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Dictionary learning for sparse coding:
Algorithms and convergence analysis

Chenglong Bao, Hui Ji, Yuhui Quan and Zuowei Shen

Abstract—In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern
recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex
optimization problems. Despite the fact that many numerical methods have been developed for solving these problems, it remains
an open problem to find a numerical method which is not only empirically fast, but also has mathematically guaranteed strong
convergence. In this paper, we propose an alternating iteration scheme for solving such problems. A rigorous convergence
analysis shows that the proposed method satisfies the global convergence property: the whole sequence of iterates is convergent
and converges to a critical point. Besides the theoretical soundness, the practical benefit of the proposed method is validated in
applications including image restoration and recognition. Experiments show that the proposed method achieves similar results
with less computation when compared to widely used methods such as K-SVD.

Index Terms—dictionary learning, sparse coding, non-convex optimization, convergence analysis
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1 INTRODUCTION

Sparse coding aims to construct succinct represen-
tations of input data, i.e. a linear combination of
only a few atoms of the dictionary learned from
the data itself. Sparse coding techniques have been
widely used in applications, e.g. image processing,
audio processing, visual recognition, clustering and
machine learning [1]. Given a set of signals Y :=
{y1, y2, . . . , yp}, sparse coding aims at finding a dictio-
nary D := {d1, d2, . . . , dm} such that each signal y ∈ Y
can be well-approximated by a linear combination
of {dj}mj=1, i.e., y =

∑m
`=1 c`d`, and most coefficients

c`s are zero or close to zero. Sparse coding can be
typically formulated as the following optimization
problem:

min
D,{ci}pi=1

p∑
i=1

1

2
‖yi −Dci‖2 + λ‖ci‖0, (1)

subject to ‖di‖ = 1, 1 ≤ i ≤ m. The dictionary dimen-
sion m is usually larger than the signal dimension n.

1.1 Overview of the problem
The problem (1) is a non-convex problem whose
non-convexity comes from two sources: the sparsity-
promoting `0-norm, and the bi-linearity between the
dictionary D and codes {ci}pi=1 in the fidelity term.
Most sparse coding based applications adopt an al-
ternating iteration scheme: for k = 1, 2, . . . ,

(a) sparse approximation: update codes {ci}pi=1 via solv-
ing (1) with the dictionary fixed from the previous
iteration, i.e. D := Dk.
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(b) dictionary refinement: update the dictionary D via
solving (1) with codes fixed from the previous
iteration, i.e. ci := ck+1

i for i = 1, . . . , p.

Thus, each iteration requires solving two non-convex
sub-problems (a) and (b).

The sub-problem (a) is an NP-hard problem [2],
and thus only a sub-optimal solution can be found
in polynomial time. Existing algorithms for solving
(a) either use greedy strategies to obtain a local min-
imizer (e.g. orthogonal matching pursuit (OMP) [3]),
or replace the `0-norm by its convex relaxation, the
`1-norm, to provide an approximate solution (e.g. [4],
[5], [6], [7]).

The sub-problem (b) is also a non-convex problem
due to the existence of norm equality constraints on
atoms {di}mi=1. Furthermore, some additional non-
convex constraints on D are used for better per-
formance in various applications, e.g. compressed
sensing and visual recognition. One such constraint
is an upper bound on the mutual coherence µ(D) =
maxi6=j |〈di, dj〉| of the dictionary, which measures the
correlation of atoms. A model often seen in visual
recognition (see e.g. [8], [9], [10]) is defined as follows,

min
D,C
‖Y −DC‖2 + λ‖C‖0 +

µ

2
‖D>D − I‖2, (2)

subject to ‖di‖ = 1, 1 ≤ i ≤ m. Due to the additional
term ‖D>D − I‖2, the problem (2) is harder than (1).

1.2 Motivations and our contributions

Despite the wide use of sparse coding techniques, the
study of algorithms for solving (1) and its variants
with rigorous convergence analysis has been scant
in the literature. The most popular algorithm for
solving the constrained version of (1) is the K-SVD
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Fig. 1. Convergence behavior: the increments of the coeffi-
cient sequence Ck generated by K-SVD and by the proposed
method in image denoising.

method [11], which calls OMP for solving the sparse
approximation sub-problem. The OMP method is a
greedy algorithm known for its high computational
cost. For problem (2), existing applications usually
call some generic non-linear optimization solver. Al-
though these alternating iteration schemes generally
can guarantee that the objective function value is
decreasing, the generated sequence of iterates may
diverge. Indeed, the sequence generated by K-SVD is
not always convergent; see Fig. 1 for the convergence
behavior of the sequence generated by K-SVD in a
typical image denoising problem. Recently, the so-
called proximal alternating method (PAM) [12] and
the proximal alternating linearized method (PALM)
[13] were proposed to solve a class of non-convex op-
timization problems, with strong convergence. How-
ever, problems considered in [12] and [13] are rather
general—a direct call of these two methods is not
optimal when being applied to sparse coding.

There certainly is a need for developing new algo-
rithms to solve (1) and its variants. The new algo-
rithms should not only be computationally efficient
in practice, but also have strong convergence guaran-
teed by theoretical analysis, e.g. the global convergence
property: the whole sequence generated by the method
converges to a critical point of the problem.

This paper proposes fast alternating iteration
schemes satisfying the global convergence property,
applicable to solving the non-convex problems aris-
ing from sparse coding based applications, including
(1), (2), and discriminative extensions of the K-SVD
method [14], [15]. Motivated by recent work on multi-
block coordinate descent [16], PAM [12] and PALM
[13], we propose a multi-block hybrid proximal alter-
nating iteration scheme, which is further combined
with an acceleration technique from the implementa-
tion of the K-SVD method. The proposed dictionary
learning methods have their advantages over existing
dictionary learning algorithms. Unlike most existing
sparse coding algorithms, e.g. K-SVD, the proposed
method satisfies the global convergence property and
is more computationally efficient with comparable
results. Compared to some recent generic methods,
e.g. PALM [13]), for solving these specific non-convex
problems, the proposed dictionary learning method
decreases the objective function value faster than

PALM and yields better results in certain applications
such as image denoising.

The preliminary version of this work appeared in
[17], whereas this paper introduces several extensions.
One is the extension of the two-block alternating
iteration scheme to the multi-block alternating iter-
ation scheme, which has wider applicability. Another
improvement over the original is that the new scheme
allows choosing either the proximal method or the lin-
earized proximal method to update each block, which
makes it easier to optimize the implementation when
applied to solving specific problems. Furthermore,
this paper adds more visual recognition experiments.

2 RELATED WORK

In this section, we briefly review the most related
sparse coding methods and optimization techniques.

Based on the choice of sparsity-promoting function,
existing sparse coding methods fall into one of the fol-
lowing three categories: (a) `0-norm based methods,
(b) `1-norm based methods, and (c) methods based on
some other non-convex sparsity-promoting function.
One prominent existing algorithm for solving `0-norm
based problems is the so-called K-SVD method [11].
The K-SVD method considers the constrained version
of (1) and uses an alternating iteration scheme be-
tween D and {ci}: with the dictionary fixed, it uses the
OMP method [18] to find sparse coefficients {ci}, and
then with sparse coefficients fixed, atoms in the dic-
tionary D are sequentially updated via the SVD. The
K-SVD method is widely used in many sparse coding
based applications with good performance. However,
the computational burden of OMP is not trivial, and
thus there exists plenty of room for improvement. In
addition, there is no convergence analysis for K-SVD.

Anther approach to sparse coding is using the `1-
norm as the sparsity-promoting function. Many `1-
norm based sparse coding methods have been pro-
posed for various applications; see e.g. [5], [6], [19],
[20]. The variational model considered in these works
can be formulated as follows,

min
D∈D,C∈C

p∑
i=1

1

2
‖yi −Dci‖2 + λ‖ci‖1, (3)

where D, C are predefined feasible sets of the dictio-
nary D and coefficients C, respectively. It is evident
that the sparse approximation sub-problem now only
requires solving a convex problem. Many efficient
numerical methods are available for `1-norm based
sparse approximation, e.g. the homotopy method [21]
used in [5] and the fast iterative shrinkage threshold-
ing algorithm [22] used in [6]. Methods for dictionary
refinement either sequentially updates atoms (e.g. [5],
[6]) or simultaneously updates all atoms using the
projected gradient method [7]. None of the methods
mentioned above has any convergence analysis. Re-
cently, an algorithm with convergence analysis was
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proposed in [23], based on the multi-block alternating
iteration scheme [16].

