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Abstract. Digital Gabor filters are indispensable tools of local time-frequency analysis in signal processing. With strong orienta-
tion selectivity, discrete (tight) Gabor frames generated by 2D Gabor filters also see their wide applications in image processing and
volume data processing. However, owing to the lack of multi-scale structures, discrete Gabor frames are less effective than multi-
resolution analysis (MRA) based wavelet (tight) frames when being used for modeling data composed of local structures with varying
sizes. Recently, it is shown that digital Gabor filters do generate MRA-based wavelet tight frames via Unitary Extension Principle.
However, the corresponding window function has to be constant window, which has poor joint time-frequency resolution. In this pa-
per, we showed that digital Gabor filters with smooth window function can generate MRA-based wavelet bi-frames. The MRA-based
wavelet bi-frames generated by digital Gabor filters have both the advantages of Gabor systems on local time-frequency analysis and
the advantages of wavelet systems on multi-scale analysis.
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1. Introduction. For years, digital Gabor filters and their associated digital Gabor systems [18] have
long been known as the pervasive tools of local time-frequency analysis in audio processing, texture analysis,
image analysis and many others (see e.g. [2, 13, 20]). A Gabor system is generated by the translations and
modulations of a window function 𝑔:

(1) 𝑋 = {𝑔(· − 𝑎𝑘)𝑒𝑖2𝜋𝑏ℓ·}𝑘,ℓ∈Z,

where 𝑎, 𝑏 are shift parameters. The main reason of choosing Gabor systems over others is its optimality
on joint time-frequency resolution, when Gaussian functions are used as the window function of Gabor
systems. Recently, motivated by strong orientation selectivity of tensor product of digital Gabor filters,
discrete Gabor (tight) frames also have been proposed in [23] for efficient sparse approximation of high-
dimensional data. A class of (tight) discrete Gabor frames for finite signals are constructed in [23] whose
corresponding filter bank maximizes orientation selectivity in discrete grid. Such discrete Gabor frames
show their advantages over many widely used systems, e.g. spline wavelet tight frames [11], when being
used in various applications.

It can be seen from (1) that Gabor (tight) frames lack the so-called multi-scale structures, one very
important property needed for effectively modeling local structures in signals with varying sizes. Indeed,
such a weakness of Gabor systems was the motivation of studying affine (wavelet) systems. For 𝐿2(R), a
dyadic wavelet system can be expressed as

(2) {2𝑛/2𝜓ℓ(2
𝑛 · −𝑘)}1≤ℓ≤𝑟,𝑛,𝑘∈Z.

Multi-scale structures of wavelet systems allow one to decompose signals into multiple levels with different
scales, which is very helpful to model local structures existing in signals with varying sizes. Together
with fast cascade filter bank based implementation of signal decomposition/reconstruction, multi-resolution
analysis (MRA) based wavelet tight frames [11, 32] have been used in a wide range of applications (see
e.g. [3, 4, 15, 16, 26, 36]). Therefore, it is natural to ask whether it is possible to have discrete tight frames
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that have both affine structures associated with an MRA and local time-frequency analysis. Such a question
can be rephrased as whether we can have MRA-based wavelet tight frames whose corresponding wavelet
filter bank is a set of digital Gabor filters.

Based on Unitary Extension Principle (UEP) [11, 32], the question above is addressed in [24], which
showed that digital Gabor filters indeed can generate an MRA-based wavelet tight frame for 𝐿2(R). How-
ever, it only works for those Gabor filters with constant window function, i.e. 𝑔 = 𝑀−1[1, 1, . . . , 1], where
𝑀 is the length of 𝑔. It is known that a constant window function is not smooth in time domain, and thus
has very slow decay in frequency domain. As a result, the joint time-frequency resolution of such wavelet
tight frames is much more limited than that of Gabor systems with smooth window functions.

The results above naturally raise the following question: can we have wavelet systems with all nice
properties of wavelet tight frames that are closely connected to digital Gabor filters with smooth window
function? Our answer to this question is the study of MRA-based wavelet bi-frames. In this paper, we
showed that it is possible to have MRA-based wavelet bi-frames generated by digital Gabor filters with
fast decay in frequency domain. Such wavelet bi-frames have both good joint time-frequency resolution
and MRA-based multi-scale structure. The MRA-based wavelet bi-frames also have the same fast discrete
implementation of signal decomposition/reconstruction as wavelet tight frames. Based on Mixed Extension
Principle [17], the wavelet frames and their dual frames of the constructed MRA-based wavelet bi-frames
are both generated by some Gabor-induced digital filter bank with fast decay in frequency domain. With the
best from both Gabor systems and wavelet systems, the wavelet bi-frames constructed in this paper certainly
can see their applications in many signal/image processing tasks.

1.1. Related work. We first introduce some definitions related to Gabor systems and wavelet systems.
For the space 𝐿2(R), a Gabor system 𝑋 ⊂ 𝐿2(R) is generated by the translations and modulations of a
window function 𝑔 ∈ 𝐿2(R):

𝑋 = (𝐾,𝐿)𝑔 = {𝑔(𝑥− 𝑢)𝑒𝑖2𝜋𝜂𝑥}𝑢∈𝐾,𝜂∈𝐿,

where 𝐾×𝐿 ∈ R×R is a lattice. A 𝑝-dilation wavelet system 𝑋(Ψ) ⊂ 𝐿2(R) is composed of the dilations
and translations of a set of wavelets Ψ = {𝜓1, ..., 𝜓𝑟}:

𝑋(Ψ) = {𝑝𝑛/2𝜓ℓ(𝑝
𝑛 · −𝑘)}1≤ℓ≤𝑟,𝑛,𝑘∈Z.

For the space ℓ2(Z), a discrete Gabor system𝑋 ⊂ ℓ2(Z) is obtained via uniformly sampling a Gabor system
in 𝐿2(R):

(3) {𝑔(𝑚− 𝑎𝑘)𝑒2𝜋𝑖𝑏ℓ𝑚,𝑚 ∈ Z}𝑘∈Z,ℓ∈{0,..., 1𝑏−1},

where 𝑎, 𝑏 with 𝑎, 1𝑏 ∈ Z+ are shift parameters. The 𝑏−1 atoms {𝑔(𝑚)𝑒2𝜋𝑖𝑏ℓ𝑚}0≤ℓ≤ 1
𝑏−1 are often called

digital Gabor filters. The construction of discrete wavelet systems is different from the construction of
discrete Gabor systems. Consider an MRA-based wavelet tight frame 𝑋(Ψ). Let 𝜑 denote the 𝑝-refinable
function that generates an MRA:

𝜑(𝑥) = 𝑝
∑︁
𝑘∈Z

𝑎0(𝑘)𝜑(𝑝𝑥− 𝑘), 𝑥 ∈ R,

where the sequence 𝑎0 is called the refinement mask of 𝜑. The wavelets Ψ = {𝜓ℓ}𝑟ℓ=1 are then defined by

𝜓ℓ(𝑥) = 𝑝
∑︁
𝑘∈Z

𝑎ℓ(𝑘)𝜑(𝑝𝑥− 𝑘), 𝑥 ∈ R, 1 ≤ ℓ ≤ 𝑟,
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where the sequences {𝑎ℓ}𝑟ℓ=1 are called the wavelet masks of Ψ. Discrete wavelet tight frame for ℓ2(Z) is
then constructed using the set of refinement and wavelet masks {𝑎ℓ}𝑟ℓ=0, the so-called wavelet filter bank;
see e.g. [36].

There has been an abundant literature on frames. A complete survey of the literature goes beyond the
scope of this paper. Instead, we only mention the duality analysis for frames. Duality analysis for shift-
invariant space is developed in 𝐿2(R𝑑) [34] via dual Gramian analysis. This leads to the discovery of the
duality principle for Gabor systems [30, 33] and the UEP [31] for MRA-based wavelet tight frames and
bi-frames. Both the duality principle and the unitary extension principle lead to simple construction scheme
of Gabor frames and wavelet frames. The Duality analysis for general Hilbert space can be found in [17]. It
unifies the duality principle for Gabor systems and the Unitary Extension Principle for wavelet systems, and
leads to the discovery that digital Gabor filters do form MRA-based wavelet frames.

There are also other construction schemes for Gabor frames. Interested readers are referred to [6, 9,
27, 33] for more details on the construction of Gabor frames for 𝐿2(R) and [22, 23, 38, 40] for more details
on the construction of Gabor (tight) frames for ℓ2(Z) or C𝑁 . The key of the construction is the duality
principle ( [12,17,21,30,33]), which not only gives a characterization of frame properties, but also provides
basic principle for the construction. For the construction of Gabor window functions, the famous painless
construction [10] is the most important one, which appeared earlier than duality principle but can be viewed
as one application of duality principle. Many other constructions of Gabor window functions are related to
the main idea of duality principle.

For wavelet systems, the construction took off after the discovery of multi-resolution analysis by Mallat
and Meyer [28, 29]. Since then, many types of wavelet bases have been constructed, i.e., band-limited
orthonormal wavelet bases by Meyer [29], compactly supported orthonormal wavelet bases by Daubechies
[8], and biorthogonal wavelet bases [7]. Duality analysis for shift-invariant subspace developed in 𝐿2(R𝑑)
[34] leads to the discovery of UEP [31] for MRA-based wavelet tight frames and bi-frames. Duality analysis
for general Hilbert space can be found in [17]. Compactly supported spline wavelet tight frames constructed
in [31] are the first set of examples of MRA-based tight frames generated by the UEP. Under very mild
conditions, the UEP simplifies the verification of tight frame property of a wavelet system to the verification
of only a few constraints on the associated filter bank. The extension of the UEP to the case of MRA-based
wavelet bi-frames is presented in [30, 33], the so-called Mixed Extension Principle (MEP). Based on MEP,
a simple construction scheme of MRA-based wavelet bi-frame is developed in [17], which only involves the
explicit construction of an invertible matrix and its inverse.

The studies of introducing multi-scale structure to Gabor systems are scant in the existing literature.
In [25], Gabor wavelet transform for 𝐿2(R) is defined by using Gabor functions as the mother wavelet
function of the continuous wavelet transform. Then, a discrete system for 𝐿2(R) with both Gabor structure
and multi-scale structure can be obtained by directly sampling the phase. It is empirically observed that the
resulting system will form a frame for 𝐿2(R), as long as the sampling in the phase domain is dense enough.
However, such systems cannot introduce discrete Gabor (tight) frames for the sequence space ℓ2(Z), and
have no fast cascade algorithm as MRA-based wavelet tight frame either. A class of discrete Gabor (tight)
frames for ℓ2(Z) is constructed in [23], and multi-scale structure is introduced by considering a (tight) frame
composed of multiple discrete Gabor (tight) frames with different window sizes. Similarly, such discrete
Gabor (tight) frames for ℓ2(Z) have no fast cascade algorithm.

