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Abstract

Sparse modeling/approximation of images plays an importdain image restoration.
Instead of using a fixed system to sparsely model any inpugéna more promising
approachis using a system that is adaptive to the input imfagen-convex variational
model is proposed in [1] for constructing a tight frame tlsabptimized for the input
image, and an alternating scheme is used to solve the regntin-convex optimization
problem. Although it showed good empirical performancenrage denoising, the
proposed alternating iteration lacks convergence arsalysiis paper aims at providing
the convergence analysis of the method proposed in [1]. edfatablished the sub-
sequence convergence property of the iteration schemesgedn [1], i.e., there exists
at least one convergent sub-sequence and any convergesgguénce converges to a
stationary point of the minimization problem. Moreover, sf®wed that the original
method can be modified to have sequence convergence, eematified algorithm
generates a sequence that converges to a stationary ptietminimization problem.

Key words: tight frame, sparse approximation, non-convex optimgtconvergence
analysis

1. Introduction

It is now well established that sparse modeling is a very pawéool for many
image recovery tasks, which models an image as the lineabioation of only a
small number of elements of some system. Such a system cdthbeabasis or an
over-complete system. When using the sparsity prior of esag regularize image
recovery, the performance largely depends on how effestiages of interest can be
sparsely approximated under the given system. Therefdtgydamental question in
sparsity-based image regularization is how to define a systech that the target im-
age has an optimal sparse approximation. Earlier work orsspaodeling focuses on
the design of orthonormal bases, suchiizsrete cosine transforifi2], waveletd3, 4].
Owing to their better performance in practice, over-cortg$ystems have been more
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recognized in sparsity-based image recovery methods.rticpiar, as a redundant ex-
tension of orthonormal bases, tight frames are now wideagpm many applications
as they have the same efficient and simple decompositionegroahstruction schemes
as orthonormal bases. Many types of tight frames have bexoped for sparse im-
age modeling includinghift-invariant wavelet$5], frameletg6, 7], curveletg8] and
many others. These tight frames are optimized for the sigwih certain functional
properties, which do not always hold true for natural imagAs a consequence, a
more effective approach to sparsely approximate imagesefdst is to construct tight
frames that are adaptive to the inputs.

In recent years, the concept of data-driven systems hasdsgdwited to construct
adaptive systems for sparsity-based modeling (see e.§, [0, 11]). The basic idea
is to construct the system that is adaptive to the input so abtiin a better sparse ap-
proximation than the predefined ones. Most sparsity-baséidiary learning methods
([9, 10, 11]) treat the input image as the collection of snrakhge patches, and then
construct an over-complete dictionary for sparsely apipnaking these image patches.
Despite the impressive performance in various image rattor tasks, the minimiza-
tion problems proposed by these methods are very challghgsolve. As a result, the
numerical methods proposed in past for these models notlaciyrigorous analysis
on their convergence and stability, but also are very coatfmutal demanding.

Recently, Cai et al. [1] proposed a variational model toreartight frame sys-
tem that is adaptive to the input image in terms of sparseceqpation. Differently
from the existing over-complete dictionary learning methdhe adaptive systems con-
structed in [1] are tight frames that haperfect reconstruction property property
ensuring that any input can be perfectly reconstructedsganonical coefficients in
a simple manner. The tight frame property of the system cocigtd in [1] not only
is attractive to many image processing tasks, but also leadsry efficient construc-
tion scheme. Indeed, by considering a special class of tightes, the construction
scheme proposed in [1] only requires solving/gamorm related non-convex minimiza-
tion problem:

min [C=DTY |2+ X|Cllo, st D'D=m"'L, (1)
DeR?nX?n}CeR?an

whereD contains framelet filters and contains the canonical frame coefficients. An
alternating iteration is proposed in [1] for solving (1), iefn is very fast as both sub-
problems in each iteration have closed-form solutions.s lshiown that, with com-
parable performance in image denoising, the proposed iaddjght frame construc-
tion runs much faster than other generic dictionary leaymiethods (e.g. the K-SVD
method [10]). However, Cai et al. [1] did not provide any cergence analysis of the
proposed method.

As a sequel to [1], this paper provides the convergence sisaby the alternating
iterative method proposed in [1] for solving (1). In this papwe showed that the al-
gorithm provided by [1] has sub-sequence convergence @yode other words, we
showed that there exists at least one convergent sub-segjoérthe sequence gen-
erated by the algorithm [1] and any convergent sub-sequenioeerges a stationary
point of (1). Moreover, we empirically observed that theissmtce generated by the
algorithm proposed in [1] itself is not convergent. Motedtby the theoretical interest,



we modified the algorithm proposed in [1] by adding a proxiteatn in the iteration
scheme, and then showed that the modified algorithm has isegie@nvergence. In
other words, the sequence generated by the modified methoergences to a sta-
tionary point of (1).