The `1-norm based approach has its drawbacks, e.g.
it results in over-penalization on large elements of a
sparse vector [24], [25]. To correct such biases caused
by the `1-norm, several non-convex relaxations of `0-
norm were proposed for better accuracy in sparse
coding, e.g., the non-convex minimax concave in [26]
and the smoothly clipped absolute deviation in [24].
Proximal algorithms have been proposed in [27], [28],
[29] to solve these problems containing non-convex
relaxations. Again, these methods can only guaran-
tee that sub-problems during each iteration can be
solved using some convergent method. The question
of global convergence of the whole iteration scheme
remains open.

The block coordinate descent (BCD) method was
proposed in [30] for solving multi-convex problems,
which are generally non-convex but convex in each
block of variables. It is known that the BCD method
may cycle and stagnate when being applied to solve
non-convex problems; see e.g. [31]. A multi-block co-
ordinate descent method was proposed in [16] which
updates each block via either the original method, the
proximal method, or the linearized proximal method.
Its global convergence property was established for
multi-convex problems, which are not applicable to
the cases discussed in this paper. The recently pro-
posed PAM [32] updates each block using the proxi-
mal method. The sub-sequence convergence property
was established in [32], and the global convergence
property was established in [12] for the case of two-
block alternating iterations. In [13], PALM, which
satisfies the global convergence property, was pro-
posed to solve a class of non-convex and non-smooth
optimization problems; it updates each block using
the linearized proximal method. PALM is applicable
to problems in sparse coding.

The work presented in this paper is closely re-
lated to these block coordinate descent methods. The
proposed scheme is also a multi-block alternating
iteration scheme, but it is different from these pre-
vious methods in several aspects, owing to it be-
ing tailored for sparse coding problems. It enables
block-wise granularity in the choice of update scheme
(i.e. between the proximal method and the linearized
proximal method). Such flexibility is helpful to de-
velop efficient numerical methods that are optimized
for the specific problems in practical applications.
In addition, motivated by the practical performance
gain of an acceleration technique used in the K-SVD
method, we developed an accelerated plain dictionary
learning method. The proposed dictionary learning
methods show their advantages over existing ones in
various sparse coding based applications. The global
convergence property is also established for all the
algorithms proposed in this paper.

3 NUMERICAL ALGORITHM

3.1 Preliminaries on non-convex analysis

In this section, we introduce some notation and pre-
liminaries which will be used in the remainder of this
paper. Vectors and matrices are denoted by lower and
uppercase letters, respectively. Sets are denoted by
calligraphic letters. Given a vector y ∈ Rn, yj denotes
the j-th entry. For a matrix Y ∈ Rm×n, Yj ∈ Rn
denotes the j-th column and Yij denotes the i-th
entry of Yj . Given a matrix Y ∈ Rm×n, its infinity
norm is defined as ‖Y ‖∞ = maxi,j |Yij |, and its `0
norm, denoted by ‖Y ‖0, is defined as the number of
nonzero entries in Y . The `2 norm of vectors and the
Frobenius norm of matrices are uniformly denoted as
‖ · ‖. Given a positive constant λ > 0, the so-called
hard-thresholding operator Tλ(Y ) is defined as

Tλ(x) =


x, if |x| > λ;

{0, λ}, if |x| = λ;

0, otherwise,

when applied to scalar variables. When applied to
matrix Y , Tλ(Y ) applies Tλ on each entry of Y . For a
set S, its associate indicator function δS is defined by

δS(Y ) =

{
0, if Y ∈ S;

+∞, if Y /∈ S.

For a proper and lower semi-continuous (PLS) func-
tion, denoted as f : Rn → R ∪ {+∞}, the domain of
f is defined by domf = {x ∈ Rn : f(x) < +∞}. Next,
we define the critical points of a PLS function.

Definition 3.1 ( [13]). Consider a PLS function f .
• The Fréchet subdifferential of f is defined as

∂̂f(x) =

{
u : lim inf

y→x,y 6=x

f(y)− f(x)− 〈u, y − x〉
‖y − x‖

≥ 0

}
if x ∈ domf , and ∅ otherwise.

• The limiting subdifferential of f is defined as

∂f(x) = {u : ∃ xk → x, f(xk)→ f(x)

and uk ∈ ∂̂f(xk)→ u}.

• x is a critical point of f if 0 ∈ ∂f(x).

It can be seen that if x is a local minimizer of f ,
then 0 ∈ ∂f(x). If f is convex, then

∂f(x) = ∂̂f(x) = {u|f(y) ≥ f(x) + 〈u, y − x〉,∀y},

i.e., 0 ∈ ∂f(x) is the first order optimal condition. If
({ci}, D) is a critical point of (1), then it satisfies

(D>Dci)j = (D>yi)j , if (ci)j 6= 0.

Definition 3.2 (Lipschitz Continuity). A function f is
a Lipschitz continuous function on the set Ω, if there exists
a constant L0 > 0 such that

‖f(x1)− f(x2)‖ ≤ L0‖x1 − x2‖ ∀x1, x2 ∈ Ω.
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L0 is called the Lipschitz constant.

Definition 3.3. A function H is called m-strongly convex
if and only if H(x)− m

2 ‖x‖
2 is convex.

If H is m-strongly convex and differentiable, then

H(x) ≥ H(y) + 〈∇f(y), x− y〉+ m
2 ‖x− y‖

2, ∀x, y. (4)

In the following, we introduce the so-called proximal
operator ( [33]) defined as

Proxfλ(x) := argmin
y∈Rn

f(y) + λ
2 ‖y − x‖

2. (5)

For any PLS function F , the proximal operator de-
fined in (5) is non-empty and compact for all λ ∈
(0,+∞); see e.g. [13]. For certain functions, the proxi-
mal operator (5) is explicitly defined, e.g., Proxfλ(x) =
T√

2/λ
(x) when f = ‖ · ‖0.

3.2 Problem Formulation
The optimization arising from most existing sparse
coding based approaches can be expressed as follows,

min
D,C,W

Q(D,C,W ) + λΨ(C) + µΦ(D) + τΓ(W )

subject to D ∈ D, C ∈ C,
(6)

where D = [D1, . . . , Dm] denotes the dictionary,
C = [C1, . . . , Cp] denotes sparse codes, W denotes an
optional variable such as a linear classifier and D, C
are feasible sets for D and C, respectively. The most
often used feasible set D is the normalized dictionary

D = {D ∈ Rn×m : ‖Di‖ = 1, i = 1, . . . ,m}. (7)

In this paper, we also define a feasible set for the
code C for better stability of the model (6):

C = {C ∈ Rp×m : ‖C‖∞ ≤M}, (8)

where M is the upper bound, which can be set arbi-
trarily large to make it applicable in any application.

The terms in the objective function of (6)
vary among different approaches. The fidelity term
Q(D,C,W ) is usually based on the Frobenius norm.
The term Ψ(·) is a sparsity promoting function such
as ‖ · ‖0. The term Φ(D) is some regularizer for
the dictionary, e.g. a regularizer based on mutual
coherence ‖D>D − I‖2. The last term is a regularizer
for the optional variable, e.g. Γ(W ) = ‖W‖2, used in
some sparse coding based classifiers.

Example 3.4. A list of some instances of (6) that have
appeared in sparse coding based applications.
(a) In the K-SVD method for sparse image modeling [34],

Q(D,C) =
1

2
‖Y −DC>‖2; Ψ(C) = ‖C‖0, (9)

where Y denotes the collection of image patches and
µ = τ = 0.

