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1 Assessment: HWs, Presentations, Final Exam;

References; Syllabus

Assessment

1. Homeworks ??, ??, ??, ?? and ?? to be submitted one week after being

assigned [40%].

2. Each one presents a topic in §?? [20%].

3. Final examination [40%].

Can bring in one A4-size double-sided handwritten or typed help sheet (but

might be open-book zoom exam).

References: (1) - (4) are main, while (5) - (15) are extra.

1. Miles Reid, Undergraduate Algebraic Geometry, London Math.Society, Stu-

dent Texts 12. (QA1 Lmss 12)

2. Miles Reid, Chapters on Algebraic Surfaces, in:

http://homepages.warwick.ac.uk/ masda/surf/ParkC/

or preprint available at: https://arxiv.org/abs/alg-geom/9602006

3. R. Hartshorne, Algebraic Geometry, GTM 52, 1977.

4. H. Matsumura, Commutative ring theory, Cambridge studies in advanced

mathematics 8, 1986.

5. Iitaka, Algebraic Geometry, an Introduction to Birational Geometry of Alge-

braic Varieities, GTM 76, 1982.

6. J. Kollar and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge

University Press, 1998.



2 1 Assessment: HWs, Presentations, Final Exam; References; Syllabus

7. Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the Minimal

Model Problem, in: Advanced Studies in Pure Mathematics, 1987: 283-360

(1987), available at: https://doi.org/10.2969/aspm/01010283

8. James E. Humphreys, Linear Algebraic Groups, Ch I : Algebraic Geometry,

GTM 21, 1981

9. W. Fulton, Algebraic Curves: an introduction to algebraic geometry, Addison-

Wesley Pub. Co., Advanced Book Program, 1989.

10. A. Beauville, Complex Algebraic Surfaces, Cambridge, New York, Cambridge

University Press: 1996. 2nd ed.

11. Yu. I. Manin, Cubic form : Algebra, geometry, arithmetic, North-Holland,

2nd ed, 1986.

12. W. Barth, K. Hulek, C. Peters and A. Van de Ven, Compact complex surfaces,

2nd ed., Springer-Verlag, Berlin, 2004.

13. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra,

Addison-Wesley Pub. Co . 1969.

14. Thomas W. Hungerford, Algebra, GTM73, Springer

15. J. A. Dieudonné, History of algebraic geometry : an outline of the history and

development of algebraic geometry Monterey, Calif. : Wadsworth Advanced

Books & Software , c1985.

Prerequisites:

MA2202 Algebra I (Basics of group theory) is fully assumed.

MA3201 Algebra II, MA5203 Graduate Algebra I, or MA5204 Graduate Algebra

IIA will be assumed.
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1. MA2202 module description: This course introduces basic concepts in group

theory such as the notion of subgroups, permutation groups, cyclic groups,

cosets, Lagranges theorem, quotient groups and isomorphism theorems. Major

topics: Divisibility, congruences. Permutations. Binary operations. Groups.

Examples of groups including finite abelian groups from the study of inte-

gers and finite non-abelian groups constructed from permutations. Subgroups.

Cyclic groups. Cosets. Theorem of Lagrange. Fermat’s Little Theorem and

Euler’s Theorem. Direct products of groups. Normal subgroups. Quotient

groups. Isomorphism Theorems.

2. MA3201 module description: The objective of this module is to provide the

essentials of ring theory and module theory. Major topics: rings, ring isomor-

phism theorems, prime and maximal ideals, integral domains, field of fractions,

factorization, unique factorization domains, principal ideal domains, Euclidean

domains, factorization in polynomial domains, modules, module isomorphism

theorems, cyclic modules, free modules of finite rank, finitely generated mod-

ules, finitely generated modules over a principal ideal domain.

3. MA5203 module description: This module is designed for graduate students

in both pure and applied mathematics. It covers topics from the five basic

areas of groups, rings, modules, fields and multi-linear algebra, including group

actions, Sylow theorems, Jordan-Holder theorem, semisimple modules, chain

conditions, bimodules, tensor products and localizations, algebraic, separable

and normal field extensions, algebraic closures, multilinear forms, quadratic

forms, symmetric and exterior algebras.

4. MA5204 module description: This module is a basic introduction to commu-

tative and homological algebra. It covers the following topics: prime spectrum

of a commutative ring, exact sequences, projective, injective and flat modules,

Ext and Tor, integral ring extensions, Noether’s normalization and Hilbert’s

Nullstellensatz, Noetherian and Artinian rings and moduels, dimension theory,
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Dedekind domains and discrete valuation ring.

Module syllabus:

MA5208 Algebraic Geometry, Module description (from Math Dept web-

site):

This module is a first course in algebraic geometry, introducing the basic objects (va-

rieties) and basic geometric constructs and notions (products, fibers of morphisms,

dimensions, tangent spaces, smoothness) with applications to curves and surfaces. It

is suitable for students who intend to work in number theory, representation theory,

algebraic geometry and topology and geometry in general.
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2 Some History of Algebraic Geometry

Bernard Riemann (1826 ∼ 1866) classified one dimensional complex man-

ifolds, which are now called Riemann surfaces (over R). There are many things

named after him: Riemann Mapping Theorem, Riemann Hypothesis (one of the

six remaining Clay Mathematics Institute Millennium Prize Problems) and also

Riemann-Roch Theorem, one of its version was proved by F. Hirzebruch (a Fields

Medalist).

