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ITERATED RESIDUE, TORIC FORMS AND WITTEN GENUS

FEI HAN, HAO LI AND ZHI LÜ

ABSTRACT. We introduce the notion of iterated residue to study generalized Bott mani-
folds. When applying the iterated residues to compute the Borisov-Gunnells toric form
and the Witten genus of certain toric varieties as well as complete intersections, we ob-
tain interesting vanishing results and some theta function identities, one of which is a
twisted version of a classical Rogers–Ramanujan type formula.

1. INTRODUCTION

The residue of a meromorphic function f at an isolated singularity a, often denoted
by Resa f , is the coefficient a−1 of its Laurent series expansion at a. According to the
Cauchy integral theorem, we have

Resa f =
1

2πi

∮

γ

f(z)dz,

where γ is a circle small enough around a in a counterclockwise manner. This residue
has an interesting simple topological application on complex projective spaces. Ac-
tually, as H∗(CP n,C) ∼= C[z]/〈zn+1〉, for any cohomology class g in H∗(CP n,C), we
have

〈g, [CP n]〉 = Res0
g

zn+1
=

1

2πi

∮

γ

g

zn+1
dz.

For the case of multiple complex variables, there exists similar story. LetU be the ball
{z ∈ Cn : |z| < ǫ} and f1, · · · , fn ∈ O(U) be holomorphic functions in a neighborhood
of the closure U . Assume fi’s have the origin as the isolated common zero and their
Jacobian determinant is nonzero at the origin. The residue of meromorphic n-form

ω =
g(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

(g ∈ O(U))

is defined ([11]) by

(1.1) Res0 ω =
1

(2πi)n

∫

Γ

ω,

where Γ is the real n-cycle defined by Γ = {z : |fi(z)| < ǫ}. Multiple residue also
has nice topological applications. Let X be an oriented closed manifold such that
H∗(X,C) ∼= C[z1, · · · , zn]/〈f1, · · · , fn〉. Then for any cohomology class g in H∗(X,C),
one has

(1.2) 〈g, [X ]〉 = Res0

g(z)dz1 ∧ · · · ∧ dzn
f1(z) · · ·fn(z)

.

Typical examples of such X are Grassmannian manifolds (where the ideal arises from
the Landau-Ginzburg potential, c.f. [21]).
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Nevertheless when {fi}’s are degenerated, namely their Jacobian determinant van-
ishes, the form ω does not admit a well defined residue as (1.1). In this paper, we look
at the “iterated residue” (Definition 3) under this degenerate situation,

Res0

{
· · ·Res0

{
g(z)

f1(z) · · ·fn(z)
dz1

}
· · ·
}
dzn,

and apply it to compute the Borisov-Gunnells toric form [4] and the Witten genus.

Remark 1. “Iterated residue” is similar to iterated integral in multiple variable calculus and
its value usually depends on the order of variables. The “iterated residue” coincides with usual
residue when {fi}’s are non-degenerated.

Our motivation for looking at the iterated residue arises from generalized Bott mani-
folds, which are analogous to the relation between the multiple residue (1.1) and Grass-
mannians.

A generalized Bott manifold Bn (the total spaces of iterated projective bundle over
projective space, which will be reviewed in Section 2) has cohomology ring

H∗(Bn) ∼= Z[u1, · · · , un]/〈fi(u1, · · · , un) : i = 1, · · · , n〉,
where fi(u1, · · · , un) = ui

∏ni

j=1(ui + xij) with {xij} being the formal Chern roots. We
will prove that

Theorem 1.1 (Theorem 2.3). For any top cohomology class g, one has

〈g, [Bn]〉 = Res0

{
· · ·Res0

{
g(u)

f1(u) · · ·fn(u)
du1

}
· · ·
}
dun,

where the order of ui coincides with their position in the generalized Bott tower.

Remark 2. When the iterated projective bundles are trivial, generalized Bott manifolds Bn are
simply products of projective spaces, and iterated residue reduces to multiple residue.

For the genera of complete intersections in generalized Bott manifolds, we have

Theorem 1.2 (Theorem 2.4). For a generalized Bott manifold Bn

Bn
pn−→ Bn−1

pn−1−→ · · · −→ B2
p2−→ B1 −→ pt,

let −uk be the first Chern class of the tautological line bundle over Bk = CP (ξk ⊕ C) and
{xk1, xk2, · · · , xknk

} the Chern roots of ξk. Denote by X the submanifold of Bn Poincaré dual
to a1u1 + · · · + anun ∈ H2(Bn;Z). For any genus ψ with the characteristic power series
Q(x) = x/f(x), we have

ψ(X) = Res0

{
· · ·
{
Res0

f(a1u1 + · · ·+ anun)

f(u1)n1+1
·

n∏

i=1

1

f(ui)
·

ni∏

j=1

1

f(ui + xij)
du1

}
· · ·
}
dun.

We will present two applications of above formula in this paper. One concerns the
Borisov-Gunnells toric form ([4]) and the other one concerns the Witten genus [21].

Toric varieties are very important objects in both algebraic geometry and geometric
topology. Generalized Bott manifolds are examples of toric varieties. In [4], given a
toric variery X and a “degree function” deg, Borisov and Gunnells introduced a func-
tion fN,deg on the upper half plane H, called toric form, and proved that it is a modular

2



form when deg satisfies certain natural condition. In Section 3, applying our iterated
residue formula to the toric forms of some concrete generalized Bott manifolds (Hirze-
bruch surfaces and certain 4-folds), we obtain interesting theta function identities. Let
θ(z, τ) denote the classical Jacobi theta function (c.f. [7])

θ(z, τ) = 2q1/8 sin(πz)

∞∏

j=1

[(1− qj)(1− e2πizqj)(1− e−2πizqj)].

Theorem 1.3 (Proposition (3.1)). When α1, α2, α3, α4 /∈ Z are complex numbers, one has

∑

a,b∈Z

(1− e2πi(α3+α4))(1− e2πi(α1+α2)qka)

(1− e2πiα4qa)(1− e2πiα1qb)(1− e2πiα3q−a)(1− e2πiα2qka−b)

=
1

(2πi)2

{
(
θ′(−α3)

θ(−α3)
+
θ′(−α4)

θ(−α4)
)(
θ′(−α1)

θ(−α1)
+
θ′(−α2)

θ(−α2)
) +

k

2
(
θ′′(−α3)

θ(−α3)
− θ′′(−α4)

θ(−α4)
)

}
.