The gap between MRA-based wavelet tight frames and Gabor systems motivated the study on MRA-
based wavelet tight frames generated by the set of digital Gabor filters [24]. It is shown in [24] that the set
of digital Gabor filters satisfies the UEP, only if the window function is a constant function. In other words,
in order to form an MRA-based wavelet tight frame for 𝐿2(R), the only choices of digital Gabor filters are
those with constant windows. As a constant window is not smooth and thus has a slow decay in frequency
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domain, these Gabor filters have poor joint time-frequency resolution. As a result, such systems lose the
main motivation of Gabor systems, i.e., the optimality on joint time-frequency resolution.

1.2. Main results. In this paper, we showed that it is possible to have MRA-based wavelet bi-frames
generated by digital Gabor filters with fast decay in frequency domain, which will have both multi-scale
structure and fast cascade implementation of signal reconstruction/decomposition, while keeping the good
joint time-frequency resolution. Recall that the construction of MRA-based wavelet frames usually starts
with the construction of a 𝑝-refinable function 𝜑 that generates an MRA for 𝐿2(R). For simplicity, only
compactly supported refinable functions are considered in this paper.

Suppose that we have two refinable functions 𝜑, ̃︀𝜑 with refinable masks 𝑎0,̃︀𝑎0, and each of them gener-
ates an MRA for 𝐿2(R). Define two sets of framelets Ψ = {𝜓ℓ}𝑟ℓ=1,

̃︀Ψ = { ̃︀𝜓ℓ}𝑟ℓ=1 as follows,

𝜓ℓ(·) = 𝑝
∑︁
𝑘∈Z

𝑎ℓ(𝑘)𝜑(𝑝 · −𝑘); ̃︀𝜓ℓ(·) = 𝑝
∑︁
𝑘∈Z

̃︀𝑎ℓ(𝑘)̃︀𝜑(𝑝 · −𝑘),

for ℓ = 1, . . . , 𝑟. Then, these two sets of framelets can be used to generate two wavelet systems:

𝑋(Ψ) = {𝑝𝑛/2𝜓ℓ(𝑝
𝑛 · −𝑘)}1≤ℓ≤𝑟;𝑛,𝑘∈Z; 𝑋(̃︀Ψ) = {𝑝𝑛/2 ̃︀𝜓ℓ(𝑝

𝑛 · −𝑘)}1≤ℓ≤𝑟;𝑛,𝑘∈Z.

The MEP [17] provides an approach for constructing MRA-based wavelet bi-frames via their refinement
masks and wavelet masks. The MEP says that under very mild conditions, the two systems 𝑋(Ψ), 𝑋(̃︀Ψ)
form bi-frames for 𝐿2(R), if the two mask sets {𝑎ℓ}𝑟ℓ=0 and {̃︀𝑎ℓ}𝑟ℓ=0 satisfy

(4)
𝑟∑︁

ℓ=0

̂︀𝑎ℓ(𝜔) ̂︀̃︀𝑎ℓ(𝜔 + 2𝜋𝜈) = 𝛿𝜈,0,

for all 𝜈 ∈ 𝑝−1Z/Z and a.e. 𝜔 ∈ R.
Using the MEP as the main tool, we can then construct MRA-based wavelet bi-frames generated by

digital Gabor filters. Consider a discrete Gabor system of the form (3) with 𝑀(= 𝑏−1) Gabor filters:

𝑔ℓ(𝑚) = 𝑔(𝑚)𝑒−2𝜋𝑖ℓ𝑏𝑚, ℓ = 0, 1, . . . ,𝑀 − 1,

where 𝑔 is a compactly supported non-negative sequence in ℓ2(Z) with supp(𝑔) ⊂ [0,𝑀 − 1] ∩ Z. Define
the following two set of masks {𝑎ℓ}𝑀−1

ℓ=0 and {̃︀𝑎ℓ}𝑀−1
ℓ=0 :

(5)

{︃
𝑎0(𝑚) = 𝑔0(𝑚),

𝑎ℓ(𝑚) = 𝑒𝑖𝜃ℓ𝑔ℓ(𝑚) − 𝜇ℓ𝑔0(𝑚), 1 ≤ ℓ ≤𝑀 − 1;

{︃̃︀𝑎0(𝑚) = 𝑔0(𝑚),̃︀𝑎ℓ(𝑚) = 𝑏𝑒𝑖𝜃ℓ𝑒−2𝜋𝑖𝑏ℓ𝑚, 1 ≤ ℓ ≤𝑀 − 1,
,

where 𝑒𝑖𝜃ℓ =
∑︀

𝑚 𝑔ℓ(𝑚)

|
∑︀

𝑚 𝑔ℓ(𝑚)| , 𝜇ℓ =
|
∑︀

𝑚 𝑔ℓ(𝑚)|∑︀
𝑚 𝑔0(𝑚) if

∑︀
𝑚 𝑔ℓ(𝑚) ̸= 0; and 𝜃ℓ = 𝜇ℓ = 0 otherwise. It can be seen

that in (5), the two refinement masks 𝑎0,̃︀𝑎0 are the same. The wavelet mask set {𝑎ℓ}𝑀−1
ℓ=1 is constructed

by removing possible non-zero DC offset of digital Gabor filters (a common implementation in practice).
Then, we showed that the two mask sets {𝑎ℓ}𝑀−1

ℓ=0 and {̃︀𝑎ℓ}𝑀−1
ℓ=0 defined by (5) satisfy the MEP (4) and thus

generate wavelet bi-frames for 𝐿2(R), if the window sequence 𝑔 satisfies

(6)
∑︁
𝑛∈Z

𝑔(𝑗 + 𝑝𝑛) =
1

𝑝
, ∀ 𝑗 ∈ Z/𝑝Z,

where 𝑝 ∈ Z and 𝑝 > 1.
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Based on the construction scheme above, several examples of MRA-based wavelet bi-frames are con-
structed using different window sequences 𝑔 that satisfy (6), include both the discretization of B-spline
functions and the refinement mask of B-spline functions. The extension to the high-dimensional case is also
straightforward, and we give an example that is based on the discretization of box-spline functions. In addi-
tion, the frame bound ratios of the resulting discrete wavelet bi-frames for signal space are also examined in
this paper, and the results show that the frame bound ratios of these bi-frames are quite small and thus there
is no concern on numerical stability of signal decomposition and reconstruction. At last, the constructed
MRA-based wavelet bi-frames are used in several sparsity-based image recovery tasks. It is empirically
observed that the constructed wavelet bi-frames outperform some widely used systems such as B-spline
wavelet tight frames and dual-tree complex wavelet transform (DT-CWT).

The remainder of this paper is organized as follows. Some related background and mathematical prelim-
inaries are introduced in Section 2. Section 3 is mainly devoted to the construction of MRA-based wavelet
bi-frames generated by digital Gabor filters, as well as several examples. Section 4 is about discussing
discrete wavelet bi-frames for signals derived from MRA-based wavelet tight frames for 𝐿2(R), and their
frame bound ratios, which are related to the stability in signal decomposition and reconstruction. At last, in
Section 5, the constructed wavelet bi-frames are tested in various image recovery tasks with the comparison
to some widely used frames in image processing.

2. Preliminaries. In this paper, let Z,Z+,R,C denote the set of integers, positive integers, real num-
bers and complex numbers, respectively. Let ⟨·, ·⟩ and ‖·‖ be the usual inner product and norm of the Hilbert
space 𝐻 . The Fourier transform of 𝑓 ∈ 𝐿2(R) is denoted by ̂︀𝑓 ; and for 𝑓 ∈ 𝐿1(R)∩𝐿2(R), ̂︀𝑓 is defined by

̂︀𝑓(𝜉) =

∫︁
R
𝑓(𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥, 𝜉 ∈ R.

The Fourier transform of ℎ ∈ ℓ2(Z) is also denoted by ̂︀ℎ and is defined by

̂︀ℎ(𝜉) =
∑︁
𝑘∈Z

ℎ(𝑘)𝑒−𝑖𝑘𝜉, 𝜉 ∈ R.

Let 𝐼 denote any countable index set, a sequence {𝑣𝑛}𝑛∈𝐼 ⊂ 𝐻 is called a Bessel sequence if there exists a
positive constant 𝐵 such that ∑︁

𝑛∈𝐼

|⟨𝑓, 𝑣𝑛⟩|2 ≤ 𝐵‖𝑓‖2, ∀ 𝑓 ∈ 𝐻.

A sequence {𝑣𝑛}𝑛∈𝐼 ⊂ 𝐻 is called a frame if there exist two positive constant 𝐴,𝐵 such that

𝐴‖𝑓‖2 ≤
∑︁
𝑛∈𝐼

|⟨𝑓, 𝑣𝑛⟩|2 ≤ 𝐵‖𝑓‖2, ∀ 𝑓 ∈ 𝐻.

𝐴/𝐵 is called the lower/upper frame bound. A frame {𝑣𝑛}𝑛∈𝐼 is called tight frame when𝐴 = 𝐵 = 1. Given
a frame {𝑢𝑛}𝑛∈𝐼 for 𝐻 , the sequence {𝑣𝑛}𝑛∈𝐼 is called its dual frame if

(7) 𝑓 =
∑︁
𝑛∈𝐼

⟨𝑓, 𝑣𝑛⟩𝑢𝑛 =
∑︁
𝑛∈𝐼

⟨𝑓, 𝑢𝑛⟩𝑣𝑛, ∀ 𝑓 ∈ 𝐻.

For a tight frame, one of its dual frames is the tight frame itself. A frame {𝑢𝑛}𝑛∈𝐼 and its dual {𝑣𝑛}𝑛∈𝐼 are
called bi-frames for 𝐻 .
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Given a Bessel sequence {𝑣𝑛}𝑛∈𝐼 ⊂ 𝐻 , its analysis operator 𝑊𝑣 : 𝐻 → ℓ2(𝐼) is defined by

𝑊𝑣𝑓(𝑛) = ⟨𝑓, 𝑣𝑛⟩, 𝑛 ∈ 𝐼,

for any 𝑓 ∈ 𝐻 . Its adjoint operator 𝑊 *
𝑣 : ℓ2(𝐼) → 𝐻 is then defined by

𝑊 *
𝑣 𝑐 =

∑︁
𝑛∈𝐼

𝑐𝑛𝑣𝑛, ∀ {𝑐𝑛}𝑛∈𝐼 ∈ ℓ2(𝐼).

