A Newton-CG Augmented Lagrangian
Method for Semidefinite Programming

*

Xin-Yuan Zhao T Defeng Sun * Kim-Chuan Toh ¥
March 12, 2008; Revised, February 03, 2009

Abstract. We consider a Newton-CG augmented Lagrangian method for solving semidef-
inite programming (SDP) problems from the perspective of approximate semismooth Newton
methods. In order to analyze the rate of convergence of our proposed method, we charac-
terize the Lipschitz continuity of the corresponding solution mapping at the origin. For the
inner problems, we show that the positive definiteness of the generalized Hessian of the ob-
jective function in these inner problems, a key property for ensuring the efficiency of using
an inexact semismooth Newton-CG method to solve the inner problems, is equivalent to the
constraint nondegeneracy of the corresponding dual problems. Numerical experiments on
a variety of large scale SDPs with the matrix dimension n up to 4,110 and the number of
equality constraints m up to 2, 156, 544 show that the proposed method is very efficient. We
are also able to solve the SDP problem fap36 (with n = 4,110 and m = 1,154, 467) in the
Seventh DIMACS Implementation Challenge much more accurately than previous attempts.

Keywords: Semidefinite programming, Augmented Lagrangian, Semismoothness, New-
ton’s method, Iterative solver.
1 Introduction

Let 8™ be the linear space of all n x n symmetric matrices and St be the cone of all n x n
symmetric positive semidefinite matrices. The notation X > 0 means that X is a symmetric
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positive semidefinite matrix. This paper is devoted to studying an augmented Lagrangian
method for solving the following semidefinite programming (SDP) problem

(D) min{bTy | Ay —C > 0},

where C € 8", b € R™, A is a linear operator from S™ to R, and A* : R — S™ is the
adjoint of A. The dual of (D) takes the form

(P) max{(C,X) | AX)=b, X o0}

Given a penalty parameter o > 0, the augmented Lagrangian function for problem (D) is
defined as

1
Lo(y, X) = 0"y + o~ ([Msp (X — o (Ay = OPI° = [ X]7), (4, X) € ®" x 8", (1)

where for any closed convex set D in a finite dimensional real vector space X equipped with
a scalar inner product (-, -) and its induced norm || -||, IIp(+) is the metric projection operator
over D, i.e., for any Y € X, TIp(Y) is the unique optimal solution to the following convex
optimization problem

|
min{§<Z—Y,Z—Y) | Zep}.

Note that, since ||IIp(+)||? is continuously differentiable [44], the augmented Lagrangian func-
tion defined in (1) is continuously differentiable. In particular, for any given X € S", we
have

VyLo(y, X) = b — Allgy (X — o(A"y — C)). 2)

For given X% € 8" o9 > 0, and p > 1, the augmented Lagrangian method for solving
problem (D) and its dual (P) generates sequences {y*} C ®™ and {X*} C 8" as follows

yk+

XF+1 :HS:L_(Xk_gk(A*y’fH_C)), k=0,1,2,... (3)

Ok+1 = POk OY Of41 = O,

I~ in L Xk
arg min o (Y, X7,

For a general discussion on the augmented Lagrangian method for solving convex optimiza-
tion problems and beyond, see [32, 33].

For small and medium sized SDP problems, it is widely accepted that interior-point
methods (IPMs) with direct solvers are generally very efficient and robust. For large-scale
SDP problems with m large and n moderate (say less than 5,000), the limitations of IPMs
with direct solvers become very severe due to the need of computing, storing, and factorizing
the m x m Schur complement matrix. In order to alleviate these difficulties, Toh and Kojima
[39] and Toh [40] proposed inexact IPMs using an iterative solver to compute the search
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direction at each iteration. The approach in [40] was demonstrated to be able to solve large
sparse SDPs with m up to 125,000 in a few hours. Ko¢vara and Stingl [17] used a modified
barrier method (a variant of the Lagrangian method) combined with iterative solvers for
linear SDP problems having only inequality constraints and reported computational results
in the code PENNON [16] with m up to 125,000. More recently, Malick, Povh, Rendl, and
Wiegele [19] applied the Moreau-Yosida regularization approaches to solve SDP problems.

In this paper, we study an augmented Lagrangian dual approach to solve large scale
SDPs with m large (say, up to a few millions) but n moderate (say, up to 5,000). Our ap-
proach is similar in spirit as those in [17] and [19], where the idea of augmented Lagrangian
methods (or methods of multipliers in general) was heavily exploited. However, our points
of view of employing the augmented Lagrangian methods are fundamentally different from
them in solving both the outer and inner problems. It has long been known that the aug-
mented Lagrangian method for convex problems is a gradient ascent method applied to the
corresponding dual problems [30]. This inevitably leads to the impression that the aug-
mented Lagrangian method for solving SDPs may converge slowly for the outer iteration
sequence { X*}. In spite of that, under mild conditions, a linear rate of convergence analysis
is available (superlinear convergence is also possible when oy, goes to infinity, which should
be avoided in numerical implementations) [33]. However, recent studies conducted by Sun,
Sun, and Zhang [37] and Chan and Sun [8] revealed that under the constraint nondegenerate
conditions for (D) and (P) (i.e., the dual nondegeneracy and primal nondegeneracy in the
IPMs literature, e.g., [1]), respectively, the augmented Lagrangian method can be locally
regarded as an approximate generalized Newton method applied to a semismooth equation.
It is this connection that inspired us to investigate the augmented Lagrangian method for
SDPs.

The objective functions L,, (-, X*) in the inner problems of the augmented Lagrangian
method (3) are convex and continuously differentiable but not twice continuously differen-
tiable (cf. (2)) due to the fact that Ilsn () is not continuously differentiable. It seems that
Newton’s method can not be applied to solve the inner problems. However, since Hgi(')
is strongly semismooth [36], the superlinear (quadratic) convergence analysis of generalized
Newton’s method established by Kummer [18], and Qi and Sun [26] for solving semismooth
equations may be used to get fast convergence for solving the inner problems. In fact, the
quadratic convergence and superb numerical results of the generalized Newton’s method
combined with the conjugate gradient (CG) method reported in [25] for solving a related
problem strongly motivated us to study the semismooth Newton-CG method (see Section 3)
to solve the inner problems.

In [32, 33], Rockafellar established a general theory on the global convergence and local
linear rate of convergence of the sequence generated by the augmented Lagrangian method for
solving convex optimization problems including (D) and (P). In order to apply the general
results in [32, 33], we characterize the Lipschitz continuity of the solution mapping for (P)
defined in [33] at the origin in terms of the second order sufficient condition, and the extended
strict primal-dual constraint qualification for (P). In particular, under the uniqueness of
Lagrange multipliers, we establish the equivalence among the Lipschitz continuity of the



solution mapping at the origin, the second order sufficient condition, and the strict primal-
dual constraint qualification. As for the inner problems in (3), we show that the constraint
nondegeneracy for the corresponding dual problems is equivalent to the positive definiteness
of the generalized Hessian of the objective functions in the inner problems. This is important
for the success of applying an iterative solver to the generalized Newton equations in solving
these inner problems. The differential structure of the nonsmooth metric projection operator
IIsp(+) in the augmented Lagrangian function L, plays a key role in achieving this result.

Besides the theoretical results we establish for the Newton-CG augmented Lagrangian
(in short, SDPNAL) method proposed in this paper, we also demonstrate convincingly that
with efficient implementations, the SDPNAL method can solve some very large SDPs, with
a moderate accuracy, much more efficiently than the best alternative methods such as the
inexact interior-point methods in [40], the modified barrier method in [17], the boundary-
point method in [19], as well as the dedicated augmented Lagrangian method for solving
SDPs arising from the lift-and-project procedure of Lovasz and Schrijver [5].

The remaining parts of this paper are as follows. In Section 2, we give some preliminaries
including a brief introduction about concepts related to the method of multipliers and the
characterizations of the Lipschitz continuity of the solution mapping for problem (P) at the
origin. In Section 3, we introduce a semismooth Newton-CG method for solving the inner
optimization problems and analyze its global and local superlinear (quadratic) convergence
for solving these inner problems. Section 4 presents the Newton-CG augmented Lagrangian
dual approach and its linear rate of convergence. Section 5 is on numerical issues of the
semismooth Newton-CG algorithm. We report numerical results in Sections 6 and 7 for a
variety of large scale linear SDP problems and make final conclusions in Section 8.

2 Preliminaries

From [32, 33], we know that the augmented Lagrangian method can be expressed in terms
of the method of multipliers for (D). For the sake of subsequent discussions, we introduce
related concepts to this.

Let I(y, X) : ™ x 8™ — R be the ordinary Lagrangian function for (D) in extended
form:

(4)

(g, X) — by — (X, Ay —C) if yeRN™ and X € S},
ha= —00 if y e ™ and X ¢ S7.

The essential objective function in (D) is

by if y € Fp,

fly) = sup I(y, X) = { (5)

Xesr +00 otherwise,

where Fp := {y € R™ | A*y—C = 0} is the feasible set of (D), while the essential objective



function in (P) is
) <O, X> if X € Fp,
g9(X) = inf I(y,X) = (6)

yeRm —00 otherwise,

where Fp :={X € §" | A(X) =b,X > 0} is the feasible set of (P).
Assume that Fp # 0 and Fp # (0. As in Rockafellar [33], we define the following three
maximal monotone operators

T,(X) = {UeS8S"|-UcecaygX)}, X es™,
Tyy) = {veR™|vedf(y)}, y €N,
Ti(y,X) = {(v,U) eR" xS | (v,-U) €0l(y,X)}, (y,X) € R™xS"

Throughout this paper, the following Slater condition for (P) is assumed to hold.
Assumption 1. Problem (P) satisfies the Slater condition

A 8" — R™ is onto, (7)
1X, € S_?_ such that A(Xo) =b,Xy, >0,

where X > 0 means that X is a symmetric positive definite matrix.

For each v € R™ and U € 8™, we consider the following parameterized problem:
(P(v,U)) max{<c,x> FUX) | AX)o=b X > o}.

By using the fact that g is concave, we know from Rockafellar [29, Theorem 23.5] that for
each U € 8",

1 . .
T,7(U) = set of all optimal solutions to (P(0,U)). (8)
Similarly, we have that for each v € R™,

Tf_l(v) = set of all optimal solutions to (D(v,0)), 9)
where for (v,U) € R™ x 8", (D(v,U)) is the (ordinary) dual of (P(v,U)) in the sense that
(D(v,U)) min {bTy —v'y Ay —U = C’}.
Finally, for any (v,U) € ™ x 8", under Assumption 1, we have that

T, (v,U) = argminimax{I(y,X)—v"y+ (U, X) |y € R™, X € S"},

= set of all (y, X) satisfying the Karush-Kuhn-Tucker (10)
conditions for (P(v,U)). (cf. (12))



Definition 1. [32] For a maximal monotone operator 7' from a finite dimensional linear
vector space X to itself, we say that its inverse 7! is Lipschitz continuous at the origin
(with modulus a > 0) if there is a unique solution z to z = T~!(0), and for some 7 > 0 we
have

|z — z|| < a|w| whenever z¢& T 'w) and |w| <7 (11)

The first order optimality conditions, namely the Karush-Kuhn-Tucker (KKT) condi-
tions, of (D) and (P) are as follows:

A(X) =1,
(12)
StsAy-C)LXeSt,
where “(A*y — C) L X” means that (A*y — C) and X are orthogonal to each other, i.e.,
(A*y — C, X) = 0. For any X € Fp, define the set

M(X) = {y € R | (y, X) satisfies the KKT conditions (12)}. (13)

Let X be an optimal solution to (P). Since (P) satisfies the Slater condition (7), M(X)
is nonempty and bounded [31, Theorems 17 & 18]. Let y € M(X) be arbitrarily chosen. Let
Al > Ay > -+ > )\, be the eigenvalues of X being arranged in the nonincreasing order and
let py < po < --+ < py, be the eigenvalues of (A*y — C') being arranged in the nondecreasing
order. Denote a := {i|\; > 0,7 = 1,....,n} and v := {i|y; > 0,7 = 1,...,n}. Since
X(A*y — C) = (A*y — C)X = 0, there exists an orthogonal matrix P € R"*" such that

A, O
X=P| 0 0
0 0

o O O

00 0
P* and (Ay—-C)=P|0 0 0 |P", (14)
00 A

o

where A, is the diagonal matrix whose diagonal entries are A; for i € a and Ar is the diagonal
matrix whose diagonal entries y; for ¢ € ~.
Let A:= X — (A*y — C) € S,. Then, A has the following spectral decomposition

A= PAP", (15)
where
A, 0 O
A= 0O 0 O
0 0 —A,

Denote 8 :={1,...,n}\(ac U~). Write P = [P, Ps P,] with P, € Rrxlel - Py € <18l and
P, € Rl From [2], we know that the tangent cone of ST at X € 8" can be characterized
as follows

Tsr(X) = {B€S" | [Ps PJ" B[P; P,] = 0}, (16)
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Similarly, the tangent cone of 87 at (A*y — C) takes the form
7:93_(./4*]4 — C) = {B cS" ] [Pa Pg]TB [Pa Pg] > 0}. (17)
Recall that the critical cone of problem (P) at X is defined by (cf. [4, p.151])
C(X) = {BeS"| A(B) =0, BeTsx(X), (C,B) =0} (18)

Choose an arbitrary element B € C(X). Denote B := P*BP. Since X and (A*y — C) have
the spectral decompositions as in (14), we obtain that

0=(C,B) = (A"y — C, B) = (P*(A*y — C)P, P*BP)

00 0 Eaa Eaﬂ Ea'y
=< 00 0 |.|BY Bss Bs >
00 A | [ B B B,

which, together with (16) and (18), implies that Ew = 0. Thus
Bg, =0 and B, =0.
Hence, C(X) can be rewritten as
C(X)={BeS"| A(B)=0, P;BP; = 0, P;BP, =0, P/BP, = 0}. (19)
By using similar arguments as above, we can also obtain that
Ts:(A'y —C)NX " ={BeS"| PIBP, =0, PBP; =0, P{BP; > 0}, (20)

where X = {B € S" | (B,X) = 0}.

In order to analyze the rate of convergence of the Newton-CG augmented Lagrangian
method to be presented in Section 4, we need the following result which characterizes the
Lipschitz continuity of T;l at the origin. The result we establish here is stronger than that
appeared in Proposition 15 of [§].

Proposition 2.1. Suppose that (P) satisfies the generalized Slater condition (7). Let X €
St be an optimal solution to (P). Then the following conditions are equivalent

(i) T, () is Lipschitz continuous at the origin.
(ii) The second order sufficient condition

sup Yy(A*'y—C,H)>0 VHEeCX)\{0} (21)
yeM(X)

holds at X, where for any B € 8", the linear-quadratic function T : 8™ x 8" — R is
defined by

Yp(M,H):=2(M HB'H), (M,H)ecS"xS" (22)

and B' is the Moore-Penrose pseudo-inverse of B.
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(iii) X satisfies the extended strict primal-dual constraint qualification

AR+ conv || (Tsz (Ay — O) N XL) _— (23)

yeM(X)
where for any set W C 8™, conv(W) denotes the convex hull of WW.

Proof. “(i) < (i1)”. From [4, Theorem 3.137], we know that (i) holds if and only if the
quadratic growth condition

(C.X) > (C,X) +¢|X - X|> VX €N such that X € Fp (24)

holds at X for some positive constant ¢ and an open neighborhood A of X in S™. On the
other hand, from [33, Proposition 3], we know that Tgfl(-) is Lipschiz continuous at the origin

if and only if the quadratic growth condition (24) holds at X. Hence, (i) < (ii).
Next we shall prove that (i7) < (ii7). For notational convenience, let

[ ;= conv U (’ngi(A*y -O)nN 7L> : (25)
YEM(X)

“(it) = (ii1)”. Denote D := A*R™ + I'. For the purpose of contradiction, we assume
that (i7i) does not hold, i.e., D # S8™. Let cl(D) and ri(D) denote the closure of D and the
relative interior of D, respectively. By [29, Theorem 6.3], since ri(D) = ri(cl(D)), the relative
interior of cl(D), we know that cl(D) # S™. Thus, there exists B € §™ such that B ¢ cl(D).
Let B be the metric projection of B onto cl(D), i.e., B = lyp)(B). Let H = B — B # 0.
Since cl(D) is a nonempty closed convex cone, from Zarantonello [44], we know that

(H,Z)=(B—B,Z)>0 VY Zccl(D).
In particular, we have
(HHA*24+Q) >0 VzeR"and Q €T,
which implies (by taking @ = 0)
(A(H),z) =(H,A"2) >0 VzeR™
Thus
AH)=0 and (H,Q)>0 forany @QeT. (26)
Since 0 # H € C(X) and (ii) is assumed to hold, there exists y € M(X) such that
Tx(A'y—C,H) > 0. (27)
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By using the fact that (y, X) satisfies (12), we can assume that X and (A*y — C) have the
spectral decompositions as in (14). Then, we know from (20) that for any @ € Tsn (A*y —

aynx

0 < (H, Q)= (PHP",PQP")

Haa Ha,@ How 0 0 éa'y
= < Hgﬁ Hgs Hpgy |, 0 Qss Qpy >7 (28)
a g’y f E’y Hyy Qoy Qpy @yy

where H = PTHP and Q = P*QP. From (20) and (28), we have

Hy,=0, Hz, =0, H,,=0, and Hgs > 0. (29)
By using (19), (26), and (29), we obtain that H € C(X) and
PTHP, = 0. (30)

Note that Ay > Ay > -+ > A\, and 1 < pp < --- < p, are the eigenvalues of X and
(A*y — C), respectively, and o = {i|\; > 0,i=1,...,n}and y={j|p; >0,7=1,...,n}.
Therefore, from (22) and (14), we obtain that

Tx(Ay—C H) = > L (PTHP) =0,
1EQ,jEY v

which contradicts (27). This contradiction shows (ii) = (ii).

