollary 2.10. If P = a is the non-negative mask of a continuous compactly supported
fundamental M -refinable function ¢, then the M -refinable functions generated by the
masks PH and H in Theorem 2.3 are pre-stable.

Proof. We have noted already that such a ¢ is stable. Clearly QAS is continuous
since ¢ is compactly supported. Since P is non-negative, Lemma 2.6 implies that the zero
sets of P, PH and H coincide. Hence, the result follows from Lemma 2.9. O

We have clearly established that Theorem 2.3 provides a family (indexed by N) of
functions H so that PH and H preserve many of the good properties inherent in P; posi-
tivity, interpolatory condition (for PH) and pre-stability. Further, we have the following
result:

Corollary 2.11. Let P = a be the non-negative mask of a continuous compactly sup-
ported fundamental M -refinable function ¢. If the M -refinable function corresponding to
the mask PH is continuous, then it is fundamental. If the M -refinable function corre-
sponding to the mask H is in Ly(R®), then it is stable and dual to ¢.

Further, since both PH and H are real, we have the following corollary:

Corollary 2.12. Let P = a be the non-negative mask of a continuous compactly sup-
ported fundamental M -refinable function ¢. Then the M -refinable functions corresponding
to the mask PH and to the mask H are symmetric to the origin.

In the next section, we will discuss the question of gain in smoothness by this proce-
dure. Since larger N gives higher powers of P in PH, this may already be a method of
building smoothness and indeed, it is! But, a quick glance at the examples (2.5) shows
that with larger m or N, the complexity of H increases rapidly. Hence, it may be better
to obtain the higher smoothness through iteration.
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The Iteration Algorithm 2.13. Given a mask a for an M -refinable continuous function
¢ with a mask a > 0 which satisfies the interpolatory condition (1.5). Fix an N > 1 and
set P=a, k=20. DO:

Step 1. Set k =k + 1, Py = P, and compute P, v € 7Z5,,\{0} as in (2.1).

Step 2. Form H according to Theorem 2.3 (as in (2.5)).

Step 3. Set P = Py H and/or when k > 1, set H* = PyH /a.

Step 4. Define

$N7k(w) = HP(Mt_jw) and /or d)Nk 1 ( H H(Mt H(Mt W) ), and /or
j=0 §=0
PPNE(w) = T] HY M w)
5=0

Step 5. STOP if the smoothness of the desired function(s) ( ¢n and/or ¢‘fv7k_1
and/or ¢*N-*) is reached, ELSE repeat Steps 1-5.

A word about the choices of output. The function ¢x will be a new, smoother
function with a non-negative mask which satisfies the interpolatory condition (1.5). The
function d)‘]i\, w1 1s a candidate for a dual function to ¢y x—1 since the product of the mask

of ¢n k—1 (Po in Step 3) and the mask of (15‘}\,,,6_1 (H in Step 3) satisfies the interpolatory
condition (1.5) (we elaborate on this in Section 4). For a similar reason, the functions
¢HNF are candidates (with smoothness increasing in k) for a dual function to the original
}.

The first three steps in Algorithm 2.13 are easy to implement in symbolic software
such as MAPLE. Step 5 can also be carried out with only the information provided by the
new masks through the procedure described in the next section.

Remark 2.14. The bivariate fundamental refinable functions constructed by [RiS1] pro-
vide us many initial functions for the construction here. In general, one can use box spline
as suggested by [RiS1] to generate examples of the fundamental refinable function with low
regularity numerically by solving a system of equations, or one can always obtain examples
by using tensor product of fundamental refinable functions with lower regularity. Then
apply the constructions in this section on those fundamental refinable functions to build
nonseparable fundamental refinable functions with higher regularity.