Other well known concepts: Dedekind domain, Kronecker’s field extension theo-

rem, Max Noether formula, Picard number and group, Lefschetz fixed point theorem

(see also the M. Atiyah (a Fields Medalist) - Singer holomorphic version), Poincaré

duality, E. Cartan matrix, Hilbert’s 23 problems (the fourteen’s problem was neg-

atively solved by M. Nagata). André Weil’s conjecture on generating functions =

local zeta functions, was proved by Bernard Dwork (1960) for the rationality, Alexan-

der Grothendieck (1965), a Fields Medalist, on the function equation, and Pierre

Deligne (1974), a Fields Medalist, on the analogue of the Riemann hypothesis.

The Italian school (∼ 1920), led by Enriques, Castelnuovo, Severi, Fano, classi-

fied 2-dimensional algebraic manifolds. The classification of two dimensional com-

plex manifolds was finished by K. Kodaira (Fields Medalist) in 1950’s. The

Kodaira dimension (defined by his student S. Iitaka) is a very important bira-

tional/bimeromorphic invariant in the minimal model program (MMP) (see Ch ??).

Oscar Zariski first went to Italy to learn Algebraic Geometry, with the super-

visor being Guido Castelnuovo. He realized the necessity to make the foundation

of algebraic geometry more solid. He defined, around 1940’s, the so called Zariski

topology and built every thing of Algebraic Geometry upon commutative rings.

He was the one who established the foundation of Algebraic Geometry. See also

André Weil’s “Foundations of Algebraic Geometry”. Zariski also nurtured a lot of

PhD students (18 PhD students and 1954 descendants according to Mathematics
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Genealogy as of 3rd June 2021) including S. Abhyankar (resolved singularities of 3-

dimensional spaces defined over the field of characteristic p > 5), M. Artin (former

President of the American Math. Soc), R. Hartshorne (the author of the bible-like

GTM 52: Algebraic Geometry), H. Hironaka (Fields Medalist who resolved the

singularities of complex spaces), D. Mumford (Fields Medalist and the former

President of the International Congress of Mathematicians).

J. Lerray invented the notion of Sheaf, which was further developed by H. Cartan

and J.-P. Serre (Fields Medalist). J.-P. Serre also discovered the one-to-one cor-

respondence between objects in Algebraic Geometry and Complex Geometry (the

GAGA principle).

A. Grothendieck (Fields Medalist) introduced, around 1957, the new con-

cept of Scheme, which is a union of affine subspaces as Zariski open subsets. The

affine spaces Cn and the projective spaces Pn are important schemes.

S. Mori (Fields Medalist, and student of Nagata) made the breakthrough by

establishing the existence of flips for threefolds, in Journ. Amer. Math. Soc. Vol.

1 (1988))), thus completing the Minimal Model Program (= MMP, or Mori’s

program) in dimension ≤ 3, the contribution of which also comes from Y Kawamata,

J Kollár, Miles Reid, V V Shokurov et al. Precisely, the MMP conjectures (a theorem

in dimension ≤ 3) that every complex algebraic variety X is either birational to some

X ′ with a Fano fibration X ′ → Y (with dimY < dimX) or has a minimal model

X ′ such that the canonical divisor O(KX′) ' det(TX′)∨ is numerically effective, i.e.,

degO(KX′)|C ≥ 0 for every curve C on X ′.

Andrew Wiles (the only silver-plaque winner awarded so far, by the Fields

Medal committee) proved the Fermat’s last theorem in 1994 asserting that every

rational solution of the equation Xn + Y n = Zn satisfies XY Z = 0, based on the

works of G. Faltings (Fields Medalist), G. Shimura, K. Ribet, et al.

In some different aspect, S.T. Yau (Fields Medalist) solved in 1980’s the

Calabi Conjecture: the existence of Kähler-Einstein metric on manifolds with trivial

canonical divisor. The Miyaoka-Yau inequality saying that c2
1 ≤ c2 for general type
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surface (with also higher dimensional analogues) is due to Yau and Y. Miyaoka

independently in 1977. Now the study of Calabi-Yau manifolds is very active among

physicists (who predict the number of rational curves (∼= P1) of any given degree,

on complex spaces like quintic threefolds) and Algebraic Geometers (who prove

rigorously). A little bit later, S. Donaldson (Fields Medalist) identified the concept

of anti-self dual connections in the study of Yang-Mills fields (Physicist and Nobel

Prize Laureate, and his PhD student) with the concept of stable bundles in Algebraic

Geometry, and defined Donaldson invariant to distinguish smooth 4-manifolds (over

R), which was further extended by Seiberg and Witten (Fields Medalist).