2. Brief review on data-driven tight frame construction and related works

In this section, we gave a brief review on tight frames, ditaen tight frames
proposed in [1] and some most related works. Interestindersaare referred to [12,
13] for more details.

2.1. Tight frames and data-driven tight frames
For a Hilbert spacé{, a sequencéz,,} C H is atight framefor # if

Jl> = > [(w,2,)[*, foranyz € #,

or equivalently,z = > (z,x,)z,,z € H. The sequencé(z,z,)} is called the
canonical frame coefficient sequence. A tight frafng} is an orthonormal basis for
H if and only if ||z, || = 1 for all z,,. A tight frame has two associated operators: the
analysis operatoM defined by

Wz eH— {(r,z,)} € l2(N)
and its adjoint operatd? " (often called thesynthesis operatdr

w'. {an} € l2(N) — Zanxn cH.

Then, the sequender,,} C A is a tight frame if and only it TW = I, where/
denotes the identity operator &f. The tight frames considered in [1] are single-level
un-decimal discrete wavelet systems generated by allentgigifts of a set of filters
{ai,a2, - ,a,}. Forany filtera € (2(Z), let S, : ¢2(Z) — ¢2(Z) denote its
associated convolution operator defined by

[Sa(©)](n) :=[axv](n) = > a(n—k)v(k), Yo € lr(Z). 2)

keZ?

Then, for a given set of framelet filters, we define its asgedianalysis operatdiV’

by
W =81 (-9 Sa—ys +Sa—] (3)

azx(—)’

The rows of W form a tight frame for/y(Z) if and only if WTW = I, and the
corresponding synthesis operator is the transpo3¥® pélenoted byWw .

The data-driven tight frame construction proposed in [Hstoucts the set of framelet
filters {a;}"* | via solving the following problem:

min HU_W(a‘ha’Qa"' 7a’m)g|‘%‘+/\g”v”07 s.t. WTWZI (4)

. lm
'Ur{a”l i=1



whereg denotes the input signafa;}72, denotes the set of framelet filters of the
adaptive tight frame, and denotes the canonlcal coefficient vectorgof Here and
throughout this papelfip||o stands for the number of non-zero elements ahd|| - || »
denotes the Frobenius norm.

2.2. Data-driven tight frame construction scheme [1]
For general framelet filters, the minimization problem (g )\very challenging to
solve. Therefore, a special class of framelet filters aresicemed in [1], which is

composed byn? 2D real-valued framelet filtera ;"':21 C R™*™ Let D denote the
associated filter matrix defined by

A= [(_7:1,(_1:2, .- ~76m2]7

wherea; denotes the vector form ai; by concatenating all columns ef; to a

column vector. It is shown in [1, Proposition 3] that the roefsW defined by
{a;}72 " < R™*™ form a tight frame for?(Z), provided thatdT A = L 1,.. Thus,

the minimization problem (4) for general tight frame couostion is S|mpI|f|ed to the
following one:

. 1
min  [lv— W(A)g|E +Aj[vfo, st ATA= A, (5)

v,{a; Ll

The problem (5) can be re-formulated in terms of image pataw®follows. Let
{g}k., c R™" denotes the set of all image patches of sizex m densely sam-
pled from the image. For each patch vectai, letw, = ATg, € R™ denote the
vector generated by the inner product betwggrmand allm? framelet filters{&j};’f1
Define three matrices as follows,

Y= 2=[Gi, o, Gr) € 7
D = \/mA = \/m[@1,@s, . .., Gp2] € R *™" (6)

C = [0, o, ..., O] € RMXL,
Then, itis shown in [1] that the minimization (5) is equivai&o

e, 0 NIC=DTY IR+ N[Clo, St DD = Lnpsmz, (7)
e m<Xm s e m< X

where) denotes some predefined regularization parameter.

The minimization model (7) is solved in [1] via an alterngtischeme between
D andC. More specifically, given the current estimdt®y, C,), the next iteration
updates it via the following scheme:

Djy1 € argmin ||Cy — D'Y||%4, st D'D=1,;

DeRm? xm?2 (8)
Crt1 € argmm IC = DI, Y%+ A2||Clo.

