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Uniform extension operators are used to construct models with “nice” structural
properties. Thus, one has a very simple proof of the Ehrenfeucht-Mostowski theorem
concerning the existence of models with many automorphisms [. . . ]. This theorem states
that for every theory having infinite models and every ordered set there is a model of
the theory whose set of elements contains the given set, so that every automorphism of
the ordered set can be extended to an automorphism of the model. The original proof
uses Ramsey’s theorem. Here we give a very simple construction of the required model,
using iterations of uniform extension operators. Once the existence of the operator is
established the building of the model is fully constructive and one sees clearly what the
automorphisms are. The existence of the uniform extension operator [. . . ] boils down
to the existence of an ultrafilter in the algebra of all subsets of the natural numbers.

Haim Gaifman [2, page 123]

In this lecture, we look at types that give rise to minimal elementary end extensions, and show
that they do much more than what they are named for.

11.1 Minimal extensions
The aim of this section is to show that every M |= PA has a minimal elementary end extension. In
view of Proposition 10.4, if p(v) is an unbounded strongly definable complete M -type, then M(p) is
already ‘rather minimal’ over M , in the sense that any elementary cut of M(p) above M must be
either M(p) or M . This is because there can be no elementary cut strictly inside a gap, cf. the
bottom of page 66. Nevertheless, conceivably one can thin out the maximum gap of such M(p)
without completely removing it, resulting a proper elementary substructure of M(p) that is strictly
bigger than M . To avoid this, we construct p more carefully so that it is realized at most once
in any gap. In this case, if d ∈ M(p) realizing p and c ∈ gap(d), then d would be unique to c,
being the minimum element above c realizing p, or the maximum element below c realizing p. A
compactness argument, as we will see below, then turns this uniqueness into first-order definability.
The extra condition on p needed for this argument is called rarity.

Definition (Kossak–Kotlarski–Schmerl [4]). Let M |= PA. A complete M -type p(v) is rare if
c ̸∈ gap(d) for all distinct c, d ∈ K ≽ M realizing p.

This definition can be formulated more syntactically.

Lemma 11.1. Let M |= PA. Then a complete M -type is rare if and only if for every Skolem
function t, there is θ(v) ∈ p(v) such that

M |= ∀u, v
(
θ(u) ∧ θ(v) ∧ u < v → t(u) < v

)
.

In this case, we may think of θ(v) as forcing elements realizing p to be t-far apart.
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Figure 11.1: Proving FAR

Proof. One direction is straightforward. For the other, consider the theory

r(c, d) = p(c) + p(d) + {c < d ∧ d < t(c)},

where c, d are new constant symbols.

It follows that extensions of rare types are rare, because the formulas that guarantee rarity
given by Lemma 11.1 are preserved in all elementary extensions.

Recall the close relationship between strongly definable types and COH from the last two
lectures. One can devise a combinatorial principle that is in a similar relationship with rare types.

Lemma 11.2. RCA0 ⊢ FAR, where FAR says

for every unbounded S and every total function F , there exists H ⊆cf S such that if
u, v ∈ H with u < v, then F (u) < v.

Proof. The set H consists of elements of the sequence (hi) defined by

h0 = minS,

hi+1 = min{v ∈ S : v > hi and v > F (hi)}

for all i. This set is in the second-order part by ∆0
1-CA. It is unbounded by IΣ0

1.

Remark 11.3. We see from the proof above that if S and F are both definable without parameters,
then one can produce the definition of H uniformly from those of S and F .

Interleaving the use of FAR with that of COH gives us unbounded strongly definable types
which are, in addition, rare.

Theorem 11.4 (Gaifman [3]). Every M |= PA admits an unbounded strongly definable rare
complete M -type.

Proof. We dovetail an additional argument with the proof of Theorem 9.10. Recall the construction
there involves a descending sequence

M = S0 ⊇cf S1 ⊇cf S2 ⊇cf · · ·

in Def(M) that are defined respectively by θ0(v), θ1(v), θ2(v), . . . ∈ LA(M). The type p(v) we want
is the deductive closure of

p0(v) = ElemDiag(M) + {θi(v) : i ∈ N}+ {v > a : a ∈ M}.

