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Abstract

Sparse modeling/approximationof images plays an important role in image restoration.
Instead of using a fixed system to sparsely model any input image, a more promising
approach is using a system that is adaptive to the input image. A non-convex variational
model is proposed in [1] for constructing a tight frame that is optimized for the input
image, and an alternating scheme is used to solve the resulting non-convexoptimization
problem. Although it showed good empirical performance in image denoising, the
proposed alternating iteration lacks convergence analysis. This paper aims at providing
the convergence analysis of the method proposed in [1]. We first established the sub-
sequence convergence property of the iteration scheme proposed in [1], i.e., there exists
at least one convergent sub-sequence and any convergent sub-sequence converges to a
stationary point of the minimization problem. Moreover, weshowed that the original
method can be modified to have sequence convergence, i.e., the modified algorithm
generates a sequence that converges to a stationary point ofthe minimization problem.

Key words: tight frame, sparse approximation, non-convex optimization, convergence
analysis

1. Introduction

It is now well established that sparse modeling is a very powerful tool for many
image recovery tasks, which models an image as the linear combination of only a
small number of elements of some system. Such a system can be either a basis or an
over-complete system. When using the sparsity prior of images to regularize image
recovery, the performance largely depends on how effectiveimages of interest can be
sparsely approximated under the given system. Therefore, afundamental question in
sparsity-based image regularization is how to define a system such that the target im-
age has an optimal sparse approximation. Earlier work on sparse modeling focuses on
the design of orthonormal bases, such asdiscrete cosine transform[2], wavelets[3, 4].
Owing to their better performance in practice, over-complete systems have been more

∗Corresponding author
Email addresses:baochenglong@nus.edu.sg (Chenglong Bao),matjh@nus.edu.sg (Hui

Ji),matzuows@nus.edu.sg (Zuowei Shen)

Preprint submitted to Applied and Computational Harmonic Analysis July 5, 2014



recognized in sparsity-based image recovery methods. In particular, as a redundant ex-
tension of orthonormal bases, tight frames are now wide-spread in many applications
as they have the same efficient and simple decomposition and reconstruction schemes
as orthonormal bases. Many types of tight frames have been proposed for sparse im-
age modeling includingshift-invariant wavelets[5], framelets[6, 7], curvelets[8] and
many others. These tight frames are optimized for the signals with certain functional
properties, which do not always hold true for natural images. As a consequence, a
more effective approach to sparsely approximate images of interest is to construct tight
frames that are adaptive to the inputs.

In recent years, the concept of data-driven systems has beenexploited to construct
adaptive systems for sparsity-based modeling (see e.g. [1,9, 10, 11]). The basic idea
is to construct the system that is adaptive to the input so as to obtain a better sparse ap-
proximation than the predefined ones. Most sparsity-based dictionary learning methods
([9, 10, 11]) treat the input image as the collection of smallimage patches, and then
construct an over-complete dictionary for sparsely approximating these image patches.
Despite the impressive performance in various image restoration tasks, the minimiza-
tion problems proposed by these methods are very challenging to solve. As a result, the
numerical methods proposed in past for these models not onlylack rigorous analysis
on their convergence and stability, but also are very computational demanding.

Recently, Cai et al. [1] proposed a variational model to learn a tight frame sys-
tem that is adaptive to the input image in terms of sparse approximation. Differently
from the existing over-complete dictionary learning methods, the adaptive systems con-
structed in [1] are tight frames that haveperfect reconstruction property, a property
ensuring that any input can be perfectly reconstructed by its canonical coefficients in
a simple manner. The tight frame property of the system constructed in [1] not only
is attractive to many image processing tasks, but also leadsto very efficient construc-
tion scheme. Indeed, by considering a special class of tightframes, the construction
scheme proposed in [1] only requires solving anℓ0 norm related non-convex minimiza-
tion problem:

min
D∈Rm×m,C∈Rm×n

‖C −D⊤Y ‖2F + λ2
0‖C‖0, s.t. D⊤D = m−1Im, (1)

whereD contains framelet filters andC contains the canonical frame coefficients. An
alternating iteration is proposed in [1] for solving (1), which is very fast as both sub-
problems in each iteration have closed-form solutions. It is shown that, with com-
parable performance in image denoising, the proposed adaptive tight frame construc-
tion runs much faster than other generic dictionary learning methods (e.g. the K-SVD
method [10]). However, Cai et al. [1] did not provide any convergence analysis of the
proposed method.

As a sequel to [1], this paper provides the convergence analysis of the alternating
iterative method proposed in [1] for solving (1). In this paper, we showed that the al-
gorithm provided by [1] has sub-sequence convergence property. In other words, we
showed that there exists at least one convergent sub-sequence of the sequence gen-
erated by the algorithm [1] and any convergent sub-sequenceconverges a stationary
point of (1). Moreover, we empirically observed that the sequence generated by the
algorithm proposed in [1] itself is not convergent. Motivated by the theoretical interest,
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we modified the algorithm proposed in [1] by adding a proximalterm in the iteration
scheme, and then showed that the modified algorithm has sequence convergence. In
other words, the sequence generated by the modified method convergences to a sta-
tionary point of (1).