The operator 𝑊 *
𝑣 is also called synthesis operator. The Bessel sequences {𝑢𝑛}𝑛∈𝐼 and {𝑣𝑛}𝑛∈𝐼 form bi-

frames for 𝐻 if and only if 𝑊 *
𝑣𝑊𝑢 = 𝑊 *

𝑢𝑊𝑣 = 𝐼 .
Consider a 𝑝-refinable function 𝜑 ∈ 𝐿2(R) with ̂︀𝜑(0) ̸= 0 that satisfies

(8) 𝜑(𝑥) = 𝑝
∑︁
𝑘∈Z

𝑎0(𝑘)𝜑(𝑝𝑥− 𝑘), 𝑥 ∈ R,

or equivalently ̂︀𝜑(𝑝𝜉) = ̂︀𝑎0(𝜉)̂︀𝜑(𝜉), 𝜉 ∈ R, for some refinement mask 𝑎0 ∈ ℓ2(Z). We define a sequence of
subspaces generated by 𝜑:

(9) 𝑉𝑛 = 𝑠𝑝𝑎𝑛{𝜑(𝑝𝑛 · −𝑘)}𝑘∈Z.

The sequence of subspaces {𝑉𝑛}𝑛∈Z ⊂ 𝐿2(R) forms an MRA if

(i)𝑉𝑛 ⊂ 𝑉𝑛+1, 𝑛 ∈ Z, (ii)∪𝑛𝑉𝑛 = 𝐿2(R), (iii) ∩𝑛 𝑉𝑛 = {0}.

Given an MRA generated by the refinable function 𝜑, we can define a set of framelets Ψ = {𝜓ℓ}𝑟ℓ=1 via

(10) 𝜓ℓ(𝑥) = 𝑝
∑︁
𝑘∈Z

𝑎ℓ(𝑘)𝜑(𝑝𝑥− 𝑘), 𝑥 ∈ R,

or equivalently ̂︁𝜓ℓ(𝑝𝜉) = ̂︀𝑎ℓ(𝜉)̂︀𝜑(𝜉), 𝜉 ∈ R, for wavelet masks {𝑎ℓ}𝑟ℓ=1 ⊂ ℓ2(Z). Associated with Ψ, the
𝑝-dilation wavelet system 𝑋(Ψ) is defined by

(11) 𝑋(Ψ) = {𝑝𝑛/2𝜓ℓ(𝑝
𝑛 · −𝑘)}1≤ℓ≤𝑟,𝑛,𝑘∈Z.

For simplicity, the refinable function 𝜑 ∈ 𝐿2(R) is assumed to be compactly supported with the finitely
supported, real valued refinement mask 𝑎0 ∈ ℓ2(Z), and suppose 𝜑 satisfies ̂︀𝜑(0) = 1. The Mixed Extension
Principle (MEP, [32]) provides a sufficient condition on the masks for two wavelet systems to form bi-frames
for 𝐿2(R).

THEOREM 1 (MEP [32]). Let 𝜑, ̃︀𝜑 be compactly supported refinable functions with refinement masks

𝑎0,̃︀𝑎0 and ̂︀𝜑(0) =
̂︀̃︀𝜑(0) = 1. Let {𝑎ℓ}𝑟ℓ=1 (resp. {̃︀𝑎ℓ}𝑟ℓ=1) be the wavelet masks of a wavelet system 𝑋

derived from 𝜑 (resp. 𝑌 derived from ̃︀𝜑) by (10) and (11). Then, 𝑋 and 𝑌 are dual frames, provided they
are Bessel systems and

𝑟∑︁
ℓ=0

̂︀𝑎ℓ(𝜔) ̂︀̃︀𝑎ℓ(𝜔 + 2𝜋𝜈) = 𝛿𝜈,0, for a.e. 𝜔 ∈ R

for all 𝜈 ∈ 𝑝−1Z/Z , or equivalently

(12)
𝑟∑︁

ℓ=0

∑︁
𝑛∈Ω𝑗

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) =
1

𝑝
𝛿𝑘,0

for all 𝑘 ∈ Z, 𝑗 ∈ Z/𝑝Z, where Ω𝑗 = (𝑝Z + 𝑗).
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REMARK 2. In Theorem 1, in addition to (12), the only condition imposed on the systems is that both𝑋
and 𝑌 should be Bessel systems. This condition will be satisfied as long as refinable functions 𝜑, ̃︀𝜑 ∈ 𝐿2(R)
are compactly supported and each of the wavelet frames from {𝑎ℓ}𝑟ℓ=1, {̃︀𝑎ℓ}𝑟ℓ=1 is finitely supported and has
the first order vanishing moment (see e.g. [19]).

It can be seen that when 𝑋 = 𝑌 , the condition (4) is exactly the condition in UEP, i.e.

(13)
𝑟∑︁

ℓ=0

∑︁
𝑛∈Ω𝑗

𝑎ℓ(𝑛)𝑎ℓ(𝑛+ 𝑘) =
1

𝑝
𝛿𝑘,0.

The main difference between UEP and MEP is that the MEP requires both the conditions (12) and that two
systems are Bessel sequences, while the UEP only requires the condition (13).

The MEP simplifies the construction of MRA-based wavelet bi-frames for 𝐿2(R) by converting it to
the construction of refinement and wavelet masks that satisfy (12). In [17], a construction scheme of such
refinement and wavelet masks is provided for dilation factor 𝑝 = 2, which further simplified the problem by
converting it to the problem of completing a constant matrix with explicit form of its inverse. Such an idea
is also exploited in the construction of discrete Gabor filters that satisfy (12).

3. Construction of wavelet bi-frames. This section aims at constructing MRA-based wavelet bi-
frames whose refinement and wavelet masks are derived from digital Gabor filters. Let 𝑔 ∈ ℓ2(Z) be a
finitely supported window sequence with supp(𝑔) ⊂ [0,𝑀 − 1]∩Z. It then generates a set of digital Gabor
filters 𝐺 = {𝑔ℓ}1/𝑏−1

ℓ=0 :

(14) 𝑔ℓ(𝑚) = 𝑔(𝑚)𝑒−2𝜋𝑖ℓ𝑏𝑚,

where 𝑏(= 1
𝑀 ) is the frequency shift parameter. In practice, a high-pass digital Gabor filter is usually

implemented to have zero DC offset, i.e., the mean of the filter is zero. Such an implementation can be done
by removing the DC offset of all high-pass filters as follows,

(15) 𝑔ℓ = 𝑒𝑖𝜃ℓ𝑔ℓ − 𝜇ℓ𝑔0, ∀ 1 ≤ ℓ < 1/𝑏,

where 𝑒𝑖𝜃ℓ =
∑︀

𝑚 𝑔ℓ(𝑚)

|
∑︀

𝑚 𝑔ℓ(𝑚)| , 𝜇ℓ =
|
∑︀

𝑚 𝑔ℓ(𝑚)|∑︀
𝑚 𝑔0(𝑚) if

∑︀
𝑚 𝑔ℓ(𝑚) ̸= 0, and 𝜃ℓ = 𝜇ℓ = 0 otherwise. Clearly, we

have ∑︁
𝑚∈Z

𝑔ℓ(𝑚) = 0, 1 ≤ ℓ < 1/𝑏.

It is noted that the property of zero DC offset is exactly the property of first-order vanishing moment, a
necessary property of wavelet masks.

Consider a refinement mask 𝑎0 = 𝑔0 and wavelet masks 𝑎ℓ = 𝑔ℓ, i.e.,

(16)
{︂
𝑎0(𝑚) = 𝑔(𝑚),
𝑎ℓ(𝑚) = 𝑒𝑖𝜃ℓ𝑔ℓ(𝑚)𝑒−2𝜋𝑖ℓ𝑏𝑚 − 𝜇ℓ𝑔(𝑚), 1 ≤ ℓ < 1/𝑏,

for 𝑚 ∈ [0, 1/𝑏 − 1] ∩ Z and 0 otherwise. Define another set of refinement mask and wavelet masks as
follows,

(17)

{︃̃︀𝑎0(𝑚) = 𝑔(𝑚),̃︀𝑎ℓ(𝑚) = 𝑏𝑒𝑖𝜃ℓ𝑒−2𝜋𝑖ℓ𝑏𝑚, 1 ≤ ℓ < 1/𝑏

for 𝑚 ∈ [0, 1/𝑏 − 1] ∩ Z and 0 otherwise. It can be seen that the mean of the sequence ̃︀𝑎ℓ is also zero.
Define Ω𝑗 = (𝑝Z + 𝑗) ∩ supp(𝑔) for 𝑗 = 0, . . . , 𝑝− 1. Then, we have
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THEOREM 3. Consider a finitely supported, real-valued, nonnegative window sequence 𝑔 ∈ ℓ2(Z). Let
{𝑎ℓ}1/𝑏−1

ℓ=0 and {̃︀𝑎ℓ}1/𝑏−1
ℓ=0 be two mask sets defined by (16) and (17). Suppose that for some integer 𝑝 > 1,

the window sequence 𝑔 satisfies

(18)
∑︁
𝑛∈Ω𝑗

𝑔(𝑛) = 𝑝−1, ∀ 𝑗 ∈ Z/𝑝Z,

where Ω𝑗 = (𝑝Z + 𝑗) ∩ supp(𝑔). Then, two sets {𝑎ℓ}1/𝑏−1
ℓ=0 and {̃︀𝑎ℓ}1/𝑏−1

ℓ=0 satisfy the MEP condition (12):

1/𝑏−1∑︁
ℓ=0

∑︁
𝑛∈Ω𝑗

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) = 𝑝−1𝛿𝑘,0, ∀ 𝑗 ∈ Z/𝑝Z.

Proof. Consider any integer 𝑛 ∈ [0, 1/𝑏−1]∩Z. For 𝑘 < −𝑛 or 𝑘 > 1/𝑏−1−𝑛, we have ̃︀𝑎ℓ(𝑛+𝑘) = 0.
Consequently,

(19)
1/𝑏−1∑︁
ℓ=0

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) = 0 for 𝑘 < −𝑛 and 𝑘 >
1

𝑏
− 1 − 𝑛.

For −𝑛 ≤ 𝑘 ≤ 1
𝑏 − 1 − 𝑛, by (16) and (17), we have

1/𝑏−1∑︁
ℓ=0

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) = 𝑔(𝑛)𝑔(𝑛+ 𝑘) +

1/𝑏−1∑︁
ℓ=1

(︀
𝑒−𝑖𝜃ℓ𝑔(𝑛)𝑒2𝜋𝑖ℓ𝑏𝑛 − 𝜇ℓ𝑔(𝑛)

)︀
· 𝑏𝑒𝑖𝜃ℓ𝑒−2𝜋𝑖ℓ𝑏(𝑛+𝑘)

= 𝑔(𝑛)𝑔(𝑛+ 𝑘) +

1/𝑏−1∑︁
ℓ=1

𝑏𝑔(𝑛)𝑒−2𝜋𝑖ℓ𝑏𝑘 −
1/𝑏−1∑︁
ℓ=1

𝑏𝜇ℓ𝑔(𝑛)𝑒𝑖𝜃ℓ𝑒−2𝜋𝑖ℓ𝑏(𝑛+𝑘).