Suppose we are given an unbounded Si ∈ Def(M). Thinning Si out as in the proof of
Theorem 9.10 if necessary, we may assume without loss that

M |= ∀z
(
∀∞v

(
θi(v) → φi(v, z)

)
∨ ∀∞v

(
θi(v) → ¬φi(v, z)

))
,

where φi comes from some fixed enumeration of LA-formulas. This ensures strong definability.
To guarantee rarity, choose Si+1 ⊆cf Si in Def(M) using FAR such that

if u, v ∈ Si+1 with u < v, then Fi(u) < v,

where Fi = {⟨u, ti(u)⟩ : u ∈ M}, and ti comes from some fixed enumeration of Skolem functions.
Then the type p(v) we are constructing will be rare by Lemma 11.1 because

M |= ∀u, v
(
θi+1(u) ∧ θi+1(v) ∧ u < v → ti(u) < v

)
.
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Figure 11.2: Any c ∈ gap(d) defines d when d realizes a rare type

The following notation is very useful in the study of models of PA. It describes precisely how a
subset of a model generate an elementary substructure.

Definition. If A ⊆ M |= PA, then the Skolem closure of A in M , denoted clM (A), is the closure
of A under all Skolem functions in M .

Let A ⊆ M |= PA. Then

clM (A) = {t(ā) : ā ∈ A and t is a Skolem function},

because the Skolem functions are closed under composition. An application of the Tarski–Vaught
Test shows clM (A) is the smallest elementary substructure of M including A. Model-theoretically,
the Skolem closure of A is both the definable closure and the algebraic closure of A.

It is also convenient to have a fixed recursive sequence of Skolem functions (tk(v))k∈N such that

• PA ⊢ ∀v
(
v < tk(v) < tk(v + 1) ∧ tk(v) < tk+1(v)

)
for all k ∈ N; and

• every Skolem function t(v) is PA-provably majorized by some tk(v), i.e.,

PA ⊢ ∀v
(
t(v) ⩽ tk(v)

)
.

Given any recursive enumeration (sk(v))k∈N of Skolem functions, we can obtain such tk’s by setting

t0(v) = v + 1,

tk+1(v) = max{sk(v), tk(v), tk+1(u) : u < v}+ 1

for all k ∈ N. These properties are analogous to those of the Grzegorczyk hierarchy, which we met
in Lecture 5, when primitive recursive functions take the place of Skolem functions.

We are ready to verify the claim that if an element of a model of PA realizes a rare type, then
it is first-order definable from everything in its gap.

Lemma 11.5. Let M |= PA and p(v) be a rare complete M -type. If d ∈ K ≽ M realizing p, and
c ∈ gap(d), then d ∈ clK(M ∪ {c}).

Proof. There are naturally two cases.

Case 1. Suppose c ⩽ d. Using Lemma 10.3, find k ∈ N such that tk(c) ⩾ d. Apply rarity to
obtain θ(v) ∈ p(v) satisfying

M |= ∀u, v
(
θ(u) ∧ θ(v) ∧ u < v → tk(u) < v

)
. (∗)

Then d = (min v ⩾ c)(θ(v)) by the monotonicity of tk.
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Case 2. Suppose d < c. Using Lemma 10.3, find k ∈ N such that tk(d) ⩾ c. Apply rarity to find
θ(v) ∈ p(v) satisfying (∗). Then d = (max v < c)(θ(v)) by the monotonicity of tk.

We now have all the ingredients for a minimal elementary end extension.

Definition. We say K ≽ M of LA-structures is minimal if there is no K0 such that M ⪵ K0 ⪵ K.

Theorem 11.6 (Gaifman [3]). Let M |= PA and p(v) be an unbounded strongly definable rare
complete M -type. Then M(p) is a minimal elementary end extension of M .

Proof. Suppose M(p) = M(p/d), and K is such that M ≼ K ≼ M(p). If K ∩ gap(d) = ∅, then
K = M by Proposition 10.4. If K ∩ gap(d) ̸= ∅, then K = M(p) by Lemma 11.5.

As a consequence, every model of PA has a minimal end extension. The types involved are
named accordingly.

Definition. Let M |= PA. Then a complete M -type is minimal if it is unbounded, strongly
definable, and rare.

11.2 Iterated extensions
The aim of this section is to investigate to what extent we can iterate our end extension constructions.
Let us start with M0 |= PA and an unbounded strongly definable complete M0-type p(v). We
define Mα for every ordinal α by transfinite recursion. At a successor step α+ 1 when given Mα,
extend p(v) to an unbounded strongly definable complete Mα-type pα(v), and set Mα+1 = Mα(pα).
At a limit step λ, define Mλ =

⋃
α<λ Mα. A transfinite induction involving Proposition 10.4 then

shows that Mα consists α-many gaps on top of M .
As in set theory, an iterated construction can be executed in one go. To do this, we exploit the

indiscernibility of minimal types. Roughly speaking, a type p(v) is indiscernible if and only if all
pairs of tuples of the same length in which every element realizes p satisfy the same formulas.

