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One of the original applications of the Omitting Types Theorem is the ω-completeness
Theorem [. . . ].

H. Jerome Keisler [5, page 117]

Recall from Lemma 4.12 that all end extensions are ∆0-elementary. Therefore, all Π1-formulas
are preserved in initial segments. More generally, for every n ∈ N, all Πn+1-formulas are preserved
in n-elementary initial segments. The aim of this lecture is to show that these are the only formulas
preserved in such initial segments.

The usual proof of the Łoś–Tarski preservation theorem for universal formulas [6] involves
constructing a suitable extension using simply the compactness theorem. More care is needed in
our case because the extension constructed has to be an end extension. To achieve this, we employ
the Omitting Types Theorem. It turns out that the version for complete theories is sufficient for
our purposes. With this restriction, we can also make the definitions more intuitive.

Definition. Let T be a complete theory.

• A type over T is a set of formulas with finitely many free variables that is consistent with T .

• A formula η(v̄) is said to isolate a type p(v̄) over T if

(i) T ⊢ ∃v̄ η(v̄); and

(ii) T ⊢ ∀v̄
(
η(v̄) → θ(v̄)

)
for all θ(v̄) ∈ p(v̄).

In this case, we say η(v̄) is a support for p(v̄) over T .

• A type is omitted in a model if it is not realized.

Remark 12.1. Isolated types are sometimes called principal types.

It is evident that if a type p(v̄) is isolated over a complete theory T , then it is realized in every
model of T . The Omitting Types Theorem says the converse is also true, provided the language
involved is countable.

Omitting Types Theorem. Let T be a complete theory in a countable language L , and
P = {pi(v̄) : i ∈ N} be a countable set of types over T . Then the following are equivalent.

(a) All types in P are non-isolated over T .

(b) There is a (countable) model of T that omits all the types in P .

Proof sketch. We already talked about (b) ⇒ (a). So let us concentrate on the converse. Suppose
(a) holds. Let L ∗ = L ∪ C, where C is a countably infinite set of new constant symbols. In L ∗,
we build by recursion finite extensions T0 ⊇ T1 ⊇ · · · of T with the aim that

(1) T ∗ =
⋃

k∈N Tk is complete and consistent; and

(2) for every formula φ ∈ L ∗, there is c ∈ C such that T ∗ ⊢ ∃x φ(x) → φ(c).
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Then the L -reduct K of the term model of T ∗ satisfies T . (See Lecture 4 for the definition of term
models.) Consistency is preserved in every step. Completeness is ensured by putting in σ or ¬σ
for every sentence σ ∈ L ∗. Condition (2) can be satisfied by putting in φ(c) for some fresh c ∈ C
when the theory proves ∃x φ(x). (The argument we have so far is the same as the usual Henkin
proof of the completeness theorem.)

It remains to make all types in P omitted in K. By (2), it suffices to make sure c̄ does not
satisfy pi(v̄) for every c̄ ∈ C and every i ∈ N. Since there are only countably many such pairs (c̄, i),
we can deal with them separately and then dovetail together the arguments to achieve what we
want. Fix one of these (c̄, i)’s. Suppose Tk = T ∪ {η(c̄, d̄)}, where η ∈ L and d̄ ∈ C \ {c̄}. Then
T ⊢ ∃v̄ ∃w̄ η(v̄, w̄), because T is complete and Tk is consistent. By (a), we know ∃w̄ η(v̄, w̄) does not
isolate pi(v̄). Find θ(v̄) ∈ pi(v̄) such that T ⊢ ∃v̄

(
∃w̄ η(v̄, w̄) ∧ ¬θ(v̄)

)
. Then Tk+1 = Tk ∪ {¬θ(c̄)}

is consistent, and it ensures K ̸|= pi(c̄).

There are a number of places in the proof above that require the countability of L and P . For
instance, we need to enumerate the σ’s, the φ’s and the (c̄, i)’s in ω-sequences, so as not to break
the inductive condition that every Tk is a finite extension of T . This inductive condition ensures
we can extract a potential support for the types.