“(iii) = (i1)". Assume that (i) does not hold at X. Then there exists 0 # H € C(X)
such that

sup Yx(A'y—C,H)=0. (31)
yeM(X)

Let y be an arbitrary element in M(X). Since (y, X) | satisfies (12), we can assume that
there exists an orthogonal matrix P € R"*" such that X and (A*y — C) have the spectral
decompositions as in (14). From (14), (22), and (31), we have

0< 3 (FTHPY = To(A'y - C.H) < sip Tx(A'z— C.H) =0,

ica,jEY ? ZGM(Y)
which implies

PTHP, =0. (32)



Then, by using (19), (20), and (32), we have that
(QY,H) =(P"Q"P,P"HP) = (P;Q"P3, P;HP3) >0 V QY € Tsn (A"y — C) nNx . (33)
Since (i7i) is assumed to hold, there exist z € R™ and @ € I" such that
—H=A"2+Q. (34)

By Carathéodory’s Theorem, there exist an integer £ < @ + 1 and scalars «; > 0,
1=1,2,...,k, with Zleoci =1, and
yeM(X)

such that ) can be represented as

k
Q= Z Qi
i=1

For each Q;, there exists a y* € M(X) such that Q; € ’Zfsi(A*yi -O)nN X . Then by using
the fact that H € C(X) and (33), we obtain that

k
(H H) = (=A"2— Q, H) = —(z, AH) = (Q, H) = 0— Y~ o(Qs, H) <0,
i=1
which contradicts the fact that H # 0. This contradiction shows that (i7) holds. O]

Proposition 2.1 characterizes the Lipschitz continuity of Tg’1 at the origin by either the
second sufficient condition_(21) or the extended strict primal-dual constraint qualification
(23). In particular, if M(X) is a singleton, we have the following simple equivalent condi-
tions.

Corollary 2.2. Suppose that (P) satisfies the generalized Slater condition (7). Let X be an
optimal solution to (P). If M(X) = {y}, then the following are equivalent:

(i) T, *(-) is Lipschitz continuous at the origin.
(ii) The second order sufficient condition
T¢(A'y—C,H)>0 VHeC(X)\{0} (35)
holds at X .

(iii) X satisfies the strict primal-dual constraint qualification

AR 4 Ty (A~ C)N X = 8™ (36)
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Remark 1. Note that in [8, Proposition 15], Chan and Sun proved that if M(X) is a
singleton, then the strong second order sufficient condition (with the set C(X) in (35) being
replaced by the superset {B € 8" | A(B) = 0, P; BP, = 0, P/ BP, = 0}) is equivalent to
the constraint nondegenerate condition, in the sense of Robinson [27, 28], at g for (D), i.e,

AR 4 1in(Tsy (A7 — C)) = ™. (37)

Corollary 2.2 further establishes the equivalence between the second order sufficient condition
(35) and the strict constraint qualification (36) under the condition that M (X) is a singleton.

One may observe that the strict primal-dual constraint qualification condition (36) is
weaker than the constraint nondegenerate condition (37). However, if strict complementarity
holds, i.e., X + (A*y — C) = 0 and hence (3 is the empty set, then (36) and (37) coincide.

The constraint nondegenerate condition (37) is equivalent to the dual nondegeneracy
stated in [1, Theorem 9]. Note that under such a condition, the optimal solution X to (P)
is unique.

Remark 2. In a similar way, we can establish parallel results for T ! as for Tg*1 in Propo-
sition 2.1 and Corollary 2.2. For brevity, we omit the details.

3 A Semismooth Newton-CG Method for Inner Prob-
lems

In this section we introduce a semismooth Newton-CG method for solving the inner problems
involved in the augmented Lagrangian method (3). For this purpose, we need the practical
CG method described in [12, Algorithm 10.2.1] for solving the symmetric positive definite
linear system. Since our convergence analysis of the semismooth Newton-CG method heavily
depends on this practical CG method and its convergence property (Lemma 3.1), we shall
give it a brief description here.

3.1 A practical CG method

In this subsection, we consider a practical CG method to solve the following linear equation
Ax =b, (38)

where b € R™ and A € R™*™ is assumed to be a symmetric positive definite matrix. The
practical conjugate gradient algorithm [12, Algorithm 10.2.1] depends on two parameters: a
maximum number of CG iterations i,,,, > 0 and a tolerance n € (0, ||b]]).

Algorithm 1. A Practical CG Algorithm: [CG(7, imas)]
Step 0. Given 2° =0 and 7° = b — Az? = b.
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Step 1. While (||7]] > n) or (¢ < imaz)

Step 1.1. i =i+ 1

Step 1.2. If i = 1; p' = 1% else; B; = [|[r*L12/||r* 2|1, p' = r""L + Bip!; end

Step 1.3. «a; = ||r' 12/ (p*, Ap®)

Step 1.4. ¢ = 271 4 qyp’

Step 1.5. 7t = ri=l — o Ap?

Lemma 3.1. Let 0 < i < iyay be the number of iterations when the practical CG Algorithm

1 terminates. For all i = 1,2,--- i, the iterates {x'} generated by Algorithm 1 satisfies
1 (z, D) 1

D) = TR S Rl A) (39)

where Amin(A) and Apax(A) are the smallest and largest eigenvalue of A, respectively.

Proof. Let z* be the exact solution to (38) and e’ = x* — z' be the error in the ith iteration
for i > 0. From [38, Theorem 38.1], we know that

(r'rdy =0 forj=1,2,...,i—1, (40)

where 7* = b — Ax’. By using (40), the fact that in Algorithm 1, r® = b, and the definition
of 3;, we have that

o) = Il
i i—1 i—1 Z 1 —1)12 v, (41)
(') = (TLb)y 4 B by =0+ [[ B 0) = PP Vi L
=2
From [38, Theorem 38.2], we know that for ¢ > 1,
le =M% = lle'll% + (aup', Aleap™)), (42)
which, together with a;||r*=1||? = (a.p’, A(a;p?)) (see Step 1.3), implies that
aillr P = e — el (43)

Here for any x € R™, ||z||4 := /{(x, Az). For any ¢ > 1, by using (41), (43), and the fact
that 2° = 0, we have that

(08) = (o) bl ) = (2 0)+ Doyl B) = Dy
J=1 j=1

7

= Dl A = N ] = 1€l — D'l (44)

j=1

12



which, together with (42), implies that

(', b) > (21 b), i=1,2,...,4.

Thus
1 (x*,b)  (z', b)
— < a = < : (45)
Amax (A) 1ol = olf?
Since ¢ = z* — 2% = A7'b, by (44), we obtain that for 1 <i <7,
(@' b) _ Ne®lh _ A0l 1
< = < : (46)
ol = [lell? o172~ Amin(A)
By combining (45) and (46), we complete the proof. O

3.2 A Semismooth Newton-CG method

For the augmented Lagrangian method (3), for some fixed X € §™ and o > 0, we need to
consider the following form of inner problems

min {p(y) == Lo (y, X) | y € R"}. (47)

As explained in the introduction, ¢(-) is a continuously differentiable convex function, but
fails to be twice continuously differentiable because the metric projector Hgi(') is not con-
tinuously differentiable. Fortunately, because Ilsy(-) is strongly semismooth [36], we can
develop locally a semismooth Newton-CG method to solve the following nonlinear equation

Ve(y) = b— Allgy (X — o(A*y — C)) =0 (48)

and expect a superlinear (quadratic) convergence for solving (48).

Since Hgi(') is Lipschitz continuous with modulus 1, the mapping V¢ is Lipschitz con-
tinuous on RN™. According to Rademacher’s Theorem, Vi is almost everywhere Fréchet-
differentiable in R™. Let y € R™. The generalized Hessian of ¢ at y is defined as

Po(y) = 0(Ve)(y), (49)

where O(V)(y) is the Clarke’s generalized Jacobian of Vi at y [9]. Since it is difficult to
express 0%p(y) exactly, we define the following alternative for 9%¢(y)

o(y) = o AdMsy (X — o( A"y — C)) A", (50)
From [9, p.75], for d € R™,
0*e(y)d C O*(y)d, (51)
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which means that if every element in 9%p(y) is positive definite, so is every element in 92¢(y).

For the semismooth Newton-CG method to be presented later, we need to compute an
element V' € 32g0(y). Since X — o(A*y — C) is a symmetric matrix in """, there exists an
orthogonal matrix ) € ™" such that

X —oAy-0C)=QI,Q", (52)

where Iy is the diagonal matrix with diagonal entries consisting of the eigenvalues A\; > Ay >
<o >\, of X —o(A*y — C') being arranged in the nonincreasing order. Define three index
sets

a:={i|N>0}, B:={i|A\=0}, and v:={i|\ <0}

Define the operator W) : S — 8™ by

0 . n
Wy (H) T Q(Q ° (QTHQ)>QT7 H € S ) (5?))
where “o” denotes the Hadamard product of two matrices and
Ess vs A\
Q- v Vi - i L 54

7 ={1,...,n}\v, and E5; € SNl is the matrix of ones. Define V;JO R — 8™ by
V;/Od =0 A[Q(No (QT(Ad)Q))Q"], deR™. (55)
Since, by Pang, Sun, and Sun [22, Lemma 11],
W; € Illsp (X —o(A"y — C)),
we know that
0 0 f* A2
V) =0 AW, A" € 0°p(y).

Next we shall characterize the positive definiteness of any V, € 5290(y). From [33, p.107] and
the definitions of I(y, X) in (4), we know that for any (y, X,0) € R™ x §" x (0, +00),

1
Lol X) = {10y, 7) — 517 — XIP).

Since the Slater condition (7) is assumed to hold, by the definition of g(-) in (6), we can
deduce from [31, Theorems 17 and 18] that

) ) 1 1
min ¢(y) = min max {l(y, 7Z) — %HZ — XHZ} = max {g(Z) — %HZ — XHZ}

yeR™M yeRM ZeSn ZeSn

1
- Z)— —Z-X 2}.
A(Zr)n%;m{w, )= 52| [ (56)
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Hence, (47) is the dual of
max {{C Z)— 2z - X|P | AZ) = b z =0} (57)
’ 20 ’ - )
The KKT conditions of (57) are as follows

{ A(Z) =b,

S">Z L7~ (X—o(Ay—C))eSn. (58)

Proposition 3.2. Suppose that the problem (57) satisfies the Slater condition (7). Let
(9, Z) € R™ x S™ be a pair that satisfies the KKT conditions (58) and let P be an orthogonal

matriz such that Z and Z — (X — o(A*j—C)) have the spectral decomposition as (14). Then
the following conditions are equivalent:

(i) The constraint nondegenerate condition
Alin(Zsy (2)) = R"™ (59)
holds at Z, where lin(’]:gi(f)) denotes the lineality space of Tsn (Z), i.e.,

lin(7s;(2)) = {B € 8" | [Ps P,)" B[Ps P,) = 0}. (60)

(1t) Every Vy € 52<p(gj) is symmetric and positive definite.
(ii) V) € O2p(4) is symmetric and positive definite.

Proof. “(i) = (i7)”. This part is implied in [3, Proposition 2.8] by the Jacobian amicability
of the metric projector Ilsx (-).

“(ii) = (i11)”. This is obvious true since V) € 920(4).

“(#i7) = (4)”. Assume on the contrary that the constraint nondegenerate condition (59)
does not hold at Z. Then, we have

[Alin(Tsx (2))]* # {0}.
Let 0 # d € [Alin(Zs; (Z))]*. Then
(d,AQ)) =0 ¥ Q€ lin(Ts(2)),
which can be written as
0=(A"d,Q) = (P"HP,P"QP) V Q €lin(Ts;(Z)), (61)
where H := A*d. By using (60) and (61), we obtain that

P'HP, =0, P*HP; =0, and P"HP, = 0.
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By the definition of W in (53), it follows that W (H) = 0. Therefore, for the corresponding
V) defined in (55), we have

(d,Vj'd) = (d,c AW}(A"d)) = o( H,W}(H)) =0,
which contradicts (¢ii) since d # 0. This contradiction shows that (i) holds. O

Remark 3. The constraint nondegenerate condition (59) is equivalent to the primal nonde-
generacy stated in [1, Theorem 6]. Under this condition, the solution gy for (58) is unique.

3.3 Convergence analysis

In this subsection, we shall introduce the promised semismooth Newton-CG algorithm to
solve (47). Choose 3° € R™. Then the algorithm can be stated as follows.

Algorithm 2. A Semismooth Newton-CG Algorithm [NCG(y°, X, )]

Step 0. Given u € (0,1/2), 7€ (0,1), 7 € (0,1], 1,72 € (0,1), and 6 € (0, 1).

Step 1. For 7 =0,1,2,...

Step 1.1. Given a maximum number of CG iterations n; > 0 and compute
n; = min(7, [ Ve (y )[|"7).

Apply the practical CG Algorithm 1 [CG(n;,n;)] to find an approximation solu-
tion d’ to

(Vi +e1)d==Vo(y), (62)
where V; € 8%p(y’) is defined in (55) and ¢; := 7 min{7,, |[Ve(y7)||}.
Step 1.2. Set a; = 0™/, where m; is the first nonnegative integer m for which
Py +0"d) < p(y’) + pd™(Ve(y'), &’). (63)
Step 1.3. Set ¢/t =i 4+ a; d.

Remark 4. In Algorithm 2, since Vj is always positive semidefinite, the matrix V; 4 ¢;1 is
positive definite as long as V(y?) # 0. So we can always apply Algorithm 1 to equation
(62).

Now we can analyze the global convergence of Algorithm 2 with the assumption that
Vo(y?) # 0 for any j > 0. From Lemma 3.1, we know that the search direction d’ generated
by Algorithm 2 is always a descent direction. This is stated in the following proposition.
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Proposition 3.3. For every j > 0, the search direction d’ generated in Step 1.2 of Algorithm
2 satisfies

1 (=Veoly)), &) 1
o) = TV E = () (64

where ‘7; =V, +¢;1 and )\max(f/j) and )\min(\z) are the largest and smallest eigenvalues of
V; respectively.

Theorem 3.4. Suppose that problem (57) satisfies the Slater condition (7). Then Algorithm
2 is well defined and any accumulation point § of {y’} generated by Algorithm 2 is an optimal
solution to the inner problem (47).

Proof. By Step 1.1 in Algorithm 2, for any j > 0, since, by (64), d’ is a descent direction,
Algorithm 2 is well defined. Since problem (57) satisfies the Slater condition (7), from [31,
Theorems 17 & 18], we know that the level set £ := {y € R™ | »(y) < ¢(y°)} is a closed and
bounded convex set. Therefore, the sequence {y’} is bounded. Let § be any accumulation
point of {3/ }. Then, by making use of Proposition 3.3 and the Lipschitz continuity of Ilsp (+),
we can easily derive that V() = 0. By the convexity of o(+), ¢ is an optimal solution of
(47). O

Next we shall discuss the rate of convergence of Algorithm 2.

Theorem 3.5. Assume that problem (57) satisfies the Slater condition (7). Let § be an
accumulation point of the infinite sequence {y’} generated by Algorithm 2 for solving the
inner problem (47). Suppose that at each step j > 0, when the practical CG Algorithm 1
terminates, the tolerance n; is achieved (e.g., when nj =m+1), i.e.,

Vo) + (Vi + ;1) || < ;. (65)

Assume that the constraint nondegenerate condition (59) holds at Z := [Isp (X —o(A*g—C)).
Then the whole sequence {y’} converges to 4 and

Iyt = gll = O(lly” = al""). (66)

Proof. By Theorem 3.4, we know that the infinite sequence {y’} is bounded and ¢ is an
optimal solution to (47) with

Vo(g) = 0.