Notice that −𝑛 ≤ 𝑘 ≤ 1
𝑏 − 1 − 𝑛 implies 1 − 1

𝑏 ≤ 𝑘 ≤ 1
𝑏 − 1. Thus,

1/𝑏−1∑︁
ℓ=1

𝑏𝑔(𝑛)𝑒−2𝜋𝑖ℓ𝑏𝑘 =

{︂
(1 − 𝑏)𝑔(𝑛), 𝑘 = 0,
−𝑏𝑔(𝑛), −𝑛 ≤ 𝑘 ≤ 1

𝑏 − 1 − 𝑛, 𝑘 ̸= 0,
.

and

1/𝑏−1∑︁
ℓ=1

𝑏𝜇ℓ𝑔(𝑛)𝑒𝑖𝜃ℓ𝑒−2𝜋𝑖ℓ𝑏(𝑛+𝑘) = 𝑏𝑔(𝑛)

1/𝑏−1∑︁
ℓ=1

∑︁
𝑚

𝑔ℓ(𝑚)𝑒−2𝜋𝑖ℓ𝑏(𝑛+𝑘)

= 𝑏𝑔(𝑛)

1/𝑏−1∑︁
𝑚=0

𝑔(𝑚)

1/𝑏−1∑︁
ℓ=1

𝑒−2𝜋𝑖ℓ𝑏(𝑛+𝑘−𝑚)

= 𝑔(𝑛)𝑔(𝑛+ 𝑘) − 𝑏𝑔(𝑛).

Therefore, we have

(20)
1/𝑏−1∑︁
ℓ=0

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) =

{︂
𝑔(𝑛), 𝑘 = 0;
0, −𝑛 ≤ 𝑘 ≤ 1

𝑏 − 1 − 𝑛, 𝑘 ̸= 0.
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In other words,
1/𝑏−1∑︁
ℓ=0

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) =

{︂
𝑔(𝑛), 𝑘 = 0,
0, 𝑘 ∈ Z, 𝑘 ̸= 0.

.

Then, for 𝑘 = 0, by (18), we have

1/𝑏−1∑︁
ℓ=0

∑︁
𝑛∈Ω𝑗

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛) =
∑︁
𝑛∈Ω𝑗

𝑔(𝑛) = 𝑝−1, ∀ 𝑗 ∈ Z/𝑝Z.

For 𝑘 ̸= 0, we have

1/𝑏−1∑︁
ℓ=0

∑︁
𝑛∈Ω𝑗

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) =
∑︁
𝑛∈Ω𝑗

1/𝑏−1∑︁
ℓ=0

𝑎ℓ(𝑛)̃︀𝑎ℓ(𝑛+ 𝑘) = 0, ∀ 𝑗 ∈ Z/𝑝Z.

The proof is complete.

Now, suppose that we have in hand such a window sequence 𝑔 satisfying the condition (18). Define a
𝑝-refinable function (or distribution) 𝜑 by

(21) 𝜑(·) = 𝑝
∑︁
𝑚∈Z

𝑎0(𝑚)𝜑(𝑝 · −𝑚),

and define two sets of wavelets Ψ = {𝜓ℓ}1/𝑏−1
ℓ=1 , ̃︀Ψ = { ̃︀𝜓ℓ}1/𝑏−1

ℓ=1 by

(22) 𝜓ℓ(·) = 𝑝
∑︁
𝑚∈Z

𝑎ℓ(𝑚)𝜑(𝑝 · −𝑚); ̃︀𝜓ℓ(·) = 𝑝
∑︁
𝑚∈Z

̃︀𝑎ℓ(𝑚)𝜑(𝑝 · −𝑚),

where the refinement and wavelet masks {𝑎ℓ}1/𝑏−1
ℓ=0 , {̃︀𝑎ℓ}1/𝑏−1

ℓ=0 are given by (16) and (17). By Theorem 1,
two wavelet systems 𝑋(Ψ), 𝑋(̃︀Ψ) defined by

(23) 𝑋(Ψ) = {𝑝𝑛/2𝜓ℓ(𝑝
𝑛 · −𝑘)}1≤ℓ<1/𝑏−1,𝑛,𝑘∈Z; 𝑋(̃︀Ψ) = {𝑝𝑛/2 ̃︀𝜓ℓ(𝑝

𝑛 · −𝑘)}1≤ℓ<1/𝑏−1,𝑛,𝑘∈Z

will form bi-frames for 𝐿2(R), if 𝜑 ∈ 𝐿2(R) and two systems 𝑋(Ψ) and 𝑋(̃︀Ψ) are Bessel sequences.

COROLLARY 4. Consider a finitely supported, real-valued, nonnegative window sequence 𝑔 ∈ ℓ2(Z)

that satisfies (18). Then, the two wavelet systems 𝑋(Ψ), 𝑋(̃︀Ψ) generated by (23) with the masks {𝑎ℓ}1/𝑏−1
ℓ=0

and {̃︀𝑎ℓ}1/𝑏−1
ℓ=0 defined by (16) and (17) form bi-frames for 𝐿2(R).

Proof. We first show that the refinable function 𝜑 with a refinement mask 𝑔 satisfying (18) is in 𝐿2(R).
The same conclusion for the case 𝑝 = 2 is proved in [5]. We start with showing that for any 𝜔 ∈ R,

(24)
𝑝−1∑︁
𝜇=0

|̂︀𝑔(𝜔 +
2𝜋𝜇

𝑝
)|2 ≤ 1.

Note that

𝑝−1∑︁
𝜇=0

|̂︀𝑔(𝜔 +
2𝜋𝜇

𝑝
)|2 =

𝑝−1∑︁
𝜇=0

|
∑︁
𝑚∈Z

𝑔(𝑚)𝑒−𝑖𝑚(𝜔+ 2𝜋𝜇
𝑝 )|2 ≤

𝑝−1∑︁
𝜇=0

∑︁
𝑚∈Z

|𝑔(𝑚)|2 =

𝑝−1∑︁
𝜇=0

𝑝−1∑︁
𝑗=0

∑︁
𝑚∈Ω𝑗

|𝑔(𝑚)|2,
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where Ω𝑗 = (𝑝Z+𝑗)∩supp(𝑔). Since 𝑔 is real-valued, nonnegative and satisfies (18), for any 0 ≤ 𝑗 ≤ 𝑝−1,
we have ∑︁

𝑛∈Ω𝑗

|𝑔(𝑚)|2 ≤ |
∑︁
𝑛∈Ω𝑗

𝑔(𝑚)|2 =
1

𝑝2
.

Therefore
∑︀𝑝−1

𝜇=0 |̂︀𝑔(𝜔 + 2𝜋𝜇
𝑝 )|2 ≤ 1.

Next, define

̂︁𝑓𝑛(𝜉) = ̂︀𝑔(𝑝−1𝜔)𝑓𝑛−1(𝑝−1𝜔) =

𝑛∏︁
𝑗=1

̂︀𝑔(𝑝−𝑗𝜔) ̂︀𝑓0(𝑝−𝑛𝜔),

where ̂︀𝑓0 = 1[−𝜋,𝜋]. Recall that 𝑔 is finitely supported and
∑︀

𝑚∈Z 𝑔(𝑚) = 1. The pointwise limit ̂︀𝜑 of
{̂︁𝑓𝑛}𝑛 satisfies the refinement equation ̂︀𝜑(𝑝𝜔) = ̂︀𝑔(𝜔)̂︀𝜑(𝜔) with ̂︀𝜑(0) = 1, and 𝜑 is a compactly supported
distribution. Furthermore,

‖̂︁𝑓𝑛‖2 =

∫︁ 𝜋𝑝𝑛

−𝜋𝑝𝑛

|
𝑛∏︁

𝑗=1

̂︀𝑔(𝑝−𝑗𝜔)|2𝑑𝜔

=

∫︁ 2𝜋𝑝𝑛

0

|
𝑛∏︁

𝑗=1

̂︀𝑔(𝑝−𝑗𝜔)|2𝑑𝜔

=

𝑝−1∑︁
𝜇=0

∫︁ 2(𝜇+1)𝜋𝑝𝑛−1

2𝜇𝜋𝑝𝑛−1

|
𝑛∏︁

𝑗=1

̂︀𝑔(𝑝−𝑗𝜔)|2𝑑𝜔

=

∫︁ 2𝜋𝑝𝑛−1

0

|
𝑛−1∏︁
𝑗=1

̂︀𝑔(𝑝−𝑗𝜔)|2
(︃

𝑝−1∑︁
𝜇=0

|̂︀𝑔(𝑝−𝑛𝜔 +
2𝜋𝜇

𝑝
)|2
)︃
𝑑𝜔.

Then by (24), we have

‖̂︁𝑓𝑛‖2 ≤
∫︁ 2𝜋𝑝𝑛−1

0

|
𝑛−1∏︁
𝑗=1

̂︀𝑔(𝑝−𝑗𝜔)|2𝑑𝜔 = ‖𝑓𝑛−1‖2.

By induction,

‖̂︁𝑓𝑛‖2 ≤ ‖ ̂︀𝑓0‖2 = 2𝜋,

for all 𝑛 ≥ 0. Since {̂︁𝑓𝑛}𝑛 converges to ̂︀𝜑 pointwise, by Fatou’s lemma,

‖̂︀𝜑‖2 ≤ lim inf
𝑛→∞

‖̂︁𝑓𝑛‖2 ≤ 2𝜋,

and 𝜑 ∈ 𝐿2(R).
Recall that all wavelet masks in Ψ, ̃︀Ψ are finitely supported and have the first order vanishing moment,

i.e., zero mean, as shown in [19], these two systems 𝑋(Ψ), 𝑋(̃︀Ψ) are both Bessel sequences in 𝐿2(R).
Consequently, by Theorem 1, the wavelet systems 𝑋(Ψ) and 𝑋(̃︀Ψ) form bi-frames for 𝐿2(R).