(1.3)

Theorem 1.4 (Proposition (3.2)). When j, k ∈ Z, one has

(2πi)4 ·
∑

a,b,c,d∈Z

2(1 + qjc+kd)

(1 + qa)(1 + qb)(1 + qc)(1 + qd)(1 + qjc+kd−a−b)(1 + q−c−d)

=

{
(
3θ′′(1

2
)

2θ(1
2
)
− θ(3)(0)

2θ′(0)
)2 + (j2 + k2 − jk)(

θ′′2(1
2
)

4θ2(1
2
)
+

5θ(4)(1
2
)

24θ(1
2
)
− 7θ(3)(0)θ′′(1

2
)

12θ′(0)θ(1
2
)

− θ(5)(0)

24θ′(0)
+

(θ(3)(0))2

6θ′2(0)
)

}
.

(1.4)

In the special case j = k = 0, this formula actually gives the classical Rogers–Ramanujan
type formula (c.f. [2, 3])

(1.5)
∑

m,n≥1

qm+n

(1 + qm)(1 + qn)(1 + qm+n)
=
∑

r≥1

σ1(r)q
2r,

which was obtained by Borisov and Libgober using toric form [5]. In Section 3.1, we
will review the proof. Our formula (1.4) can be viewed as a twisted version of the
classical formula (1.5), see Section 3.3 for details.

Concerning toric forms, using iterated residue formula, we are also able to obtain
the following vanishing result.

Theorem 1.5 (Theorem 3.3). Consider toric variety V := CP (η⊗i1 ⊕ η⊗i2 ⊕ η⊗i3 ⊕ C)
over CP n1 , where η denote the tautological bundle of CP n1 . Assume (i1, i2, i3) are coprime,
(i1, i1 − i2, i1 − i3), (i2, i2 − i1, i2 − i3), (i3, i3 − i1, i 3 − i2) are coprime respectively,∑3

j=0 αn1+2+j ∈ Z,
∑n1+1

i=1 αi −
∑3

j=1 ijαn1+2+j ∈ Z, then the toric form fN,deg(q) = 0.

Remark 3. The coprime condition seems to be a bit strict. We will provide an example to
explain it. Let (i1, i2, i3) = (1, 3, 4), we can check that (1, 3, 4), (1, 2, 3), (3, 2, 1) and (4, 3, 1)
are coprime respectively. It is possible to transfer iterated residue into residues at simple poles
by residue theorem when coprime condition hold.

Another application is about Witten genus, which plays an important role in in-
dex theory. Let M be a 4m dimensional compact oriented smooth manifold. Let
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{±2π
√
−1zj , 1 ≤ j ≤ 2m} denote the formal Chern roots of TCM , the complexifica-

tion of the tangent vector bundle TM of M . Then the famous Witten genus of M can
be written as (c.f. [17])

ϕW (M) =

〈(
2m∏

j=1

zj
θ′(0, τ)

θ(zj , τ)

)
, [M ]

〉
∈ Q[[q]],

with τ ∈ H, the upper half-plane, and q = eπ
√
−1τ . The Witten genus was first intro-

duced in [21] and can be viewed as the loop space analogue of the Â-genus. It can be

expressed as a q-deformed Â-genus as

ϕW (M) =
〈
Â(TM)ch (Θ (TCM)) , [M ]

〉
,

where

Θ(TCM) =
∞
⊗
n=1

Sq2n(T̃CM), with T̃CM = TCM − C4m,

is the Witten bundle defined in [21]. When the manifold M is Spin, according to the
Atiyah-Singer index theorem [1], the Witten genus can be expressed analytically as the
index of twisted Dirac operators, ϕW (M) = ind(D ⊗ Θ (TCM)) ∈ Z[[q]], where D is
the Atiyah-Singer Spin Dirac operator on M (c.f. [13]). Moreover, if M is String, i.e.
1
2
p1(TM) = 0, or even weaker, if M is Spin and the first rational Pontryagin class of
M vanishes, then ϕW (M) is a modular form of weight 2k over SL(2,Z) with integral
Fourier expansion (c.f. [22]). The homotopy theoretical refinements of the Witten genus
on String manifolds leads to the theory of tmf (topological modular form) developed by
Hopkins and Miller [14]. The String condition is the orientablity condition for this
generalized cohomology theory.

The Lichnerowicz theorem[16] asserts that if a closed spin manifold carries a Rie-

mannian metric of positive scalar curvature, then its Â genus vanishes. Along this
line, Stolz conjectured [19] that the Witten genus of a string manifold carrying positive
Ricci curvature metric vanishes. There are two kinds of vanishing results to support
the Stolz’s conjecture. One is the theorem asserting that every string manifold carry-
ing a nontrivial action of a semi-simple Lie group G has vanishing Witten genus ([10],
[18]). The other is the Landweber-Stong vanishing theorem (c.f. page 89 in [13]) as-
serting that a string complete intersection in complex projective spaces has vanishing
Witten genus. The proof uses the calculation of residues. The Landweber-Stong type
vanishing results were also obtained for the following objects: string complete intersec-
tions in products of complex projective spaces ([8], [9]), string complete intersections
in products of Grassmannians and flag manifolds ([25, 26]).

In this paper, by applying the iterated residue, we can prove a Landweber-Stong
type vanishing theorem for the Witten genus complete intersections in two-staged gen-
eralized Bott manifolds.

Theorem 1.6 (Theorem 4.1). For a string complete intersection HI

n1, 3
(d1, d2; d3, d4), if I =

(i, j, k) are coprime, (i, i − j, i − k), (j, j − i, j − k), (k, k − i, k − j) are coprime
respectively, then the Witten genus

ϕW (HI

n1, 3(d1, d2; d3, d4)) = 0.
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Furthermore, it is also possible to calculate the mod 2 Witten genus of generalized
Bott manifolds by making use of Rokhlin congruence formula in [23, 24]. We will study
this in a forthcoming project.

The paper is organised as follow. In Section 2, we introduce the concept of “iterated
residue” and give an explicit expression of the genus of complete intersections in gen-
eralized Bott manifolds. In Section 3, we apply “iterated residue” to toric forms and
get interesting theta function identities. In Section 4, we will use “iterated residue”
to discuss when Witten genus of complete intersections in generalized Bott manifolds
vanishes and give the proof of Theorem 1.6.

2. ITERATED RESIDUE IN GENERALIZED BOTT MANIFOLDS

In the study of symmetric spaces, Bott and Samelson [6] first introduced a family
of toric manifolds obtained as the total spaces of iterated bundles over CP 1 with fibre
CP 1. Grossberg and Karshon [12] showed that these manifolds form an important
family of smooth projective toric varieties, and called them Bott manifolds.

Definition 1. A generalized Bott tower of height n is a tower of projective bundles

Bn
pn−→ Bn−1

pn−1−→ · · · −→ B2
p2−→ B1 −→ pt,

where B1 = CP n1 and each Bk is the complex projectivisation of sum of nk complex line
bundles and one trivial line bundle over Bk−1. The fibre of the bundle pk : Bk −→ Bk−1 is
CP nk .