Since the constraint nondegenerate condition (59) is assumed to hold at Z , U is the unique
optimal solution to (47). Tt then follows from Theorem 3.4 that {7} converges to §. From
Proposition 3.2, we know that for any V} € 820(9) defined in (50), there exists a Wy €
Ollsy (X — o(A*g — C)) such that

VQ = G.AW@.A* = 0.
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Then, for all j sufficiently large, {||(V; +¢;1)~!||} is uniformly bounded.
For any Vj, j > 0, there exists a W € Ollsy (X — o(A*y/ — C)) such that

V=0 AW;A". (67)

Since Ilsn () is strongly semismooth [36], it holds that for all j sufficiently large,

Iy + & =gl = |y’ + (V; + &, )7 (Vey’) + (Vs + ;1) &) = Veo(y')) = i

< Ny =9 = Vi+ D) Vo)l + I1(V; + D)7 HIVey) + (Vi +e;0) & |

< IV + D7 HHIVe(y) = Vo) = Vily = 9)l

(Vi + ;D) I (eslly” — gl +ny)

< O(|Ml sy (X = o(A"y = O)) = sy (X — o(A"g — C) = Wil A™(y" — 9))]])
+O(nlIVe(y)lly” = gl + Vo)1)
O(loA"(y" = DII*) + O(ru [Ve(y’) = Ve@llly’ — gl + IVely’) = V(@) ')
< O(lly’ = 9II”) + O(na | A4 lly” = all* + (o ANA Iy = 91)'*)
= O(lly’ = 9lI"""), (68)

which implies that for all j sufficiently large,

IN

y =g =—d +O(|&|'""") and ||d’]| — 0. (69)
For each j > 0, let B/ := V(i) + (V; + ;1) d&. Then, for all j sufficiently large,
—(Voy).d') = (&, (Vi+el)d) - (R, &)
> (d, (Vi +e) &) —nyl|d||
> (&, (Vi +e0) &) = |d][[IVely) I
= (&, (Vi+eI) &) = |[Voly') = V@)l
> (d, (Vj+e;I) &) — ol [[JAA[ly” — gII™"
> (&, (Vi+el)d ) —O(|d[*7),

which, together with (69) and the fact that ||(V; + ;)7 is uniformly bounded, implies
that there exists a constant ¢ > 0 such that

—(Vo(y),d) > d||d||? for all j sufficiently large.

Since V(-) is (strongly) semismooth at g (because Ilsy(-) is strongly semismooth every-
where), from [11, Theorem 3.3 & Remark 3.4] or [21], we know that for u € (0,1/2), there
exists an integer jo such that for any j > jo,

oy + &) < oy’) + 1(Ve(y’), &),
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which means that for all j > jo,
Y =y +d.
This, together with (68), completes the proof. ]

Theorem 3.5 shows that the rate of convergence for Algorithm 2 is of order (14 7). If
7 = 1, this corresponds to quadratic convergence. However, this will need more CG iterations
in Algorithm 1. To save computational time, in practice we choose 7 = 0.1 ~ 0.2, which still
ensures that Algorithm 2 achieves superlinear convergence.

4 A Newton-CG Augmented Lagrangian Method

In this section, we shall introduce a Newton-CG augmented Lagrangian algorithm for solving
problems (D) and (P). For any k > 0, denote px(-) = Ly, (-, X*). Since the inner problems
can not be solved exactly, we will use the following stopping criteria considered by Rockafellar
[32, 33] for terminating Algorithm 2:

(A) or(y™) —inf ¢y, < €2 /204, € >0, > 00 en < 00.
(B) wu(y™) —infor < (07/200) | X*F = XF|2, 6 2 0, 3532, 06 < o0
(B) IVer(y™ )l < (/o) | X" = X", 0< 8 —0.
Algorithm 3. A Newton-CG Augmented Lagrangian (SDPNAL) Algorithm
Step 0. Given (y", X°) € R™ x S, 09 > 0, a threshold ¢ > ¢ > 0 and p > 1.
Step 1. For £k =0,1,2,...

Step 1.1. Starting with y* as the initial point, apply Algorithm 2 to ¢.(+) to find y*™! =
NCG(y*, X* o4) and X1 = Ilsn (X* — o (A*yFt — ©)) satisfying (A), (B) or
(B').

Step 1.2. If 0, < 7, o)1 = pog OF Opy1 = O.

The global convergence of Algorithm 3 follows from Rockafellar [32, Theorem 1] and [33,
Theorem 4] without much difficulty.

Theorem 4.1. Let Algorithm 3 be executed with stopping criterion (A). If (D) satisfies the
Slater condition, i.e., if there exists 2° € R™ such that

A —C =0, (70)

then the sequence {X*} C ST generated by Algorithm 3 is bounded and {X*} converges to
X, where X is some optimal solution to (P), and {y*} is asymptotically minimizing for (D)
with max(P) = inf(D).

If {X*} is bounded and (P) satisfies the generalized Slater condition (7), then the se-
quence {y*} is also bounded, and all of its accumulation points of the sequence {y*} are
optimal solutions to (D).
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Next we state the local linear convergence of the Newton-CG augmented Lagrangian
algorithm.

Theorem 4.2. Let Algorithm 3 be executed with stopping criteria (A) and (B). Assume
that (D) satisfies the Slater condition (70) and (P) satisfies the Slater condition (7). If the

extended strict primal-dual constraint qualification (23) holds at X, where X is an optimal
solution to (P), then the generaled sequence {X*} € 8% is bounded and {X*} converges to
the unique solution X with max(P) = min(D), and

| X — X || < 04| XF = X||  for all k sufficiently large,
where
0, = [ag(ag + a,%)_l/z + 5k} (1 =0 =0, = ag(az + 030)_1/2 <1, 0, — 0,

and ag 1s a Lipschitz constant of Tg_1 at the origin (cf. Proposition 2.1). The conclusions of
Theorem 4.1 about {y*} are valid.

Moreover, if the stopping criterion (B') is also used and the constraint nondegenerate
conditions (37) and (59) hold at § and X, respectively, then in addition to the above con-
clusions the sequence {y*} — 4, where § is the unique optimal solution to (D), and one

has
|5t — g < 0, || X5 — X*|| for all k sufficiently large,

where 0, = a;(1 4 0},) /0 — 0o = a1/000 and a; is a Lipschitz constant of Tl’1 at the origin.

Proof. Conclusions of the first part of Theorem 4.2 follow from the results in [32, Theorem
2] and [33, Theorem 5] combining with Proposition 2.1. By using the fact that 7'

Lipschitz continuous near the origin under the assumption that the constraint nondegenerate
conditions (37) and (59) hold, respectively, at i and X [8, Theorem 18], we can directly obtain
conclusions of the second part of this theorem from [32, Theorem 2] and [33, Theorem 5|. [

Remark 5. Note that in (3) we can also add the term - o lly— y*||? to Ly, (y, X*) such that
Ly, (y, X*) + 2% = |ly — ¥*||* is a strongly convex functlon This actually corresponds to the
proximal method of multipliers considered in [33, Section 5] for which the k-th iteration is
given by

Y"1 ~ arg mﬁ;ﬁn {Lgk(y7Xk) gngy y* [ }
X = Tgn (X* — oy (A = 0)), (1)

Ok+1 = POk O Of41 = Ok.

Convergence analysis for (71) can be conducted in a parallel way as for (3).
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5 Numerical Issues in the Associated Semismooth Newton-
CG Algorithm

In applying Algorithm 2 to solve the inner subproblem (47), the most expensive step is in
computing the direction d at a given y from the linear system (62). Thus (62) must be solved
as efficiently as possible. Let

M =0 AQ ® Qdiag(vec(Q))Q" @ QT A",

where @) and Q are given as in (52) and (54), respectively. Here A denotes the matrix
representation of A with respect to the standard bases of #"*"™ and R™. The direction d is
computed from the following linear system:

(M +el)d = —V(y). (72)

To achieve faster convergence rate when applying the CG method to solve (72), one
may apply a preconditioner to the system. By observing that the matrix €2 has elements
all in the interval [0,1] and that the elements in the (7,7%) block are all ones, one may
simply approximate {2 by the matrix of ones, and hence a natural preconditioner for the
coefficient matrix in (72) is simply the matrix M := cAA" + ¢I. However, using M as
the preconditioner may be costly since it requires the Cholesky factorization of AA™ and
each preconditioning step requires the solution of two triangular linear systems. The last
statement holds in particular when the Cholesky factor has large number of fill-ins. Thus in
our implementation, we simply use diag(M) as the preconditioner rather than M.

Next we discuss how to compute the matrix-vector multiplication Md for a given d € R™
efficiently by exploiting the structure of Q. Observe that Md = 0 A(Y'), where Y = Q(Q20
(QTDQ))Q" with D = A*d. Thus the efficient computation of Md relies on our ability to
compute the matrix Y efficiently given D. By noting that

Q3DQy v, 0(Q5DQ) ] [ Q2
v, o (QIDQs) 0 Q
where H = Q5 [%(UQ:Y)Q,Ty + (V3,0 (UQ,))QT| with U = QI D, it is easy to see that Y can

be computed in at most 8|y|n? flops. By considering Y = D — Q((E — Q) o (QTDQ))Q7,
where E is the matrix of all ones, one can also compute Y in at most 8|y|n? flops. Thus
Y can be computed in at most 8 min{|¥|, |y|}n? flops. The above computational complexity
shows that the SDPNAL algorithm is able to take advantage of any low-rank or high-rank
property of the optimal solution X to reduce computational cost. In contrast, for inexact
interior-point methods such as those proposed in [40], the matrix-vector multiplication in
each CG iteration would require ©(n?) flops.

Finally, we should mention that the computational cost of the full eigenvalue decompo-
sition in (52) can sometime dominate the cost of solving (72), especially when n is large. In
our implementation, we use the LAPACK routine dsyevd.f (based on a divide-and-conquer
strategy) to compute the full eigenvalue decomposition of a symmetric matrix. We have
found it to be 7 to 10 times faster than MATLAB’s eig routine when n is larger than 500.

Y = [Qawl ] — HyH, (13)
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5.1 Conditioning of M

Recall that under the conditions stated in Theorem 4.2 where the sequences {y*} and {X*}
generated by Algorithm 3 converge to the solution y and X, respectively. Let

S =A%y —-C.

For simplicity, we assume that strict complementarity holds for X, S, i.e., X +5 = 0. We
also assume that the constraint nondegenerate conditions (37) and (59) hold for § and X,
respectively.

We shall now analyse the conditioning of the matrix M corresponding to the pair (7, X).
Proposition 3.2 assured that M is positive definite, but to estimate the convergence of the
CG method for solving (72), we need to estimate the condition number of M.

From the fact that X S = 0, we have the following eigenvalue decomposition:

AX 0

e (74)

X—-0S=Q [

where AN = diag(AY) € R and A% = diag(A\¥) € R)*("=7) are diagonal matrices of
positive eigenvalues of X and S, respectively. Define the index sets 5 := {1,...,r}, v =
{r+1,...,n}. Let

B s X
O ¥ Vv S N P
V,%‘,Y 0 ) VJ )\:LX + U)\f,r7 (S Y5 S 7, (75>
and
min(\X) max(\Y)
c1T = - , Co = - < 0.
min(AY)/o + max(\9) max(AX) /o + min(\S)

Then ¢; < ov;; < co, 1€7,] €. o
Consider the decomposition in (74) for the pair (y, X) and let v be defined as in (75).
Then we have

where 41 = AQ5 ® Q5, Ay = AQ, ® Qs, A3 = AQs ® Q,, D, = diag(vec(rs,)), and
D5 = diag(vec(u%)). Since ¢;I =X oDy, 0D3 =X ¢l < ol, it is rather easy to deduce
from (76) that

C1 <12{1A/Ff + AVQAVE + ZgAVg) j M j o <2{1A/I + Zggg + ggﬁ%) .
Hence we obtain the following bound on the condition number of M:

e e e o~ N2
k(M) < im(AlAf+A2A§+A3A§> = gli([AhAQ;AE}]) : (77)
C1 C1
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The above upper bound suggests that (M) can potentially be large if any of the follow-
ing factors are large: (i) o3 (i) c1; (iii) #([A}, A, A3]). Observe that ¢; is approximately
equal to min(A%)/max(\%) if min(A\¥)/o < max(\®). Thus we see that a small ratio in
min(A¥)/ max(\) can potentially lead to a large x(M). Similarly, even though the con-
straint nondegenerate condition (59) states that r([A;, Ay, As)) is finite (this is an equivalent
condition), its actual value can affect the conditioning of M quite dramatically. In particu-
lar, if X is nearly degenerate, i.e., K([Zl, Ay, gg]) is large, then x(M) can potentially be very
large.

6 Numerical Experiments

We implemented the Newton-CG augmented Lagrangian (SDPNAL) algorithm in MATLAB
to solve a variety of large SDP problems with m up to 2,156,544 and n up to 4,110 on a
PC (Intel Xeon 3.2 GHz with 4G of RAM). We measure the infeasibilities and optimality
for the primal and dual problems as follows:

llo+S - Ayl
rrjer

_ b= AX] by — (C, X)

R — T nLn_ = )
P 0 BT T Ty 4 (G X))

where S = (Ilsp (W) — W) /o with W = X — o (A*y — C). The above measures are the same
as those adopted in the Seventh DIMACS Implementation Challenge [15], except that we
used the Euclidean norms ||b|| and ||C| in the denominators instead of co-norms. We do not
check the infeasibilities of the conditions X > 0, Z > 0, XZ = 0, since they are satisfied up
to machine precision throughout the SDPNAL algorithm.

In our numerical experiments, we stop the SDPNAL algorithm when

Rp (78)

max{Rp, Rp} < 107°. (79)

We choose the initial iterate y° = 0, X° = 0, and oy = 10.

In solving the subproblem (47), we cap the number of Newton iterations to be 40, while
in computing the inexact Newton direction from (62), we stop the CG solver when the
maximum number of CG steps exceeds 500, or when the convergence is too slow in that the
reduction in the residual norm is exceedingly small.

In this paper, we will mainly compare the performance of the SDPNAL algorithm with
the boundary-point method, introduced in [24], that is coded in the MATLAB program
mprw.m downloaded from F. Rendl’s web page. It basically implements the following algo-
rithm: given oy > 0, X° € 8", 3y € R™, accuracy level €, perform the following loop:

W =XJ— O'j(A*yj - C), X+ = H51<W), S = (Xj+1 — W)/O'j
Yy =y — (0, AAY) (b — A(XTH)

Rp = [b— AX7|/(L+ b)), Rp = |C 4+ S — AT/ + ||C]|)
If max{Rp, Rp} < ¢, stop; else, update o;, end
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Note that in the second step of the above algorithm, it is actually applying one iteration of a
modified gradient method to solve the subproblem (47). But as the iterate y/*! in the above
algorithm is not necessary a good approximate minimizer for (47), there is no convergence
guarantee for the algorithm implemented. Next, a remark on the computational aspects
of the above algorithm. Suppose that the Cholesky factorization of AA* is pre-computed.
Then each iteration of the above algorithm requires the solution of two triangular linear
systems and one full eigenvalue decomposition of an n x n symmetric matrix. Thus each
iteration of the algorithm may become rather expensive when the Cholesky factor of A.A*
is fairly dense or when n > 500, and the whole algorithm may be very expensive if a large
number of iterations is needed to reach the desired accuracy. In our experiments, we set the
maximum number of iterations allowed in the boundary-point method to 2, 000.

In the program mprw.m, the authors suggested choosing oy in the interval [0.1, 10] if the
SDP data is normalized. But we should mention that the performance of the boundary-point
method is quite sensitive to the choice of og. Another point mentioned in [24] is that when
the rank of the optimal solution X is much smaller than n, the boundary-point method
typically would perform poorly.

6.1 Random sparse SDPs

We first consider the collection of random sparse SDPs tested in [19], which reported the
performance of the boundary-point method introduced in [24].

In Table 1, we give the results obtained by the SDPNAL algorithm for the sparse SDPs
considered in [19]. The first three columns give the problem name, the dimension of the
variable y (m), the size of the matrix C' (n,), and the number of linear inequality constraints
(ny) in (D), respectively. The middle five columns give the number of outer iterations, the
total number of inner iterations, the average number of PCG steps taken to solve (72), the
objective values (C, X) and bTy, respectively. The relative infeasibilities and gap, as well as
times (in the format hours:minutes:seconds) are listed in the last four columns.

Table 2 lists the results obtained by the boundary-point method implemented in the
program mprw.m.

Comparing the results in Tables 1 and 2, we observe that the boundary-point method
outperformed the SDPNAL algorithm. The former is about 2 to 5 times faster than the
latter on most of the problems. It is rather surprising that the boundary-point method
implemented in mprw.m, being a gradient based method and without convergence guarantee,
can be so efficient in solving this class of sparse random SDPs, with all the SDPs solved
within 250 iterations. For this collection of SDPs, the ratios rank(X)/n for all the problems,
except for Rn6m20p4, are greater than 0.25.