Building end and cofinal extensions is about finding extensions that omit the appropriate types.

Example 12.2. Fix a countable M |= PA− and n ∈ N. Notice Πn-Diag(M) ⊢ Σn+1-Diag(M).

(1) Obtaining an n-elementary end extension of M satisfying a theory T is equivalent to finding
a complete consistent theory extending T +Πn-Diag(M) over which

pa(v) = {v < a} ∪ {v ̸= m : m ∈M}

is non-isolated for every a ∈M .

(2) Obtaining an n-elementary cofinal extension of M satisfying a theory T is equivalent to
finding a complete consistent theory extending T +Πn-Diag(M) over which

q(v) = {v > m : m ∈M}

is non-isolated.

Suppose M,K are structures and M ⊆ K. Let us say a formula φ(z̄) is absolute between M
and K (or absolute in the extension K of M , or absolute in the substructure M of K) if

M |= φ(c̄) ⇔ K |= φ(c̄)

for all c̄ ∈M . For example, if Γ is a class of formulas, then Γ-elementarity of an extension is the
same as the absoluteness of all formulas in Γ. A straightforward induction shows that the set of
formulas absolute in an extension is always closed under the Boolean operations. If, moreover,
both M,K are linearly ordered and K is an end extension of M , then the set of formulas absolute
between M and K is closed under bounded quantification too: the proof of this is similar to
that of Proposition 4.12. Therefore, it is not the case that only the Σn-formulas are absolute in
n-elementary end extensions.

Definition. Fix n ∈ N. Let ⟨Σn⟩∆ denote the closure of Σn under the Boolean operations and
bounded quantification. Set

Π∗
n+1 = {∀x̄ θ(x̄, z̄) : θ ∈ ⟨Σn⟩∆}.

With enough collection, all Π∗
n+1-formulas are Πn+1.

Lemma 12.3. Let n ∈ N. Every Π∗
n+1-formula is equivalent to a Πn+1-formula over Coll(Σn+1).

Proof. Every Π∗
n+1-formula is equivalent to one of the form

∀x̄ ∃ȳ1<t1 ∀ȳ2<t2 · · ·
∧∧
i

∨∨
j

φij︸ ︷︷ ︸
Πn+1︸ ︷︷ ︸

Πn+1 over Coll(Σn+1)

,

where each φij ∈ Σn ∪Πn, and t1, t2, . . . are terms.
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The Π∗
n+1-formulas are precisely those preserved in n-elementary initial segments.

Definition. Let T be a theory and Γ be a class of formulas. Then Γ-Cn(T ) = {σ ∈ Γ : T ⊢ σ}.

Theorem 12.4 (essentially Paris–Kirby [8]). Fix n ∈ N and a countable recursively saturated
M |= PA− +Coll(Σn+1). The following are equivalent for a recursive LA-theory T ⊇ PA−.

(a) M |= Π∗
n+1-Cn(T ).

(b) M has an n-elementary end extension K |= T .

Proof. The proof of (b) ⇒ (a) is a straightforward induction on formulas, as discussed above. For
the converse, suppose (a) holds. We define LA(M)-sentences λ0, λ1, . . . by recursion such that

M |= Π∗
n+1-Cn

(
T + {λi : i < k}

)
(∗)k

for every k ∈ N. Then T + {λi : i ∈ N} + Σn+1-Diag(M) is consistent. By the Omitting Types
Theorem, it suffices to make sure this theory is complete, and no pa(v) in Example 12.2(1) is
isolated over it. We use the even steps to achieve the former, and the odd steps for the latter.

Suppose λi is found for every i < k, where k is even, such that (∗)k is satisfied. Take σ ∈ LA(M).
Assume M ̸|= Π∗

n+1-Cn(T + {λi : i < k}+ σ). Pick ξ ∈ Π∗
n+1 such that

T + {λi : i < k}+ σ ⊢ ξ and M |= ¬ξ.