In the next, we present several examples of window sequence 𝑔 that satisfy the condition (18), which
leads to MRA-based wavelet bi-frames for 𝐿2(R) generated by digital Gabor filters.
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EXAMPLE 5 (refinement mask of linear B-spline). Let 𝑔 denote the refinement mask of linear B-spline
function, i.e., 𝑔 = 1

4 [1, 2, 1]. Then, define two sets of refinement and wavelet masks by (16) and(17)⎧⎪⎨⎪⎩
𝑎0 = 1

4 [1, 2, 1],

𝑎1 = 3
16 [−1, 2,−1] + 𝑖

√
3
8 [1, 0,−1],

𝑎2 = 3
16 [−1, 2,−1] + 𝑖

√
3
8 [−1, 0, 1];

and

⎧⎪⎨⎪⎩
̃︀𝑎0 = 1

4 [1, 2, 1],̃︀𝑎1 = 1
6 [−1, 2,−1] + 𝑖

√
3
6 [1, 0,−1],̃︀𝑎2 = 1

6 [−1, 2,−1] + 𝑖
√
3
6 [−1, 0, 1].

Since 𝑔 satisfies (18) with 𝑝 = 2, The corresponding systems 𝑋(Ψ) and 𝑋(̃︀Ψ) form MRA-based dyadic
wavelet bi-frames for 𝐿2(R).

EXAMPLE 6 (discretized general B-splines). Let 𝐵𝑝
𝑘 denote the B-spline function of order 𝑘 with the

knots {0, 𝑝, . . . , 𝑝𝑘}. Then, it is known that the function 𝐵𝑝
𝑘 is a non-negative function with support [0, 𝑝𝑘]

and satisfies ∑︁
𝑛∈Z

𝐵𝑝
𝑘(· − 𝑝𝑛) = 1.

See [14] for more details. Thus, we have
∑︀

𝑛∈Z
1
𝑝𝐵

𝑝
𝑘(𝑗 − 𝑝𝑛) = 1

𝑝 for any integer 𝑗, which is equivalent to

(18). Then, the two wavelet systems 𝑋(Ψ), 𝑋(̃︀Ψ) generated by the two mask sets {𝑎ℓ}1/𝑏−1
ℓ=0 and {̃︀𝑎ℓ}1/𝑏−1

ℓ=0

given by (16) and (17) form MRA-based 𝑝-dilation wavelet bi-frames for 𝐿2(R). For example, define a
window sequence by sampling 1

2𝐵
2
3 :

𝑔 =
1

96
[1, 8, 23, 32, 23, 8, 1].

By Theorem 3 and Corollary 4, the corresponding refinable function 𝜑 ∈ 𝐿2(R), and the two wavelet
systems 𝑋(Ψ) and 𝑋(̃︀Ψ) generated from 𝑔 form dyadic wavelet bi-frames for 𝐿2(R). See Figure 1 for the
graphs of two refinable functions and wavelets. Also, see Figure 2 for the illustration of 2D tensor product
of refinement and wavelet masks, which show strong orientation selectivity.

EXAMPLE 7 (refinement masks of general B-splines). A B-spline functions 𝐵1
𝑘 of order 𝑘 with the

knots {0, 1, ..., 𝑘} is a refinable function with refinement mask

𝑔 =
[︀ 1

2𝑘+1

(︂
𝑘 + 1

0

)︂
,

1

2𝑘+1

(︂
𝑘 + 1

1

)︂
, ...,

1

2𝑘+1

(︂
𝑘 + 1
𝑘 + 1

)︂]︀
.

It can be seen that the mask 𝑔 defined above satisfies (18) with 𝑝 = 2, i.e.,
∑︀

𝑛∈Ω𝑗
𝑔(𝑛) = 1/2, for all

𝑗 ∈ Z/2Z, where Ω𝑗 = (2Z + 𝑗) ∩ supp(𝑔). The corresponding refinable function 𝜑 = 𝐵1
𝑘 ∈ 𝐿2(R) is a

piecewise polynomial of degree 𝑘 − 1 in 𝐶𝑘−2, supported on [0, 𝑘]. By Theorem 3 and Corollary 4, the two
wavelet systems 𝑋(Ψ) and 𝑋(̃︀Ψ) generated from 𝑔 form dyadic wavelet bi-frames for 𝐿2(R). For example,
consider the refinement mask

𝑔 =
1

8
[1, 3, 3, 1],

whose refinable function is the quadratic B-spline function, i.e. 𝜑 = 𝐵1
2 .

Another example considers the refinement mask:

𝑔 =
1

16
[1, 4, 6, 4, 1],
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(1) Real(𝜑) (2) Real(𝜓1) (3) Real(𝜓2) (4) Real(𝜓3) (5) Real(𝜓4) (6) Real(𝜓5) (7) Real(𝜓6)

(8) Imag(𝜑) (9) Imag(𝜓1) (10) Imag(𝜓2) (11) Imag(𝜓3) (12) Imag(𝜓4) (13) Imag(𝜓3) (14) Imag(𝜓4)

(15) Real(𝜑) (16) Real( ̃︀𝜓1) (17) Real( ̃︀𝜓2) (18) Real( ̃︀𝜓3) (19) Real( ̃︀𝜓4) (20) Real( ̃︀𝜓5) (21) Real( ̃︀𝜓6)

(22) Imag(𝜑) (23) Imag( ̃︀𝜓1) (24) Imag( ̃︀𝜓2) (25) Imag( ̃︀𝜓3) (26) Imag( ̃︀𝜓4) (27) Imag( ̃︀𝜓5) (28) Imag( ̃︀𝜓6)

FIG. 1. Real and imaginary parts of refinable and wavelet functions generated from discrete quadratic B-spline in Example 6.

(1) Real(𝑎ℓ) (2) Imag(𝑎ℓ) (3) Real(̃︀𝑎ℓ) (4) Imag(̃︀𝑎ℓ)
FIG. 2. Real and imaginary parts of 2D tensor products of refinement and wavelet masks generated from discrete quadratic

B-spline in Example 6.

whose refinable function 𝜑 is the cubic B-spline function, i.e.

(25) 𝜑 = 𝐵1
3 =

𝑥3

6
𝜒[0,1)(𝑥) +

(︂
2

3
− 1

2
𝑥(𝑥− 2)2

)︂
𝜒[1,2)(𝑥)

+

(︂
2

3
− 1

2
(4 − 𝑥)(𝑥− 2)2

)︂
𝜒[2,3)(𝑥) +

(4 − 𝑥)3

6
𝜒[3,4)(𝑥),

where 𝜒 denotes the indicator function. In fact, the mask 𝑔 can also be viewed as integer samples of 1
2𝐵

2
2 .

See Figure 3 for the graphs of two refinable functions and wavelets. Also, see Figure 4 for the illustration of
2D tensor product of refinement and wavelet masks, which show strong orientation selectivity.
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(1) Real(𝜑) (2) Real(𝜓1) (3) Real(𝜓2) (4) Real(𝜓3) (e) Real(𝜓4)

(5) Imag(𝜑) (6) Imag(𝜓1) (7) Imag(𝜓2) (8) Imag(𝜓3) (j) Imag(𝜓4)

(9) Real(𝜑) (10) Real( ̃︀𝜓1) (11) Real( ̃︀𝜓2) (12) Real( ̃︀𝜓3) (o) Real( ̃︀𝜓4)

(13) Imag(𝜑) (14) Imag( ̃︀𝜓1) (15) Imag( ̃︀𝜓2) (16) Imag( ̃︀𝜓3) (t) Imag( ̃︀𝜓4)

FIG. 3. Real and imaginary parts of refinable and wavelet functions generated from cubic B-spline in Example 7.

(1) Real(𝑎ℓ) (2) Imag(𝑎ℓ) (3) Real(̃︀𝑎ℓ) (4) Imag(̃︀𝑎ℓ)
FIG. 4. Real and imaginary parts of 2D tensor products of refinement and wavelet masks generated from cubic B-spline in Example 7.

The construction scheme above can be extended to 𝐿2(R𝑑) in a straightforward manner. Suppose that
we can construct a finitely supported, nonnegative window sequence 𝑔 ∈ ℓ2(Z𝑑) that satisfies

(26)
∑︁

m∈Ω𝑗

𝑔(m) =
1

𝑝𝑑
.

for all 𝑗 ∈ Z𝑑/𝑝Z𝑑, where Ω𝑗 = (𝑝Z𝑑 + 𝑗) ∩ supp(𝑔). Then, the masks {𝑎ℓ} and {̃︀𝑎ℓ} defining (23) will
satisfy (12) in high-dimensional setting, and the resulting two systems 𝑋({𝑎ℓ}), 𝑋({̃︀𝑎ℓ}) form MRA-based
p-dilation wavelet bi-frames for 𝐿2(R𝑑).
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EXAMPLE 8 (refinement mask of box spline). Consider the box spline of three directions

{(1, 0)⊤, (0, 1)⊤, (1, 1)⊤},

whose refinement mask is

(27) 𝑔 =
1

8

⎛⎝0 1 1
1 2 1
1 1 0

⎞⎠ .

It can be seen that such a window function 𝑔 satisfies the condition (26) with 𝑝 = 2. The wavelet masks is
then give by