Table 1: Results for the SDPNAL algorithm on the random sparse SDPs considered in
[19].

problem m [ ng;ng it] itsub| pcg (C, X) bty Rp| Rp| gap time
Rn3m20p3 20000 | 300; 7| 47| 77.6 7.61352657 2 7.61379700 2 6.1-7| 9.2-7| -1.8-5 2:03
Rn3m25p3 25000 | 300; 5| 55| 81.3 7.38403202 1 7.38668475 1 9.5-7| 9.1-7| -1.8-4 3:13
Rn3m10p4 10000 | 300; 11| 50| 16.9 1.65974701 2 1.65997274 2 1.4-7| 7.0-7| -6.8-5 37
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Table 1: Results for the SDPNAL algorithm on the random sparse SDPs considered in
[19].
problem m | ng;ng it| itsub| pcg (C, X) bty Rp| Rp| gap time
Rn4dm30p3 30000 T 400; 3] 44] 64.3 1.07213940 3 1.07216947 3 T1.0-7T 7.0-7T -T.4-5 3:06
Rn4m40p3 40000 | 400; 7| 77| 86.6 8.05769056 2 8.05787521 2 3.7-7| 4.6-7| -1.1-5 9:09
Rn4ml5p4 15000 | 400; 12| 54| 16.4 -6.55000447 2 -6.54983628 2 2.2-7| 4.0-7| -1.3-5 1:17
Rn5m30p3 30000 | 500; 11| 51| 43.8 1.10762661 3 1.10765984 3 1.9-7| 7.4-7| -1.5-5 3:31
Rn5m40p3 40000 | 500; 10| 52| 46.6 8.16611193 2 8.16631468 2 1.4-7| 4.1-7| -1.2-5 4:23
Rn5m50p3 50000 | 500; 8| 45| 62.8 3.64946178 2 3.64977699 2 8.1-7| 5.6-7| -4.3-5 6:07
Rn5m20p4 20000 | 500; 12| 50| 15.1 3.28004397 2 3.28050465 2 3.1-7| 7.7-7| -7.0-5 1:51
Rn6m40p3 40000 | 600; 12| 55| 39.0 3.06617262 2 3.06643231 2 9.9-8| 4.7-7| -4.2-5 5:22
Rn6m50p3 50000 | 600; 10| 50| 58.2 -3.86413091 2 -3.86353173 2 2.8-7| 8.5-7| -7.7-5 7:53
Rn6m60p3 60000 | 600; 9| 47| 48.3 6.41737682 2 6.41803361 2 5.0-7| 8.7-7| -5.1-5 7:00
Rn6m20p4 20000 | 600; 13| 56| 13.8 1.04526971 3 1.04531605 3 1.6-7| 7.7-7| -2.2-5 2:05
Rn7m50p3 50000 | 700; 12| 52| 31.6 3.13203609 2 3.13240876 2 7.4-7| 5.4-7| -5.9-5 6:18
Rn7m70p3 70000 | 700; 10| 48| 41.6 -3.69557843 2 -3.69479811 2 2.4-7| 8.7-7| -1.1-4 8:48
Rn8m70p3 70000 | 800; 11] 51| 33.3 2.33139641 3 2.33149302 3 1.8-7| 9.9-7| -2.1-5 9:37
Rn8m100p3 100000 | 800; 10| 52| 55.8 2.25928848 3 2.25937157 3 1.3-7| 7.3-7| -1.8-5 18:49
Table 2: Results obtained by the boundary-point method in [19] on the random sparse
SDPs considered therein. The parameter og is set to 0.1, which gives better timings than
the default initial value of 1.
problem m | ng;ng it (C, X) by Rp| Rpl gap time
Rn3m20p3 20000 | 300; 162 7.61352301 2 7.61351956 2 9.9-7| 3.3-8| 2.3-7 49
Rn3m25p3 25000 | 300; 244 7.38383593 1 7.38384809 1 9.3-7| 4.8-8| -8.2-7 3:11
Rn3m10p4 10000 | 300; 148 1.65974687 2 1.65975074 2 9.8-7| 7.3-8| -1.2-6 1:07
Rn4m30p3 30000 | 400; 143 1.07214130 3 1.07213935 3 9.6-7| 2.7-8| 9.1-7 57
Rn4m40p3 40000 | 400; 193 8.05769815 2 8.05768569 2 9.3-7| 3.3-8| 7.7-7 5:02
Rn4m15p4 15000 | 400; 168 -6.55000133 2 -6.54998597 2 9.9-7| 1.1-7| -1.2-6 2:15
Rn5m30p3 30000 | 500; 151 1.10762655 3 1.10762734 3 9.9-7| 8.4-8| -3.6-7 50
Rn5m40p3 40000 | 500; 136 8.16610180 2 8.16610683 2 9.6-7| 3.6-8| -3.1-7 58
Rn5m50p3 50000 | 500; 149 3.64945604 2 3.64945078 2 9.7-7| 2.3-8| 7.2-7 2:56
Rn5m20p4 20000 | 500; 196 3.28004579 2 3.28010479 2 9.9-7| 2.1-7| -9.0-6 3:36
Rn6m40p3 40000 | 600; 153 3.06617946 2 3.06618173 2 9.5-7| 8.0-8| -3.7-7 1:21
Rn6m50p3 50000 | 600; 142 -3.86413897 2 -3.86413511 2 9.9-7| 5.7-8| -5.0-7 1:21
Rn6m60p3 60000 | 600; 137 6.41736718 2 6.41736746 2 9.9-7| 3.0-8] -2.2-8 2:09
Rn6m20p4 20000 | 600; 226 1.04526808 3 1.04528328 3 9.9-7| 3.9-7| -7.3-6 2:52
Rn7m50p3 50000 | 700; 165 3.13202583 2 3.13205602 2 9.9-7| 1.1-7| -4.8-6 2:07
Rn7m70p3 70000 | 700; 136 -3.69558765 2 -3.69558700 2 9.9-7| 4.2-8| -8.9-8 2:10
Rn8m70p3 70000 | 800; 158 2.33139551 3 2.33139759 3 9.9-7| 8.3-8| -4.5-7 2:54
Rn8m100p3 100000 | 800; 135 2.25928693 3 2.25928781 3 9.4-7| 2.9-8| -1.9-7 4:16

6.2 SDPs arising from relaxation of frequency assignment prob-

lems

Next we consider SDPs arising from semidefinite relaxation of frequency assignment problems
(FAP) [10]. The explicit description of the SDP in the form (P) is given in [6, equation (5)].
Observe that for the FAP problems, the SDPs contain non-negative vector variables
in addition to positive semidefinite matrix variables. However, it is easy to extend the
SDPNAL algorithm and the boundary-point method in mprw.m to accommodate the non-
negative variables.
Tables 3 and 4 list the results obtained by the SDPNAL algorithm and the boundary-
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point method for the SDP relaxation of frequency assignment problems tested in [6], respec-
tively. For this collection of SDPs, the SDPNAL algorithm outperformed the boundary-point
method. While the SDPNAL algorithm can achieve rather high accuracy in max{Rp, Rp, gap}
for all the SDPs, the boundary-point method fails to achieve satisfactory accuracy after 2000
iterations in that the primal and dual objective values obtained have yet to converge close
to the optimal values. The results in Table 4 demonstrate a phenomenon that is typical of a
purely gradient based method, i.e., it may stagnate or converge very slowly well before the
required accuracy is achieved.

It is interesting to note that for this collection, the SDP problems (D) and (P) are
likely to be both degenerate at the optimal solution 7 and X, respectively. For example,
the problem fap01 is both primal and dual degenerate in that x(A4;) ~ 3.9 x 10'? and
k([A1, Ay, A3]) = 1.4 x 10'2, whereA;, Ay, A3 are defined as in (76). Similarly, for fap02, we
have k(A;) &~ 2.3 x 10'2 and x([A;, Ay, As]) &~ 1.7 x 10'2. It is surprising that the SDPNAL
algorithm can attain the required accuracy within moderate CPU time despite the fact that
the problems do not satisfy the constraint nondegeneracy conditions (37) and (59) at the
optimal solution ¢ and X.

The SDPs arising from FAP problems form a particularly difficult class of problems.
Previous methods such as the spectral bundle (SB) method [13], the BMZ method (a log-
barrier method applied to a nonlinear programming reformulation of (D)) [6], and inexact
interior-point method [40] largely fail to solve these SDPs to satisfactory accuracy within
moderate computer time. For example, the SB and BMZ methods took more than 50
and 3.3 hours, respectively, to solve fap09 on an SGI Origin2000 computer using a single
300MHz R1200 processor. The inexact interior-point method [40] took more than 2.5 hours
to solve the same problem on a 7T00MHz HP ¢3700 workstation. Comparatively, our SDPNAL
algorithm took only 41 seconds to solve fap09 to the same accuracy or better. In [20], the
largest problem fap36 was tested on the SB and BMZ methods using a 450MHz Sun Ultra
60 workstation. The SB and BMZ methods obtained the lower bounds of 63.77 and 63.78 for
the optimal objective value after running for 4250 and 2036 hours, respectively. In contrast,
our SDPNAL algorithm was able to solve fap36 to a rather good accuracy in about 65 hours,
and obtained the approximate optimal objective value of 69.85.

Table 3: Results for the SDPNAL algorithm on the frequency assignment problems.

problem m | ng;ng it| itsub| pcg (C, X) bty Rp| Rp| gap time
fap01 1378 | 52; 1160 20| 109| 33.2 3.28834503-2 3.28832952-2 8.4-7| 1.0-7| 1.5-7 06
fap02 1866 | 61; 1601 20| 81| 21.4 6.90524269-4 7.02036467-4 8.4-7| 3.5-7| -1.1-5 04
fap03 2145 | 65; 1837 20| 102| 38.6 4.93726225-2 4.93703591-2 1.2-7] 2.5-7| 2.1-6 07
fap04 3321 | 81; 3046 21| 173| 43.5 1.74829592-1 1.74844758-1 2.0-7| 6.4-7| -1.1-5 17
fap05 3570 | 84; 3263 21| 244| 56.6 3.08361964-1 3.08294715-1 7.6-6| 6.2-7| 4.2-5 32
fap06 4371 | 93; 3997 21| 187| 55.3 4.59325368-1 4.59344513-1 7.6-7| 6.8-7| -10.0-6 27
fap07 4851 | 98; 4139 22| 179| 61.4 2.11762487 0 2.11763204 0 9.9-7| 4.9-7| -1.4-6 30
fap08 7260 | 120; 6668 21| 113) 45.0  2.43627884 0  2.43620328 0 | 2.8-7| 9.9-7| -2.5-6 21
fap09 15225 | 174; 14025 22| 120| 38.4 1.07978114 1 1.07978423 1 8.9-7| 9.6-7| -1.4-6 41
fap10 14479 | 183; 13754 23| 140| 57.4 9.67044948-3 9.74974306-3 1.5-7| 9.3-7| -7.8-5 1:18
fapll 24292 | 252; 23275 25| 148] 69.0  2.97000004-2  2.98373492-2 | 7.7-7| 6.0-7| -1.3-4 3:21
fap12 26462 | 369; 24410 25| 169| 81.3 2.73251961-1 2.73410714-1 6.0-7| 7.8-7| -1.0-4 9:07
fap25 322924 | 2118; 311044 24| 211| 84.8 1.28761356 1 1.28789892 1 3.2-6| 5.0-7| -1.1-4 10:53:22
fap36 1154467 | 4110; 1112293 17| 197| 87.4 6.98561787 1 6.98596286 1 7.7-7| 6.7-7| -2.5-5 65:25:07
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Table 4: Results obtained by the boundary-point method in [19] on the frequency assign-
ment problems. The parameter o( is set to 1 (better than 0.1).

problem m | ng;ng it (C, X) bty Rp| Rp| gap time
fap01 1378 | 52; 1160 2000 3.49239684-2 3.87066984-2 5.4-6| 1.7-4| -3.5-3 15
fap02 1866 | 61; 1601 2000 4.06570342-4 1.07844848-3 1.6-5] 7.5-5| -6.7-4 16
fap03 2145 | 65; 1837 2000 5.02426246-2 5.47858318-2 1.5-5| 1.5-4| -4.1-3 17
fap04 3321 | 81; 3046 2000 1.77516830-1 1.84285835-1 4.5-6| 1.7-4| -5.0-3 24
fap05 3570 | 84; 3263 2000 3.11422846-1 3.18992969-1 1.1-5| 1.6-4| -4.6-3 25
fap06 4371 | 93; 3997 2000 4.60368585-1 4.64270062-1 7.5-6] 9.8-5| -2.0-3 27
fap07 4851 | 98; 4139 2000 2.11768050 O 2.11802220 0 2.5-6| 1.5-5| -6.5-5 25
fap08 7260 | 120; 6668 2000 2.43638729 0 2.43773801 0 2.6-6| 3.5-5| -2.3-4 34
fap09 15225 | 174; 14025 2000 1.07978251 1 1.07982902 1 9.2-7| 9.8-6| -2.1-5 59
fap10 14479 | 183; 13754 2000 1.70252739-2 2.38972400-2 1.1-5| 1.1-4| -6.6-3 1:25
fapl1l 24292 | 252; 23275 2000 4.22711513-2 5.94650102-2 8.8-6| 1.4-4| -1.6-2 2:31
fapl2 26462 | 369; 24410 2000 2.93446247-1 3.26163363-1 6.0-6| 1.5-4| -2.0-2 4:37
fap25 322924 | 2118; 311044 2000 1.31895665 1 1.35910952 1 4.8-6| 2.0-4| -1.4-2 8:04:00
fap36 1154467 | 4110; 1112293 2000 7.03339309 1 7.09606078 1 3.9-6| 1.4-4| -4.4-3 46:59:28

6.3 SDPs arising from relaxation of maximum stable set problems

For a graph G with edge set &, the stability number a(G) is the cardinality of a maximal
stable set of G, and «(G) := {efz : xx; = 0,(4,7) € €, € {0,1}"}. It is known that
a(G) <0(G) < 0,(G), where

0(G) = max{(ee’, X) : (E;, X)
0,(G) = max{{ee”, X) : (Ey, X)

=0,(i,5) €&, (I, X) =1, X =0}, (80)
=0,(4,j) €&, (I, X)=1, X =0, X >0}, (81)
where E;; = eie} + eje; and e; denotes column 7 of the identity matrix I. Note that for
(81), the problem is reformulated as a standard SDP by replacing the constraint X > 0 by
constraints X —Y = 0 and Y > 0. Thus such a reformulation introduces an additional
n(n 4+ 1)/2 linear equality constraints to the SDP.

Table 5 lists the results obtained by the SDPNAL algorithm for the SDPs (80) arising
from computing 0(G) for the maximum stable set problems. The first collection of graph
instances in Table 5 are the randomly generated instances considered in [40] whereas the
second collection is from the Second DIMACS Challenge on Maximum Clique Problems
[42]. The last collection are graphs arising from coding theory, available from N. Sloane’s
web page [35].

Observe that the SDPNAL algorithm is not able to achieve the required accuracy level
for some of the SDPs from Sloane’s collection. It is not surprising that this may happen
because many of these SDPs are degenerate at the optimal solution. For example, the
problems 1dc.128 and 2dc. 128 are degenerate at the optimal solutions ¢ even though they
are nondegenerate at the optimal solutions X.

In [19], the performance of the boundary-point method was compared with that of the

iterative solver based primal-dual interior-point method in [40], as well as the iterative solver
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based modified barrier method in [17], on a subset of the large SDPs arising from the first
collection of random graphs. The conclusion was that the boundary-point method was
between 5-10 times faster than the methods in [40] and [17]. Since the SDPNAL algorithm
is at least as efficient as the boundary-point method on the theta problems for random graphs
(not reported here in the interest of saving space), it is safe to assume that the SDPNAL
algorithm would be at least 5-10 times faster than the methods in [40] and [17]. Note that
the SDPNAL algorithm is more efficient than the boundary-point method on the collection
of graphs from DIMACS. For example, the SDPNAL algorithm takes less than 100 seconds
to solve the problem G43 to an accuracy of less than 107, while the boundary-point method
(with o9 = 0.1) takes more than 3,900 seconds to achieve an accuracy of 1.5 x 107°. Such
a result for G43 is not surprising because the rank of the optimal X (equals to 58) is much
smaller than n, and as already mentioned in [24], the boundary-point method typically would
perform poorly under such a situation.