The last stage Bn in a generalized Bott tower is called generalized Bott manifold.

The topology of generalized Bott manifolds is very clear. Its cohomology ring relies
on the following result:

Theorem 2.1. (c.f. [20, Chapter V]) Let ξ be a complex n-dimensional vector bundle over a
finite cell complex X , the complex projectivisation of ξ is CP (ξ). Let −u ∈ H2(CP (ξ)) be the
first Chern class of the tautological line bundle over CP (ξ). H∗(CP (ξ);Z) is the quotient of
polynomial ring H∗(X)[u] by single relation

un + c1(ξ)u
n−1 + · · ·+ cn(ξ) = 0.

Corollary 1. Let −uk be the first Chern class of tautological line bundle ηk overBk = CP (ξk⊕
C), suppose the formal Chern roots of ξk are {xk1, xk2, · · · , xknk

}. Then

H∗(Bn) ∼= Z[u1, · · · , un]/〈fi(u1, · · · , un) : i = 1, · · · , n〉,
where fi(u1, · · · , un) = ui

∏ni

j=1(ui + xij).

Moreover, its tangential bundle is clear,

TBk+1 ⊕ C ∼= p∗(TBk)⊕ (η̄k ⊗ p∗(ξk ⊕ C)).

The generalized Bott manifolds provide a rich family of toric varieties on which we
can calculate all kinds of characteristic numbers and study their geometry and topol-
ogy.

In [15], the authors introduced the concept of twisted Milnor hypersurfaces, which
is a generalization of Milnor hypersurfaces (Milnor hypersurfaces can be used as the
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representatives of unitary bordism). Consider the projective bundle over CP n1 with
fiber CP n2 , i.e.

V = CP (η⊗i1 ⊕ · · · ⊕ η⊗in2 ⊕ C) → CP n1,

where η is the tautological line bundle over CP n1 and C is the trivial line bundle.
Let γ be the vertical tautological line bundle over V , u = c1(η), v = c1(γ) ∈ H2(V ;Z).

Denote I = (i1, · · · , in2) be the index.

Definition 2. We call the smooth hypersurface Poincaré dual to d1u + d2v in V twisted
Milnor hypersurface, denoted by HI

n1,n2
(d1, d2).

Remark 4. We can also consider hypersurfaces or complete intersections on generalized Bott
manifolds, such asHI

n1,n2
(d1, d2; d3, d4) denote the complete intersection Poincaré dual to (d1u+

d2v) · (d3u+ d4v) in V .
As we all know, generalized Bott manifolds are toric varieties, but their complete intersections

are not necessarily algebraic.

Denote X be the submanifold of Bn Poincaré dual to a1u1 + · · ·+ anun ∈ H2(Bn;Z).
Suppose ν denotes the normal bundle of inclusion i : X →֒ Bn. Then
c1(ν) = i∗(a1u1 + · · ·+ anun), while i∗(TBn) ∼= TX ⊕ ν.

For any genus ψ with the charateristic power series Q(x) = x/f(x), we have

(2.1) ψ(X) = 〈( u1
f(u1)

)n1+1 · f(a1u1 + · · ·+ anun) ·
n∏

i=1

ui
f(ui)

·
ni∏

j=1

ui + xij
f(ui + xij)

, [Bn]〉.

If Bn is a product of projective spaces, ψ(X) can be simplified into a very neat ex-
pression. As to general Bn, the idea fi’s in H∗(Bn;Z) will be the biggest obstacle in
calculating genus, so we have to cope with the relation between ui’s carefully.

Motivated by the idea of Witten [21], we try to reduce ψ(X) to multiple residue.
Recall the global residue theorem

Theorem 2.2. (Global Residue Theorem [11, Chapter 5]) Let M be a compact complex
n-manifold, D = D1 + · · ·+Dn be a divisor on M such that D1, · · · , Dn are effective divisors
on M and the intersection D1 ∩ · · · ∩ Dn is discrete, hence finite-set of points in M . Then for
any ω ∈ H0(M,Ωn(D)), ∑

P∈{D1∩···∩Dn}
ResP ω = 0.

Global Residue Theorem does not apply to generalized Bott manifolds, since the
ideas fi’s are not necessarily non-degenerated, thus multiple residue at point (0, · · · , 0)
can not be well defined.

To overcome this obstacle, we introduce the concept “iterated residue”.

Definition 3. Let U be the ball {z ∈ Cn : |z| < ǫ} and f1, · · · , fm ∈ O(U) be functions holo-
morphic in a neighborhood of the closure U of U . Then “iterated residue” of a meromorphic
n-form

ω =
g(z)dz1 ∧ · · · ∧ dzn
f1(z) · · ·fm(z)

(g ∈ O(U))

is defined by

Res0

{
· · ·Res0

{
g(z)

f1(z) · · ·fm(z)
dz1

}
· · ·
}
dzn.
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Remark 5. “Iterated residue” is similar to iterated integral in multiple calculus, its value
depends on the order of variables. Of course, “iterated residue” coincides with usual residue
when fi(z)’s are non-degenerated.

“Iterated residue” admits a topological interpretation via characteristics of generalized Bott
manifolds.

Theorem 2.3. For any F ∈ Hn1+···+nn(Bn;Z), we have

〈 F, [Bn] 〉 = Res0

{
Res0 · · ·

{
Res0

F∏ni

j=1 fj(u1, · · · , un)
du1

}
· · · dun−1

}
dun,

where the order of ui coincides with their position in the generalized Bott tower.

Proof. Since 〈F, [Bn]〉 andRes0

{
Res0 · · ·

{
Res0

F∏ni
j=1 fj(u1,··· ,un)

du1

}
· · · dun−1

}
dun are both

linear forms, Hn1+···+nn(Bn;Z) ∼= Z〈un1
1 u

n2
2 · · ·unn

n 〉, it remains to prove

〈un1
1 u

n2
2 · · ·unn

n , [Bn]〉 = Res0

{
Res0 · · ·

{
Res0

un1
1 u

n2
2 · · ·unn

n∏ni

j=1 fj(u1, · · · , un)
du1

}
· · · dun−1

}
dun.

Obviously, 〈un1
1 u

n2
2 · · ·unn

n , [Bn]〉 = 1, while

Res0

{
Res0 · · ·

{
Res0

un1
1 u

n2
2 · · ·unn

n∏ni

j=1 fj(u1, · · · , un)
du1

}
· · · dun−1

}
dun

=Res0

{
· · ·
{
Res0

un2
2 · · ·unn

n∏ni

j=2 fj(u2, · · · , un)
du2

}
· · ·
}
dun

=1.