2. Brief review on data-driven tight frame construction and related works

In this section, we gave a brief review on tight frames, data-driven tight frames
proposed in [1] and some most related works. Interesting readers are referred to [12,
13] for more details.

2.1. Tight frames and data-driven tight frames

For a Hilbert spaceH, a sequence{xn} ⊂ H is a tight framefor H if

‖x‖2 =
∑

n

|〈x, xn〉|2, for anyx ∈ H,

or equivalently,x =
∑

n〈x, xn〉xn, x ∈ H. The sequence{〈x, xn〉} is called the
canonical frame coefficient sequence. A tight frame{xn} is an orthonormal basis for
H if and only if ‖xn‖ = 1 for all xn. A tight frame has two associated operators: the
analysis operatorW defined by

W : x ∈ H −→ {〈x, xn〉} ∈ ℓ2(N)

and its adjoint operatorW⊤ (often called thesynthesis operator):

W⊤ : {an} ∈ ℓ2(N) −→
∑

n

anxn ∈ H.

Then, the sequence{xn} ⊂ H is a tight frame if and only ifW⊤W = I, whereI
denotes the identity operator ofH. The tight frames considered in [1] are single-level
un-decimal discrete wavelet systems generated by all integer shifts of a set of filters
{a1,a2, · · · ,am}. For any filtera ∈ ℓ2(Z), let Sa : ℓ2(Z) → ℓ2(Z) denote its
associated convolution operator defined by

[Sa(v)](n) := [a ⋆ v](n) =
∑

k∈Z2

a(n− k)v(k), ∀v ∈ ℓ2(Z). (2)

Then, for a given set of framelet filters, we define its associated analysis operatorW
by

W = [S⊤
a1(−·),S⊤

a2(−·), · · · ,S⊤
am(−·)]

⊤. (3)

The rows ofW form a tight frame forℓ2(Z) if and only if W⊤W = I, and the
corresponding synthesis operator is the transpose ofW , denoted byW⊤.

The data-driven tight frame construction proposed in [1] constructs the set of framelet
filters{aj}mj=1 via solving the following problem:

min
v,{ai}m

i=1

‖v −W (a1,a2, · · · ,am)g‖2F + λ2
0‖v‖0, s.t. W⊤W = I. (4)

3



whereg denotes the input signal,{aj}mj=1 denotes the set of framelet filters of the
adaptive tight frame, andv denotes the canonical coefficient vector ofg. Here and
throughout this paper,‖v‖0 stands for the number of non-zero elements ofv and‖ · ‖F
denotes the Frobenius norm.

2.2. Data-driven tight frame construction scheme [1]

For general framelet filters, the minimization problem (4) is very challenging to
solve. Therefore, a special class of framelet filters are considered in [1], which is
composed bym2 2D real-valued framelet filters{aj}m

2

j=1 ⊂ R
m×m. LetD denote the

associated filter matrix defined by

A = [~a1, ~a2, . . . , ~am2 ],

where~aj denotes the vector form ofaj by concatenating all columns ofaj to a
column vector. It is shown in [1, Proposition 3] that the rowsof W defined by
{aj}m

2

j=1 ⊂ R
m×m form a tight frame forℓ2(Z), provided thatA⊤A = 1

mIm2 . Thus,
the minimization problem (4) for general tight frame construction is simplified to the
following one:

min
v,{ai}m2

i=1

‖v −W (A)g‖2F + λ2
0‖v‖0, s.t. A⊤A =

1

m
Im2 . (5)

The problem (5) can be re-formulated in terms of image patches as follows. Let
{~gℓ}Lℓ=1 ⊂ R

m2

denotes the set of all image patches of sizem × m densely sam-
pled from the imageg. For each patch vector~gℓ, let ~vn = A⊤~gℓ ∈ R

m2

denote the
vector generated by the inner product between~gn and allm2 framelet filters{~aj}m

2

j=1.
Define three matrices as follows,





Y := 1√
m
[~g1, ~g2, . . . , ~gL] ∈ R

m2×L;

D :=
√
mA =

√
m[~a1, ~a2, . . . , ~am2 ] ∈ R

m2×m2

;

C := [~v1, ~v2, . . . , ~vm2 ] ∈ R
m2×L.

(6)

Then, it is shown in [1] that the minimization (5) is equivalent to

min
D∈Rm2×m2 ,C∈Rm2×L

‖C −D⊤Y ‖2F + λ2‖C‖0, s.t. D⊤D = Im2×m2 , (7)

whereλ denotes some predefined regularization parameter.
The minimization model (7) is solved in [1] via an alternating scheme between

D andC. More specifically, given the current estimate(Dk, Ck), the next iteration
updates it via the following scheme:






Dk+1 ∈ argmin
D∈Rm2×m2

‖Ck −D⊤Y ‖2F , s.t. D⊤D = I;

Ck+1 ∈ argmin
C∈Rm2×L

‖C −D⊤
k+1Y ‖2F + λ2‖C‖0.

