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FRACTIONAL STRUCTURES ON BUNDLE GERBE MODULES

AND FRACTIONAL CLASSIFYING SPACES

FEI HAN, RUIZHI HUANG, AND VARGHESE MATHAI

Abstract. We study the homotopy aspects of the twisted Chern classes of
torsion bundle gerbe modules. Using Sullivan’s rational homotopy theory,
we realize the twisted Chern classes at the level of classifying spaces. The
construction suggests a notion, which we call fractional U-structure serving as a
universal framework to study the twisted Chern classes of torsion bundle gerbe
modules from the perspective of classifying spaces. Based on this, we introduce
and study higher fractional structures on torsion bundle gerbe modules parallel
to the higher structures on ordinary vector bundles.
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Introduction

Roughly speaking, torsion bundle gerbe modules are twisted versions of vector
bundles, which can serve as cocycles of twisted K-theory where the twist is a torsion
3-class. This paper is aimed to study higher structures on torsion bundle gerbe
modules from the perspective of homotopy theory.

Higher structures. The higher structures on an oriented vector bundle, like
spin, string and SU, U〈6〉 (when the vector bundle is complex) are important in
topology and geometry. For instance, in the real case, the significance of spin
structure is illustrated by the classical Atiyah-Singer index theory [AS], which is
the cornerstone of spin geometry (c.f. [LM]). Further, the existence of a string
structure on the tangent bundle of a manifold implies the modularity [Zig] of the
Witten genus [Wit1], whose homotopy refinement leads to the profound theory of
topological modular form developed by Hopkins and Miller [Hop]. In the complex
case, Adams [Ada] initiated the study of algebraic topology of the higher structures
including SU and U〈6〉. For a Calabi-Yau manifold, its complex tangent bundle has
SU structure. In their celebrated paper, [AHS] Ando-Hopkins-Strikland constructed
the σ-orientations from MU〈6〉 to elliptic spectra.

On the other hand, the loop space aspects of the higher structures were moti-
vated by quantum anomaly in physics [Kil]. The so-called loop orientable and loop
spin structures are transgressed from spin and string structures respectively [Mcl].
More geometrically, the additional fusive structures on higher loop structures were
introduced by Stolz-Teichner [ST], and were further investigated by Waldorf [Wal1]
and Kottke-Melrose [KM].

Bundle gerbe modules. When the base manifold is equipped with an S1-
gerbe, there are theories of twisted versions of vector bundles, which form cocycles
of twisted K-theory (see the developments of the theory in [DK, Ros, AS1, AS2,
FHT1, FHT2, FHT3] and the physics aspects in [MM, Wit2]). Bundle gerbe is a
model of S1-gerbe and bundle gerbe module is a twisted version of vector bundles.
Bundle gerbes were introduced by Murray [Mur] as geometrization of degree 3
cohomology classes, while bundle gerbe modules over a given bundle gerbe were
introduced by Bouwknegt, Carey, Mathai, Murray and Stevenson [BCMMS] as
cocycles of twisted K-theory.

The twisted Chern classes for twisted K-theory have been studied through a
couple of approaches [AS2, BCMMS]. In particular, regarding bundle gerbe mod-
ules, in [BCMMS] Bouwknegt, Carey, Mathai, Murray and Stevenson introduced
the twisted Chern character from the perspective of Chern-Weil theory. When the
bundle gerbe modules are finite ranks, the Dixmier-Douady class of the bundle
gerbe must be a torsion class [BCMMS]. In this case, we call them torsion bundle
gerbe modules. 1 The fractional index theorem of Mathai-Melrose-Singer estab-
lished in [MMS, MMS2] can be viewed as the quantization of the theory of torsion
bundle gerbe modules and their twisted Chern classes.

Summary of main results. The purpose of this paper is to study the homotopy
aspects of torsion bundle gerbe modules and their twisted Chern classes. Since in

1We remark that Tomoda [Tom] proved the splitting principle of torsion bundle gerbe modules
and reproduced the twisted Chern classes from this perspective.
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this paper we only consider torsion bundle gerbes and their modules, we will drop
the adjective torsion. Using Sullivan’s rational homotopy theory [Sul], we realize
twisted Chern classes at the level of classifying spaces. More precisely, we construct
a relative classifying space for bundle gerbe modules, in the sense that it classifies
bundle gerbe modules up to twisted Chern classes. The construction suggests a
slightly more general homotopy notion, fractional U-structure, which serves as a
universal framework to study the twisted Chern classes of bundle gerbe modules
from the perspective of classifying spaces. Indeed, the relative classifying space
is exactly the classifying space of fractional U-structure, which we will refer to
as fractional classifying space. In due course, we explicitly calculate the precise
formulae resolving the relation between the twisted Chern classes and the ordinary
Chern classes associated to bundle gerbe modules.

An advantage of the homotopy construction is that it allows us to study higher
structures on bundle gerbe modules from the perspective of classifying spaces, in
a pattern similar to the higher structures on ordinary vector bundles. For bundle
gerbe modules, it is natural to define the fractional SU-structure and fractional
U〈6〉-structure in terms of vanishment of the first two twisted Chern classes similar
to the SU- and U〈6〉 structure on ordinary complex vector bundles in terms of the
vanishment of the first two ordinary Chern classes. It is worthwhile to remark that
geometrically such fractional U〈6〉-condition is the obstruction to the modularity of
the projective elliptic genera and graded Chern character of Witten gerbe modules
[HM1, HM2]. The fractional SU- and U〈6〉-structures are the twisted counterparts
of SU- and U〈6〉-structures respectively. To study them from the perspective of
classifying spaces, we carefully construct a delicate relative Whitehead tower of
the relative classifying space of bundle gerbe modules, and identify the respective
fractional classifying spaces of the fractional SU- and U〈6〉-structures. We are then
able to characterize the two higher fractional structures as relative homotopy lifting
problems with respect to the relative Whitehead tower, and count the number of
these higher fractional structures analogous to the untwisted cases. We expect
that there would be some interesting applications of the fractional U〈6〉-structures.
Indeed, as pointed out in Remark 6, associated to fractional U〈6〉 bundle gerbe
modules over U〈6〉-manifolds, there are explicitly constructed modular projective
elliptic genera in [HM1, HM2]. Following the work of Ando-Hopkins-Strikland
[AHS], it might lead to a fractional version of the σ-orientations.

With the relative classifying space, we can also study higher fractional structures
of bundle gerbe modules from the loop space point of view in a pattern similar to
loop orientable and loop spin structures. Indeed, with the classical transgression
map to loop spaces, it is natural to define the fractional loop U-structure and frac-
tional loop SU-structure in terms of vanishment of the transgressions of the first two
twisted Chern classes. To study them from the perspective of classifying spaces, we
also carefully construct an explicit relative Whitehead tower of the looped relative
classifying space of bundle gerbe modules, and identify the respective fractional
classifying spaces of the fractional loop U- and SU-structures. As in the non-loop
cases, we are then able to characterize the two higher fractional loop structures as
certain relative homotopy lifting problems and also count them.

The higher fractional non-loop and loop structures can be compared either from
the perspective of classifying spaces or from the perspective of transgressions. In
either way, it can be shown that higher fractional non-loop structures are generally
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stronger than their loop counterparts. In particular, fractional SU implies fractional
loop U, while fractional U〈6〉 implies fractional loop SU. Moreover, the distinct
fractional non-loop structures transgress to the corresponding distinct fractional
loop structures. Under certain conditions on the topology of the base manifold,
the higher fractional non-loop and loop structures are equivalent, and there are
one-to-one correspondences between distinct structures.