�

For a generalized Bott manifold Bn

Bn
pn−→ Bn−1

pn−1−→ · · · −→ B2
p2−→ B1 −→ pt.

Let −uk be the first Chern class of the tautological line bundle over Bk = CP (ξk ⊕C)
over Bk−1, the Chern roots of ξk be {xk1, xk2, · · · , xknk

}. Denote X be the submanifold
of Bn Poincaré dual to a1u1 + · · ·+ anun ∈ H2(Bn;Z).

Applying Theorem 2.3 to formula (2.1), we get our main result

Theorem 2.4. For any genus ψ with the charateristic power series Q(x) = x/f(x), we have
(2.2)

ψ(X) = Res0

{
· · ·
{
Res0

f(a1u1 + · · ·+ anun)

f(u1)n1+1
·

n∏

i=1

1

f(ui)
·

ni∏

j=1

1

f(ui + xij)
du1

}
· · ·
}
dun.

Formula (2.2) kills the ideals in H∗(Bn;Z) and only f is left. If power series f admits
good property, it is possible to give explicit formula of ψ(X).
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3. BORISOV-GUNNELLLS TORIC FORMS: THETA FUNCTIONS IDENTITIES AND

VANISHING RESULTS

Toric variety is a very important object in both algebraic geometry and geometric
topology. Borisov and Libgober[5] gave the explicit formula of elliptic genus of a toric
variety by its combinatorial data, and showed that elliptic genera of a Calabi-Yau hy-
persurface in a toric variety and its mirror coincide up to sign.

In [4], Borisov and Gunnells defined algebraic toric form which is motivated from the
expression of normalized ellptic genus of toric variety[5].

Let N ∈ Rr be a lattice, M be its dual lattice. For a complete rational polyhedral fan
Σ ⊂ N ⊗ R. A degree function deg : N −→ C is a piecewise linear function on the cones
of Σ.

For every cone C ∈ Σ, they defined a map

fC : H×MC −→ C

as follows. Write q = e2πiτ , τ ∈ H, the upper halfplane. If m ∈MC satisfies

m · (C \ {0}) > 0,

for all τ with sufficiently large imaginart part, they set

fC(q,m) :=
∑

n∈C∩N
qm·ne2πi deg(n).

The toric form associated to (N, deg) is the function fN,deg : H −→ C defined by

fN,deg(q) :=
∑

m∈M
(
∑

C∈Σ
(−1)codim Ca.c.(

∑

n∈C
qm·ne2πi deg(n))),

here “a.c.” denotes analytic continuation of fC .
The definition of fN,deg is well-defined. More precisely, there exists ǫ > 0 such that

the sum over M converges absolutely and uniformly for all |q| < ǫ.

Remark 6. Suppose that deg(d) = 1/2 for all generators d of one-dimensional cones of Σ, and
toric variety X associated to Σ is nonsingular. Then the function fN,deg(q) is the normalized
elliptic genus of X . This example is the main motivation of toric forms [5].

Furthermore they proved that the toric forms are modular forms under certain con-
ditions on deg.

Theorem 3.1 (Borisov, Gunnells). Suppose deg fucntion takes values in 1
l
Z, and deg is not

integral valued on the primitive generator of any 1-cone of Σ. Then toric form fN,deg(q) is
holomorphic modular form of weight r for the congruence subgroup Γ1(l).

Borisov and Gunnells gave a topological interpretation of toric forms by Hirzebruch-
Riemann-Roch theorem. Let {di} be the set of primitive generator of 1-cone of Σ, X be
toric variety associated to Σ, and for each di, Di ⊂ X be the corresponding toric divisor.
In the following, we abuseDi to mean either the divisor or its cohomology class. Recall
that

θ(z, τ) = 2q1/8 sin(πz)
∞∏

j=1

[(1− qj)(1− e2πizqj)(1− e−2πizqj)].
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Theorem 3.2 ( Borisov, Gunnells). Assume that the toric variety X is nonsingular, and that
αi /∈ Z for all primitive generator of 1-cone of Σ. Then

fN,deg(q) =

∫

X

∏

i

(Di/2πi)θ(Di/2πi− αi)θ
′(0)

θ(Di/2πi)θ(−αi)
.

Our “iterated residue” can be applied to calculate above Euler characteristic for some
generalized Bott manifolds, thus getting interesting theta function identities regarding
to toric forms.

3.1. Projective plane CP 2.
Let N = Z2, and Σ be the fan in Figure 1. Then the corresponding toric variety is

projective plane CP 2.

e1

e2

−e1 − e2

Figure 1

Assume that deg takes α, β, γ on the generators e1, e2, −e1 − e2 respectively. Then the
toric form is

fN,deg(q)

=
∑

a,b∈Z

1

(1− e2πiαqa)(1− e2πiβqb)
+

1

(1− e2πiβqb)(1− e2πiγq−a−b)

+
1

(1− e2πiαqa)(1− e2πiγq−a−b)
− 1

1− e2πiαqa
− 1

1− e2πiβqb
− 1

1− e2πiγq−a−b
+ 1

=
∑

a,b∈Z

1− e2πi(α+β+γ)

(1− e2πiαqa)(1− e2πiβqb)(1− e2πiγq−a−b)
.

In the case α = β = γ = 1
2
, Borisov and Libgober [5] deduced the famous identity

∑

m,n≥1

qm+n

(1 + qm)(1 + qn)(1 + qm+n)
=
∑

r≥1

q2r
∑

k|r
k =

∑

r≥1

σ1(r)q
2r.

The deduction is the following. By Theorem 3.2,
9



∑

m,n∈Z

2qm+n

(1 + qm)(1 + qn)(1 + qm+n)

=

∫

X

∏

i

(Di/2πi)θ(Di/2πi− 1
2
)θ′(0)

θ(Di/2πi)θ(−1
2
)

=
1

(2πi)2
· θ

′3(0)

θ2(1
2
)
· Res0

1

θ3(u)
du

=
1

(2πi)2

{
3θ′′(1

2
)

2θ(1
2
)
− θ(3)(0)

2θ′(0)

}
.

Then we see

LHS

=4
∑

m,n≥1

{
qm+n

(1 + qm)(1 + qn)(1 + qm+n)
+

qm+n

(1 + qm)(1 + qn)(qm + qn)

}
+ 4

∞∑

m=1

qm

(1 + qm)2
+

1

4

=12
∑

m,n≥1

qm+n

(1 + qm)(1 + qn)(1 + qm+n)
+ 6

∞∑

m=1

qm

(1 + qm)2
+

1

4
.

On the other side, we list the derivatives of theta function first.