𝑎1 =

⎛⎜⎝ 0 3
32 − 3

32 −
√
3

16 𝑖

− 3
32 +

√
3

16 𝑖
3
16 − 3

32 −
√
3

16 𝑖

− 3
32 +

√
3

16 𝑖
3
32 0

⎞⎟⎠ , 𝑎2 =

⎛⎜⎝ 0 3
32 − 3

32 +
√
3

16 𝑖

− 3
32 −

√
3

16 𝑖
3
16 − 3

32 +
√
3

16 𝑖

− 3
32 −

√
3

16 𝑖
3
32 0

⎞⎟⎠ ,

𝑎3 =

⎛⎜⎝ 0 − 3
32 +

√
3

16 𝑖 − 3
32 +

√
3

16 𝑖
3
32

3
16

3
32

− 3
32 −

√
3

16 𝑖 − 3
32 −

√
3

16 𝑖 0

⎞⎟⎠ , 𝑎4 =

⎛⎜⎝ 0 − 3
32 +

√
3

16 𝑖
3
32

− 3
32 +

√
3

16 𝑖
3
16 − 3

32 −
√
3

16 𝑖
3
32 − 3

32 −
√
3

16 𝑖 0

⎞⎟⎠ ,

𝑎5 =

⎛⎜⎝ 0 3
64 −

√
3

16 𝑖
3
64 +

√
3

16 𝑖
3
64 +

√
3

16 𝑖 − 9
32

3
64 −

√
3

16 𝑖
3
64 −

√
3

16 𝑖
3
64 +

√
3

16 𝑖 0

⎞⎟⎠ , 𝑎6 =

⎛⎜⎝ 0 − 3
32 −

√
3

16 𝑖 − 3
32 −

√
3

16 𝑖
3
32

3
16

3
32

− 3
32 +

√
3

16 𝑖 − 3
32 +

√
3

16 𝑖 0

⎞⎟⎠ ,

𝑎7 =

⎛⎜⎝ 0 3
64 +

√
3

16 𝑖
3
64 −

√
3

16 𝑖
3
64 −

√
3

16 𝑖 − 9
32

3
64 +

√
3

16 𝑖
3
64 +

√
3

16 𝑖
3
64 −

√
3

16 𝑖 0

⎞⎟⎠ , 𝑎8 =

⎛⎜⎝ 0 − 3
32 −

√
3

16 𝑖
3
32

− 3
32 −

√
3

16 𝑖
3
16 − 3

32 +
√
3

16 𝑖
3
32 − 3

32 +
√
3

16 𝑖 0

⎞⎟⎠ ,

and the dual wavelet masks is given by

̃︀𝑎1 =

⎛⎜⎝− 1
18 +

√
3

18 𝑖
1
9 − 1

18 −
√
3

18 𝑖

− 1
18 +

√
3

18 𝑖
1
9 − 1

18 −
√
3

18 𝑖

− 1
18 +

√
3

18 𝑖
1
9 − 1

18 −
√
3

18 𝑖

⎞⎟⎠ , ̃︀𝑎2 =

⎛⎜⎝− 1
18 −

√
3

18 𝑖
1
9 − 1

18 +
√
3

18 𝑖

− 1
18 −

√
3

18 𝑖
1
9 − 1

18 +
√
3

18 𝑖

− 1
18 −

√
3

18 𝑖
1
9 − 1

18 +
√
3

18 𝑖

⎞⎟⎠ ,

̃︀𝑎3 =

⎛⎜⎝− 1
18 +

√
3

18 𝑖 − 1
18 +

√
3

18 𝑖 − 1
18 +

√
3

18 𝑖
1
9

1
9

1
9

− 1
18 −

√
3

18 𝑖 − 1
18 −

√
3

18 𝑖 − 1
18 −

√
3

18 𝑖

⎞⎟⎠ , ̃︀𝑎4 =

⎛⎜⎝− 1
18 −

√
3

18 𝑖 − 1
18 +

√
3

18 𝑖
1
9

− 1
18 +

√
3

18 𝑖
1
9 − 1

18 −
√
3

18 𝑖
1
9 − 1

18 −
√
3

18 𝑖 − 1
18 +

√
3

18 𝑖

⎞⎟⎠ ,

̃︀𝑎5 =

⎛⎜⎝ − 1
9

1
18 −

√
3

18 𝑖
1
18 +

√
3

18 𝑖
1
18 +

√
3

18 𝑖 − 1
9

1
18 −

√
3

18 𝑖
1
18 −

√
3

18 𝑖
1
18 +

√
3

18 𝑖 − 1
9

⎞⎟⎠ , ̃︀𝑎6 =

⎛⎜⎝− 1
18 −

√
3

18 𝑖 − 1
18 −

√
3

18 𝑖 − 1
18 −

√
3

18 𝑖
1
9

1
9

1
9

− 1
18 +

√
3

18 𝑖 − 1
18 +

√
3

18 𝑖 − 1
18 +

√
3

18 𝑖

⎞⎟⎠ ,

̃︀𝑎7 =

⎛⎜⎝ − 1
9

1
18 +

√
3

18 𝑖
1
18 −

√
3

18 𝑖
1
18 −

√
3

18 𝑖 − 1
9

1
18 +

√
3

18 𝑖
1
18 +

√
3

18 𝑖
1
18 −

√
3

18 𝑖 − 1
9

⎞⎟⎠ , ̃︀𝑎8 =

⎛⎜⎝− 1
18 +

√
3

18 𝑖 − 1
18 −

√
3

18 𝑖
1
9

− 1
18 −

√
3

18 𝑖
1
9 − 1

18 +
√
3

18 𝑖
1
9 − 1

18 +
√
3

18 𝑖 − 1
18 −

√
3

18 𝑖

⎞⎟⎠ .



DIGITAL GABOR FILTERS WITH MRA STRUCTURE 15

The resulting two wavelet systems 𝑋(Ψ), 𝑋(̃︀Ψ) form dyadic non-separable bi-frames for 𝐿2(R2).

4. Multi-scale discrete wavelet bi-frames induced by Gabor filters and their frame properties.
Once MRA-based wavelet bi-frames are constructed via the MEP, the 𝐾-level decomposition and recon-
struction of discrete signals can be implemented by a filter bank based algorithm. The convolution of two
sequences 𝑓1, 𝑓2 ∈ ℓ2(Z), denoted by 𝑓1 ⊗ 𝑓2, is defined pointwise by

(𝑓1 ⊗ 𝑓2)(𝑚) =

+∞∑︁
𝑛=−∞

𝑓1(𝑛)𝑓2(𝑚− 𝑛), 𝑚 ∈ Z.

Let ↓𝑝 denote the down-sampling operator defined by

(𝑓↓𝑝)(𝑚) = 𝑓(𝑝𝑚), 𝑚 ∈ Z,

and let ↑𝑝 denote the up-sampling operator defined by

(𝑓 ↑𝑝)(𝑚) = 𝑓(𝑚/𝑝) if 𝑚/𝑝 ∈ Z, and 0 otherwise.

Then, for any signal 𝑓 ∈ ℓ2(Z), the 𝐾-level wavelet decomposition can be recursively computed as follows:
𝑐0,0 = 𝑓 , and for 𝑘 = 1, . . .𝐾,

(28)

⎧⎨⎩ 𝑐0,𝑘 =
(︁√

𝑝 · 𝑎0(−·) ⊗ 𝑐0,𝑘−1

)︁
↓𝑝,

𝑐ℓ,𝑘 =
(︁√

𝑝 · 𝑎ℓ(−·) ⊗ 𝑐0,𝑘−1

)︁
↓𝑝, ℓ = 1, ..., 1/𝑏− 1.

The reconstruction of 𝑓 from the coarsest-level low-pass coefficients {𝑐0,𝐾} and 𝐾-level high-pass wavelet
coefficients {𝑐ℓ,𝑘}1≤𝑘≤𝐾,1≤ℓ<1/𝑏 is also done in the same recursive manner: for 𝑘 = 𝐾,𝐾 − 1, ..., 1,

(29) 𝑐0,𝑘−1 =
√
𝑝

1
𝑏−1∑︁
ℓ=0

̃︀𝑎ℓ ⊗ (𝑐ℓ,𝑘 ↑𝑝),

and we have 𝑓 = 𝑐0,0.
From the cascade algorithm above, it can be seen that such a 𝐾-level wavelet decomposition expands

the signal over a frame for ℓ2(Z) defined by

(30)
{︀
{𝜑𝐾(· − 𝑝𝐾𝑗)}𝑗∈Z, {𝜓1,𝑘(· − 𝑝𝑘𝑗)}1≤𝑘≤𝐾,𝑗∈Z, . . . , {𝜓1/𝑏−1,𝑘(· − 𝑝𝑘𝑗)}1≤𝑘≤𝐾,𝑗∈Z

}︀
,

where 𝜑𝐾 , 𝜓ℓ,𝑘 are the sequences defined by

̂︁𝜑𝐾(𝜔) =
√
𝑝

𝐾−1∏︁
𝑗=0

̂︀𝑎0(𝑝𝑗𝜔), and ̂︂𝜓ℓ,𝑘 =
√
𝑝̂︀𝑎ℓ(𝑝𝑘−1𝜔)

𝑘−1∏︁
𝑗=0

̂︀𝑎0(𝑝𝑗𝜔),

for ℓ = 1, . . . , 1/𝑏− 1, 𝑘 = 1, . . . ,𝐾. The reconstruction is done over its dual frame defined by

(31)
{︀
{̃︀𝜑𝐾(· − 𝑝𝐾𝑗)}𝑗∈Z, { ̃︀𝜓1,𝑘(· − 𝑝𝑘𝑗)}1≤𝑘≤𝐾,𝑗∈Z, . . . , { ̃︀𝜓1/𝑏−1,𝑘(· − 𝑝𝑘𝑗)}1≤𝑘≤𝐾,𝑗∈Z

}︀
,

where ̃︀𝜑𝐾 , ̃︀𝜓ℓ,𝑘 are the sequences defined by

̂︁̃︀𝜑𝐾(𝜔) =
√
𝑝

𝐾−1∏︁
𝑗=0

̂︀̃︀𝑎0(𝑝𝑗𝜔), and ̂︂̃︀𝜓ℓ,𝑘 =
√
𝑝 ̂︀̃︀𝑎ℓ(𝑝𝑘−1𝜔)

𝑘−1∏︁
𝑗=0

̂︀̃︀𝑎0(𝑝𝑗𝜔),
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for ℓ = 1, . . . , 1/𝑏− 1, 𝑘 = 1, . . . ,𝐾.
From (28) and (29), the analysis operator 𝑊 : ℓ2(Z) → ℓ2(Z) of the discrete wavelet frame used in the

𝐾-level decomposition above can be written as a block matrix

𝑊 =
(︁
𝐻𝐾

0 , 𝐻1𝐻
𝐾−1
0 , . . . ;𝐻 1

𝑏−1𝐻
𝐾−1
0 , . . . ;𝐻1, . . . ,𝐻 1

𝑏−1

)︁⊤
,

and the synthesis operator ̃︁𝑊 * : ℓ2(Z) → ℓ2(Z) of its dual frame can also be written as a block matrix

̃︁𝑊 * =
(︁ ̃︀𝐻*𝐾

0 , ̃︀𝐻*𝐾−1
0

̃︀𝐻*
1 , . . . ,

̃︀𝐻*𝐾−1
0

̃︀𝐻*
1
𝑏−1, . . . ,

̃︀𝐻*
1 , . . . ,

̃︀𝐻*
1
𝑏−1

)︁
.

Herein, 𝐻ℓ and ̃︀𝐻*
ℓ (0 ≤ ℓ ≤ 1

𝑏 − 1) are defined from the two sets of masks {𝑎ℓ}
1
𝑏−1

ℓ=0 and {̃︀𝑎ℓ} 1
𝑏−1

ℓ=0 as
follows,

(32) 𝐻ℓ𝑓 =
(︁√

𝑝 · 𝑎ℓ(−·) ⊗ 𝑓
)︁
↓𝑝, ℓ = 0, . . . , 𝑏−1 − 1,

and

(33) ̃︀𝐻*
ℓ 𝑓 =

√
𝑝 ̃︀𝑎ℓ ⊗ (𝑓 ↑𝑝), ℓ = 0, . . . , 𝑏−1 − 1,

for any 𝑓 ∈ ℓ2(Z). When 𝐾 = 1, the analysis operator and synthesis operator of the underlying dual frames
have the following form:

(34) 𝑊 =
(︁
𝐻0, 𝐻1, . . . ,𝐻 1

𝑏−1

)︁⊤
, and ̃︁𝑊 * =

(︁ ̃︀𝐻*
0 , ̃︀𝐻*

1 , . . . , ̃︀𝐻*
1
𝑏−1

)︁
.