3. Regularity

We first show that provided the initial function ¢ with mask a = P is suitably smooth,
then the regularity of PH will increase with NV or with each iteration in Algorithm 2.13.
A function ¢ belongs to C* for n < a < n + 1, provided that ¢ € C™ and

(3.1) |IDY¢(z +t) — DV¢(z)| < const [¢|*™™, for all |y|=nand [t| <1
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for some constant independent of . The number « is related to weighted L, exponents k
defined as

(3.2) Ksup 1= SUP{K : /(1 + |w|)"‘|$(w)| dw < oo}.

The relation is given by the inequality sup a > Kgyp.

Therefore, an increase in the decay rate of the Fourier transform at infinity will mean
that the corresponding function will have increased smoothness. We say ¢ has decay rate
v if R

[P(w)] < CA+ |w|)™7
Our object is to show that the constructions in the last section lead to smoother functions
provided the original functions have sufficient smoothness. We will show that the Fourier
transforms of the constructed functions have increasing decay rate provided the Fourier
transform of the initial function has sufficient rate of decay.

The analysis depends on the factorization of H as PNT, the estimates on T as given
in Lemma 2.6, and on the characteristics of the dilation matrix M*. For simplicity, we
require that M has a complete orthonormal set of eigenvectors. Then there is an equivalent
norm on R?® for which

Amin| [[w]] < (1M 0] < [Amaz| [lwl],

where |Apin| (respectively, |Amqz|) is the minimum (respectively, maximum) modulus of
the eigenvalues of M*. Hence, if B := B(R®) is the closed unit ball in R*, then

(3.3) we M B\ (M B) = Pnin ¥ < (|l < [Amaal .

The matrix M will remain fixed, but we must label the various elements of the con-
struction in the last section to identify how they arise. We do this with a subscript N

denoting the choice of N and a subscript k£ to denote the iteration step k. Thus, we use
N

Hy j, with a factorization (PN,k—1> Tn 1 to obtain the function <$N,k, while &Ii\r,k_1 is the

function obtained from the mask Py = Py y—1Hn . We make use of the bound on Ty 4
found in Lemma 2.6.

We follow the well-known analysis of [D2] for the univariate case. We begin with the
observation that Py x_1(0) = Pnx(0) = 1 implies that T 4(0) = 1. This in turn implies
that T k(w) < 1+ C|w|, and consequently allows the estimate,

(3.4) sup HTNyk(Mt w) < sup Hexp (jemt Jw|) <C.

|w|<1

Therefore, when w € M** ' B\ (MtKB), we have that

oo

00 K
HTN,k(Mt_jw) = HTN’k( H Mt i—K ) S CTII\g,m

_O|)\mzn|Klog( ) ( mzn) < C(l-l— |w|)log (TNm)/log(| mm|)

Y
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by (3.4) and (3.3). For brevity in the ensuing expressions, we set
(35) nnN .= log(TN,m)/log(p‘man

If we assume that $N,k_1 has rate of decay vy x—1 (with yn,0 := 70, the decay rate
of the original ¢), then since

i (w ﬁ (PNk (M Jw)>N+1TN,k(Mt_jw)
j=1
:<¢§ >N+1HTN #(M'7w),  and, similarly
j=1
¢>Nk 1 ( ) HTNk (M Jw)
j=1

we find that

(3.6) (W) < C(1+ |w|) "N HDIVR-1+mv - ang

It is easy to show inductively from the estimate (3.6) that the following formulas for
decay rates hold for ¢n  and ¢§iv7k_1 respectively:

YNk = (N +1)%(v0 —n/N) + nn /N and

(3.7) ’Yz%r,k = N(N + 1)k_1(’yo —nn/N).

For the decay rate of qu Nk we take ¢d A1 ¢d 1 and observe via induction that

k
$NE (W) = QASd’N’k_l(w)g?\r,k 1 H ¢N,J

Hence, from (3.7), we obtain the decay rate of ¢4+ ag
yENE = (N +1)* = 1) (y0 — nn/N)  for k > 1.