In this case, we can set λk = ¬σ, because if T + {λi : i < k}+ ¬σ ⊢ ζ ∈ Π∗
n+1, then

T + {λi : i < k} ⊢ ξ ∨ ζ since T + {λi : i < k} ⊢ (σ → ξ) ∧ (¬σ → ζ),
∴ M |= ξ ∨ ζ by (∗)k, since ξ ∨ ζ ∈ Π∗

n+1,
∴ M |= ζ since M |= ¬ξ.

This ensures completeness.
For the omitting-types part, pick any a ∈M and η(v) ∈ LA(M). We prevent η(v) from being a

support for pa(v). Without loss of generality, we may suppose

T + {λi : i ⩽ k} ⊢ ∃v<a η(v), (†)

because otherwise nothing needs to be done at this stage. Let c1, c2, . . . , cℓ ∈M be the parameters
occurring in the λi’s or in η. Write λi = λi(c̄) and η(v) = η(v, c̄). If we can set λk+1 = η(cj+1, c̄)
for some j < ℓ, then we are done. So suppose not. Without loss, we may assume

{λi(c̄) : i ⩽ k} ⊢
∧∧
j<ℓ

¬η(cj+1, c̄) (‡)

by the previous paragraph. Consider

r(v) =
{
φ(v, c̄) ∈ Π∗

n+1 : T + {λi(c̄) : i ⩽ k} ⊢ ∀v<a
(
η(v, c̄) → φ(v, c̄)

)}
∪ {v < a}.

This set is r.e. and hence recursive by Craig’s Trick, cf. Lecture 7. Let us show it is finitely satisfied
in M . Take φ(v, c̄) ∈ Π∗

n+1 such that T + {λi(c̄) : i ⩽ k} ⊢ ∀v<a
(
η(v, c̄) → φ(v, c̄)

)
. Then

T + {λi(c̄) : i ⩽ k} ⊢ ∃v<a φ(v, c̄)

by (†). Writing φ(v, c̄) as ∀x̄ ψ(v, x̄, c̄), where ψ ∈ ⟨Σn⟩∆, we have

T + {λi(c̄) : i ⩽ k} ⊢ ∃v<a ∀x̄ ψ(v, x̄, c̄)
∴ T + {λi(c̄) : i ⩽ k} ⊢ ∀b ∃v<a ∀x̄<b ψ(v, x̄, c̄)︸ ︷︷ ︸

⟨Σn⟩∆︸ ︷︷ ︸
⟨Σn⟩∆︸ ︷︷ ︸

Π∗
n+1

by pure logic,

∴ M |= ∀b ∃v<a ∀x̄<b ψ(v, x̄, c̄) by (∗)k+1,
∴ M |= ∃v<a ∀x̄ ψ(v, x̄, c̄) by Coll(Σn+1),
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which is applicable because Lemma 12.3 implies ψ is equivalent to a Πn+1-formula over M . Hence
M |= ∃v<a φ(v, c̄), as required.

Apply recursive saturation to findm ∈M |= r(m). Noticem ̸∈ {c̄} because the formula v ̸∈ {c̄} is
in r(v) by (‡). Set λk+1 = η(m, c̄). If φ(v, c̄) ∈ Π∗

n+1 such that T+{λi(c̄) : i ⩽ k}+η(m, c̄) ⊢ φ(m, c̄),
then T + {λi(c̄) : i ⩽ k} ⊢ ∀v

(
η(v, c̄) → φ(v, c̄)

)
as m ̸∈ {c̄}, and so φ(v, c̄) ∈ r(v), making

M |= φ(m, c̄). Therefore, the inductive condition (∗)k+2 holds. Moreover,

T + {λi : i ∈ N} ⊬ ∀v
(
η(v, c̄) → v ̸= m

)
,

so that η cannot isolate pa(v).

Corollary 12.5. Fix n ∈ N and a recursive T ⊇ PA− +Coll(Σn+1). The following are equivalent
for an LA-formula φ(x̄).

(a) φ is equivalent to a Πn+1-formula over T .