CER"" XL



Define thehard thresholding operatdf) : R™**L — Rm**L py

}/i,jv if |}/i,j| > )\;
0, if ;] < A

Itis shown in [1] that both sub-problems in (8) have closedxf solutions given by
Di1:=UpVy';  Ciy1 € Ta(Dy1Y), (10)

whereU;, andV}, are given by the singular value decomposition (SVDY@f,” such
thaty C,) = U, X, V,". See Algorithm 1 for the summary of the alternating itenatio
scheme [1].

Algorithm 1 Alternating iteration scheme [1] for solving (7).
1: INPUT: Inputimageg;
2: OUTPUT: Adaptive filter setD;
3: Main Procedure:
i. Set initial filter matrixDy and coefficient matrix’y.
ii. Construct the patch matriX as (6).
iii. Fork=0,1,---,

1. compute the SVD o¥ C}| = U, X, V,|;

2. Dyt1 = UV, andCry1 € Ta (D}, Y).

2.3. Related works

The minimization (7) is arfy norm related non-convex problem with quadratic
constraints. Algorithm 1 proposed in [1] for solving (7)ahatingly updates the filter
matrix D by the SVD and updates the coefficient maitixoy hard thresholding the
coefficients from the last estimate. Such an iterative Hanresholding on wavelet frame
coefficients approach has been used in solving variouslineerse problems in image
recovery, see e.g. the wavelet frame based image supémiesanethods [14, 15].

As a sparsity prompting functional, thlg norm is also used in other sparse ap-
proximation based dictionary learning methods. The papkil&VD method [10]
proposed the following minimization model for learning areccomplete dictionary
D ={D;,Ds,...,Dp} C R*withm > n:

. 1
min =

Y_D02 AlC y s.t. Di :]_":]_’27.“7 . (11
P -1l I+ AlCllo IDill2 = 1,i n. (11)

An alternating iteration scheme betweBPnandC' is used in the K-SVD method for
solving (11). Different from the model (7) proposed in [Tjet, norm related mini-
mization problem for updating the codgéis a challenging one. The greedy algorithm,
such as orthogonal matching pursuit, is used in [10] fonesting the code. Therefore,
the computational cost of the K-SVD method is much highen thkyorithm 1.



Both the K-SVD method and Algorithm 1 perform noticeablytbetn image de-
noising than other wavelet frame based methods. The adyaofaAlgorithm 1 over
the K-SVD method lies in its computational efficiency. Despheir impressive per-
formances in practice, both methods lack the convergernalgsis. Indeed, it is em-
pirically observed that the sequences generated by bothoaietire not convergent. In
this paper, we first provided the convergence analysis fgolhm 1 by showing that
the sequence generated by Algorithm 1 has sub-sequencergence. Then we pro-
posed a modified version of Algorithm 1 for solving (7) andaédished the sequence
convergence of the new algorithm.

3. Sub-sequence convergence property of Algorithm 1

In this section, we will show that the sequence generatedlggradhm 1 has sub-
sequence convergence property, i.e., there exists at de@seonvergent subsequence
and every convergent subsequence converges to a statjpoiatyof (7). Before es-
tablishing the main result, we first introduce the definitadrthe stationary point of
non-convex and non-smooth functions.

Definition 3.1. Let f : R” — RU{+o0} be a proper lower semi-continuous function.
1 The domain of is defined bylomf := {x € R™: f(z) < +o0}.
2 For eachr € domf, x is called the coordinate-wise minimum pff it satisfies
flx+ (0, ,di,---,0)) < f(), Vdy, 1 <k <,
wherex = (z1,z2, -+, Tp)-

3 The Féchet subdifferentialy f is defined by

Orf(z) = {7 : liminf fly) = (@) — (z,2 —y)

y=w =yl

>0} (12)

for anyz € domf anddr f(z) = 0 if & domf.

4 For eachx € domf, z is called thestationary pointof f if it satisfies0 €

Or f().

Remark. There are several definitions for stationary points of pmolmsver semi-
continuous functions. In [16], the stationary points defined as

flz+Xy) — f(2)
)

lim inf >0, VyeR"
20

In [17], the stationary pointe of f is defined by) € df(x), wheredf is the limiting
subdifferential given by
Of(x) ={z:Fxp =, f(xn) = f(2),2n € Opf(xn) — 2}.

The definition of stationary points used in this paper isedéht from the definitions
used in [16] and [17]. Indeed, ours is stronger than the ottveo definitions.