A graphic illustration of higher structures. Before closing the introduc-
tion, let us illustrate the hierarchy of fractional complex structures by the right
diagram of (1). In contrast, the corresponding hierarchy of ordinary real structures
is depicted on the left diagram of (1) for comparison. Here, a straight arrow A ! B
means that a B-structure is lifted to an A-structure, and hence A is one level higher
than B, while a wave arrow C  loop D means that a C-structure transgresses to
a loop D-structure, and hence C is generally stronger than loop D. For more ex-
plicit explanations of (1), one may refer to Subsection 1.3, 1.4 and 1.5 for the right
diagram, and to Subsection 1.1 for the left diagram.

string

��

'''g
'g

'g
'g

'g
'g

'g

fractional U〈6〉

��

)))i)i
)i)i

)i)i
)i)i

)i

loop spin

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

fractional loop SU

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

spin

��

(((h
(h

(h
(h

(h
(h

(h
(h

fractional SU

��

)))i)i
)i)i

)i)i
)i)i

)i)i

loop orientable

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

fractional loop U

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

orientable fractional U

(1)

hierarchy of ordinary real structures hierarchy of fractional complex structures

Organization of the paper. The main body of the paper starts with a compre-
hensive introduction of our main results in Section 1 with background information
on the relevant theories on ordinary vector bundles. More explicitly, in Subsec-
tion 1.1, we review the untwisted higher structures mainly from the perspective of
classifying spaces. In Subsection 1.2, we introduce our results on the homotopy
realization of twisted Chern classes, and define the fractional U-bundle as a homo-
topy generalization of bundle gerbe modules. In Subsection 1.3 and 1.4, we review
our results on the higher fractional non-loop and loop structures respectively, fol-
lowed by their comparison in Subsection 1.5. In particular, the main results are
summarized in Theorem 1, 7, 8, 10, and 11.

The next three sections are devoted to realize the twisted Chern classes explic-
itly from the perspective of classifying spaces. In Section 2, we recall necessary
background on bundle gerbe modules. In Section 3, we show the explicit formulae
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and combinatorics of the twisted Chern classes. Motivated by the computation, in
Section 4 we apply Sullivan’s rational homotopy theory to realize the twisted Chern
classes from the perspective of classifying spaces, and propose a notion of fractional
U-structure. This is essentially summarized in Theorem 1.

The last two sections are about the study higher fractional structures. In Section
5, we introduce fractional SU- and U〈6〉-structures, while in Section 6, we introduce
fractional loop U- and SU-structures. In each case, we characterize the existence
of the higher fractional structures as certain relative homotopy lifting problem and
count such structures. In particular, we construct the two relative Whitehead
towers for fractional structures. These are summarized in Theorem 7, 8, 10, and
11. In Section 6, we compare the fractional loop structures with the fractional
non-loop structures.

The paper ends up with a table to record the characteristic classes appeared in
this paper.

Conventions:

• We always use ≃ to denote homotopy equivalence;
• In this paper, the spaces Y andM under consideration are always assumed
to be connected;

• Throughout the paper, H∗(X) is used to denote the singular cohomology
H∗(X ;Z) with integral coefficient;

• For any class x ∈ Hk(X ;R) in coefficient R, it is represented by a map
X −! K(R, k) into Eilenberg-MacLane space under the Brown represen-
tation theorem. For the sake of simplicity, we always use the symbol x to
denote both the map and its represented class; further, for a given map
g : Y ! X , we may denote x := g∗(x) by abuse of notation. This conven-
tion will be frequently used for liftings of universal characteristic classes.

• The notations of characteristic classes are consistent throughout the paper.
For convenience, they are summarized in the table at the end of the main
text for reference. Following the last convention, we use the same notation
for each universal characteristic classes and its liftings through appropriate
maps defined in the paper, such as for ci, zi, c

Q

i , z
Q

i , c̄1 or z̄1.
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1. Fractional structures and statement of results

1.1. Background. Before we study fractional structures on bundle gerbe modules,
let us recap the relevant theories on ordinary vector bundles, for which one can refer
to the left diagram of (1) for guidance.

Let V be an oriented real vector bundle of rank m over a given manifold M .
If some characteristic classes of V vanish, one can expect stronger information
on the geometry and topology of V . For instance, V is called spin if its second
Stiefel-Whitney class ω2(V ) = 0. The classical Atiyah-Singer index theory [AS]
illustrates the significance of the spin condition on tangent bundles of manifolds
by integrating geometry, topology and analysis together on manifolds using Dirac
operators. Furthermore, V is called string if it is spin and the first spin class
1
2p1(V ) = 0. When the tangent bundle of a manifold is string, the Witten genus
[Wit1] is a modular form [Zig], whose homotopy refinement leads to the profound
theory of topological modular form developed by Hopkins and Miller [Hop].

From the perspective of homotopy theory, these higher structures can be under-
stood through classifying spaces. Let

f :M −! BSO(m),

be the classifying map of V , where SO(m) is the m-th special orthogonal group
and B is the classifying functor. The spin and string structures can be described
through liftings of the structure group SO(m). Indeed, there is the Whitehead tower
of the classifying space BSO(m)

· · · −! BString(m)
Bi3
−! BSpin(m)

Bi2
−! BSO(m),

where Spin(m) is the m-th spin group, and the string group String(m) is deter-
mined by the universal group extension (cf. [ST])

{1} −! K(Z, 2) −! String(m)
i3
−! Spin(m) −! {1}

with K(Z, 2) being the Eilenberg-MacLane space such that π2(K(Z, 2)) ∼= Z. The
bundle V being spin is equivalent to that its structure group SO(m) can be lifted
to Spin(m), that is, f factors through Bi2. Similarly, V being string is equivalent
to that the structure group can be further lifted to String(m), that is, f factors
through Bi3. By the standard arguments in homotopy theory, it can be shown that
distinct spin and string structures are parametrized byH1(M ;Z/2Z) andH3(M ;Z)
respectively (cf. [LM]).

Moreover, the physical motivation from quantum anomaly [Kil] leads to the
study of spin and string structures via the free loop space LM with L being the
free loop functor. Indeed, the looped higher structures can be understood via the
transgression map (see (6.3)) of the characteristic classes of V . If the transgres-
sion of ω2(V ) vanishes, V is called loop orientable; further, if V is spin and the
transgression of 1

2p1(V ) vanishes, V is called loop spin [Mcl].
To understand these loop structures through loop spaces of classifying spaces,

consider the looped classifying map

Lf : LM −! BLSO(m)

of V . Recall that LG is a loop group for a topological group G. On the free loop
level, there is the Whitehead tower of BLSO(m) (cf. [Mcl])

· · · −! BL̂Spin(m)
Bς3
−! BLSpin(m)

BL̂i2
−! BL0SO(m)

Bς2
−! BLSO(m),
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where L0SO(m) is the 0-component of LSO(m) containing the constant loop on

identity, L̂Spin(m) is determined by the universal circle extension

{1} −! U(1) −! L̂Spin(m)
ς3
−! LSpin(m) −! {1},

and ς2 ◦ L̂i2 = Li2. The bundle V being loop orientable is equivalent to that its
structure group LSO(m) can be lifted to L0SO(m) through ς2. Similarly, V being

loop spin is equivalent to that the structure group can be further lifted to L̂Spin(m)
through ς3. It can be shown that distinct loop orientable and loop spin structures
are parametrized by H0(LM ;Z/2Z) and H2(LM ;Z) respectively [Mcl].

More geometrically, Stolz and Teichner gave the link of the string structure on
M to the fusive spin structure on LM [ST]. This was further developed by Waldorf
[Wal1, Wal2] and Kottke-Melrose [KM]. In [Bun], Bunke studied the Pfaffian line
bundle of certain family of Dirac operators and showed that string structures give
rise to trivializations of that Pfaffian line bundle. See also the study of string
structures from the differential and the twisted point of view [Red, Sat, DHH].

Now let us turn to the case of complex vector bundles. Let E be a complex bundle
of rank n over M . E is called SU if its first Chern class c1(E) = 0. Further, E is
calledU〈6 〉 if it is SU and the second Chern class c2(E) = 0. The U〈6〉 structure was
first introduced from the perspective of Whitehead tower of classifying spaces by
Adams [Ada]. In the celebrated paper [AHS], Ando-Hopkins-Strikland constructed
the σ-orientations from MU〈6〉 to elliptic spectra.