(b) Whenever c̄ ∈M ≼n,e K with M,K |= T ,

K |= φ(c̄) ⇒ M |= φ(c̄).

Proof. The implication (a) ⇒ (b) is clear. Conversely, suppose (a) fails. Consider

Ψ(x̄) = Πn+1-Cn(T + φ(x̄)) =
{
ψ(x̄) ∈ Πn+1 : T ⊢ ∀x̄

(
φ(x̄) → ψ(x̄)

)}
.

The failure of (a) implies T +Ψ(x̄) ⊬ φ(x̄). Take a countable recursively saturated M |= T +Ψ(c̄) +
¬φ(c̄). Notice M |= Π∗

n+1-Cn(T + φ(c̄)) by Lemma 12.3. So Theorem 12.4 implies M has an
n-elementary end extension K |= T + φ(c̄). This witnesses the failure of (b).

Further exercises
We look at an analogue of Theorem 12.4 for cofinal extensions here. Recall from Lecture 10 that
∀∞x θ(x) stands for ∃x′ ∀x⩾x′ θ(x).

Definition. Write ∀∞n+1 = {∀∞x1 ∀∞x2 · · · ∀∞xℓ θ(x̄, z̄) : θ ∈ Σn} for each n ∈ N.

Theorem 12.6 (Kaye [4]). Fix n ∈ N and a countable recursively saturated M |= PA−. The
following are equivalent for a recursive LA-theory T ⊇ PA−.

(a) M |= ∀∞n+1-Cn(T ).

(b) M has an n-elementary cofinal extension K |= T .

Proof. (1) Prove (b) ⇒ (a).

Conversely, suppose (a) holds. We define LA(M)-sentences λ0, λ1, . . . by recursion such that

M |= ∀∞n+1-Cn
(
T + {λi : i < k}

)
(§)k

for every k ∈ N.

(2) Show that this ensures T + {λi : i ∈ N}+Πn-Diag(M) is consistent at the end.

By the Omitting Types Theorem, it suffices to make sure this theory is complete, and q(v) in
Example 12.2(2) is not isolated over it. We use the even steps to achieve the former, and the odd
steps for the latter.

Suppose λi is found for every i < k, where k is even, such that (§)k is satisfied.

(3) Show that ∀∞n+1 is closed under disjunction modulo logical equivalence.

(4) Let σ ∈ LA(M). Show that either λk = σ or λk = ¬σ makes (§)k+1 true.
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For the omitting-types part, pick any η(v) ∈ LA(M). We prevent η(v) from being a support
for q(v). Without loss of generality, we may suppose

T + {λi : i ⩽ k} ⊢ ∃v η(v), (¶)

because otherwise nothing needs to be done at this stage. Let c1, c2, . . . , cℓ ∈M be the parameters
occurring in the λi’s or in η. Write λi = λi(c̄) and η(v) = η(v, c̄). If we can set λk+1 = η(cj+1, c̄)
for some j < ℓ, then we are done. So suppose not. Without loss, we may assume

{λi(c̄) : i ⩽ k} ⊢
∧∧
j<ℓ

¬η(cj+1, c̄) (‖)

by Exercise (4) above. Consider

s(w) =
{
φ(w, c̄) ∈ ∀∞n+1 : T + {λi(c̄) : i ⩽ k} ⊢ ∀w

(
∃v⩽w η(v, c̄) → φ(w, c̄)

)}
.

This set is r.e. and hence recursive by Craig’s Trick. Let us show it is finitely satisfied in M . Take
φ(w, c̄) ∈ s(w).

(5) Notice PA− ⊢ ∀∞w
(
∃v η(v, c̄) → ∃v⩽w η(v, c̄)

)
. Show that M |= ∃w φ(w, c̄).

Apply recursive saturation to find m ∈M |= s(m). Set λk+1 = ∃v⩽m η(v, c̄).

(6) Show that (§)k+2 is satisfied.

(7) Explain why q(v) is not isolated over T + {λi : i ∈ N}.