It follows from (2.7) that ny/N is bounded by a constant dependent only on the
matrix M. Hence, we have established

Theorem 3.8. Let ¢ be an M-refinable function with non- negatwe mask P = a. If the
decay rate 7y oqu is sufficiently large, then the decay rate of qSN ks qSN x—1 and qu NE can
be made arbitrarily large by increasing N or k. In particular, a decay rate of

Yo > log (TNM)/N log (|)\mm|),

14



will suffice, where Ty ,,, can be bounded as in (2.7).

Remark. We note that with £ = 1 and N increasing, both the diameter of the support of
the mask and the rate of decay of the Fourier transform are increasing linearly in N. For
a fixed N and increasing k, both the diameter of the support and the rate of decay of the
Fourier transform are increasing geometrically with k. Therefore, to increase regularity
efficiently while maintaining control on the size of the support, it is better to increase N.
On the other hand iteration with low values of N is easier to implement by (e.g.) MAPLE,
because of the complexity of H for large N.

Example.3.9 Let ¢ be the the simplest fundamental function constructed in [RiS1] which
is obtained by convolving the mask of a three direction box spline of equal multiplicity
2 in each direction with a distribution (see §5). The mask a of ¢ is non-negative. By
choosing a sufficiently large N, or a sufficiently large iteration k, we get fundamental
refinable functions with high order box spline factor. Further, the regularity of the refinable
function grows linearly with N (geometrically with k). Hence, the constructions given in §2
together with the constructions given in [RiS1] provide several methods for the construction
of fundamental refinable functions with high order box spline factor. The regularity of the
refinable function increases as the order of the box spline factor does. O

The crude bounds on Ty served their purpose to establish Theorem 3.8, but they may
mislead one to believe that the starting point needs to be unrealistically high. However,
in practice things are better since the smoothness can be assessed much more accurately.
Here we summarize the approach to be used in our examples at the end. By now it has
received treatment at many levels, by several people [CGV], [CD], [E], [H], [J], [RiS1],
[RS4] and [V].

The criterion to be used to bound kg, from below is contained in the following
statement: For an integer r, let

V, = {v € Ly(Z7) : Z pla)v(a) =0, Vpe€ HT},

where 11, denotes the polynomials of total degree r. Assume M is a dilation matriz with
a complete set of orthonormal eigenvectors. If the mask a for the stable fundamental M -
refinable function ¢ satisfies

(3.10) a>0, a(0)=1,and D%(%M’f‘lu) =0 for|B| <r and v € Z5,,\{0},
then for a suitable choice of 0 with suppa C €2, V,. is invariant under the matriz

H := [a(Ma - ﬁ)]aEQ,BEQ.

Let pwmyy, be the spectral radius of H|y,.. Then the exponent Kgyp satisfies

(311) Ksup = —



The proof of this statement can be obtained by modifying the proof in [RiS1] or from
[CGV], [J] and [RS4]. The invariant set © was defined in [LLS1] and [LLS2] and [HJ1].
An explicit formula for the invariant set was given in [HJ1, Theorem 4.2]:

(3.12) Q= Z M~/ supp a.

J=1

4. Dual Functions and Biorthogonal Wavelets

In this section we combine the construction of biorthogonal wavelets in our previous
paper [RiS2] with the constructions of fundamental refinable functions in section 2 to
construct dual functions of arbitrary smoothness.

Suppose that ¢ is a continuous, compactly supported, M-refinable function on R?,
and the set of functions {¢(- — @) }4ez- are linearly independent. We want to construct a
stable compactly supported M-refinable function ¢? in Lo(R?*) so that the set of functions
{¢(- — @) }aezs forms a Riesz basis of S(¢%) and

(4.1) (¢, (- — @) = 6a, a €l

The latter equations hold (see e.g. [RS1]) if and only if the Fourier transform for ¢ and
¢? respectively satisfy

(4.2) Y dwta)twra)=1, weT"
aE2nLS

Therefore, when (4.1) holds, the masks @ and a% must satisfy the following necessary
condition:

(4.3) ST a(+2eMt T w)ad(- + 20 Mt ) = 1.

uer\/n

This can be used to advantage when compared to the interpolatory condition (1.8), because
if the mask h for a fundamental M-refinable function factors into a product of two masks

h = a&d, then @ and a? can be considered as candidates for the masks of an M-refinable
function and its dual function. In our case, we will deal only with real masks and therefore
can dispense with the conjugation.