Recently, Caucher Birkar (the only twice Fields medalist 2018, the first medal

being stolen), and P. Cascini, C. Hacon, and J. McKernan [Existence of minimal

models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468],

built on fundamental work of V. V. Shokurov, have made big breakthrough in

proving the existence of KLT flips in any dimension, the finite generation of canonical

ring and generalizing Mori’s result to higher dimensions (the analytic approach is

by Y. T. Siu); see §?? for details.

The relation between algebra and geometry is very close as demonstrated in

the recently solved Yau-Tian-Donaldson conjecture, due to Chen-Donaldson-Sun

and Tian, asserting the equivalence of existence of Kähler-Einstein metric on Fano

manifolds and K-stability in algebraic language. The papers are: [X. Chen, S. K.

Donaldson, and S. Sun, Journal of the American Mathematical Society, 28 (2015)

183–278; [Tian, G., K-stability and Kähler-Einstein metrics. Communications on

Pure and Applied Mathematics, 68 (2015) pp.1085–1156.

Very recently, Caucher Birkar, has solved the Borisov-Alexeev-Borisov (BAB)

conjecture claiming that Fano varieties of fixed dimension with at most ε-lc singu-

larities are in a bounded family, thus earning him the Fields medal. His papers are

published as: Singularities of linear systems and boundedness of Fano varieties, Ann.

of Math, 193, No. 2 (2021), 347–405; Anti-pluricanonical systems on Fano varieties,

Ann. of Math. Vol. 190, No. 2 (2019), pp. 345–463; the MMP for generalized pairs,
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used in solving BAB, was developed in the early paper (solving Iitaka’s conjecture

of 1970): Effetivity of Iitaka fibrations and pluricanonical systems of polarized pairs,

Pub. Math. IHES., 123 (2016), 283–331 (Joint with De-Qi Zhang).

For the latest developement/advancement on MMP, see [Hacon and

Liu, Existence of flips for generalized lc pairs, arXiv:2105.13590]
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3 Quick Revision of Basics of Commutative Alge-

bra

Some basic knowledge of ring theory, field theory, module theory, and

general toplology will be assumed without proof. In this section, we quickly

recall some basic things in commutative algebra to be used in the sequel of the

course, including:

Artinin ring/module, Cohen-Macaulay ring/module, Depth of a mod-

ule, Embedding dimension, Height of a prime idea, Hilbert basis theorem,

Krull dimension, Local ring, Localization, Nakayama lemma, Noether’s

normalizaiton, Noetherian ring/module, Normal ring, Regular ring, Reg-

ular sequence of a module, Serre’s normality criterion.

Definition 3.1. (Group) A set G together with an operation ∗:

∗ : G×G→ G,

(g1, g2) 7→ g1 ∗ g2(= g1g2)

is called a group if the following are satisfied:

(a) (the existence of identity) there is an element e = eG ∈ G such that

ge = eg = g, ∀ g ∈ G;

(b) (the inverse) for each g ∈ G, there is an inverse g−1 ∈ G such that

g−1g = e = gg−1; and

(c) (associativity) for all gi ∈ G, one has

(g1g2)g3 = g1(g2g3).

We use (G, ∗) to denote the group G with the operation ×.
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Definition 3.2. (Abelian group) A group (G, ∗) is abelian (or commutative or

additive) if

g1 ∗ g2 = g2 ∗ g1, ∀ gi ∈ G;

if this is the case, we may use

(G,+, 0), or (G,+)

to denote the abelian group with the addition operation ”+” and the additive iden-

tity 0 (the additive inverse of g is denoted by −g, called the negative of g); thus,

g + 0 = 0 + g,

g + (−g) = 0,

(g1 + g2) + g3 = g1 + (g2 + g3).

Example 3.3.

(a) The set Z of integers, the set Q of rational numbers, the set R of real numbers

and the set C of complex numbers all have additive group structures with the

natural addition operation ”+”.

(b) The sets

Q∗ := Q \ {0}, R∗ := R \ {0}, C∗ := C \ {0}

with the natural multiplication ′′×′′, are commutative (= abelian) multiplica-

tive groups.

Definition 3.4. (Ring) A set R with a plus operation + and a multiplication

operation × is a ring and denoted as (R,+,×), if:

(a) (R,+, 0) is an additive group,

(b) (associativity for the multiplication)

(r1r2)r3 = r1(r2r3), ∀ ri ∈ R, and
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(c) (distribution law)

(r1 + r2)r3 = r1r3 + r2r3,

r1(r2 + r3) = r1r2 + r1r3, ∀ ri ∈ R.

Definition and Exercise 3.5. (Commutative ring with 1)

(a) (R,+,×) is a ring with 1 = 1R if 1 6= 0 and

1 r = r 1 = r, ∀ r ∈ R.

Show that such 1R is unique.

(b) A ring R is commutative if

r1r2 = r2r1, ∀ ri ∈ R.