Definition. A type p(v) over a linearly ordered structure M is indiscernible if

whenever c0, c1, . . . , cn, d0, d1, . . . , dn ∈ K ≽ M realizing p with c0 < c1 < · · · < cn and
d0 < d1 < · · · < dn, we have tpK(c0, c1, . . . , cn) = tpK(d0, d1, . . . , dn).

Proposition 11.7. Let M |= PA. Then all minimal complete M -types p(v) are indiscernible.

Proof. We show this by induction on n, following the proof of Lemma 3.1.19 in the Kossak–Schmerl
book [5]. The case n = 0 holds because p is complete.

Let c0, c1, . . . , cn+1, d0, d1, . . . , dn+1 ∈ K ≽ M realizing p with c0 < c1 < · · · < cn+1 and
d0 < d1 < · · · < dn+1. For the sake of induction, suppose tpK(c0, c1, . . . , cn) = tpK(d0, d1, . . . , dn).
Take φ(v0, v1, . . . , vn+1, w) ∈ LA and a ∈ M . We will show that

K |= φ(c0, c1, . . . , cn+1, a) ↔ φ(d0, d1, . . . , dn+1, a).

In what follows, the abbreviations v̄, c̄, d̄ always refer to tuples whose indices range from 0 up
to n. First, use strong definability to find θ(v, b) ∈ p(v) such that

M |= ∀v̄
(
∀∞vn+1

(
θ(vn+1, b) → φ(v̄, vn+1, a)

)
∨ ∀∞vn+1

(
θ(vn+1, b) → ¬φ(v̄, vn+1, a)

))
,

where θ(v, z) ∈ LA and b ∈ M . Then set

t(v̄, w, z) = (minu)

(
∀vn+1⩾u

(
θ(vn+1, z) → φ(v̄, vn+1, w)

)
∨ ∀vn+1⩾u

(
θ(vn+1, z) → ¬φ(v̄, vn+1, w)

))
and t′(v̄) = max{t(v̄, w, z) : w, z ⩽ v0}, so that t′(v̄) ⩾ t(v̄, w, z) whenever w, z ⩽ v0. Notice the
unboundedness of p implies a, b ∈ M < c0, d0. So if v̄ is c̄ or d̄, then

K |= ∀vn+1⩾t′(v̄)
(
θ(vn+1, b) → φ(v̄, vn+1, a)

)
∨ ∀vn+1⩾t′(v̄)

(
θ(vn+1, b) → ¬φ(v̄, vn+1, a)

)
. (†)
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Figure 11.3: Iterating minimal end extensions along a linear order (I,<)

Notice also that rarity implies t′(c̄) ⩽ cn+1 and t′(d̄) ⩽ dn+1. Therefore, if K |= φ(c̄, cn+1, a), then

K |= ∀vn+1⩾t′(c̄)
(
θ(vn+1, b) → φ(c̄, vn+1, a)

)
by (†), since cn+1 ⩾ t′(c̄),

∴ K |= ∀vn+1⩾t′(d̄)
(
θ(vn+1, b) → φ(d̄, vn+1, a)

)
since tpK(c̄) = tpK(d̄),

∴ K |= φ(d̄, dn+1, a) since dn+1 ⩾ t′(d̄).

Similarly K |= φ(d̄, dn+1, a) implies K |= φ(c̄, cn+1, a), as claimed.

Remark 11.8. Indiscernible types are usually constructed using Ramsey’s Theorem. As we saw in
(the Further comments of) Lecture 9, Ramsey’s Theorem has the same strength as ACA0. In our
construction of indiscernible types, apparently we only used COH and FAR, which are both much
weaker than ACA0. This is actually no improvement to the usual argument because ACA was used
directly a couple of times in our proofs.

Similar to rarity, indiscernibility also admits a more syntactical form.

Lemma 11.9. Let L be a language containing a binary relation symbol <, and M be an
L -structure linearly ordered by <. Then a type p(v) over M is indiscernible if and only if for every
φ(v0, v1, . . . , vn) ∈ L (M), there is θ(v) ∈ p(v) such that

M |= ∀v̄
(∧∧
i⩽n

θ(vi) ∧
∧∧
i<n

vi < vi+1 → φ(v̄)
)
∨ ∀v̄

(∧∧
i⩽n

θ(vi) ∧
∧∧
i<n

vi < vi+1 → ¬φ(v̄)
)
.