To understand these higher complex structures through classifying spaces, con-
sider the classifying map

f :M −! BU(n)

of E with U(n) being the n-th unitary group. There is the Whitehead tower of
BU(n)

(2) · · · −! BU〈6〉(n) Bi3
−! BSU(n)

Bi2
−! BU(n),

where SU(n) is the n-th special unitary group and U〈6〉(n) is determined by the
universal group extension ([Sin, AHS])

(3) {1} −! K(Z, 2) −! U〈6〉(n) i3
−! SU(n) −! {1}.

The complex bundle E being SU is equivalent to that f can be lifted to BSU(n)
through Bi2. Similarly, E being U〈6〉 is equivalent to that f can be further lifted
to BU〈6〉(n) through Bi3. One can similarly use the standard arguments in homo-
topy theory to show that the distinct SU and U〈6〉 structures are parametrized by
H1(M ;Z) and H3(M ;Z) respectively.

As in the real case, one can consider these higher complex structures after loop-
ing. Indeed, there is a loop class z1(LE) ∈ H1(LM ;Z) as the transgression of
c1(E). We call E loop U if z1(LE) = 0. Further, suppose E is SU. There is a loop
class z2(LE) ∈ H3(LM ;Z) as the transgression of c2(E). We call E is loop SU if
z2(LE) = 0.

To understand these loop complex structures through loop spaces of classifying
spaces, consider the looped classifying map

Lf : LM −! BLU(n)



8 FEI HAN, RUIZHI HUANG, AND VARGHESE MATHAI

of E. On the free loop level there is the Whitehead tower of BLU(n) (cf. [Mcl])

(4) · · · −! BL̂SU(n)
Bι3
−! BLSU(n)

BL̂i2
−! BL0U(n)

Bι2
−! BLU(n),

where L0U(n) is the 0-component of LU(n) containing the constant loop, L̂SU(n)
is determined by the universal circle extension

(5) {1} −! U(1) −! L̂SU(n)
ι3
−! LSU(n) −! {1},

and ι2 ◦ L̂i2 = Li2. The bundle E being loop U is equivalent to that its structure
group LU(n) can be lifted to L0U(n) through ι2. Similarly, E being loop SU is

equivalent to that the structure group can be further lifted to L̂SU(n) through ι3.
It can be shown that the distinct loop U and loop SU structures are parametrized
by H0(LM ;Z) and H2(LM ;Z) respectively (cf. [Mcl]).

1.2. Twisted Chern classes and fractional U-structure. In this subsection,
we will introduce Theorem 1, one of our main results, which realizes the twisted
Chern classes from the perspective of classifying spaces. In particular, it provides
a fractional classifying space of bundle gerbe modules up to twisted Chern classes,
which brings us to a general homotopy notion, the fractional U-structure. The
latter provides us a homotopy framework to study higher fractional structure in
the sequel.

Let M be a smooth manifold. A bundle gerbe over M consists of the following
data:

(i) a locally split map π : Y !M ;
(ii) a complex line bundle L over Y [2] = Y ×π Y , the fiber product of Y with

itself over π;
(iii) an isomorphism

L(y1,y2) ⊗ L(y2,y3) ! L(y1,y3)

for every (y1, y2) and (y2, y3) in Y
[2].

The bundle gerbe has a characteristic class d(L) = d(L, Y ) ∈ H3(M ;Z), the
Dixmier-Douady class. The Dixmier-Douady classs is the obstruction to the gerbe
being trivial.

Let E ! Y be a complex vector bundle. Let πi : Y
[2]

! Y be the map which
omits the i-th element. Suppose that E is a bundle gerbe module of L, i.e. there is
a complex bundle isomorphism

φ : L⊗ π∗
1(E) ∼= π∗

2(E),

which is compatible with the bundle gerbe multiplication in the sense that the two
maps

L(y1,y2) ⊗ (L(y2,y3) ⊗ Ey3) ! L(y1,y2) ⊗ Ey2 ! Ey1

and

(L(y1,y2) ⊗ L(y2,y3))⊗ Ey3 ! L(y1,y3) ⊗ Ey3 ! Ey1

are the same.
Assume the rank of E is n, a finite positive integer. It is shown in [BCMMS]

that the Dixmier-Douady class d(L) must be torsion, i.e. the bundle gerbe (L, Y ) is
flat; and if d(L) is a torsion class of order l, then l|n and the tensor power (Y, L⊗l)
has Dixmier-Douady class zero and it is therefore a trivial bundle gerbe. Fix a
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trivilization of (Y, L⊗l), or more precisely, fix a complex line bundle ξ on Y such
that

L⊗l ∼= δ(ξ) := π∗
1(ξ

∗)⊗ π∗
2(ξ).

By developing the splitting principle for bundle gerbe modules [Tom], Tomoda

reproduced the twisted Chern classes cl,ξk (E) and showed that the Chern character
constructed from these twisted Chern classes coincides with the twisted Chern
character of Bouwknegt-Carey-Mathai-Murray-Stevenson [BCMMS].

Let ξ be classified by a ∈ H2(Y ;Z) ∼= [Y,BU(1)], the group of the homotopy
classes of based maps, and E classified by f : Y ! BU(n). The data of bundle
gerbe module E over L gives a map

fa := (a, f) : Y −! BU(1)×BU(n),

which we call pseudo-classifying map of E. To emphasize the classifying maps, we

denote the twisted Chern class cl,ξk (E) by cl,ak (E) from now on.
Denote by XQ the rationalization of any nilpotent space X . Using Sullivan’s

rational homotopy theory [FHT01], we realize the twisted Chern classes at the
level of classifying spaces. More precisely, we have the following theorem which will
be proved in Subsection 4.1.

Theorem 1. Let n and l be positive integers such that l|n, there is a canonical
map

φl|n : BU(1)×BU(n) −! BU(n)Q,

such that for any bundle gerbe module E of rank n over a bundle gerbe L of oder l,
(i) the pseudo-classifying map fa = (a, f) of E descents to a map f l on M

through π in the following homotopy commutative diagram

Y

π

��

fa

// BU(1)×BU(n)

φl|n

��
M

f l

// BU(n)Q,

(6)

(ii) the k-th twisted Chern class cl,ak (E) ∈ H2k(M ;Q) satisfies

cl,ak (E) = f l∗(cQk),

for each 0 ≤ k ≤ n with cQk being the k-th universal rational Chern class.

Let ck ∈ H2k(BU(n);Z) denote the k-th universal integral Chern class. Denote
by g the first Chern class c1 ∈ H2(BU(1);Z). It is clear that fa∗(g) = a. The
following theorem illustrates the precise relation between the twisted Chern classes,
rational Chern classes and integral Chern classes.

Theorem 2 (Lemma 3.1 and 4.1). With the same conditions and notations in
Theorem 1,

φ∗l|n(c
Q

k) =

k∑

i=0

(−1

l

)i
(
n− k + i

i

)
gick−i,

π∗(cl,ak (E)) =

k∑

i=0

(−1

l

)i
(
n− k + i

i

)
aick−i(E).

(7)
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On the level of characteristic classes, the pair of maps (fa, f l) can be viewed as
the classifying map of the bundle gerbe module E mapping to the relative classifying

space, the map BU(1)× BU(n)
φl|n
−! BU(n)Q. Motivated by the above results, we

make a definition for the situation slightly more general than bundle gerbe modules,
which extracts the homotopy information of bundle gerbe modules, and further
allows us to introduce higher structures on bundle gerbe modules.

Definition 3. Let π : Y !M be a locally split map and ξ a complex line bundle
over Y classified by a : Y ! BU(1). Let E be a rank n complex vector bundle over
Y classified by a map f : Y ! BU(n). Let l be a positive integer such that l|n. E
is called an (a, 1l )-fractional U(n)-bundle over M , or simply a fractional U-bundle

if the pseudo-classifying map fa = (a, f) descents to a map f l on M through π in
a homotopy commutative diagram (6).