(8)
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Define thehard thresholding operatorTλ : Rm2×L → R
m2×L by

[Tλ(Y )]i,j =






Yi,j , if |Yi,j | > λ;

{0, λ}, if |Yi,j | = λ;

0, if |Yi,j | < λ.

(9)

It is shown in [1] that both sub-problems in (8) have closed-form solutions given by

Dk+1 := UkV
⊤
k ; Ck+1 ∈ Tλ(D

⊤
k+1Y ), (10)

whereUk andVk are given by the singular value decomposition (SVD) ofY C⊤
k such

thatY C⊤
k = UkΣkV

⊤
k . See Algorithm 1 for the summary of the alternating iteration

scheme [1].

Algorithm 1 Alternating iteration scheme [1] for solving (7).
1: INPUT: Input imageg;
2: OUTPUT: Adaptive filter setD;
3: Main Procedure:

i. Set initial filter matrixD0 and coefficient matrixC0.
ii. Construct the patch matrixY as (6).
iii. For k = 0, 1, · · · ,
1. compute the SVD ofY C⊤

k = UkΣkV
⊤
k ;

2. Dk+1 := UkV
⊤
k andCk+1 ∈ Tλ(D

⊤
k+1Y ).

2.3. Related works

The minimization (7) is anℓ0 norm related non-convex problem with quadratic
constraints. Algorithm 1 proposed in [1] for solving (7) alternatingly updates the filter
matrix D by the SVD and updates the coefficient matrixC by hard thresholding the
coefficients from the last estimate. Such an iterative hard thresholding on wavelet frame
coefficients approach has been used in solving various linear inverse problems in image
recovery, see e.g. the wavelet frame based image super-resolution methods [14, 15].

As a sparsity prompting functional, theℓ0 norm is also used in other sparse ap-
proximation based dictionary learning methods. The popular K-SVD method [10]
proposed the following minimization model for learning an over-complete dictionary
D = {D1, D2, . . . , Dm} ⊂ R

n with m > n:

min
D∈Rn×m,C∈Rm×p

1

2
‖Y −DC‖2F + λ‖C‖0, s.t. ‖Di‖2 = 1, i = 1, 2, . . . , n. (11)

An alternating iteration scheme betweenD andC is used in the K-SVD method for
solving (11). Different from the model (7) proposed in [1], theℓ0 norm related mini-
mization problem for updating the codeC is a challenging one. The greedy algorithm,
such as orthogonal matching pursuit, is used in [10] for estimating the code. Therefore,
the computational cost of the K-SVD method is much higher than Algorithm 1.

5



Both the K-SVD method and Algorithm 1 perform noticeably better in image de-
noising than other wavelet frame based methods. The advantage of Algorithm 1 over
the K-SVD method lies in its computational efficiency. Despite their impressive per-
formances in practice, both methods lack the convergence analysis. Indeed, it is em-
pirically observed that the sequences generated by both methods are not convergent. In
this paper, we first provided the convergence analysis for Algorithm 1 by showing that
the sequence generated by Algorithm 1 has sub-sequence convergence. Then we pro-
posed a modified version of Algorithm 1 for solving (7) and established the sequence
convergence of the new algorithm.

3. Sub-sequence convergence property of Algorithm 1

In this section, we will show that the sequence generated by Algorithm 1 has sub-
sequence convergence property, i.e., there exists at leaseone convergent subsequence
and every convergent subsequence converges to a stationarypoint of (7). Before es-
tablishing the main result, we first introduce the definitionof the stationary point of
non-convex and non-smooth functions.

Definition 3.1. Letf : Rn → R∪{+∞} be a proper lower semi-continuous function.

1 The domain off is defined bydomf := {x ∈ R
n : f(x) < +∞}.

2 For eachx ∈ domf , x is called the coordinate-wise minimum off if it satisfies

f(x+ (0, · · · , dk, · · · , 0)) ≤ f(x), ∀dk, 1 ≤ k ≤ n,

wherex = (x1, x2, · · · , xn).

3 The Fŕechet subdifferential∂F f is defined by

∂F f(x) = {z : lim inf
y→x

f(y)− f(x)− 〈z, x− y〉
‖x− y‖ ≥ 0} (12)

for anyx ∈ domf and∂F f(x) = ∅ if x 6∈ domf .

4 For eachx ∈ domf , x is called thestationary pointof f if it satisfies0 ∈
∂F f(x).

Remark. There are several definitions for stationary points of proper lower semi-
continuous functions. In [16], the stationary pointx is defined as

lim inf
λ↓0

f(x+ λy)− f(x)

λ
≥ 0, ∀ y ∈ Rn.

In [17], the stationary pointx of f is defined by0 ∈ ∂f(x), where∂f is the limiting
subdifferential given by

∂f(x) = {z : ∃xn → x, f(xn) → f(x), zn ∈ ∂F f(xn) → z}.

The definition of stationary points used in this paper is different from the definitions
used in [16] and [17]. Indeed, ours is stronger than the othertwo definitions.

