
SDPNAL+: A Matlab software for semidefinite

programming with bound constraints (version 1.0)

Defeng Sun∗, Kim-Chuan Toh†, Yancheng Yuan‡, Xin-Yuan Zhao§

October 17, 2017

Abstract. Sdpnal+ is a Matlab software package that implements an augmented La-
grangian based method to solve large scale semidefinite programming problems with bound
constraints. The implementation was initially based on a majorized semismooth Newton-CG
augmented Lagrangian method, but we subsequently design it within an inexact symmetric
Gauss-Seidel based semi-proximal ADMM/ALM (alternating direction method of multiplier-
s/augmented Lagrangian method) framework for the purpose of deriving simpler stopping con-
ditions. The basic code is written in Matlab, but some subroutines in C language are incorpo-
rated via Mex files. We also design a convenient interface for users to input their SDP models
into the solver. Numerous problems arising from combinatorial optimization and binary integer
quadratic programming problems have been tested to evaluate the performance of the solver.
Extensive numerical experiments conducted in [Yang, Sun, and Toh, Mathematical Program-
ming Computation, 7 (2015), pp. 331–366] show that the proposed method is quite efficient and
robust.

Keywords: Semidefinite programming, Augmented Lagrangian, Semismooth Newton-CG
method, Matlab software package.

1 Introduction

Let Sn be the space of n×n real symmetric matrices and Sn+ be the cone of positive semidefinite
matrices in Sn. For any X ∈ Sn, we may sometimes write X � 0 to indicate that X ∈ Sn+. Let
P = {X ∈ Sn : L ≤ X ≤ U}, where L,U are given n×n symmetric matrices whose elements are

∗Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
(defeng.sun@polyu.edu.hk). On leave from Department of Mathematics, National University of Singapore.
†Corresponding author. Department of Mathematics, and Institute of Operations Research and Analytics,

National University of Singapore, 10 Lower Kent Ridge Road, Singapore (mattohkc@nus.edu.sg). Research
supported in part by the Ministry of Education, Singapore, Academic Research Fund under Grant R-146-000-
194-112.
‡Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore

(yuanyancheng@u.nus.edu).
§Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, 100 Pingleyuan,

Chaoyang District, Beijing 100124, People’s Republic of China (xyzhao@bjut.edu.cn). Research supported by
General Program of Science and Technology of Beijing Municipal Education Commission.

1

allowed to take the values −∞ and +∞, respectively. Consider the semidefinite programming
(SDP):

(SDP) min
{
〈C, X〉 | A(X) = b, l ≤ B(X) ≤ u, X ∈ Sn+, X ∈ P

}
,

where b ∈ Rm, and C ∈ Sn are given data, A : Sn → Rm and B : Sn → Rp are two given
linear maps whose adjoints are denoted as A∗ and B∗, respectively. The vectors l, u are given
p-dimensional vectors whose elements are allowed to take the values −∞ and ∞, respectively.
Note that P = Sn is allowed, in which case there are no additional bound constraints imposed
on X. We assume that the m×m symmetric matrix AA∗ is invertible, i.e., A is surjective.

Note that (SDP) is equivalent to

(P) min
{
〈C, X〉 | A(X) = b, B(X)− s = 0, X ∈ Sn+, X ∈ P, s ∈ Q

}
,

where Q = {s ∈ Rp : l ≤ s ≤ u}. The dual of (P), ignoring the minus sign in the objective, is
given by

(D) min
{
δ∗P(−Z) + δ∗Q(−v) + 〈−b, y〉 | A∗(y) + B∗(ȳ) + S + Z = C, −ȳ + v = 0, S ∈ Sn+

}
,

where for any Z ∈ Sn, δ∗P(−Z) is defined by

δ∗P(−Z) = sup{〈−Z, W 〉 |W ∈ P}

and δ∗Q(·) is defined similarly. We note that our solver is designed based on the assumption that
(P) and (D) are feasibile.

While we have presented the problem (SDP) with a single variable block X, our solver is
capable of solving the following more general problem with N blocks of variables:

min
∑N

j=1〈C(j), X(j)〉

s.t.
∑N

j=1A(j)(X(j)) = b, l ≤
∑N

j=1 B(j)(X(j)) ≤ u,

X(j) ∈ K(j), X(j) ∈ P(j), j = 1, . . . , N,

(1)

where A(j) : X (j) → Rm, and B(j) : X (j) → Rp are given linear maps, P(j) := {X(j) ∈ X (j) |
L(j) ≤ X(j) ≤ U (j)} and L(j), U (j) ∈ X (j) are given symmetric matrices where the elements are
allowed to take the values −∞ and ∞, respectively. Here X (j) = Snj (Rnj), and K(j) = X (j) or
K(j) = Snj

+ (Rnj

+). For later expositions, we should note that when X (j) = Snj , the linear map

A(j) : Snj → Rm can be expressed in the form of

A(j)(X(j)) =
[
〈A(j)

1 , X(j)〉, . . . , 〈A(j)
m , X(j)〉

]T
, (2)

where A
(j)
1 , . . . , A

(j)
m ∈ Snj are given constraint matrices. The corresponding adjoint (A(j))∗ :

Rm → Snj is then given by

(A(j))∗y =
∑m

k=1 ykA
(j)
k .

2

In this paper, we introduce our Matlab software package Sdpnal+ for solving (SDP) or
more generally (1). The implementation was initially based on a majorized semismooth Newton-
CG augmented Lagrangian method developed in [14]. Subsequently, for the purpose of deriving
simpler stopping conditions, we design it within an inexact semi-proximal alternating direction
method of multipliers (sPADMM) (or the semi-proximal augmented Lagrangian (sPALM) if
the bound constraints are absent) framework developed in [2] for multi-block convex composite
conic programming problems. Currently, the algorithm which we have implemented is a 2-phase
algorithm designed based on the augmented Lagrangian function for (D). In the first phase, we
employ the inexact symmetric Gauss-Seidel based sPADMM to solve the problem to a modest
level of accuracy. The purpose is to generate a good initial point to warm-start the algorithm in
the second phase, which is an inexact sPADMM for which the main subproblem in each iteration
is solved by a semismooth Newton-CG method.

The development of Sdpnal+ in [14], which is built on the earlier work on Sdpnal in [15],
has in fact spurred much of the recent progresses in designing efficient convergent ADMM-type
algorithms for solving multi-block convex composite conic programming, such as [9], [4], [2].
Those works in turn shaped the recent algorithmic design of Sdpnal+. Indeed, the algorithm
in the first phase of Sdpnal+ is the same as the convergent ADMM-type method developed in [9]
when the subproblems in each iteration are solved analytically. For the algorithm in the second
phase, it is an economical variant of the majorized semismooth Newton-CG (SNCG) augmented
Lagrangian method designed in [14] to solve (D) for which only one SNCG subproblem is solved
in each iteration.

Our Sdpnal+ solver is designed for solving feasible problems of the form presented in (P)
and (D). It is capable of solving large scale SDPs with m or p up to a few millions but n is
assumed to be moderate (up to a few thousands). Extensive numerical experiments conducted
in [14] show that a variety of large scale SDPs can be solved by Sdpnal+ much more efficiently
than the best alternative methods [12, 6].

The Sdpnal+ package can be downloaded from the following website:

http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html

We have evaluated the performance of SDPNAL+ on various classes of large scale SDP
problems arising from the relaxation of combinatorial problems such as maximum stable set
problems, quadratic assignment problems, frequency assignment problems, and binary integer
quadratic programming problems. The solver has also been tested on large SDP problems arising
from robust clustering problems, rank-one tensor approximation problems, as well as electronic
structure calculations in quantum chemistry. The detailed numerical results can be found at
the above website. Based on the numerical evaluation of SDPNAL+ on over 600 large scale
SDP problems, we can observe that the solver is fairly robust and highly efficient in solving the
tested classes of problems. Note that in the near future, the test instances which we have used
to evaluate the performance of the solver can also be found at the above website.