We call the map BU(1) × BU(n)
φl|n
−! BU(n)Q the fractional classifying space

of fractional U-structure, and the pair of maps (fa, f l) the classifying map of the
fractional bundle E with the relative structure group (U(1) × U(n), U(n)Q). We

define the k-th fractional Chern class cl,ak (E) of the fractional U-bundle E to be
f l∗(cQk) ∈ H2k(M ;Q), for each 0 ≤ k ≤ n with cQk being the k-th universal rational
Chern class.

By Theorem 1, one can see that when the fractional bundle E comes from a
bundle gerbe module, the fractional Chern classes coincide with the twisted Chern
classes. This justifies our choice of notation. We summarize this immediate but
important fact in the following theorem.

Theorem 4. Let E be a bundle gerbe module of rank n over a flat bundle gerbe
(L, Y ) of order l. Then E admits a fractional U-structure determined by Diagram
(6). Moreover, for each 0 ≤ k ≤ n, its k-th twisted Chern class coincides with its
k-th fractional Chern class. �

In the sequel we will not distinguish these two terminologies, and usually adopt
fractional Chern class to emphasize its non-integrality illustrated explicitly in The-
orem 2.

1.3. Higher fractional structures. In this subsection, we discuss higher frac-
tional structures as depicted in Diagram (1). We first introduce the notion of
fractional SU- and U〈6〉-structures in terms of the fractional Chern classes. Then
by explicitly constructing a relative Whitehead tower of the fractional classifying
space up to level 2, we characterize the homotopy aspects of these higher fractional
structures in Theorem 7 and 8.

Parallel to the classical higher structures on ordinary vector bundles as recapped
in Subsection 1.1, it is natural to define higher fractional structures on fractional
U-bundles as follows,

Definition 5. Suppose E is a given (a, 1l )-fractional U(n)-bundle determined by
Diagram (6).

(i) E is called an (a, 1l )-fractional SU(n)-bundle, or simply a fractional SU-

bundle if its first fractional Chern class cl,a1 (E) = 0;
(ii) E is called an (a, 1l )-fractional U〈6〉(n)-bundle, or simply a fractional U〈6〉-

bundle if it is (a, 1l )-fractional SU and its second fractional Chern class

cl,a2 (E) = 0.
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Remark 6. Before proceeding to the homotopy aspects of these higher fractional
structures, we would like to remark that the degree 4 component of the twisted
Chern character of a bundle gerbe module E

ChL(E)[4] =
1

2
(cl,a1 (E)2 − 2cl,a2 (E))

is the obstruction to the modularity of graded Chern character of Witten gerbe
modules
(8)

Θ2(E) =
∞⊗

v=1

Λ−qv−
1
2
(E)⊗

∞⊗

v=1

Λ−qv−
1
2
(Ē), Θ3(E) =

∞⊗

v=1

Λ
qv−

1
2
(E)⊗

∞⊗

v=1

Λ
qv−

1
2
(Ē),

which are elements in K(Y )[[q1/2]] and appear in the construction of projective
elliptic genera [HM1, HM2] (when E is an ordinary vector bundle over M , see
Liu [Liu]). Let {2π

√
−1xi}, 1 ≤ i ≤ n, be the formal Chern roots of E and

q = e2π
√
−1τ , τ ∈ H, the upper half plane. Recall a = c1(ξ). In terms of the Jacobi

theta functions, the graded Chern characters of the Witten gerbe modules Θ2(E)
and Θ3(E) can be expressed as

GCh(Θ2(E)) =

n∏

i=1

θ2

(
xi −

a

l
, τ
)
,

GCh(Θ3(E)) =
n∏

i=1

θ3

(
xi −

a

l
, τ
)
.

They are cohomology classes in Heven(Y )[[q1/2]] and descend to
Heven(M)[[q1/2]]. When ChL(E)[4] = 0, the normalized graded Chern char-

acters GCh(Θ2(E))
θn
2
(0,τ) , GCh(Θ3(E))

θn
3
(0,τ) , which are q-series with coefficients in rational

cohomology classes, have the property that the degree 2p component of them are
modular forms of weight p over certain index 2 subgroups of the modular group
SL(2,Z).

To understand the higher fractional structures in Definition 5 via classifying
spaces, we will construct a relative Whitehead tower up to level 2 for the fractional
classifying space

BU(1)×BU(n)
φl|n
−! BU(n)Q.

By Theorem 2, we see that

φ∗l|n(c
Q

1) = c1 − sg.

Let us first kill c1 − sg. Denote s = n
l . The s-th covering of U(n) is a compact Lie

group denoted by U(n)l. There is a group extension ((5.3))

{1} −! U(n)l
i2l
−! U(1)× U(n) −! U(1) −! {1},

determined by the class c1−sg ∈ H2(BU(1)×BU(n);Z) (here and later by writing
numberings like ((5.3)) and etc, we are indicating the places of origins for the
reader’s convenience). The map i2l = (dl, ρs) is explicitly defined in (5.2). As
graded ring ((5.4))

(9) H∗(BU(n)l;Z) ∼= Z[c1, c2, . . . , cn],
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such that ((5.5))

(10) Bi∗2l(g) = c1, Bi∗2l(c1) = sc1, Bi∗2l(ci) = ci, for each i ≥ 2.

For convenience denote c1 := sc1 for later use.
Let

(11) · · · −! BU〈6〉(n)Q
Bi3Q
−! BSU(n)Q

Bi2Q
−! BU(n)Q

be the rationalization of the Whitehead tower (2). It follows that there is a homo-
topy pullback diagram ((5.6))

BU(n)lQ
Bi2lQ //

φ̃2

��

BU(1)Q ×BU(n)Q

φl|nQ

��
BSU(n)Q

Bi2Q // BU(n)Q,

where φl|nQ is the rationalization of φl|n, and φ̃2 is defined by the homotopy pull-
back. Define a map φ2 as the composition

(12) φ2 : BU(n)l
r

−! BU(n)lQ
φ̃2
−! BSU(n)Q,

where r is the rationalization. The upshot is that the map φ2 is viewed as the level
1 lifting of the fractional classifying space φl|n.

To move up one level further, we need to kill the class ((5.11))

φ∗2(c
Q

2) = c2 −
s(n− 1)

2l
c21.

Construct the topological group U〈6〉(n)l defined by a group extension ((5.14);
compare to its integral counterpart (3))

{1} −! K(Q, 2) −! U〈6〉(n)l i3l
−! U(n)l −! {1}

corresponding to the rational class c2 − s(n−1)
2l c21 ∈ H4(BU(n)l;Q). It follows that

the homotopy pullback of φ2 along the lifting Bi3Q in (11) defines a map

φ3 : BU〈6〉(n)l ! BU〈6〉(n)Q.

The homotopy pullback ((5.12))

U〈6〉(n)l

��

i3l // U(n)l

Ωφ2

��
U〈6〉(n)Q

i3Q // SU(n)Q,

provides a more concrete construction of the topological group U〈6〉(n)l. The up-
shot is that the map φ3 is viewed as the level 2 lifting of the fractional classifying
space φl|n.
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To summarize, we have constructed the relative Whitehead tower of the classi-
fying space of the relative structure group (U(1)× U(n), U(n)Q)

BU〈6〉(n)l
φ3

��

Bi3l // BU(n)l
Bi2l //

φ2

��

BU(1)×BU(n)

φl|n

��
BU〈6〉(n)Q

Bi3Q // BSU(n)Q
Bi2Q // BU(n)Q.