Table 5: Results for the SDPNAL algorithm on computing 6(G) in (80) for the maximum
stable set problems.

problem m [ ng;ng it] itsub| pcg (C, X) bty Rp| Rp| gap time
thetad 1949 | 200; 22| 25| 12.7 5.03212191 1 5.03212148 1 4.9-8] 5.2-7| 4.2-8 05
thetad2 5986 | 200; 20| 24| 11.6 2.39317091 1 2.39317059 1 2.2-7| 8.5-7| 6.6-8 06
theta6 4375 | 300; 22| 29| 11.0 6.34770834 1 6.34770793 1 4.5-8| 4.8-7| 3.2-8 12
theta62 13390 | 300; 20| 25| 11.2 2.96412472 1 2.96412461 1 5.8-7| 9.2-7| 1.7-8 14
theta8 7905 | 400; 22| 28| 10.6 7.39535679 1 7.39535555 1 6.5-8| 6.9-7| 8.3-8 23
theta82 23872 | 400; 21| 26| 10.3 3.43668917 1 3.43668881 1 1.4-7| 8.8-7| 5.2-8 27
theta83 39862 | 400; 20| 27| 10.8 2.03018910 1 2.03018886 1 1.2-7| 4.8-7| 5.6-8 35
thetalO 12470 | 500; 21| 25| 10.6 8.38059689 1 8.38059566 1 6.9-8| 6.6-7| 7.3-8 36
thetal02 37467 | 500; 23| 28| 10.2 3.83905451 1 3.83905438 1 6.9-8| 4.8-7| 1.6-8 50
thetalO3 62516 | 500; 18| 27| 10.7 2.25285688 1 2.25285667 1 4.4-8| 5.8-7| 4.6-8 1:00
thetalO4 87245 | 500; 17| 28| 11.2 1.33361400 1 1.33361379 1 6.1-8| 6.5-7| 7.6-8 58
thetal2 17979 | 600; 21| 26| 10.3 9.28016795 1 9.28016679 1 9.6-8| 8.1-7| 6.2-8 57
thetal23 90020 | 600; 18| 26| 10.9 2.46686513 1 2.46686492 1 3.3-8| 5.2-7| 4.1-8 1:34
thetal62 127600 | 800; 17| 26| 10.2 3.70097353 1 3.70097324 1 3.6-8| 5.4-7| 3.8-8 2:53
MANN-a27 703 | 378; 9| 13| 6.2 1.32762891 2 1.32762869 2 9.4-11| 7.0-7| 8.3-8 o7
johnson8-4 561 | 70; 3| 4] 3.0 1.39999996 1 1.39999983 1 4.5-9| 1.6-7| 4.4-8 00
johnsonl16- 1681 | 120; 3| 4] 4.0 7.99998670 0 7.99999480 0 8.1-8| 7.5-7| -4.8-7 01
san200-0.7 5971 | 200; 13| 22| 8.9 3.00000066 1 2.99999980 1 2.3-7| 3.1-7| 1.4-7 04
c-fat200-1 18367 | 200; 8| 36| 20.3 1.19999983 1 1.19999962 1 1.5-7| 8.3-7| 8.5-8 09
hamming-6- 1313 | 64; 3] 4] 4.2 5.33333334 0 5.33333330 0 | 4.4-11] 5.8-9| 2.7-9 00
hamming-8- 11777 | 256; 5| 5| 4.0 1.59999983 1 1.59999855 1 7.2-9| 8.0-7| 3.9-7 02
hamming-9- 2305 | 512; 6| 6] 5.2 2.24000000 2 2.24000049 2 1.2-10| 2.4-7| -1.1-7 10
hamming-10 23041 | 1024; 7| 9] 5.6 1.02399780 2 1.02400070 2 7.1-8| 7.1-7| -1.4-6 1:33
hamming-7- 1793 | 128; 4| 5] 4.2 4.26666667 1 4.26666645 1 4.1-12| 6.6-8| 2.6-8 01
hamming-8- 16129 | 256; 4| 4] 4.8 2.56000007 1 2.55999960 1 2.8-9| 2.1-7| 9.0-8 02
hamming-9- 53761 | 512; 4] 6| 6.5 8.53333333 1 8.53333311 1 1.4-11] 3.9-8| 1.3-8 10
brock200-1 5067 | 200; 20| 24| 12.6 2.74566402 1 2.74566367 1 1.2-7| 6.7-7| 6.3-8 06
brock200-4 6812 | 200; 18] 23] 13.0  2.12934757 1 2.12934727 1 1.1-7| 5.8-7| 6.8-8 06
brock400-1 20078 | 400; 21| 25| 10.6 3.97018902 1 3.97018916 1 5.4-7| 9.9-7| -1.7-8 26
keller4 5101 | 171; 17| 21| 15.9 1.40122390 1 1.40122386 1 1.3-7| 4.4-7| 1.3-8 05
p-hat300-1 33918 | 300; 20| 84| 38.7 1.00679674 1 1.00679561 1 5.5-7| 9.4-7| 5.3-7 1:45
G43 9991 | 1000; 18| 27| 11.6 2.80624585 2 2.80624562 2 3.0-8| 4.6-7| 4.2-8 1:33
G44 9991 | 1000; 18] 28| 11.1 2.80583335 2 2.80583149 2 3.6-7| 9.2-7| 3.3-7 2:59
G45 9991 | 1000; 17| 26| 11.5 2.80185131 2 2.80185100 2 3.6-8| 5.8-7| 5.6-8 2:51
G46 9991 | 1000; 18| 26| 11.4 2.79837027 2 2.79836899 2 3.2-7| 9.1-7| 2.3-7 2:53
G47 9991 | 1000; 17| 27| 11.4 2.81893976 2 2.81893904 2 7.0-8| 9.3-7| 1.3-7 2:54
1dc.64 544 | 64; 22| 87| 61.1 1.00000038 1 9.99998513 0 6.9-7| 9.2-7| 8.9-7 06
let.64 265 | 64; 13| 16| 10.0 1.87999993 1 1.88000161 1 1.2-7| 7.2-7| -4.3-7 01
1tc.64 193 | 64; 14| 25| 14.1 2.00000028 1 1.99999792 1 5.5-7| 9.2-7| 5.7-7 01
1dc.128 1472 | 128; 26| 160| 78.3 1.68422941 1 1.68420185 1 6.4-6| 6.5-7| 7.9-6 31
let.128 673 | 128; 14| 25| 11.5 2.92308767 1 2.92308940 1 7.6-7| 4.5-7| -2.9-7 02
1tc.128 513 | 128; 12| 33| 10.7 3.79999935 1 3.79999915 1 1.6-7| 8.5-7| 2.6-8 02
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Table 5: Results for the SDPNAL algorithm on computing 6(G) in (80) for the maximum
stable set problems.
problem m | ng;ng it| itsub| pcg (C, X) bty Rp| Rp| gap time
1zc. 128 TI2T T 128; 10T 167 8.2 2.06666622 1 2.06666556 1 I.I-7T 5.9-7T 1.6-7 02
1dc.256 3840 | 256; 22| 131| 46.5 3.00000152 1 2.99999982 1 5.1-7| 1.1-8| 2.8-7 1:05
let.256 1665 | 256; 22| 105| 30.5 5.51142859 1 5.51142381 1 3.2-7| 5.3-7| 4.3-7 52
1tc.256 1313 | 256; 29| 211| 82.2 6.34007911 1 6.33999101 1 7.4-6| 4.8-7| 6.9-6 2:30
1zc.256 2817 | 256; 13| 17| 8.5 3.79999847 1 3.79999878 1 9.5-8| 4.9-7| -4.1-8 05
1dc.512 9728 | 512; 30| 181| 75.7 5.30311533 1 5.30307418 1 2.0-6| 4.2-7| 3.8-6 12:07
let.512 4033 | 512; 16| 90| 40.1 1.04424062 2 1.04424003 2 9.9-7| 7.9-7| 2.8-7 3:48
1tc.512 3265 | 512; 28| 316| 83.4 1.13401460 2 1.13400320 2 3.3-6| 6.9-7| 5.0-6 28:53
2dc.512 54896 | 512; 27| 258| 61.3 1.17732077 1 1.17690636 1 2.4-5| 5.0-7| 1.7-4 32:16
1zc.512 6913 | 512; 12| 21| 10.6  6.87499484 1  6.87499880 1 9.0-8| 3.7-7| -2.9-7 44
1dc.1024 24064 | 1024; 26| 130| 64.0 9.59854968 1 9.59849281 1 1.4-6| 4.9-7| 2.9-6 41:26
let.1024 9601 | 1024; 19| 117| 76.8 1.84226899 2 1.84226245 2 2.5-6| 3.5-7| 1.8-6 1:01:14
1tc.1024 7937 | 1024; 30| 250] 79.1 2.06305257 2 2.06304344 2 1.7-6| 6.3-7| 2.2-6 1:48:04
1zc.1024 16641 | 1024; 15| 22| 12.2 1.28666659 2 1.28666651 2 2.8-8| 3.0-7| 3.3-8 4:15
2dc.1024 169163 | 1024; 28| 219] 68.0 1.86426368 1 1.86388392 1 7.8-6| 6.8-7| 9.9-5 2:57:56
1dc.2048 58368 | 2048; 27| 154 82.5 1.74729647 2 1.74729135 2 7.7-7| 4.0-7| 1.5-6 6:11:11
let.2048 22529 | 2048; 22| 138| 81.6 3.42029313 2 3.42028707 2 6.9-7| 6.3-7| 8.8-7 7:13:55
1tc.2048 18945 | 2048; 26| 227| 78.5 3.74650769 2 3.74644820 2 3.3-6| 3.7-7| 7.9-6 9:52:09
1zc.2048 39425 | 2048; 13| 24| 14.0 2.37400485 2 2.37399909 2 1.5-7| 7.3-7| 1.2-6 45:16
2dc.2048 504452 | 2048; 27| 184| 67.1 3.06764717 1 3.06737001 1 3.7-6| 4.5-7| 4.4-5 15:13:19
Table 6: Results for the SDPNAL algorithm on computing 6 (G) in (81) for the maximum
stable set problems.
problem m—np | ng;ng it| itsub]| pcg (C, X) bty Rp| Rp| gap time
thetad 1949 | 200; 20100 20| 67| 31.3 4.98690157 1 4.98690142 1 4.6-8] 7.9-7| 1.4-8 33
theta42 5986 | 200; 20100 18| 41| 26.0 2.37382088 1 2.37382051 1 5.7-7| 9.8-7| 7.6-8 22
theta6 4375 | 300; 45150 15| 61| 27.7 6.29618432 1 6.29618399 1 2.9-8| 7.6-7| 2.6-8 1:03
theta62 13390 | 300; 45150 16| 38| 22.4 2.93779448 1 2.93779378 1 4.0-7| 6.6-7| 1.2-7 44
theta8 7905 | 400; 80200 13| 52| 29.8 7.34078436 1 7.34078372 1 2.8-7| 7.3-7| 4.3-8 1:54
theta82 23872 | 400; 80200 13| 45| 28.6 3.40643550 1 3.40643458 1 4.0-7| 9.9-7| 1.3-7 2:09
theta83 39862 | 400; 80200 13| 40| 23.0 2.01671070 1 2.01671031 1 1.8-7| 4.5-7| 9.4-8 1:50
thetalO 12470 | 500; 125250 12| 54| 32.0 8.31489963 1 8.31489897 1 1.3-7| 8.0-7| 4.0-8 3:35
thetal02 37467 | 500; 125250 15| 44| 27.6 3.80662551 1 3.80662486 1 4.5-7] 9.1-7| 8.4-8 3:31
thetal03 62516 | 500; 125250 12| 38| 26.5 2.23774200 1 2.23774190 1 1.0-7] 9.3-7| 2.3-8 3:28
thetal04 87245 | 500; 125250 14| 35| 22.0 1.32826023 1 1.32826068 1 8.1-7| 8.4-7| -1.6-7 2:35
thetal2 17979 | 600; 180300 12| 53| 33.9 9.20908140 1 9.20908772 1 6.5-7| 6.6-7| -3.4-7 5:38
thetal23 90020 | 600; 180300 15| 43| 29.2 2.44951438 1 2.44951497 1 7.7-7| 8.5-7| -1.2-7 6:44
thetal62 127600 | 800; 320400 14| 42| 26.2 3.67113362 1 3.67113729 1 8.1-7| 4.5-7| -4.9-7 11:24
MANN-a27 703 | 378; 71631 7| 26| 21.5 1.32762850 2 1.32762894 2 2.1-7| 6.8-7| -1.6-7 35
johnson8-4 561 | 70; 2485 5| 6] 7.0 1.39999984 1 1.40000110 1 2.2-8| 5.8-7| -4.4-7 01
johnsonl6- 1681 | 120; 7260 6| 7| 7.0 7.99999871 0 8.00000350 O 5.3-8| 4.3-7| -2.8-7 01
san200-0.7 5971 | 200; 20100 16| 33| 14.5 3.00000135 1 2.99999957 1 5.9-7| 4.0-7| 2.9-7 11
c-fat200-1 18367 | 200; 20100 7| 48| 42.1 1.20000008 1 1.19999955 1 1.3-7] 9.5-7| 2.1-7 36
hamming-6- 1313 | 64; 2080 6| 7| 7.0 4.00000050 0 3.99999954 0 5.7-9| 6.2-8| 1.1-7 01
hamming-8- 11777 | 256; 32896 8| 10] 7.2 1.59999978 1 1.59999873 1 8.5-9| 3.7-7| 3.2-7 05
hamming-9- 2305 | 512; 131328 3| 8] 8.4 2.24000002 2 2.24000016 2 4.6-8| 5.9-7| -3.1-8 18
hamming-10 23041 | 1024; 524800 8| 17| 10.6 8.53334723 1 8.53334002 1 6.0-8] 7.9-7| 4.2-7 4:35
hamming-7- 1793 | 128; 8256 12| 26| 8.2 3.59999930 1 3.60000023 1 3.8-8| 1.3-7| -1.3-7 03
hamming-8- 16129 | 256; 32896 6| 7] 7.0 2.56000002 1 2.56000002 1 2.0-9| 5.1-9] -2.7-10 05
hamming-9- 53761 | 512; 131328 11| 18| 10.6 5.86666682 1 5.86666986 1 1.1-7| 4.4-7| -2.6-7 42
brock200-1 5067 | 200; 20100 17| 48| 30.7 2.71967178 1 2.71967126 1 3.8-7| 7.0-7| 9.3-8 27
brock200-4 6812 | 200; 20100 18| 40| 23.4 2.11210736 1 2.11210667 1 5.4-8| 9.9-7| 1.6-7 21
brock400-1 20078 | 400; 80200 14| 42| 26.4 3.93309197 1 3.93309200 1 9.5-7| 6.5-7| -3.5-9 1:45
keller4 5101 | 171; 14706 18| 73| 43.3 1.34658980 1 1.34659082 1 6.1-7| 9.7-7| -3.7-7 43
p-hat300-1 33918 | 300; 45150 21| 123| 73.5 1.00202172 1 1.00202006 1 8.7-7| 7.2-7| 7.9-7 6:50
G43 9991 | 1000; 500500 9| 126] 52.2 2.79735847 2 2.79735963 2 9.1-7| 8.1-7| -2.1-7 52:00
G44 9991 | 1000; 500500 8| 122]| 51.4 2.79746110 2 2.79746078 2 3.3-7| 6.2-7| 5.7-8 49:32
G45 9991 | 1000; 500500 9| 124] 52.0 2.79317531 2 2.79317544 2 9.3-7| 8.6-7| -2.4-8 50:25
G46 9991 | 1000; 500500 8| 112] 52.2 2.79032493 2 2.79032511 2 3.5-7| 9.6-7| -3.3-8 44:38
G47 9991 | 1000; 500500 9| 102] 53.1 2.80891719 2 2.80891722 2 4.7-7| 6.0-7| -5.1-9 40:27
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Table 6: Results for the SDPNAL algorithm on computing 64 (G) in (81) for the maximum
stable set problems.