(b) In discriminative K-SVD based recognition [15],

Q(D,C,W ) = 1
2‖Y −DC

>‖2+ α
2 ‖L−WC>‖2 (10)

where Y denotes the training samples, W denotes a
multi-class linear classifier and L denotes the class
labels of training samples. Γ(W ) = ‖W‖2, Ψ(C) =
‖C‖0 or δK0

(C) where K0 denotes the set of all vectors
with k0 non-zero elements.

(c) In label consistent K-SVD based visual recogni-
tion [14], the function Q has the same form as (10) but
with different definitions of W , and L—the variable W
contains both a linear classifier and a linear transform
and L contains both class labels of training samples
and label consistency of atoms.

(d) In incoherent dictionary learning for signal processing
and face recognition, besides the same term Q as (b),
we have an additional non-convex term for lowering
mutual coherence:

Φ(D) = ‖D>D − I‖2. (11)

In this paper, we propose a method for solving a
class of `0-norm related optimization problems which
covers all examples listed in Example 3.4.

3.3 Multi-block proximal alternating iterations
We first rewrite most existing sparse coding related
optimization problems in the following manner:

min
x=(x0,...,xN )

H(x) = P (x) +

N∑
i=0

ri(xi), (12)

where xi ∈ Rni , i = 0, 1, . . . , N . Let

P ki (·) := P (xk0 , · · · , xki−1, ·, xk−1
i+1 , . . . , x

k−1
N )

be a function with respect to variable xi when xj =
xkj , j 6= i. Throughout this paper, we make the follow-
ing assumptions about the objective function H .

Assumption 3.5. Let dom(H) = X0 × X1 × . . . × XN .
The function H = P +

∑N
i=1 ri defined in (12) satisfies the

following conditions:
1) The function H is a semi-algebraic function.
2) ri, i = 0, 1, . . . , N are PLS functions.
3) inf H > −∞, inf P > −∞ and inf ri > −∞,∀i.
4) P is a C1 function and ∇P is Lipschitz continuous

on any bounded set.
5) For each block of variables xi, ∇iP is Li-Lipschitz

continuous in Yi where Li is a function of
(x1, . . . , xi−1, xi+1, . . . , xN ), and Yi = {x : ‖x‖ ≤
2M} if Xi is bounded in a volume with diameter M
and Rni otherwise.

We propose a multi-block hybrid proximal alternat-
ing method for solving the optimization problem (12),
which allows updating each block of variables using
either the proximal method or the linearized proxi-
mal method. In other words, there are two schemes
available for updating xki :

xk+1
i ∈

 Prox
Pk

i +ri
µk
i

(xki ), (13a)

Proxri
µk
i

(xki −∇P ki (xki )/µki ), (13b)
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During each iteration, each block can be either up-
dated via the proximal method (13a) or via the lin-
earized proximal method (13b). Such flexibility fa-
cilitates optimizing for performance when applied
to specific problems in practice, an advantage over
methods such as PALM, which updates each block
using the linearized proximal method. The proposed
algorithm is outlined in Alg. 1.

Algorithm 1 Multi-block hybrid proximal alternating
method for solving (12)

1: Main Procedure:
1. Initialization: x0

i and µ0
i , i=0,. . . ,N.

2. For k = 0, . . . ,K,
(a) For 0 = 1, . . . , N ,

xk+1
i ∈ Prox

Pk
i +ri
µk
i

(xki )∪Proxri
µk
i

(xki−∇P ki (xki )/µki )

End
(b) Update µk+1

i .
End

Remark 3.6 (Parameter Updating). Let Ω1 denote the
set of variables using (13a) and let Ω2 denote the set of
variables using (13b). Then, µki is updated according to
the following criteria:

1) For xi ∈ Ω1, µki ∈ (a, b) where a, b > 0.
2) For xi ∈ Ω2, µki ∈ (a, b) and µki > Lki , where Lki

denotes the Lipschitz constant of ∇P ki .
The details of updating µki will be discussed when applying
Alg. 1 to solving specific problems.

Theorem 3.7. [Global Convergence] The sequence {xk}
generated by Alg. 1 converges to a critical point of (12), if
the following two conditions are both satisfied:

1) the objective function H defined in (12) satisfies
Assumption 3.5.

2) the sequence {xk} is bounded.

Proof: see Appendix A.
As we will show in the next section, Theorem 3.7

is applicable to all of the cases listed in Example 3.4.

3.4 Applications of Algorithm 1 in Sparse Coding

In this section, based on Alg. 1, we present two
dictionary learning methods for sparse coding based
applications. The main one is the accelerated plain
dictionary learning method which covers case (a) in
Example 3.4, as well as the cases (b) and (c) with
very minor modifications. It is not applicable to case
(d) owing to the existence of the term ‖D>D − I‖2.
The other is the discriminative dictionary learning method
which covers all four cases in Example 3.4, including
the case (d). Under the same alternating iteration
scheme, these two methods differ from each other in
how the blocks of variables are formed and how they
are updated.

3.4.1 Accelerated plain dictionary learning

Recall that the minimization problem for plain dictio-
nary learning can be expressed as

min
D∈Rn×m,C∈Rp×m

1
2‖Y −DC

>‖2 + λ‖C‖0, (14)

subject to ‖Di‖2 = 1, i = 1, . . . ,m and ‖C‖∞ ≤M . we
split (C,D) into the following variable blocks:

(x0, x1, . . . , xN ) := (C;D1, D2, . . . , Dm).

Then, Alg. 1 can be applied to solve (14), in which
r0(C) = λ‖C‖0 + δC(C),

ri(Di) = δD(Di), i = 1, 2 . . . ,m,

P (C,D1, . . . , Dm) = 1
2‖Y − [D1, D2, . . . , Dm]C>‖2,

where D, C are defined in (7) and (8) respectively.
During each iteration, we propose the following

update strategy: code C is updated via the linearized
proximal method and the dictionary atoms Dis are
updated via the proximal method. In other words, Ck+1 ∈ Proxr0

µk(Ck −∇P k0 (Ck)/µk), (15a)

Dk+1
i ∈ Prox

Pk
i +ri
λk
i

(Dk
i ), i = 1, 2, . . . ,m. (15b)

Both sub-problems, (15a) and (15b), have closed-form
solutions. Define

Uk = Ck − 1
µk∇P k0 (Ck),

Ck,i = (Ck+1
1 , . . . , Ck+1

i−1 , C
k
i+1, . . . , C

k
p ),

Dk,i = (Dk+1
1 , . . . , Dk+1

i−1 , D
k
i+1, . . . , D

k
m),

Rk,i = Y −Dk,i(Ck,i)>,

pk,i = Rk,iCki + λkiD
k
i .

(16)

Then we have

Proposition 3.8. Suppose M is chosen such that M >√
2λ/µk. Then, both (15a) and (15b) have closed form

solutions which are given by{
Ck+1 = sign(Uk)�min(

∣∣∣T√
2λ/µk(Uk)

∣∣∣ ,M),

Dk+1
i = (‖pk,i‖2)−1pk,i, i = 1, , 2 . . . ,m,

(17)
where � denotes Hadamard product, and Uk, pk,i are given
by (16).

Proof: By direct computation, we know minimiza-
tion problems (15a) and (15b) are equivalent to{

Ck+1 ∈ argminC∈C
µk

2λ‖C − U
k‖2 + ‖C‖0,

Dk+1
i ∈ argmin‖d‖2=1

c0
2 ‖d− p

k,i/c0‖2,
(18)

where c0 = λkj + ‖Ckj ‖22. Then, it can be seen that the
solutions of two sub-problems are given by (17).

Remark 3.9 (Setting of step sizes µk, {λki }). There are
m+1 step sizes that need to be set: µk in (15a) and {λki }mi=1

in (15b). Let 0 < a < b be two constants; step size µk can
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be chosen as µk = max(ρL(Dk), a), where ρ > 1 and
L(Dk) satisfies

‖∇CP (C1, Dk)−∇CP (C2, Dk)‖ ≤ L(Dk)‖C1 − C2‖.

