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Abstract
We derive new vanishing theorems for genera under almost nonnegative Ricci curvature and
infinite fundamental group. A vanishing theorem of Euler characteristic number for almost
nonnegatively curved Alexandrov spaces is also proved.
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1 Introduction

A classical theorem of Lichnerowicz asserts that a compact spin manifold carrying a Rie-
mannian metric of positive scalar curvature has vanishing ̂A-genus. In a different direction,
Lott conjectured that a compact spin manifold with almost nonnegative sectional curvature
has vanishing ̂A-genus (Prop.1 in [26]). In this paper we derive new vanishing theorems for
genera under almost nonnegative Ricci curvature condition. We start from the Todd genus.
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Theorem 1.1 Let M be a compact complex manifold with infinite fundamental group. If M
admits a sequence of Kähler metrics with almost nonnegative Ricci curvature, then the Todd
genus of M vanishes.

If a sequence of Riemannian metrics {gi }i∈N on a smooth manifold M satisfies

Ric(gi ) ≥ −1 and diam(gi ) ≤ 1

i
,

for all i ∈ N, then we say that {gi }i∈N have almost nonnegative Ricci curvature. Here
Ric(gi ) and diam(gi ) stand for the Ricci curvature and diameter of gi , respectively. If g has
nonnegativeRicci curvature, it is clear that gi = εi g, εi = 1

i2 diam(g)2
have almost nonnegative

Ricci curvature.
Given a compact complex manifold Mn of complex dimension n, its Todd genus (or

holomorphic Euler number) is defined to be

n
∑

p=0

(−1)p dim H0,p(M,C),

where H0,p(M,C) is the Dolbeault cohomology group of M .
Theorem 1.1 can be viewed as a complex analogue of a theorem of Fukaya–Yamaguchi

(Corollary 0.12, [13]), which says that a compact Riemannian manifold with almost non-
negative sectional curvature and infinite fundamental group has vanishing topological Euler
number. However, a compact Riemannian manifold with almost nonnegative Ricci curvature
and infinite fundamental group may have nonzero topological Euler number, see the example
constructed by Anderson in [1].

Example 1.2 Let Xn+1 be a smooth abelian variety of complex dimension (n + 1) ≥ 3
embedded in some complex projective space CP

N . Let Mn be the intersection of X with
some generic CPN−1. Then Mn is a smooth hypersurface of X with positive holomorphic
normal bundle L . ByLefschetz hyperplane theorem, the fundamental group ofM is an infinite
abelian group. Moreover, the Todd genus of M is nonzero. In fact, by Hirzebruch–Riemann–
Roch theorem [2, 19], the Todd genus of M is computed by

∫

M td(T M), where td(T M) is
the Todd class of the tangent bundle of M . Let d be the first Chern class of L . As X is an
abelian variety, then td(T X) = 1. Moreover, by properties of Todd class [19], we have

td(T M) td(L) = td(T X)|M ,

td(L) = d

1 − e−d
, d = c1(L).

Then

td(T M) = 1 − e−d

d
.

As L is a positive line bundle, we see that
∫

M
td(T M) = (−1)n

∫

M

dn

(n + 1)! �= 0.

Hence the Todd genus of M is nonzero. It follows that M × CP
k has nonzero Todd genus

for any k ≥ 1. Therefore by Theorem 1.1, M × CP
k does not admit a sequence of Kähler

metrics with almost nonnegative Ricci curvature. For k ≥ 2, it seems that all previous known
obstructions to almost nonnegative Ricci curvature do not apply to M × CP

k .
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Riemannian manifolds with almost nonnegative Ricci curvature have been studied exten-
sively [4, 12, 21, 23, 33].We briefly recall some previously known results (herem = dim M).

• The fundamental group of M has a nilpotent subgroup of finite index [23].
• The first Betti number of M is bounded above by m [14] with equality being achieved if

and only if M is diffeomorphic to a torus [8, 11].
• If M is spin and m is divisible by 4, then its ̂A-genus is bounded from above by 2

m
2 . See

Theorem E, page 294 in [16] and [14].