The remaining parts of this paper are organized as follows. In the next section, we describe
the installation and present some general information on our software. Section 3 gives some
details on the main solver function sdpnalplus.m. In Section 4, we describe the algorithm
implemented in Sdpnal+ and discuss some implementation issues. In Section 5, we present
a few SDP examples to illustrate the usage of our software. In Section 6, we present a basic

3

http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html

interface for the users to input their SDP models into the Sdpnal+ solver. In Section 7, we
give examples on how to input SDP models into our interface.

2 Installation and general information

Installation. Sdpnal+ is a Matlab software package developed under Matlab version 7.0
or above. It includes some C subroutines written to carry out certain operations for which
Matlab is not efficient at. These subroutines are called within Matlab via the Mex interface.
The user can simply follow the steps below to install Sdpnal+ within Matlab:

(a) unzip SDPNAL+v1.0.zip;

(b) run Matlab in the directory SDPNAL+v1.0.

After that, to see whether you have installed Sdpnal+ correctly, try the following steps:

>> startup

>> SDPNALplus_Demo

or

>> [blk,At,C,b] = read_sdpa(’theta4.dat-s’);

>> [obj,X,y,Z] = sdpnalplus(blk,At,C,b);

In the above, startup.m sets up the paths for Sdpnal+ in Matlab and SDPNALplusDemo.m is
a demo file illustrating how to solve an SDP problem in Sdpnal+.

Citation. If you find the software Sdpnal+ useful, please cite it in your publication as follows:

• L.Q. Yang, D.F. Sun, and K.C. Toh, SDPNAL+: a majorized semismooth Newton-
CG augmented Lagrangian method for semidefinite programming with nonnegative con-
straints, Mathemtical Programming Computation, 7 (2015), pp. 331–366.

• X.Y Zhao, D.F. Sun, and K.C. Toh, A Newton-CG augmented Lagrangian method for
semidefinite programming, SIAM Journal on Optimization, 20 (2010), pp. 1737–1765.

Caveats. There are a few points which we should emphasize on our solver.

• It is important to note that Sdpnal+ is a research software. It is not intended nor
designed to be a general purpose software at the moment. The solver is designed based on
the assumption that the primal and dual SDP problems (P) and (D) are feasible, and that
Slater’s constraint qualification holds. The solver is expected to be robust if the primal
and dual SDP problems are both non-degenerate at the optimal solutions. However, if
either one of them is degenerate or that the Slater’s condition fails, then the solver may
not be able to solve the problems to high accuracy.

• Another point to note is that our solver is designed with the emphasis on handling problems
with positive semidefinite variables efficiently. Little attention has been paid on optimizing
the solver to handle linear programming problems.

4

• While in theory our solver can easily be extended to solve problems with second-order cone
constraints, it is not capable of solving such problems at the moment although we plan to
extend our solver to handle second-order cone programming problems in the future.

Copyright. Sdpnal+: A Matlab software for semidefinite programming with bound con-
straints, is copyrighted in 2014 by Defeng Sun and Kim-Chuan Toh.

The software Sdpnal+ is distributed under the GNU General Public License 2.0. You
can redistribute it and/or modify it under the terms of the GNU General Public License 2.0
as published by the Free Software Foundation Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. For commercial applications that may be incompatible with this license,
please contact the authors to discuss alternatives.

This software is distributed in the hope that it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular purpose. See
the GNU General Public License for more details.

3 Data structure and main solver

Sdpnal+ is an enhanced version of the Sdpnal solver developed by Zhao, Sun and Toh [15].
The internal implementation of Sdpnal+ thus follows the data structures and design framework
of Sdpnal. A casual user need not understand the internal implementation of Sdpnal+.

3.1 The main function: sdpnalplus.m

In the Sdpnal+ solver, the main routine is sdpnalplus.m, whose calling syntax is as follows:

[obj,X,s,y,S,Z,ybar,v,info,runhist] = ...

sdpnalplus(blk,At,C,b,L,U,Bt,l,u,OPTIONS,X,s,y,S,Z,ybar,v)

Input arguments.

• blk: a cell array describing the conic block structure of the SDP problem.

• At, C, b, L, U, Bt, l, u: data of the problem (SDP).
If L ≤ X but X is unbounded above, one can set U=inf or U=[]. Similarly, if the linear
map B is not present, one can set Bt=[], l=[], u=[].

• OPTIONS: a structure array of parameters (optional).

• X, s, y, S, Z, ybar, v: an initial iterate (optional).

Output arguments. The names chosen for the output arguments explain their contents. The
argument X is a solution to (P) which satisfies X ∈ Sn+ numerically while the constraint X ∈ P
is satisfied only approximately up to the desired accuracy tolerance. The argument info is a
structure array which records various performance measures of the solver. For example

info.etaRp, info.etaRd, info.etaK1, info.etaK2

5

correspond to the measures ηP , ηD, ηK, ηP defined in (4), respectively. The argument runhist
is a structure array which records the history of various performance measures during the course
of running sdpnalplus.m. For example,

runhist.prim obj, runhist.dual obj, runhist.gap

runhist.prim infeas, runhist.dual infeas

record the primal and dual objective values, complementarity gap, primal and dual infeasibilities
at each iteration, respectively.

3.2 Generation of starting point by admmplus.m

If an initial point (X,s,y,S,Z,ybar,v) is not provided for sdpnalplus.m, we call the function
admmplus.m, which implements a convergent 3-block ADMM proposed in [9], to generate a
starting point. The routine admmplus.m has a similar calling syntax as sdpnalplus.m given as
follows:

[obj,X,s,y,S,Z,ybar,v,info,runhist] = ...

admmplus(blk,At,C,b,L,U,Bt,l,u,OPTIONS,X,s,y,S,Z,ybar,v);

Note that if an initial point (X,s,y,S,Z,ybar,v) is not supplied to admmplus.m, the default
initial point is (0,0,0,0,0,0,0).

We should mention that although we use admmplus.m for the purpose of warm-starting
sdpnalplus.m, the user has the freedom to use admmplus.m alone to solve the problem (SDP).

3.3 Arrays of input data

The format of the input data in Sdpnal+ is similar to those in SDPT3 [10, 11]. For each SDP
problem, the conic block structure of the problem data is described by a cell array named blk.
If the kth block X{k} of the variable X is a nonnegative vector block with dimension nk, then we
set

blk{k,1} = ’l’, blk{k,2} = nk,

At{k} = [nk ×m sparse], Bt{k} = [nk × p sparse],

C{k}, L{k}, U{k}, X{k}, S{k}, Z{k} = [nk × 1 double or sparse].

If the jth block X{j} of the variable X is a semidefinite block consisting of a single block of size
sj , then the content of the jth block is given as follows:

blk{j,1} = ’s’, blk{j,2} = sj ,

At{j} = [s̄j ×m sparse], Bt{k} = [s̄j × p sparse],

C{j}, L{j}, U{j}, X{j}, S{j}, Z{j} = [sj × sj double or sparse],

6

where s̄j = sj(sj + 1)/2. By default, the contents of the cell arrays L and U are set to be empty
arrays. But if X{j} ≥ 0 is required, then one can set

L{j} = 0, U{j} = [].

One can also set L = 0 to indicate that X{j} ≥ 0 for all j = 1, . . . , N in (1).
We should mention that for the sake of computational efficiency, we store all the constraint

matrices associated with the jth semidefinite block in vectorized form as a single s̄j ×m matrix

At{j}, where the kth column of this matrix corresponds to the kth constraint matrix A
(j)
k , i.e.,

At{j} = [svec(A
(j)
1), . . . , svec(A(j)

m)],

and svec : Ssj → Rs̄j is the vectorization operator on symmetric matrices defined by

svec(X) = [X11,
√

2X12, X22, . . . ,
√

2X1,sj , . . . ,
√

2Xsj−1,sj , Xsj ,sj]
T . (3)

We store Bt in the same format as At. The function svec.m provided in Sdpnal+ can easily
convert a symmetric matrix into the vector storage scheme described in (3). Note that while
we store the constraint matrices in vectorized form, the semidefinite blocks in the variables X,
S and Z are stored either as matrices or in vectorized forms according to the storage scheme of
the input data C.