The step sizes λki are simply chosen as λki ∈ (a, b).
Moreover, we can set L(Dk) to be the maximum eigenvalue
of the matrix Dk>Dk. It can be seen that L(Dk) is a
bounded sequence as each column in D is of unit norm.

The iterative scheme (18) can be further improved
by adding an additional acceleration step in each
iteration. Such an acceleration technique was first
introduced in the approximated K-SVD method [35].
In the approximated K-SVD method, after updating
one atom during dictionary refinement, one imme-
diately updates the associated coefficients to further
decrease the objective function value. Thus, we can
also incorporate such a technique into the iterative
scheme (18) for faster convergence.

Let RI denote the sub-matrix of R whose columns
are indexed in the index set I . Then, we immedi-
ately update Ci via solving the following optimization
problem:

Ĉk+1
i ∈ argmin

‖c‖∞≤M

1

2
‖Rk,i −Dk+1

i c>‖2 (19)

subject to c` = 0, ` ∈ Ii, where Ii = {` ∈ ZN : Ck`,i = 0}
and Rk,i is defined in (16). The minimization problem
(19) has a closed form solution given by

Ĉk+1
`,i = sign(g`) min(|g`|,M), (20)

where g = (Rk,iIi )>Dk+1
i if ` /∈ Ii and 0 otherwise.

A detailed description of the accelerated plain dic-
tionary method for solving (14) is given in Alg. 2.
Even with the additional acceleration step (b) (ii),
Alg. 2 remains global convergent.

Theorem 3.10. The sequence, (Ck, Dk), generated by
Alg. 2 is bounded and converges to a critical point of (14).

Proof: see Appendix B.

Remark 3.11. Alg. 2 can also be applied to solving cases
(b)-(c) in Example 3.4 by including the update of block W .
The update strategy is the same as that of the discriminative
dictionary learning method discussed in the next section.
However, Alg. 2 is not suitable for solving case (d) in
Example 3.4. The existence of the term ‖D>D−I‖2 in the
objective function of the case (d) makes the iterative scheme
(18) not efficient as the sub-problems no longer have closed
form solutions.

3.4.2 Discriminative incoherent dictionary learning
Discriminative incoherent dictionary learning is based
on the following model:

min
D,C,W

1
2‖Y −DC

>‖2 + α
2 ‖L−WC>‖2

+µ
2 ‖D

>D − I‖2 + λ‖C‖0 + τ
2‖W‖

2,
(21)

Algorithm 2 Accelerated plain dictionary learning
1: INPUT: Training signals Y ;
2: OUTPUT: Learned dictionary D;
3: Main Procedure:

1. Initialization: D0, ρ > 1, K ∈ N and b > a > 0.
2. For k = 0, 1, . . . ,K,
(a) update sparse code C:{
µk = max(ρ‖Dk>Dk‖2, a),

Ck+1 = sign(Uk)�min(|T√
2λ/µk(Uk)|,M),

where Uk is defined by (16).
(b) update dictionary D: for i = 1, . . . ,m,

(i). Update Di via

Dk+1
i = (‖pk,i‖2)−1pk,i,

where pk,i is defined in (16) with λki ∈ (a, b).
(ii). re-update the coefficients Ci

Ck+1
i := Ĉk+1

i ,

where Ĉk+1
i is given by (20).

where D ∈ D, C ∈ C and D, C are defined in (7) and
(8) respectively. Clearly, all four cases in Example 3.4
are covered by this model. We propose forming the
blocks of variables by splitting (C,D,W ) into

(W,C1, C2, . . . , Cm, D1, D2, . . . , Dm).

Recall that the term ‖D>D − I‖2 in (21) is equal to
2
∑
i 6=j(D

>
i Dj)

2 since ‖Di‖ = 1,∀i = 1, . . . ,m. Then
we have

P (· · · ) = 1
2‖Y−DC

>‖2+α
2 ‖L−WC>‖2+µ

∑
i 6=j

(D>i Dj)
2

and
r0(W ) = τ‖W‖2/2,
ri(Ci) = λ‖Ci‖0 + δC(Ci), i = 1, 2 . . . ,m,

ri+m(Di) = δD(Di), i = 1, 2 . . . ,m,

(22)

where D, C are defined in (7) and (8) respectively.
Based on Alg. 1, we propose the following update

strategy: both the linear classifier W and the sparse
code C are updated using the proximal method, and
the dictionary D is updated using the linearized prox-
imal method. In other words,

W k+1 ∈ Prox
Pk

0 +r0
γk (W k);

Ck+1
i ∈ Prox

Pk
i +ri
µk
i

(Cki ), i = 1, 2, . . . ,m;

Dk+1
i ∈ Prox

ri+m

λk
i

(dki ), i = 1, . . . ,m,

(23)

where dki = Dk
i −∇P ki (Dk

i )/λki . In (23), all three sub-
problems have closed form solutions. Define

V k = αCk>Ck + (τ + γk)I,

qk,i = Rk,i>Dk
i + µkiC

k
i + Sk,i>W k+1

i ,

Dk,i = (Dk+1
1 , . . . , Dk+1

i−1 , D
k
i , . . . , D

k
m),

(24)
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where Rk,i is defined in (16) and

Sk,i = L−
∑
j<i

W k+1
i Ck+1>

i −
∑
j>i

W k+1
i Ck>i .

Then, we have

Proposition 3.12. Suppose M is chosen such that M >√
2λ/aki , where aki = ‖Dk

i ‖2 +µki . Then, all sub-problems
in (23) have closed form solutions given by

W k+1 = (αLCk + γkW k)(V k)−1,

Ck+1
i = sign(qk,i)�min(

∣∣∣T√
2λ/aki

(qk,i/aki )
∣∣∣ ,M),

Dk+1
i = (‖dk,i‖2)−1dk,i,

(25)

Proof: By direct computation, the minimization
problems in (23) are equivalent to

minW
α
2 ‖L−WCk>‖2 + γk

2 ‖W −W
k‖2 + τ

2‖W‖
2,

min‖c‖∞≤M
aki
2λ‖c− q

k,i/aki ‖2 + ‖c‖0, 1 ≤ i ≤ m,
min‖d‖2=1 ‖d− dk,i‖2, 1 ≤ i ≤ m.

It can be seen that the solutions of the above mini-
mization problems are given by (25).

Remark 3.13 (Updating step sizes γk, µki , λ
k
i ). There

are 2m+ 1 step sizes. Let a > b be two positive constants;
we simply set γk, µki ∈ (a, b). Step sizes λki can be set as
λki = max(ρLki , a), where Lki is the Lipschitz constant of
∇P ki+m in X = {d ∈ Rn : ‖d‖ ≤ 2}. Although it is not
easy to compute Lki , ‖Cki ‖2 +2µ‖Dk,i>Dk,i‖ is no smaller
than the Lipschitz constant Lki .

A detailed description of the discriminative dic-
tionary learning method for solving (21) is given in
Alg. 3. The global convergence property of Alg. 3 can
be shown using similar analysis as that of Alg. 1.

Corollary 3.14. The sequence, (W k, Ck, Dk), generated
by Alg. 3 is bounded and converges to a critical point of
(21).

Proof: see Appendix C.

Remark 3.15. The acceleration step used in Alg. 2 is not
helpful for further improving the performance of Alg. 3, as
the coefficients C are sequentially updated in Alg. 3, while
they are updated in Alg. 2 as one block.

4 EXPERIMENTS

In this section, the two proposed dictionary learning
methods are evaluated in two applications: image
denoising and visual recognition. Most existing sparse
coding based image denoising approaches are based
on model (9) of case (a) in Example 3.4. The three
models in cases (b)–(d) in Example 3.4 have been used
in various visual recognition applications.