Compact Kähler manifolds with almost nonnegative Ricci curvature have been studied
in [12, 33]. Under the additional assumptions that M has bounded sectional curvature and
other things, it was shown in [33] that M has finite fundamental group. Moreover, Mn

is diffeomorphic to a complex manifold X such that the universal covering of X has a
decomposition: ˜X = X1 × · · · × Xs , where Xi is a Calabi–Yau manifold, or a hyperKähler
manifold, or Xi satisfies H p,0(Xi ,C) = 0, p > 0. IfM has infinite fundamental group, under
the stronger assumption that M has almost nonnegative bisectional curvature and bounded
sectional curvature, it was shown in [12] that there is a holomorphic fibration M → J (M),
where J (M) is the Jacobian of M , a complex torus of dimension 1

2b1(M) and b1 is the first
Betti number of M .

Comparedwith theworks in [12, 33],wedonot assumeboundedness of sectional curvature
in Theorem 1.1.

Our method can also be used to prove the following vanishing result for ̂A-genus.

Theorem 1.3 Let M be a 4m-dimensional compact spin manifold with infinite fundamen-
tal group. If M admits a sequence of Riemannian metrics with almost nonnegative Ricci
curvature, then its ̂A-genus vanishes.

Lott [26] conjectured that a compact spin manifold M with almost nonnegative sec-
tional curvature has vanishing ̂A-genus. Theorem 1.3 weakens the assumption from almost
nonnegative sectional curvature to almost nonnegative Ricci curvature under the additional
assumption thatM has infinite fundamental group.We emphasize that this additional assump-
tion is necessary. In fact, the K3 surface is a simply connected spin manifold which admits
a Ricci flat metric. However, its ̂A-genus is nonzero.

As an application of Theorem 1.3, we give the following example, where all previously
known obstructions to almost nonnegative Ricci curvature do not apply.

Example 1.4 Let B8 be a Bott manifold, which is spin, simply connected and ̂A(B8) = 1
(c.f. Section 4 in [31]). Let M8 = (T2 × S6)�B8. Then M8 is a spin manifold with infinite
fundamental group and

̂A(M8) = ̂A(T2 × S6) + ̂A(B8) = 1.

By Theorem 1.3, M8 can not admit a sequence of Riemannian metrics with almost nonneg-
ative Ricci curvature.

Some special cases ofTheorems1.1 and1.3 are easy to prove: IfM has infinite fundamental
group and admits a Riemannianmetricwith nonnegative Ricci curvature, then by the Splitting
Theorem in [9], some finite cover of M is diffeomorphic to a product manifold T

k × N for
some k ≥ 1. It follows that the genera of M appearing in Theorems 1.1, 1.3 are zero.

On the other hand, based on a fibration theorem proved in [22], a vanishing theorem
on signature is proved in [3] for Riemannian manifolds with almost nonnegative sectional
curvature and infinite fundamental group. However, no such fibration theorem exists under
almost nonnegative Ricci curvature condition, by the counterexample constructed in [1]. In
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order to prove our vanishing results on genera, we employ an analytic method based on the
Bochner technique. Via the Atiyah–Singer index theorem, our strategy is to show that the
indices of certain Dirac operators are zero. Using the method in [4], we can derive a bound
of the indices of those Dirac operators. In the presence of infinite fundamental group, our
crucial contribution is to show that the indices are in fact zero. In this step the multiplicity
property of genera under a finite covering is used in an essential way. See Sect. 2 for the
details of proof.

In [10], we also obtained several vanishing theorems for genera under different curvature
assumptions. We emphasize that the methods used in the proof in [10] and this paper are
different.

2 Proof of Theorems 1.1 and 1.3

In this section we prove Theorems 1.1 and 1.3.
Firstly we prove Theorem 1.1. Let M be a compact complex manifold of complex dimen-

sion n with infinite fundamental group. We are going to show that the Todd genus of M
vanishes if M admits a sequence of Kähler metrics gi satisfying

Ric(gi ) ≥ −1, diam(gi ) ≤ 1

i
.

