A Newton-CG Augmented Lagrangian Method for Semidefinite Programming*

Xin-Yuan Zhao ${ }^{\dagger}$ Defeng Sun ${ }^{\ddagger}$ Kim-Chuan Toh ${ }^{\S}$

March 12, 2008; Revised, February 03, 2009

Abstract

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive definiteness of the generalized Hessian of the objective function in these inner problems, a key property for ensuring the efficiency of using an inexact semismooth Newton-CG method to solve the inner problems, is equivalent to the constraint nondegeneracy of the corresponding dual problems. Numerical experiments on a variety of large scale SDPs with the matrix dimension n up to 4,110 and the number of equality constraints m up to $2,156,544$ show that the proposed method is very efficient. We are also able to solve the SDP problem fap36 (with $n=4,110$ and $m=1,154,467$) in the Seventh DIMACS Implementation Challenge much more accurately than previous attempts.

Keywords: Semidefinite programming, Augmented Lagrangian, Semismoothness, Newton's method, Iterative solver.

1 Introduction

Let \mathcal{S}^{n} be the linear space of all $n \times n$ symmetric matrices and \mathcal{S}_{+}^{n} be the cone of all $n \times n$ symmetric positive semidefinite matrices. The notation $X \succeq \mathbf{0}$ means that X is a symmetric

[^0]positive semidefinite matrix. This paper is devoted to studying an augmented Lagrangian method for solving the following semidefinite programming (SDP) problem
$$
(D) \quad \min \left\{b^{\mathrm{T}} y \mid \mathcal{A}^{*} y-C \succeq \mathbf{0}\right\},
$$
where $C \in \mathcal{S}^{n}, b \in \Re^{m}, \mathcal{A}$ is a linear operator from \mathcal{S}^{n} to \Re^{m}, and $\mathcal{A}^{*}: \Re^{m} \rightarrow \mathcal{S}^{n}$ is the adjoint of \mathcal{A}. The dual of (D) takes the form
$$
(P) \quad \max \{\langle C, X\rangle \mid \mathcal{A}(X)=b, \quad X \succeq \mathbf{0}\} .
$$

Given a penalty parameter $\sigma>0$, the augmented Lagrangian function for problem (D) is defined as

$$
\begin{equation*}
L_{\sigma}(y, X)=b^{\mathrm{T}} y+\frac{1}{2 \sigma}\left(\left\|\Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right)\right\|^{2}-\|X\|^{2}\right), \quad(y, X) \in \Re^{m} \times \mathcal{S}^{n} \tag{1}
\end{equation*}
$$

where for any closed convex set \mathcal{D} in a finite dimensional real vector space \mathcal{X} equipped with a scalar inner product $\langle\cdot, \cdot\rangle$ and its induced norm $\|\cdot\|, \Pi_{\mathcal{D}}(\cdot)$ is the metric projection operator over \mathcal{D}, i.e., for any $Y \in \mathcal{X}, \Pi_{\mathcal{D}}(Y)$ is the unique optimal solution to the following convex optimization problem

$$
\min \left\{\left.\frac{1}{2}\langle Z-Y, Z-Y\rangle \right\rvert\, Z \in \mathcal{D}\right\}
$$

Note that, since $\left\|\Pi_{\mathcal{D}}(\cdot)\right\|^{2}$ is continuously differentiable [44], the augmented Lagrangian function defined in (1) is continuously differentiable. In particular, for any given $X \in \mathcal{S}^{n}$, we have

$$
\begin{equation*}
\nabla_{y} L_{\sigma}(y, X)=b-\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right) . \tag{2}
\end{equation*}
$$

For given $X^{0} \in \mathcal{S}^{n}, \sigma_{0}>0$, and $\rho>1$, the augmented Lagrangian method for solving problem (D) and its dual (P) generates sequences $\left\{y^{k}\right\} \subset \Re^{m}$ and $\left\{X^{k}\right\} \subset \mathcal{S}^{n}$ as follows

$$
\left\{\begin{array}{l}
y^{k+1} \approx \arg \min _{y \in \Re^{m}} L_{\sigma_{k}}\left(y, X^{k}\right), \tag{3}\\
X^{k+1}=\Pi_{\mathcal{S}_{+}^{n}}\left(X^{k}-\sigma_{k}\left(\mathcal{A}^{*} y^{k+1}-C\right)\right), \quad k=0,1,2, \ldots \\
\sigma_{k+1}=\rho \sigma_{k} \text { or } \sigma_{k+1}=\sigma_{k},
\end{array}\right.
$$

For a general discussion on the augmented Lagrangian method for solving convex optimization problems and beyond, see [32, 33].

For small and medium sized SDP problems, it is widely accepted that interior-point methods (IPMs) with direct solvers are generally very efficient and robust. For large-scale SDP problems with m large and n moderate (say less than 5,000), the limitations of IPMs with direct solvers become very severe due to the need of computing, storing, and factorizing the $m \times m$ Schur complement matrix. In order to alleviate these difficulties, Toh and Kojima [39] and Toh [40] proposed inexact IPMs using an iterative solver to compute the search
direction at each iteration. The approach in [40] was demonstrated to be able to solve large sparse SDPs with m up to 125,000 in a few hours. Kočvara and Stingl [17] used a modified barrier method (a variant of the Lagrangian method) combined with iterative solvers for linear SDP problems having only inequality constraints and reported computational results in the code PENNON [16] with m up to 125,000 . More recently, Malick, Povh, Rendl, and Wiegele [19] applied the Moreau-Yosida regularization approaches to solve SDP problems.

In this paper, we study an augmented Lagrangian dual approach to solve large scale SDPs with m large (say, up to a few millions) but n moderate (say, up to 5,000). Our approach is similar in spirit as those in [17] and [19], where the idea of augmented Lagrangian methods (or methods of multipliers in general) was heavily exploited. However, our points of view of employing the augmented Lagrangian methods are fundamentally different from them in solving both the outer and inner problems. It has long been known that the augmented Lagrangian method for convex problems is a gradient ascent method applied to the corresponding dual problems [30]. This inevitably leads to the impression that the augmented Lagrangian method for solving SDPs may converge slowly for the outer iteration sequence $\left\{X^{k}\right\}$. In spite of that, under mild conditions, a linear rate of convergence analysis is available (superlinear convergence is also possible when σ_{k} goes to infinity, which should be avoided in numerical implementations) [33]. However, recent studies conducted by Sun, Sun, and Zhang [37] and Chan and Sun [8] revealed that under the constraint nondegenerate conditions for (D) and (P) (i.e., the dual nondegeneracy and primal nondegeneracy in the IPMs literature, e.g., [1]), respectively, the augmented Lagrangian method can be locally regarded as an approximate generalized Newton method applied to a semismooth equation. It is this connection that inspired us to investigate the augmented Lagrangian method for SDPs.

The objective functions $L_{\sigma_{k}}\left(\cdot, X^{k}\right)$ in the inner problems of the augmented Lagrangian method (3) are convex and continuously differentiable but not twice continuously differentiable (cf. (2)) due to the fact that $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ is not continuously differentiable. It seems that Newton's method can not be applied to solve the inner problems. However, since $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ is strongly semismooth [36], the superlinear (quadratic) convergence analysis of generalized Newton's method established by Kummer [18], and Qi and Sun [26] for solving semismooth equations may be used to get fast convergence for solving the inner problems. In fact, the quadratic convergence and superb numerical results of the generalized Newton's method combined with the conjugate gradient (CG) method reported in [25] for solving a related problem strongly motivated us to study the semismooth Newton-CG method (see Section 3) to solve the inner problems.

In [32, 33], Rockafellar established a general theory on the global convergence and local linear rate of convergence of the sequence generated by the augmented Lagrangian method for solving convex optimization problems including (D) and (P). In order to apply the general results in $[32,33]$, we characterize the Lipschitz continuity of the solution mapping for (P) defined in [33] at the origin in terms of the second order sufficient condition, and the extended strict primal-dual constraint qualification for (P). In particular, under the uniqueness of Lagrange multipliers, we establish the equivalence among the Lipschitz continuity of the
solution mapping at the origin, the second order sufficient condition, and the strict primaldual constraint qualification. As for the inner problems in (3), we show that the constraint nondegeneracy for the corresponding dual problems is equivalent to the positive definiteness of the generalized Hessian of the objective functions in the inner problems. This is important for the success of applying an iterative solver to the generalized Newton equations in solving these inner problems. The differential structure of the nonsmooth metric projection operator $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ in the augmented Lagrangian function L_{σ} plays a key role in achieving this result.

Besides the theoretical results we establish for the Newton-CG augmented Lagrangian (in short, SDPNAL) method proposed in this paper, we also demonstrate convincingly that with efficient implementations, the SDPNAL method can solve some very large SDPs, with a moderate accuracy, much more efficiently than the best alternative methods such as the inexact interior-point methods in [40], the modified barrier method in [17], the boundarypoint method in [19], as well as the dedicated augmented Lagrangian method for solving SDPs arising from the lift-and-project procedure of Lovász and Schrijver [5].

The remaining parts of this paper are as follows. In Section 2, we give some preliminaries including a brief introduction about concepts related to the method of multipliers and the characterizations of the Lipschitz continuity of the solution mapping for problem (P) at the origin. In Section 3, we introduce a semismooth Newton-CG method for solving the inner optimization problems and analyze its global and local superlinear (quadratic) convergence for solving these inner problems. Section 4 presents the Newton-CG augmented Lagrangian dual approach and its linear rate of convergence. Section 5 is on numerical issues of the semismooth Newton-CG algorithm. We report numerical results in Sections 6 and 7 for a variety of large scale linear SDP problems and make final conclusions in Section 8.

2 Preliminaries

From [32, 33], we know that the augmented Lagrangian method can be expressed in terms of the method of multipliers for (D). For the sake of subsequent discussions, we introduce related concepts to this.

Let $l(y, X): \Re^{m} \times \mathcal{S}^{n} \rightarrow \Re$ be the ordinary Lagrangian function for (D) in extended form:

$$
l(y, X)= \begin{cases}b^{\mathrm{T}} y-\left\langle X, \mathcal{A}^{*} y-C\right\rangle & \text { if } y \in \Re^{m} \text { and } X \in \mathcal{S}_{+}^{n}, \tag{4}\\ -\infty & \text { if } y \in \Re^{m} \text { and } X \notin \mathcal{S}_{+}^{n} .\end{cases}
$$

The essential objective function in (D) is

$$
f(y)=\sup _{X \in \mathcal{S}^{n}} l(y, X)= \begin{cases}b^{\mathrm{T}} y & \text { if } y \in \mathcal{F}_{D} \tag{5}\\ +\infty & \text { otherwise }\end{cases}
$$

where $\mathcal{F}_{D}:=\left\{y \in \Re^{m} \mid \mathcal{A}^{*} y-C \succeq \mathbf{0}\right\}$ is the feasible set of (D), while the essential objective
function in (P) is

$$
g(X)=\inf _{y \in \Re^{m}} l(y, X)= \begin{cases}\langle C, X\rangle & \text { if } X \in \mathcal{F}_{P} \tag{6}\\ -\infty & \text { otherwise }\end{cases}
$$

where $\mathcal{F}_{P}:=\left\{X \in \mathcal{S}^{n} \mid \mathcal{A}(X)=b, X \succeq \mathbf{0}\right\}$ is the feasible set of (P).
Assume that $\mathcal{F}_{D} \neq \emptyset$ and $\mathcal{F}_{P} \neq \emptyset$. As in Rockafellar [33], we define the following three maximal monotone operators

Throughout this paper, the following Slater condition for (P) is assumed to hold.
Assumption 1. Problem (P) satisfies the Slater condition

$$
\left\{\begin{array}{l}
\mathcal{A}: \mathcal{S}^{n} \rightarrow \Re^{m} \text { is onto, } \tag{7}\\
\exists X_{0} \in \mathcal{S}_{+}^{n} \text { such that } \mathcal{A}\left(X_{0}\right)=b, X_{0} \succ \mathbf{0}
\end{array}\right.
$$

where $X_{0} \succ \mathbf{0}$ means that X_{0} is a symmetric positive definite matrix.
For each $v \in \Re^{m}$ and $U \in \mathcal{S}^{n}$, we consider the following parameterized problem:

$$
(P(v, U)) \quad \max \{\langle C, X\rangle+\langle U, X\rangle \mid \mathcal{A}(X)+v=b, \quad X \succeq \mathbf{0}\}
$$

By using the fact that g is concave, we know from Rockafellar [29, Theorem 23.5] that for each $U \in \mathcal{S}^{n}$,

$$
\begin{equation*}
T_{g}^{-1}(U)=\text { set of all optimal solutions to }(P(0, U)) \tag{8}
\end{equation*}
$$

Similarly, we have that for each $v \in \Re^{m}$,

$$
\begin{equation*}
T_{f}^{-1}(v)=\text { set of all optimal solutions to }(D(v, \mathbf{0})), \tag{9}
\end{equation*}
$$

where for $(v, U) \in \Re^{m} \times \mathcal{S}^{n},(D(v, U))$ is the (ordinary) dual of $(P(v, U))$ in the sense that

$$
(D(v, U)) \quad \min \left\{b^{\mathrm{T}} y-v^{\mathrm{T}} y: \mathcal{A}^{*} y-U \succeq C\right\}
$$

Finally, for any $(v, U) \in \Re^{m} \times \mathcal{S}^{n}$, under Assumption 1, we have that

$$
\begin{align*}
T_{l}^{-1}(v, U)= & \arg \operatorname{minimax}\left\{l(y, X)-v^{\mathrm{T}} y+\langle U, X\rangle \mid y \in \Re^{m}, X \in \mathcal{S}^{n}\right\}, \\
= & \text { set of all }(y, X) \text { satisfying the Karush-Kuhn-Tucker } \tag{10}\\
& \text { conditions for }(P(v, U)) .(\text { cf. (12)) }
\end{align*}
$$

Definition 1. [32] For a maximal monotone operator T from a finite dimensional linear vector space \mathcal{X} to itself, we say that its inverse T^{-1} is Lipschitz continuous at the origin (with modulus $a \geq 0$) if there is a unique solution \bar{z} to $z=T^{-1}(0)$, and for some $\tau>0$ we have

$$
\begin{equation*}
\|z-\bar{z}\| \leq a\|w\| \quad \text { whenever } \quad z \in T^{-1}(w) \quad \text { and } \quad\|w\| \leq \tau \tag{11}
\end{equation*}
$$

The first order optimality conditions, namely the Karush-Kuhn-Tucker (KKT) conditions, of (D) and (P) are as follows:

$$
\left\{\begin{array}{l}
\mathcal{A}(X)=b, \tag{12}\\
\mathcal{S}_{+}^{n} \ni\left(\mathcal{A}^{*} y-C\right) \perp X \in \mathcal{S}_{+}^{n},
\end{array}\right.
$$

where " $\left(\mathcal{A}^{*} y-C\right) \perp X$ " means that $\left(\mathcal{A}^{*} y-C\right)$ and X are orthogonal to each other, i.e., $\left\langle\mathcal{A}^{*} y-C, X\right\rangle=0$. For any $X \in \mathcal{F}_{P}$, define the set

$$
\begin{equation*}
\mathcal{M}(X):=\left\{y \in \Re^{m} \mid(y, X) \text { satisfies the KKT conditions (12) }\right\} \tag{13}
\end{equation*}
$$

Let \bar{X} be an optimal solution to (P). Since (P) satisfies the Slater condition (7), $\mathcal{M}(\bar{X})$ is nonempty and bounded [31, Theorems $17 \& 18]$. Let $y \in \mathcal{M}(\bar{X})$ be arbitrarily chosen. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of \bar{X} being arranged in the nonincreasing order and let $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$ be the eigenvalues of $\left(\mathcal{A}^{*} y-C\right)$ being arranged in the nondecreasing order. Denote $\alpha:=\left\{i \mid \lambda_{i}>0, i=1, \ldots, n\right\}$ and $\gamma:=\left\{i \mid \mu_{i}>0, i=1, \ldots, n\right\}$. Since $\bar{X}\left(\mathcal{A}^{*} y-C\right)=\left(\mathcal{A}^{*} y-C\right) \bar{X}=0$, there exists an orthogonal matrix $P \in \Re^{n \times n}$ such that

$$
\bar{X}=P\left[\begin{array}{ccc}
\Lambda_{\alpha} & 0 & 0 \tag{14}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] P^{\mathrm{T}} \quad \text { and } \quad\left(\mathcal{A}^{*} y-C\right)=P\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \Lambda_{\gamma}
\end{array}\right] P^{\mathrm{T}}
$$

where Λ_{α} is the diagonal matrix whose diagonal entries are λ_{i} for $i \in \alpha$ and Λ_{Γ} is the diagonal matrix whose diagonal entries μ_{i} for $i \in \gamma$.

Let $A:=\bar{X}-\left(\mathcal{A}^{*} y-C\right) \in \mathcal{S}_{n}$. Then, A has the following spectral decomposition

$$
\begin{equation*}
A=P \Lambda P^{\mathrm{T}} \tag{15}
\end{equation*}
$$

where

$$
\Lambda=\left[\begin{array}{ccc}
\Lambda_{\alpha} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -\Lambda_{\gamma}
\end{array}\right]
$$

Denote $\beta:=\{1, \ldots, n\} \backslash(\alpha \cup \gamma)$. Write $P=\left[P_{\alpha} P_{\beta} P_{\gamma}\right]$ with $P_{\alpha} \in \Re^{n \times|\alpha|}, P_{\beta} \in \Re^{n \times|\beta|}$, and $P_{\gamma} \in \Re^{n \times|\gamma|}$. From [2], we know that the tangent cone of \mathcal{S}_{+}^{n} at $\bar{X} \in \mathcal{S}_{+}^{n}$ can be characterized as follows

$$
\begin{equation*}
\mathcal{T}_{\mathcal{S}_{+}^{n}}(\bar{X})=\left\{B \in \mathcal{S}^{n} \mid\left[P_{\beta} P_{\gamma}\right]^{\mathrm{T}} B\left[P_{\beta} P_{\gamma}\right] \succeq 0\right\} \tag{16}
\end{equation*}
$$

Similarly, the tangent cone of \mathcal{S}_{+}^{n} at $\left(\mathcal{A}^{*} y-C\right)$ takes the form

$$
\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-C\right)=\left\{B \in \mathcal{S}^{n} \left\lvert\,\left[\begin{array}{ll}
P_{\alpha} & P_{\beta}
\end{array}\right]^{\mathrm{T}} B\left[\begin{array}{ll}
P_{\alpha} & P_{\beta} \tag{17}
\end{array}\right] \succeq 0\right.\right\} .
$$

Recall that the critical cone of problem (P) at \bar{X} is defined by (cf. [4, p.151])

$$
\begin{equation*}
\mathcal{C}(\bar{X})=\left\{B \in \mathcal{S}^{n} \mid \mathcal{A}(B)=0, B \in \mathcal{T}_{\mathcal{S}_{+}^{n}}(\bar{X}),\langle C, B\rangle=0\right\} . \tag{18}
\end{equation*}
$$

Choose an arbitrary element $B \in \mathcal{C}(\bar{X})$. Denote $\widetilde{B}:=P^{\mathrm{T}} B P$. Since \bar{X} and $\left(\mathcal{A}^{*} y-C\right)$ have the spectral decompositions as in (14), we obtain that

$$
\begin{aligned}
0=\langle C, B\rangle & =\left\langle\mathcal{A}^{*} y-C, B\right\rangle=\left\langle P^{\mathrm{T}}\left(\mathcal{A}^{*} y-C\right) P, P^{\mathrm{T}} B P\right\rangle \\
& =\left\langle\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \Lambda_{\gamma}
\end{array}\right],\left[\begin{array}{ccc}
\widetilde{B}_{\alpha \alpha} & \widetilde{B}_{\alpha \beta} & \widetilde{B}_{\alpha \gamma} \\
\widetilde{B}_{\alpha \beta}^{\mathrm{T}} & \widetilde{B}_{\beta \beta} & \widetilde{B}_{\beta \gamma} \\
\widetilde{B}_{\alpha \gamma}^{\mathrm{T}} & \widetilde{B}_{\beta \gamma}^{\mathrm{T}} & \widetilde{B}_{\gamma \gamma}
\end{array}\right]\right\rangle,
\end{aligned}
$$

which, together with (16) and (18), implies that $\widetilde{B}_{\gamma \gamma}=0$. Thus

$$
\widetilde{B}_{\beta \gamma}=0 \quad \text { and } \quad \widetilde{B}_{\gamma \gamma}=0
$$

Hence, $\mathcal{C}(\bar{X})$ can be rewritten as

$$
\begin{equation*}
\mathcal{C}(\bar{X})=\left\{B \in \mathcal{S}^{n} \mid \mathcal{A}(B)=0, P_{\beta}^{\mathrm{T}} B P_{\beta} \succeq 0, P_{\beta}^{\mathrm{T}} B P_{\gamma}=0, P_{\gamma}^{\mathrm{T}} B P_{\gamma}=0\right\} \tag{19}
\end{equation*}
$$

By using similar arguments as above, we can also obtain that

$$
\begin{equation*}
\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-C\right) \cap \bar{X}^{\perp}=\left\{B \in \mathcal{S}^{n} \mid P_{\alpha}^{\mathrm{T}} B P_{\alpha}=0, P_{\alpha}^{\mathrm{T}} B P_{\beta}=0, P_{\beta}^{\mathrm{T}} B P_{\beta} \succeq 0\right\} \tag{20}
\end{equation*}
$$

where $\bar{X}^{\perp}:=\left\{B \in \mathcal{S}^{n} \mid\langle B, \bar{X}\rangle=0\right\}$.
In order to analyze the rate of convergence of the Newton-CG augmented Lagrangian method to be presented in Section 4, we need the following result which characterizes the Lipschitz continuity of T_{g}^{-1} at the origin. The result we establish here is stronger than that appeared in Proposition 15 of [8].
Proposition 2.1. Suppose that (P) satisfies the generalized Slater condition (7). Let $\bar{X} \in$ \mathcal{S}_{+}^{n} be an optimal solution to (P). Then the following conditions are equivalent
(i) $T_{g}^{-1}(\cdot)$ is Lipschitz continuous at the origin.
(ii) The second order sufficient condition

$$
\begin{equation*}
\sup _{y \in \mathcal{M}(\bar{X})} \Upsilon_{\bar{X}}\left(\mathcal{A}^{*} y-C, H\right)>0 \quad \forall H \in \mathcal{C}(\bar{X}) \backslash\{0\} \tag{21}
\end{equation*}
$$

holds at \bar{X}, where for any $B \in \mathcal{S}^{n}$, the linear-quadratic function $\Upsilon_{B}: \mathcal{S}^{n} \times \mathcal{S}^{n} \rightarrow \Re$ is defined by

$$
\begin{equation*}
\Upsilon_{B}(M, H):=2\left\langle M, H B^{\dagger} H\right\rangle, \quad(M, H) \in \mathcal{S}^{n} \times \mathcal{S}^{n} \tag{22}
\end{equation*}
$$

and B^{\dagger} is the Moore-Penrose pseudo-inverse of B.
(iii) \bar{X} satisfies the extended strict primal-dual constraint qualification

$$
\begin{equation*}
\mathcal{A}^{*} \Re^{m}+\operatorname{conv}\left(\bigcup_{y \in \mathcal{M}(\bar{X})}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-C\right) \cap \bar{X}^{\perp}\right)\right)=\mathcal{S}^{n} \tag{23}
\end{equation*}
$$

where for any set $\mathcal{W} \subset \mathcal{S}^{n}, \operatorname{conv}(\mathcal{W})$ denotes the convex hull of \mathcal{W}.
Proof. " $(i) \Leftrightarrow(i i)$ ". From [4, Theorem 3.137], we know that (ii) holds if and only if the quadratic growth condition

$$
\begin{equation*}
\langle C, \bar{X}\rangle \geq\langle C, X\rangle+c\|X-\bar{X}\|^{2} \quad \forall X \in \mathcal{N} \text { such that } X \in \mathcal{F}_{P} \tag{24}
\end{equation*}
$$

holds at \bar{X} for some positive constant c and an open neighborhood \mathcal{N} of \bar{X} in \mathcal{S}^{n}. On the other hand, from [33, Proposition 3], we know that $T_{g}^{-1}(\cdot)$ is Lipschiz continuous at the origin if and only if the quadratic growth condition (24) holds at \bar{X}. Hence, $(i) \Leftrightarrow(i i)$.