θ′(z) = 2q1/8
∏∞

j=1[(1−qj)(1−e2πizqj)(1−e−2πizqj)]·
{
π cos(πz)−sin(πz)

∑∞
j=1

2πiqj(e2πiz−e−2πiz)
(1−e2πizqj)(1−e−2πizqj)

}
,

θ′′(z) =2q1/8
∞∏

j=1

[(1− qj)(1− e2πizqj)(1− e−2πizqj)] ·
{
− 2π cos(πz)

∞∑

j=1

2πiqj(e2πiz − e−2πiz)

(1− e2πizqj)(1− e−2πizqj)

− π2 sin(πz) + sin(πz)(

∞∑

j=1

2πiqj(e2πiz − e−2πiz)

(1− e2πizqj)(1− e−2πizqj)
)2

− sin(πz)

∞∑

j=1

(2πi)2qj(1− e2πizqj)(1− e−2πizqj)(e2πiz + e−2πiz)− (2πiqj)2(e2πiz − e−2πiz)2

(1− e2πizqj)2(1− e−2πizqj)2

}
.

Then

RHS

=
1

(2πi)2

{
3

2
(−π2 +

∞∑

j=1

(2πi)22qj

(1 + qj)2
)− 1

2
(−π2 − 3

∞∑

j=1

(2πi)22qj

(1− qj)2
)

}

=
1

4
+ 3

∞∑

j=1

{
qj

(1 + qj)2
+

qj

(1− qj)2

}
.

10



Thus

∑

m,n≥1

qm+n

(1 + qm)(1 + qn)(1 + qm+n)

=
1

4

∞∑

j=1

{
qj

(1− qj)2
− qj

(1 + qj)2

}

=

∞∑

j=1

∑

a>b, a+b odd

qj · qaj · qbj

=
∑

r≥1

q2r
∑

k|r
k

=
∑

r≥1

σ1(r)q
2r.

3.2. Hirzebruch surface.
Hirzebruch surface Fk = CP (C⊕O(k)) is a CP 1 bundle over CP 1. Its corresponding

fan is spanned by four primitive vectors e1, e2, −e1 + ke2, −e2, see Figure 2.

e1

e2

−e2

−e1 + ke2

Figure 2

Assume that deg takes α1, α2, α3, α4 on the generators e1, −e1 + ke2, −e2, e2, . Then
the toric form is

fN,deg(q)

=
∑

a,b∈Z

1

(1− e2πiα1qb)(1− e2πiα4qa)
+

1

(1− e2πiα1qb)(1− e2πiα3q−a)

+
1

(1− e2πiα3q−a)(1− e2πiα2qka−b)
+

1

(1− e2πiα4qa)(1− e2πiα2qka−b)

− 1

1− e2πiα4qa
− 1

1− e2πiα1qb
− 1

1− e2πiα2qka−b
− 1

1− e2πiα3q−a
+ 1

=
∑

a,b∈Z

(1− e2πi(α3+α4))(1− e2πi(α1+α2)qka)

(1− e2πiα4qa)(1− e2πiα1qb)(1− e2πiα3q−a)(1− e2πiα2qka−b)
.
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On the other hand,

fN,deg(q)

=

∫

X

4∏

i=1

(Di/2πi)θ(Di/2πi− αi)θ
′(0)

θ(Di/2πi)θ(−αi)

=
θ′(0)4

(2πi)4
∏4

i=1 θ(−αi)
Res0

{
Res0

θ( u
2πi

− α1)θ(
u
2πi

− α2)θ(
v
2πi

− α3)θ(
v−ku
2πi

− α4)

θ2( u
2πi

)θ( v
2πi

)θ(v−ku
2πi

)
du

}
dv

=
θ′(0)4

(2πi)2
∏4

i=1 θ(−αi)
Res0

θ(v − α3)

θ(v)

{
Res0

θ(u− α1)θ(u− α2)θ(v − ku− α4)

θ2(u)θ(v − ku)
du

}
dv

=
θ′(0)2

(2πi)2θ(−α3)θ(−α4)
Res0

θ(v − α3)θ(v − α4)

θ2(v)

{
θ′(−α1)

θ(−α1)
+
θ′(−α2)

θ(−α2)
− k

θ′(v − α4)

θ(v − α4)
+ k

θ′(v)

θ(v)

}
dv.

Similarly, we have

Res0
θ(v − α3)θ(v − α4)

θ2(v)
dv =

θ(−α3)θ(−α4)

θ′2(0)

{
θ′(−α3)

θ(−α3)
+
θ′(−α4)

θ(−α4)

}
,

Res0
θ(v − α3)θ

′(v − α4)

θ2(v)
dv =

θ(−α3)θ
′(−α4)

θ′2(0)

{
θ′(−α3)

θ(−α3)
+
θ′′(−α4)

θ′(−α4)

}
.

and

Res0
θ(v − α3)θ(v − α4)θ

′(v)

θ3(v)
dv

=Res0
(θ(−α3) + θ′(−α3)v +

θ′′(−α3)v2

2
)(θ(−α4) + θ′(−α4)v +

θ′′(−α4)v2

2
)(θ′(0) + θ(3)(0)v2

2
)

(θ′(0)v + θ(3)(0)v3/6)3
dv

=Res0
(θ(−α3) + θ′(−α3)v +

θ′′(−α3)v2

2
)(θ(−α4) + θ′(−α4)v +

θ′′(−α4)v2

2
)

θ′2(0)v3
dv

=
θ(−α3)θ(−α4)

2θ′2(0)

{
(
θ′′(−α3)

θ(−α3)
+
θ′′(−α4)

θ(−α4)
+ 2

θ′(−α3)θ
′(−α4)

θ(−α3)θ(−α4)
)

}
.

Proposition 3.1. For Hirzebruch surface Fk = CP (C ⊕ O(k)), we have theta function
identity

∑

a,b∈Z

(1− e2πi(α3+α4))(1− e2πi(α1+α2)qka)

(1− e2πiα4qa)(1− e2πiα1qb)(1− e2πiα3q−a)(1− e2πiα2qka−b)

=
1

(2πi)2

{
(
θ′(−α3)

θ(−α3)
+
θ′(−α4)

θ(−α4)
)(
θ′(−α1)

θ(−α1)
+
θ′(−α2)

θ(−α2)
) +

k

2
(
θ′′(−α3)

θ(−α3)
− θ′′(−α4)

θ(−α4)
)

}
.

It is easy to check that if α3 + α4 ∈ Z, both sides equal zero.