Then the fundamental group of M contains a nilpotent subgroup of finite index [5, 23]. Let
M1 be a finite cover ofM such thatπ1(M1) is nilpotent. Thenwe have the following algebraic
lemma where the assumption that M has infinite fundamental group will be used.

Lemma 2.1 There exists a sequence of normal subgroups of finite index

π1(M1) = G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ G j ⊃ · · ·
such that lim j→+∞[G1 : G j ] = ∞.

Proof If π1(M1) is free abelian, i.e. π1(M1) 	 Z
k for some k ≥ 1, we can simply take

G j = (2 j−1
Z)k, j ≥ 1. In general, we will apply a theorem of Hirsch [18]. Since π1(M1)

is a finitely generated nilpotent group, by Hirsch’s theorem (Theorem 3, page 84 in [18]),
it is residually finite, i.e. the intersection of all normal subgroups of finite index is the unit
element. Let G j be the intersection of all normal subgroups of π1(M1) with index ≤ j ,
j = 1, 2, . . . . By a theorem of Hall [17] (see Property 4, page 128 in [17]), in every finitely
generated group, the number of subgroups of given finite index is finite. Then we see that
G j is a normal subgroup of π1(M1) with finite index. From the definition of G j , we have

π1(M1) = G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ G j ⊃ · · · ,
⋂

j

G j = {1}.

Moreover, we have

lim
j→+∞[G1 : G j ] = ∞.

Otherwise, there exists some constantC > 0 such that [G1 : G j ] ≤ C for all j . As [G1 : G j ]
is a monotone increasing sequence taking values in Z, there must exist some j0 such that
[G1 : G j ] = [G1 : G j0 ] for all j ≥ j0. It turns out that G j = G j0 for each j ≥ j0. Hence
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⋂

j G j = G j0 . Since
⋂

j G j = {1}, then G j0 = {1}. As [G1 : G j0 ] < ∞, it follows that
π1(M1) = G1 is a finite group, which contradicts that M has infinite fundamental group. 
�

The Dolbeault cohomology groups of a compact Kähler manifold M satisfy dim H0,p

(M,C) = dim H p,0(M,C) for any p. Let

Di = ∂ + ∂∗ : ⊕k ∧2k,0 (M) → ⊕k ∧2k+1,0 (M)

be the first order elliptic operators on M determined by gi . Then the Todd genus of M is

equal to the index of Di for any i by Hodge theory. Denote ĝi j , ̂Di
j
be the pulling backs

of gi , Di to Mj , where Mj is the finite covering of M1 with π1(Mj ) = G j . Then we can

compare the diameter of
̂

g j
i with that of ̂g1i :

Lemma 2.2 (Ivanov [20])

diam(
̂

g j
i ) ≤ [G1 : G j ] diam(̂g1i ).

Proof We include the proof given by Sergei Ivanov [20] on Mathoverflow for completeness.
Denote [G1 : G j ] = N . Suppose the contrary, let γ j : [0, �] → M j be a geodesic realizing

the diameter of (M j ,
̂

g j
i ) with � > N diam(̂g1i ). Let γ be the image of γ j in M1 under the

canonical projection. We break γ into N shorter geodesics of equal length �/N . Namely

γ := a1a2 · · · aN .

Since �/N > diam(̂g1i ), there must exist a strictly shorter geodesic bi connecting the two
ends of ai for each i ∈ {1, · · · , N }. Set p̄ = γ j (0), p = γ (0) and q̄ = γ j (�), q = γ (�). Let
H be the subgroup of π1(M1, p) whose elements(loops) lift to closed loops in Mj . Clearly
[π1(M1, p) : H ] = N . Now consider the following (N + 1) loops based at p:

s0 = e, s1 = b1a
−1
1 , s2 = b1b2(a1a2)

−1, · · · , sN = b1 · · · bN (a1 · · · aN )−1.

There must exist two elements sk and sr with k < r such that (sk)−1sr ∈ H . Now the path
(sk)−1srγ still lifts p and q to p̄ and q̄, yet it is strictly shorter than γ j , a contradiction. 
�

Now we derive a bound of the index of ̂Di
j
.