problem m—mny | ng;ng it| itsub| pcg (C, X) bty Rp| Rp| gap time

Idc.64 544 1 64; 2080 127 1077 39.6 9.99999884 0 9.99998239 0 1.2-779.9-77 7.8-7 09
let.64 265 | 64; 2080 12| 24| 17.0 1.88000008 1 1.87999801 1 3.2-8| 6.6-7| 5.4-7 02
1tc.64 193 | 64; 2080 12| 54| 37.9 1.99999995 1 1.99999784 1 7.9-8| 9.3-7| 5.2-7 05
1dc.128 1472 | 128; 8256 28| 277| 117.4 1.66790646 1 1.66783087 1 5.4-5| 2.6-8| 2.2-5 3:16
let.128 673 | 128; 8256 12| 41| 26.9 2.92309168 1 2.92308878 1 8.3-7| 6.6-7| 4.9-7 08
1tc.128 513 | 128; 8256 14| 51| 28.0 3.80000025 1 3.79999965 1 2.3-7| 4.4-7| 7.9-8 09
1zc.128 1121 | 128; 8256 14| 23| 12.9 2.06667715 1 2.06666385 1 8.5-7] 9.3-7| 3.1-6 04
1dc.256 3840 | 256; 32896 21| 131| 39.3 2.99999987 1 3.00000004 1 4.3-8| 1.7-8| -2.8-8 2:24
let.256 1665 | 256; 32896 21| 195] 108.4 5.44706489 1 5.44652433 1 2.3-5| 4.0-7| 4.9-5 8:37
1tc.256 1313 | 256; 32896 23| 228] 137.5 6.32416075 1 6.32404374 1 1.5-5| 7.5-7| 9.2-6 11:17
1zc.256 2817 | 256; 32896 17| 40| 13.6 3.73333432 1 3.73333029 1 1.7-7| 8.2-7| 5.3-7 21
1dc.512 9728 | 512; 131328 24| 204| 72.9 5.26955154 1 5.26951392 1 2.7-6| 5.4-7| 3.5-6 36:48
let.512 4033 | 512; 131328 17| 181| 147.4 1.03625531 2 1.03555196 2 1.3-4| 5.8-7| 3.4-4 51:10
1tc.512 3265 | 512; 131328 28| 396| 143.9 1.12613099 2 1.12538820 2 9.3-5| 7.9-7| 3.3-4 2:14:55
2dc.512 54896 | 512; 131328 33| 513| 106.2 1.13946331 1 1.13857125 1 2.1-4| 7.7-7| 3.8-4 2:25:15
1zc.512 6913 | 512; 131328 11| 57| 37.3 6.80000034 1 6.79999769 1 4.3-7| 7.6-7| 1.9-7 6:09
1dc.1024 24064 | 1024; 524800 24| 260| 81.4 9.565539508 1 9.55512205 1 1.4-5] 6.9-7| 1.4-5 5:03:49
let.1024 9601 | 1024; 524800 20| 198] 155.0 1.82075477 2 1.82071562 2 4.8-6| 7.0-7| 1.1-5 6:45:50
1tc.1024 7937 | 1024; 524800 27| 414] 124.6 2.04591268 2 2.04236122 2 1.5-4| 7.3-7| 8.7-4 10:37:57
1zc.1024 16641 | 1024; 524800 11| 67| 38.1 1.27999936 2 1.27999977 2 6.4-7| 5.7-7| -1.6-7 40:13
2dc.1024 169163 | 1024; 524800 28| 455| 101.8 1.77416130 1 1.77149535 1 1.6-4| 6.2-7| 7.3-4 11:57:25
1dc.2048 58368 | 2048; 2098176 20| 320| 73.0 1.74292685 2 1.74258827 2 1.9-5| 7.1-7| 9.7-5 35:52:44
let.2048 22529 | 2048; 2098176 22| 341] 171.5 3.38193695 2 3.38166811 2 6.3-6| 5.7-7| 4.0-5 80:48:17
1tc.2048 18945 | 2048; 2098176 24| 381| 150.2 3.71592017 2 3.70575527 2 3.5-4| 7.9-7| 1.4-3 73:56:01
1z¢.2048 39425 | 2048; 2098176 11| 38| 29.3 2.37400054 2 2.37399944 2 2.5-7| 7.9-7| 2.3-7 2:13:04
2dc.2048 504452 | 2048; 2098176 27| 459| 53.4 2.89755241 1 2.88181157 1 1.3-4| 7.2-7| 2.7-3 45:21:42

7 Applications to Quadratic Assignment and Binary
Integer Quadratic Programming Problems

In this section, we apply our SDPNAL algorithm to compute lower bounds for quadratic
assignment problems (QAPs) and binary integer quadratic (BIQ) problems through SDP
relaxations. Our purpose here is to demonstrate that the SDPNAL algorithm can potentially
be very efficient in solving large SDPs (and hence in computing bounds) arising from hard
combinatorial problems.

Let II be the set of n x n permutation matrices. Given matrices A, B € R"*", the
quadratic assignment problem is:

voap = min{(X, AXB) : X €1I}. (82)

For a matrix X = [z1,...,2,] € R™*", we will identify it with the n-vector z = [zy;...;z,].
For a matrix Y € R">*™ we let Y/ be the n x n block corresponding to ;27 in the matrix
za™. Tt is shown in [23] that v&y,p is bounded below by the following number:

v:=min (BRA,Y)
st Y Yi=T(I,YV)=6,;V1<i<j<n,
(B, Yi7)=1,V1<i<j<n,
Y =0,Y >0,

(83)
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where £ is the matrix of ones, and ¢;; = 1 if ¢ = j, and 0 otherwise. There are 3n(n + 1)/2
equality constraints in (83). But two of them are actually redundant, and we remove them
when solving the standard SDP generated from (83). Note that [23] actually used the
constraint (£, Y) = n? in place of the last set of the equality constraints in (83). But we
prefer to use the formulation here because the associated SDP has slightly better numerical
behavior. Note also that the SDP problems (83) typically do not satisfy the constraint
nondegenerate conditions (37) and (59) at the optimal solutions.

In our experiment, we apply the SDPNAL algorithm to the dual of (83) and hence any
dual feasible solution would give a lower bound for (83). But in practice, our algorithm only
delivers an approximately feasible dual solution y. We therefore apply the procedure given
in [14, Theorem 2| to § to construct a valid lower bound for (83), which we denote by wv.

Table 7 lists the results of the SDPNAL algorithm on the quadratic assignment instances
(83). The details of the table are the same as for Table 1 except that the objective values are
replaced by the best known upper bound on (82) under the column “best upper bound” and
the lower bound v. The entries under the column under “%gap” are calculated as follows:

best bound —
est upper boun v « 100%.

Tgap = best upper bound

We compare our results with those obtained in [5] which used a dedicated augmented La-
grangian algorithm to solve the SDP arising from applying the lift-and-project procedure
of Lovasz and Schrijver to (82). As the augmented Lagrangian algorithm in [5] is designed
specifically for the SDPs arising the lift-and-project procedure, the details of that algorithm
is very different from our SDPNAL algorithm. Note that the algorithm in [5] was imple-
mented in C (with LAPACK library) and the results reported were obtained from a 2.4 GHz
Pentium 4 PC with 1 GB of RAM (which is about 50% slower than our PC). By comparing
the results in Table 7 against those in [5, Tables 6 and 7], we can safely conclude that the
SDPNAL algorithm applied to (83) is superior in terms of CPU time and the accuracy of
the approximate optimal solution computed. Take for example the SDPs corresponding to
the QAPs nug30 and tai35b, the SDPNAL algorithm obtains the lower bounds with %gap
of 2.939 and 5.318 in 15,729 and 37,990 seconds respectively, whereas the the algorithm
in [5] computes the bounds with %gap of 3.10 and 15.42 in 127,011 and 430,914 seconds
respectively.

The paper [5] also solved the lift-and-project SDP relaxations for the maximum stable
set problems (denoted as N, and is known to be at least as strong as 6, ) using a dedicated
augmented Lagrangian algorithm. By comparing the results in Table 6 against those in [5,
Table 4], we can again conclude that the SDPNAL algorithm applied to (81) is superior in
terms of CPU time and the accuracy of the approximate optimal solution computed. Take for
example the SDPs corresponding to the graphs p-hat300-1 and c-fat200-1, the SDPNAL
algorithm obtains the upper bounds of 8, = 10.0202 and 6, = 12.0000 in 410 and 36 seconds
respectively, whereas the the algorithm in [5] computes the bounds of N, = 18.6697 and
N, =14.9735 in 322,287 and 126, 103 seconds respectively.
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The BIQ problem we consider is the following:
Uhio = min{z"Qz : x € {0,1}"}, (84)

where @) is a symmetric matrix (non positive semidefinite) of order n. A natural SDP
relaxation of (84) is the following:

min (Q,Y)

st. diag(Y)-y=0, a=1, (85)
Y y
S oo =0, Y>0,y>0.

Table 8 lists the results obtained by the SDPNAL algorithm on the SDPs (85) arising from
the BIQ instances described in [43]. It is interesting to note that the lower bound obtained
from (85) is within 10% of the optimal value vg;q for all the instances tested, and for the
instances gkalb-gkadb, the lower bounds are actually equal to vjq.

Table 7: Results for the SDPNAL algorithm on the quadratic assignment problems. The
entries under the column “%gap” are calculated with respect to the best solution listed,
which is known to be optimal unless the symbol (1) is prefixed.

problem m—ng | ng;ng it| itsub| pcg uppebrelitound lower bound v Rp| Rp— %gap
bur26a 1051 | 676; 228826 27| 389] 105.9 5.42667000 6 5.42577700 6 2.9-3| 2.8-7] 0.016
bur26b 1051 | 676; 228826 25| 358] 92.3 3.81785200 6 3.81663900 6 2.3-3| 6.1-7| 0.032
bur26¢c 1051 | 676; 228826 26| 421| 107.5 5.42679500 6 5.42593600 6 3.9-3| 4.7-7| 0.016
bur26d 1051 | 676; 228826 27| 424| 102.3 3.82122500 6 3.81982900 6 3.8-3| 5.0-7| 0.037
bur26e 1051 | 676; 228826 27| 573| 100.0 5.38687900 6 5.38683200 6 7.5-3| 1.7-7] 0.001
bur26f 1051 | 676; 228826 25| 534| 100.9 3.78204400 6 3.78184600 6 3.1-3| 6.2-7| 0.005
bur26g 1051 | 676; 228826 24| 422] 91.0 1.01171720 7 1.01167630 7 3.8-3| 6.6-7| 0.004
bur26h 1051 | 676; 228826 24| 450 96.8 7.09865800 6 7.09856700 6 2.0-3| 2.3-7| 0.001
chrl2a 232 | 144; 10440 24| 314 82.5 9.55200000 3 9.55200000 3 4.6-7| 4.2-12] 0.000
chr12b 232 | 144; 10440 23| 374| 106.6 9.74200000 3 9.74200000 3 4.3-7| 5.9-12| 0.000
chrl2c 232 | 144; 10440 25| 511| 103.7 1.11560000 4 1.11560000 4 1.7-3| 5.6-7| 0.000
chrlba 358 | 225; 25425 27| 505| 110.9 9.89600000 3 9.88800000 3 3.8-3| 3.1-7| 0.081
chrl5b 358 | 225; 25425 23| 385] 94.0 7.99000000 3 7.99000000 3 1.9-4| 3.1-8] 0.000
chrl5c 358 | 225; 25425 21| 382| 82.4 9.50400000 3 9.50400000 3 2.2-4| 2.4-8| 0.000
chrl8a 511 | 324; 52650 32| 660| 111.7 1.10980000 4 1.10960000 4 8.1-3| 1.7-7| 0.018
chr18b 511 | 324; 52650 25| 308| 136.1 1.53400000 3 1.53400000 3 9.9-5| 6.9-7] 0.000
chr20a 628 | 400; 80200 32| 563| 117.8 2.19200000 3 2.19200000 3 4.3-3| 2.9-8] 0.000
chr20b 628 | 400; 80200 25| 375] 98.2 2.29800000 3 2.29800000 3 1.1-3| 1.5-7| 0.000
chr20c 628 | 400; 80200 30| 477| 101.0 1.41420000 4 1.41400000 4 5.5-3| 5.4-7| 0.014
chr22a 757 | 484; 117370 26| 467| 116.7 6.15600000 3 6.15600000 3 2.3-3| 9.3-8| 0.000
chr22b 757 | 484; 117370 26| 465| 106.4 6.19400000 3 6.19400000 3 1.8-3| 6.9-8] 0.000
chr25a 973 | 625; 195625 26| 462| 84.7 3.79600000 3 3.79600000 3 1.9-3| 1.4-7| 0.000
els19 568 | 361; 65341 28| 554] 99.5 1.72125480 7 1.72112340 7 1.0-4| 6.5-7| 0.008
escl6a 406 | 256; 32896 24| 251| 106.3 6.80000000 1 6.40000000 1 9.3-5| 5.3-7| 5.882
escl6b 406 | 256; 32896 26| 321| 80.7 2.92000000 2 2.89000000 2 5.0-4| 4.9-7| 1.027
escl6e 406 | 256; 32896 27| 331| 77.5 1.60000000 2 1.53000000 2 6.6-4| 5.6-7| 4.375
escl6d 406 | 256; 32896 20| 62| 70.8 1.60000000 1 1.30000000 1 6.1-7| 8.0-7| 18.750
escl6e 406 | 256; 32896 19| 61| 70.1 2.80000000 1 2.70000000 1 9.7-8| 9.4-7| 3.571
escl6g 406 | 256; 32896 23| 106| 109.8 2.60000000 1 2.50000000 1 2.9-7| 4.7-7| 3.846
escl6h 406 | 256; 32896 29| 319] 90.0 9.96000000 2 9.76000000 2 1.4-4| 5.8-7| 2.008
escl6i 406 | 256; 32896 20| 106| 117.4 1.40000000 1 1.20000000 1 8.6-7| 6.9-7| 14.286
escl6j 406 | 256; 32896 15| 67| 104.8 8.00000000 O 8.00000000 O 1.6-7| 4.1-7| 0.000
esc32a 1582 | 1024; 524800 26| 232| 101.9 T 1.30000000 2 1.04000000 2 2.5-5| 7.8-7| 20.000
esc32b 1582 | 1024; 524800 22| 201| 99.4 T 1.68000000 2 1.32000000 2 1.7-4| 7.8-7| 21.429
esc32c 1582 | 1024; 524800 30| 479| 140.2 T 6.42000000 2 6.16000000 2 6.5-4| 2.1-7| 4.050 11:12:30
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Table 7:

Results for the SDPNAL algorithm on the quadratic assignment problems. The

entries under the column “%gap” are calculated with respect to the best solution listed,
which is known to be optimal unless the symbol (}) is prefixed.