Algorithm 3 Discriminative incoherent dictionary
learning

1: INPUT: Training signals Y ;
2: OUTPUT: Learned Incoherent Dictionary D;
3: Main Procedure:

1. Initialization: D0, C0, ρ > 1, and b > a > 0.
2. For k = 0, 1, . . . ,
(a) Update W : γk ∈ (a, b) and

W k+1 = (αLCk + γkW k)(V k)−1,

where V k is defined in (24).
(b) Update sparse code Ci: for i = 1, . . . ,m,

Ck+1
i = sign(qk,i)�min(|T√

2λ/aki
(qk,i/aki )|,M),

where qk,i is defined in (24) with µki ∈ (a, b).
(c) Estimate Di: for i = 1, . . . ,m,{
λki = max(ρ(‖Cki ‖22 + 2µ‖Dk,i>Dk,i‖2), a),

Dk+1
i = dk,i/‖dk,i‖2,

where dk,i is defined in (24).
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Fig. 2. Objective function value versus iteration number in
sparse coding based image de-noising.

1

Boat512 Fingerprint512 Hill512

Lena512 Man512 Peppers512

Fig. 3. Six test images for image denoising.
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4.1 Image Denoising
In image denoising, we follow the same procedure in
[11]. Through all the experiments in image denoising,
the dimension of the dictionary is set to be the same as
the K-SVD method [34], i.e. m = 4n, The dictionary is
learned from 4× 104 image patches randomly chosen
from the input noisy image. The patch size is 8×8. The
parameter λ is set to 15σ2 for the dictionary learning
process, where σ denotes noise standard deviation.
level, the parameter ρ is set to 1 + 10−3. All methods
used in experiments were set to run for at most 30
iterations. All experiments were preformed in the
Linux version of MATLAB R2011b (64 bit) running
on a PC workstation with an INTEL CPU (2.4 GHZ)
and 48 GB of RAM. The experiments are done on six
test images (see Fig. 3) with different noise standard
deviations.

Four dictionary learning methods were tested in
image denoising: the K-SVD method [35]1, PALM
[13], Alg. 2 and Alg. 3. Same as the K-SVD method,
the dictionary is initialized using an over-complete
DCT dictionary (see [11] for more details). Alg. 3 was
applied to solving (1) by setting the weight of the
incoherence term and the weight of discriminative
term to zero and removing the corresponding compu-
tational steps. The implementation of PALM is done
by splitting (C,D) into the blocks (C,D1, D2, . . . , Dm)
and updating each block using the linearized proxi-
mal method.

4.1.1 Computational efficiency
Fig. 2 shows how fast the objective function value
is reduced by each of the three methods. The K-
SVD method is not included as it considers an un-
constrained model whose objective function is dif-
ferent from the other three. It can be seen that both
Alg. 2 and Alg. 3 reduce the objective function value
noticeably faster than PALM. The difference between
Alg. 2 and Alg. 3 is rather minor.

A comparison of running time is shown in Tab. 1. It
can be seen that Alg. 2 and PALM are the fastest one,
while the K-SVD method and Alg. 3 are noticeably
slower. The speed of Alg. 2 and PALM on running
time agrees with the theoretical computational com-
plexity. Let K denote the average number of nonzero
entries in each column of C. By direct counting, the
total number of the dominant operations per iteration
in Alg. 2 is

TAlg. 2 = p(2nm+ 6Km+ 4Kn) + 6nm2.

When K � n ∼ m � p, it is about 2pnm, while it is
about 2pnm+ pK2m in the K-SVD method ( [35]).

Overall, Alg. 2 is the best performer as it is notice-
ably faster at reducing the objective function value
per iteration while at the same time not requiring
significantly more time per iteration.

1. http://www.cs.technion.ac.il/∼ronrubin/software.html

TABLE 1
Running time (seconds) versus dimension of dictonary atom

atom dimension 6x6 8x8 10x10 12x12 14x14 16x16

K-SVD 39 70 114 164 228 308
PALM 9 16 28 42 60 86
Alg. 2 10 18 30 45 66 96
Alg. 3 71 217 465 1011 1848 3094

K-SVD Alg. 2

Fig. 4. The dictionaries learned from the image ”Lena512”
with noise level σ = 25 using the K-SVD method and Alg. 2.

4.1.2 Quality of results
The denoising performance is measured in terms of
the PSNR value. See Tab. 2 for a comparison of
the PSNR values of the denoised results from five
methods: the DCT-based thresholding method, the K-
SVD method [34], PALM, Alg. 2 and Alg. 3. It can be
seen that in terms of the average PSNR value, the K-
SVD method, Alg. 2 and Alg. 3 are comparable, and
they are all better than the other two methods. Fig. 4
shows the dictionaries learned from noisy image by
both the K-SVD method and Alg. 2, and Fig. 5 gives
a visual illustration of the results from Alg. 2. Given
these results, it is evident that Alg. 2 yields results
very close to K-SVD while at the same time requiring
significantly less computation.

The proposed algorithms only can guarantee find-
ing a critical point of the relating non-convex problem.
Thus, same as the K-SVD method, they will yield dif-
ferent outcomes when using different initializations.
See Tab. 3 for a comparison of the average PSNR value

noisy image (σ = 25) restored image by Alg. 2

Fig. 5. Visual illustration of a noisy image and the denoised
one by Alg. 2.
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TABLE 2
PSNR values of the denoised results

Image Boat512 Fingerprint512 Hill512
σ 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DCT 36.79 33.49 31.34 29.96 28.90 36.34 32.25 29.68 28.29 26.85 36.54 32.93 31.11 30.02 29.00
K-SVD 37.17 33.64 31.73 30.36 29.28 36.59 32.39 30.06 28.47 27.26 36.99 33.34 31.43 30.17 29.19
PALM 37.08 33.48 31.46 30.05 28.95 36.50 32.21 29.84 28.18 26.85 36.98 33.28 31.35 30.07 29.06
Alg. 3 37.11 33.58 31.63 30.18 29.07 36.58 32.27 29.87 28.24 26.94 36.91 33.36 31.44 30.04 29.11
Alg. 2 36.97 33.53 31.65 30.31 29.18 36.59 32.35 30.03 28.44 27.17 36.94 33.31 31.29 30.02 29.06
Image Lena512 Man512 Peppers512
σ 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

DCT 38.29 35.25 33.39 32.03 30.96 37.16 33.12 31.01 29.65 28.67 37.06 34.48 33.02 31.89 30.95
K-SVD 38.59 35.47 33.70 32.38 31.32 37.61 33.62 31.45 30.13 29.11 37.77 34.72 32.37 32.26 31.39
PALM 38.46 35.35 33.50 32.15 31.08 37.42 33.45 31.31 29.92 28.86 37.50 34.58 33.02 31.79 30.80
Alg. 3 38.48 35.37 33.55 32.21 31.16 37.46 33.53 31.45 30.09 29.02 37.57 34.67 33.19 31.99 31.02
Alg. 2 38.49 35.41 33.57 32.25 31.19 37.46 33.47 31.43 30.02 29.00 37.68 34.64 33.22 32.14 31.18

TABLE 3
Average PSNR value of the denoised results using different

initializations

Initialization σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

Alg. 2, DCT 37.36 33.79 31.87 30.53 29.46
Alg. 2, RND 37.17 33.65 31.70 30.31 29.25
Alg. 3, DCT 37.35 33.80 31.86 30.46 29.38
Alg. 3, RND 37.16 33.64 31.68 30.33 29.27

of the denoised results from the proposed methods
using two different initial dictionaries: DCT and RND.
DCT refers to the aforementioned over-complete DCT
dictionary, and RND refers to a random subset of
the collection of image patches. It can be seen that
the denoising performance is influenced by how the
dictionary is initialized, but such influence is not
significant.

4.2 Image Recognition

In this section, the proposed methods were tested in
sparse coding based recognition tasks, composed of
three methods in Example 3.4, cases (b–d). Case (b)
is the D-KSVD method [15], case (c) is the LC-KSVD
method [14], and case (d) is the dictionary learning
method with structured incoherence [8]. Both the D-
KSVD method and the LC-KSVD method simulta-
neously perform dictionary learning and classifier
training using the K-SVD method. The dictionary
learning method with structured incoherence uses
some standard non-linear optimization solver.