(13)

The effect of the right square in Diagram (13) on characteristic classes is to kill
the relative class (c1 − sg, cQ1) ∈ (H2(BU(1)×BU(n)), H2(BU(n)Q)). The effect of
the left square in Diagram (13) on characteristic classes is to kill the relative class

(c2 − s(n−1)
2l c21, c

Q

2) ∈ (H2(BU(n)l;Q), H2(BSU(n)Q)).
Let us turn to fractional bundles. The following theorem characterizes the frac-

tional SU-structures from the perspective of classifying spaces, and will be proved
in Subsection 5.1. Recall by (9) we have c̄1, and ci (1 ≤ i ≤ n) as the classes of
BU(n)l satisfying (10).

Theorem 7. Let E be an (a, 1l )-fractional U(n)-bundle determined by Diagram

(6) and l > 1. Then E admits an (a, 1l )-fractional SU(n)-structure if and only if

there exists a pair of maps (fa2 , f
l
2) such that the following diagram commutes up to

homotopy

BU(n)l
Bi2l

))❚❚❚
❚❚

❚❚
❚❚

φ2

��

Y

fa
2

88

π

��

fa

// BU(1)×BU(n)

φl|n

��

BSU(n)Q
Bi2Q

))❚❚❚
❚❚

❚❚
❚

M

f l
2

88

f l

// BU(n)Q.

(14)

If such relative lift exists, then

(15) fa∗2 (c1) = a =
1

s
c1(E), fa∗2 (ci) = ci(E), f l∗2 (cQi ) = cl,ai (E), for each i ≥ 2.

Moreover, the fractional SU-structures on E are in one-to-one correspondence with
the elements of H1(M ;Z).

Motivated by Theorem 7, we call the map BU(n)l
φ2
−! BSU(n)Q the fractional

classifying space of fractional SU-structure, and say that the relative structure group
(U(1) × U(n), U(n)Q) of E can be lifted to the pair of groups (U(n)l, SU(n)Q).
We call the pair of the liftings (fa2 , f

l
2) in Diagram (14) the classifying map of

the fractional SU-structure. For a fractional U-bundle E defined by Diagram (6)
(Lemma 5.2)

(16) (c1(E)− sa, cl,a1 (E)) = (fa∗, f l∗)(c1 − sg, cQ1).

The following theorem characterizes the fractional U〈6〉-structures via classifying
spaces, and will be proved in Subsection 5.2. To trace characteristic classes in the
following diagram (17), denote c̄1 := Bi∗3l(c1) and ci := Bi∗3l(ci) for each 1 ≤ i ≤ n
as classes of BU〈6〉(n)l.
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Theorem 8. Let E be an (a, 1l )-fractional SU(n)-bundle determined by Diagram

(14) and l > 1. Then E admits an (a, 1l )-fractional U〈6〉(n)-structure if and only

if there exists a pair of maps (fa3 , f
l
3) such that the following diagram commutes up

to homotopy

BU〈6〉(n)l
Bi3l

))❘❘
❘❘

❘❘
❘

φ3

��

Y

fa
3

77

π

��

fa
2 // BU(n)l

φ2

��

BU〈6〉(n)Q
Bi3Q

))❘❘
❘❘

❘❘
❘

M

f l
3

77

f l
2 // BSU(n)Q.

(17)

If such relative lift exists then

fa∗3 (c̄1) = a =
1

s
c1(E), fa∗3 (c2) = c2(E) =

s(n− 1)

2l
a2,

fa∗3 (ci) = ci(E), f l∗3 (cQi ) = cl,ai (E), for each i ≥ 3.

(18)

Moreover, the fractional U〈6〉-structures on E are in one-to-one correspondence
with the elements of H3(M ;Z).

Motivated by Theorem 8, we call the map BU〈6〉(n)l
φ3
−! BU〈6〉(n)Q the frac-

tional classifying space of fractional U〈6〉-structure, and say that the relative struc-
ture group (U(n)l, SU(n)Q) of E can be lifted to the pair of groups (U〈6〉(n)l,
U〈6〉(n)Q). We call the pair of the liftings (fa3 , f

l
3) in Diagram (17) the classify-

ing map of the fractional U〈6〉-structure. For a fractional SU-bundle E defined by
Diagram (14) (Lemma 5.5)

(19) (c2(E)− s(n− 1)

2l
a2, cl,a2 (E)) = (fa∗2 , f l∗2 )(c2 −

s(n− 1)

2l
c21, c

Q

2).

1.4. Higher fractional loop structures. As in the untwisted cases, the frac-
tional structures can be also understood from the perspective of free loop spaces
as depicted in Diagram (1). Here we only study higher fractional loop structures
from homotopy theoretical point of view. Geometric considerations on additional
fusive structures will be explored in a separate forthcoming work.

More precisely, in this subsection we first introduce some necessary loop classes
by the transgression procedure. Then we define the notion of fractional loop U-
and SU-structures in terms of transgressed fractional characteristic classes. Lastly,
by introducing a relative Whitehead tower of the looped fractional classifying space
up to level 2, we characterize higher fractional loop structures in Theorem 10 and
11.

To study looped characteristic classes, recall there is the canonical fibration

(20) ΩX ! LX
p
! X,

where p is the evaluation map at the based point. It determines the transgression
or the free suspension ((6.3))

ν : H∗(X) −! H∗−1(LX),
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which is a derivation and is functorial in the space X . It can be showed that ((6.5))

H≤4(BLU(n)) ∼= Z≤4[z1, c1, z2, c2]

such that ci := p∗(ci) (i = 1, 2) correspond to the first two universal Chern classes,
and (Lemma 6.1)

(21) ν(c1) = z1, ν(c2) = z2 + z1c1, ν(c21) = 2z1c1.

Similarly, there are universal loop classes given by

H≤4(BLU(n)Q) ∼= Z≤4[zQ

1 , c
Q

1, z
Q

2 , c
Q

2], H∗(BLU(1)) ∼= Z[g]{h} such that ν(g) = h.

Let E be a fractional U-bundle determined by Diagram (6). By naturality the
above universal loop classes give the corresponding loop classes (i = 1, 2; cf. table
and Subsection 6.1)

ci(LE) := p∗(ci(E)) ∈ H2i(LY ;Z), zi(LE) ∈ H2i−1(LY ;Z),

cl,ai (LE) := p∗(cl,ai (E)) ∈ H2i(LM ;Q), zl,ai (LE) ∈ H2i−1(LM ;Q),

a := p∗(a) ∈ H2(LY ;Z), a ∈ H1(LY ;Z) such that ν(a) = a.

Definition 9. Suppose E is a given (a, 1l )-fractional U(n)-bundle determined by
Diagram (6).

(i) E has an (a, 1l )-fractional loop U(n)-structure, or simply a fractional loop

U-structure if its first transgressed fractional class zl,a1 (LE) = 0;
(ii) E has an (a, 1l )-fractional loop SU(n)-structure, or simply a fractional

loop SU-structure if it is (a, 1l )-fractional SU and its second transgressed

fractional class zl,a2 (LE) = 0.

To understand the higher fractional loop structures in Definition 9 via classify-
ing spaces, we construct a relative Whitehead tower up to level 2 for the looped
fractional classifying space

BLU(1)×BLU(n)
Lφl|n
−! BLU(n)Q.

By Theorem 2 and the naturality of the free suspension we see that

Lφ∗l|n(z
Q

1) = z1 − sh.

Let us first kill z1−sh. Recall s = n
l and l > 1. Consider the group LU(n)l defined

by a pullback diagram ((6.17))

LU(n)l //

��

ΩU(1)

Ωτs

��
LU(n)

ε // ΩU(1),

where ΩU(1) is a based loop group, ε(A(t)) = det(A(t))
det(A(1)) , and τs(z) = zs. If we view

the components of LU(n) are indexed by Z under the isomorphism π0(LU(n)) ∼= Z,
it is not hard to see that LU(n)l is the subgroup of LU(n) consisting of all the
components indexed in sZ. There is a homotopy group extension ((6.21))

{1} −! U(1)× LU(n)l
ι2l
−! LU(1)× LU(n) −! ΩU(1) −! {1}
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determined by the class z1 − sh ∈ H1(BLU(1) × BLU(n)), and ι2l = (κl, ψs) is
explicitly defined in (6.20). For later use, denote

(22) z1 := (Bι2l)
∗(h), z2 := (Bι2l)

∗(z2), ci := (Bι2l)
∗(ci), i = 1, 2.