To simplify notations, defin&’ = {D € R™**™* : DTD = I,..} and define =
R™*XN Qp =R xm* O = (Q¢, Qp). Define

F(C)=X|Cllo, Q(C,D)=|DTY ~C|%, g(D)=1x(D), (13)

wherely (D) = 0, if D € X and+oco otherwise. Then, the minimization (7) can be
re-written as
cegMin_ L(C, D) = f(C) +Q(C, D) + ¢(D). (14)
Before proving the sub-sequence convergence property gdrdhm 1, we first
establish some facts and results related to (14). Firsyfunctiong is a lower semi-

continuous function, as’ is a compact set. Secondly, it can be seen that for any
Z = (C, D), the functionQ(Z) satisfies the following properties:

Q(C,D) = Q(C1,D) +(VcQ(C1, D),C — C1>+0(HC Cillr), VC1 € Qe

Q(C,D) = Q(C,D1) +(VpQ(C,D1),D — D1) + o(||D — D1|r), VD1 € Qp;

Q(C,D) = Q(C1,D1) +(VQ(C1,D1), Z — Z1) + o(||Z — Z1||F), ¥ Z1 € Qz,
(15)

whereo(||z| ) is defined by lim 2lzle) —
lzllp—o Nole

Lemma 3.2. The sequencg;, := (Cy, Dy) generated by Algorithm 1 is a bounded
sequence. For any convergent sub-sequéeficewith limit point Z* = (C*, D*), we
have

lim f(Ck/) = f(C*), and lim L(Zk/) = L(Z*)

k! —+oc0 k! =400

Proof. By the definition of (10), we have
L(Zy) < L(Cg, Dy—1) < L(Cy—1, Dy—1) < --- < L(Zo),
which implies
ICkllr = IDLY |r < |ID{Y = C¥llr < VL(Z0), k=12.... (16)

Together with (16) and the fact that, € X, we haveZ, is bounded. Next, by the
definition of (10), we also have

Q(Cyr, D) + f(Crw) < Q(C, Dyy) + f(C), VC € Qc. (7)

By substituting” by C* and taking’ — oo in (17), we havéim infy/ o, f(Cy) <
f(C*). Together with the fact thaf(C') = A\?||C||o is lower semi-continuous and
Cr — C* ask’ — +oc, we have

liminf f(Cy) = f(C7).

SinceDy € X forall ¥’ andX is a compact subseR* € X andg(D*) = g(Dy) =0
for all £’. It can be seen tha(Cy/, D) — Q(C*,D*) ask’ — +o0, asqQ is



a continuous function. In additiord,(Zy) is decreasing by (16) and > 0, which
implies thatlL(Zy) is a convergent sequence. Consequently, we have

lim f(Cy) = f(C7),

k! —+oc0

sincef(C) = L(Z) — Q(Z) — g(D). Moreover, we have

i L) = Jim (Ce) B QCu D) + oDy
= f(C*) +Q(C*, D") + g(D").
Thus,limp oo L(Zp) = L(Z*). O

Lemma 3.3. Let Z, := (Cy, D) denote the sequence generated by Algorithm 1 and
let ©2.. denote the set that contains all limit points4f. Then(2,. is not empty and

L(C*,D*) = inf L(Cy, Dy), ¥(C*, D) € Q.

Proof. By Lemma 3.2/7;. is a bounded sequence. Thus, the(sets a non-empty set.

Moreover, the sef2, is also a compact set &s. = (| | {Zx}. Notice thatL(Z})
JEN k=]

is a decreasing sequence andZ) > 0. Then, there exists some constarguch that

ir;if L(Zy) = p. Take anyZ* € Q, and assum¢, — Z* ask’ — +oco. By lemma

3.2, we havethatlim L(Zy )= L(Z*) = p. O
k! —+o00

At last, we show that the sequence generated by Algorithmslshh-sequence
convergence property.

Theorem 3.4. The sequencg;, := (C, D) generated by Algorithm 1 has at least
one limit point, and any limit point of the sequenggis a stationary point of14).

Proof. By Lemma 3.3, the sequenég := (Cy, Dy ) generated by Algorithm 1 has at
least one limit point. For any limit point* = (C*, D') of the sequencgy, let { Z;}

be the sub-sequence &f. that converges t&*. Without loss of generality, assume the
sub-sequencéZ; 1} converges taz? = (C?, D?). By the definition of the second

step in (10), we have

Q(Cw, D)+ f(Cr) <Q(C, D) + f(C), VC € Qc. (18)
Takingk’ — +oc in (18), by Lemma 3.2, we have
9(D") +Q(C, D) + f(C) < g(DY) + Q(C, D) + f(C), VC € Qc,  (19)

which implies
L(C*, DY) < L(C* +C,D"), VC € Qc. (20)

As Zj 41 is defined fromZy, by (10), we have

Q(Cr, Diry1) + g(Drr11) < Q(Cyr, D) + g(D), VD € Qp;
Q(Criy1, Dy 11) + f(Crr 1) < Q(C, Drry1) + f(C), VO € Qc.