Alg. 2 was applied to solving the dictionary learn-
ing problems in both the D-KSVD method and the
LC-KSVD method, and Alg. 3 was applied to solving
the optimization problem in case (d). Throughout the
experiments in this sub-section, the model parameters
of each model were set the same [14], independent of
the choice of numerical algorithm. The sparsity level
was also fixed by only keeping coefficients with the
k0 largest magnitudes when thresholding.

TABLE 4
Classification accuracies (%) on four datasets.

Dataset Training Case (b) Case (c) Case (d)
size K-SVD Alg. 2 PALM K-SVD Alg. 2 PALM Alg. 3

Yale B 1216 94.10 94.04 94.12 95.00 95.02 95.05 95.12
AR 2000 88.80 88.48 88.52 93.70 93.58 93.80 93.88

Caltech

5 49.6 49.9 49.8 54.0 54.2 54.2 54.8
10 59.5 59.9 60.1 63.1 63.1 63.2 63.6
15 65.1 65.2 65.0 67.7 67.5 67.6 68.3
20 68.6 68.7 68.5 70.5 70.2 70.2 72.2
25 71.1 70.8 71.0 72.3 72.3 72.1 72.7
30 73.0 73.2 73.2 73.6 73.4 73.5 73.9

Scene 1500 89.1 88.8 89.2 92.9 92.7 92.9 93.1

4.2.1 Face Recognition
The methods are evaluated on two face datasets:
Extended YaleB dataset [36] and AR face dataset [37].
Extended YaleB Dataset: the dataset [36] contains
2,414 images of 38 human frontal faces, with approxi-
mately 64 images ( representing different illumination
conditions and facial expressions ) for each person
and original images were cropped to 192×168 pixels.
Following [15], we projected each face image into a
504-dim feature vector using a zero-mean random
Gaussian matrix. The database was randomly split
into two halves: one half containing 32 images per
person used for training, and the remaining for vali-
dation.
AR Face Dataset: the dataset [37] consists of over 4000
frontal images from 126 individuals. For each individ-
ual, 26 pictures were taken in two separate sessions.
Following the standard evaluation procedure from
[14], [15], we used a subset of the database consisting
of 2,600 images from 50 male subjects and 50 female
subjects. For each person, 20 images were randomly
chosen for training and the remaining images were
used for test. Each image was cropped to 165 × 120
and then is projected itoto a 540-dim vector.

4.2.2 Object Classification
The Caltech-101 dataset [38] is a data set with 8677
images from 101 object categories and 467 images
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from an additional background category. Same as [39],
for each image, the SIFT feature based spatial pyra-
mid feature [40] was extracted and further reduced
to 3000-dim via PCA. Following standard protocol,
we randomly picked {5, 10, 15, 20, 25, 30} samples per
category for training and used the rest for test.

4.2.3 Scene classification
The experiments were done on the Scene-15
dataset [40], which contains both outdoor and
indoor scenes. The number of images per category
varies from 210 to 410, and the resolution of each
image is about 250 × 300. For each image, the
SIFT feature based spatial pyramid feature [40]
was extracted and further reduced to 3000-dim via
PCA. Following the experimental settings of [14],
we randomly selected 100 images per category for
training and used the rest for test.

4.2.4 Results and Discussion
The results are listed in Tab. 4. It can be seen that the
performance of Alg. 2 is at least comparable to that of
the K-SVD method or PALM in all scenarios. Overall,
the classification performance using the sparse coding
model in the case (d) of Example 3.4 is better than the
other three models, and Alg. 3 can be used for solving
the non-convex problem in case (d) of Example 3.4.

5 SUMMARY AND FUTURE WORK

In this paper, we proposed a multi-block alternating
proximal method with global convergence property
for solving a class of `0-norm related optimization
problems arising from sparse coding. The proposed
algorithms are not only theoretically sound for non-
convex problems arising from sparse coding based
applications, but were also shown to be computation-
ally efficient in practical sparse coding based applica-
tions. In future, we will further investigate stochastic
methods for solving the optimization problems in
sparse coding with the aim of converging to global
minimizers.
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APPENDIX A
PROOF OF THEOREM 3.7
At first, we define KL functions and semi-algebraic
functions used for the convergence analysis.

Definition A.1 (Kurdyka-Łojasiewicz property [13]).
Let f : Rd → (−∞,+∞] be a PLS function. The function
is said to have the KL property at x̄ ∈ dom∂f := {x ∈
Rd : ∂f 6= ∅} if there exist η > 0, a neighborhood X of x̄
and a concave and continuous function ψ : [0, η) → R+

which satisfies ψ(0) = 0, ψ is C1 on (0, η) and continuous
at 0 and ψ

′
(s) > 0,∀s ∈ (0, η), such that for all

x ∈ X ∩ {x : f(x̄) < f(x) < f(x̄) + η},

the following inequality holds:

ψ
′
(f(x)− f(x̄))dist(0, ∂f(x)) ≥ 1. (26)

If f satisfy the KL property at each point of dom∂f then
f is called a KL function.

Definition A.2. (Semi-algebraic sets and functions [12])
A subset S of Rn is called the semi-algebraic set if there
exists a finite number of real polynomial functions gij , hij
such that S =

⋃
j

⋂
i{x ∈ Rn : gij(x) = 0, hij(x) < 0}. A

function f is called the semi-algebraic function if its graph
{(x, t) ∈ Rn × R, t = f(x)} is a semi-algebraic set.

The main tool for the proof is the following theorem.

Theorem A.3 ( [41]). Assume H(z) is a PLS function
with inf H > −∞, the sequence {zk}k∈N is a Cauchy
sequence and converges to a critical point of H(z), if the
following four conditions hold:

(P1) Sufficiently decreasing: there exists some positive
constant ρ1, such that

H(zk)−H(zk+1) ≥ ρ1‖zk+1 − zk‖2, ∀k.

(P2) Relative error: there exists some positive constant
ρ2 > 0, such that for any wk ∈ ∂H(zk),

‖wk+1‖F ≤ ρ2‖zk+1 − zk‖, ∀k.

(P3) Continuity: there exists a subsequence {z(kj)}j∈N
and z̄ such that

z(kj) → z̄, H(zkj )→ H(z̄), as j → +∞.

(P4) KL property: H satisfies the KL property in its
effective domain.

By the theorem above, we only need to check that
the sequence generated by Alg. 1 satisfies the condi-
tions (P1)-(P4). Let Ω1,Ω2 denote the index sets of the
variables that use proximal update (13a), linearized
proximal update(13b) respectively, and define{

P ki (·) := P (xk+1
0 , · · · , xk+1

i−1 , ·, xki+1, . . . , x
k
N ),

P̃ ki (·) := P ki (xki ) + 〈∇P ki (xki ), · − xki 〉.

Condition (P1). Before proceeding, we first present
a lemma about continuous differentiable functions
which can be derived from [13, Lemma 3.1].

Lemma A.4. Let h : Rn → R be a continuously
differentiable function and ∇h is Lh-Lipschitz continuous
in Ω = {x : ‖x‖ ≤M}. Then, we have

h(u) ≤ h(v) + 〈u− v,∇h(v)〉+ Lh
2
‖u− v‖2F ,∀u, v ∈ Ω1,

where Ω̄ = {x : ‖x‖ ≤M/2}.