Next we shall prove that $(i i) \Leftrightarrow(i i i)$. For notational convenience, let

$$
\begin{equation*}
\Gamma:=\operatorname{conv}\left(\bigcup_{y \in \mathcal{M}(\bar{X})}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-C\right) \cap \bar{X}^{\perp}\right)\right) . \tag{25}
\end{equation*}
$$

$"(i i) \Rightarrow(i i i) "$. Denote $\mathcal{D}:=\mathcal{A}^{*} \Re^{m}+\Gamma$. For the purpose of contradiction, we assume that (iii) does not hold, i.e., $\mathcal{D} \neq \mathcal{S}^{n}$. Let $\operatorname{cl}(\mathcal{D})$ and $\operatorname{ri}(\mathcal{D})$ denote the closure of \mathcal{D} and the relative interior of \mathcal{D}, respectively. By [29, Theorem 6.3], since $\operatorname{ri}(\mathcal{D})=\operatorname{ri}(\operatorname{cl}(\mathcal{D}))$, the relative interior of $\operatorname{cl}(\mathcal{D})$, we know that $\operatorname{cl}(\mathcal{D}) \neq \mathcal{S}^{n}$. Thus, there exists $B \in \mathcal{S}^{n}$ such that $B \notin \operatorname{cl}(\mathcal{D})$. Let \bar{B} be the metric projection of B onto $\operatorname{cl}(\mathcal{D})$, i.e., $\bar{B}=\Pi_{\mathrm{cl}(\mathcal{D})}(B)$. Let $H=\bar{B}-B \neq 0$. Since $\operatorname{cl}(\mathcal{D})$ is a nonempty closed convex cone, from Zarantonello [44], we know that

$$
\langle H, Z\rangle=\langle\bar{B}-B, Z\rangle \geq 0 \quad \forall Z \in \operatorname{cl}(\mathcal{D})
$$

In particular, we have

$$
\left\langle H, \mathcal{A}^{*} z+Q\right\rangle \geq 0 \quad \forall z \in \Re^{m} \text { and } Q \in \Gamma
$$

which implies (by taking $Q=\mathbf{0}$)

$$
\langle\mathcal{A}(H), z\rangle=\left\langle H, \mathcal{A}^{*} z\right\rangle \geq 0 \quad \forall z \in \Re^{m} .
$$

Thus

$$
\begin{equation*}
\mathcal{A}(H)=0 \quad \text { and } \quad\langle H, Q\rangle \geq 0 \quad \text { for any } Q \in \Gamma . \tag{26}
\end{equation*}
$$

Since $0 \neq H \in \mathcal{C}(\bar{X})$ and (ii) is assumed to hold, there exists $y \in \mathcal{M}(\bar{X})$ such that

$$
\begin{equation*}
\Upsilon_{\bar{X}}\left(\mathcal{A}^{*} y-C, H\right)>0 . \tag{27}
\end{equation*}
$$

By using the fact that (y, \bar{X}) satisfies (12), we can assume that \bar{X} and $\left(\mathcal{A}^{*} y-C\right)$ have the spectral decompositions as in (14). Then, we know from (20) that for any $Q \in \mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-\right.$ C) $\cap \bar{X}^{\perp}$,

$$
\begin{align*}
0 & \leq\langle H, Q\rangle=\left\langle P \widetilde{H} P^{\mathrm{T}}, P \widetilde{Q} P^{\mathrm{T}}\right\rangle \\
& =\left\langle\left[\begin{array}{ccc}
\widetilde{H}_{\alpha \alpha} & \widetilde{H}_{\alpha \beta} & \widetilde{H}_{\alpha \gamma} \\
\widetilde{H}_{\alpha \beta}^{\mathrm{T}} & \widetilde{H}_{\beta \beta} & \widetilde{H}_{\beta \gamma} \\
\widetilde{H}_{\alpha \gamma}^{\mathrm{T}} & \widetilde{H}_{\beta \gamma}^{\mathrm{T}} & \widetilde{H}_{\gamma \gamma}
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & \widetilde{Q}_{\alpha \gamma} \\
0 & \widetilde{Q}_{\beta \beta} & \widetilde{Q}_{\beta \gamma} \\
\widetilde{Q}_{\alpha \gamma} & \widetilde{Q}_{\beta \gamma} & \widetilde{Q}_{\gamma \gamma}
\end{array}\right]\right\rangle, \tag{28}
\end{align*}
$$

where $\widetilde{H}=P^{\mathrm{T}} H P$ and $\widetilde{Q}=P^{\mathrm{T}} Q P$. From (20) and (28), we have

$$
\begin{equation*}
\widetilde{H}_{\alpha \gamma}=0, \quad \widetilde{H}_{\beta \gamma}=0, \quad \widetilde{H}_{\gamma \gamma}=0, \quad \text { and } \quad \widetilde{H}_{\beta \beta} \succeq 0 . \tag{29}
\end{equation*}
$$

By using (19), (26), and (29), we obtain that $H \in \mathcal{C}(\bar{X})$ and

$$
\begin{equation*}
P_{\alpha}^{\mathrm{T}} H P_{\gamma}=0 . \tag{30}
\end{equation*}
$$

Note that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$ are the eigenvalues of \bar{X} and $\left(\mathcal{A}^{*} y-C\right)$, respectively, and $\alpha=\left\{i \mid \lambda_{i}>0, i=1, \ldots, n\right\}$ and $\gamma=\left\{j \mid \mu_{j}>0, j=1, \ldots, n\right\}$. Therefore, from (22) and (14), we obtain that

$$
\Upsilon_{\bar{X}}\left(\mathcal{A}^{*} y-C, H\right)=\sum_{i \in \alpha, j \in \gamma} \frac{\mu_{j}}{\lambda_{i}}\left(P_{i}^{\mathrm{T}} H P_{j}\right)^{2}=0,
$$

which contradicts (27). This contradiction shows $(i i) \Rightarrow(i i i)$.

$$
\text { " }(i i i) \Rightarrow(i i)^{\prime} \text {. Assume that }(i i) \text { does not hold at } \bar{X} \text {. Then there exists } 0 \neq H \in \mathcal{C}(\bar{X})
$$ such that

$$
\begin{equation*}
\sup _{y \in \mathcal{M}(\bar{X})} \Upsilon_{\bar{X}}\left(\mathcal{A}^{*} y-C, H\right)=0 \tag{31}
\end{equation*}
$$

Let y be an arbitrary element in $\mathcal{M}(\bar{X})$. Since (y, \bar{X}) satisfies (12), we can assume that there exists an orthogonal matrix $P \in \Re^{n \times n}$ such that \bar{X} and $\left(\mathcal{A}^{*} y-C\right)$ have the spectral decompositions as in (14). From (14), (22), and (31), we have

$$
0 \leq \sum_{i \in \alpha, j \in \gamma} \frac{\mu_{j}}{\lambda_{i}}\left(P_{i}^{\mathrm{T}} H P_{j}\right)^{2}=\Upsilon_{\bar{X}}\left(\mathcal{A}^{*} y-C, H\right) \leq \sup _{z \in \mathcal{M}(\bar{X})} \Upsilon_{\bar{X}}\left(\mathcal{A}^{*} z-C, H\right)=0
$$

which implies

$$
\begin{equation*}
P_{\alpha}^{\mathrm{T}} H P_{\gamma}=0 . \tag{32}
\end{equation*}
$$

Then, by using (19), (20), and (32), we have that

$$
\begin{equation*}
\left\langle Q^{y}, H\right\rangle=\left\langle P^{\mathrm{T}} Q^{y} P, P^{\mathrm{T}} H P\right\rangle=\left\langle P_{\beta}^{\mathrm{T}} Q^{y} P_{\beta}, P_{\beta}^{\mathrm{T}} H P_{\beta}\right\rangle \geq 0 \quad \forall Q^{y} \in \mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-C\right) \cap \bar{X}^{\perp} . \tag{33}
\end{equation*}
$$

Since (iii) is assumed to hold, there exist $z \in \Re^{m}$ and $Q \in \Gamma$ such that

$$
\begin{equation*}
-H=\mathcal{A}^{*} z+Q . \tag{34}
\end{equation*}
$$

By Carathéodory's Theorem, there exist an integer $k \leq \frac{n(n+1)}{2}+1$ and scalars $\alpha_{i} \geq 0$, $i=1,2, \ldots, k$, with $\sum_{i=1}^{k} \alpha_{i}=1$, and

$$
Q_{i} \in \bigcup_{y \in \mathcal{M}(\bar{X})}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y-C\right) \cap \bar{X}^{\perp}\right), \quad i=1,2, \ldots, k
$$

such that Q can be represented as

$$
Q=\sum_{i=1}^{k} \alpha_{i} Q_{i} .
$$

For each Q_{i}, there exists a $y^{i} \in \mathcal{M}(\bar{X})$ such that $Q_{i} \in \mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} y^{i}-C\right) \cap \bar{X}^{\perp}$. Then by using the fact that $H \in \mathcal{C}(\bar{X})$ and (33), we obtain that

$$
\langle H, H\rangle=\left\langle-\mathcal{A}^{*} z-Q, H\right\rangle=-\langle z, \mathcal{A} H\rangle-\langle Q, H\rangle=0-\sum_{i=1}^{k} \alpha_{i}\left\langle Q_{i}, H\right\rangle \leq 0
$$

which contradicts the fact that $H \neq 0$. This contradiction shows that (ii) holds.
Proposition 2.1 characterizes the Lipschitz continuity of T_{g}^{-1} at the origin by either the second sufficient condition (21) or the extended strict primal-dual constraint qualification (23). In particular, if $\mathcal{M}(\bar{X})$ is a singleton, we have the following simple equivalent conditions.

Corollary 2.2. Suppose that (P) satisfies the generalized Slater condition (7). Let \bar{X} be an optimal solution to (P). If $\mathcal{M}(\bar{X})=\{\bar{y}\}$, then the following are equivalent:
(i) $T_{g}^{-1}(\cdot)$ is Lipschitz continuous at the origin.
(ii) The second order sufficient condition

$$
\begin{equation*}
\Upsilon_{\bar{X}}\left(\mathcal{A}^{*} \bar{y}-C, H\right)>0 \quad \forall H \in \mathcal{C}(\bar{X}) \backslash\{0\} \tag{35}
\end{equation*}
$$

holds at \bar{X}.
(iii) \bar{X} satisfies the strict primal-dual constraint qualification

$$
\begin{equation*}
\mathcal{A}^{*} \Re^{m}+\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} \bar{y}-C\right) \cap \bar{X}^{\perp}=\mathcal{S}^{n} . \tag{36}
\end{equation*}
$$

Remark 1. Note that in [8, Proposition 15], Chan and Sun proved that if $\mathcal{M}(\bar{X})$ is a singleton, then the strong second order sufficient condition (with the set $\mathcal{C}(\bar{X})$ in (35) being replaced by the superset $\left\{B \in \mathcal{S}^{n} \mid \mathcal{A}(B)=0, P_{\beta}^{T} B P_{\gamma}=0, P_{\gamma}^{T} B P_{\gamma}=0\right\}$) is equivalent to the constraint nondegenerate condition, in the sense of Robinson [27, 28], at \bar{y} for (D), i.e,

$$
\begin{equation*}
\mathcal{A}^{*} \Re^{m}+\operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}\left(\mathcal{A}^{*} \bar{y}-C\right)\right)=\mathcal{S}^{n} \tag{37}
\end{equation*}
$$

Corollary 2.2 further establishes the equivalence between the second order sufficient condition (35) and the strict constraint qualification (36) under the condition that $\mathcal{M}(\bar{X})$ is a singleton.

One may observe that the strict primal-dual constraint qualification condition (36) is weaker than the constraint nondegenerate condition (37). However, if strict complementarity holds, i.e., $\bar{X}+\left(\mathcal{A}^{*} \bar{y}-C\right) \succ 0$ and hence β is the empty set, then (36) and (37) coincide.

The constraint nondegenerate condition (37) is equivalent to the dual nondegeneracy stated in [1, Theorem 9]. Note that under such a condition, the optimal solution \bar{X} to (P) is unique.

Remark 2. In a similar way, we can establish parallel results for T_{f}^{-1} as for T_{g}^{-1} in Proposition 2.1 and Corollary 2.2. For brevity, we omit the details.

3 A Semismooth Newton-CG Method for Inner Problems

In this section we introduce a semismooth Newton-CG method for solving the inner problems involved in the augmented Lagrangian method (3). For this purpose, we need the practical CG method described in [12, Algorithm 10.2.1] for solving the symmetric positive definite linear system. Since our convergence analysis of the semismooth Newton-CG method heavily depends on this practical CG method and its convergence property (Lemma 3.1), we shall give it a brief description here.

3.1 A practical CG method

In this subsection, we consider a practical CG method to solve the following linear equation

$$
\begin{equation*}
A x=b \tag{38}
\end{equation*}
$$

where $b \in \Re^{m}$ and $A \in \Re^{m \times m}$ is assumed to be a symmetric positive definite matrix. The practical conjugate gradient algorithm [12, Algorithm 10.2.1] depends on two parameters: a maximum number of CG iterations $i_{\max }>0$ and a tolerance $\eta \in(0,\|b\|)$.

Algorithm 1. A Practical CG Algorithm: $\left[C G\left(\eta, i_{\max }\right)\right]$
Step 0. Given $x^{0}=0$ and $r^{0}=b-A x^{0}=b$.

Step 1. While $\left(\left\|r^{i}\right\|>\eta\right)$ or $\left(i<i_{\max }\right)$
Step 1.1. $i=i+1$
Step 1.2. If $i=1 ; p^{1}=r^{0}$; else; $\beta_{i}=\left\|r^{i-1}\right\|^{2} /\left\|r^{i-2}\right\|^{2}, p^{i}=r^{i-1}+\beta_{i} p^{i-1}$; end
Step 1.3. $\alpha_{i}=\left\|r^{i-1}\right\|^{2} /\left\langle p^{i}, A p^{i}\right\rangle$
Step 1.4. $x^{i}=x^{i-1}+\alpha_{i} p^{i}$
Step 1.5. $r^{i}=r^{i-1}-\alpha_{i} A p^{i}$
Lemma 3.1. Let $0<\bar{i} \leq i_{\max }$ be the number of iterations when the practical CG Algorithm 1 terminates. For all $i=1,2, \cdots, \bar{i}$, the iterates $\left\{x^{i}\right\}$ generated by Algorithm 1 satisfies

$$
\begin{equation*}
\frac{1}{\lambda_{\max }(A)} \leq \frac{\left\langle x^{i}, b\right\rangle}{\|b\|^{2}} \leq \frac{1}{\lambda_{\min }(A)} \tag{39}
\end{equation*}
$$

where $\lambda_{\min }(A)$ and $\lambda_{\max }(A)$ are the smallest and largest eigenvalue of A, respectively.
Proof. Let x^{*} be the exact solution to (38) and $e^{i}=x^{*}-x^{i}$ be the error in the i th iteration for $i \geq 0$. From [38, Theorem 38.1], we know that

$$
\begin{equation*}
\left\langle r^{i}, r^{j}\right\rangle=0 \quad \text { for } j=1,2, \ldots, i-1 \tag{40}
\end{equation*}
$$

where $r^{i}=b-A x^{i}$. By using (40), the fact that in Algorithm $1, r^{0}=b$, and the definition of β_{i}, we have that

$$
\begin{align*}
\left\langle p^{1}, b\right\rangle & =\left\|r^{0}\right\|^{2} \\
\left\langle p^{i}, b\right\rangle & =\left\langle r^{i-1}, b\right\rangle+\beta_{i}\left\langle p^{i-1}, b\right\rangle=0+\prod_{j=2}^{i} \beta_{j}\left\langle p^{1}, b\right\rangle=\left\|r^{i-1}\right\|^{2} \quad \forall i>1 \tag{41}
\end{align*}
$$

From [38, Theorem 38.2], we know that for $i \geq 1$,

$$
\begin{equation*}
\left\|e^{i-1}\right\|_{A}^{2}=\left\|e^{i}\right\|_{A}^{2}+\left\langle\alpha_{i} p^{i}, A\left(\alpha_{i} p^{i}\right)\right\rangle \tag{42}
\end{equation*}
$$

which, together with $\alpha_{i}\left\|r^{i-1}\right\|^{2}=\left\langle\alpha_{i} p^{i}, A\left(\alpha_{i} p^{i}\right)\right\rangle$ (see Step 1.3), implies that

$$
\begin{equation*}
\alpha_{i}\left\|r^{i-1}\right\|^{2}=\left\|e^{i-1}\right\|_{A}^{2}-\left\|e^{i}\right\|_{A}^{2} . \tag{43}
\end{equation*}
$$

Here for any $x \in \Re^{m},\|x\|_{A}:=\sqrt{\langle x, A x\rangle}$. For any $i \geq 1$, by using (41), (43), and the fact that $x^{0}=0$, we have that

$$
\begin{align*}
\left\langle x^{i}, b\right\rangle & =\left\langle x^{i-1}, b\right\rangle+\alpha_{i}\left\langle p^{i}, b\right\rangle=\left\langle x^{0}, b\right\rangle+\sum_{j=1}^{i} \alpha_{j}\left\langle p^{j}, b\right\rangle=\sum_{j=1}^{i} \alpha_{j}\left\|r^{j-1}\right\|^{2} \\
& =\sum_{j=1}^{i}\left[\left\|e^{j-1}\right\|_{A}^{2}-\left\|e^{j}\right\|_{A}^{2}\right]=\left\|e^{0}\right\|_{A}^{2}-\left\|e^{i}\right\|_{A}^{2}, \tag{44}
\end{align*}
$$

which, together with (42), implies that

$$
\left\langle x^{i}, b\right\rangle \geq\left\langle x^{i-1}, b\right\rangle, \quad i=1,2, \ldots, \bar{i} .
$$

Thus

$$
\begin{equation*}
\frac{1}{\lambda_{\max }(A)} \leq \alpha_{1}=\frac{\left\langle x^{1}, b\right\rangle}{\|b\|^{2}} \leq \frac{\left\langle x^{i}, b\right\rangle}{\|b\|^{2}} . \tag{45}
\end{equation*}
$$

Since $e^{0}=x^{*}-x^{0}=A^{-1} b$, by (44), we obtain that for $1 \leq i \leq \bar{i}$,

$$
\begin{equation*}
\frac{\left\langle x^{i}, b\right\rangle}{\|b\|^{2}} \leq \frac{\left\|e^{0}\right\|_{A}^{2}}{\|b\|^{2}}=\frac{\left\|A^{-1} b\right\|_{A}^{2}}{\|b\|^{2}} \leq \frac{1}{\lambda_{\min }(A)} \tag{46}
\end{equation*}
$$

By combining (45) and (46), we complete the proof.

3.2 A Semismooth Newton-CG method

For the augmented Lagrangian method (3), for some fixed $X \in \mathcal{S}^{n}$ and $\sigma>0$, we need to consider the following form of inner problems

$$
\begin{equation*}
\min \left\{\varphi(y):=L_{\sigma}(y, X) \mid y \in \Re^{m}\right\} . \tag{47}
\end{equation*}
$$

As explained in the introduction, $\varphi(\cdot)$ is a continuously differentiable convex function, but fails to be twice continuously differentiable because the metric projector $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ is not continuously differentiable. Fortunately, because $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ is strongly semismooth [36], we can develop locally a semismooth Newton-CG method to solve the following nonlinear equation

$$
\begin{equation*}
\nabla \varphi(y)=b-\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right)=0 \tag{48}
\end{equation*}
$$

and expect a superlinear (quadratic) convergence for solving (48).
Since $\Pi_{\mathcal{S}^{n}}(\cdot)$ is Lipschitz continuous with modulus 1 , the mapping $\nabla \varphi$ is Lipschitz continuous on \Re^{m}. According to Rademacher's Theorem, $\nabla \varphi$ is almost everywhere Fréchetdifferentiable in \Re^{m}. Let $y \in \Re^{m}$. The generalized Hessian of φ at y is defined as

$$
\begin{equation*}
\partial^{2} \varphi(y):=\partial(\nabla \varphi)(y), \tag{49}
\end{equation*}
$$

where $\partial(\nabla \varphi)(y)$ is the Clarke's generalized Jacobian of $\nabla \varphi$ at $y[9]$. Since it is difficult to express $\partial^{2} \varphi(y)$ exactly, we define the following alternative for $\partial^{2} \varphi(y)$

$$
\begin{equation*}
\hat{\partial}^{2} \varphi(y):=\sigma \mathcal{A} \partial \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right) \mathcal{A}^{*} . \tag{50}
\end{equation*}
$$

From [9, p.75], for $d \in \Re^{m}$,

$$
\begin{equation*}
\partial^{2} \varphi(y) d \subseteq \hat{\partial}^{2} \varphi(y) d, \tag{51}
\end{equation*}
$$

which means that if every element in $\hat{\partial}^{2} \varphi(y)$ is positive definite, so is every element in $\partial^{2} \varphi(y)$.
For the semismooth Newton-CG method to be presented later, we need to compute an element $V \in \hat{\partial}^{2} \varphi(y)$. Since $X-\sigma\left(\mathcal{A}^{*} y-C\right)$ is a symmetric matrix in $\Re^{n \times n}$, there exists an orthogonal matrix $Q \in \Re^{n \times n}$ such that

$$
\begin{equation*}
X-\sigma\left(\mathcal{A}^{*} y-C\right)=Q \Gamma_{y} Q^{\mathrm{T}} \tag{52}
\end{equation*}
$$

where Γ_{y} is the diagonal matrix with diagonal entries consisting of the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n}$ of $X-\sigma\left(\mathcal{A}^{*} y-C\right)$ being arranged in the nonincreasing order. Define three index sets

$$
\alpha:=\left\{i \mid \lambda_{i}>0\right\}, \quad \beta:=\left\{i \mid \lambda_{i}=0\right\}, \quad \text { and } \quad \gamma:=\left\{i \mid \lambda_{i}<0\right\} .
$$

Define the operator $W_{y}^{0}: \mathcal{S}^{n} \rightarrow \mathcal{S}^{n}$ by

$$
\begin{equation*}
W_{y}^{0}(H):=Q\left(\Omega \circ\left(Q^{\mathrm{T}} H Q\right)\right) Q^{\mathrm{T}}, \quad H \in \mathcal{S}^{n} \tag{53}
\end{equation*}
$$

where " \circ " denotes the Hadamard product of two matrices and

$$
\Omega=\left[\begin{array}{cc}
E_{\bar{\gamma} \bar{\gamma}} & \nu_{\bar{\gamma} \gamma} \tag{54}\\
\nu_{\bar{\gamma} \gamma}^{\mathrm{T}} & 0
\end{array}\right], \quad \nu_{i j}:=\frac{\lambda_{i}}{\lambda_{i}-\lambda_{j}}, i \in \bar{\gamma}, j \in \gamma,
$$