Lemma 2.3 There exists a positive constant C(n) depending only on the dimension n such
that for each i, j , we have

| ind(̂Di
j
)| ≤ C(n).

Remark 2.4 It is essential for us that the constant C(n) is independent of i, j .

Proof Wewill prove Lemma 2.3 using themethod in [4]. It is based on the following lemmas.

Lemma 2.5 For a smooth section s of an Euclidean vector bundle E over a Riemannian
manifold (M, g), let

‖s‖∞ = sup{|s|x : x ∈ M},
‖s‖22 =

∫

M
|s|2xdVg,

L(s) = Vg‖s‖2∞
‖s‖22

,
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where Vg is the volume of (M, g). Given a finite dimensional subspace F of C∞(E), we
have

dim F ≤ l sup{L(s) : s ∈ F − 0},
where l is the rank of E.

Lemma 2.5 is essentially due to Peter Li (Lemma 11 in [24]). We refer the readers to [4],
page 387 for its proof.

Lemma 2.6 Let (M, g) be a closed m-dimensional smooth Riemannian manifold such that
for some constant b > 0,

rmin(g)(diam(g))2 ≥ −(m − 1)b2.

If f ∈ W 1,2(M) is a nonnegative continuous function such that f� f ≥ −h f 2 (here � is a
negative operator) in the sense of distribution for some nonnegative continuous function h
then

max
x∈M | f |2(x) ≤ C(m, p, R,	)

∫

M f 2dV

Vg
,

where C(m, p, R,	) is some constant depending only on m, p, R = diam(g)
bC(b) and

	 =
∫

M hpdV

Vg
, p >

m

2
.

We refer the readers to see Theorem 3.3 in [10] or Theorem 3, page 395 in [4] for the
proof of Lemma 2.6. Several notations in the above lemma need to be clarified here:

(1) rmin(g) = inf{Ric(g)(u, u) : u ∈ T M, g(u, u) = 1}.
(2) Vg is the volume of (M, g).
(3) C(b) is the unique positive root of the equation

x
∫ b

0
(cht + xsht)m−1dt =

∫ π

0
sinm−1 tdt .

The following explicit expression of the constant C(m, p, R,	) derived in [10] is important
for us (see Theorem 3.3 and its proof in [10]). Let v = m

2 if m > 2 and 1 < v < p be
arbitrary for m = 2. Let μ be the conjugate of v such that

1

v
+ 1

μ
= 1.

Then

C(m, p, R,	) = μ
2K1

p(μ−1)
μ(p−1)−p B2K2 (2.1)

B = C(m, p)	
1
2

μ−1
μ(p−1)−p R

p(μ−1)
μ(p−1)−p + 2 (2.2)

K1 =
∑

iμ−i , K2 =
∑

μ−i , (2.3)

where C(m, p) is some positive constant depending only on m, p.
Now we apply Lemmas 2.5 and 2.6 to prove Lemma 2.3, namely,

| ind(̂Di
j
)| ≤ C(n), n = dimC M .
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Let E j = ⊕k ∧2k,0 (Mj ), Fi, j = ker(̂Di
j
). Then for any s ∈ ker(̂Di

j
), applying the

Bochner formula to s, we get

1

2
�|s|2 = |∇s|2 + 〈Fs, s〉.

As gi is aKählermetric for each i , it is crucial here that the curvature term 〈Fs, s〉 is controlled
by the Ricci curvature, see for example Page 84 in [2], for the general, see Chapter 7, Section
3.2 in [30]. By assumption, we have

Ric(gi ) ≥ −1, diam(gi ) ≤ 1

i
.

Then Ric(ĝi j ) ≥ −1 and there exists some positive constant C(n) depending only on n such
that

1

2
�|s|2 ≥ |∇s|2 − C(n)|s|2.

By Kato’s inequality (c.f. page 380 in [4]), we have

|∇s| ≥ |∇|s||.
Then we get

|s|�|s| ≥ −C(n)|s|2.
Let G j = π1(Mj ),G0 = π1(M). By Lemma 2.2, we get

diam(ĝi
j ) ≤ [G1 : G j ] diam(ĝi

1) ≤ [G1 : G j ] [G0 : G1] diam(gi ).