Other than inputting the data (At,b,C,L,U) of an SDP problem individually, Sdpnal+
also provides the functions read sdpa.m and read sedumi.m to convert problem data stored
in the SDPA [13] and SeDuMi [8] format into our cell-array data format just described. For
example, for the problem theta62.dat-s in the folder /datafiles, the user can call the m-file
read sdpa.m to load the SDP data as follows:

>> [blk,At,C,b] = read_sdpa(’./datafiles/theta62.dat-s’);

>> OPTIONS.tol = 1e-6;

>> [obj,X,s,y,S,Z,ybar,v,info,runhist] = ...

sdpnalplus(blk,At,C,b,[],[],[],[],[],OPTIONS);

3.4 The structure array OPTIONS for parameters

Various parameters used in our solver sdpnalplus.m are set in the structure array OPTIONS. For
details, see SDPNALplus parameters.m. The important parameters which the user is likely to
reset are described next.

1. OPTIONS.tol: accuracy tolerance to terminate the algorithm, default is 10−6.

2. OPTIONS.maxiter: maximum number of iterations allowed, default is 20000.

3. OPTIONS.maxtime: maximum time (in seconds) allowed, default is 10000.

4. OPTIONS.tolADM: accuracy tolerance to use for admmplus.m when generating a starting
point for the algorithm in the second phase of sdpnalplus.m (default = 10−4).

7

5. OPTIONS.maxiterADM: maximum number of ADMM iterations allowed for generating a
starting point. When there are no bound constraints on X (P = Sn) and no linear
inequality constraints corresponding to B(X) (hence Q = ∅), the default value is roughly
equal to 200; otherwise, the default value is 2000.

6. OPTIONS.printlevel: different levels of details to print the intermediate information
during the run. It can be the integers 0, 1, 2, with 1 being the default. Setting to the
highest value 2 will result in printing the complete details.

7. OPTIONS.stopoption: options to stop the solver. The default is OPTIONS.stopoption=1,
for which the solver may be stopped prematurely when stagnation occurs. To prevent the
solver from stopping prematurely before the required accuracy is attained, set OPTONS.stopoption=0.

8. OPTIONS.AATsolve.method: options to solve a linear system involving the coefficient ma-
trix AA∗, with

OPTIONS.AATsolve.method=’direct’ (default) or ’iterative’.

For the former option, a linear system of the form AA∗y = h is solved by the sparse
Cholesky factorization, while for the latter option, it is solved by a diagonally precondi-
tioned PSQMR iterative solver.

3.5 Stopping criteria

In Sdpnal+, we measure the accuracy of an approximate optimal solution (X, s, y, ȳ, S, Z, v) for
(P) and (D) by using the following relative residual based on the KKT optimality conditions:

η = max{ηP , ηD, ηK, ηP}, (4)

where K = Sn+,

ηP = max
{
‖A(X)−b‖

1+‖b‖ , ‖B(X)−s‖
1+‖s‖

}
, ηD = max

{
‖A∗(y)+B∗(ȳ)+S+Z−C‖

1+‖C‖ , ‖ȳ−v‖1+‖v‖

}
,

ηK = ‖X−ΠK(X−S)‖
1+‖X‖+‖S‖ , ηP = max

{
‖X−ΠP (X−Z)‖

1+‖X‖+‖Z‖ , ‖s−ΠQ(s−v)‖
1+‖s‖+‖v‖

}
.

Additionally, we compute the relative gap by

ηg = pobj−dobj
1+|pobj|+|dobj| . (5)

For a given accuracy tolerance specified in OPTIONS.tol, we terminate both sdpnalplus.m and
admmplus.m when

η ≤ OPTIONS.tol. (6)

4 Algorithmic design and implementation

For simplicity, we will describe the algorithmic design for the problem (D) instead of the dual of
the more general problem (1). Our algorithm is developed based on the augmented Lagrangian

8

function for (D), which is defined as follows: given a penalty parameter σ > 0, for (Z, v, y, ȳ) ∈
Sn × Rp ××Rm × Rp, and (X, s) ∈ Sn × Rp,

Lσ(Z, v, S, y, ȳ;X, s) =

{
δ∗P(−Z) + δ∗Q(−v) + 〈−b, y〉+ δSn+(S)− 1

2σ‖X‖
2 − 1

2σ‖s‖
2

+σ
2 ‖A

∗(y) + B∗(ȳ) + S + Z − C + σ−1X‖2 + σ
2 ‖v − ȳ + σ−1s‖2.

As mentioned in the Introduction, the algorithm implemented in Sdpnal+ is a 2-phase
algorithm where the first phase is an inexact sGS-sPADMM algorithm [2] whose template is
described next.

First-phase algorithm. Given an initial iteration (Z0, v0, S0, y0, ȳ0, X0, s0), perform the fol-
lowing steps in each iteration.

Step 1. Let Rk1 = A∗(yk)+B∗(ȳk)+Sk+Zk−C+σ−1Xk and Rk2 = vk− ȳk+σ−1sk. Compute
(Zk+1, vk+1) = argmin Lσ(Z, v, Sk, yk, ȳk;Xk, sk) as follows:

Zk+1 = argmin
{
δ∗P(−Z) +

σ

2
‖Z − Zk +Rk1‖2

}
= σ−1ΠP(σ(Rk1 − Zk))− (Rk1 − Zk),

vk+1 = argmin
{
δ∗Q(−v) +

σ

2
‖v − vk +Rk2‖2

}
= σ−1ΠQ(σ(Rk2 − vk))− (Rk2 − vk).

Step 2a. Compute

(yk+1
tmp , ȳ

k+1
tmp) ≈ argmin

{
Lσ(Zk+1, vk+1, Sk, y, ȳ;Xk, sk)

}
.

For this step, we typically need to solve a large system of linear equations given by[
AA∗ AB∗

BA∗ BB∗ + I

]
︸ ︷︷ ︸

M

[
y

ȳ

]
=

[
h1 := σ−1b−A(Sk + Zk+1 − C + σ−1Xk)

h2 := vk+1 + σ−1sk − B(Sk + Zk+1 − C + σ−1Xk)

]
.

(7)
In our implementation, we solve the linear system via the sparse Cholesky factorization
of M if it can be computed at a moderate cost. Otherwise, we use a preconditioned
CG method to solve (7) approximately so that the residual norm satisfies the following
accuracy condition:

√
σ‖[h1;h2]−M[yk+1

tmp ; ȳk+1
tmp]‖ ≤ εk,

where {εk} is a predefined summable sequence of nonnegative numbers.

Step 2b. Let Rk+1
1 = A∗(yk+1

tmp) + B∗(ȳk+1
tmp) + Sk + Zk+1 − C + σ−1Xk. Compute

Sk+1 = argmin
{
δSn+(S) +

σ

2
‖S − Sk +Rk+1

1 ‖2
}

= ΠSn+(Sk −Rk+1
1).

Step 2c. Let hnew
1 := h1 −A(Sk+1 − Sk), and hnew

2 := h2 − B(Sk+1 − Sk). Set (yk+1, ȳk+1) =
(yk+1

tmp , ȳ
k+1
tmp) if

√
σ
∥∥∥[hnew

1 ;hnew
2]−M[yk+1

tmp ; ȳk+1
tmp]

∥∥∥ ≤ 10εk;

otherwise solve (7) with the vector h1 replaced by hnew
1 and h2 replaced by hnew

2 , and the
approximate solution (yk+1, ȳk+1) should satisfy the above accuracy condition.

9

Step 3. Let Rk+1
D,1 = A∗(yk+1)+B∗(ȳk+1)+Sk+1 +Zk+1−C and Rk+1

D,2 = vk+1− ȳk+1. Compute

Xk+1 = Xk + τσRk+1
D,1 , s

k+1 = sk + τσRk+1
D,2 ,

where τ ∈ (0, (1 +
√

5)/2) is the steplength which is typically chosen to be 1.618.

We note that by [2], the computation in Step 2a–2c is equivalent to solving the subproblem:

(Sk+1, yk+1, ȳk+1) = argmin

{
Lσ(Zk+1, vk+1, S, y, ȳ;Xk, sk)

+σ
2 ‖(S; y; ȳ)− (Sk; yk; ȳk)‖2H

}
,

where H is the symmetric Gauss-Seidel decomposition linear operator associated with the linear
operator (I;A;B)(I,A∗,B∗) + diag(0, 0, I), i.e.,

H =

 (A∗, B∗)D−1(A;B) 0 0

0 0 0

0 0 0

 with D =

[
AA∗ AB∗
BA∗ BB∗ + I

]
.