The frame defined by (30) with the masks {𝑎ℓ}
1
𝑏−1

ℓ=0 of the form (16) indeed can be viewed as a discrete
Gabor induced frame for ℓ2(Z) with 𝐾-level multi-scale structure. When 𝐾 = 1, the frame defined by (30)
is exactly a Gabor induced frames for ℓ2(Z). Discrete wavelet bi-frames for R𝑁 can be obtained via the
same process where the convolution is done by periodic boundary extension.

MRA-based wavelet bi-frames for ℓ2(Z) or R𝑁 have the same efficient cascade algorithm for signal
decomposition and signal reconstruction. One main difference between bi-frames and tight frame lies in
the frame bound ratio, i.e., the ratio between upper frame bound and lower frame bound. As the upper and
lower frame bounds are the supremum and infimum of the eigenvalues of the corresponding frame operator,
the frame bound ratio can be viewed as the condition number of the frame operator, which measures the
numerical stability when being used in applications. Tight frames have the lowest frame bound ratio 1.
See Table 1 for the numerically computed frame bounds of sample wavelet frames and their dual frames in
Example 5–7 for finite dimensional Euclidean space R1024. It can be seen that the frame bound ratios are all
less than 2.5, and the frame bound ratios are nearly the same for multi-level frames and single-level wavelet
frames with the same filter banks. Before ending the section, we give a theoretical estimation of frame bound
ratios of single-level wavelet frames constructed in this paper for C𝑁 . For simplicity, the dilation factor 𝑝 is
assumed to be a factor of the dimensionality 𝑁 .

For a matrix 𝑄 ∈ C𝑀1×𝑁1 , let 𝜎(𝑄) =
√︀
𝜆(𝑄*𝑄) denote the set of singular values of 𝑄, where

𝜆(𝑄*𝑄) denotes the set of eigenvalues of 𝑄*𝑄. Then ‖𝑄‖2 = 𝜎max(𝑄) =
√︀
𝜆max(𝑄*𝑄) and ‖𝑄‖2 ≤√︀

‖𝑄‖1‖𝑄‖∞.

THEOREM 9 (frame bound ratio). Consider single-level discrete wavelet frame𝑋 for C𝑁 derived from

the filter bank {𝑎ℓ}1/𝑏−1
ℓ=0 given by (16). Define 𝑑𝑗 =

(︁∑︀
𝑛∈Ω𝑗

|√𝑝𝑔(𝑛)|2
)︁1/2

√
𝑏

for 𝑗 = 0, . . . , 𝑝− 1, and define
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TABLE 1
frame bounds of sample discrete wavelet bi-frames constructed in Section 3 for R1024

lowpass [1, 2, 1]/4 [1, 8, 23, 32, 23, 8, 1]/96 [1, 4, 6, 4, 1]/16 [1, 3, 3, 1]/8

original
level 1 1.1250/0.7500 1.6833/0.9919 1.3691/0.9453 1.3333/0.8000
level 2 1.1250/0.7500 1.6871/0.9890 1.3697/0.9290 1.3659/0.7224
level 3 1.1250/0.7500 1.6871/0.9881 1.3703/0.9234 1.3659/0.6981

dual
level 1 1.3333/0.8889 1.5067/0.8719 1.4604/0.7920 1.3333/0.8000
level 2 1.3333/0.8889 1.6604/0.8707 1.5717/0.7903 1.4689/0.8048
level 3 1.3333/0.8889 1.7099/0.8707 1.6194/0.7899 1.5172/0.8048

𝜇ℓ =
|
∑︀

𝑚 𝑔ℓ(𝑚)|∑︀
𝑚 𝑔0(𝑚) if

∑︀
𝑚 𝑔ℓ(𝑚) ̸= 0, and 0 otherwise, for ℓ = 1, . . . , 1/𝑏 − 1. Then, the frame bound ratio

of 𝑋 is bounded above by

(
max 𝑑𝑗
min 𝑑𝑗

)2 (𝜇sum + 1)
2

(𝜇max + 1)
2
,

where 𝜇max = maxℓ≥1 |𝜇ℓ|, 𝜇sum =
∑︀

ℓ≥1 |𝜇ℓ|.

Proof. Let 𝐺 ∈ C
𝑁
𝑝𝑏×𝑁 denote the analysis operator of the discrete single-level wavelet frame 𝑋

derived from a Gabor filter bank {𝑔ℓ}
1
𝑏−1

ℓ=1 . By (34), the operator 𝐺 is a block matrix

𝐺 =
(︁
𝐻0, 𝐻1, . . . ,𝐻 1

𝑏−1

)︁⊤
,

where 𝐻ℓ ∈ C
𝑁
𝑝 ×𝑁 denotes the matrix form of (32) with periodic boundary extension, for 0 ≤ ℓ ≤ 1/𝑏−1.

For a Gabor filter bank whose window sequence 𝑔 satisfying (18), we can split its corresponding analysis
operator 𝐺 into 𝐺 = 𝐺𝐷, where 𝐷 ∈ C𝑁×𝑁 is a diagonal matrix with diagonal elements

(𝑑0, 𝑑1, · · · 𝑑𝑝−1, 𝑑0, · · · 𝑑𝑝−1, · · · , 𝑑0, · · · 𝑑𝑝−1) ∈ C𝑁 ,

with 𝑑𝑗 =

(︁∑︀
𝑛∈Ω𝑗

|√𝑝𝑔(𝑛)|2
)︁1/2

√
𝑏

. Then, 𝐺 ∈ C
𝑁
𝑝𝑏×𝑁 is the analysis operator of the single-level wavelet

frame defined from Gabor filter bank {̃︀𝑔ℓ(𝑚) = ̃︀𝑔(𝑚)𝑒−2𝜋𝑖ℓ𝑏𝑚,𝑚 = 0, . . . , 1𝑏 − 1}1/𝑏−1
ℓ=0 with window

function ̃︀𝑔 = (
√
𝑝𝑔(0)

𝑑0
,
√
𝑝𝑔(1)

𝑑1
, · · · ). It can be seen that ̃︀𝑔 satisfies∑︁

𝑛∈Ω𝑗

|̃︀𝑔(𝑛)|2 = 𝑏

for all 𝑗 ∈ Z/𝑝Z, where Ω𝑗 = (𝑝Z + 𝑗) ∩ supp(̃︀𝑔). By Corollary 2 in [23], 𝐺 is the analysis operator of a
discrete Gabor tight frame, and thus 𝐺

*
𝐺 = 𝐼 ∈ C𝑁×𝑁 .

As shown in [23], the analysis operator 𝑊 for the filter bank given by (16) can also be split into 𝑊 =
𝐶𝐺, where

𝐶 =

⎛⎜⎜⎜⎝
𝐼𝑁

𝑝

−𝜇1𝐼𝑁
𝑝

𝑒−𝑖𝜃1𝐼𝑁
𝑝

· · ·
−𝜇 1

𝑏−1𝐼𝑁
𝑝

𝑒
−𝑖𝜃 1

𝑏
−1𝐼𝑁

𝑝

⎞⎟⎟⎟⎠ ∈ C
𝑁
𝑝𝑏×

𝑁
𝑝𝑏 ,
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and 𝐼𝑁
𝑝

denotes the 𝑁
𝑝 × 𝑁

𝑝 identity matrix. Therefore, the analysis operator 𝑊 can be written as

𝑊 = 𝐶𝐺 = 𝐶𝐺𝐷.

Recall that the frame operator 𝑆 is defined by 𝑆 = 𝑊 *𝑊 . Then, the optimal frame bounds 𝛼, 𝛽 are given
by

𝛼 = ‖𝑆−1‖−1
2 , 𝛽 = ‖𝑆‖2.

Therefore, we have the upper frame bound:

‖𝑆‖2 = ‖𝑊‖22 ≤ ‖𝐶‖22‖𝐺‖22‖𝐷‖22.

By the fact that 𝐺
*
𝐺 = 𝐼 ,

‖𝑆‖2 ≤ ‖𝐶‖1‖𝐶‖∞‖𝐷‖22 = (𝜇sum + 1) (𝜇max + 1) 𝑑2max

where 𝜇max = maxℓ≥1 |𝜇ℓ|, 𝜇sum =
∑︀

ℓ≥1 |𝜇ℓ| and 𝑑max = max𝑗=0,...,𝑝−1 𝑑𝑗 .
For the lower frame bound, define the Hermitian matrices

𝑄 = 𝐺
*
𝐶*𝐶𝐺.

Then 𝑆 = 𝑊 *𝑊 = 𝐷𝑄𝐷 and 𝑆−1 = 𝐷−1𝑄−1𝐷−1. Therefore,

‖𝑆−1‖2 ≤ ‖𝐷−1‖22‖𝑄−1‖2 =
1

𝜆min(𝑄)
‖𝐷−1‖22.

Note that 𝐺
*
𝐺 = 𝐼 . We may extend 𝐺 to a unitary matrix 𝑈 = (𝐺,𝑉 ) satisfying 𝑈*𝑈 = 𝑈𝑈* = 𝐼 . Then

𝑈*𝐶*𝐶𝑈 =

(︂
𝑄 𝐺

*
𝐶*𝐶𝑉

𝑉 *𝐶*𝐶𝐺 𝑉 *𝐶*𝐶𝑉

)︂
.

It can be observed that𝑄 is a principal submatrix of 𝑈*𝐶*𝐶𝑈 . By the Cauchy interlace theorem of principal
submatrices for hermitian matrices,

𝜆min(𝑄) ≥ 𝜆min(𝑈*𝐶*𝐶𝑈) = 𝜆min(𝐶*𝐶) =
1

‖(𝐶*𝐶)−1‖2
.

The matrix 𝐶 is a sparse matrix with a sparse inverse:

𝐶−1 =

⎛⎜⎜⎜⎜⎝
𝐼𝑁

𝑝
0 . . . 0

𝑒𝑖𝜃1𝜇1𝐼𝑁
𝑎

𝑒𝑖𝜃1𝐼𝑁
𝑝

...
. . .

𝑒
𝑖𝜃 1

𝑏
−1𝜇 1

𝑏−1𝐼𝑁
𝑝

𝑒
𝑖𝜃 1

𝑏
−1𝐼𝑁

𝑝

⎞⎟⎟⎟⎟⎠ .