6



To simplify notations, defineX = {D ∈ R
m2×m2

: D⊤D = Im2} and defineΩC =

R
m2×N , ΩD = R

m2×m2

, Ωz = (ΩC ,ΩD). Define

f(C) = λ2‖C‖0, Q(C,D) = ‖D⊤Y − C‖2F , g(D) = IX (D), (13)

whereIX (D) = 0, if D ∈ X and+∞ otherwise. Then, the minimization (7) can be
re-written as

min
C∈ΩC ,D∈ΩD

L(C,D) := f(C) +Q(C,D) + g(D). (14)

Before proving the sub-sequence convergence property of Algorithm 1, we first
establish some facts and results related to (14). Firstly, the functiong is a lower semi-
continuous function, asX is a compact set. Secondly, it can be seen that for any
Z = (C,D), the functionQ(Z) satisfies the following properties:




Q(C,D) = Q(C1, D) + 〈∇CQ(C1, D), C − C1〉+ o(‖C − C1‖F ), ∀C1 ∈ ΩC ;

Q(C,D) = Q(C,D1) + 〈∇DQ(C,D1), D −D1〉+ o(‖D −D1‖F ), ∀D1 ∈ ΩD;

Q(C,D) = Q(C1, D1) + 〈∇Q(C1, D1), Z − Z1〉+ o(‖Z − Z1‖F ), ∀Z1 ∈ ΩZ ,
(15)

whereo(‖x‖F ) is defined by lim
‖x‖F→0

o(‖x‖F )
‖x‖F

= 0.

Lemma 3.2. The sequenceZk := (Ck, Dk) generated by Algorithm 1 is a bounded
sequence. For any convergent sub-sequenceZk′ with limit pointZ∗ = (C∗, D∗), we
have

lim
k′→+∞

f(Ck′ ) = f(C∗), and lim
k′→+∞

L(Zk′) = L(Z∗).

Proof. By the definition of (10), we have

L(Zk) ≤ L(Ck, Dk−1) ≤ L(Ck−1, Dk−1) ≤ · · · ≤ L(Z0),

which implies

‖Ck‖F − ‖D⊤
k Y ‖F ≤ ‖D⊤

k Y − Ck‖F ≤
√
L(Z0), k = 1, 2, . . . . (16)

Together with (16) and the fact thatDk ∈ X , we haveZk is bounded. Next, by the
definition of (10), we also have

Q(Ck′ , Dk′) + f(Ck′) ≤ Q(C,Dk′ ) + f(C), ∀C ∈ ΩC . (17)

By substitutingC byC∗ and takingk′ → ∞ in (17), we havelim infk′→+∞ f(Ck′) ≤
f(C∗). Together with the fact thatf(C) = λ2‖C‖0 is lower semi-continuous and
Ck′ → C∗ ask′ → +∞, we have

lim inf
k′→+∞

f(Ck′) = f(C∗).

SinceDk′ ∈ X for all k′ andX is a compact subset,D∗ ∈ X andg(D∗) = g(Dk′) = 0
for all k′. It can be seen thatQ(Ck′ , Dk′) → Q(C∗, D∗) as k′ → +∞, asQ is
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a continuous function. In addition,L(Zk) is decreasing by (16) andL ≥ 0, which
implies thatL(Zk) is a convergent sequence. Consequently, we have

lim
k′→+∞

f(Ck′) = f(C∗),

sincef(C) = L(Z)−Q(Z)− g(D). Moreover, we have

lim
k′→+∞

L(Zk′) = lim
k′→+∞

f(Ck′ ) + lim
k′→+∞

Q(Ck′ , Dk′) + lim
k′→+∞

g(Dk′)

= f(C∗) +Q(C∗, D∗) + g(D∗).

Thus,limk′→+∞ L(Zk′) = L(Z∗).

Lemma 3.3. LetZk := (Ck, Dk) denote the sequence generated by Algorithm 1 and
let Ω∗ denote the set that contains all limit points ofZk. ThenΩ∗ is not empty and

L(C∗, D∗) = inf
k
L(Ck, Dk), ∀ (C∗, D∗) ∈ Ω∗.

Proof. By Lemma 3.2,Zk is a bounded sequence. Thus, the setΩ∗ is a non-empty set.
Moreover, the setΩ∗ is also a compact set asΩ∗ =

⋂
j∈N

⋃
k≥j

{Zk}. Notice thatL(Zk)

is a decreasing sequence andL(Z) ≥ 0. Then, there exists some constantρ such that
inf
k
L(Zk) = ρ. Take anyZ∗ ∈ Ω∗ and assumeZk′ → Z∗ ask′ → +∞. By lemma

3.2, we have that lim
k′→+∞

L(Zk′) = L(Z∗) = ρ.

At last, we show that the sequence generated by Algorithm 1 has sub-sequence
convergence property.

Theorem 3.4. The sequenceZk := (Ck, Dk) generated by Algorithm 1 has at least
one limit point, and any limit point of the sequenceZk is a stationary point of(14).