There are numerous implementation issues which are addressed in Sdpnal+ to make the
above skeletal algorithm practically efficient and robust. A detailed description of how the issues
are addressed is beyond the scope of this paper. Hence we shall only briefly mention the most
crucial ones.

1. Dynamic adjustment of the penalty parameter σ, which is equivalent to restarting the
algorithm with a new parameter by using the most recent iterate as the initial starting
point.

2. Initial scaling of the data, and dynamic scaling of the data.

3. The efficient implementation of the PCG method to compute an approximate solution for
(7).

4. Efficient computation of the iterate Sk+1 by using partial eigenvalue decomposition when-
ever it is expected to be more economical than a full eigenvalue decomposition.

5. Efficient evaluation of the residual measure η defined in (4).

The algorithm in the second phase of Sdpnal+ is designed based on the following inexact
sPADMM template (or the sPALM template if the bound constraints are absent).

Second-phase algorithm. Given an initial iterate (Z0, v0, S0, y0, ȳ0, X0, s0) generated in the
first phase, perform the following steps in each iteration.

Step 1. Compute (Zk+1, vk+1) as in Step 1 of the first-phase algorithm.

10

Step 2. Compute

(yk+1, ȳk+1, Sk+1) ≈ argminLσ(Zk+1, vk+1, S, y, ȳ;Xk, sk)

by using the semismooth Newton-CG (SNCG) method which has been described in details
in [15] such that the following accuracy condition is met:

√
σmax{‖b−AΠSn+(W k+1)‖, ‖BΠSn+(W k+1)− sk + σ(ȳk+1 − vk+1)‖} ≤ εk,

where W k+1 := A∗yk+1 + B∗ȳk+1 + Sk + Zk+1 − C + σ−1Xk, and {εk} is a predefined
summable sequence of nonnegative numbers.

Step 3. Compute (Xk+1, sk+1) as in Step 3 of the first-phase algorithm.

As one may observe, the difference between the first-phase and the second-phase algorithms
lies in the construction of (yk+1, ȳk+1, Sk+1) in Step 2 of the algorithms. In the first phase,
the iterate is generated by adding the semi-proximal term σ

2 ‖(S; y; ȳ) − (Sk; yk; ȳk)‖2H to the
augmented Lagrangian function Lσ(Zk+1, vk+1, S, y, ȳ;Xk, sk). For the second phase, no such
a semi-proximal term is required though one may still add a small semi-proximal term to the
augmented Lagrangian function to ensure that the subproblems are well defined. As our goal
is to minimize the augmented Lagrangian function Lσ(Z, v, S, y, ȳ;Xk, sk) for each pair of given
(Xk, sk), it is thus clear that Step 2 of the second-phase algorithm is closer to that goal compared
to Step2 of the first-phase algorithm. Of course, the price to pay is that the subproblem in Step
2 of the second-phase algorithm is more complicated to solve.

5 Examples

To solve SDP problems using Sdpnal+, the user must input the problem data corresponding
to the form in (P). The file SDPNALplusDemo.m contains a few examples to illustrate how to
generate the data of an SDP problem in the required format. Here we will present a few of
those examples in detail. Note that the user can also store the problem data in either the SDPA
or SeDuMi format, and then use the m-files read sdpa.m or sedumi.m to convert the data for
Sdpnal+.

5.1 SDP relaxations of maximum stable set problems

Let G be an undirected graph with n nodes and edge set E . Its stability number, α(G), is the
cardinality of a maximal stable set of G, and it can be expressed as

α(G) := max{eTx : xixj = 0, (i, j) ∈ E , x ∈ {0, 1}n},

where e ∈ Rn is the vector of all ones. It is known that computing α(G) is NP-hard. But an
upper bound θ(G), known as the Lovász theta number [5], can be computed as the optimal
value of the following SDP problem:

θ(G) := max 〈eeT , X〉
s.t. 〈Eij , X〉 = 0 ∀ (i, j) ∈ E ,

〈I, X〉 = 1, X ∈ Sn+,
(8)

11

where Eij = eie
T
j + eje

T
i and ei denotes the ith standard unit vector of Rn. One can further

tighten the upper bound to get α(G) ≤ θ+(G) ≤ θ(G), where

θ+(G) := max 〈eeT , X〉
s.t. 〈Eij , X〉 = 0 ∀ (i, j) ∈ E ,

〈I, X〉 = 1,

X ∈ Sn+, X ≥ 0.

(9)

In the subdirectory /datafiles of Sdpnal+, we provide a few SDP problems with data stored
in the in SDPA or SeDuMi format, arising from computing θ(G) for a few graph instances.
The segment below illustrates how one can solve the SDP problem, theta8.dat-s, to compute
θ+(G):

>> [blk,At,C,b] = read_sdpa(’theta8.dat-s’);

>> L = 0;

>> [obj,X,s,y,S,Z,ybar,v,info,runhist] = sdpnalplus(blk,At,C,b,L);

To compute θ(G), one can simply set L = [] to indicate that there is no lower bound constraint
on X.

5.2 SDP relaxation of frequency assignment problems (FAPs)

Given a network represented by a graph G with n nodes and an edge set E together with an
edge-weight matrix W , a certain type of frequency assignment problem on G can be relaxed into
the following SDP (see [1, eq. (5)]):

max 〈(k−1
2k)L(G,W)− 1

2Diag(We), X〉
s.t. diag(X) = e, X ∈ Sn+,

〈−Eij , X〉 = 2/(k − 1) ∀ (i, j) ∈ U ⊆ E ,
〈−Eij , X〉 ≤ 2/(k − 1) ∀ (i, j) ∈ E \ U ,

(10)

where k > 1 is a given integer, L(G,W) := Diag(We) − W is the Laplacian matrix, Eij =
eie

T
j + eje

T
i . Note that (10) is equivalent to

max 〈(k−1
2k)L(G,W)− 1

2Diag(We), X〉
s.t. diag(X) = e, X ∈ Sn+, L ≤ X ≤ U,

(11)

where

Lij =

{
− 1
k−1 ∀(i, j) ∈ E ,
−∞ otherwise,

Uij =

{
− 1
k−1 ∀(i, j) ∈ U ,
∞ otherwise.

The segment below illustrates how one can solve an SDP of the form (11) using the example
fap08.dat in the subdirectory /datafiles.

>> [blk,At,C,b,L,U] = fapread_lu(’fap08’);

>> [obj,X,s,y,S,Z,ybar,v,info,runhist] = sdpnalplus(blk,At,C,b,L,U);

12

5.3 Nearest correlation matrix problems

To obtain a valid nearest correlation matrix (NCM) from a given incomplete sample correlation
matrix G ∈ Sn, one version of the NCM problem is to consider solving the following SDP:

(NCM) min ‖H ◦ (X −G)‖1
s.t. diag(X) = e, X ∈ Sn+,

where H ∈ Sn is a nonnegative weight matrix and “◦” denotes the elementwise product. Here
for any M ∈ Sn, ‖M‖1 =

∑n
i,j=1 |Mij |.

In order to express (NCM) in the form given in (P), we first write

svec(X)− svec(G) = x+ − x−,

where x+ and x− are two nonnegative vectors in Rn̄ (n̄ = n(n + 1)/2). Then (NCM) can be
reformulated as the following SDP with m = n+ n̄ equality constraints:

min 〈svec(H), x+〉+ 〈svec(H), x−〉
s.t. diag(X) = e,

svec(X)− x+ + x− = svec(G),

X ∈ Sn+, x+, x− ∈ Rn̄+.

Given G,H ∈ Sn, the SDP data for the above problem can be coded for Sdpnal+ as follows.

blk{1,1} = ’s’; blk{1,2} = n;

n2 = n*(n+1)/2;

II = speye(n2); hh = svec(blk(1,:),H);

for k=1:n; Acell{k} = spconvert([k,k,1;n,n,0]); end

Atmp = svec(blk(1,:),Acell,1);

At{1,1} = [Atmp{1}, II];

At{2,1} = [sparse(n,n2), sparse(n,n2); -II, II]’;

b = [ones(n,1); svec(blk(1,:),G)];

C{1,1} = sparse(n,n); C{2,1} = [hh; hh];

For more details, see the m-file NCM.m in the subdirectory /util.