As diam(gi ) ≤ 1
i , we get

diam(ĝi
j ) ≤ [G1 : G j ] [G0 : G1]

i
.

For a fixed j , then

lim
i→∞ diam(ĝi

j ) = 0.

Applying Lemma 2.6 to |s| for any p > n (for example take p = n + 1), we get

|s|2∞ =: max
x∈M |s|2(x) ≤ C(n, i, j)

∫

M |s|2dVi
V (gi )

,

where C(n, i, j) is some positive constant depending on n, i, j (which can be described
explicitly via Eq.2.1).

Applying Lemma 2.5 to Fi, j , we get

dim(ker(̂Di
j
)) ≤ C(n, i, j).

By a similar argument applied to the adjoint operator of ̂Di
j
, we can also show that

dim(coker(̂Di
j
)) ≤ C ′(n, i, j),

where C ′(n, i, j) is some positive constant depending on n, i, j (which can be described
explicitly via Eq.2.1).
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Then

| ind(̂Di
j
)| ≤ max(C(n, i, j),C ′(n, i, j)).

For a fixed j , we have that ind(̂Di
j
) is independent of i . Since Ric(ĝi j ) ≥ −1 and

limi→∞ diam(ĝi j ) = 0 for a fixed j , then we get

| ind(̂Di
j
)| = lim

i→∞ | ind(̂Di
j
)| ≤ C(n),

where C(n) is some positive constant depending only on n. It is essential for us that
the constant C(n) is independent of i, j . In fact, for a fixed j , as Ric(ĝi j ) ≥ −1 and

limi→∞ diam(ĝi j ) = 0, then we get limi→∞ R j
i = 0, where R j

i = diam(ĝi j )

b j
i C(b j

i )
are the con-

stants as defined in Lemma 2.6. By Eq. (2.1), we get

lim
i→∞ | ind(̂Di

j
)| ≤ C(n).


�
Now we are going to finish the proof of Theorem 1.1. As Todd genus is multiplicative

under a finite covering [19], we have

| ind(̂Di
1
)| [G1 : G j ] = | ind(̂Di

j
)|.

By Lemmas 2.1 and 2.3, we get

| ind(̂Di
j
)| ≤ C(n), lim

j→∞[G1 : G j ] = ∞.

Hence for each i , we must have

| ind(̂Di
1
)| = 0.

It follows that M1 has vanishing Todd genus, so does M .
The above argument in fact yields the following Theorem (Here we do not assume that

M has infinite fundamental group).

Theorem 2.7 There exists some constant C(n) depending only n such that:

(i) let M be a compact n-dimensional complex manifold admitting a sequence of Kähler
metrics with almost nonnegative Ricci curvature, then the Todd genus of M is bounded
above by C(n).

(ii) Furthermore, if the order of π1(M) is bigger than C(n), then the Todd genus of M
vanishes.

Proof The first part follows from Lemma 2.3. Then it suffices to show if π1(M) is a finite
group such that |π1(M)| > C(n), then the Todd genus of M vanishes. This again follows
from the multiplicative property of Todd genus under a finite covering (compare the Todd
genus of M with its universal covering). 
�

The proof of Theorem 1.3 is similar to that of Theorem 1.1. Here we look at the Atiyah–
Singer spin Dirac operator D. The curvature term of the Bochner formula applied to the
kernel of D is bounded from below by the scalar curvature. Then we can apply Lemma 2.5
and Lemma 2.6 to get a bound of Â-genus. This in fact was already proved in [14]. In the
presence of infinite fundamental group, then our arguments given above can be used to show
that the Â-genus is in fact zero.
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3 Vanishing theorems on Euler number