The summation of the first inequality and the second inetyuaith C' = C gives
9(Dw+1) + Q(Cr41, Diy41) + f(Crr11) < 9(D) + Q(Crr, D) + f(Crr). (21)
Takingk’ — 4o0 in (21). By Lemma 3.2 and Lemma 3.3, we have
L(C', DY) = L(C? D?) < L(C*, D' + D). (22)

Thus, the combination of (20) and (22) shows that the p@ifit D!) is a coordinate-
wise minimum point of (14). Therefore, for ady = (6¢, dp), we have

L(Z' +67) — L(ZY)

lim inf
[ |—0 l6z]]
TR Q(Z' +67) —Q(ZY) + f(Ct +6¢) — f(C') + g(D' +6p) — g(D*)
52 —0 ozl
> lim inf (VQ(Z1),0z) + f(C' +6c) — f(CY) + g(D' + ép) — g(D?)
~l5z]i—0 6zl
it (Q((ﬂ +0c,D') — Q(C', D) — o(||dc||) + f(C* +6¢) — f(C)
62 |0 6zl
+ Q(C', D' +6p) — Q(C*,D") —o(||6pl]) + g(D' +6p) — 9(D1)>
1ozl
s i ing —°UWdel) —o(lldnll) _ 0
TP 0]l ’

where the first inequality is from (15) and the second ineiua from the fact that
Z' := (C', D) is the coordinate-wise minimum point of (14). By Definitic®. 1),
the pointZ! is a stationary point of (14). O

4. A modified algorithm for (7) with sequence convergence

In the previous section, we showed that the sequence geddnatAlgorithm 1 has
sub-sequence convergence property. The next questionethartthe sequence itself
is convergent or not. The experiments show that it is not #e=csee Fig.1 (a) for
the increments of the sequenCg. The lack of sequence convergence is not crucial
to the applications in image recovery, as the result we agkiisg for is not the frame
coefficient vector but the image synthesized from the caeffis. See Fig. 1 (b) for
an illustration. However, the divergence of the coefficeejuence could cause severe
stability issue when the coefficient set is the one needed, ie.the case of sparse
coding based recognition tasks. Motivated by both thewaktnterest and the needs
from applications, we proposed a modified version of Aldorit(1) with sequence
convergence property, i.e., the sequence generated bthalgorithm converges to
a stationary point of (14).

The modification on Algorithm 1 for gaining sequence coneaige is done by
adding a proximal term in each iteration, a technique whiak heen used in other
alternating iterative methods to ensure the convergenoe.ekample, the proximal



method proposed in [17] for solving a class of non-convexramsmooth functions.
The modified version of Algorithm 1 updates the estimateS ahd D via solving the
following problems:

Dk+1 S argmin L(Ck, D) + /\k:HD — Dk:H%";
D

. ) (23)
Cry1 € argcmlnL(C, Diyi1) + p||C — Crll %,

where\g, ux € (a,b) anda,b > 0. It can seen that the new iteration (23) adds two
additional proximal terms\;|| D — Dy ||% anduy||C — Cy| %, to the original iteration
(8). Same as (8), both minimization problems in (23) alscel@dused-form solutions.

Proposition 4.1. The solution of(23)is given by

D1 = ULV,
/ Dl Y4 urCh (24)
{Ck+1 € Ty st (P )

whereUy, Vi, are given by the SVD &f O} + Ay Dy, = U 3.V,
Proof. The proof is exactly the same as that of (10) provided in [1]. O

See Algorithm 2 for the summary of the modified algorithm folvéng (14).

Algorithm 2 Proximal alternating iteration scheme for solving (7).
1: INPUT: Inputimageg;
2: OUTPUT: Adaptive filter setD;
3: Main Procedure:
i. Set initial filter matrixDy and coefficient matrix’y.
ii. Construct the patch matriX as (6).
iii. Fork=0,1,---,

1. compute the SVD o¥ C,| + A\, Dy, = Up =i V,|;

Dy Y 441, Ch )

2. Diyr = UV, andCiqy € Ty i ( .

4.1. Convergence analysis of Algorithm 2

In this section, we first establish the sub-convergenceeatpmf Algorithm 2.
Then we establish the sequence convergence of the algdsigtshowing that the se-
quence is a Cauchy sequence and converges to a stationatyop¢i4). The main
proof is built on the results presented in [17] about the eogence analysis of proxi-
mal methods for solving a class of non-smooth and non-copraxems.