Let

(23) · · · −! BL̂SU(n)Q
Bι3Q
−! BLSU(n)Q

BL̂i2Q

−! BL0U(n)Q
Bι2Q
−! BLU(n)Q

be the rationalization of the Whitehead tower (4). Recall here ι2 : L0U(n) ! LU(n)
is the inclusion of the component corresponding to 0 ∈ Z ∼= π0(LU(n)), and the
loop map Li2 : LSU(n) ! LU(n) ((2)) factors through L0U(n) to define the map

L̂i2 : LSU(n) ! L0U(n). It follows that there is a homotopy pullback diagram
((6.25))

BU(1)Q ×BLU(n)lQ
Bι2lQ //

ξ̃2
��

BLU(1)Q ×BLU(n)Q

Lφl|nQ

��
BL0U(n)Q

Bι2Q // BLU(n)Q,

where φl|nQ is the rationalization of φl|n, and ξ̃2 is defined by the homotopy pullback.
Define a map ξ2 as the composition

(24) ξ2 : BU(1)×BLU(n)l
r

−! BU(1)Q ×BLU(n)lQ
φ̃2
−! BL0U(n)Q,

where r is the rationalization. The upshot is that the map ξ2 is viewed as the level
1 lifting of the looped fractional classifying space Lφl|n.

In Definition 9, we define fractional loop SU-structure for fractional SU-bundles
instead of fractional loop U-bundles. Accordingly, before moving up one level fur-
ther to fractional loop SU, there is an intermediate step from fractional loop U to
the looping of fractional SU. This is roughly depicted in the right diagram of (1),
and is also clear from (23). The relation of these two structures is explicitly de-
scribed in Subsection 6.3. In particular, in the universal case passing from fractional
loop U to fractional SU is equivalent to kill the class (Lemma 6.5)

ξ∗2(c
Q

1) = c1 − sg,

where cQ1 = Bι∗2Q(c
Q

1) ∈ H2(BL0U(n)Q) ((6.35)). This can be achieved by the
homotopy commutative diagram ((6.38))

BLU(n)l
BL̂i2l //

Lφ2

��

BU(1)×BLU(n)l

ξ2

��
BLSU(n)Q

BL̂i2Q // BL0U(n)Q,

which means that the level 1 lifting ξ2 in the loop case can be pulled back to the
level 1 lifting φ2 after looping. It can be showed that ((6.7))

H≤4(BLU(n)l) ∼= Z≤4[z1, c1, z2, c2],

such that ((6.32))

(BL̂i2l)
∗(z1) = z1, (BL̂i2l)

∗(g) = c1, (BL̂i2l)
∗(z2) = z2, (BL̂i2l)

∗(c2) = c2.



FRACTIONAL STRUCTURES 17

We can now move up one level further from Lφ2. For this we need to kill the
class ((6.41))

Lφ∗2(z
Q

2) = z2 +
s

l
z1c1.

Construct the topological group L̂SU(n)l defined by a group extension ((6.44);
compare to its integral counterpart (5))

{1} −! K(Q, 1) −! L̂SU(n)l
ι3l
−! LU(n)l −! {1}

corresponding to the rational class z2 +
s
l z1c1 ∈ H3(BLU(n)l;Q). It follows that

the homotopy pullback of Lφ2 along the lifting Bι3Q in (23) defines a map

ξ3 : BL̂SU(n)l ! BL̂SU(n)Q.

The homotopy pullback ((6.42))

L̂SU(n)l

Ωξ3
��

ι3l // LU(n)l

ΩLφ2

��
L̂SU(n)Q

ι3Q // LSU(n)Q,

provides a more concrete construction of the topological group L̂SU(n)l. The
upshot is that the map ξ3 is viewed as the level 2 lifting of the looped fractional
classifying space Lφl|n.

To summarize, we have constructed the relative Whitehead tower of the classi-
fying space of the relative structure group (LU(1)× LU(n), LU(n)Q)

BL̂SU(n)l

ξ3
��

Bι3l // BLU(n)l
BL̂i2l //

Lφ2

��

BU(1)×BLU(n)l
Bι2l //

ξ2

��

BLU(1)×BLU(n)

Lφl|n

��
BL̂SU(n)Q

Bι3Q // BLSU(n)Q
BL̂i2Q // BL0U(n)Q

Bι2Q // BLU(n)Q.

(25)

The effect of the rightmost square in Diagram (25) on characteristic classes is to
kill the relative class (z1−sh, zQ

1) ∈ (H1(BLU(1)×BLU(n)), H1(BLU(n)Q)). The
effect of the middle square in Diagram (25) on characteristic classes is to kill the
relative class (c1− sg, cQ1) ∈ (H1(BU(1)×BLU(n)l, H

1(BL0U(n)Q)). The effect of
the leftmost square in Diagram (25) on characteristic classes is to kill the relative
class (z2 +

s
l z1c1, z

Q

2) ∈ (H3(BLU(n)l), H
4(BLSU(n)Q)).

Let us turn to the case of fractional bundles after applying the free loop functor
to Diagram (6). The following theorem characterizes fractional loop U-structures
from the perspective of classifying spaces, and will be proved in Subsection 6.2.
Recall by (22) we have z̄1, z2, c1, c2 as the classes of BLU(n)l.

Theorem 10. Let E be an (a, 1l )-fractional U(n)-bundle determined by Diagram

(6) and l > 1. Then E admits an (a, 1l )-fractional loop U(n)-structure if and only

if there exists a pair of maps (ga2 , g
l
2) such that the following diagram commutes up
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to homotopy

BU(1)×BLU(n)l
Bι2l

++❱❱❱❱
❱❱

❱❱
❱❱

ξ2

��

LY

ga2
55

Lπ

��

Lfa

// BLU(1)×BLU(n)

Lφl|n

��

BL0U(n)Q
Bι2Q

++❱❱❱❱
❱❱

❱❱❱
❱❱

❱

LM

gl2
55

Lf l

// BLU(n)Q.

(26)

If such relative lift exists then

ga∗2 (g) = a, ga∗2 (z1) = a =
1

s
z1(LE), ga∗2 (z2) = z2(LE),

ga∗2 (c1) = c1(LE), ga∗2 (c2) = c2(LE),

gl∗2 (zQ

2) = zl,a2 (LE), gl∗2 (cQi ) = cl,ai (LE), i = 1, 2.

(27)

Moreover, the fractional loop U-structures on E are in one-to-one correspondence
with the elements of H0(LM ;Z).

Motivated by Theorem 10, we call the map BU(1)×BLU(n)l
ξ2
−! BL0U(n)Q the

fractional classifying space of fractional loop U-structure, and say that the relative
structure group (LU(1)×LU(n), LU(n)Q) of LE can be lifted to the pair of groups

(U(1)×LU(n)l, L0U(n)Q). We call the pair of the liftings (ga2 , g
l
2) in Diagram (26)

the classifying map of the fractional loop U-structure. For a fractional U-bundle E
defined by Diagram (6) after looping (Lemma 6.4)

(28) (z1(LE)− sa, zl,a1 (LE)) = (Lfa∗, Lf l∗)(z1 − sh, zQ

1).

The following theorem characterizes fractional loop SU-structures from the per-
spective of classifying spaces, and will be proved in Subsection 6.4. To trace
the characteristic classes through (29), denote z̄1 = Bι∗3l(z1), c̄1 = Bι∗3l(c1),

z2 = Bι∗3l(z2), and c2 = Bι∗3l(c2) as classes of BL̂SU(n)l.