Proof. By Lemma 3.3, the sequenceZk := (Ck, Dk) generated by Algorithm 1 has at
least one limit point. For any limit pointZ1 = (C1, D1) of the sequenceZk, let {Zk′}
be the sub-sequence ofZk that converges toZ1. Without loss of generality, assume the
sub-sequence{Zk′+1} converges toZ2 = (C2, D2). By the definition of the second
step in (10), we have

Q(Ck′ , Dk′) + f(Ck′) ≤ Q(C,Dk′ ) + f(C), ∀C ∈ ΩC . (18)

Takingk′ → +∞ in (18), by Lemma 3.2, we have

g(D1) +Q(C1, D1) + f(C1) ≤ g(D1) +Q(C,D1) + f(C), ∀C ∈ ΩC , (19)

which implies
L(C1, D1) ≤ L(C1 + C,D1), ∀C ∈ ΩC . (20)

AsZk′+1 is defined fromZk′ by (10), we have
{
Q(Ck′ , Dk′+1) + g(Dk′+1) ≤ Q(Ck′ , D) + g(D), ∀D ∈ ΩD;

Q(Ck′+1, Dk′+1) + f(Ck′+1) ≤ Q(C,Dk′+1) + f(C), ∀C ∈ ΩC .
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The summation of the first inequality and the second inequality with C = Ck′ gives

g(Dk′+1) +Q(Ck′+1, Dk′+1) + f(Ck′+1) ≤ g(D) +Q(Ck′ , D) + f(Ck′). (21)

Takingk′ → +∞ in (21). By Lemma 3.2 and Lemma 3.3, we have

L(C1, D1) = L(C2, D2) ≤ L(C1, D1 +D). (22)

Thus, the combination of (20) and (22) shows that the point(C1, D1) is a coordinate-
wise minimum point of (14). Therefore, for anyδZ = (δC , δD), we have

lim inf
‖δZ‖→0

L(Z1 + δZ)− L(Z1)

‖δZ‖

= lim inf
‖δZ‖→0

Q(Z1 + δZ)−Q(Z1) + f(C1 + δC)− f(C1) + g(D1 + δD)− g(D1)

‖δZ‖

≥ lim inf
‖δZ‖→0

〈∇Q(Z1), δZ〉+ f(C1 + δC)− f(C1) + g(D1 + δD)− g(D1)

‖δZ‖

= lim inf
‖δZ‖→0

(
Q(C1 + δC , D

1)−Q(C1, D1)− o(‖δC‖) + f(C1 + δC)− f(C1)

‖δZ‖

+
Q(C1, D1 + δD)−Q(C1, D1)− o(‖δD‖) + g(D1 + δD)− g(D1)

‖δZ‖

)

≥ lim inf
‖δZ‖→0

−o(‖δC‖)− o(‖δD‖)
‖δZ‖

= 0,

where the first inequality is from (15) and the second inequality is from the fact that
Z1 := (C1, D1) is the coordinate-wise minimum point of (14). By Definition (3.1),
the pointZ1 is a stationary point of (14).

4. A modified algorithm for (7) with sequence convergence

In the previous section, we showed that the sequence generated by Algorithm 1 has
sub-sequence convergence property. The next question is whether the sequence itself
is convergent or not. The experiments show that it is not the case; see Fig.1 (a) for
the increments of the sequenceCk. The lack of sequence convergence is not crucial
to the applications in image recovery, as the result we are seeking for is not the frame
coefficient vector but the image synthesized from the coefficients. See Fig. 1 (b) for
an illustration. However, the divergence of the coefficientsequence could cause severe
stability issue when the coefficient set is the one needed, e.g. in the case of sparse
coding based recognition tasks. Motivated by both theoretical interest and the needs
from applications, we proposed a modified version of Algorithm (1) with sequence
convergence property, i.e., the sequence generated by the new algorithm converges to
a stationary point of (14).

The modification on Algorithm 1 for gaining sequence convergence is done by
adding a proximal term in each iteration, a technique which has been used in other
alternating iterative methods to ensure the convergence. For example, the proximal
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method proposed in [17] for solving a class of non-convex andnon-smooth functions.
The modified version of Algorithm 1 updates the estimates ofC andD via solving the
following problems:






Dk+1 ∈ argmin
D

L(Ck, D) + λk‖D −Dk‖2F ;

Ck+1 ∈ argmin
C

L(C,Dk+1) + µk‖C − Ck‖2F ,
(23)

whereλk, µk ∈ (a, b) anda, b > 0. It can seen that the new iteration (23) adds two
additional proximal terms,λk‖D−Dk‖2F andµk‖C −Ck‖2F , to the original iteration
(8). Same as (8), both minimization problems in (23) also have closed-form solutions.

Proposition 4.1. The solution of(23) is given by

{
Dk+1 = UkV

⊤
k ,

Ck+1 ∈ Tλ/
√
µk+1(

D⊤

k+1Y+µkCk

1+µk
),

(24)

whereUk, Vk are given by the SVD ofY C⊤
k + λkDk = UkΣkV

⊤
k .

Proof. The proof is exactly the same as that of (10) provided in [1].