It was shown in [S] that ¢ and ¢ are a dual pair if and only if ¢ and ¢ are stable and
their masks satisfy (4.3). Therefore, if masks @ and a? satisfy (4.3), then one needs show
that the refinement equations of both masks @ and a% have compactly supported solutions
(¢, ¢%, respectively) in Ly(R?), and that the functions ¢ and ¢¢ are stable.

16



These verifications are much easier through the constructions and results of § 2. We
begin with a continuous, compactly supported fundamental M-refinable function ¢ with
mask @ = P. An application of the constructions provide new mask PH which also
satisfies the interpolatory condition (1.5), and therefore, we have (4.3) with a := P, our
original mask, and % := H. The existence and stability for ¢ are given while the existence
in Ly(R®) of the solution ¢¢ is assured if ¢ is smooth enough, and the stability of ¢¢
is assured if the mask @ in non-negative (by Corollary 2.10). Thus, if we begin with a
continuous, compactly supported fundamental M-refinable function ¢ with mask a > 0,
then the existence of Ly(R?) solutions and the stability of ¢? are essentially automatic
(one may have to iterate a few times or choose a larger N to ensure that ¢¢ is in Lo(R?),
but as Theorem 3.8 shows, we may then achieve any regularity we wish for the dual).

Here is a summary of two constructions for dual functions and biorthogonal wavelets
using the results of § 2. The two constructions differ only in how the G and a? are chosen
in Step 1 of Algorithm 4.5 to commence the actual construction.

The first assumes that we want to find a dual function for the given fundamental
function ¢ (which may have been arrived at after an iterative procedure to gain smoothness)
with the smoothness of the dual function to be determined solely by the choice of N,
namely, the case k = 1 and N fixed. In this case, we take ¢ = P and 6% = H.

In the second construction, we want to find a dual function for the given fundamental
function ¢ with the smoothness of the dual enhanced by repeated iterations. In this case,
after a suitable number of iterations to obtain the smoothness of the candidate for the
dual function, we take a and set the dual mask a? = PH%/a, since a is a factor of the
iterations.

Let ¢ and ¢? be a dual pair. Then, it was shown in [BDR] (also see [JS]) that the
sequence of subspaces defined by

SE(¢) == {f(M"): f € S(9)}: ke,

and the sequence of subspaces defined by

SE(¢?) = {f(M*): feS(¢N)}y: ke,

form a ‘dual’ pair of multiresolutions of Ly(R®). Here we recall that a sequence S*(¢)
forms a multiresolution, when the following conditions are satisfied: (i) S*(¢) C S**1(¢);
(i) UrezS*(¢) = L2(R®) and NkezS*(¢) = {0}; (iii) ¢ and its shifts form a Riesz basis of
S(9).

Once a dual pair of the multiresolutions are available, the construction of the biorthog-
onal wavelets from the pair of multiresolutions is equivalent to a problem of the matrix
extension. The algorithm presented here for biorthogonal wavelet construction makes use
of an algorithm for design of matrix pairs provided in [RiS2]:

Algorithm for Matrix Pairs 4.4. For given 1 x m vectors of Laurent polynomials

P =[P\, Ps,...,P,] and Q with P(2)QT (z) = 1 for all z € {C\{0}}*, DO:

Step 1. Extend the row P to an m x m matrix K in P, where P is the set of all finite
order matrices with entries being Laurent polynomials in (C\{0})®.
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Step 2. Alter the last m — 1 rows of K to be orthogonal to Q: Let K;, j = 2,...,m, be
the last m — 1 rows of the matrix K and define

(;jZ::lgj-—-(Kach)fz j ::2,...ﬂl

Step 3. Define X := [PT,GY,..., G%}T. Then X € P and is nonsingular on (C\{0})*.
Step 4. Find X! := [FlT,FQT,,Fg;] and set YT := [QT,Fg,...,Fn{] Then Y € P
and
X(2)YT(2) = L, z € (C\{0})*.