3.3. CP 2 bundle over CP 2.
Consider a CP 2 bundle over CP 2, its corresponding fan is spanned by five primitive

vectors e1, e2, e3, e4, −e1 − e2 + je3 + ke4, −e3 − e4 in Z4.
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Assume that deg takes 1
2

on all generators e1, e2, e3, e4, −e1−e2+je3+ke4, −e3−e4

in Z4. Then the toric form is

fN,deg(q) =
∑

a,b,c,d∈Z

2(1 + qjc+kd)

(1 + qa)(1 + qb)(1 + qc)(1 + qd)(1 + qjc+kd−a−b)(1 + q−c−d)
.

On the other hand,

fN,deg(q)

=

∫

X

6∏

i=1

(Di/2πi)θ(Di/2πi− αi)θ
′(0)

θ(Di/2πi)θ(−αi)

=
θ′(0)6

(2πi)6θ6(12 )
Res0

{
Res0

θ3( u
2πi − 1

2)θ(
v
2πi − 1

2)θ(
v−ju
2πi − 1

2)θ(
v−ku
2πi − 1

2)

θ3( u
2πi )θ(

v
2πi)θ(

v−ju
2πi )θ(v−ku

2πi )
du

}
dv

=
θ′(0)6

(2πi)4θ6(12 )
Res0

θ(v − 1
2 )

θ(v)

{
Res0

θ3(u− 1
2)θ(v − ju− 1

2)θ(v − ku− 1
2)

θ3(u)θ(v − ju)θ(v − ku)
du

}
dv

=
θ′(0)3

(2πi)4θ3(12 )
Res0

θ3(v + 1
2)

θ3(v)

{
3θ′′(12)

2θ(12)
− θ(3)(0)

2θ′(0)
+

j2 + k2

2
(
θ′′(v + 1

2)

θ(v + 1
2)

− θ′′(v)
θ(v)

)

+ jk(
θ′2(v + 1

2 )

θ2(v + 1
2)

− θ′2(v)
θ2(v)

) + (j + k)2
θ′2(v)
θ2(v)

− (j + k)2
θ′(v)θ′(v + 1

2)

θ(v)θ(v + 1
2)

}
dv

=
1

(2πi)4

{
(
3θ′′(12 )

2θ(12 )
− θ(3)(0)

2θ′(0)
)2 + (j2 + k2 − jk)(

θ′′2(12 )

4θ2(12)
+

5θ(4)(12)

24θ(12 )
− 7θ(3)(0)θ′′(12 )

12θ′(0)θ(12 )
− θ(5)(0)

24θ′(0)
+

(θ(3)(0))2

6θ′2(0)
)

}
.

Proposition 3.2. We have the following theta function identity

∑

a,b,c,d∈Z

2(1 + qjc+kd)

(1 + qa)(1 + qb)(1 + qc)(1 + qd)(1 + qjc+kd−a−b)(1 + q−c−d)

=
1

(2πi)4

{
(
3θ′′(12 )

2θ(12)
− θ(3)(0)

2θ′(0)
)2 + (j2 + k2 − jk)(

θ′′2(12 )

4θ2(12)
+

5θ(4)(12)

24θ(12 )
− 7θ(3)(0)θ′′(12 )

12θ′(0)θ(12 )
− θ(5)(0)

24θ′(0)
+

(θ(3)(0))2

6θ′2(0)
)

}
.

In special case j = k = 0, fN,deg(q) is exactly the square of normalized elliptic genus
of CP 2 which we have already discussed in Example 3.1.

3.4. Vanishing result.
Besides the accurate calculation in low dimensions, we can also get a Landweber-

Stong type vanishing result for a family of generalized Bott manifolds.

Theorem 3.3. Consider toric variety V := CP (η⊗i1 ⊕ η⊗i2 ⊕ η⊗i3 ⊕ C) over CP n1 , where η
denote the tautological bundle of CP n1 .

If (i1, i2, i3) are coprime, (i1, i1 − i2, i1 − i3), (i2, i2 − i1, i2 − i3), (i3, i3 − i1, i3 − i2)

are coprime respectively,
∑3

j=0 αn1+2+j ∈ Z,
∑n1+1

i=1 αi −
∑3

j=1 ijαn1+2+j ∈ Z, then the toric
form fN,deg(q) = 0.

The proof of Theorem 3.3 is similar to that of Theorem 4.1.
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4. WITTEN GENUS: A VANISHING RESULT

Let M be a 4k dimensional closed oriented smooth manifold, E be a complex vector
bundle over M . For any complex number t, set

St(E) = C+ tE + t2S2(E) + · · · ,

where Sj(E) is the j-th symmetric power of E.
Let q = e2πiτ with τ ∈ H, the upper half plane. Witten defined

Θq(E) =
⊗

n≥1

Sqn(E),

then defined the Witten genus

ϕW (M) =
〈
Â(M)ch(Θq(TM ⊗ C− C4k)), [M ]

〉
.

Let ±2πixj ( 1 ≤ j ≤ 2k) be the formal Chern roots of TM⊗C. The Witten genus can
be rewritten as (c.f. [17])

ϕW (M) =

〈(
2m∏

j=1

zj
θ′(0, τ)

θ(zj , τ)

)
, [M ]

〉
,

where θ(z, τ) is the Jacobi theta function

θ(z, τ) = 2q1/8sin(πz)

∞∏

j=1

[(1− qj)(1− e2πizqj)(1− e−2πizqj)], q = e2πiτ .

The manifold M is called spin if ω1(M) = 0, ω2(M) = 0, where ω1(M), ω2(M) are
the first and second Stiefel-Whitney classes of M . According to Atiyah-Singer index
theorem, when M is spin, ϕW (M) ∈ Z[[q]].

A spin manifold M is called string if 1
2
p1(M) = 0, where p1(M) is the first Pontrjagin

class of M . It is well known that if M is string, ϕW (M) is a modular form of weight
2k over SL(2,Z), see [13, Hirzebruch]. In this section, we mainly discuss the Witten
genus of string manifolds.

4.1. String complete intersection in generalized Bott manifolds.
Consider a two staged generalized Bott manifold V := CP (η⊗i1 ⊕ · · ·η⊗in2 ⊕C) over

CP n1 , where η denotes the tautological bundle of CP n1 .
Let I = (i1, · · · , in2) denote the index of projective bundle and H I

n1,n2
(d1, d2) denote

the submanifold Poincaré dual to d1u + d2v ∈ H2(V ;Z). Let i : H I
n1,n2

(d1, d2) −→ V be
the natural embedding, ν denote the normal bundle of this embedding. We have

i∗(TV ) ∼= i∗(ν)⊕ TH I
n1,n2

(d1, d2).

Thus

c1(H
I
n1,n2

(d1, d2)) = i∗((n1 + 1)u+ v +

n2∑

j=1

(v − iju)− (d1u+ d2v)).