5.4 Euclidean distance matrix problems

Consider a given undirected graph G with n nodes and edge set E . Let D = (dij) ∈ Sn be a
matrix whose elements are such that dij > 0 if (i, j) ∈ E , and dij = 0 if (i, j) 6∈ E . We seek
points x1, x2, . . . , xn in Rd such that ‖xi − xj‖ is as close as possible to dij for all (i, j) ∈ E . In
particular, one may consider minimizing the L1-error as follows:

min
{∑

(i,j)∈E |d2
ij − ‖xi − xj‖2| − α

2n

∑n
i,j=1 ‖xi − xj‖2 |

∑n
i=1 xi = 0, x1, . . . , xn ∈ Rd

}
,

13

where the constraint is introduced to put the center of mass of the points at the origin. The
second term in the objective function is introduced to encourage the points to spread out instead
of crowding together, and α is a given nonnegative parameter. Let X = [x1, . . . , xn] ∈ Rd×n.
Then ‖xi − xj‖2 = eTijX

TXeij , where eij = ei − ej . The above nonconvex problem can be
rewritten as (for more details, see [3]):

min
{∑

(i,j)∈E |d2
ij − 〈eijeTij , Y 〉| − α〈I, Y 〉 | 〈E, Y 〉 = 0, Y = XTX, X ∈ Rd×n

}
.

By relaxing the nonconvex constraint Y = XTX to Y ∈ Sn+, we obtain the following SDP
problem:

min
∑

(i,j)∈E x
+
ij + x−ij − α〈I, Y 〉

s.t. 〈eijeTij , Y 〉 − x
+
ij + x−ij = d2

ij ∀ (i, j) ∈ E ,

〈E, Y 〉 = 0,

Y ∈ Sn+, x+
ij , x

−
ij ≥ 0 ∀ (i, j) ∈ E .

(12)

Note that the number of the equality constraints in (12) is |E| + 1, and that the problem does
not satisfy the Slater’s condition because of the constraint 〈E, Y 〉 = 0. The problem (12) is
typically highly degenerate and the optimal solution is not unique, which may result in high
sensitivity to small perturbations in the data matrix D. Hence, the problem (12) can usually
only be solved by Sdpnal+ to a moderate accuracy tolerance, say OPTIONS.tol = 10−4. Given
the data matrix D ∈ Sn, and let m = |E|, the SDP data for (12) can be coded as follows:

blk{1,1} = ’s’; blk{1,2} = n;

Acell = cell(1,m+1); b = zeros(m+1,1); cnt = 0;

for i = 1:n

for j = 1:n

if (D(i,j) ~= 0)

cnt = cnt + 1;

Acell{cnt} = spconvert([i,i,1; i,j,-1; j,i,-1; j,j,1; n,n,0]);

b(cnt) = D(i,j)^2;

end

end

end

Acell{m+1} = ones(n);

At(1) = svec(blk(1,:),Acell); C{1,1} = -alpha*speye(n,n);

blk{2,1} = ’l’; blk{2,2} = 2*m;

At{2,1} = [-speye(m), speye(m); sparse(1,2*m)]’; C{2,1} = ones(2*m,1);

14

6 Interface

In this section, we will present a basic interface for our SDPNAL+ solver. First, we show how
to use it via a small SDP example given as follows:

min trace(X(1)) + trace(X(2)) + sum(X(3))

s.t. −X(1)
12 + 2X

(2)
33 + 2X

(3)
2 = 4,

2X
(1)
23 +X

(2)
42 −X

(3)
4 = 3,

2 ≤ −X(1)
12 − 2X

(2)
33 + 2X

(3)
2 ≤ 7,

X(1) ∈ S6
+, X

(2) ∈ R5×5, X(3) ∈ R7
+,

0 ≤ X(1) ≤ 10E6, 0 ≤ X(2) ≤ 8E5,

(13)

where En denotes the n×n matrix of all ones. In the notation of (1), the problem (13) has three
blocks of variables X(1), X(2), X(3). The first linear map A(1) contains two constraint matrices

A
(1)
1 , A

(1)
2 ∈ S6 whose nonzero elements are given by

(A
(1)
1)12 = (A

(1)
1)21 = −0.5, (A

(1)
2)23 = (A

(1)
2)32 = 1.

With the above constraint matrices, we get 〈A(1)
1 , X(1)〉 = −X(1)

12 and 〈A(1)
2 , X(1)〉 = 2X

(1)
23 .

The second linear map A(2) contains two constraint matrices A
(2)
1 , A

(2)
2 ∈ R5×5 whose nonzero

elements are given by

(A
(2)
1)33 = 2, (A

(2)
2)42 = 1.

Since the third variable X(3) is a vector, the third linear map A(3) is a constraint matrix A(3) ∈
R2×7 whose nonzero elements are given by

(A(3))12 = 2, (A(3))24 = −1.

In a similar fashion, one can identify the matrices for the linear maps B(1),B(2), and B(3).
The example (13) can be coded using our interface as follows:

Listing 1: Example (13).

1 n1 = 6; n2 = 5; n3 = 7;

2 mymodel = ccp_model(’Example_simple ’);

3 X1 = var_sdp(n1,n1);

4 X2 = var_nn(n2,n2);

5 X3 = var_nn(n3);

6 mymode.add_variable(X1,X2,X3);

7 mymodel.minimize(trace(X1) + trace(X2) + sum(X3));

8 mymodel.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2) == 4);

9 mymodel.add_affine_constraint (2*X1(2,3)+X2(4,2)-X3(4) == 3);

10 mymodel.add_affine_constraint (2<=-X1(1,2) -2*X2(3,3)+2*X3(2) <=7);

11 mymodel.add_affine_constraint (0 <= X1 <= 10);

12 mymodel.add_affine_constraint(X2 <= 8);

13 mymodel.solve;

Note that although the commands

15

mymodel.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2)==4);

mymodel.add_affine_constraint(2*X1(2,3)+X2(4,2)-X3(4)==3);

are convenient to use for a small example, it may become tedious if there are many such con-
straints. In general, it is more economical to encode numerous such constraints by using the
constraint matrices of the linear maps A(1), A(2), A(3), which we illustrate below:

Listing 2: Example (13) with constraints specified via linear maps as cell arrays.

1 A1 = {sparse(n1,n1); sparse(n1,n1)}; A2 = {sparse(n2,n2); sparse(n2,n2)};

2 A3 = sparse(2,n3);

3 A1{1}(1 ,2) = -1; A2{1}(3 ,3) = 2; A3(1,2) = 2; % -X1(1,2)+2*X2(3,3)+2*X3(2)

4 A1{2}(2 ,3) = 2; A2{2}(4 ,2) = 1; A3(2,4) = -1; % 2*X1(2,3)+X2(4,2)-X3(4)

5 b = [4;3];

6 mymodel.add_affine_constraint(A1*X1 + A2*X2 + A3*X3 == b);

As the reader may have noticed, in constructing the matrix A1{1} corresponding to the constraint

matrix A
(1)
1 , we set A1{1}(1,2) = -1 instead of A1{1}(1,2) = -0.5; A1{1}(2,1) = -0.5.

Both ways of inputing A1{1} are acceptable as internally, we will symmetrize the matrix A1{1}.
In following subsections, we will discuss the details of the interface.

6.1 Creating a ccp model

Before declaring variables, constraints and setting parameters, we need to create a ccp model

class first. This is done via the command:

mymodel = ccp model(model name);

The string model name is the name of the created ccp model. If no model name is specified, the
default name is ‘Default’.

After solving the created mymodel, we save all the relevant information in the file ‘model name.mat’.
It contains two structure arrays, input data and solution, which store all the input data and
solution information, respectively.

6.2 Delcaring variables

Variables in Sdpnal+ can be real vectors or matrices. Currently, our interface supports four
types of variables: free variables, variables in SDP cones, nonnegative variables and variables
which are symmetric matrices. Next, we introduce them in details.