Example 3.6. (Z,+,×), (Q,+,×), (R,+,×) and (C,+,×) are all commutative

rings with 1, where + and × are the natural operations.

Definition 3.7. (Field) A commutative ring (R,+,×) with 1 is a field if (R∗,×)

is a multiplicative group, where R∗ = R \ {0}.

Definition and Exercise 3.8. (Polynomial ring; Fraction field)

(a) Q, R and C are all fields. But Z is not a field (why?)

(b) Let R be a commutative ring with 1. Then the polynomial ring

R[x1, . . . , xn]

over R in n-variables x1, . . . , xn, is again a commutative ring with 1.

(c) Let k be a field. Then one can define the fraction field k(x1, . . . , xn) (which is

a field) of the polynomial ring k[x1, . . . , xn] as

k(x1, . . . , xn) =

{f/g | f, g ∈ k[x1, . . . , xn], g 6= 0}.
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In general, if R is an integral domain (see below), one can define the fraction

field Q(R) of R as

Q(R) = {r1/r2|ri ∈ R, r2 6= 0}.

Definition 3.9. (Module) A (left) R-module (or a module over R) is an additive

abelian group M together with a binary scalar multiplication (or scalar action)

R×M → M

(r,m) 7→ rm.

such that for all r, s ∈ R and all u, v ∈M , the following axioms are satisfied.

(1) (distributive law)

r(u+ v) = ru+ rv,

(r + s)u = ru+ su.

(2) (associativity)

r(su) = (rs)u.

(3) for the unity 1 = 1R ∈ R, we have

1u = u.

If in addition, R is a division ring (or a field) an R-module M is called a (left)

vector space.

Remark 3.10.

(1) In this section we consider only left R-module. The theory of right R-module

is similar.

(2) If R is commutative, a left R-module M has a natural R − R bimodule

structure, by simply defining the right scalar action as vr := rv for r ∈ R,

v ∈M .

Example 3.11. Every additive abelian group M is a Z-module in a natural way.

So the study of abelian groups is part of that of modules.
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Example 3.12. Let I be a (two-sided) ideal in R (see below for definition). Then

the quotient ring M := R/I has a natural R-module structure, if we define the

scalar multiplication as follows:

R×R/I → R/I

(r, s̄) 7→ rs.

Example 3.13. If R is a ring, then R has a natural left R-module structure by

defining the scalar action of r ∈ R to x ∈ R as the natural product rx.

From now on until the end of this section, by a ring R, we mean (unless specified)

that R is a commutative ring with 1.

Definition and Exercise 3.14. (Ideal) A subset J of a ring R is an ideal if:

ji ∈ J =⇒ j1 ± j2 ∈ J, j1j2 ∈ J

j ∈ J, r ∈ R =⇒ rj ∈ J.

Show that J = R⇐⇒ 1R ∈ J .

Definition 3.15. (Finitely generated ideal; Principal ideal; Unit)

(a) Fix r1, . . . , rs ∈ R. Then

(r1, . . . , rs)

= Rr1 + · · ·+Rrs

= {
∑

xiri |xi ∈ R}

is an ideal and called the ideal generated by r1, . . . , rs.

(b) Fix an r ∈ R. Then

(r) = Rr = {xr |x ∈ R}

is called the principal ideal generated by r.

(c) u ∈ R is a unit if uv = 1 for some v ∈ R.
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Exercise 3.16. (1) Show: u ∈ R is a unit ⇐⇒ (u) = R.

(2) If u ∈ R is a unit then (ur) = (r) for any r ∈ R. Conversely if R is an integral

domain and (ur) = (r) for some r 6= 0, then u ∈ R is unit.

Definition 3.17. (Homomorphism; Isomorphism) A map

f : R1 → R2

between rings is a ring-homomophism if:

(a) (preserve addition)

f(r1 + r2) = f(r1) + f(r2), ∀ ri ∈ R1;

(b) (preserve multiplication)

f(r1r2) = f(r1)f(r2), ∀ ri ∈ R1; and

(c) (preserve the identity)

f(1R1) = 1R2 .

Note that (c) follows from (a) and (b) if R is an integral domain and f 6= 0.

A ring-homomophism f : R1 → R2 is an isomorphism if it is bijective.

Exercise 3.18. Show that a ring-homomorphism f : R1 → R2 is an isomorphism

if and only if

g ◦ f = idR1 , f ◦ g = idR2

for some ring-homomorphism g : R2 → R1. If this is the case, g = f−1 (the inverse

of f) is also a ring-isomorphism.

Definition and Exercise 3.19. Let J (6= R) be an ideal of a ring (R,+,×). Define

a relation ∼ on R:

r1 ∼ r2 ⇐==⇒ r1 − r2 ∈ J.
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Show that ∼ is an equivalence relation.

Denote by

r = r + J = {r + j | j ∈ J}

the equivalence class (or the coset) containing r. Let

R/J := {r | r ∈ R}

be the set of all equivalence classes.

Define two operations +,× on R/J :

r1 + r2 := r1 + r2, r1r2 := r1r2.