14



and

p1(H
I

n1,n2
(d1, d2)) = i∗

{
(n1 + 1 +

n2∑

j=1

i2j − d21)u
2 + (1 + n2 − d22)v

2 − 2(d1d2 +
n2∑

j=1

ij)uv

}
.

Lemma 4.1. Twisted Milnor hypersurfaces HI

n1,n2
(d1, d2) can’t be string for n2 ≥ 3.

Proof. Let i! : H
∗(HI

n1,n2
(d1, d2)) −→ H∗(V ) be the pushforward map.

First we assume 



n1 + 1 +
n2∑
j=1

i2j = d21

1 + n2 = d22
d1d2 +

∑n2

j=1 ij = 0.

Thus (n1 + 1 +
∑n2

j=1 i
2
j)(1 + n2) = (d1d2)

2 = (
∑n2

j=1 ij)
2, which is impossible. Thus

(n1 + 1 +
∑n2

j=1 i
2
j − d21)u

2 + (1 + n2 − d22)v
2 + (−2σ1 − 2d1d2)uv 6= 0.

On the other hand, if p1(H
I

n1,n2
(d1, d2)) = 0, then

i!p1(H
I

n1,n2
(d1, d2))

=i!i
∗

{
(n1 + 1 +

n2∑

j=1

i2j − d21)u
2 + (1 + n2 − d22)v

2 + (−2σ1 − 2d1d2)uv

}

=(d1u+ d2v)

{
(n1 + 1 +

n2∑

j=1

i2j − d21)u
2 + (1 + n2 − d22)v

2 + (−2σ1 − 2d1d2)uv

}

=0.

Since d1u+ d2v 6= 0, as long as n2 ≥ 3, it is impossible for p1 = 0.
�

Remark 7. It is possible for twisted Milnor hypersurface HI

n1,n2
(d1, d2) to be string when

n2 < 3. For example, choose n2 = 1, d2 = 0, we have

p1 = i∗
{
(n1 + 1 + i21 − d21)u

2 + 2v2 − 2i1uv

}
,

where 2v2 − 2i1uv is killed by the relation in the cohomology ring of 2 staged generalized Bott
manifold. Thus if n1 + 1 + i21 − d21 = 0, we have p1 = 0. For example, twisted Milnor
hypersurface H±6

12,1(±7, 0) is the required 24-dim string manifold.

Due to the restriction of Lemma 4.1, we proceed to investigate string complete in-
tersections. The submanifold HI

n1,n2
(d1, d2; d3, d4) Poincaré dual to cohomology class

(d1u+d2v)·(d3u+d4v) ∈ H4(V ;Z) is string as long as the equation set

{ n1 + 1 +
n2∑
j=1

i2j = d21 + d23

1 + n2 = d22 + d24

d1d2 + d3d4 +
n2∑
j=1

ij = 0

has integer solutions. Actually, there exist plenty of string complete intersections.
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4.2. Witten genus. Consider the Jacobi theta function

θ(z, τ) = 2q1/8sin(πz)
∞∏

j=1

[(1− qj)(1− e2πizqj)(1− e−2πizqj)],

where θ admits periodicity, θ(z+1, τ) = −θ(z, τ), θ(z+bτ, τ) = (−1)be−πi(2bz+b2τ)θ(z, τ).
Clearly θ has simple zeros on lattice Z+Zτ and no pole. Applying our iterated residue,
the Witten genus can be reformulated as

ϕW (HI

n1,n2
)

=θ′n1+n2(0)〈( u

θ(u)
)n1+1 v

θ(v)

n2∏

j=1

v − iju

θ(v − iju)

θ(d1u+ d2v)

d1u+ d2v

θ(d3u+ d4v)

d3u+ d4v
, [HI

n1,n2
]〉

=
θ′n1+n2(0)

(2πi)−2
〈( u

θ(u)
)n1+1 v

θ(v)

n2∏

j=1

v − iju

θ(v − iju)
θ(d1u+ d2v) · θ(d3u+ d4v), [V ]〉

=
θ′n1+n2(0)

(2πi)n1+n2−2
Res0

{
Res0

θ(d1u+ d2v) · θ(d3u+ d4v)

θn1+1(u)θ(v)
∏n2

j=1 θ(v − iju)
du

}
dv.

Remark 8. If meromorphic function g has pole of order n at point c, then

Resc g =
1

(n− 1)!
· lim
z→c

dn−1

dzn−1
((z − c)ng(z)).

It is usually difficult to calculate the residue at high order poles for both variables u and v
directly, thus we shall make use of residue theorem to reduce iterated residue at high order poles
to simple poles. This is the common operation for Landweber-Stong type vanishing results.

Under certain condition, we obtain a Landweber-Stong type vanishing result for
string complete intersections in generalized Bott manifolds. We add the coprime con-
dition to make sure that the poles except for 0 are simple.

Theorem 4.1. For a string complete intersection HI

n1, 3(d1, d2; d3, d4), if I = (i, j, k) are
coprime, (i, i− j, i− k), (j, j − i, j − k), (k, k − i, k − j) are coprime respectively, then
the Witten genus

ϕW (HI

n1, 3
(d1, d2; d3, d4)) = 0.

Proof.

ϕW (HI) =
θ′n1+n2(0)

(2πi)n1+n2−2
Res0

{
Res0

θ(d1u+ d2v)θ(d3u+ d4v)

θn1+1(u)θ(v)θ(v + iu)θ(v + ju)θ(v + ku)
du

}
dv.

Denote ω(u) = θ(d1u+d2v)·θ(d3u+d4v)

θn1+1(u)θ(v)
∏n2

j=1 θ(v−iju)
du, we check its periodicity

ω(u+ 1) = (−1)d1+d3−n1−1−
∑

ijω(u) = ω(u);

ω(u+ τ) =
(−1)d1+d3e−πi(2d1(d1u+d2v)+2d3(d3u+d4v)+(d21+d23)τ)θ(d1u+ d2v) · θ(d3u+ d4v)

(−1)n1+1+
∑

ije−πi((n1+1)(2u+τ)+
∑

(−2ij (v−iju)+i2j τ))θn1+1(u)θ(v)
∏
θ(v − iju)

du.

Since HI

n1,n2
(d1, d2; d3, d4) is string, we have ω(u+ τ) = ω(u). We can claim that ω(u)

admits double periodicity on lattice L := Z + Zτ . Let T 2 ∼= C/L, thus ω(u) can be
16



defined on closed surface T 2. Then we can apply residue theorem on ω(u). Since θ has
simple zeros on Z+ Zτ and no poles, the possible poles of ω are

0,
a + bτ − v

i
(1 ≤ a, b ≤ i),

c + dτ − v

j
(1 ≤ c, d ≤ j),

m+ nτ − v

k
(1 ≤ m, n ≤ k).