See Algorithm 2 for the summary of the modified algorithm for solving (14).

Algorithm 2 Proximal alternating iteration scheme for solving (7).
1: INPUT: Input imageg;
2: OUTPUT: Adaptive filter setD;
3: Main Procedure:

i. Set initial filter matrixD0 and coefficient matrixC0.
ii. Construct the patch matrixY as (6).
iii. For k = 0, 1, · · · ,

1. compute the SVD ofY C⊤
k + λkDk = UkΣkV

⊤
k ;

2. Dk+1 = UkV
⊤
k andCk+1 ∈ Tλ/

√
µk+1(

D⊤

k+1Y +µkCk

1+µk
).

4.1. Convergence analysis of Algorithm 2

In this section, we first establish the sub-convergence property of Algorithm 2.
Then we establish the sequence convergence of the algorithmby showing that the se-
quence is a Cauchy sequence and converges to a stationary point of (14). The main
proof is built on the results presented in [17] about the convergence analysis of proxi-
mal methods for solving a class of non-smooth and non-convexproblems.

Theorem 4.2. Let Zk := (Ck, Dk) denote the sequence generated by Algorithm 2.
Then,Zk has at least one convergent subsequence and every convergent subsequence
ofZk converges to a stationary point of(14).
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Proof. By the definition of (23), we have
{
L(Ck, Dk+1) + λk‖Dk+1 −Dk‖2F ≤ L(Ck, Dk),

L(Ck+1, Dk+1) + µk‖Ck+1 − Ck‖2F ≤ L(Ck, Dk+1).

Sum up both inequalities and by the fact thata ≤ µk, λk ≤ b, we have

L(Zk)− L(Zk+1) ≥ a‖Zk − Zk+1‖2F ≥ 0. (25)

By the same argument for (16), we haveZk is bounded and has at least one limit point.
By (25), we obtain

L(Z0)− L(Zk+1) ≥
k∑

j=0

a‖Zj − Zj+1‖2F . (26)

Let k → +∞ in (26). Together with the facts thatL(Zk) ≥ 0 andL(Zk) is a decreas-
ing sequence, we have

+∞∑

k=1

‖Zk − Zk+1‖2F < +∞,

which implies that
lim

k→+∞
‖Zk − Zk+1‖F = 0. (27)

Let Z1 := (C1, D1) denote any limit point ofZk, i.e., there exists a sub-sequence
Zk′ converges toZ1. In the next, we prove that the sub-sequenceZk′+1 also converges
to Z1. For anyǫ > 0, there existsN0 such that‖Zk′ − Z1‖F < ǫ/2 and‖Zk′ −
Zk′+1‖F < ǫ/2 for all k′ > N0. The first inequality is from the fact thatZk′ converges
toZ1 and the second one is from (27). Thus, for allk′ > N0,

‖Zk′+1 − Z1‖F ≤ ‖Zk′ − Zk′+1‖F + ‖Zk′ − Z1‖F < ǫ. (28)

Consequently, we haveZk′+1 → Z1 ask′ → +∞.
By the definition of (23), we have that, for anyC ∈ ΩC ,

L(Ck′+1, Dk′+1) + a‖Ck′+1 − Ck′‖2F ≤ L(C,Dk′+1) + b‖C − Ck′‖2F .

Similar to the derivation of (17), by settingC = C1 and takingk′ → +∞ in the
inequality above, we havelim inf

k′→+∞
f(Ck′+1) ≤ f(C1). Asf is a lower semi-continuous

function, we have
lim inf
k′→+∞

f(Ck′+1) = f(C1).

By the same arguments in the proof of Lemma 3.2, we havelim
k′→+∞

f(Ck′+1) =

f(C1). Again, by using the same arguments forlim
k′→+∞

f(Ck′+1), we also have

lim
k′→+∞

f(Ck′ ) = f(C1). Notice thatDk ∈ X , k = 1, 2, . . . , andX is a compact

set. Thus,g(Dk′) = g(Dk′+1) = g(D1) = 0 andQ is continuous, which leads to

lim
k′→+∞

L(Zk′) = lim
k′→+∞

L(Zk′+1) = L(C1, D1). (29)
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By the definition ofCk in (23), we have

L(Ck′+1, Dk′+1) + a‖Ck′+1 − Ck′‖2F ≤ L(C,Dk′+1) + b‖C − Ck′‖2F , ∀C ∈ ΩC .

Takingk′ → +∞ in the inequality above, together with (29) and (27), we have

L(C1, D1) ≤ L(C1 + C,D1) + b‖C‖2F , ∀C ∈ ΩC . (30)

Again, by the definition of (23), we have
{
L(Ck′ , Dk′+1) + λk′‖Dk′+1 −Dk′‖2F ≤ L(Ck′ , D) + λk′‖D −Dk′‖2F ;
L(Ck′+1, Dk′+1) + µk′‖Ck′+1 − Ck′‖2F ≤ L(C,Dk′+1) + µk′‖C − Ck′‖2F .