Theorem 4.2. Let Z;, := (C, Dy,) denote the sequence generated by Algorithm 2.
Then,Z; has at least one convergent subsequence and every convsujesequence
of Z), converges to a stationary point ¢14).

10



Proof. By the definition of (23), we have

L(Cy, Diy1) + M| Diy1 — Dyl < L(Cy, Dy),
L(Cry1, Diy1) + purl|Cry1 — Crll3 < L(Cy, Dyya).

Sum up both inequalities and by the fact that ., A\r < b, we have

L(Zy) = L(Zpy1) = al| Zy — Zrqa |7 > 0. (25)
By the same argument for (16), we ha¥gis bounded and has at least one limit point.
By (25), we obtain

k

L(Zo) = L(Zrs1) > Y _allZj — Zja 3 (26)
j=0

Letk — 400 in (26). Together with the facts that Z,) > 0 andL(Zy) is a decreas-

ing sequence, we have
—+oo

> 12k = ZialF < +oo,
k=1
which implies that
lim ||Zk - Z/H—l”F =0. (27)
k—+o00

Let Z! := (C', D') denote any limit point ofy, i.e., there exists a sub-sequence
Zi, converges t@!. In the next, we prove that the sub-sequefige | also converges
to Z'. For anye > 0, there existsV, such that]| Zy — Z'||r < €/2 and || Zy —

Zw 1|l < ¢/2forall k' > Ny. The first inequality is from the fact that,, converges
to Z! and the second one is from (27). Thus, foridlt> Ny,

|Zs1r = ZMp < 2k = Zisallp + 1 20 — ZY || F <. (28)

Consequently, we havg,, ., — Z' ask’/ — +o0.
By the definition of (23), we have that, for aay e Q¢,

L(Chr41, Dyrs1) + al|Crr41 — Cur |3 < L(C, Dpr1) + b||C — Cr || 3--

Similar to the derivation of (17), by setting = C! and takingk’ — +oo in the
inequality above, we ha\%e(ninf f(Cwi1) < f(CY). As fis alower semi-continuous
! —+4o00
function, we have
liminf f(Cp 1) = f(CY).
k —+oc0
By the same arguments in the proof of Lemma 3.2, we hkalie_e f(Criyr) =
o' ——+00
f(CY). Again, by using the same arguments gohril f(Cr41), we also have
=400
i hril f(Cw) = f(CY). Notice thatD, € X, k = 1,2,..., and X is a compact
o/ =400
set. Thusg(Dy) = g(Dwr41) = g(D') = 0 andQ is continuous, which leads to

lim L(Zy) = kl]_ig_looL(Zkurl) = L(C*,DY). (29)

k' — 400

11



By the definition ofC}, in (23), we have

L(Chry1, D 1) + al|Crrr = Co [T < L(C, Dy 1) +b||C = Crr |7, Y C € Qe

Takingk’ — +oo in the inequality above, together with (29) and (27), we have
L(C*, DY) < L(C* + C, DY) + b||C||%, YV C € Q¢. (30)

Again, by the definition of (23), we have

L(Cyr, Dy 1) + A || D1 — Die|| 3 < L(Crr, D) 4 M | D — Dy [| 5
L(Chig1, Dirg1) + pir | Crrg1 — O |3 < L(C, Do 41) + e |C — Ce || 3.

(31)
Recall that\;/, i € (a,b). Then,
L(Zi+1) + al| Zysr — Zie |3 < L(Cir, D) + b|D — Dy |3, VD € Qp.
Takingk’ — +oc in the above, together with (29) and (27), we have
L(C', DY) < L(C*,D* + D) +b||D||%, VD € Qp.
Consequently, for ang = (6¢,0p) € (e, Q2p), we have
1 _ 1
lim inf Lz +d) - L(Z)
ld]|—0 ]
. Q(Z +d) - Q(ZY) + f(C + ) — f(C1) +g(D' +p) — g(DY)
= lim inf
]| =0 |
1 1 _ 1 1 _ 1
i ing (YQ(ZY).d) + F(C" +5¢) — J(C") + 9(D' + ) —g(D")
]| =0 ]l
~limi (Q(C1 +dc, D) = Q(C, DY) — o(|léc|) + f(C* +éc) — f(C)
= lim inf
]| —0 ]l
N Q(C', D' +dp) — Q(C, D) — o(||dp]]) + g(D' +ép) — g(D1)>
|
— _ _ 2 2
1 ing —2U9el) = o(l8p1) — b(Se + Ionl3) _
ld]|—0 ]
By Definition 3.1, we haveZ! is a stationary point of (14). O