$\bar{\gamma}=\{1, \ldots, n\} \backslash \gamma$, and $E_{\bar{\gamma} \bar{\gamma}} \in \mathcal{S}^{|\bar{\gamma}|}$ is the matrix of ones. Define $V_{y}^{0}: \Re^{m} \rightarrow \mathcal{S}^{n}$ by

$$
\begin{equation*}
V_{y}^{0} d:=\sigma \mathcal{A}\left[Q\left(\Omega \circ\left(Q^{\mathrm{T}}\left(\mathcal{A}^{*} d\right) Q\right)\right) Q^{\mathrm{T}}\right], \quad d \in \Re^{m} \tag{55}
\end{equation*}
$$

Since, by Pang, Sun, and Sun [22, Lemma 11],

$$
W_{y}^{0} \in \partial \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right)
$$

we know that

$$
V_{y}^{0}=\sigma \mathcal{A} W_{y}^{0} \mathcal{A}^{*} \in \hat{\partial}^{2} \varphi(y)
$$

Next we shall characterize the positive definiteness of any $V_{y} \in \hat{\partial}^{2} \varphi(y)$. From [33, p.107] and the definitions of $l(y, X)$ in (4), we know that for any $(y, X, \sigma) \in \Re^{m} \times \mathcal{S}^{n} \times(0,+\infty)$,

$$
L_{\sigma}(y, X)=\max _{Z \in \mathcal{S}^{n}}\left\{l(y, Z)-\frac{1}{2 \sigma}\|Z-X\|^{2}\right\}
$$

Since the Slater condition (7) is assumed to hold, by the definition of $g(\cdot)$ in (6), we can deduce from [31, Theorems 17 and 18] that

$$
\begin{align*}
\min _{y \in \Re^{m}} \varphi(y) & =\min _{y \in \Re^{m}} \max _{Z \in \mathcal{S}^{n}}\left\{l(y, Z)-\frac{1}{2 \sigma}\|Z-X\|^{2}\right\}=\max _{Z \in \mathcal{S}^{n}}\left\{g(Z)-\frac{1}{2 \sigma}\|Z-X\|^{2}\right\} \\
& =\max _{\mathcal{A}(Z)=b, Z \succeq 0}\left\{\langle C, Z\rangle-\frac{1}{2 \sigma}\|Z-X\|^{2}\right\} . \tag{56}
\end{align*}
$$

Hence, (47) is the dual of

$$
\begin{equation*}
\max \left\{\left.\langle C, Z\rangle-\frac{1}{2 \sigma}\|Z-X\|^{2} \right\rvert\, \mathcal{A}(Z)=b, \quad Z \succeq \mathbf{0}\right\} . \tag{57}
\end{equation*}
$$

The KKT conditions of (57) are as follows

$$
\left\{\begin{array}{l}
\mathcal{A}(Z)=b, \tag{58}\\
\mathcal{S}_{+}^{n} \ni Z \perp\left[Z-\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right)\right] \in \mathcal{S}_{+}^{n}
\end{array}\right.
$$

Proposition 3.2. Suppose that the problem (57) satisfies the Slater condition (7). Let $(\hat{y}, \widehat{Z}) \in \Re^{m} \times \mathcal{S}^{n}$ be a pair that satisfies the KKT conditions (58) and let P be an orthogonal matrix such that \widehat{Z} and $\widehat{Z}-\left(X-\sigma\left(\mathcal{A}^{*} \hat{y}-C\right)\right)$ have the spectral decomposition as (14). Then the following conditions are equivalent:
(i) The constraint nondegenerate condition

$$
\begin{equation*}
\mathcal{A} \operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right)=\Re^{m} \tag{59}
\end{equation*}
$$

holds at \widehat{Z}, where $\operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right)$ denotes the lineality space of $\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})$, i.e.,

$$
\operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right)=\left\{B \in \mathcal{S}^{n} \left\lvert\,\left[\begin{array}{ll}
P_{\beta} & P_{\gamma} \tag{60}
\end{array}\right]^{T} B\left[P_{\beta} P_{\gamma}\right]=0\right.\right\}
$$

(ii) Every $V_{\hat{y}} \in \hat{\partial}^{2} \varphi(\hat{y})$ is symmetric and positive definite.
(iii) $V_{\hat{y}}^{0} \in \hat{\partial}^{2} \varphi(\hat{y})$ is symmetric and positive definite.

Proof. " $(i) \Rightarrow(i i)$ ". This part is implied in [3, Proposition 2.8] by the Jacobian amicability of the metric projector $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$.
$"(i i) \Rightarrow(i i i) "$. This is obvious true since $V_{\hat{y}}^{0} \in \hat{\partial}^{2} \varphi(\hat{y})$.
" $(i i i) \Rightarrow(i)$ ". Assume on the contrary that the constraint nondegenerate condition (59) does not hold at \widehat{Z}. Then, we have

$$
\left[\mathcal{A} \operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right)\right]^{\perp} \neq\{0\} .
$$

Let $0 \neq d \in\left[\mathcal{A l i n}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right)\right]^{\perp}$. Then

$$
\langle d, \mathcal{A}(Q)\rangle=0 \quad \forall Q \in \operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right),
$$

which can be written as

$$
\begin{equation*}
0=\left\langle\mathcal{A}^{*} d, Q\right\rangle=\left\langle P^{\mathrm{T}} H P, P^{\mathrm{T}} Q P\right\rangle \quad \forall Q \in \operatorname{lin}\left(\mathcal{T}_{\mathcal{S}_{+}^{n}}(\widehat{Z})\right), \tag{61}
\end{equation*}
$$

where $H:=\mathcal{A}^{*} d$. By using (60) and (61), we obtain that

$$
P_{\alpha}^{\mathrm{T}} H P_{\alpha}=0, P_{\alpha}^{\mathrm{T}} H P_{\beta}=0, \text { and } P_{\alpha}^{\mathrm{T}} H P_{\gamma}=0 .
$$

By the definition of $W_{\hat{y}}^{0}$ in (53), it follows that $W_{\hat{y}}^{0}(H)=0$. Therefore, for the corresponding $V_{\hat{y}}^{0}$ defined in (55), we have

$$
\left\langle d, V_{\hat{y}}^{0} d\right\rangle=\left\langle d, \sigma \mathcal{A} W_{\hat{y}}^{0}\left(\mathcal{A}^{*} d\right)\right\rangle=\sigma\left\langle H, W_{\hat{y}}^{0}(H)\right\rangle=0,
$$

which contradicts (iii) since $d \neq 0$. This contradiction shows that (i) holds.
Remark 3. The constraint nondegenerate condition (59) is equivalent to the primal nondegeneracy stated in [1, Theorem 6]. Under this condition, the solution \hat{y} for (58) is unique.

3.3 Convergence analysis

In this subsection, we shall introduce the promised semismooth Newton-CG algorithm to solve (47). Choose $y^{0} \in \Re^{m}$. Then the algorithm can be stated as follows.

Algorithm 2. A Semismooth Newton-CG Algorithm $\left[\operatorname{NCG}\left(y^{0}, X, \sigma\right)\right]$
Step 0. Given $\mu \in(0,1 / 2), \bar{\eta} \in(0,1), \tau \in(0,1], \tau_{1}, \tau_{2} \in(0,1)$, and $\delta \in(0,1)$.
Step 1. For $j=0,1,2, \ldots$
Step 1.1. Given a maximum number of CG iterations $n_{j}>0$ and compute

$$
\eta_{j}:=\min \left(\bar{\eta},\left\|\nabla \varphi\left(y^{j}\right)\right\|^{1+\tau}\right) .
$$

Apply the practical CG Algorithm $1\left[C G\left(\eta_{j}, n_{j}\right)\right]$ to find an approximation solution d^{j} to

$$
\begin{equation*}
\left(V_{j}+\varepsilon_{j} I\right) d=-\nabla \varphi\left(y^{j}\right), \tag{62}
\end{equation*}
$$

where $V_{j} \in \hat{\partial}^{2} \varphi\left(y^{j}\right)$ is defined in (55) and $\varepsilon_{j}:=\tau_{1} \min \left\{\tau_{2},\left\|\nabla \varphi\left(y^{j}\right)\right\|\right\}$.
Step 1.2. Set $\alpha_{j}=\delta^{m_{j}}$, where m_{j} is the first nonnegative integer m for which

$$
\begin{equation*}
\varphi\left(y^{j}+\delta^{m} d^{j}\right) \leq \varphi\left(y^{j}\right)+\mu \delta^{m}\left\langle\nabla \varphi\left(y^{j}\right), d^{j}\right\rangle . \tag{63}
\end{equation*}
$$

Step 1.3. Set $y^{j+1}=y^{j}+\alpha_{j} d^{j}$.
Remark 4. In Algorithm 2, since V_{j} is always positive semidefinite, the matrix $V_{j}+\varepsilon_{j} I$ is positive definite as long as $\nabla \varphi\left(y^{j}\right) \neq 0$. So we can always apply Algorithm 1 to equation (62).

Now we can analyze the global convergence of Algorithm 2 with the assumption that $\nabla \varphi\left(y^{j}\right) \neq 0$ for any $j \geq 0$. From Lemma 3.1, we know that the search direction d^{j} generated by Algorithm 2 is always a descent direction. This is stated in the following proposition.

Proposition 3.3. For every $j \geq 0$, the search direction d^{j} generated in Step 1.2 of Algorithm 2 satisfies

$$
\begin{equation*}
\frac{1}{\lambda_{\max }\left(\widetilde{V}_{j}\right)} \leq \frac{\left\langle-\nabla \varphi\left(y^{j}\right), d^{j}\right\rangle}{\left\|\nabla \varphi\left(y^{j}\right)\right\|^{2}} \leq \frac{1}{\lambda_{\min }\left(\widetilde{V}_{j}\right)}, \tag{64}
\end{equation*}
$$

where $\widetilde{V}_{j}:=V_{j}+\varepsilon_{j} I$ and $\lambda_{\max }\left(\widetilde{V}_{j}\right)$ and $\lambda_{\min }\left(\widetilde{V}_{j}\right)$ are the largest and smallest eigenvalues of \widetilde{V}_{j} respectively.

Theorem 3.4. Suppose that problem (57) satisfies the Slater condition (7). Then Algorithm 2 is well defined and any accumulation point \hat{y} of $\left\{y^{j}\right\}$ generated by Algorithm 2 is an optimal solution to the inner problem (47).

Proof. By Step 1.1 in Algorithm 2, for any $j \geq 0$, since, by (64), d^{j} is a descent direction, Algorithm 2 is well defined. Since problem (57) satisfies the Slater condition (7), from [31, Theorems $17 \& 18]$, we know that the level set $\mathcal{L}:=\left\{y \in \Re^{m} \mid \varphi(y) \leq \varphi\left(y^{0}\right)\right\}$ is a closed and bounded convex set. Therefore, the sequence $\left\{y^{j}\right\}$ is bounded. Let \hat{y} be any accumulation point of $\left\{y^{j}\right\}$. Then, by making use of Proposition 3.3 and the Lipschitz continuity of $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$, we can easily derive that $\nabla \varphi(\hat{y})=0$. By the convexity of $\varphi(\cdot), \hat{y}$ is an optimal solution of (47).

Next we shall discuss the rate of convergence of Algorithm 2.
Theorem 3.5. Assume that problem (57) satisfies the Slater condition (7). Let \hat{y} be an accumulation point of the infinite sequence $\left\{y^{j}\right\}$ generated by Algorithm 2 for solving the inner problem (47). Suppose that at each step $j \geq 0$, when the practical CG Algorithm 1 terminates, the tolerance η_{j} is achieved (e.g., when $n_{j}=m+1$), i.e.,

$$
\begin{equation*}
\left\|\nabla \varphi\left(y^{j}\right)+\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\| \leq \eta_{j} . \tag{65}
\end{equation*}
$$

Assume that the constraint nondegenerate condition (59) holds at $\widehat{Z}:=\Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} \hat{y}-C\right)\right)$. Then the whole sequence $\left\{y^{j}\right\}$ converges to \hat{y} and

$$
\begin{equation*}
\left\|y^{j+1}-\hat{y}\right\|=O\left(\left\|y^{j}-\hat{y}\right\|^{1+\tau}\right) . \tag{66}
\end{equation*}
$$

Proof. By Theorem 3.4, we know that the infinite sequence $\left\{y^{j}\right\}$ is bounded and \hat{y} is an optimal solution to (47) with

$$
\nabla \varphi(\hat{y})=0 .
$$

Since the constraint nondegenerate condition (59) is assumed to hold at \widehat{Z}, \hat{y} is the unique optimal solution to (47). It then follows from Theorem 3.4 that $\left\{y^{j}\right\}$ converges to \hat{y}. From Proposition 3.2, we know that for any $V_{\hat{y}} \in \hat{\partial}^{2} \varphi(\hat{y})$ defined in (50), there exists a $W_{\hat{y}} \in$ $\partial \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} \hat{y}-C\right)\right)$ such that

$$
V_{\hat{y}}=\sigma \mathcal{A} W_{\hat{y}} \mathcal{A}^{*} \succ \mathbf{0} .
$$

Then, for all j sufficiently large, $\left\{\left\|\left(V_{j}+\varepsilon_{j} I\right)^{-1}\right\|\right\}$ is uniformly bounded.
For any $V_{j}, j \geq 0$, there exists a $W_{j} \in \partial \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y^{j}-C\right)\right)$ such that

$$
\begin{equation*}
V_{j}=\sigma \mathcal{A} W_{j} \mathcal{A}^{*} \tag{67}
\end{equation*}
$$

Since $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ is strongly semismooth [36], it holds that for all j sufficiently large,

$$
\begin{align*}
& \left\|y^{j}+d^{j}-\hat{y}\right\|=\left\|y^{j}+\left(V_{j}+\varepsilon_{j} I\right)^{-1}\left(\left(\nabla \varphi\left(y^{j}\right)+\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right)-\nabla \varphi\left(y^{j}\right)\right)-\hat{y}\right\| \\
& \leq\left\|y^{j}-\hat{y}-\left(V_{j}+\varepsilon_{j} I\right)^{-1} \nabla \varphi\left(y^{j}\right)\right\|+\left\|\left(V_{j}+\varepsilon_{j} I\right)^{-1}\right\|\left\|\nabla \varphi\left(y^{j}\right)+\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\| \\
& \leq\left\|\left(V_{j}+\varepsilon_{j} I\right)^{-1}\right\|\left\|\nabla \varphi\left(y^{j}\right)-\nabla \varphi(\hat{y})-V_{j}\left(y^{j}-\hat{y}\right)\right\| \\
& \quad+\left\|\left(V_{j}+\varepsilon_{j} I\right)^{-1}\right\|\left(\varepsilon_{j}\left\|y^{j}-\hat{y}\right\|+\eta_{j}\right) \\
& \leq O\left(\|\mathcal{A}\|\left\|\Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y^{j}-C\right)\right)-\Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} \hat{y}-C\right)\right)-W_{j}\left(\sigma \mathcal{A}^{*}\left(y^{j}-\hat{y}\right)\right)\right\|\right) \\
& \quad+O\left(\tau_{1}\left\|\nabla \varphi\left(y^{j}\right)\right\|\left\|y^{j}-\hat{y}\right\|+\left\|\nabla \varphi\left(y^{j}\right)\right\|^{1+\tau}\right) \\
& \leq O\left(\left\|\sigma \mathcal{A}^{*}\left(y^{j}-\hat{y}\right)\right\|^{2}\right)+O\left(\tau_{1}\left\|\nabla \varphi\left(y^{j}\right)-\nabla \varphi(\hat{y})\right\|\left\|y^{j}-\hat{y}\right\|+\left\|\nabla \varphi\left(y^{j}\right)-\nabla \varphi(\hat{y})\right\|^{1+\tau}\right) \\
& \leq O\left(\left\|y^{j}-\hat{y}\right\|^{2}\right)+O\left(\tau_{1} \sigma\|\mathcal{A}\|\left\|\mathcal{A}^{*}\right\|\left\|y^{j}-\hat{y}\right\|^{2}+\left(\sigma\|\mathcal{A}\|\left\|\mathcal{A}^{*}\right\|\left\|y^{j}-\hat{y}\right\|\right)^{1+\tau}\right) \\
& =O\left(\left\|y^{j}-\hat{y}\right\|^{1+\tau}\right), \tag{68}
\end{align*}
$$

which implies that for all j sufficiently large,

$$
\begin{equation*}
y^{j}-\hat{y}=-d^{j}+O\left(\left\|d^{j}\right\|^{1+\tau}\right) \quad \text { and } \quad\left\|d^{j}\right\| \rightarrow 0 . \tag{69}
\end{equation*}
$$

For each $j \geq 0$, let $R^{j}:=\nabla \varphi\left(y^{j}\right)+\left(V_{j}+\varepsilon_{j} I\right) d^{j}$. Then, for all j sufficiently large,

$$
\begin{aligned}
-\left\langle\nabla \varphi\left(y^{j}\right), d^{j}\right\rangle & =\left\langle d^{j},\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\rangle-\left\langle R^{j}, d^{j}\right\rangle \\
& \geq\left\langle d^{j},\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\rangle-\eta_{j}\left\|d^{j}\right\| \\
& \geq\left\langle d^{j},\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\rangle-\left\|d^{j}\right\|\left\|\nabla \varphi\left(y^{j}\right)\right\|^{1+\tau} \\
& =\left\langle d^{j},\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\rangle-\left\|\nabla \varphi\left(y^{j}\right)-\nabla \varphi(\hat{y})\right\|^{1+\tau}\left\|d^{j}\right\| \\
& \geq\left\langle d^{j},\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\rangle-\sigma\left\|d^{j}\right\|\|\mathcal{A}\|\left\|\mathcal{A}^{*}\right\|\left\|y^{j}-\hat{y}\right\|^{1+\tau} \\
& \geq\left\langle d^{j},\left(V_{j}+\varepsilon_{j} I\right) d^{j}\right\rangle-O\left(\left\|d^{j}\right\|^{2+\tau}\right),
\end{aligned}
$$

which, together with (69) and the fact that $\left\|\left(V_{j}+\varepsilon_{j} I\right)^{-1}\right\|$ is uniformly bounded, implies that there exists a constant $\hat{\delta}>0$ such that

$$
-\left\langle\nabla \varphi\left(y^{j}\right), d^{j}\right\rangle \geq \hat{\delta}\left\|d^{j}\right\|^{2} \quad \text { for all } j \text { sufficiently large. }
$$

Since $\nabla \varphi(\cdot)$ is (strongly) semismooth at \hat{y} (because $\Pi_{\mathcal{S}_{+}^{n}}(\cdot)$ is strongly semismooth everywhere), from [11, Theorem $3.3 \&$ Remark 3.4] or [21], we know that for $\mu \in(0,1 / 2)$, there exists an integer j_{0} such that for any $j \geq j_{0}$,

$$
\varphi\left(y^{j}+d^{j}\right) \leq \varphi\left(y^{j}\right)+\mu\left\langle\nabla \varphi\left(y^{j}\right), d^{j}\right\rangle,
$$

which means that for all $j \geq j_{0}$,

$$
y^{j+1}=y^{j}+d^{j} .
$$

This, together with (68), completes the proof.
Theorem 3.5 shows that the rate of convergence for Algorithm 2 is of order $(1+\tau)$. If $\tau=1$, this corresponds to quadratic convergence. However, this will need more CG iterations in Algorithm 1. To save computational time, in practice we choose $\tau=0.1 \sim 0.2$, which still ensures that Algorithm 2 achieves superlinear convergence.

4 A Newton-CG Augmented Lagrangian Method

In this section, we shall introduce a Newton-CG augmented Lagrangian algorithm for solving problems (D) and (P). For any $k \geq 0$, denote $\varphi_{k}(\cdot) \equiv L_{\sigma_{k}}\left(\cdot, X^{k}\right)$. Since the inner problems can not be solved exactly, we will use the following stopping criteria considered by Rockafellar [32, 33] for terminating Algorithm 2:
(A) $\varphi_{k}\left(y^{k+1}\right)-\inf \varphi_{k} \leq \epsilon_{k}^{2} / 2 \sigma_{k}, \quad \epsilon_{k} \geq 0, \sum_{k=0}^{\infty} \epsilon_{k}<\infty$.
(B) $\varphi_{k}\left(y^{k+1}\right)-\inf \varphi_{k} \leq\left(\delta_{k}^{2} / 2 \sigma_{k}\right)\left\|X^{k+1}-X^{k}\right\|^{2}, \quad \delta_{k} \geq 0, \sum_{k=0}^{\infty} \delta_{k}<\infty$.
$\left(B^{\prime}\right)\left\|\nabla \varphi_{k}\left(y^{k+1}\right)\right\| \leq\left(\delta_{k}^{\prime} / \sigma_{k}\right)\left\|X^{k+1}-X^{k}\right\|, \quad 0 \leq \delta_{k}^{\prime} \rightarrow 0$.
Algorithm 3. A Newton-CG Augmented Lagrangian (SDPNAL) Algorithm
Step 0. Given $\left(y^{0}, X^{0}\right) \in \Re^{m} \times \mathcal{S}_{+}^{n}, \sigma_{0}>0$, a threshold $\bar{\sigma} \geq \sigma_{0}>0$ and $\rho>1$.
Step 1. For $k=0,1,2, \ldots$
Step 1.1. Starting with y^{k} as the initial point, apply $\operatorname{Algorithm} 2$ to $\varphi_{k}(\cdot)$ to find $y^{k+1}=$ $\operatorname{NCG}\left(y^{k}, X^{k}, \sigma_{k}\right)$ and $X^{k+1}=\Pi_{\mathcal{S}_{+}^{n}}\left(X^{k}-\sigma_{k}\left(\mathcal{A}^{*} y^{k+1}-C\right)\right)$ satisfying $(A),(B)$ or (B^{\prime}).
Step 1.2. If $\sigma_{k} \leq \bar{\sigma}, \sigma_{k+1}=\rho \sigma_{k}$ or $\sigma_{k+1}=\sigma_{k}$.
The global convergence of Algorithm 3 follows from Rockafellar [32, Theorem 1] and [33, Theorem 4] without much difficulty.
Theorem 4.1. Let Algorithm 3 be executed with stopping criterion (A). If (D) satisfies the Slater condition, i.e., if there exists $z^{0} \in \Re^{m}$ such that

$$
\begin{equation*}
\mathcal{A}^{*} z^{0}-C \succ \mathbf{0} \tag{70}
\end{equation*}
$$

then the sequence $\left\{X^{k}\right\} \subset \mathcal{S}_{+}^{n}$ generated by Algorithm 3 is bounded and $\left\{X^{k}\right\}$ converges to \bar{X}, where \bar{X} is some optimal solution to (P), and $\left\{y^{k}\right\}$ is asymptotically minimizing for (D) with $\max (P)=\inf (D)$.

If $\left\{X^{k}\right\}$ is bounded and (P) satisfies the generalized Slater condition (7), then the sequence $\left\{y^{k}\right\}$ is also bounded, and all of its accumulation points of the sequence $\left\{y^{k}\right\}$ are optimal solutions to (D).

Next we state the local linear convergence of the Newton-CG augmented Lagrangian algorithm.