The Euler number of a manifold is not a genus. However, certain vanishing results about
Euler number have been obtained under almost nonnegative sectional curvature assumption.
Recall that a smooth Riemannian manifold M has almost nonnegative sectional curvature if
it admits a sequence of Riemannian metrics {gi }i∈N such that

sec(gi ) ≥ −1, diam(gi ) ≤ 1

i
,

where sec(gi ) denotes the sectional curvatures of gi .
Fukaya–Yamaguchi proved that a closed manifold with almost nonnegative sectional cur-

vature and infinite fundamental group has vanishing Euler number. Their proof is based on
a fibration theorem [13] characterizing these manifolds. We are going to give a new proof of
this result based on the idea developed in previous proofs. In fact our proof works for a larger
class of spaces: almost nonnegatively curved Alexandrov spaces. Alexandrov spaces are gen-
eralizations of Riemannian manifolds with lower sectional curvature bound. They could have
topological singularities, for example the spherical cone over CPn with Fubini-Study metric
is an Alexandrov space. For background of Alexandrov spaces, cf [6, 7]. Note that due to
the possible singularities on Alexandrov spaces, there is no fibration theorem available for
almost nonnegatively curved Alexandrov spaces. Yet, we still have:

Theorem 3.1 Let X be an m-dimensional almost nonnegatively curved Alexandrov space
with infinite fundamental group, then the Euler number of X vanishes.

Proof By [32], the fundamental group of X contains a nilpotent subgroup of finite index. By
passing to a finite cover, we can assume that π1(X) is nilpotent. By Lemma 2.1, there is a
sequence of subgroups G j of π1(X) with finite index such that lim j→+∞[G1 : G j ] = ∞.
Then ˜X/G j is a finite cover of X , where ˜X is the universal covering of X . Clearly, ˜X/G j

is almost nonnegatively curved by pulling back the metrics. By the extension of Gromov’s
Betti number estimate to Alexandrov spaces (see the main Theorem of [25] and [15]), we
get that for any j ,

m
∑

p=0

bp(˜X/G j ) ≤ C(m).

This in particular implies that the absolute value of Euler number of ˜X/G j is bounded above
by some constant depending only on m. As lim j→+∞[G1 : G j ] = ∞, we see that the Euler
number of X is zero by the multiplicity property of Euler number under a finite covering. 
�

The same idea can also be used to prove a vanishing theorem about L2 Betti numbers
under almost nonnegative sectional curvature condition:

Theorem 3.2 Let M be a compact manifold (or more generally a compact Alexandrov space)
with almost nonnegative sectional curvature and infinite fundamental group, then all the L2

Betti numbers of its universal covering ˜M vanish.

We refer the reader to [28] for the precise definition of L2-Betti numbers. We only recall
the following two facts on L2-Betti numbers. See pages 37, 51 and 476 in [28] for details.

Lemma 3.3 ([27]) Let M be a finite connected CW-complex with fundamental group G.
Suppose there exists a sequence of normal subgroups of finite index

G = G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ G j ⊃ · · ·
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such that
⋂

j G j = {1}, then the p-th L2 Betti number of ˜M is equal to

lim
j→+∞

bp( ˜M/G j )

[G1 : G j ] .

Lemma 3.4 The Euler number of M is equal to the alternative sum of L2 Betti numbers of
˜M.

Proof of Theorem 3.2 By passing to a finite cover, we can assume that π1(M) is nilpotent.
By Lemma 2.1, there is a sequence of subgroups G j of π1(M) with finite index such that
lim j→+∞[G1 : G j ] = ∞. Since the Betti numbers bp( ˜M/G j ) is bounded above by some
constant depending only on dim M , then we have

lim
j→+∞

bp( ˜M/G j )

[G1 : G j ] = 0.

By Lemma 3.3, we see that the p-th L2 Betti number of ˜M vanishes. 
�
Remark 3.5 The above proof also works for Alexandrov spaces. In fact by [29], any compact
Alexandrov space X admits a good cover, it follows that X is homotopic to the nerve of a
good cover of X . Then Lück’s Lemma 3.3 still applies.

Remark 3.6 It follows fromTheorem3.2 andLemma3.4 that theEuler number ofM vanishes.
Therefore this provides a second proof of Theorem 3.1 without using fibration theorem for
almost nonnegatively curved manifolds.
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