problem m—n; | ng;ng it| itsub| pcg uppetieztound lower bound v Rp| Rp— %gap time
esc32d 1582 1 1024; 524800 251 2547 132.0 T 2.00000000 2 1.9T000000 2 5.3-7] 5.6-7] 4.500 5:43:54
esc32e 1582 | 1024; 524800 15| 46| 58.2 2.00000000 O 2.00000000 O 2.2-7| 1.1-7| 0.000 31:11
esc32f 1582 | 1024; 524800 15| 46| 58.2 2.00000000 O 2.00000000 0O 2.2-7| 1.1-7| 0.000 31:13
esc32g 1582 | 1024; 524800 15| 38| 50.7 6.00000000 O 6.00000000 O 1.7-7| 3.2-7| 0.000 23:25
esc32h 1582 | 1024; 524800 30| 403| 113.3 T 4.38000000 2 4.23000000 2 9.9-4| 3.0-7| 3.425 8:05:32
had12 232 | 144; 10440 23| 457] 93.8 1.65200000 3 1.65200000 3 2.2-4| 1.4-7| 0.000 5:17
had14 313 | 196; 19306 28| 525| 99.5 2.72400000 3 2.72400000 3 1.5-3| 7.6-7| 0.000 13:03
hadl6 406 | 256; 32896 27| 525] 98.7 3.72000000 3 3.72000000 3 1.4-3| 1.2-7| 0.000 22:37
had18 511 | 324; 52650 29| 458| 104.3 5.35800000 3 5.35800000 3 1.5-3| 4.0-7| 0.000 44:30
had20 628 | 400; 80200 32| 568 96.7 6.92200000 3 6.92200000 3 3.8-3| 2.6-7| 0.000 1:24:06
kra30a 1393 | 900; 405450 27| 313| 68.0 8.89000000 4 8.64280000 4 4.5-4| 6.5-7| 2.781 4:08:17
kra30b 1393 | 900; 405450 28| 289 68.9 9.14200000 4 8.74500000 4 3.1-4| 7.4-7| 4.343
kra32 1582 | 1024; 524800 31| 307| 78.6 8.89000000 4 8.52980000 4 4.6-4| 6.0-7| 4.052 6:43:41
lipa20a, 628 | 400; 80200 18| 243| 70.1 3.68300000 3 3.68300000 3 5.5-7| 2.9-9] 0.000 24:29
lipa20b 628 | 400; 80200 14| 116| 56.2 2.70760000 4 2.70760000 4 1.7-5| 6.5-7| 0.000 10:10
lipa30a 1393 | 900; 405450 20| 252| 78.2 1.31780000 4 1.31780000 4 2.5-7| 1.1-10] 0.000 3:41:44
lipa30b 1393 | 900; 405450 18| 83| 80.8 1.51426000 5 1.51426000 5 6.9-7| 3.3-8| 0.000 1:23:34
lipa40a 2458 | 1600; 1280800 22| 324 81.7 3.15380000 4 3.15380000 4 4.1-7| 4.6-11] 0.000 21:02:51
lipa40b 2458 | 1600; 1280800 19| 121| 76.6 4.76581000 5 4.76581000 5 3.9-6| 1.3-8| 0.000 7:24:25
nugl?2 232 | 144; 10440 22| 266 69.6 5.78000000 2 5.68000000 2 1.2-4| 3.6-7| 1.730 2:27
nugl4 313 | 196; 19306 24| 337] 62.3 1.01400000 3 1.00800000 3 3.1-4] 8.0-7| 0.592 5:50
nuglb 358 | 225; 25425 27| 318] 62.6 1.15000000 3 1.13800000 3 3.0-4| 7.5-7| 1.043 7:32
nugl6a 406 | 256; 32896 25| 346 80.4 1.61000000 3 1.59700000 3 3.3-4| 6.6-7| 0.807 14:15
nugl6b 406 | 256; 32896 28| 315| 64.5 1.24000000 3 1.21600000 3 2.8-4| 4.2-7| 1.935 10:20
nugl?7 457 | 289; 41905 26| 302| 60.6 1.73200000 3 1.70400000 3 2.0-4| 7.7-7| 1.617 12:38
nugl8 511 | 324; 52650 26| 287] 59.5 1.93000000 3 1.89100000 3 2.2-4| 3.5-7| 2.021 15:39
nug20 628 | 400; 80200 26| 318] 65.1 2.57000000 3 2.50400000 3 1.5-4| 5.2-7| 2.568 31:49
nug2l 691 | 441; 97461 27| 331] 62.5 2.43800000 3 2.37800000 3 1.9-4| 6.6-7| 2.461 40:22
nug22 757 | 484; 117370 28| 369 86.0 3.59600000 3 3.52200000 3 3.1-4| 5.9-7| 2.058 1:21:58
nug24 898 | 576; 166176 29| 348 63.7 3.48800000 3 3.39600000 3 1.8-4| 3.6-7| 2.638 1:33:59
nug25 973 | 625; 195625 27| 335] 60.2 3.74400000 3 3.62100000 3 1.8-4| 3.0-7| 3.285 1:41:49
nug27 1132 | 729; 266085 29| 380] 80.1 5.23400000 3 5.12400000 3 1.3-4| 4.5-7| 2.102 3:31:50
nug28 1216 | 784; 307720 26| 329 80.5 5.16600000 3 5.02000000 3 2.4-4| 6.3-7| 2.826 3:36:38
nug30 1393 | 900; 405450 27| 360| 61.4 6.12400000 3 5.94400000 3 1.3-4| 3.3-7| 2.939 4:22:09
roul2 232 | 144; 10440 25| 336| 106.3 2.35528000 5 2.35434000 5 4.6-4| 1.6-7| 0.040 4:50
roulb 358 | 225; 25425 26| 238] 64.0 3.54210000 5 3.49544000 5 2.5-4| 4.0-7| 1.317 5:48
rou20 628 | 400; 80200 26| 250] 69.9 7.25522000 5 6.94397000 5 1.5-4| 7.5-7| 4.290 27:26
scrl2 232 | 144; 10440 19| 255] 99.9 3.14100000 4 3.14080000 4 4.3-4| 7.5-7| 0.006 3:16
scrld 358 | 225; 25425 19| 331| 91.7 5.11400000 4 5.11400000 4 1.3-7| 2.8-7| 0.000 9:42
scr20 628 | 400; 80200 28| 353| 65.2 1.10030000 5 1.06472000 5 2.6-4| 4.9-7| 3.234 34:32
ste36a 1996 | 1296; 840456 26| 318] 93.8 9.52600000 3 9.23600000 3 1.7-4| 4.1-7| 3.044 15:09:10
ste36b 1996 | 1296; 840456 29| 348| 101.0 1.58520000 4 1.56030000 4 1.8-3| 4.3-7| 1.571 19:05:19
ste36¢ 1996 | 1296; 840456 28] 360| 105.3 8.23911000 6 8.11864500 6 6.3-4| 4.0-7| 1.462 19:56:15
tail2a 232 | 144; 10440 15| 180| 59.8 2.24416000 5 2.24416000 5 1.8-6| 7.6-8| 0.000 1:28
tail2b 232 | 144; 10440 29| 596| 112.2 3.94649250 7 3.94649080 7 3.7-4| 9.3-9] 0.000 7:40
tailba 358 | 225; 25425 23| 196] 65.1 3.88214000 5 3.76608000 5 1.3-4| 5.0-7| 2.990 4:58
tail5b 358 | 225; 25425 29| 409| 102.2 5.17652680 7 5.17609220 7 1.5-3| 7.0-7| 0.008 16:04
tail7a 457 | 289; 41905 23| 168] 69.7 4.91812000 5 4.75893000 5 1.4-4| 5.0-7| 3.237 8:21
tai20a 628 | 400; 80200 27| 220] 73.3 7.03482000 5 6.70827000 5 1.9-4| 4.2-7| 4.642 25:32
tai20b 628 | 400; 80200 31| 485] 91.6 1.22455319 8 1.22452095 8 2.9-3| 1.4-7| 0.003 54:05
tai2ba 973 | 625; 195625 27| 194| 77.3 1.16725600 6 1.01301000 6 8.0-7| 7.9-7| 13.214 1:17:54
tai25b 973 | 625; 195625 29| 408| 70.4 3.44355646 8 3.33685462 8 2.6-3| 6.2-7| 3.099 2:33:26
tai30a 1393 | 900; 405450 27| 207| 82.4 T 1.81814600 6 1.70578200 6 8.1-5| 2.0-7| 6.180 3:35:03
tai30b 1393 | 900; 405450 30| 421| 71.6 6.37117113 8 5.95926267 8 1.4-3| 4.9-7| 6.465 6:26:30
tai3ba 1888 | 1225; 750925 28| 221 81.0 2.42200200 6 2.21523000 6 1.5-4| 5.0-7| 8.537 8:09:44
tai35b 1888 | 1225; 750925 28| 401| 58.3 2.83315445 8 2.68328155 8 8.7-4| 6.4-7| 5.290 10:33:10
tai40a 2458 | 1600; 1280800 27| 203] 85.1 3.13937000 6 2.84184600 6 7.5-5| 5.3-7| 9.477 15:25:52
tai40b 2458 | 1600; 1280800 30| 362| 74.1 6.37250948 8 6.06880822 8 1.7-3| 4.9-7| 4.766 23:32:56
tho30 1393 | 900; 405450 27| 315] 61.1 1.49936000 5 1.43267000 5 2.4-4| 7.3-7| 4.448 3:41:26
tho40 2458 | 1600; 1280800 27| 349] 60.9 1 2.40516000 5 2.26161000 5 2.0-4| 6.5-7| 5.968 17:13:24
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Table 8:

Results for the SDPNAL algorithm on the BIQ problems. The entries under the
column “%gap” are calculated with respect to the best solution listed, which is known to
be optimal unless the symbol (}) is prefixed.

problem m—mn; | ns;ng it| itsub| pcg uppebreitound lower bound v Rp| Rp| %gap time
bel00.1 101 | 101; 5151 27| 488] 70.5 -1.94120000 4 -2.00210000 4 8.6-7| 5.7-7| 3.137 1:45
bel00.2 101 | 101; 5151 25| 378| 78.5 -1.72900000 4 -1.79880000 4 8.3-7| 7.6-7| 4.037 1:32
bel00.3 101 | 101; 5151 27| 432] 96.3 -1.75650000 4 -1.82310000 4 3.7-7| 7.0-7| 3.792 2:08
bel00.4 101 | 101; 5151 27| 505| 101.2 -1.91250000 4 -1.98410000 4 2.4-6| 7.7-7| 3.744 2:37
bel00.5 101 | 101; 5151 25| 355| 78.5 -1.58680000 4 -1.68880000 4 8.6-7| 8.8-7| 6.428 1:28
bel00.6 101 | 101; 5151 26| 440] 94.4 -1.73680000 4 -1.81480000 4 4.7-6| 6.3-7| 4.491 2:06
bel00.7 101 | 101; 5151 27| 219] 92.3 -1.86290000 4 -1.97000000 4 1.3-7| 4.9-7| 5.749 1:01
bel00.8 101 | 101; 5151 25| 265] 47.1 -1.86490000 4 -1.99460000 4 5.1-7| 5.9-7| 6.955 40
bel00.9 101 | 101; 5151 28| 526 72.6 -1.32940000 4 -1.42630000 4 6.4-7| 5.3-7| 7.289 2:01
bel00.10 101 | 101; 5151 27| 493] 52.0 -1.53520000 4 -1.64080000 4 6.7-7| 5.8-7| 6.879 1:25
bel20.3.1 121 | 121; 7381 26| 384| 112.4 -1.30670000 4 -1.38030000 4 5.9-6| 4.9-7| 5.633 2:57
bel20.3.2 121 | 121; 7381 27| 410| 117.9 -1.30460000 4 -1.36260000 4 4.6-6| 4.1-7| 4.446 3:16
bel20.3.3 121 | 121; 7381 26| 210 89.2 -1.24180000 4 -1.29870000 4 2.9-7| 4.4-7| 4.582 1:19
bel20.3.4 121 | 121; 7381 27| 391| 64.8 -1.38670000 4 -1.45110000 4 6.6-7| 5.5-7| 4.644 1:49
bel20.3.5 121 | 121; 7381 27| 489] 99.0 -1.14030000 4 -1.19910000 4 7.8-6| 2.9-7| 5.157 3:21
bel20.3.6 121 | 121; 7381 26| 386| 111.2 -1.29150000 4 -1.34320000 4 7.9-7| 4.3-7| 4.003 2:57
bel20.3.7 121 | 121; 7381 27| 412| 111.9 -1.40680000 4 -1.45640000 4 1.0-4| 5.1-7| 3.526 3:16
bel20.3.8 121 | 121; 7381 27| 426| 108.5 -1.47010000 4 -1.53030000 4 8.1-5| 4.0-7| 4.095 3:10
bel20.3.9 121 | 121; 7381 27| 418] 89.2 -1.04580000 4 -1.12410000 4 7.5-5| 6.3-7| 7.487 2:39
bel20.3.10 121 | 121; 7381 30| 611] 84.0 -1.22010000 4 -1.29300000 4 1.1-6] 2.9-7| 5.975 3:36
bel20.8.1 121 | 121; 7381 26| 384| 71.5 -1.86910000 4 -2.01940000 4 4.3-7] 6.6-7| 8.041 1:53
bel20.8.2 121 | 121; 7381 26| 402| 113.9 -1.88270000 4 -2.00740000 4 4.9-5| 4.4-7| 6.623 3:11
bel20.8.3 121 | 121; 7381 27| 267] 96.2 -1.93020000 4 -2.05050000 4 5.1-7| 5.1-7| 6.233 1:48
bel20.8.4 121 | 121; 7381 26| 399| 96.6 -2.07650000 4 -2.17790000 4 3.4-6| 4.2-7| 4.883 2:42
bel20.8.5 121 | 121; 7381 27| 452| 120.1 -2.04170000 4 -2.13160000 4 8.3-7| 5.3-7| 4.403 3:48
bel20.8.6 121 | 121; 7381 29| 459] 90.6 -1.84820000 4 -1.96770000 4 1.3-6] 6.3-7| 6.466 2:53
bel20.8.7 121 | 121; 7381 28| 457| 52.5 -2.21940000 4 -2.37320000 4 2.0-7| 4.9-7| 6.930 1:46
bel20.8.8 121 | 121; 7381 27| 151] 66.1 -1.95340000 4 -2.12040000 4 8.0-7| 9.7-7| 8.549 43
bel20.8.9 121 | 121; 7381 27| 301| 60.4 -1.81950000 4 -1.92840000 4 2.3-7| 4.1-7| 5.985 1:17
bel20.8.10 121 | 121; 7381 27| 307| 102.7 -1.90490000 4 -2.00240000 4 4.1-7| 4.1-7| 5.118 2:14
bel50.3.1 151 | 151; 11476 27| 538 84.7 -1.88890000 4 -1.98490000 4 1.3-5] 5.3-7| 5.082 4:57
bel50.3.2 151 | 151; 11476 28| 499 89.3 -1.78160000 4 -1.88640000 4 1.1-5] 6.0-7| 5.882 4:51
bel50.3.3 151 | 151; 11476 26| 514| 101.8 -1.73140000 4 -1.80430000 4 1.8-6] 7.6-7| 4.210 5:37
bel50.3.4 151 | 151; 11476 27| 233] 98.2 -1.98840000 4 -2.06520000 4 4.9-7| 6.0-7| 3.862 2:28
bel50.3.5 151 | 151; 11476 28| 507| 90.4 -1.68170000 4 -1.77680000 4 1.6-5| 4.1-7| 5.655 4:53
bel50.3.6 151 | 151; 11476 27| 517] 95.5 -1.67800000 4 -1.80500000 4 6.7-6| 5.0-7| 7.569 5:18
bel50.3.7 151 | 151; 11476 27| 470| 73.5 -1.80010000 4 -1.91010000 4 6.8-7| 9.1-7| 6.111 3:42
bel50.3.8 151 | 151; 11476 27| 377| 84.7 -1.83030000 4 -1.96980000 4 1.3-5| 6.3-7| 7.622 3:25
bel50.3.9 151 | 151; 11476 26| 292 58.0 -1.28380000 4 -1.41030000 4 3.8-7| 8.8-7| 9.854 1:52
bel50.3.10 151 | 151; 11476 27| 438| 121.3 -1.79630000 4 -1.92300000 4 1.6-5] 3.7-7| 7.053 5:39
bel50.8.1 151 | 151; 11476 28| 661| 78.0 -2.70890000 4 -2.91430000 4 9.4-7] 6.6-7| 7.582 5:36
bel50.8.2 151 | 151; 11476 27| 272| 87.4 -2.67790000 4 -2.88210000 4 3.5-7| 7.6-7| 7.625 2:34
bel50.8.3 151 | 151; 11476 27| 435| 77.9 -2.94380000 4 -3.10600000 4 3.5-7| 8.3-7| 5.510 3:37
bel50.8.4 151 | 151; 11476 26| 310] 89.5 -2.69110000 4 -2.87290000 4 8.9-7| 8.6-7| 6.756 3:01
bel50.8.5 151 | 151; 11476 27| 500| 113.9 -2.80170000 4 -2.94820000 4 9.4-7| 3.7-7| 5.229 6:06
bel50.8.6 151 | 151; 11476 27| 415| 115.6 -2.92210000 4 -3.14370000 4 5.2-6| 6.8-7| 7.584 4:56
bel50.8.7 151 | 151; 11476 27| 446| 127.2 -3.12090000 4 -3.32520000 4 2.8-5| 2.5-7| 6.546 6:06
bel50.8.8 151 | 151; 11476 28] 462| 109.0 -2.97300000 4 -3.16000000 4 5.8-6| 6.7-7| 6.290 5:23
bel50.8.9 151 | 151; 11476 28| 370 110.7 -2.53880000 4 -2.71100000 4 2.6-7] 5.3-7] 6.783 4:20
bel50.8.10 151 | 151; 11476 26| 288] 95.7 -2.83740000 4 -3.00480000 4 5.2-7| 4.7-7| 5.900 2:58
be200.3.1 201 | 201; 20301 29| 615] 89.7 -2.54530000 4 -2.77160000 4 5.6-7| 5.0-7| 8.891 10:29
be200.3.2 201 | 201; 20301 29| 307| 93.2 -2.50270000 4 -2.67600000 4 3.5-7] 5.3-7| 6.925 5:38
be200.3.3 201 | 201; 20301 29| 507| 120.8 -2.80230000 4 -2.94780000 4 5.6-5| 5.7-7| 5.192 12:09
be200.3.4 201 | 201; 20301 29| 523| 102.1 -2.74340000 4 -2.91060000 4 4.7-6| 5.4-7| 6.095 10:41
be200.3.5 201 | 201; 20301 28| 466| 116.2 -2.63550000 4 -2.80730000 4 1.4-6] 5.5-7| 6.519 10:38
be200.3.6 201 | 201; 20301 29| 639] 60.1 -2.61460000 4 -2.79280000 4 9.5-7| 3.7-7| 6.816 7:36
be200.3.7 201 | 201; 20301 29| 534| 93.9 -3.04830000 4 -3.16200000 4 1.1-6] 5.8-7| 3.730 9:43
be200.3.8 201 | 201; 20301 29| 308| 100.7 -2.73550000 4 -2.92440000 4 6.4-7| 9.0-7| 6.906 5:59
be200.3.9 201 | 201; 20301 28| 482| 87.1 -2.46830000 4 -2.64370000 4 3.2-5| 3.7-7| 7.106 8:28
be200.3.10 201 | 201; 20301 29| 539 98.7 -2.38420000 4 -2.57600000 4 5.8-6| 4.4-7| 8.045 10:25
be200.8.1 201 | 201; 20301 28| 489] 97.5 -4.85340000 4 -5.08690000 4 3.7-5| 6.2-7| 4.811 9:41
be200.8.2 201 | 201; 20301 29| 192| 74.7 -4.08210000 4 -4.43360000 4 6.1-7| 7.3-7| 8.611 2:46
be200.8.3 201 | 201; 20301 28| 476| 116.1 -4.32070000 4 -4.62540000 4 5.8-7] 9.2-7] 7.052 10:53
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Table 8:

Results for the SDPNAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to
be optimal unless the symbol (}) is prefixed.