(31)
Recall thatλk′ , µk′ ∈ (a, b). Then,

L(Zk′+1) + a‖Zk′+1 − Zk′‖2F ≤ L(Ck′ , D) + b‖D −Dk′‖2F , ∀D ∈ ΩD.

Takingk′ → +∞ in the above, together with (29) and (27), we have

L(C1, D1) ≤ L(C1, D1 +D) + b‖D‖2F , ∀D ∈ ΩD.

Consequently, for anyd = (δC , δD) ∈ (ΩC ,ΩD), we have

lim inf
‖d‖→0

L(Z1 + d)− L(Z1)

‖d‖

= lim inf
‖d‖→0

Q(Z1 + d)−Q(Z1) + f(C1 + δC)− f(C1) + g(D1 + δD)− g(D1)

‖d‖

≥ lim inf
‖d‖→0

〈∇Q(Z1),d〉+ f(C1 + δC)− f(C1) + g(D1 + δD)− g(D1)

‖d‖

= lim inf
‖d‖→0

(
Q(C1 + δC , D

1)−Q(C1, D1)− o(‖δC‖) + f(C1 + δC)− f(C1)

‖d‖

+
Q(C1, D1 + δD)−Q(C1, D1)− o(‖δD‖) + g(D1 + δD)− g(D1)

‖d‖

)

≥ lim inf
‖d‖→0

−o(‖δC‖)− o(‖δD‖)− b(‖δC‖2F + ‖δD‖2F )
‖d‖ = 0.

By Definition 3.1, we haveZ1 is a stationary point of (14).

In the next, we will establish the convergence of the sequence Zk = (Ck, Dk)
generated by (23) by showing that it satisfies the so-calledfinite length property, i.e.,

+∞∑

k=1

‖Zk+1 − Zk‖F < +∞.

Clearly, a sequence with finite length property is a Cauchy sequence. Together with
Theorem 4.2, we have the sequenceZk converging to a stationary point of (14). The
proof is based on the convergence analysis developed in a series of papers ( [18, 17,
19]), which studied the convergence of the iteration scheme(23) for solving (14) with
respect to a class of objective functions.

12



Theorem 4.3. [17, Theorem 9] The sequenceZk = (Ck, Dk) generated by the iter-
ation (23)hasfinite length propertyif the following conditions hold:

1. L(C,D) is a K-L function;

2. Zk, k = 1, 2, . . . is a bounded sequence and there exists some positive constants
a, b such thatλk, µk ∈ (a, b), k = 1, 2, . . .;

3. ∇Q(C,D) has Lipschitz constant on any bounded set.

In Theorem 4.3, there are three conditions to ensure that thesequence satisfies the finite
length property. The first condition requires that the objective functionL satisfies the
so-calledKurdyka-Lojasiewicz (K-L)property in its effective domain; see [19, Defini-
tion 3] for more details on K-L property. Given a function, itis often not easy to check
whether it satisfies the K-L property. Nevertheless, it is shown in [18, Remark 5] and
[18, Theorem 11] that any so-calledsemi-algebraicfunction satisfies the K-L property.

Definition 4.4. [19] A subsetS of Rn is called a semi-algebraic set if there exists a
finite number of real polynomial functionsgij , hij such that

S =
⋃

j

⋂

i

{u ∈ R
n : gij(u) = 0, hij(u) < 0}.

A functionf(u) is called a semi-algebraic function if its graph{(u, t) ∈ R
n × R, t =

f(u)} is a semi-algebraic set.

Theorem 4.5. LetZk = (Ck, Dk) denote the sequence generated by(23). Then, the
sequenceZk has the finite length property and thus is a Cauchy sequence.

Proof. The proof is done by showing that Theorem 4.3 is applicable tothe objective
function (14) and the sequenceZk generated by (23). Thus, we only need to verify all
three conditions in Theorem 4.3.

The first condition in Theorem 4.3 is verified by showing that all three terms
in the objective functionL given by (14) are semi-algebraic functions. The second
termQ(C,D) = 1

2‖D⊤Y − C‖2F is clearly a semi-algebraic function as it is a real

polynomial. Next, it can be seen that the setX = {D ∈ R
m2×m2

: D⊤D =

I} =
m⋂
j=1

m⋂
k=1

{D :
∑m

i=1 dkidji = δj,k} is a semi-algebraic set. Thus, the last term

g(D) = IX (D) is also a semi-algebraic function, as it is shown in [20] thatindicator
functions of semi-algebraic sets are semi-algebraic functions. Regarding the first term

f(C) = λ2‖C‖0. The graph ofF = ‖C‖0 is S =
m2L⋃
k=0

Lk , {(C, k) : ‖C‖0 = k}.

For eachk = 0, · · · ,m2L, let Sk = {J : J ⊆ {1, · · · ,m2L}, |J | = k}, then
Lk =

⋃
J∈Sk

{(C, k) : CJc = 0, CJ 6= 0.}. It can be seen that the set{(C, k) : CJc =

0, CJ 6= 0} is a semi-algebraic set inRm2×L × R. Thus,F (C) = ‖C‖0 is a semi-
algebraic function, as the finite union of the semi-algebraic set is still semi-algebraic.
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Regarding the second condition in theorem 4.3, the boundedness of the sequence
Zk = (Ck, Dk) is ensured by Theorem 4.2. Moreover, by the definition of (23), there
exist two positive constantsa, b > 0 such thatλk, µk ∈ (a, b) for k = 1, 2, . . ..