Exercise 3.20. (Quotient ring)

(a) Show that +,× are well defined on R/J (independent of the choice of the

representative ri of the class ri).

(b) Show that (R/J,+,×) is a ring with 1, called the quotient ring of R modulo

the ideal J . Setting R̄ := R/J , one has

0R̄ = 0R, 1R̄ = 1R.

(c) Show that in R̄ we have:

r̄ = 0R̄ ⇐⇒ r ∈ J,

r1 = r2 ⇐⇒ r1 − r2 ∈ J.

(d) Show that

γ : R → R/J

r 7→ r

is a ring-homomorphism (called the quotient map).

Definition and Exercise 3.21. (Ideal and Kernel)
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(a) If f : R1 → R2 is a ring-homomorphism then the kernel

Ker f := f−1(0) = {r ∈ R1 | f(r) = 0}

is an ideal of R1.

(b) For the quotient map γ : R→ R/J in 3.19, one has Ker γ = J .

(c) By (a) and (b), for a ring R, one has

{ideals ⊆ R} = {Ker f ; f : R→ (a ring) is a hom.}.

Theorem 3.22. (Fundamental Theorem of Ring Theory). Let f : R1 → R2

be a ring-homomorphism. Then there is a ring-isomorphism

f : R1/(Ker f) ∼= Im f (⊆ R2)

such that

f = f ◦ γ

where

γ : R1 −→ R1/(Ker f)

is the quotient map (see 3.19).

Definition 3.23. (Integral domain) A ring R is an integral domain if

r1r2 = 0 =⇒ r1 = 0, or r2 = 0.

Exercise 3.24. (Integral domain means cancellation law) Show the following:

(1) R is an integral domain if and only if the concellation law holds:

rx = ry, r 6= 0 =⇒ x = y.

(2) Any field is an integral domain.

Definition and Exercise 3.25. (Prime ideal) An ideal P of a ring R is a prime

ideal if the following equivalent conditions are satisfied:
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(a) R/P is an integral domain;

(b) p1p2 ∈ P =⇒ p1 ∈ P, or p2 ∈ P .

Show that (a) and (b) are equivalent.

Definition and Exercise 3.26. (Maximal ideal) An ideal M of a ring R is a

maximal ideal if the following equivalent conditions are satisfied:

(a) R/M is a field (called the residue field); and

(b) M 6= R, and there is no any ideal J such that

M ⊂ J ⊂ R.

(1) Show that (a) and (b) are equivalent.

(2) Show that a maximal ideal is a prime ideal.

Exercise 3.27. (Irreducible v.s. Prime v.s. Maximal)

(a) Let k be a field. Then the polynomial ring k[x1, . . . , xn] is an integral do-

main. In general, if R is an integral domain, then so is the polynomial ring

R[x1, . . . , xn] over R. Hint: induction on n.

(b) Let f ∈ k[x1, . . . , xn] be a non-constant polynomial. Then (f) is a prime ideal

if and only f is irreducible (i.e., f is non-constant and ′′f = f1f2
′′ ⇒ ′′fi ∈

k∗ = k \ {0}′′ for i = 1 or 2). Hint: k[x1, . . . , xn] is UFD (cf. 3.34).

(c) If n ≥ 2, then (x1) is a prime ideal of

k[x1, . . . , xn] but not a maximal ideal.

(d) For J = (f) ⊆ k[x], one has:

f is irreducible ⇐⇒

J is prime ⇐⇒

J is maximal .
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(e) Is (d) true for J = (f(x)) ⊆ k[x, y]?

Definition 3.28. (Euclidean domain) An integral domain R is a Euclidean do-

main if there is a valuation

ν : R \ {0} −→ Z≥0

satisfying:

(a) For any a, b ∈ R with b 6= 0, there are q, r ∈ R such that

a = bq + r

where

r = 0, or ν(r) < ν(b); and

(b) For all non-zero a, b ∈ R,

ν(a) ≤ ν(ab).

Exercise 3.29.

(a) Let k be a field. Then both k and k[x] are Euclidean domains.

Hint: Define ν(f) := deg(f).

(b) The Gaussian integer ring

Z[i] = {a+ bi | a, b ∈ Z}

is an Euclidean domain, where i =
√
−1.

Hint: Define (cf. [Fraleigh, Th 6.8]):

ν(a+ bi) := a2 + b2.

Definition 3.30. (PID) An integral domain R is a PID (principal ideal domain) if

every ideal J of R is principal : J = (r).
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Exercise 3.31.

Euclidean =⇒ PID.

In particular, k[x] and Z[i] are PID.

Definition 3.32. (UFD) An integral domain is a UFD (unique factorization do-

main) if:

(a) (factorization) for any nonzero and non-unit r ∈ R, one has a prime decompo-

sition (or irreducible decomposition; see 3.33 below):

r = p1 · · · pn

with pi prime (i.e., (pi) is a prime ideal); and

(b) (uniqueness) when

r = q1 · · · qm

is another prime decomposition, one has, after relabelling, m = n and (qi) =

(pi) so that

qi = pi × (a unit).