problem m—mn; | ns;ng it| itsub| pcg uppebreitound lower bound v Rp| Rp| %gap time
be200.8.4 201 T 207T; 203071 2972671 93.3 -4.37570000 4 -4.66210000 4 8.4-7]7.2-7] 6.545 4:55
be200.8.5 201 | 201; 20301 28| 521] 93.8 -4.14820000 4 -4.42710000 4 1.7-5| 7.7-7| 6.723 9:53
be200.8.6 201 | 201; 20301 28| 556| 87.4 -4.94920000 4 -5.12190000 4 2.7-5| 4.4-7| 3.489 9:48
be200.8.7 201 | 201; 20301 27| 248] 92.6 -4.68280000 4 -4.93530000 4 4.7-7| 6.8-7| 5.392 4:30
be200.8.8 201 | 201; 20301 28| 314] 94.3 -4.45020000 4 -4.76890000 4 7.0-7| 7.7-7| 7.161 5:49
be200.8.9 201 | 201; 20301 29| 543| 115.6 -4.32410000 4 -4.54950000 4 5.8-6| 3.8-7| 5.213 12:16
be200.8.10 201 | 201; 20301 29| 485| 107.9 -4.28320000 4 -4.57430000 4 6.9-6| 5.5-7| 6.796 10:15
be250.1 251 | 251; 31626 29| 532] 94.7 -2.40760000 4 -2.51190000 4 4.0-5| 4.6-7| 4.332 16:41
be250.2 251 | 251; 31626 28] 519| 113.6 -2.25400000 4 -2.36810000 4 3.1-5| 6.4-7| 5.062 18:51
be250.3 251 | 251; 31626 28| 561| 95.7 -2.29230000 4 -2.40000000 4 2.9-5] 6.0-7] 4.698 17:17
be250.4 251 | 251; 31626 30| 577| 112.2 -2.46490000 4 -2.57200000 4 4.8-5| 4.7-7| 4.345 20:42
be250.5 251 | 251; 31626 29| 463 98.1 -2.10570000 4 -2.23740000 4 9.3-5| 4.4-7| 6.254 14:30
be250.6 251 | 251; 31626 30| 567| 93.6 -2.27350000 4 -2.40180000 4 2.0-5| 4.3-7| 5.643 16:39
be250.7 251 | 251; 31626 28| 507| 84.7 -2.40950000 4 -2.51190000 4 5.9-5| 7.1-7| 4.250 14:00
be250.8 251 | 251; 31626 28| 620 84.1 -2.38010000 4 -2.50200000 4 1.6-5] 7.5-7| 5.122 16:50
be250.9 251 | 251; 31626 28| 589 85.8 -2.00510000 4 -2.13970000 4 1.1-4| 3.6-7| 6.713 17:13
be250.10 251 | 251; 31626 29| 591| 88.9 -2.31590000 4 -2.43550000 4 3.4-5| 4.8-7| 5.164 16:48
bqp50-1 51 | 51; 1326 25| 463| 119.9 -2.09800000 3 -2.14300000 3 7.1-6| 6.7-7| 2.145 1:12
bqp50-2 51 | 51; 1326 26| 387| 72.7 -3.70200000 3 -3.74200000 3 2.3-5| 5.8-7| 1.080 39
bqp50-3 51 | 51; 1326 24| 343| 84.3 -4.62600000 3 -4.63700000 3 8.9-7| 9.9-7| 0.238 40
bgp50-4 51 | 51; 1326 28| 486| 106.6 -3.54400000 3 -3.58300000 3 2.5-4 5.2-7] 1.100 1:08
bqp50-5 51 | 51; 1326 23| 319 82.7 -4.01200000 3 -4.07700000 3 3.3-5| 6.9-7| 1.620 37
bqp50-6 51 | 51; 1326 20| 338] 95.8 -3.69300000 3 -3.71100000 3 1.1-5] 4.4-7| 0.487 44
bgp50-7 51 | 51; 1326 26| 275| 44.0 -4.52000000 3 -4.64900000 3 2.9-7] 6.2-7| 2.854 18
bqp50-8 51 | 51; 1326 26| 289| 73.3 -4.21600000 3 -4.26900000 3 8.5-7| 6.5-7| 1.257 29
bqp50-9 51 | 51; 1326 21| 225] 57.5 -3.78000000 3 -3.92100000 3 8.3-7| 9.0-7| 3.730 19
bqp50-10 51 | 51; 1326 27| 191 52.2 -3.50700000 3 -3.62600000 3 4.4-7] 6.5-7| 3.393 14
bqp100-1 101 | 101; 5151 25| 443 80.5 -7.97000000 3 -8.38000000 3 2.7-7| 8.2-7| 5.144 1:49
bgp100-2 101 | 101; 5151 23| 374| 97.1 -1.10360000 4 -1.14890000 4 5.4-4| 4.8-7| 4.105 1:53
bqp100-3 101 | 101; 5151 26| 451| 122.4 -1.27230000 4 -1.31530000 4 9.9-7| 7.3-7| 3.380 2:40
bqp100-4 101 | 101; 5151 26| 420| 129.4 -1.03680000 4 -1.07310000 4 3.5-5| 6.5-7| 3.501 2:42
bqp100-5 101 | 101; 5151 28| 515| 84.5 -9.08300000 3 -9.48700000 3 5.0-5| 3.3-7| 4.448 2:16
bqp100-6 101 | 101; 5151 28| 524 88.4 -1.02100000 4 -1.08240000 4 6.7-7| 4.6-7| 6.014 2:22
bqp100-7 101 | 101; 5151 28| 572| 81.9 -1.01250000 4 -1.06890000 4 8.5-7| 3.9-7| 5.570 2:19
bgp100-8 101 | 101; 5151 26| 440| 107.4 -1.14350000 4 -1.17700000 4 2.4-5| 7.8-7| 2.930 2:25
bqp100-9 101 | 101; 5151 27| 482| 101.7 -1.14550000 4 -1.17330000 4 5.0-5| 6.1-7| 2.427 2:31
bqp100-10 101 | 101; 5151 25| 415| 110.4 -1.25650000 4 -1.29800000 4 3.9-5| 5.7-7| 3.303 2:18
bqp250-1 251 | 251; 31626 28| 483| 117.7 -4.56070000 4 -4.76630000 4 3.9-7] 6.6-7| 4.508 17:42
bqp250-2 251 | 251; 31626 30| 554| 93.5 -4.48100000 4 -4.72220000 4 4.4-5| 4.1-7| 5.383 16:23
bqp250-3 251 | 251; 31626 28] 296| 116.4 -4.90370000 4 -5.10770000 4 9.9-7| 7.9-7| 4.160 10:36
bqp250-4 251 | 251; 31626 29| 607| 88.9 -4.12740000 4 -4.33120000 4 1.8-5] 4.5-7| 4.938 17:37
bqp250-5 251 | 251; 31626 28| 570| 103.7 -4.79610000 4 -5.00040000 4 4.4-5| 6.9-7| 4.260 19:03
bgp250-6 251 | 251; 31626 28] 477| 113.1 -4.10140000 4 -4.36690000 4 1.9-5| 7.7-7| 6.473 17:11
bqp250-7 251 | 251; 31626 30| 429| 126.3 -4.67570000 4 -4.89220000 4 8.2-7| 5.9-7| 4.630 16:36
bqp250-8 251 | 251; 31626 28| 748] 73.5 -3.57260000 4 -3.87800000 4 6.3-7| 8.8-7| 8.548 17:34
bqp250-9 251 | 251; 31626 29| 453| 117.0 -4.89160000 4 -5.14970000 4 3.7-7| 3.9-7| 5.276 16:12
bqp250-10 251 | 251; 31626 28| 691] 76.7 -4.04420000 4 -4.30140000 4 8.1-7| 5.1-7| 6.360 16:29
bqp500-1 501 | 501; 125751 30| 357| 117.8 -1.16586000 5 -1.25965000 5 2.9-7| 5.5-7| 8.045 1:00:59
bqp500-2 501 | 501; 125751 30| 637] 94.7 -1.28223000 5 -1.36012000 5 7.9-5| 7.2-7| 6.075 1:31:17
bgp500-3 501 | 501; 125751 30| 363| 118.9 -1.30812000 5 -1.38454000 5 4.4-7| 4.0-7| 5.842 1:01:47
bgp500-4 501 | 501; 125751 30| 663| 79.9 -1.30097000 5 -1.39329000 5 3.7-6| 4.3-7| 7.096 1:16:35
bqp500-5 501 | 501; 125751 30| 539| 119.6 -1.25487000 5 -1.34092000 5 4.5-5] 2.5-7| 6.857 1:36:43
bqp500-6 501 | 501; 125751 30| 485| 124.4 -1.21772000 5 -1.30765000 5 4.1-7| 5.1-7| 7.385 1:28:49
bgp500-7 501 | 501; 125751 31| 648| 87.7 -1.22201000 5 -1.31492000 5 8.1-5| 5.7-7| 7.603 1:25:26
bgp500-8 501 | 501; 125751 31| 412| 126.3 -1.23559000 5 -1.33490000 5 8.6-7| 4.5-7| 8.037 1:14:37
bgp500-9 501 | 501; 125751 30| 612] 92.7 -1.20798000 5 -1.30289000 5 9.5-5| 7.3-7| 7.857 1:24:40
bgp500-10 501 | 501; 125751 30| 454| 130.5 -1.30619000 5 -1.38535000 5 7.0-7] 6.4-7| 6.060 1:24:23
gkala 51 | 51; 1326 20| 309| 57.9 -3.41400000 3 -3.53700000 3 7.7-7| 6.0-7| 3.603 26
gka2a 61 | 61; 1891 24| 281| 57.3 -6.06300000 3 -6.17100000 3 1.4-7] 4.9-7| 1.781 27
gka3a 71| 71; 2556 25| 398| 68.3 -6.03700000 3 -6.38600000 3 6.6-7] 9.5-7| 5.781 51
gkada 81 | 81; 3321 25| 567| 106.2 -8.59800000 3 -8.88100000 3 4.2-6| 6.3-7| 3.291 2:09
gkaba 51 | 51; 1326 24| 284 55.9 -5.73700000 3 -5.89700000 3 7.7-7| 7.8-7| 2.789 23
gkaba 31 | 31; 496 25| 175| 46.8 -3.98000000 3 -4.10300000 3 4.4-7] 7.2-7| 3.090 10
gka7a 31 | 31; 496 26| 145] 47.2 -4.54100000 3 -4.63800000 3 3.9-7| 5.5-7| 2.136 08
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Table 8:

Results for the SDPNAL algorithm on the BIQ problems. The entries under the

column “%gap” are calculated with respect to the best solution listed, which is known to
be optimal unless the symbol (1) is prefixed.

best

problem m—mn; | ns;ng it| itsub| pcg upper bound lower bound v Rp| Rp| %gap time
gka8a I0T 7 10T; 5151 2715431 94.1 -1.11090000 4 -1.1T1I970000 4 3.8-516.6-77 0.792 2:39
gkalb 21 | 21; 231 7| 42| 23.8 -1.33000000 2 -1.33000000 2 9.8-7] 5.4-7| 0.000 02
gka2b 31 | 31; 496 15| 241| 101.1 -1.21000000 2 -1.21000000 2 8.8-5| 7.7-7| 0.000 25
gka3b 41 | 41; 861 12| 85| 25.6 -1.18000000 2 -1.18000000 2 2.9-7| 2.4-8| 0.000 04
gkadb 51 | 51; 1326 14| 88| 25.9 -1.29000000 2 -1.29000000 2 2.8-7| 1.2-9] 0.000 04
gkabb 61 | 61; 1891 12| 86| 26.0 -1.50000000 2 -1.50000000 2 7.6-8| 1.7-8| 0.000 05
gka6b 71| 71; 2556 13| 123| 34.6 -1.46000000 2 -1.46000000 2 3.3-7| 8.1-10| 0.000 10
gkaTb 81 | 81; 3321 19| 193] 33.8 -1.60000000 2 -1.60000000 2 8.9-7| 5.3-7| 0.000 16
gka8b 91 | 91; 4186 15| 198| 47.0 -1.45000000 2 -1.45000000 2 5.9-7| 2.3-9| 0.000 28
gka9b 101 | 101; 5151 18| 252| 50.9 -1.37000000 2 -1.37000000 2 3.7-7| 1.2-10| 0.000 44
gkalOb 126 | 126; 8001 17| 298| 94.5 -1.54000000 2 -1.55000000 2 1.6-4| 3.4-7| 0.649 2:14
gkalc 41 | 41; 861 24| 371| 103.7 -5.05800000 3 -5.11300000 3 1.5-5] 3.8-7| 1.087 45
gka2c 51 | 51; 1326 27| 358| 72.0 -6.21300000 3 -6.32000000 3 2.5-7| 5.6-7| 1.722 35
gka3c 61 | 61; 1891 25| 305] 60.0 -6.66500000 3 -6.81300000 3 3.1-7| 9.6-7| 2.221 31
gkadc 71 | 71; 2556 27| 476| 114.7 -7.39800000 3 -7.56500000 3 9.7-7| 4.5-7| 2.257 1:38
gkab5c 81 | 81; 3321 28| 304| 94.6 -7.36200000 3 -7.57600000 3 1.2-6] 3.9-7| 2.907 1:03
gkabc 91 | 91; 4186 27| 427| 108.4 -5.82400000 3 -5.96100000 3 3.0-5| 6.2-7| 2.352 1:58
gka7c 101 | 101; 5151 26| 396 82.2 -7.22500000 3 -7.31600000 3 1.9-4| 6.0-7| 1.260 1:43
gkald 101 | 101; 5151 27| 439] 96.5 -6.33300000 3 -6.52800000 3 1.1-5] 2.5-7| 3.079 2:09
gka2d 101 | 101; 5151 27| 523| 84.1 -6.57900000 3 -6.99000000 3 1.7-6] 6.9-7| 6.247 2:15
gka3d 101 | 101; 5151 26| 467| 96.9 -9.26100000 3 -9.73400000 3 1.4-5| 4.8-7| 5.107 2:21
gkadd 101 | 101; 5151 28] 375| 104.9 -1.07270000 4 -1.12780000 4 1.4-6] 4.7-7| 5.137 1:56
gkabd 101 | 101; 5151 26| 422] 91.5 -1.16260000 4 -1.23980000 4 2.3-6| 6.9-7| 6.640 1:57
gka6d 101 | 101; 5151 27| 338| 102.4 -1.42070000 4 -1.49290000 4 1.9-6] 5.2-7| 5.082 1:42
gka7d 101 | 101; 5151 27| 177] 75.3 -1.44760000 4 -1.53750000 4 6.2-7| 5.8-7| 6.210 40
gka8d 101 | 101; 5151 26| 271| 118.4 -1.63520000 4 -1.70050000 4 2.0-7| 7.1-7| 3.993 1:35
gka9d 101 | 101; 5151 26| 351| 63.9 -1.56560000 4 -1.65330000 4 7.2-7| 6.1-7| 5.602 1:10
gkal0d 101 | 101; 5151 26| 213| 78.5 -1.91020000 4 -2.01080000 4 2.0-7| 7.2-7| 5.266 52
gkale 201 | 201; 20301 29| 530] 97.3 -1.64640000 4 -1.70690000 4 5.2-5| 7.9-7| 3.675 10:36
gka2e 201 | 201; 20301 29| 367| 103.4 -2.33950000 4 -2.49170000 4 4.7-7| 4.3-7| 6.506 7:23
gka3e 201 | 201; 20301 30| 559] 91.5 -2.52430000 4 -2.68980000 4 1.6-5] 2.9-7| 6.556 10:22
gkade 201 | 201; 20301 29| 512| 113.0 -3.55940000 4 -3.72250000 4 1.2-5| 4.2-7| 4.582 11:25
gkabe 201 | 201; 20301 28| 510] 95.2 -3.51540000 4 -3.80020000 4 3.9-5| 5.1-7| 8.101 9:46
gkalf 501 | 501; 125751 30| 563| 102.8 1-6.11940000 4 -6.55590000 4 9.9-5| 5.2-7| 7.133 1:28:54
gka2f 501 | 501; 125751 30| 624] 93.6 $-1.00161000 5 -1.07932000 5 6.6-5| 5.7-7| 7.759  1:28:11
gka3f 501 | 501; 125751 30| 523| 120.4 1-1.38035000 5 -1.50152000 5 2.8-5| 6.7-7| 8.778 1:31:34
gkadf 501 | 501; 125751 32| 571| 128.8 1-1.72771000 5 -1.87089000 5 8.7-6| 4.0-7| 8.287 1:44:43
gkabf 501 | 501; 125751 31| 665] 90.5 1-1.90507000 5 -2.06916000 5 6.6-6| 7.1-7| 8.613 1:25:48

8 Conclusion

In this paper, we introduced a Newton-CG augmented Lagrangian algorithm for solving
semidefinite programming problems (D) and (P) and analyzed its convergence and rate
Our convergence analysis is based on classical results of proximal point
methods [32, 33] along with recent developments on perturbation analysis of the problems
under consideration. Extensive numerical experiments conducted on a variety of large scale
SDPs demonstrated that our algorithm is very efficient. This opens up a way to attack
problems in which a fast solver for large scale SDPs is crucial, for example, in applications
within a branch-and-bound algorithm for solving hard combinatorial problems such as the

of convergence.

quadratic assignment problems.
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