Then

1

‖𝑆−1‖2
≥ 𝜆min(𝑄)

‖𝐷−1‖22
≥ 1

‖𝐷−1‖22‖(𝐶*𝐶)−1‖2
≥ 1

‖𝐷−1‖22
1

‖𝐶−1‖1‖𝐶−1‖∞
≥ 𝑑2min

(1 + 𝜇sum)(1 + 𝜇max)
,

where 𝑑min = min𝑗=0,...,𝑝−1 𝑑𝑗 . This gives the lower frame bound. Therefore, the frame bound ratio is
bounded above by

𝑑2max

𝑑2min

(𝜇sum + 1)
2

(𝜇max + 1)
2
.
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It is noted that the upper bound of frame bound ratio given in Theorem 9 is independent of the dimension of
the space. In particular, when the window sequence 𝑔 is a constant sequence 1

𝑀 (1, ..., 1), all the high pass
Gabor filters have zero DC offset. If 𝑝 is a factor of 𝑀 , then by Theorem 9, the frame bound ratio is 1. In
other words, the corresponding wavelet bi-frames forms a tight frame for 𝐿2(R), as shown in [24].

5. Experiments on image deconvolution. In this section, the MRA-based wavelet bi-frames con-
structed in Section 3 are tested in sparsity-based regularization for one representative inverse problem, im-
age deconvolution. The wavelet bi-frames used in the experiments are defined by considering the following
window sequence:

𝑔 =
1

27
[1, 7, 21, 35, 35, 21, 7, 1],

which is the refinement mask of 6-th order B-spline function. Following the construction scheme stated in
Theorem 3, we consider two-level dyadic discrete wavelet bi-frames with size 𝑀 = 8. Then, the wavelet
bi-frames for image space are generated by the tensor products of one dimensional discrete un-decimated
wavelet bi-frames.

By concatenating the 2D image as a vector in R𝑁 , most image recovery problems are about solving a
linear inverse problem:

(35) 𝑓 = 𝐻𝑢+ 𝑛,

where 𝑓 denotes available observation, 𝑢 denotes true image, and 𝑛 denotes noise. For image deconvolution,
𝐻 is a circulant matrix generated from the blur kernel.

Let𝑊 and̃︁𝑊 denote the analysis operators for a pair of𝐾-level discrete wavelet bi-frames, and let𝑊 *,̃︁𝑊 * denote the corresponding synthesis operators. In the experiments, the so-called balanced sparsity-based
regularization ( [37]) is used for image recovery, which estimates 𝑢 by solving the following optimization
problem:

(36) min
𝛼

1

2
‖𝐻𝑊 *𝛼− 𝑓‖22 +

𝜅

2
‖(𝐼 −𝑊𝑊 *)𝛼‖22 + 𝜆‖𝛼‖1,

where 𝑊 denotes the analysis operator of a tight frame. For wavelet bi-frames with ̃︁𝑊 *𝑊 = 𝐼 , the
optimization (36) is then reformulated as

min
𝛼

1

2
‖𝐻̃︁𝑊 *𝛼− 𝑓‖22 +

𝜅

2
‖(𝐼 −𝑊̃︁𝑊 *)𝛼‖22 + 𝜆‖𝛼‖1.

The model can be effectively solved by the accelerated proximal gradient (APG) algorithm [37]. De-
note 𝐹1(𝛼) = 1

2‖𝐻̃︁𝑊 *𝛼 − 𝑓‖22 + 𝜅
2 ‖(𝐼 − 𝑊̃︁𝑊 *)𝛼‖22 and 𝐹2(𝛼) = 𝜆‖𝛼‖1. In the APG algorithm,

one needs to estimate the Lipschitz constant 𝐿 of ∇𝐹1, which is not an trivial task in this case. There-
fore, we consider to use the APG algorithm with a backtracking stepsize rule ( [1]). Denote 𝑄𝐿(𝛼, 𝑥) =
𝐹1(𝑥) + ⟨𝛼 − 𝑥,∇𝐹1(𝑥)⟩ + 𝐿

2 ‖𝛼 − 𝑥‖22 + 𝐹2(𝛼). And define 𝑝𝐿(𝑥) = 𝒯𝜆/𝐿(𝑥 − 1
𝐿∇𝐹1(𝑥)), where

𝒯𝛿(𝑥) = [𝑡𝛿(𝑥1), 𝑡𝛿(𝑥2), . . .]⊤ is the soft thresholding operator, with 𝑡𝛿(𝑥𝑖) = 𝑥𝑖

|𝑥𝑖| max{0, |𝑥𝑖| − 𝛿}. Then,
the algorithm is explicitly stated as follows.

ALGORITHM 10. Take 𝐿0 > 0, some 𝜂 > 1 and 𝛼0. Set 𝑥1 = 𝛼0, 𝑡1 = 1. For 𝑘 = 1, 2, ..., do the
following iteration to generate 𝛼𝑘

(1) Find the smallest nonnegative integer 𝑖𝑘 such that with ̃︀𝐿 = 𝜂𝑖𝑘𝐿𝑘−1

𝐹1(𝑝̃︀𝐿(𝑥𝑘)) + 𝐹2(𝑝̃︀𝐿(𝑥𝑘)) ≤ 𝑄̃︀𝐿(𝑝̃︀𝐿(𝑥𝑘), 𝑥𝑘).
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(1) Barbara (2) Bowl (3) Cameraman (4) Lena

FIG. 5. Four tested images

(2) Set 𝐿𝑘 = 𝜂𝑖𝑘𝐿𝑘−1.
(3) Set 𝛼𝑘 = 𝑝𝐿𝑘

(𝑥𝑘).

(4) Set 𝑡𝑘+1 =
1+

√
1+4𝑡2𝑘
2 .

(5) Set 𝑥𝑘+1 = 𝛼𝑘 + 𝑡𝑘−1
𝑡𝑘+1

(𝛼𝑘 − 𝛼𝑘−1).

In the experiments, we always take 𝐿0 = 1 and 𝜂 = 3/2. Let ̃︀𝛼 be the output of the above iterations, we set̃︀𝑢 = ̃︁𝑊 *̃︀𝛼 to be the solution to image deconvolution problem.
The experiments on image deconvolution are done as follows. The tested images are firstly convolved

with a blur kernel and then added with Gaussian white noise. The standard deviation of noise is 𝜎 = 3
and four types of blur kernel are tested: (1) disk kernel of radius 3 pixels, (2) linear motion blur kernel of
length 15 pixels and orientation 30∘, (3) Gaussian kernel of size 15 × 15 pixels and standard derivation 2,
and (4) averaging kernel of size 9× 9 pixels. The parameters are uniformly set for all images: 𝜆 = 0.14 and
𝜅 = 0.5. The performance of image recovery is measured in terms of the PSNR value given by

PSNR = −20 log10

‖𝑢− ̃︀𝑢‖
255𝑁

,

where 𝑁 denotes the total number of image pixels, 𝑢 and ̃︀𝑢 denote the true image and its estimation. The
higher the PSNR value, the better the quality of the estimation.

In the first experiment, the results obtained using the wavelet bi-frames proposed in this paper are
compared to that from several discrete systems widely used in image recovery. These systems include the
system related to difference operators in the total variation (TV) regularization (see e.g. [39]), linear spline
framelet [11], and dual-tree complex wavelet transform (DT-CWT) [35]. Both linear spline framelet and
DC-CWT are tight frames. See Table 2 for the summary of the PSNR values of the results generated by
different methods, and see Figure 6 for a visual illustration. It can be seen that in general, the bi-frames
constructed in this paper outperformed the other systems by a noticeable margin. Such a performance gain
is mostly from the strong orientation selectivity of Gabor filters and the multi-scale structures.

The second experiment is to compare the performance of three Gabor frames with multi-scale structures.
In additional to the proposed bi-frames, one is the hybrid discrete Gabor frame proposed in [23], which gains
multi-scale structures by considering the union of multiple discrete Gabor frames with varying window sizes.
The other is the MRA-based wavelet tight frame generated from digital Gabor filters with constant window
functions [24]. In the experiment, the hybrid discrete Gabor frame is generated from the cubic B-spline
functions using {𝑀 = 7, 𝑎 = 2, 𝑏 = 1

7} and {𝑀 = 15, 𝑎 = 4, 𝑏 = 1
15}, where 𝑀 denotes window size.

The MRA-based wavelet tight frame is generated by window sequence 1
8 [1, 1, 1, 1, 1, 1, 1, 1] and 𝑝 = 2.

See Table 3 for the summary of the PSNR values of the results obtained from these three Gabor systems,
and see Figure 6 for a visual illustration. It can be seen that the performance of the proposed bi-frames is
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TABLE 2
PSNR values of deblurred results for blurred images with noise level 𝜎 = 3

image kernel TV linear spline DT-CWT [35] proposed
framelet [11] bi-frames

Barbara512

disk 24.77 25.17 25.15 25.50
motion 24.64 24.97 25.00 25.46

Gaussian 24.13 24.14 24.19 24.24
average 23.99 24.03 24.07 24.21

Bowl256

disk 28.73 28.92 28.99 29.26
motion 28.88 29.08 29.15 29.62

Gaussian 27.96 27.82 28.32 28.36
average 28.73 28.84 28.94 29.24

Cameraman256

disk 26.31 26.83 26.22 27.11
motion 26.18 27.14 26.35 27.02

Gaussian 24.96 24.84 24.73 25.07
average 25.08 25.12 25.00 25.39

Lena512

disk 32.05 32.17 32.25 32.75
motion 30.86 30.49 31.21 31.57

Gaussian 31.34 31.26 31.59 31.88
average 30.10 29.96 30.21 30.36

slightly better than that of the Gabor-induced tights frames [24], and is comparable to the hybrid discrete
Gabor frames [23]. Such an observation is not surprising as these three systems are all Gabor systems
with multi-scale structures. The tight frames proposed in [24] are generated by digital Gabor filters with
constant windows functions. The non-smoothness of window function often leads to a small performance
loss in image recovery. The hybrid discrete Gabor frames [24] are not MRA-based, and thus do not have
fast cascade algorithm for signal decomposition and reconstruction as the proposed bi-frames do.

5.1. Conclusions. In this paper, we studied the problem of bi-frames that have both multi-scale struc-
tures and good joint time-frequency resolution. It is shown that there exist a class of digital Gabor filters
with fast decay in frequency domain that can generate MRA-based wavelet bi-frames. Together with fast
cascade implementation of decomposition/reconstruction, such MRA-based wavelet bi-frames generated by
digital Gabor filters can see their potentials in many applications.
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FIG. 6. Visual illustration of image deconvolution. (a) true image; (b) image blurred by motion kernel and added by noise with
noise level 𝜎 = 3; (c)-(h) deblurred results by different methods.
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