Step 1 is definitely trivial here, since ¢ is fundamental, for then substituting ¢(«) =
6(a) into the refinement equation (1.1) shows that a(M«a) = §(«)/|det(M)|. Hence,

> a(Ma)zM* = 1/|det(M)).

a€7S

Thus, if v = 0 is the first element in our ordering of Z3,., then the matrix can be extended
simply by placing 1/| det(M)|’s in the diagonal. Once the step one is ready, the other steps
can be implemented easily.

Remark. If each entry of the polynomial vectors P and QT are real on |z| = 1, and if P,
is a real constant (as in the case just described), then each entry of X is real on |z| =1
and each entry of Y is real on |z| = 1 except that the rows 2,...,m may be multiplied
by | det X| which is a monomial, that is, a real constant times an exponential exp(—iaw)
on |z| = 1. Therefore, if we start with a fundamental M-refinable function and a dual
function both symmetric to the origin, then the wavelets and dual wavelets constructed in
the next algorithm will also be symmetric.

Algorithm for Biorthogonal Wavelets from Interpolatory Subdivision 4.5. For

a given continuous, compactly supported fundamental M -refinable function ¢ with mask

a>0. DO:

Step 1. Apply Algorithm 2.13 to a desired level k to obtain H or H? as required. We
take 4 and 4 = H for k=1 or a® = Hd for k > 1. Let

oM (w) = H &d(Mt_jw).

Step 2. Define polynomials corresponding to the masks restricted to the cosets of Z.° | M 7Z°
by
Apu(z) = Z a(v+ Ma)zM* v e 75 /MZ°,
QELS

and
Al (2) = Z ad(v+ Ma)z=M* v e 75 /MZ5.
a€LS
Step 3. Apply Algorithm 4.4 to P(z) := Ag(2) := (Aow(2))vezs/mzs, and Q(2) := Al :=
(Al ,(2))vezs/mzs to obtain matrices X and Y.
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Step 4. Label the rows and columns of X andY by Z°/MZ?® with the first row labeled by
0 and the remaining rows in some fixed order (e.g. by the lexicographic order).
For the p-th rows A, = (Auw)vezs/mz- and AZ = (AZV),,Ezs/MZS respectively of
X and Y, define

Ay(w) = Z exp(—ivw) A, (exp(—iM'w)),
VEZLS/MZ*
and
Az(w) = Z exp(—ivw) Al (exp(—iMtw)).
VEZLS/MZ*

Step 5. Define two sets of functions

(4.6)  Pu(M'w) := A, (w)p(w), and Y& (Mtw) := A (W) (w), p € Z°/MZ°.

Then

(i) 1o = ¢ and Y = ¢7.

(ii) The functions ,, p € Z°/MZ*\{0}, are called the wavelets for the refinable
function ¢.

(iii) The functions ¢%, p € Z*/MZ\{0}, are called the dual wavelets, that is, the
wavelets of the dual function ¢¢.

Finally, as was noted in [RiS2] and in a more general setting for dilation matrices M
as discussed here in [RS3], the systems

(4.7) {wu(Mk —a): peZ N0 keZ,ac Zs}
and
(4.8) {wg(Mk a): peZ3N\0YL kEZ,ac ZS},

are the biorthogonal wavelet systems from the above construction, i.e.
(P(MF - —ay), (M2 - —2)) = 60y 00Oy sy Q1y00 €Z5, Ky, ko € Z.