Proof: For any x, y ∈ Ω̄, by the triangular inequal-
ity, we know x + αy ∈ Ω where 0 ≤ α ≤ 1. Define
g(α) = h(x+ αy). Then, we have

h(x+ y)− h(x) = g(1)− g(0) =

∫ 1

0

dg

dα
(α)dα

≤
∫ 1

0

y>∇h(x)dα+ |
∫ 1

0

y>(∇h(x+ αy)−∇h(x))dα|

≤y>∇h(x) + ‖y‖
∫ 1

0

Lhα‖y‖dα = y>∇h(x) + Lh‖y‖2/2

which completes the proof.
When i ∈ Ω1, the term P ki (xki ) + ri(x

k
i ) is no less than

P ki (xk+1
i ) + ri(x

k+1
i ) +

µki
2
‖xk+1

i − xki ‖2. (27)

When i ∈ Ω2, the term P ki (xki ) + ri(x
k
i ) is no less than

P̃ ki (xki ) + ri(x
k+1
i ) +

µki
2
‖xk+1

i − xki ‖2. (28)

By the Lipschitz continuity of ∇iP and lemma A.4,

P ki (xk+1
i ) ≤ P̃ ki (xki ) +

Lki
2
‖xk+1

i − xki ‖2. (29)

The combination of (28) and (29) leads to the fact that
P ki (xki ) + ri(x

k
i ) is no less than

P ki (xk+1
i ) + ri(x

k
i ) +

µki − Lki
2

‖xk+1
i − xki ‖2. (30)

Summing up (27) and (30) gives the term

H(xk)−H(xk+1) = P k0 (xk0)− P kN (xk+1
N )
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is no less than∑
i∈Ω1

µki
2
‖xk+1

i − xki ‖2 +
∑
i∈Ω2

µki − Lki
2

‖xk+1
i − xki ‖2,

as P ki+1(xki+1) = P ki (xk+1
i ). Let ρ1 = min{(µki −Lki )/2 :

k ∈ N, i ∈ Ω2}. Then, ρ1 > 0 since µki > Lki which
gives µki ∈ (a, b). Thus, Condition (P1) is satisfied.

Condition(P2). If i ∈ Ω1, we have

0 ∈ ∇P ki (xk+1
i ) + µki (xk+1

i − xki ) + ∂ri(x
k+1
i ). (31)

Define V ki = −∇P ki (xk+1
i )− µki (xk+1

i − xki ). Then,

ωki := V ki +∇iP (xk+1) ∈ ∂iH(xk+1).

If {xk} is bounded, since ∇P is Lipschitz continuous
on any bounded set, there exists M1 > 0 such that

‖wki ‖ ≤M1‖xk+1 − xk‖,∀i ∈ Ω1. (32)

Similarly, if i ∈ Ω2, we have

0 ∈ ∇P ki (xki ) + µki (xk+1
i − xki ) + ∂ri(x

k+1
i ).

Define V ki = −∇P ki (xki )− µki (xk+1
i − xki ). Then,

ωki := V ki +∇iP (xk+1) ∈ ∂iH(xk+1).

By the boundedness of {xk} and Lipschitz continuity
of ∇P , we know there exists M2 > 0 such that

‖wki ‖ ≤M2‖xk+1 − xk‖,∀i ∈ Ω2. (33)

Define M = N max(M1,M2). Then (32) and (33) lead
to ‖ωk‖ ≤ M‖xk+1 − xk‖, where ωk = (ω1, . . . , ωN )
such that ωi = ωki when i ∈ Ω1 or i ∈ Ω2. Therefore,
Condition (P2) is satisfied.

Condition (P3). Consider two convergent sub-
sequences xkj → x̄ and xkj−1 → ȳ of a bounded
sequence {xk}. We first show that x̄ = ȳ. Given any
positive integer j, from Condition (P1), we have

H(x0)−H(xj+1) > ρ

j∑
k=0

‖xk − xk+1‖2. (34)

Since {H(xj)} is decreasing and inf H > −∞, there
exist some H̄ such that H(xj) → H̄ as j → +∞. Let
j → +∞ in (34), we have

+∞∑
k=0

‖xk − xk+1‖2 < H(x0)− H̄ < +∞.

which implies lim ‖xk − xk−1‖ = 0. Then, we have
lim ‖xkj+1 − xkj‖ = 0 and x̄ = ȳ.

Denote x̄ = (x̄1, . . . , x̄N ). For i ∈ Ω1, we have for all
xi ∈ Xi

P ki (xk+1
i ) + ri(x

k+1
i ) +

µki
2
‖xk+1

i − xki ‖2

≤ P ki (xi) + ri(xi) +
µki
2
‖xi − xki ‖2.

(35)

Let k = kj − 1, xi = x̄i in (35) and j → +∞, we have
then lim supj→+∞ ri(x

kj
i ) ≤ ri(x̄i).

For i ∈ Ω2, we have

P̃ ki (xk+1
i ) + ri(x

k+1
i ) +

µki
2
‖xk+1

i − xki ‖2

≤ P̃ ki (xi) + ri(xi) +
µki
2
‖xi − xki ‖2.

(36)

Let k = kj − 1, xi = x̄i in (36) and j → +∞, by
the Lipschitz continuity of ∇P and Condition (P1),
we have lim supj→+∞ ri(x

kj
i ) ≤ ri(x̄i). Together with

the fact that ri is lower semi-continuous, we have
limj→+∞ ri(x

kj
i ) = ri(x̄i),∀i = 1, 2 . . . , N. Therefore,

by the continuity of P , we conclude that

lim
j→+∞

P (xkj ) +

N∑
i=1

ri(x
kj
i ) = P (x̄) +

N∑
i=1

ri(x̄i).

4. Condition (P4). The function H in Theorem 3.7
is a semi-algebraic function [13], which automatically
satisfies the so-called KL property according to the
following theorem in [13].

Theorem A.5. ( [13]) Let f is a PLS and semi-algebraic
function, then f satisfies the KL property in domf .

APPENDIX B
PROOF OF THEOREM 3.10
Due to space limitation, we only prove the conver-
gence of Alg. 2 for m = 1. The proof can be easily ex-
tended to the case of m > 1 with small modifications.
For m = 1, the objective function in (14) can be rewrit-
ten as H(c, d) = F (c) +Q(c, d) +G(d), c ∈ Rn, d ∈ Rp,
where F,Q,G are defined as F (c) =

∑p
i=1 Fi(ci) =

p∑
i=1

λ‖ci‖0 + δX (ci),

G(d) = δU (d), Q(c, d) = 1
2‖Y − dc

>‖2.
(37)

where U = {d : ‖d‖ = 1} and X = {c : |ci| ≤ M}. For
a vector c, let cI denote the sub-vector of c contains
the entries indexed in I . Define Qkd = Q(vk, d). Then,
Alg. 2 can be re-written as

vk ∈ ProxF2λ/µk(ck − 1

µk
∇cQ(ck, dk)), (38a)

dk+1 ∈ Prox
G+Qk

d

λk (dk), (38b)

ck+1 : ck+1
Ick

= 0 and ck+1
Ik
∈ argmin

c̃∈X
fki (c̃), (38c)

where Ik = {i : vki 6= 0}, Ŷ = YIk and fk(c̃) = 1
2‖Ŷ −

dk+1c̃>‖2. It is noted that fk is strongly convex. Define
zk = (ck, dk) and

uk+1 = ‖vk − ck‖+ ‖ck+1 − vk‖+ ‖dk+1 − dk‖.

In the next, we introduce a series of lemmas which
are the main ingredients of the proof.

Lemma B.1. Let {zk} denote the sequence generated by
(38a)-(38c). Then, there exists ρ > 0 such that

H(zk)−H(zk+1) ≥ ρu2
k+1 (39)



13

and ∞∑
k=1

u2
k <∞, lim

k→+∞
uk = 0. (40)

Proof: By (27) and (30), the updates (38a) and (38b)
imply that there exists ρ1 > 0 such that{

H(ck, dk)−H(vk, dk) ≥ ρ1‖ck+ 1
2 − ck‖2,

H(vk, dk)−H(vk, dk+1) ≥ ρ1‖dk+1 − dk‖2,
(41)

From (38c) and (4), we have

fk(vkIk)− fk(ck+1
Ik

) ≥ 1

2
‖vkIk − c

k+1
Ik
‖2 =

1

2
‖ck+1 − vk‖2

as ‖dk+1‖2 = 1 and ck+1
Ick

= vkIck
, which implies

H(vk, dk+1)−H(ck+1, dk+1) ≥ 1

2
‖ck+1 − vk‖2.