Theorem 4.2. Let Algorithm 3 be executed with stopping criteria (A) and (B). Assume that (D) satisfies the Slater condition (70) and (P) satisfies the Slater condition (7). If the extended strict primal-dual constraint qualification (23) holds at \bar{X}, where \bar{X} is an optimal solution to (P), then the generated sequence $\left\{X^{k}\right\} \subset \mathcal{S}_{+}^{n}$ is bounded and $\left\{X^{k}\right\}$ converges to the unique solution \bar{X} with $\max (P)=\min (D)$, and

$$
\left\|X^{k+1}-\bar{X}\right\| \leq \theta_{k}\left\|X^{k}-\bar{X}\right\| \quad \text { for all } k \text { sufficiently large, }
$$

where

$$
\theta_{k}=\left[a_{g}\left(a_{g}^{2}+\sigma_{k}^{2}\right)^{-1 / 2}+\delta_{k}\right]\left(1-\delta_{k}\right)^{-1} \rightarrow \theta_{\infty}=a_{g}\left(a_{g}^{2}+\sigma_{\infty}^{2}\right)^{-1 / 2}<1, \sigma_{k} \rightarrow \sigma_{\infty}
$$

and a_{g} is a Lipschitz constant of T_{g}^{-1} at the origin (cf. Proposition 2.1). The conclusions of Theorem 4.1 about $\left\{y^{k}\right\}$ are valid.

Moreover, if the stopping criterion (B^{\prime}) is also used and the constraint nondegenerate conditions (37) and (59) hold at \bar{y} and \bar{X}, respectively, then in addition to the above conclusions the sequence $\left\{y^{k}\right\} \rightarrow \bar{y}$, where \bar{y} is the unique optimal solution to (D), and one has

$$
\left\|y^{k+1}-\bar{y}\right\| \leq \theta_{k}^{\prime}\left\|X^{k+1}-X^{k}\right\| \quad \text { for all } k \text { sufficiently large, }
$$

where $\theta_{k}^{\prime}=a_{l}\left(1+\delta_{k}^{\prime}\right) / \sigma_{k} \rightarrow \delta_{\infty}=a_{l} / \sigma_{\infty}$ and a_{l} is a Lipschitz constant of T_{l}^{-1} at the origin.
Proof. Conclusions of the first part of Theorem 4.2 follow from the results in [32, Theorem 2] and [33, Theorem 5] combining with Proposition 2.1. By using the fact that T_{l}^{-1} is Lipschitz continuous near the origin under the assumption that the constraint nondegenerate conditions (37) and (59) hold, respectively, at \bar{y} and \bar{X} [8, Theorem 18], we can directly obtain conclusions of the second part of this theorem from [32, Theorem 2] and [33, Theorem 5].

Remark 5. Note that in (3) we can also add the term $\frac{1}{2 \sigma_{k}}\left\|y-y^{k}\right\|^{2}$ to $L_{\sigma_{k}}\left(y, X^{k}\right)$ such that $L_{\sigma_{k}}\left(y, X^{k}\right)+\frac{1}{2 \sigma_{k}}\left\|y-y^{k}\right\|^{2}$ is a strongly convex function. This actually corresponds to the proximal method of multipliers considered in [33, Section 5] for which the k-th iteration is given by

$$
\left\{\begin{array}{l}
y^{k+1} \approx \arg \min _{y \in \Re^{m}}\left\{L_{\sigma_{k}}\left(y, X^{k}\right)+\frac{1}{2 \sigma_{k}}\left\|y-y^{k}\right\|^{2}\right\} \tag{71}\\
X^{k+1}=\Pi_{\mathcal{S}_{+}^{n}}\left(X^{k}-\sigma_{k}\left(\mathcal{A}^{*} y^{k+1}-C\right)\right) \\
\sigma_{k+1}=\rho \sigma_{k} \text { or } \sigma_{k+1}=\sigma_{k}
\end{array}\right.
$$

Convergence analysis for (71) can be conducted in a parallel way as for (3).

5 Numerical Issues in the Associated Semismooth NewtonCG Algorithm

In applying Algorithm 2 to solve the inner subproblem (47), the most expensive step is in computing the direction d at a given y from the linear system (62). Thus (62) must be solved as efficiently as possible. Let

$$
M:=\sigma A Q \otimes Q \operatorname{diag}(\operatorname{vec}(\Omega)) Q^{\mathrm{T}} \otimes Q^{\mathrm{T}} A^{\mathrm{T}}
$$

where Q and Ω are given as in (52) and (54), respectively. Here A denotes the matrix representation of \mathcal{A} with respect to the standard bases of $\Re^{n \times n}$ and \Re^{m}. The direction d is computed from the following linear system:

$$
\begin{equation*}
(M+\varepsilon I) d=-\nabla \varphi(y) . \tag{72}
\end{equation*}
$$

To achieve faster convergence rate when applying the CG method to solve (72), one may apply a preconditioner to the system. By observing that the matrix Ω has elements all in the interval $[0,1]$ and that the elements in the $(\bar{\gamma}, \bar{\gamma})$ block are all ones, one may simply approximate Ω by the matrix of ones, and hence a natural preconditioner for the coefficient matrix in (72) is simply the matrix $\widehat{M}:=\sigma A A^{\mathrm{T}}+\varepsilon I$. However, using \widehat{M} as the preconditioner may be costly since it requires the Cholesky factorization of $A A^{\mathrm{T}}$ and each preconditioning step requires the solution of two triangular linear systems. The last statement holds in particular when the Cholesky factor has large number of fill-ins. Thus in our implementation, we simply use $\operatorname{diag}(\widehat{M})$ as the preconditioner rather than \widehat{M}.

Next we discuss how to compute the matrix-vector multiplication $M d$ for a given $d \in \Re^{m}$ efficiently by exploiting the structure of Ω. Observe that $M d=\sigma \mathcal{A}(Y)$, where $Y=Q(\Omega \circ$ $\left.\left(Q^{\mathrm{T}} D Q\right)\right) Q^{\mathrm{T}}$ with $D=\mathcal{A}^{*} d$. Thus the efficient computation of $M d$ relies on our ability to compute the matrix Y efficiently given D. By noting that

$$
Y=\left[Q_{\bar{\gamma}} Q_{\gamma}\right]\left[\begin{array}{cc}
Q_{\bar{\gamma}}^{\mathrm{T}} D Q_{\bar{\gamma}} & \nu_{\bar{\gamma} \gamma} \circ\left(Q_{\bar{\gamma}}^{\mathrm{T}} D Q_{\gamma}\right) \tag{73}\\
\nu_{\bar{\gamma} \gamma}^{\mathrm{T}} \circ\left(Q_{\gamma}^{\mathrm{T}} D Q_{\bar{\gamma}}\right) & 0
\end{array}\right]\left[\begin{array}{c}
Q_{\bar{\gamma}}^{\mathrm{T}} \\
Q_{\gamma}^{\mathrm{T}}
\end{array}\right]=H+H^{\mathrm{T}},
$$

where $H=Q_{\bar{\gamma}}\left[\frac{1}{2}\left(U Q_{\bar{\gamma}}\right) Q_{\bar{\gamma}}^{\mathrm{T}}+\left(\nu_{\bar{\gamma} \gamma} \circ\left(U Q_{\gamma}\right)\right) Q_{\gamma}^{\mathrm{T}}\right]$ with $U=Q_{\bar{\gamma}}^{\mathrm{T}} D$, it is easy to see that Y can be computed in at most $8|\bar{\gamma}| n^{2}$ flops. By considering $Y=D-Q\left((E-\Omega) \circ\left(Q^{T} D Q\right)\right) Q^{T}$, where E is the matrix of all ones, one can also compute Y in at most $8|\gamma| n^{2}$ flops. Thus Y can be computed in at most $8 \min \{|\bar{\gamma}|,|\gamma|\} n^{2}$ flops. The above computational complexity shows that the SDPNAL algorithm is able to take advantage of any low-rank or high-rank property of the optimal solution \bar{X} to reduce computational cost. In contrast, for inexact interior-point methods such as those proposed in [40], the matrix-vector multiplication in each CG iteration would require $\Theta\left(n^{3}\right)$ flops.

Finally, we should mention that the computational cost of the full eigenvalue decomposition in (52) can sometime dominate the cost of solving (72), especially when n is large. In our implementation, we use the LAPACK routine dsyevd.f (based on a divide-and-conquer strategy) to compute the full eigenvalue decomposition of a symmetric matrix. We have found it to be 7 to 10 times faster than Matlab's eig routine when n is larger than 500 .

5.1 Conditioning of M

Recall that under the conditions stated in Theorem 4.2 where the sequences $\left\{y^{k}\right\}$ and $\left\{X^{k}\right\}$ generated by Algorithm 3 converge to the solution \bar{y} and \bar{X}, respectively. Let

$$
\bar{S}=\mathcal{A}^{*} \bar{y}-C
$$

For simplicity, we assume that strict complementarity holds for \bar{X}, \bar{S}, i.e., $\bar{X}+\bar{S} \succ 0$. We also assume that the constraint nondegenerate conditions (37) and (59) hold for \bar{y} and \bar{X}, respectively.

We shall now analyse the conditioning of the matrix M corresponding to the pair (\bar{y}, \bar{X}). Proposition 3.2 assured that M is positive definite, but to estimate the convergence of the CG method for solving (72), we need to estimate the condition number of M.

From the fact that $\bar{X} \bar{S}=0$, we have the following eigenvalue decomposition:

$$
\bar{X}-\sigma \bar{S}=Q\left[\begin{array}{cc}
\Lambda^{X} & 0 \tag{74}\\
0 & -\sigma \Lambda^{S}
\end{array}\right] Q^{\mathrm{T}}
$$

where $\Lambda^{X}=\operatorname{diag}\left(\lambda^{X}\right) \in \Re^{r \times r}$ and $\Lambda^{S}=\operatorname{diag}\left(\lambda^{S}\right) \in \Re^{(n-r) \times(n-r)}$ are diagonal matrices of positive eigenvalues of \bar{X} and \bar{S}, respectively. Define the index sets $\bar{\gamma}:=\{1, \ldots, r\}, \gamma:=$ $\{r+1, \ldots, n\}$. Let

$$
\Omega=\left[\begin{array}{cc}
E_{\bar{\gamma} \bar{\gamma}} & \nu_{\bar{\gamma} \gamma} \tag{75}\\
\nu_{\bar{\gamma} \gamma}^{\mathrm{T}} & 0
\end{array}\right], \quad \nu_{i j}:=\frac{\lambda_{i}^{X}}{\lambda_{i}^{X}+\sigma \lambda_{j-r}^{S}}, i \in \bar{\gamma}, j \in \gamma,
$$

and

$$
c_{1}=\frac{\min \left(\lambda^{X}\right)}{\min \left(\lambda^{X}\right) / \sigma+\max \left(\lambda^{S}\right)}, \quad c_{2}=\frac{\max \left(\lambda^{X}\right)}{\max \left(\lambda^{X}\right) / \sigma+\min \left(\lambda^{S}\right)}<\sigma .
$$

Then $c_{1} \leq \sigma \nu_{i j} \leq c_{2}, \quad i \in \bar{\gamma}, j \in \gamma$.
Consider the decomposition in (74) for the pair (\bar{y}, \bar{X}) and let ν be defined as in (75). Then we have

$$
\begin{equation*}
M=\sigma\left(\widetilde{A}_{1} \widetilde{A}_{1}^{\mathrm{T}}+\widetilde{A}_{2} D_{2} \widetilde{A}_{2}^{\mathrm{T}}+\widetilde{A}_{3} D_{3} \widetilde{A}_{3}^{\mathrm{T}}\right) \tag{76}
\end{equation*}
$$

where $\widetilde{A}_{1}=A Q_{\bar{\gamma}} \otimes Q_{\bar{\gamma}}, \widetilde{A}_{2}=A Q_{\gamma} \otimes Q_{\bar{\gamma}}, \widetilde{A}_{3}=A Q_{\bar{\gamma}} \otimes Q_{\gamma}, D_{2}=\operatorname{diag}\left(\operatorname{vec}\left(\nu_{\bar{\gamma} \gamma}\right)\right)$, and $D_{3}=\operatorname{diag}\left(\operatorname{vec}\left(\nu \nu_{\bar{\gamma} \gamma}^{\mathrm{T}}\right)\right)$. Since $c_{1} I \preceq \sigma D_{2}, \sigma D_{3} \preceq c_{2} I \prec \sigma I$, it is rather easy to deduce from (76) that

$$
c_{1}\left(\widetilde{A}_{1} \widetilde{A}_{1}^{\mathrm{T}}+\widetilde{A}_{2} \widetilde{A}_{2}^{\mathrm{T}}+\widetilde{A}_{3} \widetilde{A}_{3}\right) \preceq M \preceq \sigma\left(\widetilde{A}_{1} \widetilde{A}_{1}^{\mathrm{T}}+\widetilde{A}_{2} \widetilde{A}_{2}^{\mathrm{T}}+\widetilde{A}_{3} \widetilde{A}_{3}^{\mathrm{T}}\right) .
$$

Hence we obtain the following bound on the condition number of M :

$$
\begin{equation*}
\kappa(M) \leq \frac{\sigma}{c_{1}} \kappa\left(\widetilde{A}_{1} \widetilde{A}_{1}^{\mathrm{T}}+\widetilde{A}_{2} \widetilde{A}_{2}^{\mathrm{T}}+\widetilde{A}_{3} \widetilde{A}_{3}^{\mathrm{T}}\right)=\frac{\sigma}{c_{1}} \kappa\left(\left[\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}\right]\right)^{2} . \tag{77}
\end{equation*}
$$

The above upper bound suggests that $\kappa(M)$ can potentially be large if any of the following factors are large: (i) σ; (ii) c_{1}; (iii) $\kappa\left(\left[\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}\right]\right)$. Observe that c_{1} is approximately equal to $\min \left(\lambda^{X}\right) / \max \left(\lambda^{S}\right)$ if $\min \left(\lambda^{X}\right) / \sigma \ll \max \left(\lambda^{S}\right)$. Thus we see that a small ratio in $\min \left(\lambda^{X}\right) / \max \left(\lambda^{S}\right)$ can potentially lead to a large $\kappa(M)$. Similarly, even though the constraint nondegenerate condition (59) states that $\kappa\left(\left[\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}\right]\right)$ is finite (this is an equivalent condition), its actual value can affect the conditioning of M quite dramatically. In particular, if \bar{X} is nearly degenerate, i.e., $\kappa\left(\left[\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}\right]\right)$ is large, then $\kappa(M)$ can potentially be very large.

6 Numerical Experiments

We implemented the Newton-CG augmented Lagrangian (SDPNAL) algorithm in MatLab to solve a variety of large SDP problems with m up to $2,156,544$ and n up to 4,110 on a PC (Intel Xeon 3.2 GHz with 4G of RAM). We measure the infeasibilities and optimality for the primal and dual problems as follows:

$$
\begin{equation*}
R_{D}=\frac{\left\|C+S-\mathcal{A}^{*} y\right\|}{1+\|C\|}, \quad R_{P}=\frac{\|b-\mathcal{A}(X)\|}{1+\|b\|}, \quad \text { gap }=\frac{b^{T} y-\langle C, X\rangle}{1+\left|b^{T} y\right|+|\langle C, X\rangle|}, \tag{78}
\end{equation*}
$$

where $S=\left(\Pi_{\mathcal{S}_{+}^{n}}(W)-W\right) / \sigma$ with $W=X-\sigma\left(\mathcal{A}^{*} y-C\right)$. The above measures are the same as those adopted in the Seventh DIMACS Implementation Challenge [15], except that we used the Euclidean norms $\|b\|$ and $\|C\|$ in the denominators instead of ∞-norms. We do not check the infeasibilities of the conditions $X \succeq 0, Z \succeq 0, X Z=0$, since they are satisfied up to machine precision throughout the SDPNAL algorithm.

In our numerical experiments, we stop the SDPNAL algorithm when

$$
\begin{equation*}
\max \left\{R_{D}, R_{P}\right\} \leq 10^{-6} \tag{79}
\end{equation*}
$$

We choose the initial iterate $y^{0}=0, X^{0}=0$, and $\sigma_{0}=10$.
In solving the subproblem (47), we cap the number of Newton iterations to be 40, while in computing the inexact Newton direction from (62), we stop the CG solver when the maximum number of CG steps exceeds 500 , or when the convergence is too slow in that the reduction in the residual norm is exceedingly small.

In this paper, we will mainly compare the performance of the SDPNAL algorithm with the boundary-point method, introduced in [24], that is coded in the Matlab program mprw.m downloaded from F. Rendl's web page. It basically implements the following algorithm: given $\sigma_{0}>0, X^{0} \in \mathcal{S}^{n}, y^{0} \in \Re^{m}$, accuracy level ε, perform the following loop:

$$
\begin{aligned}
& W=X^{j}-\sigma_{j}\left(\mathcal{A}^{*} y^{j}-C\right), X^{j+1}=\Pi_{\mathcal{S}_{+}^{n}}(W), S=\left(X^{j+1}-W\right) / \sigma_{j} \\
& y^{j+1}=y^{j}-\left(\sigma_{j} \mathcal{A} \mathcal{A}^{*}\right)^{-1}\left(b-\mathcal{A}\left(X^{j+1}\right)\right) \\
& R_{P}=\left\|b-\mathcal{A}\left(X^{j+1}\right)\right\| /(1+\|b\|), R_{D}=\left\|C+S-\mathcal{A}^{*} y^{j+1}\right\| /(1+\|C\|) \\
& \text { If } \max \left\{R_{P}, R_{D}\right\} \leq \varepsilon, \text { stop; else, update } \sigma_{j}, \text { end }
\end{aligned}
$$

Note that in the second step of the above algorithm, it is actually applying one iteration of a modified gradient method to solve the subproblem (47). But as the iterate y^{j+1} in the above algorithm is not necessary a good approximate minimizer for (47), there is no convergence guarantee for the algorithm implemented. Next, a remark on the computational aspects of the above algorithm. Suppose that the Cholesky factorization of $\mathcal{A} \mathcal{A}^{*}$ is pre-computed. Then each iteration of the above algorithm requires the solution of two triangular linear systems and one full eigenvalue decomposition of an $n \times n$ symmetric matrix. Thus each iteration of the algorithm may become rather expensive when the Cholesky factor of $\mathcal{A} \mathcal{A}^{*}$ is fairly dense or when $n \geq 500$, and the whole algorithm may be very expensive if a large number of iterations is needed to reach the desired accuracy. In our experiments, we set the maximum number of iterations allowed in the boundary-point method to 2,000 .

In the program mprw.m, the authors suggested choosing σ_{0} in the interval $[0.1,10]$ if the SDP data is normalized. But we should mention that the performance of the boundary-point method is quite sensitive to the choice of σ_{0}. Another point mentioned in [24] is that when the rank of the optimal solution \bar{X} is much smaller than n, the boundary-point method typically would perform poorly.

6.1 Random sparse SDPs

We first consider the collection of random sparse SDPs tested in [19], which reported the performance of the boundary-point method introduced in [24].

In Table 1, we give the results obtained by the SDPNAL algorithm for the sparse SDPs considered in [19]. The first three columns give the problem name, the dimension of the variable $y(m)$, the size of the matrix $C\left(n_{s}\right)$, and the number of linear inequality constraints $\left(n_{l}\right)$ in (D), respectively. The middle five columns give the number of outer iterations, the total number of inner iterations, the average number of PCG steps taken to solve (72), the objective values $\langle C, X\rangle$ and $b^{T} y$, respectively. The relative infeasibilities and gap, as well as times (in the format hours:minutes:seconds) are listed in the last four columns.

Table 2 lists the results obtained by the boundary-point method implemented in the program mprw.m.

Comparing the results in Tables 1 and 2, we observe that the boundary-point method outperformed the SDPNAL algorithm. The former is about 2 to 5 times faster than the latter on most of the problems. It is rather surprising that the boundary-point method implemented in mprw.m, being a gradient based method and without convergence guarantee, can be so efficient in solving this class of sparse random SDPs, with all the SDPs solved within 250 iterations. For this collection of SDPs, the $\operatorname{ratios} \operatorname{rank}(\bar{X}) / n$ for all the problems, except for Rn6m20p4, are greater than 0.25 .

Table 1: Results for the SDPNAL algorithm on the random sparse SDPs considered in [19].

problem	$m \mid n_{s} ; n_{l}$	it \mid itsub $\mid \mathrm{pcg}$	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time
Rn3m20p3	$20000 \mid 300 ;$	$7\|47\| 77.6$	7.613526572	7.613797002	$6.1-7\|9.2-7\|-1.8-5$	$2: 03$
Rn3m25p3	$25000 \mid 300 ;$	$5\|55\| 81.3$	7.384032021	7.386684751	$9.5-7\|9.1-7\|-1.8-4$	$3: 13$
Rn3m10p4	$10000 \mid 300 ;$	$11\|50\| 16.9$	1.659747012	1.659972742	$1.4-7\|7.0-7\|-6.8-5$	37

Table 1: Results for the SDPNAL algorithm on the random sparse SDPs considered in [19].

problem	$m \mid n_{s} ; n_{l}$	it \| itsub	pcg	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time	
Rn4m30p3	30000 - 400;	$8{ }^{8} 44 \mid 64.3$	1.072139403	1.072169473	1.0-7\| $7.0-7 \mid-1.4-5$	3:06		
Rn4m40p3	40000 \| 400;	$7\|77\| 86.6$	8.057690562	8.057875212	3.7-7\| 4.6-7	-1.1-5	9:09	
Rn4m15p4	15000 \| 400;	12\| $54 \mid 16.4$	-6.550004472	-6.54983628 2	$2.2-7\|4.0-7\|-1.3-5$	1:17		
Rn5m30p3	30000 \| 500;	11\| $51 \mid 43.8$	1.107626613	1.107659843	1.9-7\| 7.4-7	-1.5-5	3:31	
Rn5m40p3	40000 \| 500;	10\| $52 \mid 46.6$	8.166111932	8.166314682	1.4-7\| 4.1-7	-1.2-5	4:23	
Rn5m50p3	50000 \| 500;	$8\|45\| 62.8$	3.649461782	3.649776992	8.1-7\| 5.6-7	-4.3-5	6:07	
Rn5m20p4	20000 \| 500;	$12\|50\| 15.1$	3.280043972	3.280504652	3.1-7\| 7.7-7	-7.0-5	1:51	
Rn6m40p3	40000 \| 600;	12\| $55 \mid 39.0$	3.066172622	3.066432312	9.9-8\| 4.7-7	-4.2-5	5:22	
Rn6m50p3	50000 \| 600;	$10\|50\| 58.2$	-3.864130912	-3.86353173 2	$2.8-7\|8.5-7\|-7.7-5$	7:53		
Rn6m60p3	60000 \| 600;	9\| 47	48.3	6.417376822	6.418033612	$5.0-7\|8.7-7\|-5.1-5$	7:00	
Rn6m20p4	20000 \| 600;	13\| $56 \mid 13.8$	1.045269713	1.045316053	1.6-7\| 7.7-7	-2.2-5	2:05	
Rn7m50p3	50000 \| 700;	12\| $52 \mid 31.6$	3.132036092	3.132408762	7.4-7\| 5.4-7	-5.9-5	6:18	
Rn7m70p3	70000 \| 700;	10\| 48	41.6	-3.69557843 2	-3.69479811 2	2.4-7\| 8.7-7	-1.1-4	8:48
Rn8m70p3	70000 \| 800;	11\| 51	33.3	2.331396413	2.331493023	1.8-7\| 9.9-7	-2.1-5	9:37
Rn8m100p3	100000 \| 800;	$10\|52\| 55.8$	2.259288483	2.259371573	1.3-7\| 7.3-7	-1.8-5	18:49	

Table 2: Results obtained by the boundary-point method in [19] on the random sparse SDPs considered therein. The parameter σ_{0} is set to 0.1 , which gives better timings than the default initial value of 1

problem	$m \mid n_{s} ; n_{l}$		it	$\langle C, X\rangle$	$b^{T} y$	R_{P}	$R_{D} \mid$ gap	time
Rn3m20p3	20000	300;	162	7.613523012	7.613519562	9.9-7\|	3.3-8\| 2.3-7	49
Rn3m25p3	25000	300;	244	7.383835931	7.383848091	9.3-7\|	4.8-8\| -8.2-7	3:11
Rn3m10p4	10000	300;	148	1.659746872	1.659750742	9.8-7\|	7.3-8\|-1.2-6	1:07
Rn4m30p3	30000	400;	143	1.072141303	1.072139353	9.6-7\|	2.7-8\| 9.1-7	57
Rn4m40p3	40000	400;	193	8.057698152	8.057685692	9.3-7\|	3.3-8\| 7.7-7	5:02
Rn4m15p4	15000	400;	168	-6.55000133 2	-6.549985972	9.9-7\|	1.1-7\|-1.2-6	2:15
Rn5m30p3	30000	500;	151	1.107626553	1.107627343	9.9-7\|	8.4-8\| -3.6-7	50
Rn5m40p3	40000	500;	136	8.166101802	8.166106832	9.6-7\|	3.6-8\| -3.1-7	58
Rn5m50p3	50000	500;	149	3.649456042	3.649450782	9.7-7\|	2.3-8\| 7.2-7	2:56
Rn5m20p4	20000	500;	196	3.280045792	3.280104792	9.9-7\|	2.1-7\|-9.0-6	3:36
Rn6m40p3	40000	600;	153	3.066179462	3.066181732	9.5-7\|	8.0-8\|-3.7-7	1:21
Rn6m50p3	50000	600;	142	-3.864138972	-3.86413511 2	9.9-7\|	5.7-8\|-5.0-7	1:21
Rn6m60p3	60000	600;	137	6.417367182	6.417367462	9.9-7\|	3.0-8\|-2.2-8	2:09
Rn6m20p4	20000	600;	226	1.045268083	1.045283283	9.9-7\|	3.9-7\|-7.3-6	2:52
Rn7m50p3	50000	700;	165	3.132025832	3.132056022	9.9-7\|	1.1-7\|-4.8-6	2:07
Rn7m70p3	70000	700;	136	-3.69558765 2	-3.69558700 2	9.9-7\|	4.2-8\|-8.9-8	2:10
Rn8m70p3	70000	800;	158	2.331395513	2.331397593	9.9-7\|	8.3-8\|-4.5-7	2:54
Rn8m100p3	100000	\| 800;	135	2.259286933	2.259287813	9.4-7\|	2.9-8\|-1.9-7	4:16

6.2 SDPs arising from relaxation of frequency assignment problems

Next we consider SDPs arising from semidefinite relaxation of frequency assignment problems (FAP) [10]. The explicit description of the SDP in the form (P) is given in [6, equation (5)].