A nonzero and non-unit element r ∈ R is irreducible if

r = r1r2 =⇒ r1, or r2 is a unit.

An element r ∈ R is prime if the principal ideal (r) is a prime ideal of R.

Exercise 3.33. (Irreducible = Prime in a UFD)

(1) Show that for a non-zero and non-unit element p in a UFD R,

p ∈ R is prime ⇐⇒ p is irreducible.

Give an example to show the necessity of assuming R to be UFD in the asser-

tion above.

(2) Show that (a) ⇒ (b) in Definition 3.32.
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Exercise 3.34.

(a) PID =⇒ UFD.

(b) R is UFD =⇒ R[x] is UFD (cf. [Fraleigh, Th 6.3]).

(c) In particular, every polynomial ring k[x1, . . . , xn] over a field k is a UFD.

Definition 3.35. (Integral elements) Let R ⊆ S be integral domains. An element

s ∈ S is integral over R if there is a monic polynomial f(x) (i.e., the leading coeffcient

of f(x) is 1)

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

such that f(s) = 0.

Definition and Exercise 3.36. (Integral closure; Normal ring) Show that

R̃S := {s ∈ S | s is integral over R}

is a subring of S (cf. [Matsumura, Th 9.1]) and called the integral closure of R in

S. Note that

R ⊆ R̃S ⊆ S.

For an integral domain R with fraction field Q(R), let

R̃ := {t ∈ Q(R) | t is integral over R}

be the integral closure of R in its fraction field Q(R). Then we have

R ⊆ R̃ ⊆ Q(R).

An integral domain R is normal if R̃ = R.

Exercise 3.37.

R is UFD =⇒ R is normal.

In particular, every polynomial ring k[x1, . . . , xn] over a field k, is normal.
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Theorem 3.38. (Ring of fractions) Let R be a commutative ring and let D be

a set with ∅ 6= D ⊆ R \ {0} which does not contain any zero divisors and is closed

under multiplication (i.e., a, b ∈ D ⇒ ab ∈ D). Then there is a commutative ring

Q = D−1R with 1 such that:

(1) Q contains R as a subring.

(2) Every element of D is a unit in Q.

(3) Every element of Q is of the form r d−1 for some r ∈ R and d ∈ D.

Remark 3.39.

(1) In D−1R, when d ∈ D, we usually denote

r d−1 :=
r

d
= r/d.

(2) The addition + and multiplication × in Q = D−1R are given as follows

r1/d1 + r2/d2 = (r1d2 + r2d1)/(d1d2),

(r1/d1) (r2/d2) = (r1r2)/(d1d2).

(3) The multiplicative identity

1Q = d/d

for any d ∈ D.

(4) The inclusion R→ D−1R is given by

R → D−1R

r 7→ rd/d

for any d ∈ D, noting rd/d = rd1/d1 for any d, d1 ∈ D.

Definition 3.40. (Ring of fractions)

(1) The ring Q = D−1R in Theorem 3.38 is called the ring of fractions of D

with respect to R.
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(2) (Fraction field of an integral domain) If R is an integral domain and

D = R \ {0} we call D−1R the fraction field of R and denoted as Q(R).

Namely,

Q(R) = D−1R.

Corollary 3.41.

(1) Suppose that R is a nonzero subring of a field F . Then the fraction field Q(R)

of R is the subfield of F generated by R. Namely,

Q(R) = {α ∈ F |α =
r1

r2

, ri ∈ R, r2 6= 0}.

(2) More generally, suppose R is an integral domain and Q = Q(R) its fraction

field. If σ : R → F is an injective ring homomorphism to a field F , then σ

extends to an injective homomorphism

σ′ : Q(R)→ E =: {α ∈ F |α =
σ(r1)

σ(r2)
, ri ∈ R, r2 6= 0} ⊆ F.

Here E = Q(σ(R)) is the fraction field of the integral domain σ(R) and is the

subfield of F generated by σ(R).

Definition 3.42. (Local ring) A commutative ring R with 1 6= 0, is called a local

ring if it has a unique maximal ideal (say M).

Example 3.43.

R = {m/n |m,n ∈ Z; 2 6 |n}

is a subring of Q.

M = (2)

is the unique maximal ideal of R. Hence R is a local ring.

Example 3.44. (Localisation) Let R be an integral domain and P a prime ideal.

Then D := R \ P satisfies the condition of Theorem 3.38. Denote by

RP := D−1R
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which is called the localisation of R at P . Then

PRP = {a/d | a ∈ P, d 6∈ P}

is the only maximal ideal in RP so that RP is a local ring. Here note that d ∈ D if

and only if d 6∈ P .

For instance, if R = F [x] is the polynomial ring over a field F and P = (x), then

RP = {f(x)/g(x) | g(0) 6= 0}

and

P RP = xRP = {f(x)/g(x) | f(0) = 0, g(0) 6= 0}.

Here f(0) = 0 means the constant term of f(x) is zero.