Together with (41), we have

H(zk)−H(zk+1) ≥ ρu2
k+1 (42)

by the Cauchy-Schwarz inequality, where ρ =
min(ρ1, 1/2)/3. Thus, {H(Zk)} is a decreasing se-
quence and H(Z) ≥ 0. Let H̄ be the limit of H(zk).
Telescoping the inequality (42) gives

∞∑
k=1

u2
k ≤

1

ρ
(H(z0)− H̄) <∞,

which leads to limk→+∞ uk = 0.

Lemma B.2. Let {zk} denote the sequence generated by
(38a)-(38c). Then, there exists

wk+1 := (wk+1
c , wk+1

d ) ∈ ∂H(zk+1)

and M > 0, such that ‖wk+1‖ ≤Muk+1.

Proof: By (31), the scheme (38b) implies

−∇dQ(vk, dk+1)− λk(dk+1 − dk) ∈ ∂G(dk+1
i ),

Then, we have

ωk+1
d :=∇dQ(zk+1)−∇dQ(vk, dk+1)− λk(dk+1 − dk)

∈∇dQ(zk+1) + ∂G(dk+1
i ) = ∂dH(zk+1),

and

‖ωk+1
d ‖ ≤ L‖ck+1 − vk‖+ b‖dk+1 − dk‖ (43)

by the Lipschitz continuity of ∇Q. Additionally, we
have −(∇cQ(zk) + µk(vk − ck)) ∈ ∂F (vk) from (38a),
and

∂ciF (ck+1
i ) = ∂ciF (vk),∀i ∈ Ick,

from (38c). So, define

ωk+1
cIc

k

:= ∂cIc
k
Q(zk+1)− ∂cIc

k
Q(zk)− µk(vkIck − c

k
Ick

)),

then, ωk+1
cIc

k

∈ ∂cIc
k
H(zk+1). By the Lipschitz continuity

of ∇H and the boundedness of zk, there exists M1 > 0
such that

‖ωk+1
cIc

k

‖ ≤M1uk+1. (44)

For any i ∈ Ik we have

−∂cifk(ck+1
Ik

) ∈ ∂ciF (ck+1),

as 0 ∈ ∂‖x‖0,∀x. Consequently, we have

ωk+1
cIk

:= ∂cIkQ(zk+1)− ∂cIk f
k(ck+1

Ik
) ∈ ∂cIkH(zk+1).

It is easy to know that ωk+1
cIk

=0. Let

ωk+1 = (ωd+1
c , ωk+1

d ) = (ωk+1
cIk

, ωk+1
cIc

k

, ωk+1
d ).

Then, from (43), (44), we have ωk+1 ∈ ∂H(zk+1) and
‖ωk+1‖ ≤Muk+1, where M = max(L, b,M1).

Lemma B.3. Let {zk} denote the sequence generated by
(38a)-(38c). For any convergent sub-sequence zkj → z̄ =
(c̄, d̄) of {zk}, then z̄ is a critical point of (14).

Proof: Recall that limj→+∞ ukj = 0. Thus, vkj−1 →
ĉ, zkj−1 → ẑ and ĉ = c̄, ẑ = z̄. From (38a), we have

Q̂
kj−1
c (vkj−1) + F (vkj−1) ≤ Q̂kj−1

c (c) + F (c), (45)

where

Q̂kc (c) = 〈∇cQ(c, dk), c− ck〉+
µk

2
‖c− ck‖2.

Replacing c by c̄ in (45) and let j → +∞, we have

lim sup
j→+∞

F (vkj−1) ≤ F (c̄),

by the Lipschitz continuity of ∇Q, the boundedness
of {zk} and (40). As ‖ckj‖0 ≤ ‖vkj−1‖0, we have

lim sup
j→+∞

F (ckj ) ≤ lim sup
j→+∞

F (vkj−1) ≤ F (c̄).

Together with the fact that F is lower semi-
continuous, we have limj→+∞ F (ckj ) = F (c̄). Since
dk ∈ U and Q is continuous, limj→+∞H(zkj ) = H(z̄).
From Lemma B.2, there exists ωkj ∈ ∂H(zkj ) such that
ωkj → 0 by (40), which means z̄ is a critical point of
(14). The proof is complete.

The next lemma [13] presents a uniformized KL
property related to KL functions which will be used
to prove the global convergence of the sequence {zk}.

Lemma B.4 ( [13]). Let Ω be a compact set and let σ
be a PLS function. Assume that σ is constant on Ω and
satisfies the KL property at each point of Ω. Then, there
exist ε > 0, η > 0 and a concave ψ : [0, η] → R+ with
ψ(0) = 0, ψ

′
(s) > 0 for all s ∈ (0, η) and ψ ∈ C1,

continuous at 0, such that for all ū in Ω and all u in the
following intersection:

{u : dist(u,Ω) ≤ ε} ∩ {u : σ(ū) < σ(u) ≤ σ(ū) + η},

one has, ψ
′
(σ(u)− σ(ū))dist(0, ∂σ(u)) ≥ 1.

The global convergence of the sequence {zk} is
established the following theorem, whose proof is
similar to that of [13, Theorem 1].

Theorem B.5. The sequence {zk} generated by (38a)-
(38c) converges to a critical point of H .
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Proof: As shown in Appendix C, H(z) is a semi-
algebraic function and thus is a KL function. Let
w(z0) be the set of limit points of the sequence
{zk} starting from the point z0. By the bounded-
ness of {zk}, w(z0) is a nonempty, compact set as
w(z0) =

⋂
q∈N

⋃
k≥q{zk}. Furthermore, as H(zk) is

decreasing and bounded below, there exists H such
that H̄ = limk→+∞H(zk). Then, for any z̄ ∈ w(z0),
there exists a sub-sequence zkj converging to z̄ as
j → +∞. First of all, we know H(zkj ) converges to H̄
as H(zk) converges to H̄ . From lemma B.3, we have
H̄ = limH(zkj ) = H(Z̄). It implies that H(z) = H̄ for
all z ∈ w(z0).

In the next, we assume H(zk) < H(z̄). Otherwise,
assume H(zk0) = H̄ , from the decreasing property of
the sequence {zk}, we know zk = zk0 for all k > k0.
Then, from lemma B.4 with Ω = w(z0), there exists `,
such that for k > `, we have

ψ
′
(H(zk)−H(z̄))dist(0, ∂H(zk)) ≥ 1. (46)

From Lemma B.2, we have

ψ
′
(H(zk)−H(z̄)) ≥ 1

M
uk, (47)

where M > 0. Meanwhile, as ψ is concave, we have

ψ(H(zk)−H(z̄))− ψ(H(zk+1)−H(z̄))

≥ ψ
′
(H(zk)−H(z̄))(H(zk)−H(zk+1)).

(48)

Define Mp,q:= ψ(H(zp)−H(z̄))−ψ(H(zq)−H(z̄). From
lemma B.1, (47) and (48), there exists c0 > 0, such that
for k > `, Mk,k+1≥ u2

k+1/c0uk. Thus,

2uk+1 ≤ uk + c0 Mk,k+1 (49)

by Cauchy-Schwartz inequality. Summing (49) over i,
we have

2uk+1 +

k∑
i=l+1

ui ≤ u` + C M`+1,k+1,

as Mp,q + Mq,r=Mp,r. Then, for any k > `,

k∑
i=`+1

ui ≤ u` + Cψ(H(z`+1)−H(z̄)).

Therefore,
∞∑
k=1

‖zk+1 − zk‖ ≤
∑
k=1

uk <∞,

which implies that {zk} is a convergent sequence.
Since zkj → z̄, j → +∞, we have zk → z̄.

APPENDIX C
PROOF OF COROLLARY 3.14
Let Zk := (Ck, Dk) to be the sequence generated by
Alg. 3. First of all, Zk is a bounded sequence as Dk ∈
D and Ck ∈ C. Moreover, it can be seen that all condi-
tions in Assumption 3.5 are satisfied. It is noted that H

is a semi-algebraic function as polynomial functions
are semi-algebraic, since ‖L − WC>‖2 + ‖W‖2 and
‖D>D− I‖2, are semi-algebraic, which is true as both
are polynomials, D, C are semi-algebraic set and ‖ · ‖0
is semi-algebraic [13, Example 5.2]).