Corollary 12.7 (Motohashi [7]). Fix n ∈ N and a recursive T ⊇ PA−. The following are equivalent
for an LA-formula φ(x̄).

(a) φ is equivalent to a ∀∞n+1-formula over T .

(b) Whenever c̄ ∈M ≼n,cf K with M,K |= T ,

K |= φ(c̄) ⇒ M |= φ(c̄).

Further comments

Optimality of hypotheses
It can be seen from the proof of Theorem 12.4 that full recursive saturation is not necessary: short
Πn+1-recursive saturation is actually enough. The amount of saturation needed for Theorem 12.6
is discussed in Kaye’s original paper [4]. There are versions of these theorems that do not
require the theory T to be recursive; for the same proofs to go through, we need recursive-in-T
saturation. In particular, Corollary 12.5 is actually true for non-recursive theories T too. If one
removes the saturation condition altogether, then Theorem 12.4 becomes false; see the paper by
Dimitracopoulos [1].

In general, one cannot replace PA− +Coll(Σn+1) by IΣn in Theorem 12.4. To see this, suppose
this theorem is true for M |= IΣn. Consider T = BΣn+1. Notice IΣn ⊢ Π∗

n+1-Cn(BΣn+1) by a
careful analysis of our proof of Theorem 6.1. So M has an n-elementary end extension K |= BΣn+1.
If this extension is not proper, then trivially M |= BΣn+1. If this extension is proper, then
Theorem 6.3 implies M |= BΣn+1 too.

One also cannot replace PA− + Coll(Σn+1) by IΣn in Corollary 12.5 in general. To see this,
consider T = IΣn+exp+¬BΣn+1, which, as Paris and Kirby [8, Proposition 7] proved, is consistent.
By Theorem 6.3, no M,K |= T can satisfy M ⪵n,e K. So condition (b) is true trivially for every
formula φ ∈ LA. Let φ = Σn+1-Sat from Lecture 7. A diagonalization argument shows φ is not
equivalent to any Πn+1-formula; see the Further comments in Lecture 7. So condition (a) is false
for this φ.

We may as well define Π∗
n+1 to be the closure of ⟨Σn⟩∆ under universal quantification and

bounded quantification. However, the proof of Theorem 12.4 is neater with our definition. For a
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similar reason, we may also define ∀∞n+1 to be the closure of ⟨Σn⟩B under conjunction, disjunction,
universal quantification, and ∀∞-quantification, where ⟨Σn⟩B denotes the closure of Σn under the
Boolean operations. Combining Corollary 12.7 with Further exercises (a)–(d) in Lecture 6, we
obtain the following.

Corollary 12.8 (Kaye [4]). Let n ∈ N. Then every Πn+3-formula is equivalent over BΣn+1 + exp
to a ∀∞1 -formula.

In both Theorem 12.4 and Theorem 12.6, the theory T can actually be in any recursive language
extending LA. The proofs are the same.

Generalizations
In fact, the results presented in this lecture are very general. For instance, suppose n ∈ N and L is
a countable language containing a distinguished binary relation symbol ⊑. Then one can define
Σn+1, Πn+1, Coll(Σn+1), and ∀∞n+1 as in the case of arithmetic. A little more care is needed when
defining end and cofinal extensions: an extension K ⊇M of L -structures is an end extension if for
every k ∈ K, having k ⊑ m ∈M implies k ∈M ; the extension K ⊇M is a cofinal extension if for
every k ∈ K, there exists m ∈M such that k ⊑ m. All the results presented in this lecture, except
Corollary 12.8, are true with these definitions in place.

A particularly interesting example is when L is some language for set theory and ⊑ = ∈. In
this case, an extension K ⊇M is an end extension if and only if M is transitive in K. An extension
is a cofinal extension if and only if every new set is an element of an old set. See Zarach [9] or
Gitman–Hamkins–Johnstone [2], for example, for a comparison between the collection scheme and
the replacement scheme in set theory.

Further reading
See Hodges’s book [3] or Keisler’s survey [5] for more applications of the Omitting Types Theorem.
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