In the next, we will establish the convergence of the sequehc= (Ck, Dy)
generated by (23) by showing that it satisfies the so-céltét length propertyi.e.,

—+oo

S 1 Zkss — Zull < +oc,
k=1

Clearly, a sequence with finite length property is a Cauclogysece. Together with
Theorem 4.2, we have the sequetiieconverging to a stationary point of (14). The
proof is based on the convergence analysis developed ines sérpapers ( [18, 17,
19]), which studied the convergence of the iteration sch@8gfor solving (14) with
respect to a class of objective functions.

12



Theorem 4.3.[17, Theorem 9] The sequengg = (C, D) generated by the iter-
ation (23) hasfinite length propertyf the following conditions hold:

1. L(C, D) is a K-L function;

2. Zi, k=1,2,...is abounded sequence and there exists some positive ctmstan
a,bsuch that\g, pu € (a,b),k=1,2,..;

3. VQ(C, D) has Lipschitz constant on any bounded set.

In Theorem 4.3, there are three conditions to ensure thateiipgence satisfies the finite
length property. The first condition requires that the otbyjecfunction L satisfies the
so-calledkurdyka-Lojasiewicz (K-Lproperty in its effective domain; see [19, Defini-
tion 3] for more details on K-L property. Given a functionigtoften not easy to check
whether it satisfies the K-L property. Nevertheless, it isvain [18, Remark 5] and
[18, Theorem 11] that any so-calledmi-algebraidunction satisfies the K-L property.

Definition 4.4. [19] A subsetS of R" is called a semi-algebraic set if there exists a
finite number of real polynomial functions;, 2;; such that

S = Uﬂ{u cR": gij(u) = O,h”(u) < 0}

A functionf (u) is called a semi-algebraic function if its gragliu, t) € R” x Rt =
f(u)} is a semi-algebraic set.

Theorem 4.5. Let Z;, = (Cy, Dy;) denote the sequence generated2§). Then, the
sequence’;, has the finite length property and thus is a Cauchy sequence.

Proof. The proof is done by showing that Theorem 4.3 is applicabkagoobjective
function (14) and the sequengg generated by (23). Thus, we only need to verify all
three conditions in Theorem 4.3.

The first condition in Theorem 4.3 is verified by showing thhttlaree terms
in the objective function given by (14) are semi-algebraic functions. The second
termQ(C, D) = ||[D"Y — C||% is clearly a semi-algebraic function as it is a real

polynomial. Next, it can be seen that the gét= {D ¢ R™xm* . DTD =

I = N NA{D: X", dwdj; = §;} is a semi-algebraic set. Thus, the last term
j=1k=1

g(D) = Ix(D) is also a semi-algebraic function, as it is shown in [20] ihdtcator

functions of semi-algebraic sets are semi-algebraic fanst Regarding the first term

m?2L
f(C) = X2||C|lo- The graph ofF = ||Cllgis S = | Lx = {(C,k) : ||Cllo = k}.
k=0

For eachk = 0,--- ,m?L, letS, = {J : J C El,--- ,m2L},|J| = k}, then
Ly,= U {(C,k): Cje =0,C; # 0.}. It can be seen that the sgtC, k) : Cjc =

JESy
0,C; # 0} is a semi-algebraic set R™ <L x R. Thus,F(C) = ||C]|o is a semi-
algebraic function, as the finite union of the semi-algebsat is still semi-algebraic.

13



Regarding the second condition in theorem 4.3, the bouretesdof the sequence
Zy, = (Ck, Dy,) is ensured by Theorem 4.2. Moreover, by the definition of,(8re
exist two positive constants b > 0 such that\y, ux € (a,b) fork =1,2,....

For the last condition in theorem 4.3, notice that the fue®(C, D) = 1||C —
DTY||% is a smooth function. Thus, for any bounded 4ét there exists a constant
M > 0 such that

IVQ(C1, D1) = VQ(C2, Dy)|| < M||(C1, D1) — (C2, Ds)|
forany(Cy, D1) € M and(Cs, D3) € M. O
In summary, we have the following result regarding the cogeece of Algorithm 2.