Theorem 11. Let E be an (a, 1l )-fractional SU(n)-bundle determined by Diagram

(14) and l > 1. Then E admits an (a, 1l )-fractional loop SU(n)-structure if and

only if there exists a pair of maps (ga3 , g
l
3) such that the following diagram commutes

up to homotopy

BL̂SU(n)l
Bι3l

))❘❘❘
❘❘

❘❘
❘

ξ3

��

LY

ga3
77

Lπ

��

Lfa
2 // BLU(n)l

Lφ2

��

BL̂SU(n)Q
Bι3Q

))❘❘❘
❘❘

❘❘
❘

LM

gl3
77

Lf l
2 // BLSU(n)Q.

(29)
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If such relative lift exists then

ga∗3 (z̄1) = a =
1

s
z1(LE), ga∗3 (c̄1) = a =

1

s
c1(LE),

ga∗3 (z2) = z2(LE) = − 1

n
z1(LE)c1(LE) = −s

l
aa,

ga∗3 (c2) = c2(LE), gl∗3 (cQ2) = cl,a2 (LE).

(30)

Moreover, the fractional loop SU-structures on E are in one-to-one correspondence
with the elements of H2(LM ;Z).

Motivated by Theorem 11, we call the map BL̂SU(n)l
ξ3
−! BL̂SU(n)Q the

fractional classifying space of fractional loop SU-structure, and say that the relative
structure group (LU(n)l, LSU(n)Q) of LE can be lifted to the pair of groups

(L̂SU(n)l, L̂SU(n)Q). We call the pair of the liftings (ga3 , g
l
3) in Diagram (29) the

classifying map of the fractional loop SU-structure. For a fractional SU-bundle E
defined by Diagram (14) we have (Lemma 6.10)

(z2(LE) +
1

n
z1(LE)c1(LE), zl,a2 (LE)) = (z2(LE) +

s

l
aa, zl,a2 (LE))

= (Lfa∗2 , Lf l∗2 )(z2 +
s

l
z1c1, z

Q

2).
(31)

1.5. Higher fractional structures vs higher fractional loop structures. Re-
call that the hierarchy of fractional loop and non-loop structures is roughly depicted
in the right diagram of (1). There are two ways to compare the fractional non-loop
structures with the fractional loop structures, either from the perspective of classi-
fying spaces or from the perspective of free suspension.

From the perspective of classifying spaces, we note that the bottom row of Di-
agram (25) is a refinement of the bottom row of Diagram (13) after looping, if we
extend Diagram (25) one step further to the left to reach BLU〈6〉(n)Q. In Section
6 this point will be clearly explained.

Moreover, in Theorem 6.7 we show that for a given fractional U-bundle E, if E
admits a fractional SU-structure, then E is fractional loop U. Conversely, suppose
E admits a fractional loop U-structure, then it can be lifted to a fractional SU-
structure if and only if the homotopy lifting problem

BLSU(n)Q
BL̂i2Q

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

LM

99

gl2 // BL0U(n)Q

has a solution, where gl2 is one component of the classifying map for the given
fractional loop U-structure.

Similarly, in Theorem 6.12 we show that for a given fractional SU-bundle E,
if E admits a fractional U〈6〉-structure, then E is fractional loop SU. Conversely,
suppose E admits a fractional loop SU-structure, then it can be lifted to a fractional
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U〈6〉-structure if and only if the homotopy lifting problem

BLU〈6〉(n)Q
BL̂i3Q

''❖❖
❖❖

❖❖
❖❖

❖❖

LM

99

gl3 // BL̂SU(n)Q

has a solution, where gl3 is one component of the classifying map for the given
fractional loop SU-structure.

From the perspective of free suspension, one can not only compare the existence
of fractional loop or non-loop structures, but can also compare the amounts of
possible structures.

Firstly, the obstructions to the non-loop structures are transgressed by the free
suspension ν to the obstructions to loop structures. Indeed, by the formulae of free
suspension (21) and its naturality, it is straightforward to show that for a fractional
U-bundle E, the obstructions to fractional SU (16) and loop U (28) satisfy

ν(c1(E)− sa, cl,a1 (E)) = (z1(LE)− sa, zl,a1 (LE)),

while for a fractional SU-bundle E, the obstructions to fractional U〈6〉 (19) and
loop SU (31) satisfy

ν(c2(E)− s(n− 1)

2l
a2, cl,a2 (E)) = (z2(LE) +

1

n
z1(LE)c1(LE), zl,a2 (LE)).

In particular, the existence of fractional SU and U〈6〉 structures implies the exis-
tence of fractional loop U and SU structures respectively. The converse statement
may not be true in general. Nevertheless, it is true if one imposes constraints on the
topology ofM as showed in Theorem 6.8 and Theorem 6.13. In particular, whenM
is rationally simply connected, fractional loop U implies fractional SU, while when
M is rationally 2-connected, fractional SU implies fractional U〈6〉. Hence in either
situation the fractional loop structure is equivalent to its non-loop counterpart.

Secondly, as showed in Theorem 6.8 and Theorem 6.13, the free suspension ν
transgresses the parameter spaces of non-loop structures to those of loop structures.
For instance, when M is connected, there is a one-to-one correspondence between
the distinct fractional SU-structures and the fractional loop U-structures on E
through the isomorphic free suspension

ν : H1(M ;Z)
∼=
−! H0(LM ;Z).

When M is 2-connected, there is a one-to-one correspondence between the distinct
fractional U〈6〉-structures and the fractional loop SU-structures on E through the
isomorphic free suspension

ν : H3(M ;Z)
∼=
−! H2(LM ;Z).

2. Bundle gerbe modules and splitting principle

Let π : Y !M be a locally split map. Denote by Y [2] = Y ×πY the fiber product
of Y with itself over π. Let (L, Y ) be a bundle gerbe, where L is a complex line
bundle L ! Y [2]. There is the Dixmier-Douady class d(L) = d(L, Y ) ∈ H3(M ;Z)
served as the obstruction to the gerbe being trivial. Suppose d(L) is a torsion class
of order l. In this case, the bundle gerbe (L, Y ) is called a flat bundle gerbe.
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Since ld(L) = 0, there exists a class a ∈ H2(Y ;Z) corresponding to a complex
line bundle La over Y such that

Ll ∼= δ(La) := π∗
1(L

∗
a)⊗ π∗

2(La)

is a trivialization of the bundle gerbe (Ll, Y ), the l-th tensor power of L, where
πi : Y

[2]
! Y is the map which omits the i-th element, L∗

a is the dual of La. The
choice of such class a is not unique in general. Indeed, suppose x ∈ H2(M ;Z) is
any class with its associated complex line bundle Jx over M . Then

K := La ⊗ π∗(Jx)

is another trivialization of Ll corresponding to the class a + π∗(x) ∈ H2(Y ;Z).
Conversely, any two trivializations differ from each other by a pull-back of a complex
bundle over B.

Let E ! Y be a finite rank complex vector bundle. Suppose that E is a bundle
gerbe module of L, in the sense that, there is a complex bundle isomorphism

L⊗ π∗
1(E) ∼= π∗

2(E).

It is clear that E⊗l is a bundle gerbe module over the trivial bundle gerbe Ll. Recall
La is a chosen trivialization of Ll, then the tensor bundle E⊗l⊗L∗

a over Y descents
to a bundle over M denoted by E⊗l/La, that is,

(2.1) π∗(E⊗l/La) = E⊗l ⊗ L∗
a.