Definition 3.45. (ACC; DCC) Let M and N modules under the (left, right or

two-sided) scalar actions of some ring.

(1) M is said to satisfy the Ascending Chain Condition (ACC) on submodules

(or to be Noetherian) if for every chain

M1 ⊆M2 ⊆M3 ⊆ · · ·

of submodules of M , there is an integer n ≥ 1 such that Mi = Mn for all i ≥ n.

(2) N is said to satisfy the Descending Chain Condition (DCC) on submodules

(or to be Artinian) if for every chain

N1 ⊇ N2 ⊇ N3 ⊇ · · ·

of submodules of N , there is an integer m ≥ 1 such that Ni = Nm for all

i ≥ m.

Definition 3.46. ((Left/right) Noetherian; (Left/right) Artinian)

(1) R is left (resp. right) Noetherian ifR satisfies the Ascending Chain Condition

(ACC) on left (resp . right) ideals.

R is said to be Noetherian if R is both left and right Noetherian.



24 3 Quick Revision of Basics of Commutative Algebra

(2) R is left (resp. right) Artinian if R satisfies the Descending Chain Condition

(DCC) on left (resp . right) ideals.

R is said to be Artinian if R is both left and right Artinian.

Definition 3.47. (Maximal/Minimal element) Let (C,≤) be a partially ordered

set.

• a ∈ C is a maximal element if for every c ∈ C which is comparable to a, we

have c ≤ a.

• Note: it is not necessarily true that c ≤ a for all c ∈ C.

• Minimal elements can be defined similarly.

• C may contain many maximal or minimal elements or none at all.

Definition 3.48. (Maximum/Minimum condition) (cf. [Hungerford, ChVIII,

Theorem 1.4]) A module M is said to satisfy the maximum condition (resp.

minimum condition) on submodules if every nonempty set of submodules of M

contains a maximal (resp. minimal) element (with respect to set theoretic inclusion).

Below is a variation of Zorn’s lemma and follows from the Axiom of Choice.

It will be frequently used.

Theorem 3.49. (ACC/DCC = Maximum/Minimum condition)(cf. [Hunger-

ford, ChVIII, Theorem 1.4]) A module M satisfies the Ascending (resp. Descending)

Chain Condition on submodules if and only if M satisfies the maximal (resp. mini-

mal) condition on submodules.

Theorem 3.50. (Hilbert’s Basis Theorem) (cf. [Matsumura, Th 3.3])

(a) If R is Noetherian then so is R[x].

(b) Every polynomial ring

k[x1, . . . , xn] over a field k is Noetherian.
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(c) Every algebra finitely generated over a field k is Noetherian.

Definition and Remark 3.51. (CM = Cohen-Macaulay ring, Depth, Regu-

lar sequence)

(1) An integral ring R is normal if and only if the localization Rm is normal for

every maximal ideal m of R, if and only if Rp is normal for every prime ideal

p of R. See Matsumura book or [Iitaka GTM76, page 103, Corollary].

In the following assume R is a Noetherian local ring (see definition below) with

maximal ideal mR.

(2) Serre’s normality criterion: R is normal if and only if it satisfies R1 +S2,

i.e., regular in codimension 1 (i.e., the local ring Rp is regular for every height

1 prime idea p of R) and the length of a maximal mR-regular sequence is at

least 2. See below and Matsumura book.

(3) R is reduced if and only if it satisfies R0 and S1.

(4) R is called being Cohen-Macaulay (CM) if satisfies depth(R) = dimR, i.e.,

the depth of R equals the Krull-dimension of R (see below for definitions).

One has a similar definition for CM (finite) R-modules M .

In general, we have depth(M) ≤ dimM := dimR/AnnR(M).

Recall that a sequence r1, . . . , rs ∈ R of length s is an M-regular sequence

if ri+1 is not a zero divisor of the quotient module M/(r1, . . . , ri)M . Our

depth(M) is the maximal length of such regular sequence.

Definition 3.52. (Height) Let R be an integral domain and P ⊂ R a prime divisor.

The height ht(P ) of P is defined as the maximal s ≥ 0 labelling the chain of prime

ideals (between (0) and P ) as follows:

(0) ⊂ P1 ⊂ · · · ⊂ Ps = P.

Exercise 3.53. Let R = k[x1, . . . , xn] be the polynomial ring over a field k, and let

P = (x1 − a1, . . . , xn − an) be a maximal ideal. Show that ht(P ) = n.
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Definition 3.54. (Krull dimension) Let R be an integral domain. Define the

Krull dimension of R as:

dimR = max{ht(P ) |P is a maximal ideal of R}.

Remark and Question 3.55. (Catenary ring) A Noetherian local integral do-

main R (cf. 3.57), is called catenary if

htP + dim(R/P ) = dimR

for every prime ideal P ⊂ R. (In general, LHS ≤ RHS). A regular local ring (cf.

3.59) is Cohen Macaulay; Cohen Macaulay rings and their quotients are catenary;

every normal ring of dimension ≤ 2 is catenary; see [Matsumura, 17.8, 17.9, 23.8,

31.4].