Observe that for the FAP problems, the SDPs contain non-negative vector variables in addition to positive semidefinite matrix variables. However, it is easy to extend the SDPNAL algorithm and the boundary-point method in mprw.m to accommodate the nonnegative variables.

Tables 3 and 4 list the results obtained by the SDPNAL algorithm and the boundary-
point method for the SDP relaxation of frequency assignment problems tested in [6], respectively. For this collection of SDPs, the SDPNAL algorithm outperformed the boundary-point method. While the SDPNAL algorithm can achieve rather high accuracy in $\max \left\{R_{P}, R_{D}\right.$, gap $\}$ for all the SDPs, the boundary-point method fails to achieve satisfactory accuracy after 2000 iterations in that the primal and dual objective values obtained have yet to converge close to the optimal values. The results in Table 4 demonstrate a phenomenon that is typical of a purely gradient based method, i.e., it may stagnate or converge very slowly well before the required accuracy is achieved.

It is interesting to note that for this collection, the SDP problems (D) and (P) are likely to be both degenerate at the optimal solution \bar{y} and \bar{X}, respectively. For example, the problem fap01 is both primal and dual degenerate in that $\kappa\left(\widetilde{A}_{1}\right) \approx 3.9 \times 10^{12}$ and $\kappa\left(\left[\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}\right]\right) \approx 1.4 \times 10^{12}$, where $\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}$ are defined as in (76). Similarly, for fap02, we have $\kappa\left(\widetilde{A}_{1}\right) \approx 2.3 \times 10^{12}$ and $\kappa\left(\left[\widetilde{A}_{1}, \widetilde{A}_{2}, \widetilde{A}_{3}\right]\right) \approx 1.7 \times 10^{12}$. It is surprising that the SDPNAL algorithm can attain the required accuracy within moderate CPU time despite the fact that the problems do not satisfy the constraint nondegeneracy conditions (37) and (59) at the optimal solution \bar{y} and \bar{X}.

The SDPs arising from FAP problems form a particularly difficult class of problems. Previous methods such as the spectral bundle (SB) method [13], the BMZ method (a logbarrier method applied to a nonlinear programming reformulation of (D)) [6], and inexact interior-point method [40] largely fail to solve these SDPs to satisfactory accuracy within moderate computer time. For example, the SB and BMZ methods took more than 50 and 3.3 hours, respectively, to solve fap09 on an SGI Origin2000 computer using a single 300 MHz R1200 processor. The inexact interior-point method [40] took more than 2.5 hours to solve the same problem on a 700 MHz HP c 3700 workstation. Comparatively, our SDPNAL algorithm took only 41 seconds to solve fap09 to the same accuracy or better. In [20], the largest problem fap 36 was tested on the SB and BMZ methods using a 450 MHz Sun Ultra 60 workstation. The SB and BMZ methods obtained the lower bounds of 63.77 and 63.78 for the optimal objective value after running for 4250 and 2036 hours, respectively. In contrast, our SDPNAL algorithm was able to solve fap36 to a rather good accuracy in about 65 hours, and obtained the approximate optimal objective value of 69.85.

Table 3: Results for the SDPNAL algorithm on the frequency assignment problems.

problem	$m \mid n_{s} ; n_{l}$	it ${ }^{\text {itsub\| }}$ pcg	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time		
fap01	1378 \| 52; 1160	20\| 109	33.2	3.28834503-2	3.28832952-2	8.4-7\| 1.0-7	1.5-7	06
fap02	1866 \| 61; 1601	20\| 81	21.4	6.90524269-4	7.02036467-4	8.4-7\| 3.5-7	-1.1-5	04
fap03	2145 \| 65; 1837	20\| 102	38.6	4.93726225-2	4.93703591-2	1.2-7\| 2.5-7	2.1-6	07
fap04	3321 \| 81; 3046	21\| 173	43.5	1.74829592-1	1.74844758-1	$2.0-7\|6.4-7\|-1.1-5$	17	
fap05	3570 \| 84; 3263	21\| $244 \mid 56.6$	3.08361964-1	3.08294715-1	7.6-6\| 6.2-7	4.2-5	32	
fap06	4371 \| 93; 3997	21\| 187	55.3	4.59325368-1	4.59344513-1	$7.6-7\|6.8-7\|-10.0-6$	27	
fap07	4851 \| 98; 4139	22\| 179	61.4	2.117624870	2.117632040	9.9-7\| 4.9-7	-1.4-6	30
fap08	7260 \| 120; 6668	21\| 113	45.0	2.436278840	2.436293280	$2.8-7\|9.9-7\|-2.5-6$	21	
fap09	15225 \| 174; 14025	22\| 120	38.4	1.079781141	1.079784231	8.9-7\| 9.6-7	-1.4-6	41
fap10	14479 \| 183; 13754	$23\|140\| 57.4$	9.67044948-3	9.74974306-3	1.5-7\| 9.3-7	-7.8-5	1:18	
fap11	24292\| 252; 23275	$25\|148\| 69.0$	2.97000004-2	2.98373492-2	7.7-7\| 6.0-7	-1.3-4	3:21	
fap12	26462 \| 369; 24410	$25\|169\| 81.3$	$2.73251961-1$	2.73410714-1	6.0-7\| 7.8-7	-1.0-4	9:07	
fap25	322924 \| 2118; 311044	24\| 211	84.8	1.287613561	1.287898921	3.2-6\| 5.0-7	-1.1-4	10:53:22
fap36	1154467 \| 4110; 1112293	17\| 197	87.4	6.985617871	6.985962861	7.7-7\| 6.7-7	-2.5-5	65:25:07

Table 4: Results obtained by the boundary-point method in [19] on the frequency assignment problems. The parameter σ_{0} is set to 1 (better than 0.1).

problem	$m \mid n_{s} ; n_{l}$	it	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time
fap01	$1378 \mid 52 ; 1160$	2000	$3.49239684-2$	$3.87066984-2$	$5.4-6\|\mathbf{1 . 7 - 4}\| \mathbf{- 3 . 5 - 3}$	15
fap02	$1866 \mid 61 ; 1601$	2000	$4.06570342-4$	$1.07844848-3$	$1.6-5\|7.5-5\| \mathbf{- 6 . 7 - 4}$	16
fap03	$2145 \mid 65 ; 1837$	2000	$5.02426246-2$	$5.47858318-2$	$1.5-5\|\mathbf{1 . 5 - 4}\| \mathbf{- 4 . 1 - 3}$	17
fap04	$3321 \mid 81 ; 3046$	2000	$1.77516830-1$	$1.84285835-1$	$4.5-6\|\mathbf{1 . 7 - 4}\| \mathbf{- 5 . 0 - 3}$	24
fap05	$3570 \mid 84 ; 3263$	2000	$3.11422846-1$	$3.18992969-1$	$1.1-5\|\mathbf{1 . 6 - 4}\| \mathbf{- 4 . 6 - 3}$	25
fap06	$4371 \mid 93 ; 3997$	2000	$4.60368585-1$	$4.64270062-1$	$7.5-6\|9.8-5\| \mathbf{- 2 . 0 - 3}$	27
fap07	$4851 \mid 98 ; 4139$	2000	2.117680500	2.118022200	$2.5-6\|1.5-5\|-6.5-5$	25
fap08	$7260 \mid 120 ; 6668$	2000	2.436387290	2.437738010	$2.6-6\|3.5-5\| \mathbf{- 2 . 3 - 4}$	34
fap09	$15225 \mid 174 ; 14025$	2000	1.079782511	1.079829021	$9.2-7\|9.8-6\|-2.1-5$	59
fap10	$14479 \mid 183 ; 13754$	2000	$1.70252739-2$	$2.38972400-2$	$1.1-5\|\mathbf{1 . 1 - 4}\| \mathbf{- 6 . 6 - 3}$	$1: 25$
fap11	$24292 \mid 252 ; 23275$	2000	$4.22711513-2$	$5.94650102-2$	$8.8-6 \mid \mathbf{1 . 4 - 4 \| \mathbf { - 1 . 6 - 2 }}$	$2: 31$
fap12	$26462 \mid 369 ; 24410$	2000	$2.93446247-1$	$3.26163363-1$	$6.0-6 \mid \mathbf{1 . 5 - 4 \| \mathbf { - 2 . 0 - 2 }}$	$4: 37$
fap25	$322924 \mid 2118 ; 311044$	2000	1.318956651	1.359109521	$4.8-6 \mid \mathbf{2 . 0 - 4 \| \mathbf { - 1 . 4 - 2 }}$	$8: 04: 00$
fap36	$1154467 \mid 4110 ; 1112293$	2000	7.033393091	7.096060781	$3.9-6 \mid \mathbf{1 . 4 - 4 \| \mathbf { - 4 . 4 - 3 }}$	$46: 59: 28$

6.3 SDPs arising from relaxation of maximum stable set problems

For a graph G with edge set \mathcal{E}, the stability number $\alpha(G)$ is the cardinality of a maximal stable set of G, and $\alpha(G):=\left\{e^{T} x: x_{i} x_{j}=0,(i, j) \in \mathcal{E}, x \in\{0,1\}^{n}\right\}$. It is known that $\alpha(G) \leq \theta(G) \leq \theta_{+}(G)$, where

$$
\begin{align*}
\theta(G) & =\max \left\{\left\langle e e^{T}, X\right\rangle:\left\langle E_{i j}, X\right\rangle=0,(i, j) \in \mathcal{E},\langle I, X\rangle=1, X \succeq 0\right\} \tag{80}\\
\theta_{+}(G) & =\max \left\{\left\langle e e^{T}, X\right\rangle:\left\langle E_{i j}, X\right\rangle=0,(i, j) \in \mathcal{E},\langle I, X\rangle=1, X \succeq 0, X \geq 0\right\} \tag{81}
\end{align*}
$$

where $E_{i j}=e_{i} e_{j}^{\mathrm{T}}+e_{j} e_{i}^{\mathrm{T}}$ and e_{i} denotes column i of the identity matrix I. Note that for (81), the problem is reformulated as a standard SDP by replacing the constraint $X \geq 0$ by constraints $X-Y=0$ and $Y \geq 0$. Thus such a reformulation introduces an additional $n(n+1) / 2$ linear equality constraints to the SDP.

Table 5 lists the results obtained by the SDPNAL algorithm for the SDPs (80) arising from computing $\theta(G)$ for the maximum stable set problems. The first collection of graph instances in Table 5 are the randomly generated instances considered in [40] whereas the second collection is from the Second DIMACS Challenge on Maximum Clique Problems [42]. The last collection are graphs arising from coding theory, available from N. Sloane's web page [35].

Observe that the SDPNAL algorithm is not able to achieve the required accuracy level for some of the SDPs from Sloane's collection. It is not surprising that this may happen because many of these SDPs are degenerate at the optimal solution. For example, the problems 1 dc .128 and 2 dc .128 are degenerate at the optimal solutions \bar{y} even though they are nondegenerate at the optimal solutions \bar{X}.

In [19], the performance of the boundary-point method was compared with that of the iterative solver based primal-dual interior-point method in [40], as well as the iterative solver
based modified barrier method in [17], on a subset of the large SDPs arising from the first collection of random graphs. The conclusion was that the boundary-point method was between 5-10 times faster than the methods in [40] and [17]. Since the SDPNAL algorithm is at least as efficient as the boundary-point method on the theta problems for random graphs (not reported here in the interest of saving space), it is safe to assume that the SDPNAL algorithm would be at least 5-10 times faster than the methods in [40] and [17]. Note that the SDPNAL algorithm is more efficient than the boundary-point method on the collection of graphs from DIMACS. For example, the SDPNAL algorithm takes less than 100 seconds to solve the problem G43 to an accuracy of less than 10^{-6}, while the boundary-point method (with $\sigma_{0}=0.1$) takes more than 3,900 seconds to achieve an accuracy of 1.5×10^{-5}. Such a result for G43 is not surprising because the rank of the optimal X (equals to 58) is much smaller than n, and as already mentioned in [24], the boundary-point method typically would perform poorly under such a situation.

Table 5: Results for the SDPNAL algorithm on computing $\theta(G)$ in (80) for the maximum stable set problems.

problem	$m \mid n_{s} ; n_{l}$	it ${ }^{\text {itsub\| }}$ pcg	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time		
theta4	1949 \| 200;	22\| 25	12.7	5.032121911	5.032121481	4.9-8\| 5.2-7	4.2-8	05
theta42	5986\| 200;	20\| 24	11.6	2.393170911	2.393170591	$2.2-7\|8.5-7\| 6.6-8$	06	
theta6	4375 \| 300;	22\| 29	11.0	6.34770834	6.347707931	$4.5-8\|4.8-7\| 3.2-8$	12	
theta62	13390 \| 300;	20\| 25	11.2	2.964124721	2.964124611	5.8-7\| 9.2-7	1.7-8	14
theta8	7905 \| 400;	22\| 28	10.6	7.395356791	7.395355551	$6.5-8\|6.9-7\| 8.3-8$	23	
theta82	23872 \| 400;	21\| $26 \mid 10.3$	3.436689171	3.436688811	$1.4-7\|8.8-7\| 5.2-8$	27		
theta83	39862 \| 400;	20\| $27 \mid 10.8$	2.030189101	2.030188861	1.2-7\| 4.8-7	$5.6-8$	35	
theta10	12470 \| 500;	21\| $25 \mid 10.6$	8.380596891	8.380595661	$6.9-8\|6.6-7\| 7.3-8$	36		
theta102	37467 \| 500;	23\| 28	10.2	3.839054511	3.839054381	$6.9-8\|4.8-7\| 1.6-8$	50	
theta103	62516 \| 500;	18\| $27 \mid 10.7$	2.252856881	2.252856671	$4.4-8\|5.8-7\| 4.6-8$	1:00		
theta104	87245 \| 500;	17\| 28	11.2	1.333614001	1.333613791	$6.1-8\|6.5-7\| 7.6-8$	58	
theta12	17979 \| 600;	21\| $26 \mid 10.3$	9.280167951	9.280166791	9.6-8\| 8.1-7	6.2-8	57	
theta123	90020 \| 600;	18\| 26	10.9	2.466865131	2.466864921	$3.3-8\|5.2-7\| 4.1-8$	1:34	
theta162	127600 \| 800;	17\| $26 \mid 10.2$	3.700973531	3.700973241	3.6-8\| 5.4-7	3.8-8	2:53	
MANN-a27	703\|378;	9\| 13	6.2	1.327628912	1.327628692	9.4-11\| 7.0-7	8.3-8	07
johnson8-4	561 \| 70;	$3\|4\| 3.0$	1.399999961	1.399999831	4.5-9\| 1.6-7	4.4-8	00	
johnson16-	1681 \| 120;	$3\|4\| 4.0$	7.999986700	7.999994800	8.1-8\| 7.5-7	-4.8-7	01	
$\operatorname{san} 200-0.7$	5971 \| 200;	$13\|22\| 8.9$	3.000000661	2.999999801	$2.3-7\|3.1-7\| 1.4-7$	04		
c-fat200-1	18367 \| 200;	$8\|36\| 20.3$	1.199999831	1.199999621	1.5-7\| 8.3-7	8.5-8	09	
hamming-6-	1313\|64;	$3\|4\| 4.2$	5.333333340	5.333333300	$4.4-11\|5.8-9\| 2.7-9$	00		
hamming-8-	11777 \| 256;	$5\|5\| 4.0$	1.599999831	1.599998551	7.2-9\| 8.0-7	3.9-7	02	
hamming-9-	2305 \| 512;	6\| 6	5.2	2.240000002	2.240000492	1.2-10\| 2.4-7	-1.1-7	10
hamming-10	23041 \| 1024;	$7\|9\| 5.6$	1.023997802	1.024000702	7.1-8\| 7.1-7	-1.4-6	1:33	
hamming-7-	1793 \| 128;	$4\|5\| 4.2$	4.266666671	4.266666451	$4.1-12\|6.6-8\| 2.6-8$	01		
hamming-8-	16129 \| 256;	$4\|4\| 4.8$	2.560000071	2.559999601	2.8-9\| 2.1-7	9.0-8	02	
hamming-9-	53761 \| 512;	$4\|6\| 6.5$	8.533333331	8.533333111	1.4-11\| 3.9-8	1.3-8	10	
brock200-1	5067 \| 200;	20\| $24 \mid 12.6$	2.745664021	2.745663671	1.2-7\| 6.7-7	6.3-8	06	
brock200-4	6812 \| 200;	18\| 23	13.0	2.129347571	2.129347271	1.1-7\| 5.8-7	6.8-8	06
brock400-1	20078 \| 400;	21\| $25 \mid 10.6$	3.970189021	3.970189161	5.4-7\| 9.9-7	-1.7-8	26	
keller4	5101 \| 171;	17\| 21	15.9	1.401223901	1.401223861	1.3-7\| 4.4-7	1.3-8	05
p-hat300-1	33918 \| 300;	20\| $84 \mid 38.7$	1.006796741	1.006795611	5.5-7\| 9.4-7	5.3-7	1:45	
G43	9991 \| 1000;	18\| $27 \mid 11.6$	2.806245852	2.806245622	3.0-8\| 4.6-7	4.2-8	1:33	
G44	9991 \| 1000;	18\| 28	11.1	2.805833352	2.805831492	3.6-7\| 9.2-7	3.3-7	2:59
G45	9991 \| 1000;	17\| 26	11.5	2.801851312	2.801851002	3.6-8\| 5.8-7	5.6-8	2:51
G46	9991 \| 1000;	18\| 26	11.4	2.798370272	2.798368992	3.2-7\| 9.1-7	2.3-7	2:53
G47	9991 \| 1000;	17\| 27	11.4	2.818939762	2.818939042	7.0-8\| 9.3-7	1.3-7	2:54
1 dc .64	544 \| 64;	$22\|87\| 61.1$	1.000000381	9.999985130	6.9-7\| 9.2-7	8.9-7	06	
$1 \mathrm{et}$.	265 \| 64;	13\| 16	10.0	1.879999931	1.880001611	1.2-7\| 7.2-7	-4.3-7	01
1 tc .64	193 \| 64;	14\| 25	14.1	2.000000281	1.999997921	$5.5-7\|9.2-7\| 5.7-7$	01	
1dc. 128	1472 \| 128;	26\| 160	78.3	1.684229411	1.684201851	6.4-6\| 6.5-7	7.9-6	31
$1 \mathrm{et}$.	673 \| 128;	14\| 25	11.5	2.923087671	2.923089401	7.6-7\| 4.5-7	-2.9-7	02
1tc. 128	513\| 128;	12\| $33 \mid 10.7$	3.799999351	3.799999151	1.6-7\| 8.5-7	2.6-8	02	

Table 5: Results for the SDPNAL algorithm on computing $\theta(G)$ in (80) for the maximum stable set problems

problem	$m \mid n_{s} ; n_{l}$	it \| itsub	pcg	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time	
1zc. 128	1121 \| 128;	$10\|16\| 8.2$	2.066666221	2.066665561	1.1-7\| 5.9-7	1.6-7	02	
1 dc .256	3840 \| 256;	22\| 131	46.5	3.000001521	2.999999821	5.1-7\| 1.1-8	2.8-7	1:05
1et. 256	1665 \| 256 ;	22\| 105	30.5	5.511428591	5.511423811	3.2-7\| 5.3-7	4.3-7	52
1tc. 256	1313 \| 256;	29\| $211 \mid 82.2$	6.340079111	6.339991011	7.4-6\| 4.8-7	6.9-6	2:30	
1zc. 256	2817 \| 256;	$13\|17\| 8.5$	3.799998471	3.799998781	9.5-8\| 4.9-7	-4.1-8	05	
1dc. 512	9728 \| 512;	30\| 181	75.7	5.303115331	5.303074181	2.0-6\| 4.2-7	3.8-6	12:07
$1 \mathrm{et}$.	4033 - 512;	16\| 90	40.1	1.044240622	1.044240032	9.9-7\| 7.9-7	2.8-7	3:48
1 tc .512	3265 \| 512;	28\| 316	83.4	1.134014602	1.134003202	3.3-6\| 6.9-7	5.0-6	28:53
2 dc .512	54896 \| 512;	27\| 258	61.3	1.177320771	1.176906361	2.4-5\| 5.0-7	1.7-4	32:16
1zc. 512	6913 \| 512;	12\| 21	10.6	6.874994841	6.874998801	9.0-8\| 3.7-7	-2.9-7	44
1 dc .1024	24064 \| 1024;	26\| 130	64.0	9.598549681	9.598492811	1.4-6\| 4.9-7	2.9-6	41:26
1et. 1024	9601 \| 1024;	19\| 117	76.8	1.842268992	1.842262452	2.5-6\| 3.5-7	1.8-6	1:01:14
1tc. 1024	7937 \| 1024;	$30\|250\| 79.1$	2.063052572	2.063043442	1.7-6\| 6.3-7	2.2-6	1:48:04	
1 zc .1024	16641 \| 1024;	15\| 22	12.2	1.286666592	1.286666512	$2.8-8\|3.0-7\| 3.3-8$	4:15	
2dc. 1024	169163 \| 1024;	28\| 219	68.0	1.864263681	1.863883921	7.8-6\| 6.8-7	9.9-5	2:57:56
1 dc .2048	58368 \| 2048;	$27\|154\| 82.5$	1.747296472	1.747291352	$7.7-7\|4.0-7\| 1.5-6$	6:11:11		
1et. 2048	22529 \| 2048;	22\| 138	81.6	3.420293132	3.420287072	6.9-7\| 6.3-7	8.8-7	7:13:55
1 tc .2048	18945 \| 2048;	26\| 227	78.5	3.746507692	3.746448202	$3.3-6\|3.7-7\| 7.9-6$	9:52:09	
1zc. 2048	39425 \| 2048;	13\| $24 \mid 14.0$	2.374004852	2.373999092	1.5-7\| 7.3-7	1.2-6	45:16	
2dc. 2048	504452 \| 2048;	27\| 184	67.1	3.067647171	3.067370011	3.7-6\| 4.5-7	4.4-5	15:13:19