Further, they form a biorthogonal Riesz basis of Lo(R®) if they are Bessel systems (see
[RS3]. Let ¥ := {4, : p € Z3,\{0}} and 0? := {9d : p € Z5,\{0}}. Tt was shown in
[RS2],[RS3] that the dilations and shifts of functions in ¥’ form a Bessel system if the
functions

~

4.9 — .
(4.9) REg max [P(- + a)l,
€2
and
-~ k
(4.10) Rp:= Y [p(M™)
eV ke
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are in Lo,. This will be true provided the functions have certain decay rates at infinity
and a certain order of the zeros at the origin.

Remark. Let ¢ be an arbitrary given compactly supported fundamental M -refinable
function with mask a non-negative. By the methods given in this paper, we are able
to construct a compactly supported dual refinable function with any desired regularity
and the corresponding biorthogonal wavelet systems. Further, since we can construct the
refinable fundamental function to have arbitrary regularity in any number of variables by
Remark 2.14, we are able to construct multivariate biorthogonal wavelets with arbitrary
regularity by the methods given here.

Remark. In the bivariate case, for an arbitrary given three direction mesh box spline one
can construct dual refinable function with arbitrary regularity by Example 2.14. Therefore,
biorthogonal wavelet systems with arbitrary regularity such that one of the bases is formed
by piecewise polynomials can be constructed.

Remark. Let ¢ be a given M-refinable function with mask a that is not fundamental.
Assume that ¢ and its shifts are linearly independent. One may find a refinable dual
function ¢¢ with mask a% that has a lower regularity numerically by solving a system of
equations. If the mask aa? is non-negative, then we can use the constructions of §2 to find
a mask P with a as a factor and for which the compactly supported M-refinable function
corresponding to P—/& has high regularity. Hence, smoother biorthogonal wavelets can be
obtained. When ¢ is a linearly independent box spline in R®*, we may get a compactly
supported dual refinable function with any desired regularity. Therefore, the problem of the
construction of a compactly supported dual refinable function with any desired regularity
for a given linearly independent refinable function ¢ is reduced to the problem of either
finding numerically a distributional dual function or finding numerically a dual function
with a lower regularity.

5. Examples

In this section we apply the techniques developed in the paper to illustrate the theory
in concrete cases. We have chosen bivariate examples with different dilation matrices. The
findings are summarized in Table 1.

Bivariate example with dilation matrix M = 2I,.». For the first example
we use the simplest of the fundamental functions constructed in [RiS1]. It was found
by multiplying the mask of a three direction box spline of equal multiplicity 2 in each
direction by a suitable factor to give a mask satisfying (1.5) with smallest support and
with the same symmetries as the box spline. The mask for the fundamental function, call
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Figure 1. The interpolatory refinable function ¢, and the wavelets from it as

derived in Algorithm (4.5).

it ¢9 2 2, is reproduced below:

00 0
—3

0 0 =
0 5

(5.1) 222 =~ | B4 64
415 3 3

64 32 64

-3 3

a0 33

-1 -3 -3

The mask a2 52 is

<COS (%) cos (“2) cos (M))Q (5 — cos(wy) — cos(ws) — cos(wy + w2)>/2,

2 2
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which is clearly non-negative. The support of a is in [—3, 3]? and it has maximum value at
the origin. In [RiS2], the corresponding function ¢ was shown to have smoothness C?~¢
for any ¢ > 0.

/&\\““ 1A%

AN RS
AN
\g‘/;:;/; 2 \\'A\\:g\\!v’

77 M
NS
N\

¢‘,'/I‘\\ 0%

)
S

-3

(1,1)

(0,1)

Figure 2. The dual function ¢5{272 and the wavelets from it as derived in Algo-
rithm (4.5).

Hence Algorithm 2.13 can be applied to a with N = 1 to obtain a mask H supported
on [—12,12]2. The mask H satisfies (3.10) for r = 3, hence, V3 is invariant under the matrix
H for the mask H. Applying the criterion at the end of §3, we find that the corresponding
function ¢§i,2,2 is in smoothness class C“, where o > .858185. Therefore, ¢§i,2,2 is stable
and dual to ¢2 2> by Corollary 2.11.