Nagata constructed a Noetherian local integral domain R which is not catenary;

thus it has two ‘saturated’ chains between (0) and the maximal ideal with different

lengths.

If M1,M2 are two maximal ideals of a (Noetherian) ring, is it true that htM1 =

htM2?

The answer is yes for every polynomial ring k[x1, . . . , xn] with k = k̄ by the

Nullstellensatz in §??.

Exercise 3.56. Show that the Krull dimension dim k[x1, . . . , xn] = n, for the poly-

nomial ring k[x1, . . . , xn] over a field.

Definition 3.57. (Embedding dimension) Recall that a ring R with only one

maximal ideal P is called a local ring. Then the quotient R-module P/P 2 can be

regarded as a k := R/P module. We call

emb dim(R) := dimk P/P
2

the embedding dimension of R (cf. ?? for the geometric meaning of it).

In particular, if R is Noetherian (and hence P = Rp1 + · · · + Rpm for some

pi ∈ P ) then P/P 2 = kp1 + · · ·+ kpm and emb dim(R) ≤ m.
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Theorem 3.58. (Nakayama’s lemma) (cf. Matsumura book) Let R be a commu-

tative ring with 1R. The Jacobson radical J(R) = ∩P :maximal P is the intersection

of all maximal ideals of R. Let M be a finite R-module. Then we have:

(1) Let I be an ideal in R. If I M = M , then there exists an r ∈ R with r = 1

(mod I) such that rM = 0.

(2) If J(R)M = 0 then M = 0.

(3) If N is a submodule of R such that M = N + J(R)M , then M = N .

(4) If the images of elements m1, . . . ,ms of M in M/J(R)M generate quotient

module M/J(R)M as an R-module, then m1, . . . ,ms also generate M as an

R-module.

Definition and Exercise 3.59. (Regular local ring) Let (R,P ) be a Noetherian

local ring. Then emb dim(R) is the smallest number of elements needed to generate

P as an R-module (you may need to use the Nakayama’s lemma).

In general, for a Noetherian ring R, we have (cf. [Matsumura, Th 13.4]):

dimR ≤ emb dimR.

In particular, dimR is finite (cf. 3.57).

A Noetherian local ring R is a regular local ring if

dimR = emb dimR

i.e., the Krull dimension of R equals the embedding dimension of R.

Exercise 3.60. For the polynomial ring R = k[x1, . . . , xn] over a field and

P = (x1 − a1, . . . , xn − an)

a maximal ideal of R, the subring (called the localization of R at P )

RP := {r/s | s ∈ S := R \ P}
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of Q(R) has a single maximal ideal

PRP : = {pr | p ∈ P, r ∈ RP}

= {p/s | p ∈ P, s ∈ S := R \ P}

so that (RP , PRP ) is a local ring. Show that RP is regular.

Conversely, we have Cohen’s structure theorem below:

Theorem 3.61. (cf. [Hartshorne, Ch I, Th 5.4A, Th 5.5A]). Let (R,P ) be a Noethe-

rian local ring and let

R̂ = lim←−R/P
n

be the completion. Then there is a natural inclusing R ⊆ R̂ so that R̂ is a local ring

with P̂ := PR̂ its only maximal ideal. Further, we have:

(1) R is a regular ring if and only if so is R̂.

(2) Suppose that (A,P ) is a Noetherian complete local ring (like R̂ above) con-

taining a field. Then A is a regular ring if and only if

A ∼= k[[x1, . . . , xn]] (= ̂k[x1, . . . , xn])

(the ring of formal power series) where n = dimA and k = A/P (the residue

field).

Remark 3.62. (Regular v.s. UFD. v.s. Normal) Auslander-Buchsbaum proved

that a regular local ring is UFD (cf. [Matsumura, Th 20.3]). Thus for a local ring

R, we have (cf. 3.35):

R is regular ⇒ R is UFD ⇒ R is normal.

When dimR = 1,

R is normal ⇒ R is regular.

The above is not true when dimR ≥ 2.
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Theorem 3.63. (cf. [Fraleigh, Th 8.14]) (Primitive element theorem) Let F ⊂

E be a finite field extension which is separable (or with charF = 0). Then there is

some a ∈ E such that

E = F (a) = F [a].

Theorem 3.64. (cf. [Reid, UAG, 3.13, 3.17]) (Noether’s normalization the-

orem) Let k be a field with |k| = ∞, and A = k[a1, . . . , an] a finitely generated

k-algebra. Then there are y1, . . . , ym ∈ A for some m ≤ n, such that

(1) y1, . . . , ym are algebraically independent over k, i.e., k[y1, . . . , ym] is isomorphic

to the polynomial ring in m variables;

(2) A is a finite R := k[y1, . . . , ym]-algebra, i.e., A =
∑s

i=1 Rbi for some bi ∈ A;

and

(3) the fraction field

Q(A) = k(y1, . . . , ym+1)

for some ym+1 ∈ A.

The m := trans degk A is called the transcendence degree of A over k.
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