1. Free variables. One can declare a free variable X ∈ Rm×n via the command:

X = var free(m,n);

where the parameters m and n specify the dimensions of X. One can also declare a column
vector variable Y ∈ Rn simply via the command:

Y = var free(n);

16

2. Variables in SDP cones. A variable X ∈ Sn+ can be declared via the command:

X = var sdp(n,n);

In this case, the variable must be a square matrix, so X = var sdp(m,n) with m 6= n is
invalid.

3. Variables in nonnegative orthants. To declare a nonnegative variable X ∈ Rm×n+ , one
can use the command:

X = var nn(m,n);

We can also use Y = var nn(n) to declare a vector variable Y ∈ Rn+.

4. Variables which are symmetric matrices. To declare a symmetric matrix variable
X ∈ Sn, one can use the command:

X = var symm(n,n);

In this case, the variable must be a square matrix.

5. Adding declared variables into a model. Before one can start to specify the objective
function and constraints in a model, the variables, say X and Y, that we have declared
must be added to the ccp model class mymodel that we have created before. This step is
simply done via the command:

mymodel.add variable(X,Y);

Here mymodel is a class object and add variable is a method in the class.

6.3 Declaring the objective function

After creating the model mymodel, declaring variables (say X and Y) and adding them into
mymodel, we can proceed to specify the objective function. Declaring an objective function
requires the use of the functions (methods) minimize or maximize. There must be one and
only one objective function in a model specification. In general, the objective function is specified
through the sum or difference of the inprod function (inner product of two vectors or two
matrices) which must have two input arguments in the form: inprod(C,X) where X must be a
declared variable, and C must be a constant vector or matrix which is already available in the
workspace and having the same dimension as X. The input C can also be a constant vector or
matrix generated by some Matlab built-in functions such as speye(n,n).

Although we encourage users to specify an optimization problem in the standard form given
in (1), as a user-friendly interface, we also provide some extra functions to help users to specify
the objective function in a more natural way. We summarize these functions and their usages
in Table 1.

For the class mymodel created in Listing 1, we can see that the objective function of (13) is
specified via the command:

mymodel.minimize(trace(X1) + trace(X2) + sum(X3));

17

Function Description

inprod(C, X) The inner product of a constant vector or matrix C and variable X

of the same dimension.

trace(X) The trace of a square matrix variable X.

sum(X) The sum of all elements of a vector or matrix variable X.

l1 norm(X) The `1 norm of a variable X.

l1 norm(A∗X +b) The `1 norm of an affine expression. For the exact meaning of the
expression “A∗X”, the reader can refer to (15).

Table 1: Supported functions for specifying the objective function in a model.

6.4 Adding affine constraints into the model

Affine constraints can be specified and added into mymodel after the relevant variables have
been declared. This is done via the function (method) add affine constraint. The following
constraint types are supported in the interface:

• Equality constraints ==

• Less-or-equal inequality constraints <=

• Greater-or-equal inequality constraints >=

where the expressions on both the left and right-hand sides of the operands must be affine
expressions. Strict inequalities < and > are not accepted. Inequality and equality constraints
are applied in an elementwise fashion, matching the behavior of Matlab itself. For instance,
if U and X are m × n matrices, then X <= U is interpreted as mn (scalar) inequalities X(i,j)

<= U(i,j) for all i = 1, . . . ,m, j = 1, . . . , n. When one side is a scalar and the other side is
a variable, that value is replicated; for instance, X >= 0 is interpreted as X(i,j) >= 0 for all
i = 1, . . . ,m, j = 1, . . . , n.

In general, affine constraints have the following form

A1 ∗ X1 +A2 ∗ X2 + · · ·+Ak ∗ Xk <= (>= or ==) b, (14)

where X1, X2, . . . , Xk are declared variables, b is a constant matrix or vector, and A1,A2, . . . ,Ak
are linear maps whose descriptions will be given shortly.

Next, we illustrate how to add affine constraints into the model object mymodel in detail.

6.4.1 General affine constraints

In this section, we show users how to initialize the linear maps A1, A2, . . . , Ak in (14).

• If Ai = ai, is a scalar, then ai ∗ Xi has the same dimension as the variable Xi.

• If Xi is an n-dimensional vector, then Ai must be a p× n constant matrix, and Ai ∗ Xi is
in Rp.

18

• If Xi is an m× n (n > 1) matrix, then Ai ∗ Xi is interpreted as a linear map such that

Ai ∗ Xi =

 〈A
(i)
1 , Xi〉

...

〈A(i)
p , Xi〉

 ∈ Rp, (15)

where A
(i)
1 , . . . , A

(i)
p are given m×n constant matrices. In this case, Ai is a p× 1 constant

cell array such that

Ai{j} = A
(i)
j , j = 1, . . . , p.

6.4.2 Coordinate-wise affine constraints

Although users can model coordinate-wise affine constraints in the general form given in (14),
we allow users to declare them in a more direct way as follows:

a1 ∗ X1(i1, j1) + a2 ∗ X2(i2, j2) + · · ·+ ak ∗ Xk(ik, jk) <= (>= or ==) b, (16)

where a1, a2, . . . , ak, b are scalars and X1, X2, . . . , Xk are declared variables. The index pairs
(i1, j1), (i2, j2), . . . , (ik, jk) extract the corresponding elements in the variables. From Listing 1,
we can see how a constraint of the form (16) is added, i.e.,

mymodel.add affine constraint(2 ∗ X1(2, 3) + X2(4, 2)− X3(4) == 3)

Our interface also allows users to handle multiple index pairs. For example, if we have a
declared variable X ∈ Rm×n and two index arrays

I = [i1, i2, . . . , ik], J = [j1, j2, . . . , jk],

where max{i1, i2, . . . , ik} ≤ m and max{j1, j2, . . . , jk} ≤ n, then X(I, J) is interpreted as

X(I, J) =

X(i1, j1)
X(i2, j2)

...
X(ik, jk)

 ∈ Rk.

An example of such a usage can be found in Listing 6.

6.4.3 Element-wise multiplication

In our interface, we also support element-wise multiplication (.∗) between a declared variable X

and a constant matrix A with the same dimension. Suppose

X =

X11 X12 · · · X1n
X21 X22 · · · X2n
...

...
. . .

...
Xm1 Xm2 · · · Xmn

 , A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 .

19

Then A. ∗ X is interpreted as

A. ∗ X =

A11 ∗ X11 A12 ∗ X12 · · · A1n ∗ X1n
A21 ∗ X21 A22 ∗ X22 · · · A2n ∗ X2n

...
...

. . .
...

A11 ∗ Xm1 Am2 ∗ Xm2 · · · Amn ∗ Xmn

 .

6.4.4 Specifying affine constraints using predefined maps

For convenience, we also provide some predefined maps to help users to specify constraints in a
more direct way. We summarize these maps and their usages in Table 2.

Function Description Dimension

inprod(C, X) The inner product of a constant vector or matrix
C and a variable X of the same dimension.

1× 1

trace(X) The trace of a square matrix variable X. 1× 1

sum(X) The sum of all elements of a vector or matrix
variable X.

1× 1

l1 norm(X) The `1 norm of a variable X. 1× 1

l1 norm(A*X + b) The `1 norm of an affine expression. 1× 1

map diag(X) Extract the main diagonal of an n × n matrix
variable X.

n× 1

map svec(X) For an n×n symmetric variable X, it returns the
corresponding symmetric vectorization of X, as
defined in (3).

n(n+1)
2 × 1

map vec(X) For a m × n matrix variable X, it returns the
vectorization of X.

mn× 1

Table 2: Supported predefined maps.

6.4.5 Chained constraints

In our interface, one can add chained inequalities into the created ccp model mymodel. In
general, chained affine constraints have the form

L <= A1 ∗ X1 +A2 ∗ X2 + · · ·+Ak ∗ Xk <= U,

where L and U are scalars or constant matrices with having the same dimensions as the affine
expression in the middle. As an example, one can add bound constraints for a declared variable
X via the command:

mymodel.add affine constraint(L <= X <= U);

It is important to note that in chained inequality constraints, the affine expression in the middle
should only contain declared variables but not constants.