Corollary 4.6. The sequencg;, := (Cy, Dy) generated by Algorithm 2 converges to
a stationary point of(14).

5. Experiments on image denoising

There are two main parts in this paper: one is the converganalysis of the
method proposed in [1] and the other is the modifications @fittiginal algorithm for
gaining stronger convergence property. The later is morthedretical interest and
for potential benefit to other applications. Thus, the ekxpental evaluation done in
this paper for image denoising is not as comprehensive asTi¢ data-driven tight
frame based image denoising is done as follows. fet g + ¢(o) denote some
noisy observation of, wheree(o) is the additive i.i.d. Gaussian noise with zero mean
and standard deviation. Taking f as the input and using x 8 DCT as the initial
guess, the filters of data-drive tight franje,, as, - ,ass} are constructed using
Algorithm 1 (or Algorithm 2). Then the denoised result, detbby g, is obtained
via hard thresholding:

g=wW(T;(W),

whereW denotes the analysis operator determineddy} %, and )\ is thresholding

parameter determined by noise level. Throughout all erpants, the parameter

is fixed atA = 2.7¢ for both Algorithm 1 and Algorithm 2. The other settings for
Algorithm 1 are the same as [1]. For Algorithm 2, we set the imaxn number of it
iterations to70 and set\;, = 0.047, u,, = 0.024 for all k.

We starts with the demonstration of convergence behavialgarithm 1 proposed
in [1] and Algorithm 2 proposed in this paper. See Fig. 1 (a)tfe comparison of
the ¢/, norm of the increments of the frame coefficient vecto¥s generate by two
algorithms. It can be seen that the coefficient sequenceateaey Algorithm 1 does
not converge while the one generated by Algorithm 1 convergtowever, the lack
of sequence convergence of Algorithm 1 does not impact itlopaance of image
denoising, as shown in Fig. 1. The PSNR values of the deno&smdts from both
algorithms are summarized in Table 1 with respect to diffei@ages (see Fig. 2) and
different noise levels. It can be seen that the performaofdesth algorithms in image
denoising are very close in terms of PSNR value.
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Figure 1: convergence behavior of Algorithm 1 and AlgoritBm (a) The¢> norm of the increments of
the framelet coefficient vector at each iteration; and (B)RISNR values of the intermediate results at each
iteration when denoising the image "boat” with noise lavek 20.

1]

Barbara Boat Couple Fingerprint Hill Lena

Figure 2: six test images

Image Babara Boat
o 10 20 30 40 50 10 20 30 40 50
Alg. 1;8 | 34.36| 30.60| 28.42| 26.88| 25.67| 33.62| 30.38| 28.39| 27.06| 25.99
Alg. 1; 16 | 34.63| 31.07| 29.07| 27.60| 26.48| 33.59| 30.41| 28.45| 27.18| 26.08
Alg. 2;8 | 34.34| 30.58| 28.34| 26.89| 25.74| 33.61| 30.29| 28.39| 26.94| 25.87
Alg. 2;16 | 34.63| 31.14| 29.02| 27.58| 26.41| 33.58| 30.39| 28.48| 27.16| 26.13
Image Fingerprint Hill
o 10 20 30 40 50 10 20 30 40 50
Alg. 1;8 | 32.23| 28.32| 26.18| 24.67| 23.52| 33.28| 30.22| 28.56| 27.36| 26.48
Alg. 1;16 | 32.25| 28.40| 26.34| 24.95| 23.88| 33.28| 30.30| 28.61| 27.52| 26.63
Alg. 2;8 | 32.20| 28.27| 26.13| 24.66| 23.46| 33.26| 30.20| 28.45| 27.25| 26.38
Alg. 2; 16 | 32.24| 28.38| 26.33| 24.93| 23.87| 33.22| 30.23| 28.64| 27.50| 26.65

Image Couple Lena
Alg. 1;8 | 33.63| 30.09| 28.16| 26.72| 25.68| 35.52| 32.25| 30.22| 28.80| 27.60
Alg. 1;16 | 33.55| 30.19| 28.27| 26.95| 25.87| 35.65| 32.56 | 30.58| 29.16| 28.14
Alg. 2;8 | 33.49] 30.05| 28.02| 26.64| 25.61| 35.47| 32.29| 30.25| 28.77| 27.57
Alg. 2; 16 | 33.52| 30.10| 28.25| 26.93| 25.89| 35.64| 32.53| 30.51| 29.16| 28.06

Table 1: PSNR values of the denoised results
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