Applying residue theorem on u, we get

{Res0 +Res1+τ− v
i
+Res1+τ− v

j
+Res1+τ− v

k
+Resa+bτ−v

i
+Res c+dτ−v

j
+Resm+nτ−v

k
}ω(u) = 0.

Moreover

Res0{Res1+τ− v
i
ω(u)}dv = 1

θ′(0)
· Res0

θ((d2i− d1)v)θ((d4i− d3)v)

θn1+1(−v)θ(iv)θ((i− j)v)θ((i− k)v)
dv,

Res0{Res1+τ− v
j
ω(u)}dv = 1

θ′(0)
· Res0

θ((d2j − d1)v)θ((d4j − d3)v)

θn1+1(−v)θ(jv)θ((j − i)v)θ((j − k)v)
dv,

Res0{Res1+τ− v
k
ω(u)}dv = 1

θ′(0)
· Res0

θ((d2k − d1)v)θ((d4k − d3)v)

θn1+1(−v)θ(kv)θ((k − i)v)θ((k − j)v)
dv,

Res0{Res a+bτ−v
i

ω(u)}dv = (−1)a+b+1

i · θ′2(0) e
2πib2τ · θ(d1(a+bτ)

i
)θ(d3(a+bτ)

i
)

θn1+1(a+bτ
i

)θ( j(a+bτ)
i

)θ(k(a+bτ)
i

)
,

Res0{Res c+dτ−v
j

ω(u)}dv = (−1)c+d+1

j · θ′2(0) e
2πid2τ ·

θ(d1(c+dτ)
j

)θ(d3(c+dτ)
j

)

θn1+1( c+dτ
j

)θ( i(c+dτ)
j

)θ(k(c+dτ)
j

)
,

Res0{Resm+nτ−v
k

ω(u)}dv = (−1)m+n+1

k · θ′2(0) e2πin
2τ · θ(d1(m+nτ)

k
)θ(d3(m+nτ)

k
)

θn1+1(m+nτ
k

)θ( i(m+nτ)
k

)θ( j(m+nτ)
k

)
.

Apply residue theorem again on v to the followings

Res0{Res1+τ− v
i
ω(u)}dv, Res0{Res1+τ− v

j
ω(u)}dv, Res0{Res1+τ− v

k
ω(u)}dv.

Here we take Res0{Res1+τ− v
i
ω(u)}dv for example. Denote

ω(v) =
θ((d2i− d1)v)θ((d4i− d3)v)

θn1+1(−v)θ(iv)θ((i− j)v)θ((i− k)v)
dv.

Since i, (i−j), i−k are coprime, it is easy to check ω(v) can also be defined on T 2 ∼= C/L.
The possible poles of ω(v) include 0, a+bτ

i
, a+bτ

i−j
, a+bτ

i−k
. We have

Resa+bτ
i
ω(v) =

(−1)a+b

i · θ′(0) e
2πib2τ · θ( (d2i−d1)(a+bτ)

i
)θ( (d4i−d3)(a+bτ)

i
)

θn1+1(−a+bτ
i

)θ( (i−j)(a+bτ)
i

)θ( (i−k)(a+bτ)
i

)
.

Since θ(z + bτ) = (−1)be−2πibz−πib2τθ(z),
17



Resa+bτ
i
ω(v)

Res0{Resa+bτ−v
i

ω(u)}dv

=(−1)n1+1+(d2+d4)(a+b) · e−2πi(−d2d1−d4d3+j+k)b(a+bτ
i

)−πib2(d22+d24−2)τ

=1.

Similarly,
Res c+dτ

j
{Res1+τ− v

j
ω(u)}dv = Res0{Res c+dτ−v

j
ω(u)}dv,

Resm+nτ
k

{Res1+τ− v
k
ω(u)}dv = Res0{Resm+nτ−v

k
ω(u)}dv

and

Res a+bτ
i−j

ω(v)

Res a+bτ
i−j

{Res1+τ− v
j
ω(u)}dv

=(−1)1+(d2+d4)(a+b) · e−2πi(d2(d2j−d1)+d4(d4j−d3)−2j+k)ba+bτ
i−j

−πib2(d22+d24−2)τ

=− 1.

Similarly,

Resa+bτ
i−k

ω(v) = −Res a+bτ
i−k

{Res1+τ− v
k
ω(u)}dv

and
Res a+bτ

j−k
{Res1+τ− v

j
ω(u)}dv = −Res a+bτ

j−k
{Res1+τ− v

k
ω(u)}dv.

Glue all the calculations together, we have Res0{Res0 ω(u)}dv = 0, i.e.,

ϕW (HI

n1, 3
(d1, d2; d3, d4)) = 0.

�

REFERENCES

[1] M. F. Atiyah, I.M. Singer, The index of elliptic operators, III, Ann. Math. 1968 (87), 546–604.
[2] G. Andrews, A. Schilling, S. Warnaar, An A2 Bailey lemma and Rogers-Ramanujan-type identities, Jour-

nal of the American Mathematical Society, 1999, 12(3): 677–702.
[3] W. N. Bailey, An Algebraic Identity, J. London Math. Soc. 1936 (11), 156–160
[4] L. A. Borisov, P. E. Gunnells, Toric varieties and modular forms, Inventiones mathematicae, 2001,

144(2): 297–325.
[5] L. A. Borisov, A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry, Inven-

tiones mathematicae, 2000, 140(2): 453–485.
[6] R. Bott, H. Samelson, Application of the theory of Morse to symmetric spaces, Amer. J. of Math. 1958

(80), 964–1029.
[7] K. Chandrasekharan, Elliptic Functions, Springer-Verlag, 1985.
[8] Q. Chen, F. Han, Witten genus and string complete intersections, Pacific J. Math. 2008 234(2) : 249–259.
[9] Q. Chen, F. Han, and W. Zhang, Generalized Witten genus and vanishing theorems, J. Differential Geom.

2011 88(1) : 1–39.
[10] A. Dessai, The Witten Genus and S3-actions on Manifolds, Fachbereich Mathematik, Universität

Mainz, 1994.
[11] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Vol. 52 (John Wiley and Sons, Springer, New

York, 2011).
18



[12] M. Grossberg, Y. Karshon, Bott towers, complete integrability, and the extended character of representa-
tions, Duke Math. J. 1994 (76): 23–58.

[13] F. Hirzebruch, T. Berger, R. Jung, P. S. Landweber, Manifolds and modular forms, Braunschweig:
Vieweg, 1992.

[14] M. Hopkins, Algebraic topology and modular forms, Plenary talk, ICM, Beijing, 2002, MR 1989190, Zbl
1031.55007.
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