20

6.5 Adding positive semidefinite constraints into the model

Positive semidefinite constraints can be added into a previously created object mymodel using the
function (method) add psd constraint. Such a constraint is valid only for a declared symmetric
variable or positive semidefinite variable. In general, a positive semidefinite constraint has the
form

a1 ∗ X1 + a2 ∗ X2 + · · ·+ ak ∗ Xk � (�) G, (17)

where a1, a2, . . . , ak are scalars, and X1, X2, . . . , Xk are declared variables in symmetric matrix
spaces or PSD cones, and G is a constant symmetric matrix. Then, we can add (17) into mymodel

as follows:

mymodel.add psd constraint(a1 ∗ X1 + · · ·+ ak ∗ Xk) >= (<=) G

Specially,

• For a variable X ∈ Sn, one can use mymodel.add psd constraint(X>=0) to specify the
constraint X � 0 or X ∈ Sn+.

• For a variable X ∈ Sn and a constant matrix G ∈ Sn. One can use mymodel.add psd constraint(X

>= G) and mymodel.add psd constraint(X <= G) to specify the constraint X � G and
X � G, respectively.

Similar to affine constraints, one can also use chained positive semidefinite constraints together.
For example, for a variable X ∈ Sn and two constant matrices G1, G2 ∈ Sn (G1 � G2), one can
specify G1 � X � G2 as

mymodel.add psd constraint(G1 <= X <= G2);

6.6 Setting parameters for SDPNAL+

As described in Section 3.4, there are mainly nine parameters in the parameter structure ar-
ray OPTIONS. To allow users to set these parameters freely, we provide the function (method)
setparameter for such a purpose. Parameters which are not specified are set to be the default
values described in Section 3.4. Now, we describe the usage of setparameter in details.

Assume that we have created a ccp model class called mymodel. Since setparameter is a
method in the ccp model class, so the usage of setparameter is simply

mymodel.setparameter(‘para name’,value)

In Table 3, we summarize the parameters which can be set in setparameter. Note that users
can set more than one parameters at a time. For example, one can use

mymodel.setparameter(‘tol’, 1e-4, ‘maxiter’, 2000);

to set the parameters tol = 1e-4 and maxiter = 2000.

21

Parameter Name Usage Default Value

tol mymodel.setparameter(‘tol’, value) 1e-6

maxiter mymodel.setparameter(‘maxiter’, value) 20000

maxtime mymodel.setparameter(‘maxtime’, value) 10000

tolADM mymodel.setparameter(‘tolADM’, value) 1e-4

maxiterADM mymodel.setparameter(‘maxiterADM’, value) 200

printlevel mymodel.setparameter(‘printlevel’, value) 1

stopoption mymodel.setparameter(‘stopoption’, value) 1

AATsolve.method mymodel.setparameter(‘AATsolve.method’, value) ‘direct’

BBTsolve.method mymodel.setparameter(‘BBTsolve.method’, value) ‘iterative’

Table 3: Usage of setparameter.

6.7 Solving a model and extracting solutions

After creating and initializing the class mymodel, one can call the method solve to solve the
model as follow:

mymodel.solve;

After solving the SDP problem, one can extract the optimal solutions using the function get value.
For example, if X1 is a declared variable, then one can extract the optimal value of X1 by setting

get value(X1)

Note that the input of the function get value should be a declared variable.

6.8 Further remarks on the interface

Here we give some remarks to help users to input an SDP problem into our interface more
efficiently.

• If a variable must satisfy a conic constraint, it would be more efficient to specify the conic
constraint when declaring the variable rather than declaring the variable and imposing the
constraint separately. For example, it is better to use X = var nn(m,n) to indicate that
the variable X ∈ Rm×n must be in the cone Rm×n+ rather than separately declaring X =

var free(m,n) followed by setting

mymodel.add affine constraint(X >= 0);

Similarly, if a square matrix variable Y ∈ Sn must satisfy the conic constraint that Y ∈ Sn+,
then it is better to declare it as Y = var sdp(n,n) rather than separately declaring Y =

var free(n,n) followed by setting

mymodel.add psd constraint(Y >= 0);

The latter option is not preferred because we have to introduce extra constraints.

22

• When there is a large number of affine constraints, specifying them using a loop in Matlab
is generally time consuming. To make the task more efficient, if possible, always try to
model the problem using our predefined functions

7 Examples on building SDP models using our interface

7.1 SDPs arsing from nearest correlation matrix problems

In this subsection, we show how to use our interface to solve the nearest correlation matrix
problem (NCM) in Section 5.

Given a data matrix G ∈ Sn, we can solve the corresponding NCM problem using our
interface as follows.

Listing 3: Solving a NCM problem with our interface.

1 n = 100;

2 G = randn(n,n);

3 G = 0.5*(G + G’);

4 model = ccp_model(’Example_NCM ’);

5 X = var_sdp(n,n);

6 model.add_variable(X);

7 model.minimize(l1_norm(X-G));

8 model.add_affine_constraint(map_diag(X) == ones(n,1));

9 model.solve;

Observe that with the help of our interface, users can input the problem into our solver very
easily; see Example NCM.m for more details.

7.2 SDPs arising from the frequency assignment problems

Here we show how to use our interface to solve the SDP problem (10) arising from a frequency
assignment problem (FAP) discussed in Section 5.

Referring to the SDP in (10), assume that we have already computed the constant matrix
C := (k−1

2k)L(G,W) − 1
2Diag(We) and saved it as C in the current workspace. Suppose IU, JU

are two column arrays storing the index pairs (i, j) corresponding to U , and IE, JE are two
column arrays storing the index pairs (i, j) corresponding to E . Assume that IU, JU, IE, JE, n,
kpara are already stored in the current workspace. We can build the ccp model for (10) using
our interface as follows.

Listing 4: Solving the FAP (10) using our interface.

1 model = ccp_model(’Example_FAP ’);

2 X = var_sdp(n,n);

3 model.add_variable(X);

4 model.maximize(inprod(C,X));

5 model.add_affine_constraint(map_diag(X) == ones(n,1));

6 const = -1/(kpara -1);

7 model.add_affine_constraint(X(IU ,JU)== const);

8 model.add_affine_constraint(X(IE ,JE) >= const);

9 model.solve;

More details can be seen in Example FAP.m.

23

As mentioned in Section 5, the above SDP problem can be reformulated into the following
equivalent form:

max 〈(k−1
2k)L(G,W)− 1

2Diag(We), X〉
s.t. diag(X) = e, X ∈ Sn+, L ≤ X ≤ U,

with L and U specified in (11). Assume that the matrices L, U, C and n have been computed
in the current workspace, we can input the SDP problem (10) into our interface based on the
above equivalent form as follows.

Listing 5: Solving the reformulated FAP (11).

1 model = sdp_model(’Example_FAP2 ’);

2 X = var_sdp(n,n);

3 model.add_variable(X);

4 model.maximize(inprod(C,X));

5 model.add_affine_constraint(map_diag(X) == ones(n,1));

6 model.add_affine_constraint(L <= X <= U);

7 model.solve;

7.3 SDPs arising from Euclidean distance matrix problems

In this subsection, we show how to solve EDM problem (12) in Section 5 using our interface.
Assume that we have generated the data matrix D ∈ Sn such that Dij = dij for all (i, j) ∈ E ,
and stored it in data randEDM.mat together with a given α . As mentioned in Section 5.4, we
set the accuracy tolerance to solve the problem as 1e-4. Now we can input the SDP problem
into our interface as follows.

Listing 6: Solving the EDM problem (12) using our interface.

1 load data_randEDM;

2 [ID , JD , val] = find(D);

3 dd = val .^2;

4 n1 = length(D);

5 n2 = length(ID);

6

7 model = ccp_model(’Example_EDM ’);

8 X1 = var_nn(n2 ,1);

9 X2 = var_nn(n2 ,1);

10 Y = var_sdp(n1 ,n1);

11 model.add_variable(X1 ,X2 ,Y);

12 model.minimize(sum(X1) + sum(X2) - alpha*trace(Y));

13 model.add_affine_constraint(Y(ID ,ID)+Y(JD ,JD)-Y(ID ,JD)-Y(JD ,ID) -X1 +X2 == dd);

14 model.add_affine_constraint(sum(Y) == 0);

15 model.setparameter(’tol’, 1e-4, ’maxiter ’, 2000);

16 model.solve;

7.4 SDPs arising from quadratic assignment problems

In this subsection, we will show how to solve an SDP arising from the relaxation of a quadratic
assignment problem (QAP) with our interface.