For the last condition in theorem 4.3, notice that the functionQ(C,D) = 1
2‖C −

D⊤Y ‖2F is a smooth function. Thus, for any bounded setM, there exists a constant
M > 0 such that

‖∇Q(C1, D1)−∇Q(C2, D2)‖ ≤ M‖(C1, D1)− (C2, D2)‖

for any(C1, D1) ∈ M and(C2, D2) ∈ M.

In summary, we have the following result regarding the convergence of Algorithm 2.

Corollary 4.6. The sequenceZk := (Ck, Dk) generated by Algorithm 2 converges to
a stationary point of(14).

5. Experiments on image denoising

There are two main parts in this paper: one is the convergenceanalysis of the
method proposed in [1] and the other is the modifications of the original algorithm for
gaining stronger convergence property. The later is more oftheoretical interest and
for potential benefit to other applications. Thus, the experimental evaluation done in
this paper for image denoising is not as comprehensive as [1]. The data-driven tight
frame based image denoising is done as follows. Letf = g + ǫ(σ) denote some
noisy observation ofg, whereǫ(σ) is the additive i.i.d. Gaussian noise with zero mean
and standard deviationσ. Takingf as the input and using8 × 8 DCT as the initial
guess, the filters of data-drive tight frame{a1,a2, · · · ,a64} are constructed using
Algorithm 1 (or Algorithm 2). Then the denoised result, denoted by g̃, is obtained
via hard thresholding:

g̃ = W⊤(Tλ̃(W f)),

whereW denotes the analysis operator determined by{aj}64j=1 andλ̃ is thresholding

parameter determined by noise level. Throughout all experiments, the parameter̃λ
is fixed atλ̃ = 2.7σ for both Algorithm 1 and Algorithm 2. The other settings for
Algorithm 1 are the same as [1]. For Algorithm 2, we set the maximum number of it
iterations to70 and setλk = 0.047, µk = 0.024 for all k.

We starts with the demonstration of convergence behavior ofAlgorithm 1 proposed
in [1] and Algorithm 2 proposed in this paper. See Fig. 1 (a) for the comparison of
the ℓ2 norm of the increments of the frame coefficient vectorsCk generate by two
algorithms. It can be seen that the coefficient sequence generated by Algorithm 1 does
not converge while the one generated by Algorithm 1 converges. However, the lack
of sequence convergence of Algorithm 1 does not impact its performance of image
denoising, as shown in Fig. 1. The PSNR values of the denoisedresults from both
algorithms are summarized in Table 1 with respect to different images (see Fig. 2) and
different noise levels. It can be seen that the performancesof both algorithms in image
denoising are very close in terms of PSNR value.
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Figure 1: convergence behavior of Algorithm 1 and Algorithm2. (a) Theℓ2 norm of the increments of
the framelet coefficient vector at each iteration; and (b) the PSNR values of the intermediate results at each
iteration when denoising the image ”boat” with noise levelσ = 20.

Barbara Boat Couple Fingerprint Hill Lena

Figure 2: six test images

Image Babara Boat
σ 10 20 30 40 50 10 20 30 40 50

Alg. 1; 8 34.36 30.60 28.42 26.88 25.67 33.62 30.38 28.39 27.06 25.99
Alg. 1; 16 34.63 31.07 29.07 27.60 26.48 33.59 30.41 28.45 27.18 26.08
Alg. 2; 8 34.34 30.58 28.34 26.89 25.74 33.61 30.29 28.39 26.94 25.87
Alg. 2; 16 34.63 31.14 29.02 27.58 26.41 33.58 30.39 28.48 27.16 26.13

Image Fingerprint Hill
σ 10 20 30 40 50 10 20 30 40 50

Alg. 1; 8 32.23 28.32 26.18 24.67 23.52 33.28 30.22 28.56 27.36 26.48
Alg. 1; 16 32.25 28.40 26.34 24.95 23.88 33.28 30.30 28.61 27.52 26.63
Alg. 2; 8 32.20 28.27 26.13 24.66 23.46 33.26 30.20 28.45 27.25 26.38
Alg. 2; 16 32.24 28.38 26.33 24.93 23.87 33.22 30.23 28.64 27.50 26.65

Image Couple Lena
Alg. 1; 8 33.63 30.09 28.16 26.72 25.68 35.52 32.25 30.22 28.80 27.60
Alg. 1; 16 33.55 30.19 28.27 26.95 25.87 35.65 32.56 30.58 29.16 28.14
Alg. 2; 8 33.49 30.05 28.02 26.64 25.61 35.47 32.29 30.25 28.77 27.57
Alg. 2; 16 33.52 30.10 28.25 26.93 25.89 35.64 32.53 30.51 29.16 28.06

Table 1: PSNR values of the denoised results
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