Proof. One direction is straightforward. For the other direction, consider

r(c̄, d̄) =
⋃
i⩽n

p(ci) ∪
⋃
i⩽n

p(di) ∪ {ci < ci+1 ∧ di < di+1 : i < n} ∪ {φ(c̄) ∧ ¬φ(d̄)},

where c̄, d̄ are new constant symbols.

With minimal types, not only can we iterate our constructions along ordinals, but also along
arbitrary linear orders.

Theorem 11.10 (Gaifman [3]). Fix M |= PA and a minimal complete M -type p(v). Let (I,<) be
a linear order. Then there is K ≽ M with D = {di : i ∈ I} ⊆ K such that

(1) K = clK(M ∪D);

(2) di < dj if and only if i < j for all i, j ∈ I;

(3) K = M ∪
⋃

i∈I gap(di); and

(4) {v ∈ K : K |= p(v)} = D.
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Proof. Consider the theory

T = ElemDiag(M) ∪
⋃
i∈I

p(di) ∪ {di < dj : i, j ∈ I with i < j},

where the di’s are new constant symbols. We know T is complete by Proposition 11.7 and
Lemma 11.9. Let K be the LA-reduct of the prime of model of T as given by Proposition 9.3.
Then K ≽ M and (1), (2) hold by construction. By unboundedness and rarity, we know (3) ⇒ (4).
It remains to prove (3).

Pick c ∈ K. We show c ∈ M ∪
⋃

i∈I gap(di). Find η ∈ LA(M) and d0, d1, . . . , dn ∈ D
such that c = (minx)(η(x, d̄)). Consider K0 = clK(M ∪ {di : i ⩽ n}). By rarity, we know
gapK0

(d0) < gapK0
(d1) < · · · < gapK0

(dn). Note di realizes an unbounded strongly definable type
over clK0

(M ∪ {dj : j < i}) for each i ⩽ n, because strong definability is preserved in extensions.
Thus K0 = M ∪

⋃
i⩽n gapK0

(di) by n+ 1 applications of Proposition 10.4. Observe that c ∈ K0.
So either c ∈ M or c ∈ gapK0

(di) for some i ⩽ n. This transfers to K by Lemma 10.3.

Notice our use of indiscernibility in the proof above is not necessary: we could have worked
with any completion of T even if the theory T itself is not complete.

Further exercises
The Splitting Theorem from Lecture 6 implies that every minimal extension is either an end
extension or a cofinal extension. We have already seen minimal end extensions. So let us see some
minimal cofinal extensions.

Theorem 11.11 (Blass [1]). Every countable nonstandard M |= PA has a minimal elementary
cofinal extension.

Proof. Let M |= PA and Cod∗(M) = {S ∈ Cod(M) : S is infinite}. As in the other proofs, we will
employ some combinatorial lemmas.

(a) Let n ∈ N. Show, using IΣn + exp in M , that for every φ(v) ∈ Σn(M),

(M,Cod∗(M)) |= ∀S ∃H⊆S
(
∀v∈H φ(v) ∨ ∀v∈H ¬φ(v)

)
.

(b) Show, using I∆0 + exp in M , that

(M,Cod∗(M)) |= ∀S ∀ function F with domain S ∃H⊆S

(F is either constant or injective on H).

The construction goes by finding S0 ⊇ S1 ⊇ S2 ⊇ · · · in Cod∗(M). These are respectively coded
by s0, s1, s2, . . . ∈ M . The type p(v) will be the deductive closure of

p0(v) = ElemDiag(M) + {θi(v) : i ∈ N},

where θi(v) is the ∆0(M)-formula v ∈ Ack(si). Notice Cod∗(M) ̸= ∅ since M is nonstandard. Pick
any S0 ∈ Cod∗(M).

(c) Explain how one can make p(v) a complete M -type using (a).

Consider M(p) = M(p/d). Pick c ∈ M(p). Let η(x, v) ∈ LA(M) such that c = (minx)(η(x, d)).
As in the proof of Proposition 10.4, we may assume M |= ∀v ∃!x η(x, v) without loss of generality.

(d) Recall from Lemma 2.6 that every element of Cod∗(M) has a maximum. Suppose η ∈ Σn(M),
where n ∈ N. Use BΣn in M to find b ∈ M such that p(v) ⊢ ∃x<b η(x, v).

(e) Conclude that c < b for some b ∈ M .

This shows every element of M(p) is bounded above by some element of M . In other words,
M(p) ⊇cf M . It remains to prove the minimality of M(p) over M .
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(f) Show how to construct p(v) using (b) so that for every Si and for every coded function
F : Si → M , there exists Sj ⊆ Si on which F is either constant or injective.