Table 6: Results for the SDPNAL algorithm on computing $\theta_{+}(G)$ in (81) for the maximum stable set problems

problem	$m-n_{l} \mid n_{s} ; n_{l}$	it \| itsub	pcg	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time	
theta4	1949 \| 200; 20100	20\|67	31.3	4.986901571	4.986901421	4.6-8\| 7.9-7	1.4-8	33
theta42	5986 \| 200; 20100	18\| 41	26.0	2.373820881	2.373820511	5.7-7\| 9.8-7	7.6-8	22
theta6	4375 \| 300; 45150	$15\|61\| 27.7$	6.296184321	6.296183991	2.9-8\| 7.6-7	2.6-8	1:03	
theta62	13390 \| 300; 45150	16\| 38	22.4	2.937794481	2.937793781	$4.0-7\|6.6-7\| 1.2-7$	44	
theta8	7905 \| 400; 80200	13\| 52	29.8	7.340784361	7.340783721	2.8-7\| 7.3-7	4.3-8	1:54
theta82	23872 \| 400; 80200	13\| $45 \mid 28.6$	3.406435501	3.406434581	4.0-7\| 9.9-7	1.3-7	2:09	
theta83	39862 \| 400; 80200	13\| $40 \mid 23.0$	2.016710701	2.016710311	1.8-7\| 4.5-7	9.4-8	1:50	
theta10	12470 \| 500; 125250	12\| $54 \mid 32.0$	8.314899631	8.314898971	1.3-7\| 8.0-7	4.0-8	3:35	
theta102	37467 \| 500; 125250	15\| $44 \mid 27.6$	3.806625511	3.806624861	4.5-7\| 9.1-7	8.4-8	3:31	
theta103	62516 \| 500; 125250	12\| 38	26.5	2.237742001	2.237741901	1.0-7\| 9.3-7	2.3-8	3:28
theta104	87245 \| 500; 125250	$14\|35\| 22.0$	1.328260231	1.328260681	8.1-7\| 8.4-7	-1.6-7	2:35	
theta12	17979 \| 600; 180300	12\| $53 \mid 33.9$	9.209081401	9.209087721	6.5-7\| 6.6-7	-3.4-7	5:38	
theta123	90020 \| 600; 180300	15\| 43	29.2	2.449514381	2.449514971	7.7-7\| 8.5-7	-1.2-7	6:44
theta162	127600 \| 800; 320400	14\| 42	26.2	3.671133621	3.671137291	8.1-7\| 4.5-7	-4.9-7	11:24
MANN-a27	703 \| 378; 71631	$7\|26\| 21.5$	1.327628502	1.327628942	2.1-7\| 6.8-7	-1.6-7	35	
johnson8-4	561\| 70; 2485	$5{ }_{5} 6 \mid 7.0$	1.399999841	1.400001101	$2.2-8\|5.8-7\|-4.4-7$	01		
johnson16-	1681 \| 120; 7260	6\| $7 \mid 7.0$	7.999998710	8.000003500	5.3-8\| 4.3-7	-2.8-7	01	
san200-0.7	5971 \| 200; 20100	16\| 33	14.5	3.000001351	2.999999571	5.9-7\| 4.0-7	2.9-7	11
c-fat200-1	18367 \| 200; 20100	$7\|48\| 42.1$	1.200000081	1.199999551	1.3-7\| 9.5-7	2.1-7	36	
hamming-6-	1313 \| 64; 2080	$6\|7\| 7.0$	4.000000500	3.999999540	$5.7-9\|6.2-8\| 1.1-7$	01		
hamming-8-	11777 \| 256; 32896	$8\|10\| 7.2$	1.599999781	1.599998731	8.5-9\| 3.7-7	3.2-7	05	
hamming-9-	2305 \| 512; 131328	$3\|8\| 8.4$	2.240000022	2.240000162	$4.6-8\|5.9-7\|-3.1-8$	18		
hamming-10	23041 \| 1024; 524800	$8\|17\| 10.6$	8.533347231	8.533340021	$6.0-8\|7.9-7\| 4.2-7$	4:35		
hamming-7-	1793 \| 128; 8256	12\| $26 \mid 8.2$	3.599999301	3.600000231	3.8-8\| 1.3-7	-1.3-7	03	
hamming-8-	16129 \| 256; 32896	$6\|7\| 7.0$	2.560000021	2.560000021	2.0-9\| 5.1-9	-2.7-10	05	
hamming-9-	53761 \| 512; 131328	11\| 18	10.6	5.866666821	5.866669861	1.1-7\| 4.4-7	-2.6-7	42
brock200-1	5067 \| 200; 20100	$17\|48\| 30.7$	2.719671781	2.719671261	3.8-7\| 7.0-7	9.3-8	27	
brock200-4	6812 \| 200; 20100	18\| 40	23.4	2.112107361	2.112106671	5.4-8\| 9.9-7	1.6-7	21
brock400-1	20078 \| 400; 80200	14\| 42	26.4	3.933091971	3.933092001	9.5-7\| 6.5-7	-3.5-9	1:45
keller4	5101 \| 171; 14706	18\| $73 \mid 43.3$	1.346589801	1.346590821	$6.1-7\|9.7-7\|-3.7-7$	43		
p-hat300-1	33918 \| 300; 45150	21\| 123	73.5	1.002021721	1.002020061	8.7-7\| 7.2-7	7.9-7	6:50
G43	9991 \| 1000; 500500	9\| 126	52.2	2.797358472	2.797359632	9.1-7\| 8.1-7	-2.1-7	52:00
G44	9991 \| 1000; 500500	8\| 122	51.4	2.797461102	2.797460782	3.3-7\| 6.2-7	5.7-8	49:32
G45	9991 \| 1000; 500500	9\| 124	52.0	2.793175312	2.793175442	9.3-7\| 8.6-7	-2.4-8	50:25
G46	9991 \| 1000; 500500	8\| $112 \mid 52.2$	2.790324932	2.790325112	3.5-7\| 9.6-7	-3.3-8	44:38	
G47	9991 \| 1000; 500500	9\| 102	53.1	2.808917192	2.808917222	$4.7-7\|6.0-7\|-5.1-9$	40:27	

Table 6: Results for the SDPNAL algorithm on computing $\theta_{+}(G)$ in (81) for the maximum stable set problems

problem	$m-n_{l} \mid n_{s} ; n_{l}$	it\| itsub	pcg	$\langle C, X\rangle$	$b^{T} y$	$R_{P}\left\|R_{D}\right\|$ gap	time	
1dc. 64	544 \|64; 2080	12\| 107	39.6	9.999998840	9.999982390	1.2-7\| 9.9-7	7.8-7	09
1et. 64	265 \| 64; 2080	12\| $24 \mid 17.0$	1.880000081	1.879998011	3.2-8\| 6.6-7	5.4-7	02	
1 tc .64	193 \| 64; 2080	12\| $54 \mid 37.9$	1.999999951	1.999997841	7.9-8\| 9.3-7	5.2-7	05	
1 dc .128	1472 \| 128; 8256	28\| 277	117.4	1.667906461	1.667830871	5.4-5\| 2.6-8	$2.2-5$	3:16
1et. 128	673\| 128; 8256	12\| 41	26.9	2.923091681	2.923088781	8.3-7\| 6.6-7	4.9-7	08
1 tc .128	513 \| 128; 8256	14\| 51	28.0	3.800000251	3.799999651	2.3-7\| 4.4-7	7.9-8	09
1zc. 128	1121 \| 128; 8256	14\| 23	12.9	2.066677151	2.066663851	8.5-7\| 9.3-7	3.1-6	04
1 dc .256	3840 \| 256; 32896	21\| 131	39.3	2.999999871	3.000000041	$4.3-8\|1.7-8\|-2.8-8$	2:24	
1et. 256	1665 \| 256; 32896	21\| 195	108.4	5.447064891	5.446524331	$2.3-5\|4.0-7\| 4.9-5$	8:37	
1tc. 256	1313 \| 256; 32896	23\| 228	137.5	6.324160751	6.324043741	1.5-5\| 7.5-7	9.2-6	11:17
1zc. 256	2817 \| 256; 32896	17\| $40 \mid 13.6$	3.733334321	3.733330291	1.7-7\| 8.2-7	5.3-7	21	
1 dc .512	9728 \| 512; 131328	24\| $204 \mid 72.9$	5.269551541	5.269513921	2.7-6\| 5.4-7	3.5-6	36:48	
1et. 512	4033 \| 512; 131328	17\| 181	147.4	1.036255312	1.035551962	1.3-4\| 5.8-7	3.4-4	51:10
1tc. 512	3265 \| 512; 131328	28\| 396	143.9	1.126130992	1.125388202	9.3-5\| 7.9-7	3.3-4	2:14:55
2dc. 512	54896 \| 512; 131328	33\| 513	106.2	1.139463311	1.138571251	$\mathbf{2 . 1 - 4 \| ~ 7 . 7 - 7 \| ~ 3 . 8 - 4 ~}$	2:25:15	
1zc. 512	6913 \| 512; 131328	11\| $57 \mid 37.3$	6.800000341	6.799997691	4.3-7\| 7.6-7	1.9-7	6:09	
1 dc .1024	24064 \| 1024; 524800	$24\|260\| 81.4$	9.555395081	9.555122051	1.4-5\| 6.9-7	1.4-5	5:03:49	
1et. 1024	9601 \| 1024; 524800	20\| 198	155.0	1.820754772	1.820715622	4.8-6\| 7.0-7	1.1-5	6:45:50
1tc. 1024	7937 \| 1024; 524800	$27\|414\| 124.6$	2.045912682	2.042361222	1.5-4\| 7.3-7	8.7-4	10:37:57	
1zc. 1024	16641 \| 1024; 524800	11\| 67	38.1	1.279999362	1.279999772	6.4-7\| 5.7-7	-1.6-7	40:13
2dc. 1024	169163 \| 1024; 524800	28\| 455	101.8	1.774161301	1.771495351	$\mathbf{1 . 6 - 4}\|6.2-7\| \mathbf{7 . 3 - 4}$	11:57:25	
1 dc .2048	58368 \| 2048; 2098176	20\| $320 \mid 73.0$	1.742926852	1.742588272	1.9-5\| 7.1-7	9.7-5	35:52:44	
1et. 2048	22529 \| 2048; 2098176	22\| 341	171.5	3.381936952	3.381668112	6.3-6\| 5.7-7	4.0-5	80:48:17
1 tc .2048	18945 \| 2048; 2098176	24\|381	150.2	3.715920172	3.705755272	3.5-4\| 7.9-7	1.4-3	73:56:01
1 zc .2048	39425 \| 2048; 2098176	11\| 38	29.3	2.374000542	2.373999442	2.5-7\| 7.9-7	2.3-7	2:13:04
2dc. 2048	504452\| 2048; 2098176	27\| 459	53.4	2.897552411	2.881811571	$\mathbf{1 . 3 - 4 \| 7 . 2 - 7 \| ~ 2 . 7 - 3 ~}$	45:21:42	

7 Applications to Quadratic Assignment and Binary Integer Quadratic Programming Problems

In this section, we apply our SDPNAL algorithm to compute lower bounds for quadratic assignment problems (QAPs) and binary integer quadratic (BIQ) problems through SDP relaxations. Our purpose here is to demonstrate that the SDPNAL algorithm can potentially be very efficient in solving large SDPs (and hence in computing bounds) arising from hard combinatorial problems.

Let Π be the set of $n \times n$ permutation matrices. Given matrices $A, B \in \Re^{n \times n}$, the quadratic assignment problem is:

$$
\begin{equation*}
v_{\mathrm{QAP}}^{*}:=\min \{\langle X, A X B\rangle: X \in \Pi\} . \tag{82}
\end{equation*}
$$

For a matrix $X=\left[x_{1}, \ldots, x_{n}\right] \in \Re^{n \times n}$, we will identify it with the n^{2}-vector $x=\left[x_{1} ; \ldots ; x_{n}\right]$. For a matrix $Y \in R^{n^{2} \times n^{2}}$, we let $Y^{i j}$ be the $n \times n$ block corresponding to $x_{i} x_{j}^{T}$ in the matrix $x x^{T}$. It is shown in [23] that v_{QAP}^{*} is bounded below by the following number:

$$
\begin{align*}
v:=\min & \langle B \otimes A, Y\rangle \\
\text { s.t. } & \sum_{i=1}^{n} Y^{i i}=I,\left\langle I, Y^{i j}\right\rangle=\delta_{i j} \forall 1 \leq i \leq j \leq n, \\
& \left\langle E, Y^{i j}\right\rangle=1, \forall 1 \leq i \leq j \leq n, \tag{83}\\
& Y \succeq 0, Y \geq 0,
\end{align*}
$$

where E is the matrix of ones, and $\delta_{i j}=1$ if $i=j$, and 0 otherwise. There are $3 n(n+1) / 2$ equality constraints in (83). But two of them are actually redundant, and we remove them when solving the standard SDP generated from (83). Note that [23] actually used the constraint $\langle E, Y\rangle=n^{2}$ in place of the last set of the equality constraints in (83). But we prefer to use the formulation here because the associated SDP has slightly better numerical behavior. Note also that the SDP problems (83) typically do not satisfy the constraint nondegenerate conditions (37) and (59) at the optimal solutions.

In our experiment, we apply the SDPNAL algorithm to the dual of (83) and hence any dual feasible solution would give a lower bound for (83). But in practice, our algorithm only delivers an approximately feasible dual solution \tilde{y}. We therefore apply the procedure given in [14, Theorem 2] to \tilde{y} to construct a valid lower bound for (83), which we denote by \underline{v}.

Table 7 lists the results of the SDPNAL algorithm on the quadratic assignment instances (83). The details of the table are the same as for Table 1 except that the objective values are replaced by the best known upper bound on (82) under the column "best upper bound" and the lower bound \underline{v}. The entries under the column under "\%gap" are calculated as follows:

$$
\% g a p=\frac{\text { best upper bound }-\underline{v}}{\text { best upper bound }} \times 100 \% .
$$

We compare our results with those obtained in [5] which used a dedicated augmented Lagrangian algorithm to solve the SDP arising from applying the lift-and-project procedure of Lovász and Schrijver to (82). As the augmented Lagrangian algorithm in [5] is designed specifically for the SDPs arising the lift-and-project procedure, the details of that algorithm is very different from our SDPNAL algorithm. Note that the algorithm in [5] was implemented in C (with LAPACK library) and the results reported were obtained from a 2.4 GHz Pentium 4 PC with 1 GB of RAM (which is about 50% slower than our PC). By comparing the results in Table 7 against those in [5, Tables 6 and 7], we can safely conclude that the SDPNAL algorithm applied to (83) is superior in terms of CPU time and the accuracy of the approximate optimal solution computed. Take for example the SDPs corresponding to the QAPs nug30 and tai35b, the SDPNAL algorithm obtains the lower bounds with \%gap of 2.939 and 5.318 in 15,729 and 37,990 seconds respectively, whereas the the algorithm in [5] computes the bounds with \%gap of 3.10 and 15.42 in 127, 011 and 430,914 seconds respectively.

The paper [5] also solved the lift-and-project SDP relaxations for the maximum stable set problems (denoted as N_{+}and is known to be at least as strong as θ_{+}) using a dedicated augmented Lagrangian algorithm. By comparing the results in Table 6 against those in [5, Table 4], we can again conclude that the SDPNAL algorithm applied to (81) is superior in terms of CPU time and the accuracy of the approximate optimal solution computed. Take for example the SDPs corresponding to the graphs p-hat300-1 and c-fat200-1, the SDPNAL algorithm obtains the upper bounds of $\theta_{+}=10.0202$ and $\theta_{+}=12.0000$ in 410 and 36 seconds respectively, whereas the the algorithm in [5] computes the bounds of $N_{+}=18.6697$ and $N_{+}=14.9735$ in 322,287 and 126,103 seconds respectively.

The BIQ problem we consider is the following:

$$
\begin{equation*}
v_{\mathrm{BIQ}}^{*}:=\min \left\{x^{T} Q x: x \in\{0,1\}^{n}\right\}, \tag{84}
\end{equation*}
$$

where Q is a symmetric matrix (non positive semidefinite) of order n. A natural SDP relaxation of (84) is the following:

$$
\begin{array}{ll}
\min & \langle Q, Y\rangle \\
\text { s.t. } & \operatorname{diag}(Y)-y=0, \quad \alpha=1 \tag{85}\\
& {\left[\begin{array}{cc}
Y & y \\
y^{T} & \alpha
\end{array}\right] \succeq 0, \quad Y \geq 0, y \geq 0 .}
\end{array}
$$

Table 8 lists the results obtained by the SDPNAL algorithm on the SDPs (85) arising from the BIQ instances described in [43]. It is interesting to note that the lower bound obtained from (85) is within 10% of the optimal value v_{BIQ}^{*} for all the instances tested, and for the instances gka1b-gka9b, the lower bounds are actually equal to $v_{B I Q}^{*}$.

Table 7: Results for the SDPNAL algorithm on the quadratic assignment problems. The entries under the column "\%gap" are calculated with respect to the best solution listed, which is known to be optimal unless the symbol (\dagger) is prefixed.

problem	$m-n_{l} \mid n_{s} ; n_{l}$	it\| itsub	pcg	$\begin{gathered} \text { best } \\ \text { upper bound } \end{gathered}$	lower bound \underline{v}	$R_{P} \mid R_{D}-$ \%gap	time	
bur26a	1051 676; 228826	27\| 389	105.9	5.426670006	5.425777006	$\mathbf{2 . 9 - 3}\|2.8-7\| 0.016$	4:28:43	
bur26b	1051 \| 676; 228826	$25\|358\| 92.3$	3.817852006	3.816639006	2.3-3\| 6.1-7	0.032	3:23:39	
bur 26 c	1051 \| 676; 228826	26\| 421	107.5	5.426795006	5.425936006	3.9-3\| 4.7-7	0.016	4:56:09
bur26d	1051 \| 676; 228826	27\| 424	102.3	3.821225006	3.819829006	3.8-3\| 5.0-7	0.037	4:21:32
bur26e	1051 \| 676; 228826	27\| 573	100.0	5.386879006	5.386832006	7.5-3\| 1.7-7	0.001	5:34:39
bur26f	1051 \| 676; 228826	25\| 534	100.9	3.782044006	3.781846006	3.1-3\| 6.2-7	0.005	5:32:51
bur 26 g	1051 \| 676; 228826	24\| $422 \mid 91.0$	1.011717207	1.011676307	3.8-3\| 6.6-7	0.004	3:33:58	
bur 26 h	1051 \| 676; 228826	24\| 450	96.8	7.098658006	7.098567006	2.0-3\| 2.3-7	0.001	3:53:22
chr12a	232 \| 144; 10440	$24\|314\| 82.5$	9.552000003	9.552000003	$4.6-7\|4.2-12\| 0.000$	3:02		
chr12b	232 \| 144; 10440	23\| 374	106.6	9.742000003	9.742000003	$4.3-7\|5.9-12\| 0.000$	4:12	
chr12c	232\| 144; 10440	25\| 511	103.7	1.115600004	1.115600004	1.7-3\| 5.6-7	0.000	3:33
chr15a	358\| 225; 25425	27\| 505	110.9	9.896000003	9.888000003	3.3-3\| 3.1-7	0.081	19:51
chr15b	358\| 225; 25425	23\| 385	94.0	7.990000003	7.990000003	1.9-4\| 3.1-8	0.000	11:42
chr15c	358\| 225; 25425	21\| 382	82.4	9.504000003	9.504000003	2.2-4\| 2.4-8	0.000	10:39
chr18a	511\|324; 52650	32\| 660	111.7	1.109800004	1.109600004	8.1-3\| 1.7-7	0.018	57:06
chr18b	511\|324; 52650	25\| 308	136.1	1.534000003	1.534000003	9.9-5\| 6.9-7	0.000	35:25
chr20a	628 \| 400; 80200	32\| $563 \mid 117.8$	2.192000003	2.192000003	4.3-3\| 2.9-8	0.000	1:28:45	
chr20b	628 \| 400; 80200	$25\|375\| 98.2$	2.298000003	2.298000003	1.1-3\| 1.5-7	0.000	54:09	
chr20c	628 \| 400; 80200	30\| 477	101.0	1.414200004	1.414000004	5.5-3\| 5.4-7	0.014	57:26
chr22a	757 \| 484; 117370	26\| 467	116.7	6.156000003	6.156000003	2.3-3\| 9.3-8	0.000	1:50:37
chr22b	757 \| 484; 117370	26\| 465	106.4	6.194000003	6.194000003	1.8-3\| 6.9-8	0.000	1:47:16
chr25a	973 \| 625; 195625	26\| 462	84.7	3.796000003	3.796000003	1.9-3\| 1.4-7	0.000	3:20:35
els19	568\| 361; 65341	28\| 554	99.5	1.721254807	1.721123407	1.0-4\| 6.5-7	0.008	51:52
esc16a	406 \| 256; 32896	24\| 251	106.3	6.800000001	6.400000001	9.3-5\| 5.3-7	5.882	10:48
esc16b	406 \| 256; 32896	26\| 321	80.7	2.920000002	2.890000002	5.0-4\| 4.9-7	1.027	10:10
esc16c	406\| 256; 32896	27\| 331	77.5	1.600000002	1.530000002	6.6-4\| 5.6-7	4.375	10:42
esc16d	406 \| 256; 32896	20\| $62 \mid 70.8$	1.600000001	1.300000001	$6.1-7\|8.0-7\| 18.750$	1:45		
esc16e	406 \| 256; 32896	19\| 61	70.1	2.800000001	2.700000001	9.7-8\| 9.4-7	3.571	1:42
esc 16 g	406\| 256; 32896	23\| 106	109.8	2.600000001	2.500000001	2.9-7\| 4.7-7	3.846	4:26
esc16h	406 \| 256; 32896	29\| 319	90.0	9.960000002	9.760000002	1.4-4\| 5.8-7	2.008	10:52
esc16i	406\| 256; 32896	20\| 106	117.4	1.400000001	1.200000001	8.6-7\| 6.9-7	14.286	4:51
esc16j	406\| 256; 32896	15\| 67	104.8	8.000000000	8.000000000	1.6-7\| 4.1-7	0.000	2:41
esc32a	1582 \| 1024; 524800	26\| $232 \mid 101.9$	$\dagger 1.300000002$	1.040000002	$2.5-5\|7.8-7\| 20.000$	4:48:55		
esc32b	1582 \| 1024; 524800	22\| 201	99.4	$\dagger 1.680000002$	1.320000002	1.7-4\| 7.8-7	21.429	3:52:36
esc32c	1582 \| 1024; 524800	30\| 479	140.2	$\dagger 6.420000002$	6.160000002	6.5-4\| 2.1-7	4.050	11:12:30