24

Let Π be the set of n×n permutation matrices. Given matrices A,B ∈ Rn×n, the associated
QAP is

v∗QAP := min{〈X, AXB〉 : X ∈ Π}. (18)

For a matrix X = [x1, . . . , xn] ∈ Rn×n, we will identify it with the n2-dimensional vector
x = [x1; . . . ;xn]. For a matrix Y ∈ Rn2×n2

, we let Y ij be the n×n block corresponding to xix
T
j

in the matrix xxT . It is shown in [7] that v∗QAP is bounded below by the following number:

v := min 〈B ⊗A, Y 〉
s.t.

∑n
i=1 Y

ii = I, 〈I, Y ij〉 = δij ∀ 1 ≤ i ≤ j ≤ n,
〈E, Y ij〉 = 1, ∀ 1 ≤ i ≤ j ≤ n,
Y � 0, Y ≥ 0,

(19)

where E is the matrix of ones, and δij = 1 if i = j, and 0 otherwise. Note that there are
3n(n + 1)/2 equality constraints in (19). But two of them are actually redundant, and we
remove them when solving the standard SDP generated from (19).

Now, we show an example of solving the SDP relaxation of the QAP problem ’chr12a’ via
our interface.

Listing 7: Solving a QAP with our interface.

1 problem_name = ’chr12a ’;

2 [A, B] = qapread(strcat(problem_name , ’.dat’));

3 %% Construct C

4 Ascale = max(1, norm(A, ’fro’));

5 Bscale = max(1, norm(B, ’fro’));

6 A = A/Ascale; B = B/Bscale;

7 C = kron(B, A); C = 0.5*(C + C’);

8 nn = length(C);

9 n = length(A);

10

11 model = ccp_model(problem_name);

12 Y = var_sdp(nn , nn);

13 model.add_variable(Y);

14 model.minimize(inprod(C, Y));

15 model.add_affine_constraint(Y >= 0);

16 II = speye(n); EE = ones(n);

17 for i = 1:n-1

18 for j = i:n

19 Eij = sparse(i,j,1,n,n);

20 if (i==j) const = 1; else , const = 0; end

21 model.add_affine_constraint(inprod(kron(II Eij), Y) == const);

22 model.add_affine_constraint(inprod(kron(Eij ,II), Y) == const);

23 model.add_affine_constraint(inprod(kron(Eij ,EE), Y) == 1);

24 end

25 end

26 model.add_affine_constraint(inprod(kron(II , sparse(n,n,1,n,n)), Y) == 1);

27 model.setparameter(’maxiter ’, 5000);

28 model.solve;

25

8 Conclusion and future works

SDPNAL+ is designed to be a general purpose software for solving large scale SDP problems with
bound constraints as well as having a large number of equality and/or inequality constraints.
The solver has been demonstrated to be fairly robust and highly efficient in solving various
classes of SDP problems arising from the relaxation of combinatorial optimization problems
such as maximum stable set problems, quadratic assignment problems, frequency assignment
problems, binary quadratic integer programming problems. It has also worked well on SDP
problems arising from the relaxation of robust clustering problems, rank-one tensor approxi-
mation problems, as well as problems arising from electronic structure calculations in quantum
chemistry.

Our solver is expected to work well on nondegenerate well-posed SDP problems, but much
more future work must be done to make the solver to work well on degenerate and/or ill-posed
problems. Currently our solver is not catered to problems with SOCP or exponential cone
constraints. As an obvious extension, we are currently extending the solver to handle problems
with the aforementioned cone constraints.

We have also designed a basic user friendly interface for the user to input their SDP model
into the solver. One of our future works is to expand the flexibility and capability of the interface.

References

[1] S. Burer, R. D. Monteiro, and Y. Zhang, A computational study of a gradient-based
log-barrier algorithm for a class of large-scale SDPs, Mathematical Programming, 95 (2003),
pp. 359–379.

[2] L. Chen, D. F. Sun, and K. C. Toh, An efficient inexact symmetric Gauss-Seidel based
majorized ADMM for high-dimensional convex composite conic programming, Mathematical
Programming, (2017), p. to appear.

[3] N.-H. Z. Leung and K. C. Toh, An SDP-based divide-and-conquer algorithm for
large scale noisy anchor-free graph realization, SIAM J. Scientific Computing, 31 (2009),
pp. 4351–4372.

[4] X. D. Li, D. F. Sun, and K. C. Toh, A Schur complement based semi-proximal ADMM
for convex quadratic conic programming and extensions, Mathematical Programming, 155
(2016), pp. 333–373.

[5] L. Lovasz, On the shannon capacity of a graph, IEEE Transactions on Information Theory,
25 (1979), pp. 1–7.

[6] R. Monteiro, C. Ortiz, and B. Svaiter, A first-order block-decomposition method
for solving two-easy-block structured semidefinite programs, Mathematical Programming
Computation, (2013), pp. 1–48.

[7] J. Povh and F. Rendl, Copositive and semidefinite relaxations of the quadratic assign-
ment problem, Discrete Optimization, 6 (2009), pp. 231–241.

26

[8] J. F. Sturm, Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones,
Optimization Methods and Software, 11 (1999), pp. 625–653.

[9] D. F. Sun, K. C. Toh, and L. Q. Yang, A convergent 3-block semi-proximal alternating
direction method of multipliers for conic programming with 4-type constraints, SIAM J.
Optimization, 25 (2015), pp. 882–915.

[10] K. C. Toh, M. J. Todd, and R. H. Tutucu, SDPT3 — a Matlab software package for
semidefinite programming, Optimization Methods and Software, 11 (1999), pp. 545–581.

[11] R. H. Tutuctu, K. C. Toh, and M. J. Todd, Solving semidefinite-quadratic-linear
programs using SDPT3, Mathematical Programming, 95 (2003), pp. 189–217.

[12] Z. Wen, D. Goldfarb, and W. Yin, Alternating direction augmented Lagrangian meth-
ods for semidefinite programming, Mathematical Programming Computation, 2 (2010),
pp. 203–230.

[13] M. Yamashita, K. Fujisawa, and M. Kojima, Implementation and evaluation of SDPA
6.0 (semidefinite programming algorithm 6.0), Optimization Methods and Software, 18
(2003), pp. 491–505.

[14] L. Q. Yang, D. F. Sun, and K. C. Toh, SDPNAL+: a majorized semismooth Newton-
CG augmented Lagrangian method for semidefinite programming with nonnegative con-
straints, Mathematical Programming Computation, 7 (2015), pp. 331–366.

[15] X.-Y. Zhao, D. F. Sun, and K. C. Toh, A Newton-CG augmented Lagrangian method
for semidefinite programming, SIAM J. Optim., 20 (2010), pp. 1737–1765.

27

	Introduction
	Installation and general information
	Data structure and main solver
	The main function: sdpnalplus.m
	Generation of starting point by admmplus.m
	Arrays of input data
	The structure array OPTIONS for parameters
	Stopping criteria

	Algorithmic design and implementation
	Examples
	SDP relaxations of maximum stable set problems
	SDP relaxation of frequency assignment problems (FAPs)
	Nearest correlation matrix problems
	Euclidean distance matrix problems

	Interface
	Creating a ccp model
	Delcaring variables
	Declaring the objective function
	Adding affine constraints into the model
	General affine constraints
	Coordinate-wise affine constraints
	Element-wise multiplication
	Specifying affine constraints using predefined maps
	Chained constraints

	Adding positive semidefinite constraints into the model
	Setting parameters for SDPNAL+
	Solving a model and extracting solutions
	Further remarks on the interface

	Examples on building SDP models using our interface
	SDPs arsing from nearest correlation matrix problems
	SDPs arising from the frequency assignment problems
	SDPs arising from Euclidean distance matrix problems
	SDPs arising from quadratic assignment problems

	Conclusion and future works