Since we have a reasonable dual function to ¢332, we can apply Algorithm 4.5 to
construct biorthogonal wavelets for the pair ¢ 2 2 and qﬁgg,z. Figure 1 shows the refinable
function ¢, 52 and the corresponding wavelets, while Figure 2 shows the dual function
¢5{272 and the dual wavelets.
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d
¢ten 1 ¢ten 1

Figure 3. The function ¢.,; and the dual function ¢& , found by Algorithm 2.13
applied to a simple tensor product.

Nonseparable bivariate example from univariate hat functions with dila-
tion matrix M = 2[,45. As mentioned earlier, the initial fundamental function may
be the tensor product of simple univariate fundamental functions. The application of the
constructions in § 2 will lead to nonseparable fundamental functions. Here, we take the
tensor product, ¢sen, of the univariate hat function which has the mask

1/16 1/8 1/16
aen = | 1/8 1/4 1/8
1/16 1/8 1/16

Clearly, the mask a4., will be non-negative since it is the product of the univariate mask
in each variable. Applying Algorithm (2.13) with N = 1, we find a dual function in Lo(R?)
(but not continuous) and a new nonseparable fundamental function ¢y.,; which belongs to
C?7¢, for any € > 0. Iterating once more (k = 2) we find a dual, ¢%,,,,, for ¢sen1 that has
smoothness. In Table 1, we have labeled this next iteration of ¢;., as the first iteration
of ¢ren1 to give its dual function and to better show the comparison with ¢, 5 2. Figure 3
shows the functions ¢sen1 and ¢§en1. The supports of the functions derived using ¢2 2 2
are smaller.

1 -1
1 1
example which has already been well studied in the literature (see [DD] and [CD]). For the

Examples with dilation matrix M = ] . Here we take a quick look at an

dilation matrix M = [1 _11] and the mask
0o 1/8 0
(5.2) a=|1/8 1/2 1/8],
0 1/8 0
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we have that G = 1 + 1 cos(wi) + 1 cos(ws) > 0. Therefore, the methods of §2 apply to
build smoother fundamental functions and for those smoother functions we can try to find
dual functions as well. Let ¢js be the fundamental function corresponding to the mask
(5.2).

Since a is non-negative, we may apply the smoothness criterion given at the end of
§3. For the matrix M, |Amin| = |Amaz| = V2 and therefore, én is in C*7¢, where
a > k= —2log (pmy,. )/ log(2) and where V; is to be determined for each choice of N and
k. Table 1 summarizes our calculations for N =1,2,3,4 with k =1and N =1, k = 2.

Consulting Table 1 we see quite clearly the increasing smoothness with N. An iterate,
(k = 2 for N = 1), also shows the increasing smoothness with the iteration. For the dual
functions however, one must progress further to obtain smoothness. With N = 1, we do
not get an Lo (R?) function for ¢, but with increasing N we do get existence in Ly(R?)

for the dual functions (15‘%,1, ¢§,1, and a continuous dual function in (152,1.

Function N,k rinV, | ¢nx € C*7° with a > phN -k
$2.2.2 N=0k=0]| r=3 K = 2.0000. .. —
N=1k=1|r=17 k= 3.6594... pbl:l € C0-8581
Gten N=0,k=0] r=1 k = 1.0000. .. —
N=1,k= r=3 Kk = 2.0000. .. ¢TI € Ly(R®)
Ptent N=0k= r=2 k= 2.0000. .. —
N=1k=1]| r=7 Kk =3.6841... phbt € C0-8578
b N=0,k=0] r=1 K =0.6115... —
N=1k=1]| r=3 Kk =1.3581... ¢t & Lo(R?)
N=2k=1| r=5 K =1.9908... ¢3! € Ly(R?)
N=3k=1| r=17 K =2.5474 ... 31 € Ly(R?)
N=4,k=1|r=9 K = 3.0509. .. pht1 € C0-31326
N=1,k=2| r=7 K = 2.6387... pP12 € Lo(R?)

Table 1. Results of applying the constructions in §2 to the Examples of this section
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