Table 7: Results for the SDPNAL algorithm on the quadratic assignment problems. The entries under the column "\%gap" are calculated with respect to the best solution listed which is known to be optimal unless the symbol (\dagger) is prefixed.

problem	$m-n_{l} \mid n_{s} ; n_{l}$	it\| itsub	pcg	$\begin{gathered} \text { best } \\ \text { upper bound } \end{gathered}$	lower bound \underline{v}	$R_{P} \mid R_{D}-$ \%gap	time	
esc32d	1582 \| 1024; 524800	${ }^{25\|254\| 132.0}$	$\dagger 2.000000002$	1.910000002	5.3-7\| 5.6-7	4.500	5:43:54	
esc32e	1582 \| 1024; 524800	15\| $46 \mid 58.2$	2.000000000	2.000000000	2.2-7\| 1.1-7	0.000	31:11	
esc32f	1582 \| 1024; 524800	15\| $46 \mid 58.2$	2.000000000	2.000000000	2.2-7\| 1.1-7	0.000	31:13	
esc 32 g	1582 \| 1024; 524800	$15\|38\| 50.7$	6.000000000	6.000000000	1.7-7\| 3.2-7	0.000	23:25	
esc32h	1582 \| 1024; 524800	30\| 403	113.3	$\dagger 4.380000002$	4.230000002	9.9-4\| $3.0-7 \mid 3.425$	8:05:32	
had12	232 \| 144; 10440	23\| 457	93.8	1.652000003	1.652000003	2.2-4\| 1.4-7	0.000	5:17
had14	313\| 196; 19306	28\| $525 \mid 99.5$	2.724000003	2.724000003	1.5-3\| 7.6-7	0.000	13:03	
had16	406\| 256; 32896	$27\|525\| 98.7$	3.720000003	3.720000003	$\mathbf{1 . 4 - 3 \| ~} 1.2-7 \mid 0.000$	22:37		
had18	511\|324; 52650	29\| 458	104.3	5.358000003	5.358000003	$\mathbf{1 . 5 - 3}\|4.0-7\| 0.000$	44:30	
had20	628 \| 400; 80200	32\| 568	96.7	6.922000003	6.922000003	3.8-3\| 2.6-7	0.000	1:24:06
kra30a	1393 \| 900; 405450	27\| 313	68.0	8.890000004	8.642800004	4.5-4\| 6.5-7	2.781	4:08:17
kra30b	1393 \| 900; 405450	28\| 289	68.9	9.142000004	8.745000004	3.1-4\| $7.4-7 \mid 4.343$	3:50:35	
kra32	1582 \| 1024; 524800	31\| 307	78.6	8.890000004	8.529800004	4.6-4\| 6.0-7	4.052	6:43:41
lipa20a	628 \| 400; 80200	18\| 243	70.1	3.683000003	3.683000003	5.5-7\| 2.9-9	0.000	24:29
lipa20b	628 \| 400; 80200	14\| 116	56.2	2.707600004	2.707600004	1.7-5\| 6.5-7	0.000	10:10
lipa30a	1393 \| 900; 405450	20\| $252 \mid 78.2$	1.317800004	1.317800004	2.5-7\| 1.1-10	0.000	3:41:44	
lipa30b	1393 \| 900; 405450	18\| $83 \mid 80.8$	1.514260005	1.514260005	6.9-7\| 3.3-8	0.000	1:23:34	
lipa40a	2458 \| 1600; 1280800	$22\|324\| 81.7$	3.153800004	3.153800004	4.1-7\| 4.6-11	0.000	21:02:51	
lipa40b	2458 \| 1600; 1280800	19\| 121	76.6	4.765810005	4.765810005	3.9-6\| 1.3-8	0.000	7:24:25
nug12	232 \| 144; 10440	22\| 266	69.6	5.780000002	5.680000002	1.2-4\| 3.6-7	1.730	2:27
nug14	313\| 196; 19306	24\| 337	62.3	1.014000003	1.008000003	3.1-4\| 8.0-7	0.592	5:50
nug15	358 \| 225; 25425	27\| 318	62.6	1.150000003	1.138000003	3.0-4\| 7.5-7	1.043	7:32
nug16a	406\| 256; 32896	25\| 346	80.4	1.610000003	1.597000003	3.3-4\| 6.6-7	0.807	14:15
nug16b	406\|256; 32896	28\| $315 \mid 64.5$	1.240000003	1.216000003	2.8-4\| 4.2-7	1.935	10:20	
nug17	457 \| 289; 41905	26\| 302	60.6	1.732000003	1.704000003	2.0-4\| $7.7-7 \mid 1.617$	12:38	
nug18	511 \| 324; 52650	26\| 287	59.5	1.930000003	1.891000003	2.2-4\| 3.5-7	2.021	15:39
nug20	628 \| 400; 80200	26\| 318	65.1	2.570000003	2.504000003	1.5-4\| $5.2-7 \mid 2.568$	31:49	
nug21	691 \| 441; 97461	27\| 331	62.5	2.438000003	2.378000003	1.9-4\| 6.6-7	2.461	40:22
nug22	757 \| 484; 117370	28\| 369	86.0	3.596000003	3.522000003	3.1-4\| 5.9-7	2.058	1:21:58
nug24	898 \| 576; 166176	29\| 348	63.7	3.488000003	3.396000003	1.8-4\| 3.6-7	2.638	1:33:59
nug25	973 \| 625; 195625	27\| $335 \mid 60.2$	3.744000003	3.621000003	1.8-4\| 3.0-7	3.285	1:41:49	
nug27	1132\| 729; 266085	29\| $380 \mid 80.1$	5.234000003	5.124000003	1.3-4\| 4.5-7	2.102	3:31:50	
nug28	1216 \| 784; 307720	26\| 329	80.5	5.166000003	5.020000003	2.4-4\| 6.3-7	2.826	3:36:38
nug30	1393 \| 900; 405450	27\| 360	61.4	6.124000003	5.944000003	1.3-4\| 3.3-7	2.939	4:22:09
rou12	232 \| 144; 10440	25\| 336	106.3	2.355280005	2.354340005	4.6-4\| 1.6-7	0.040	4:50
rou15	358\| 225; 25425	26\| 238	64.0	3.542100005	3.495440005	$\mathbf{2 . 5 - 4 \| ~ 4 . 0 - 7 \| ~} 1.317$	5:48	
rou20	628\| 400; 80200	26\| $250 \mid 69.9$	7.255220005	6.943970005	1.5-4\| $7.5-7 \mid 4.290$	27:26		
scr 12	232 \| 144; 10440	19\| 255	99.9	3.141000004	3.140800004	4.3-4\| 7.5-7	0.006	3:16
scr 15	358\| 225; 25425	19\| 331	91.7	5.114000004	5.114000004	1.3-7\| 2.8-7	0.000	9:42
scr20	628 \| 400; 80200	28\| $353 \mid 65.2$	1.100300005	1.064720005	$\mathbf{2 . 6 - 4 \| ~ 4 . 9 - 7 \| ~} 3.234$	34:32		
ste36a	1996 \| 1296; 840456	26\| 318	93.8	9.526000003	9.236000003	1.7-4\| 4.1-7	3.044	15:09:10
ste36b	1996 \| 1296; 840456	29\| 348	101.0	1.585200004	1.560300004	1.8-3\| 4.3-7	1.571	19:05:19
ste36c	1996 \| 1296; 840456	$28\|360\| 105.3$	8.239110006	8.118645006	6.3-4\| 4.0-7	1.462	19:56:15	
tai12a	232 \| 144; 10440	15\| 180	59.8	2.244160005	2.244160005	1.8-6\| 7.6-8	0.000	1:28
tai12b	232\| 144; 10440	29\| 596	112.2	3.946492507	3.946490807	3.7-4\| 9.3-9	0.000	7:40
tai15a	358\| 225; 25425	23\| 196	65.1	3.882140005	3.766080005	1.3-4\| $5.0-7 \mid 2.990$	4:58	
tai15b	358\| 225; 25425	29\| 409	102.2	5.176526807	5.176092207	1.5-3\| $7.0-7 \mid 0.008$	16:04	
tail7a	457 \| 289; 41905	23\| 168	69.7	4.918120005	4.758930005	1.4-4\| 5.0-7	3.237	8:21
tai20a	628 \| 400; 80200	27\| $220 \mid 73.3$	7.034820005	6.708270005	1.9-4\| 4.2-7	4.642	25:32	
tai20b	628 \| 400; 80200	31\| 485	91.6	1.224553198	1.224520958	2.9-3\| 1.4-7	0.003	54:05
tai25a	973 \| 625; 195625	27\| 194	77.3	1.167256006	1.013010006	8.0-7\| 7.9-7	13.214	1:17:54
tai25b	973 \| 625; 195625	29\| $408 \mid 70.4$	3.443556468	3.336854628	2.6-3\| 6.2-7	3.099	2:33:26	
tai30a	1393 \| 900; 405450	27\| 207	82.4	$\dagger 1.818146006$	1.705782006	8.1-5\| 2.0-7	6.180	3:35:03
tai30b	1393 \| 900; 405450	30\| 421	71.6	6.371171138	5.959262678	1.4-3\| 4.9-7	6.465	6:26:30
tai35a	1888 \| 1225; 750925	28\| 221	81.0	2.422002006	2.215230006	1.5-4\| 5.0-7	8.537	8:09:44
tai35b	1888 \| 1225; 750925	28\| 401	58.3	2.833154458	2.683281558	8.7-4\| 6.4-7	5.290	10:33:10
tai40a	2458 \| 1600; 1280800	27\| 203	85.1	3.139370006	2.841846006	7.5-5\| 5.3-7	9.477	15:25:52
tai40b	2458 \| 1600; 1280800	30\| 362	74.1	6.372509488	6.068808228	1.7-3\| 4.9-7	4.766	23:32:56
tho30	1393 \| 900; 405450	27\| 315	61.1	1.499360005	1.432670005	2.4-4\| 7.3-7	4.448	3:41:26
tho40	2458 \| 1600; 1280800	27\| 349	60.9	$\dagger 2.405160005$	2.261610005	2.0-4\| 6.5-7	5.968	17:13:24

Table 8: Results for the SDPNAL algorithm on the BIQ problems. The entries under the column "\%gap" are calculated with respect to the best solution listed, which is known to be optimal unless the symbol (\dagger) is prefixed.

problem	m -	$n_{l} \mid n_{s} ; n_{l}$	it \| itsub	pcg	best upper bound	lower bound \underline{v}		$R_{D} \mid \%$ gap	time	
be100.1	101	101; 5151	27\| 488	70.5	-1.94120000 4	-2.00210000 4	8.6-7	5.7-7\| 3.137	1:45	
be100.2	101	101; 5151	25\| $378 \mid 78.5$	-1.72900000 4	-1.79880000 4	8.3-7	7.6-7\| 4.037	1:32		
be100.3	101	101; 5151	$27\|432\| 96.3$	-1.75650000 4	-1.82310000 4	3.7-7	7.0-7\| 3.792	2:08		
be100.4	101	101; 5151	$27\|505\| 101.2$	-1.91250000 4	-1.98410000 4	2.4-6\|	7.7-7\| 3.744	2:37		
be100.5	101	101; 5151	25\| $355 \mid 78.5$	-1.58680000 4	-1.68880000 4	8.6-7	8.8-7\| 6.428	1:28		
be100.6	101	101; 5151	26\| $440 \mid 94.4$	-1.73680000 4	-1.81480000 4	4.7-6\|	6.3-7\| 4.491	2:06		
be100.7	101	101; 5151	27\| 219	92.3	-1.86290000 4	-1.97000000 4	1.3-7\|	4.9-7\| 5.749	1:01	
be100.8	101	101; 5151	25\| 265	47.1	-1.86490000 4	-1.99460000 4	5.1-7\|	5.9-7\| 6.955	40	
be100.9	101	101; 5151	28\| 526	72.6	-1.32940000 4	-1.42630000 4	6.4-7\|	5.3-7\| 7.289	2:01	
be100.10	101	101; 5151	27\| 493	52.0	-1.53520000 4	-1.64080000 4	6.7-7	5.8-7\| 6.879	1:25	
be120.3.1	121	121; 7381	26\| 384	112.4	-1.30670000 4	-1.38030000 4	5.9-6\|	4.9-7\| 5.633	2:57	
be120.3.2	121	121; 7381	27\| 410	117.9	-1.30460000 4	-1.36260000 4	4.6-6\|	4.1-7\| 4.446	3:16	
be120.3.3	121	121; 7381	26\| $210 \mid 89.2$	-1.24180000 4	-1.29870000 4	2.9-7	4.4-7\| 4.582	1:19		
be120.3.4	121	121; 7381	27\| 391	64.8	-1.38670000 4	-1.45110000 4	6.6-7	5.5-7\| 4.644	1:49	
be120.3.5	121	121; 7381	27\| 489	99.0	-1.14030000 4	-1.19910000 4	7.8-6\|	2.9-7\| 5.157	3:21	
be120.3.6	121	121; 7381	26\| 386	111.2	-1.29150000 4	-1.34320000 4	7.9-7\|	4.3-7\| 4.003	2:57	
be120.3.7	121	121; 7381	27\| 412	111.9	-1.40680000 4	-1.45640000 4	1.0-4	5.1-7\| 3.526	3:16	
be120.3.8	121	121; 7381	27\| 426	108.5	-1.47010000 4	-1.53030000 4	8.1-5	4.0-7\| 4.095	3:10	
be120.3.9	121	121; 7381	$27\|418\| 89.2$	-1.04580000 4	-1.12410000 4	7.5-5	6.3-7\| 7.487	2:39		
be120.3.10	121	121; 7381	30\| 611	84.0	-1.22010000 4	-1.29300000 4	1.1-6\|	2.9-7\| 5.975	3:36	
be120.8.1	121	121; 7381	26\| $384 \mid 71.5$	-1.86910000 4	-2.01940000 4	4.3-7\|	6.6-7\| 8.041	1:53		
be120.8.2	121	121; 7381	26\| 402	113.9	-1.88270000 4	-2.00740000 4	4.9-5	4.4-7\| 6.623	3:11	
be120.8.3	121	121; 7381	27\| 267	96.2	-1.93020000 4	-2.05050000 4	5.1-7\|	5.1-7\| 6.233	1:48	
be120.8.4	121	121; 7381	26\| 399	96.6	-2.07650000 4	-2.17790000 4	3.4-6\|	4.2-7\| 4.883	2:42	
be120.8.5	121	121; 7381	27\| 452	120.1	-2.04170000 4	-2.13160000 4	8.3-7\|	5.3-7\| 4.403	3:48	
be120.8.6	121	121; 7381	29\| 459	90.6	-1.84820000 4	-1.96770000 4	1.3-6\|	6.3-7\| 6.466	2:53	
be120.8.7	121	121; 7381	28\| 457	52.5	-2.21940000 4	-2.37320000 4	2.0-7	4.9-7\| 6.930	1:46	
be120.8.8	121	121; 7381	27\| 151	66.1	-1.95340000 4	-2.12040000 4	8.0-7	9.7-7\| 8.549	43	
be120.8.9	121	121; 7381	27\| 301	60.4	-1.81950000 4	-1.92840000 4	2.3-7\|	4.1-7\| 5.985	1:17	
be120.8.10	121	121; 7381	$27\|307\| 102.7$	-1.90490000 4	-2.00240000 4	4.1-7\|	4.1-7\| 5.118	2:14		
be150.3.1	151	151; 11476	$27\|538\| 84.7$	-1.88890000 4	-1.98490000 4	1.3-5	5.3-7\| 5.082	4:57		
be150.3.2	151	151; 11476	28\| 499	89.3	-1.78160000 4	-1.88640000 4	1.1-5	6.0-7\| 5.882	4:51	
be150.3.3	151	151; 11476	26\|514	101.8	-1.73140000 4	-1.80430000 4	1.8-6	7.6-7\| 4.210	5:37	
be150.3.4	151	151; 11476	$27\|233\| 98.2$	-1.98840000 4	-2.06520000 4	4.9-7	6.0-7\| 3.862	2:28		
be150.3.5	151	151; 11476	28\| 507	90.4	-1.68170000 4	-1.77680000 4	1.6-5	4.1-7\| 5.655	4:53	
be150.3.6	151	151; 11476	27\| 517	95.5	-1.67800000 4	-1.80500000 4	6.7-6\|	5.0-7\| 7.569	5:18	
be150.3.7	151	151; 11476	$27\|470\| 73.5$	-1.80010000 4	-1.91010000 4	6.8-7	9.1-7\| 6.111	3:42		
be150.3.8	151	151; 11476	27\| 377	84.7	-1.83030000 4	-1.96980000 4	1.3-5	6.3-7\| 7.622	3:25	
be150.3.9	151	151; 11476	26\| $292 \mid 58.0$	-1.28380000 4	-1.41030000 4	3.8-7	8.8-7\| 9.854	1:52		
be150.3.10	151	151; 11476	27\| 438	121.3	-1.79630000 4	-1.92300000 4	1.6-5	3.7-7\| 7.053	5:39	
be150.8.1	151	151; 11476	28\| 661	78.0	-2.70890000 4	-2.91430000 4	9.4-7	6.6-7\| 7.582	5:36	
be150.8.2	151	151; 11476	$27\|272\| 87.4$	-2.67790000 4	-2.88210000 4	3.5-7	7.6-7\| 7.625	2:34		
be150.8.3	151	151; 11476	27\| 435	77.9	-2.94380000 4	-3.10600000 4	3.5-7\|	8.3-7\| 5.510	3:37	
be150.8.4	151	151; 11476	$26\|310\| 89.5$	-2.69110000 4	-2.87290000 4	8.9-7\|	8.6-7\| 6.756	3:01		
be150.8.5	151	151; 11476	$27\|500\| 113.9$	-2.80170000 4	-2.94820000 4	9.4-7\|	3.7-7\| 5.229	6:06		
be150.8.6	151	151; 11476	27\| 415	115.6	-2.92210000 4	-3.14370000 4	5.2-6\|	6.8-7\| 7.584	4:56	
be150.8.7	151	151; 11476	27\| 446	127.2	-3.12090000 4	-3.32520000 4	2.8-5	2.5-7\| 6.546	6:06	
be150.8.8	151	151; 11476	28\| 462	109.0	-2.97300000 4	-3.16000000 4	5.8-6\|	6.7-7\| 6.290	5:23	
be150.8.9	151	151; 11476	28\| $370 \mid 110.7$	-2.53880000 4	-2.71100000 4	2.6-7	5.3-7\| 6.783	4:20		
be150.8.10	151	151; 11476	26\| $288 \mid 95.7$	-2.83740000 4	-3.00480000 4	5.2-7\|	4.7-7\| 5.900	2:58		
be200.3.1	201	201; 20301	29\| 615	89.7	-2.54530000 4	-2.77160000 4	5.6-7\|	5.0-7\| 8.891	10:29	
be200.3.2	201	201; 20301	29\| 307	93.2	-2.50270000 4	-2.67600000 4	3.5-7\|	5.3-7\| 6.925	5:38	
be200.3.3	201	201; 20301	29\| 507	120.8	-2.80230000 4	-2.94780000 4	5.6-5\|	5.7-7\| 5.192	12:09	
be200.3.4	201	201; 20301	29\| 523	102.1	-2.74340000 4	-2.91060000 4	4.7-6\|	5.4-7\| 6.095	10:41	
be200.3.5	201	201; 20301	28\| 466	116.2	-2.63550000 4	-2.80730000 4	1.4-6\|	5.5-7\| 6.519	10:38	
be200.3.6	201	201; 20301	29\| 639	60.1	-2.61460000 4	-2.79280000 4	9.5-7	\|3.7-7	6.816	7:36
be200.3.7	201	201; 20301	29\| $534 \mid 93.9$	-3.04830000 4	-3.16200000 4	1.1-6\|	5.8-7\| 3.730	9:43		
be200.3.8	201	201; 20301	29\| 308	100.7	-2.73550000 4	-2.92440000 4	6.4-7	9.0-7\| 6.906	5:59	
be200.3.9	201	201; 20301	28\| 482	87.1	-2.46830000 4	-2.64370000 4	3.2-5	3.7-7\| 7.106	8:28	
be200.3.10	201	201; 20301	29\| 539	98.7	-2.38420000 4	-2.57600000 4	5.8-6\|	4.4-7\| 8.045	10:25	
be200.8.1	201	201; 20301	28\| 489	97.5	-4.85340000 4	-5.08690000 4	3.7-5	6.2-7\| 4.811	9:41	
be200.8.2	201	201; 20301	29\| 192	74.7	-4.08210000 4	-4.43360000 4	6.1-7	7.3-7\| 8.611	2:46	
be200.8.3	201	201; 20301	28\| 476	116.1	-4.32070000 4	-4.62540000 4	5.8-7\|	9.2-7\| 7.052	10:53	