Take any i ∈ N. Then

F = {⟨v, x⟩ : M |= v ∈ Ack(si) ∧ η(x, v)} ∈ Cod∗(M)

by Theorem 2.8, because M |= BΣn + exp. Apply (f) to find Sj on which F is either constant or
injective. It suffices to make c ∈ M or d ∈ clM(p)(M ∪ {c}).

(g) Suppose F is constant on Sj . Show that c ∈ M .

(h) Suppose F is injective on Sj . Show that d is the unique v such that M(p) |= η(c, v).

Further comments

Rarity and minimality
Many results presented in this lecture are, in a sense, optimal. For instance, Lemma 11.5, Theo-
rem 11.6, and Proposition 11.7 all admit converses.

Proposition 11.12. Let M |= PA and p(v) be a complete M -type.

(a) If for every d ∈ K ≽ M realizing p and every c ∈ gap(d), we have d ∈ clK(M ∪ {c}), then
p(v) is rare.

(b) Suppose p(v) is unbounded. If for every K ≽ M and every unbounded complete K-type
q(v) ⊇ p(v), the extension K(q) ≽ K is minimal, then p(v) is strongly definable and rare.

(c) If p(v) is unbounded and indiscernible, then it is minimal.

Proof. (a) This is part of Theorem 3.1.16 in Kossak–Schmerl [5].

(b) For rarity, see Corollary 3.1.17 in Kossak–Schmerl [5]. For strong definability, combine
Lemmas 3.2.4–3.2.6 there.

(c) The rarity and strong definability parts are respectively Lemma 3.1.18 and Lemma 3.1.13 in
Kossak–Schmerl [5]. The latter depends on Theorem 3.1.9 in the Kossak–Schmerl book [5],
which originally came from Theorem 4.5 in Kossak–Kotlarski–Schmerl [4].

Moreover, strong definability and rarity are independent of each other. Unbounded rare types
that fail to be (strongly) definable can be constructed using Lemma 2.1 in Schmerl [6]; see also
Corollary 3.2.12 and the theorem preceding it in the Kossak–Schmerl book [5]. The existence of
unbounded strongly definable non-rare types follows from Theorem 5.2 or Theorem 5.14 in the
Gaifman paper [3].

Substructure lattices and automorphism groups
Theorem 11.10 tells us a lot about the variety of models of PA. Let us mention two applications
here. The first one is about the collection of all elementary substructures of a model of PA. Such a
collection forms a lattice under inclusion because of our remarks about clM (A) on page 73.

Corollary 11.13 (Gaifman [3]). Let I be a set and T be a complete extension of PA. Then there is
K |= PA of which the lattice of elementary substructures is isomorphic to the Boolean algebra P(I)
of subsets of I.

Proof sketch. Take any linear order < on I. Let M be the prime model of T as given by Propo-
sition 9.3. Apply Theorem 11.10 to M and (I,<) to obtain K. Then every K0 ≼ K uniquely
determines J = {i ∈ I : di ∈ K0} ⊆ I, because K = clK(M ∪ D) = clK(D). Conversely, every
J ⊆ I uniquely determines K0 = clK({di : i ∈ J}) ≼ K.
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Our second application is about automorphism groups of models of PA.

Corollary 11.14 (Gaifman [3]). For every complete T ⊇ PA and every linear order (I,<), there
exists K |= T such that Aut(K) ∼= Aut(I,<).

Proof sketch. Take the prime model M |= T as given by Proposition 9.3. Apply Theorem 11.10 to
this M and (I,<) to obtain K ≽ M . Then every g ∈ Aut(M) naturally induces an automorphism
of (D,<) ∼= (I,<). Conversely, every f ∈ Aut(I,<) induces an automorphism of M , because
K = clK(M ∪D) = clK(D).

In particular, for every infinite cardinal κ, one can find a model of PA of size κ that has no
non-trivial automorphism, essentially because Aut(κ,<) is trivial. Improving on Corollary 11.14,
Schmerl [6] showed that every subgroup of the automorphism group of a linearly ordered set realizes
as the automorphism group of some model of PA. This, in a sense, says the variety of automorphism
groups of models of PA is as rich as possible.

Minimal cofinal extensions
Recall from Remark 9.2 that it is easy to build elementary cofinal extensions of models of PA.
However, problems about cofinal extensions are not always easier. For example, although we know
every model of PA has a minimal end extension, we do not know whether the same is true for cofinal
extensions in general [5, Chapter 12, Question 2]. Notice our argument in the Further exercises
breaks down when the model involved is uncountable.

Question 11.15. Does every model of PA have a minimal cofinal extension?
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