Table 8: Results for the SDPNAL algorithm on the BIQ problems. The entries under the column "\%gap" are calculated with respect to the best solution listed, which is known to be optimal unless the symbol (\dagger) is prefixed

problem	$m-n_{l} \mid n_{s} ; n_{l}$	it\| itsub	pcg	best upper bound	lower bound \underline{v}	$R_{P}\left\|R_{D}\right\|$ \%gap	time	
be200.8.4	201 \| 201; 20301	29\| 267	93.3	-4.37570000 4	-4.66210000 4	${ }^{8.4-7 \mid} 7.2-7 \mid 6.545$	4:55	
be200.8.5	201 \| 201; 20301	28\| 521	93.8	-4.14820000 4	-4.42710000 4	1.7-5\| 7.7-7	6.723	9:53
be200.8.6	201 \| 201; 20301	28\| 556	87.4	-4.94920000 4	-5.12190000 4	2.7-5\| 4.4-7	3.489	9:48
be200.8.7	201 \| 201; 20301	$27\|248\| 92.6$	-4.68280000 4	-4.93530000 4	4.7-7\| 6.8-7	5.392	4:30	
be200.8.8	201 \| 201; 20301	28\| 314	94.3	-4.45020000 4	-4.76890000 4	7.0-7\| 7.7-7	7.161	5:49
be200.8.9	201 \| 201; 20301	29\| 543	115.6	-4.32410000 4	-4.54950000 4	5.8-6\| 3.8-7	5.213	12:16
be200.8.10	201 \| 201; 20301	29\| 485	107.9	-4.28320000 4	-4.57430000 4	6.9-6\| 5.5-7	6.796	10:15
be250.1	251 \| 251; 31626	29\| 532	94.7	-2.40760000 4	-2.51190000 4	$4.0-5\|4.6-7\| 4.332$	16:41	
be250.2	251 \| 251; 31626	28\| 519	113.6	-2.25400000 4	-2.36810000 4	3.1-5\| 6.4-7	5.062	18:51
be250.3	251 \| 251; 31626	28\| 561	95.7	-2.29230000 4	-2.40000000 4	2.9-5\| 6.0-7	4.698	17:17
be250.4	251 \| 251; 31626	30\| 577	112.2	-2.46490000 4	-2.57200000 4	$4.8-5\|4.7-7\| 4.345$	20:42	
be250.5	251 \| 251; 31626	29\| 463	98.1	-2.10570000 4	-2.23740000 4	9.3-5\| 4.4-7	6.254	14:30
be250.6	251\| 251; 31626	30\| 567	93.6	-2.27350000 4	-2.40180000 4	2.0-5\| 4.3-7	5.643	16:39
be250.7	251 \| 251; 31626	28\| 507	84.7	-2.40950000 4	-2.51190000 4	5.9-5\| 7.1-7	4.250	14:00
be250.8	251 \| 251; 31626	$28\|620\| 84.1$	-2.38010000 4	-2.50200000 4	1.6-5\| 7.5-7	5.122	16:50	
be250.9	251 \| 251; 31626	28\| 589	85.8	-2.00510000 4	-2.13970000 4	1.1-4\| 3.6-7	6.713	17:13
be250.10	251 \| 251; 31626	29\| 591	88.9	-2.31590000 4	-2.43550000 4	3.4-5\| 4.8-7	5.164	16:48
bqp50-1	51\| 51; 1326	25\| 463	119.9	-2.09800000 3	-2.14300000 3	7.1-6\| 6.7-7	2.145	1:12
bqp50-2	51\| 51; 1326	26\| 387	72.7	-3.70200000 3	-3.74200000 3	2.3-5\| 5.8-7	1.080	39
bqp50-3	51\| 51; 1326	24\| $343 \mid 84.3$	-4.62600000 3	-4.63700000 3	8.9-7\| 9.9-7	0.238	40	
bqp50-4	51\| 51; 1326	28\| 486	106.6	-3.54400000 3	-3.58300000 3	2.5-4\| 5.2-7	1.100	1:08
bqp50-5	51 \| 51; 1326	23\| 319	82.7	-4.01200000 3	-4.07700000 3	3.3-5\| 6.9-7	1.620	37
bqp50-6	51\|51; 1326	20\| 338	95.8	-3.69300000 3	-3.71100000 3	1.1-5\| 4.4-7	0.487	44
bqp50-7	51\|51; 1326	26\| 275	44.0	-4.52000000 3	-4.64900000 3	2.9-7\| 6.2-7	2.854	18
bqp50-8	51\| 51; 1326	26\| 289	73.3	-4.21600000 3	-4.26900000 3	8.5-7\| 6.5-7	1.257	29
bqp50-9	51\| 51; 1326	21\| 225	57.5	-3.78000000 3	-3.92100000 3	8.3-7\| 9.0-7	3.730	19
bqp50-10	51\| 51; 1326	27\| 191	52.2	-3.50700000 3	-3.62600000 3	$4.4-7\|6.5-7\| 3.393$	14	
bqp 100-1	101 \| 101; 5151	25\| $443 \mid 80.5$	-7.97000000 3	-8.38000000 3	2.7-7\| 8.2-7	5.144	1:49	
bqp100-2	101 \| 101; 5151	$23\|374\| 97.1$	-1.10360000 4	-1.14890000 4	5.4-4\| 4.8-7	4.105	1:53	
bqp100-3	101 \| 101; 5151	26\| 451	122.4	-1.27230000 4	-1.31530000 4	9.9-7\| 7.3-7	3.380	2:40
bqp100-4	101 \| 101; 5151	26\| 420	129.4	-1.03680000 4	-1.07310000 4	3.5-5\| 6.5-7	3.501	2:42
bqp100-5	101 \| 101; 5151	28\| $515 \mid 84.5$	-9.08300000 3	-9.48700000 3	5.0-5\| 3.3-7	4.448	2:16	
bqp100-6	101 \| 101; 5151	$28\|524\| 88.4$	-1.02100000 4	-1.08240000 4	6.7-7\| 4.6-7	6.014	2:22	
bqp 100-7	101 \| 101; 5151	28\| $572 \mid 81.9$	-1.01250000 4	-1.06890000 4	8.5-7\| 3.9-7	5.570	2:19	
bqp100-8	101 \| 101; 5151	26\| $440 \mid 107.4$	-1.14350000 4	-1.17700000 4	2.4-5\| 7.8-7	2.930	2:25	
bqp100-9	101 \| 101; 5151	$27\|482\| 101.7$	-1.14550000 4	-1.17330000 4	5.0-5\| 6.1-7	2.427	2:31	
bqp100-10	101 \| 101; 5151	25\| 415	110.4	-1.25650000 4	-1.29800000 4	3.9-5\| 5.7-7	3.303	2:18
bqp 250-1	251\| 251; 31626	28\| 483	117.7	-4.56070000 4	-4.76630000 4	3.9-7\| 6.6-7	4.508	17:42
bqp 250-2	251 \| 251; 31626	30\| 554	93.5	-4.48100000 4	-4.72220000 4	$4.4-5\|4.1-7\| 5.383$	16:23	
bqp 250-3	251 \| 251; 31626	28\| $296 \mid 116.4$	-4.90370000 4	-5.10770000 4	9.9-7\| 7.9-7	4.160	10:36	
bqp 250-4	251 \| 251; 31626	29\| 607	88.9	-4.12740000 4	-4.33120000 4	1.8-5\| 4.5-7	4.938	17:37
bqp 250-5	251 \| 251; 31626	28\| 570	103.7	-4.79610000 4	-5.00040000 4	$4.4-5\|6.9-7\| 4.260$	19:03	
bqp 250-6	251 \| 251; 31626	28\| 477	113.1	-4.10140000 4	-4.36690000 4	1.9-5\| 7.7-7	6.473	17:11
bqp 250-7	251 \| 251; 31626	30\| 429	126.3	-4.67570000 4	-4.89220000 4	8.2-7\| 5.9-7	4.630	16:36
bqp 250-8	251 \| 251; 31626	28\| 748	73.5	-3.57260000 4	-3.87800000 4	6.3-7\| 8.8-7	8.548	17:34
bqp 250-9	251 \| 251; 31626	29\| 453	117.0	-4.89160000 4	-5.14970000 4	3.7-7\| 3.9-7	5.276	16:12
bqp 250-10	251 \| 251; 31626	28\| 691	76.7	-4.04420000 4	-4.30140000 4	8.1-7\| 5.1-7	6.360	16:29
bqp500-1	501 \| 501; 125751	30\| 357	117.8	-1.16586000 5	-1.25965000 5	2.9-7\| 5.5-7	8.045	1:00:59
bqp500-2	501 \| 501; 125751	30\| 637	94.7	-1.28223000 5	-1.36012000 5	7.9-5\| 7.2-7	6.075	1:31:17
bqp500-3	501 \| 501; 125751	30\| 363	118.9	-1.30812000 5	-1.38454000 5	4.4-7\| 4.0-7	5.842	1:01:47
bqp500-4	501 \| 501; 125751	30\| 663	79.9	-1.30097000 5	-1.39329000 5	3.7-6\| 4.3-7	7.096	1:16:35
bqp500-5	501 \| 501; 125751	30\| 539	119.6	-1.25487000 5	-1.34092000 5	$4.5-5\|2.5-7\| 6.857$	1:36:43	
bqp500-6	501 \| 501; 125751	30\| 485	124.4	-1.21772000 5	-1.30765000 5	4.1-7\| 5.1-7	7.385	1:28:49
bqp500-7	501 \| 501; 125751	31\| 648	87.7	-1.22201000 5	-1.31492000 5	8.1-5\| 5.7-7	7.603	1:25:26
bqp500-8	501 \| 501; 125751	31\| 412	126.3	-1.23559000 5	-1.33490000 5	8.6-7\| 4.5-7	8.037	1:14:37
bqp500-9	501 \| 501; 125751	30\| 612	92.7	-1.20798000 5	-1.30289000 5	9.5-5\| 7.3-7	7.857	1:24:40
bqp500-10	501 \| 501; 125751	30\| $454 \mid 130.5$	-1.30619000 5	-1.38535000 5	7.0-7\| 6.4-7	6.060	1:24:23	
gka1a	51 \| 51; 1326	20\| 309	57.9	-3.41400000 3	-3.53700000 3	7.7-7\| 6.0-7	3.603	26
gka2a	61 \| 61; 1891	24\| 281	57.3	-6.06300000 3	-6.17100000 3	1.4-7\| 4.9-7	1.781	27
gka3a	71\| 71; 2556	$25\|398\| 68.3$	-6.03700000 3	-6.38600000 3	6.6-7\| 9.5-7	5.781	51	
gka4a	81\| 81; 3321	25\| 567	106.2	-8.59800000 3	-8.88100000 3	4.2-6\| 6.3-7	3.291	2:09
gka5a	51 \| 51; 1326	24\| $284 \mid 55.9$	-5.73700000 3	-5.89700000 3	7.7-7\| 7.8-7	2.789	23	
gka6a	31\|31; 496	25\| $175 \mid 46.8$	-3.98000000 3	-4.10300000 3	4.4-7\| 7.2-7	3.090	10	
gka7a	31\| 31; 496	26\| $145 \mid 47.2$	-4.54100000 3	-4.63800000 3	3.9-7\| 5.5-7	2.136	08	

Table 8: Results for the SDPNAL algorithm on the BIQ problems. The entries under the column "\%gap" are calculated with respect to the best solution listed, which is known to be optimal unless the symbol (\dagger) is prefixed

problem	$m-n_{l} \mid n_{s} ; n_{l}$	it \| itsub	pcg	best upper bound	lower bound \underline{v}	$R_{P}\left\|R_{D}\right\|$ \%gap	time	
gka8a	101 \| 101; 5151	27\| 543	94.1	-1.11090000 4	-1.11970000 4	3.8-5\| $6.6-7 \mid 0.792$	2:39	
gka1b	21\| 21; 231	$7\|42\| 23.8$	-1.33000000 2	-1.33000000 2	9.8-7\| 5.4-7	0.000	02	
gka2b	31\|31; 496	15\| 241	101.1	-1.21000000 2	-1.21000000 2	8.8-5\| 7.7-7	0.000	25
gka3b	41\|41; 861	12\| $85 \mid 25.6$	-1.18000000 2	-1.18000000 2	2.9-7\| 2.4-8	0.000	04	
gka4b	51 \| 51; 1326	14\| $88 \mid 25.9$	-1.29000000 2	-1.29000000 2	2.8-7\| 1.2-9	0.000	04	
gka5b	61 \| 61; 1891	12\| $86 \mid 26.0$	-1.500000002	-1.50000000 2	7.6-8\| 1.7-8	0.000	05	
gka6b	71\| 71; 2556	13\| 123	34.6	-1.46000000 2	-1.46000000 2	3.3-7\| 8.1-10	0.000	10
gka7b	81\| 81; 3321	19\| 193	33.8	-1.60000000 2	-1.60000000 2	8.9-7\| 5.3-7	0.000	16
gka8b	91\| 91; 4186	15\| 198	47.0	-1.45000000 2	-1.45000000 2	5.9-7\| 2.3-9	0.000	28
gka9b	101 \| 101; 5151	18\| 252	50.9	-1.37000000 2	-1.37000000 2	3.7-7\| 1.2-10	0.000	44
gka10b	126 \| 126; 8001	17\| 298	94.5	-1.54000000 2	-1.55000000 2	1.6-4\| 3.4-7	0.649	2:14
gka1c	41 \| 41; 861	24\| 371	103.7	-5.05800000 3	-5.11300000 3	1.5-5\| 3.8-7	1.087	45
gka2c	51 \| 51; 1326	27\| 358	72.0	-6.21300000 3	-6.32000000 3	2.5-7\| 5.6-7	1.722	35
gka3c	61 \| 61; 1891	$25\|305\| 60.0$	-6.66500000 3	-6.81300000 3	3.1-7\| 9.6-7	2.221	31	
gka4c	71\| 71; 2556	27\| 476	114.7	-7.39800000 3	-7.56500000 3	9.7-7\| 4.5-7	2.257	1:38
gka5c	81 \| 81; 3321	28\| 304	94.6	-7.36200000 3	-7.57600000 3	1.2-6\| 3.9-7	2.907	1:03
gka6c	91\| 91; 4186	27\| 427	108.4	-5.82400000 3	-5.96100000 3	3.0-5\| 6.2-7	2.352	1:58
gka7c	101 \| 101; 5151	26\| 396	82.2	-7.22500000 3	-7.31600000 3	1.9-4\| 6.0-7	1.260	1:43
gka1d	101 \| 101; 5151	27\| 439	96.5	-6.33300000 3	-6.52800000 3	1.1-5\| 2.5-7	3.079	2:09
gka2d	101 \| 101; 5151	27\| 523	84.1	-6.57900000 3	-6.99000000 3	1.7-6\| 6.9-7	6.247	2:15
gka3d	101 \| 101; 5151	26\| 467	96.9	-9.26100000 3	-9.73400000 3	1.4-5\| 4.8-7	5.107	2:21
gka4d	101 \| 101; 5151	28\| $375 \mid 104.9$	-1.07270000 4	-1.12780000 4	1.4-6\| 4.7-7	5.137	1:56	
gka5d	101 \| 101; 5151	26\| 422	91.5	-1.16260000 4	-1.23980000 4	2.3-6\| 6.9-7	6.640	1:57
gka6d	101 \| 101; 5151	27\| 338	102.4	-1.42070000 4	-1.49290000 4	1.9-6\| 5.2-7	5.082	1:42
gka7d	101 \| 101; 5151	27\| 177	75.3	-1.44760000 4	-1.53750000 4	6.2-7\| 5.8-7	6.210	40
gka8d	101 \| 101; 5151	26\| 271	118.4	-1.63520000 4	-1.70050000 4	2.0-7\| 7.1-7	3.993	1:35
gka9d	101 \| 101; 5151	26\| 351	63.9	-1.56560000 4	-1.65330000 4	7.2-7\| 6.1-7	5.602	1:10
gka10d	101 \| 101; 5151	26\| 213	78.5	-1.91020000 4	-2.01080000 4	2.0-7\| 7.2-7	5.266	52
gka1e	201 \| 201; 20301	29\| $530 \mid 97.3$	-1.64640000 4	-1.70690000 4	5.2-5\| 7.9-7	3.675	10:36	
gka2e	201 \| 201; 20301	29\| 367	103.4	-2.33950000 4	-2.49170000 4	4.7-7\| 4.3-7	6.506	7:23
gka3e	201 \| 201; 20301	30\| 559	91.5	-2.52430000 4	-2.68980000 4	1.6-5\| 2.9-7	6.556	10:22
gka4e	201 \| 201; 20301	29\|512	113.0	-3.55940000 4	-3.72250000 4	1.2-5\| 4.2-7	4.582	11:25
gka5e	201 \| 201; 20301	28\| $510 \mid 95.2$	-3.51540000 4	-3.80020000 4	3.9-5\| 5.1-7	8.101	9:46	
gka1f	501 \| 501; 125751	30\| 563	102.8	$\dagger-6.119400004$	-6.55590000 4	9.9-5\| 5.2-7	7.133	1:28:54
gka2f	501 \| 501; 125751	30\| 624	93.6	$\dagger-1.001610005$	-1.07932000 5	6.6-5\| 5.7-7	7.759	1:28:11
gka3f	501 \| 501; 125751	30\| 523	120.4	$\dagger-1.380350005$	-1.50152000 5	2.8-5\| 6.7-7	8.778	1:31:34
gka4f	501 \| 501; 125751	32\| 571	128.8	$\dagger-1.727710005$	-1.87089000 5	8.7-6\| 4.0-7	8.287	1:44:43
gka5f	501 \| 501; 125751	31\| $665 \mid 90.5$	$\dagger-1.905070005$	-2.06916000 5	6.6-6\| 7.1-7	8.613	1:25:48	

8 Conclusion

In this paper, we introduced a Newton-CG augmented Lagrangian algorithm for solving semidefinite programming problems (D) and (P) and analyzed its convergence and rate of convergence. Our convergence analysis is based on classical results of proximal point methods [32, 33] along with recent developments on perturbation analysis of the problems under consideration. Extensive numerical experiments conducted on a variety of large scale SDPs demonstrated that our algorithm is very efficient. This opens up a way to attack problems in which a fast solver for large scale SDPs is crucial, for example, in applications within a branch-and-bound algorithm for solving hard combinatorial problems such as the quadratic assignment problems.

Acknowledgements

We thank Brian Borchers for providing us the SDP data for the maximum stable set problems collected by N. Sloane [35]. We also thank the two referees and the associate editor for their helpful comments and suggestions to improve this paper.

References

[1] F. Alizadeh, J. P. A. Haeberly, and O. L. Overton, Complementarity and nondegeneracy in semidefinite programming, Mathemtical Programming, 77 (1997), pp. 111-128.
[2] V. I. Arnold, On matrices depending on parameters, Russian Mathematical Surveys, 26 (1971), pp. 29-43.
[3] Z. J. Bai, D. Chu and D. F. Sun, A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure, SIAM Journal on Scientific Computing, 29 (2007), pp. 2531-2561.
[4] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimizaiton Problems, SpringerVerlag, New York (2000).
[5] S. Burer, and D. Vandenbussche, Solving Lift-and-Project relaxations of binary integer programs, SIAM Journal on Optimization, 16 (2006), pp. 726-750.
[6] S. Burer, R. Monterio, and Y. Zhang, A computational study of a gradient-based logbarrier algorithm for a class of large scale SDPs, Math. Program., 95 (2003), pp. 359-379.
[7] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk, Finding maximum independent sets in graphs arising from coding theory, Symposium on Applied Computing, Proceedings of the 2002 ACM symposium on Applied computing, 2002, pp. 542-546.
[8] Z. X. Chan and D. F. Sun, Constraint nondegeneracy, strong regularity and nonsigularity in semidefinite programming, SIAM Journal on optimization, 19 (2008), pp. 370-396.
[9] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York (1983).
[10] A. Eisenblätter, M. Grötschel, and A. M. C. A. Koster, Frequency planning and ramification of coloring, Discuss. Math. Graph Theory, 22 (2002), pp. 51-88.
[11] F. Facchinei, Minimization of $S C^{1}$ functions and the Maratos effect, Operation Research Letters, 17 (1995), 131-137.
[12] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore and London, 3rd edition, 1996.
[13] C. Helmberg, Numerical Evaluation of SBmethod, Mathematical Programming, 95 (2003), pp. 381-406.
[14] C. Jansson, Termination and verification for ill-posed semidefinite programs, Technical Report, Informatik III, TU Hamburg-Harburg, Hamburg, June 2005.
[15] D. Johnson, G. Pataki, and Farid Alizadeh, The Seventh DIMACS Implementation Challenge: Semidefinite and Related Optimization Problems, Rutgers University, http://dimacs.rutgers.edu/Challenges/, (2000).
[16] M. Kočvara and M. Stingl, PENNON - a code for convex nonlinear and semidefinite programming, Optimization Methods and Software, 18 (2003), pp. 317-333.
[17] M. Kočvara and M. Stingl, On the solution of large-scale SDP problems by the modified barrier method using iterative solvers, Mathematical Programming, 109 (2007), pp. 413444.
[18] B. Kummer, Newton's method for non-differentiable functions, In: J. Guddat et al.(eds.), Advances in Mathematical Optimization, Akademie-Verlag, Berlin, (1988), pp. 114-125.
[19] J. Malick, J. Povh, F. Rendl and A. Wiegele, Regularization methods for semidefinite programming, preprint, 2007.
[20] H. Mittelmann, An independent benchmarking of SDP and SOCP solvers, Mathematical Programming, 95 (2003), pp. 407-430.
[21] J. S. Pang and L. Qi, A globally convergent Newton method of convex $S C^{1}$ minimization problems, Journal of Optimization Theory and Application, 85 (1995), pp. 633-648.
[22] J. S. Pang, D. F. Sun and J. Sun, Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems, Mathematics of Operations Research, 28 (2003), pp. 272-284.
[23] J. Povh, and F. Rendl, Copositive and semidefinite relaxations of the quadratic assignment problem, Technical Report, Klagenfurt University, July 2006.
[24] J. Povh, F. Rendl, and A. Wiegele, A boundary point method to solve semidefinite programs, Computing, 78 (2006), pp. 277-286.
[25] H. D. Qi and D. F. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), pp. 360-385.
[26] L. Qi and J. Sun, A nonsmooth version of Newton's method, Mathematical Programming, 58 (1993), pp. 353-367.
[27] S. M. Robinson, Local structure of feasible sets in nonlinear programming, Part II: nondegeneracy, Mathematical Programming Study, 22 (1984), pp. 217-230.
[28] S. M. Robinson, Local structure of feasible sets in nonlinear programming, Part III: stability and sensitivity, Mathematical Programming Study, 30 (1987), pp. 45-66.
[29] R. T. Rockafellar, Convex Analysis, Princenton University Press, New Jersey, 1970.
[30] R. T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization, Mathematical Programming, 5 (1973), pp. 354-373.
[31] R. T. Rockafellar, Conjugate Duality and Optimization, Regional Conference Series in Applied Math., 16 (1974), SIAM Publication.
[32] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), pp. 877-898.
[33] R. T. Rockafellar, Augmented Lagrangains and applications of the proximal point algorithm in convex programming, Mathematics of Operation Research, 1 (1976), pp. 97-116.
[34] R. T. Rockafellar and R. J. -B. Wets, Variational Analysis, Springer, New York, 1998.
[35] N. Sloane, Challenge Problems: Independent Sets in Graphs, http://www.research.att. com/~njas/doc/graphs.html.
[36] D. F. Sun and J. Sun, Semismooth matrix valued functions, Mathematics of Operations Research, 27 (2002), pp. 150-169.
[37] D. F. Sun, J. Sun and L. W. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming, Mathematical Programming, 114 (2008), pp. 349-391.
[38] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia (1997).
[39] K. C. Toh, and M. Kojima, Solving some large scale semidefinite programs via the conjugate residual method, SIAM Journal on Optimization, 12 (2002), pp. 669-691.
[40] K. C. Toh, Solving large scale semidefinite programs via an iterative solver on the augmented systems, SIAM Journal on Optimization, 14 (2004), pp. 670-698.
[41] K.C. Toh, An inexact primal-dual path-following algorithm for convex quadratic SDP, Mathematical Programming, 112 (2007), pp. 221-254.
[42] M. Trick, V. Chvatal, W. Cook, D. Johnson, C. McGeoch, and R. Tarjan, The Second DIMACS Implementation Challenge: NP Hard Problems: Maximum Clique, Graph Coloring, and Satisfiability, Rutgers University, http://dimacs.rutgers.edu/Challenges/ (1992).
[43] A. Wiegele, Biq Mac library - a collection of Max-Cut and quadratic 0-1 programming instances of medium size, Preprint, 2007.
[44] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory I and II, Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York (1971), pp. 237-424.

[^0]: *A preliminary version of this paper was presented at ICCOPT II, Hamilton, Canada, August 13, 2007.
 ${ }^{\dagger}$ Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543 (zhaoxinyuan@nus.edu.sg).
 ${ }^{\ddagger}$ Department of Mathematics and Risk Management Institute, National University of Singapore, 2 Science Drive 2, Singapore 117543 (matsundf@nus.edu.sg). This author's research is supported in part by Academic Research Fund under Grant R-146-000-104-112.
 ${ }^{\text {§ }}$ Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543 (mattohkc@nus.edu.sg); and Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576. 117576. This author's research is supported in part by Academic Research Grant R-146-000-076-112.