In [Tom] Tomoda has proved the splitting principle of bundle gerbe modules,
which allows him to reproduce the twisted Chern classes and the twisted Chern
character from the perspective of manifold topology. Indeed, for the bundle gerbe
L with the trivialization La of L

l and the bundle gerbe module E of rank n, Tomoda
constructed a commutative diagram of projective bundles

P̃(E)

Π

��

p̃ // Y

π

��
P(E)

p // M,

(2.2)

where P̃(E) is the canonical projectivization of E over Y which descents to a pro-
jectivization P(E) over M by the module structure of E. In particular, p̃ and p
are fibre bundles with fibre the complex projective space Pn−1(C), and the square

(2.2) is a pullback. Moreover (p̃∗(L), P̃(E)) is a bundle gerbe as the pullback of

(L, Y ). Let γE be the tautological line bundle over P̃(E). It is a rank 1 bundle
gerbe module of p̃∗(L). Define the twisted Euler class ea(γE) by

(2.3) ea(γE) :=
1

l
e
(
(γ⊗lE )/p̃∗(La)

)
∈ H2(P(E);Q),

where e
(
(γ⊗lE )/p̃∗(La)

)
is the Euler class of (γ⊗lE )/p̃∗(La) defined by (2.1) for the

bundle gerbe module γE of p̃∗(L) with a trivialization p̃∗(La) of p̃∗(L)l. By the
Leary-Hirsch theorem, it can be showed that there exists a unique (n+ 1)-tuple

(cl,a0 (E) = 1, cl,a1 (E), . . . , cl,an (E)) ∈
n∏

k=0

H2k(M ;Q),
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such that

(2.4)
n∑

k=0

(−1)kp∗(cl,ak (E)) ∪ ea(γE)n−k = 0.

It is convenient to set cl,ak (E) = 0 when k > n.

Definition 2.1. Let (L, Y ) be a flat bundle gerbe of order l with a bundle gerbe
module E of rank n. Suppose La is a trivialization of L. We define

cl,ak (E) ∈ H2k(M ;Q)

satisfying (2.4) to be the k-th fractional Chern classes of E. Moreover, define the
total fractional Chern classes of E by

cl,a(E) = 1 + cl,a1 (E) + · · ·+ cl,an (E).

Remark 2.2. The class cl,ak (E) was usually referred to as the twisted Chern class
of the bundle gerbe module E. Here, we prefer the terminology fractional Chern

class in order to emphasize that the image π∗(cl,ak (E)) is generally a fractional
class. We will see this in Section 3 in details, and also its influence on the universal
construction of the fractional Chern classes in Section 4.

3. Fractional Chern classes

In this section, based on the material in Section 2 we show explicit formulae of
the fractional Chern classes defined in Definition 2.1.

Let (L, Y ) be a flat bundle gerbe of order l with a bundle gerbe module E of
rank n. Suppose La is a trivialization of L. We have the fractional Chern classes

cl,ak (E) defined by the equation (2.4). Since the top exterior product bundle ∧n(E)
is a trivialization of (Ln, Y )

Ln ∼= δ(∧n(E)) = π∗
1(∧n(E)∗)⊗ π∗

2(∧n(E)),

one has nd(L) = 0. Since l is the order of the torsion class d(L), it follows that
l | n. Set n = ls.

By (2.3), (2.1) and Diagram (2.2), we see that

Π∗(ea(γE)) =
1

l
e
(
Π∗((γ⊗lE )/p̃∗(La)

))

=
1

l
e
(
(γ⊗lE )⊗ p̃∗(La)

∗)

= p̃∗(c1(E) − 1

l
a).

(3.1)

Let xl,ai (1 ≤ i ≤ n) be the formal fractional Chern roots of the bundle gerbe
module E, that is

(3.2) cl,ak (E) = σk(x
l,a
1 , . . . , xl,an ),

where σk is the k-th elementary symmetric polynomial in n variables. Let xi
(1 ≤ i ≤ n) be the formal Chern roots of the complex vector bundle E, that
is

ck(E) = σk(x1, . . . , xn).

Then by the above computation, we can choose the roots such that

(3.3) π∗(xl,ai ) = xi −
1

l
a.
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The pullback of the fractional Chern classes through π satisfies

(3.4) π∗(cl,a(E)) =

n∏

i=1

(1 + xi −
1

l
a).

Lemma 3.1. For each 1 ≤ k ≤ n,

π∗(cl,ak (E)) =

k∑

i=0

(−1

l

)i
(
n− k + i

i

)
aick−i(E).

Proof. By (3.4), we can compute

π∗(cl,ak (E)) =
∑

1≤i1<...<ik≤n
(xi1 −

a

l
) · · · (xik − a

l
)

=
∑

1≤i1<...<ik≤n

k∑

i=0

∑

1≤j1<...<jk−i≤n

{j1,...,jk−i}⊆{i1,...,ik}

(−a
l

)i
(xj1 · · ·xjk−i

)

=

k∑

i=0

(−a
l

)i
(
n
k

)(
k
k−i

)
(
n
k−i

) ck−i(E)

=

k∑

i=0

(−a
l

)i
(
n− k + i

i

)
ck−i(E).

�

In particular, one can compute the first two fractional Chern classes explicitly,

π∗(cl,a1 (E)) = c1(E)− sa,

π∗(cl,a2 (E)) = c2(E)− n− 1

l
ac1(E) +

s(n− 1)

2l
a2.

(3.5)

If a complex line bundle Lb over Y , corresponding to b ∈ H2(Y ;Z), gives another
trivialization of Ll, then

b = a+ π∗(x)

for some x ∈ H2(M ;Z). By [Tom, Proposition 5], eb(γE) = ea(γE) − 1
l p

∗(x). It

follows from (3.1) and (3.3) that for the fractional formal Chern roots π∗(xl,bi ) =
xi − 1

l b = xi − 1
l a− 1

l π
∗(x), and

xl,bi = xl,ai − 1

l
x.

Then by the same computation in the proof of Lemma 3.1, we see that

cl,bk (E) =

k∑

i=0

(−1

l

)i
(
n− k + i

i

)
xicl,ak−i(E),

for each 1 ≤ k ≤ n. In particular,

cl,b1 (E) = cl,a1 (E)− sx,

cl,b2 (E) = cl,a2 (E)− n− 1

l
xcl,a1 (E) +

s(n− 1)

2l
x2.
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4. Fractional classifying spaces and fractional U-structure

In this section we realize the fractional Chern classes in Section 3 from the
perspective of classifying spaces, from which we propose a notion of fractional U-
structure. In particular we prove Theorem 1.

Let (L, Y ) be a flat bundle gerbe of order l with a bundle gerbe module E of
rank n. Suppose La is a trivialization of L. We have the fractional Chern classes

cl,ak (E) which can be computed as the k-th elementary symmetric polynomial (3.2)

of the formal fractional Chern roots xl,ai of the bundle gerbe module E.

4.1. Fractional classifying spaces. Denote by XQ the rationalization of a nilpo-
tent space X . Recall BU(1)Q ≃ K(Q, 2) the Eilenberg–MacLane space with second
homotopy group isomorphic to Q. Motivated by (3.3) we can construct a map

χ̃ : BU(1)×BU(1) −! BU(1)Q

represented by the cohomology class x − 1
l g ∈ H2(BU(1) × BU(1);Q), where the

two canonical generators g and x correspond to the two factors of BU(1)×BU(1)
respectively. Then there is a composition map χ defined by

χ : BU(1)× (BU(1)× · · · ×BU(1)︸ ︷︷ ︸
n

)

∆n×id
−! (BU(1)× · · · ×BU(1)︸ ︷︷ ︸

n

)× (BU(1)× · · · ×BU(1)︸ ︷︷ ︸
n

)

n∏
i=1

χi,n+i

−! BU(1)Q × · · · ×BU(1)Q︸ ︷︷ ︸
n

,

(4.1)

where ∆n is the n-fold diagonal map, each χi,n+i is a copy of the map χ̃ from the i-th
and (n+ i)-th factors of the domain to the i-th factor of the codomain. Following
the notation of the formal (fractional) Chern roots in Section 3, we denote by
g, x1, . . . , xn the generators of H2(BU(1)× (BU(1)× · · · ×BU(1)︸ ︷︷ ︸

n

)) for the domain

of χ corresponding to each factor. Similarly denote by x̃1, . . . , x̃n the generators
of H2(BU(1)Q × · · · ×BU(1)Q︸ ︷︷ ︸

n

) for the codomain. Hence, by the construction of χ̃

we can choose x̃i such that

(4.2) χ∗(x̃i) = xi −
1

l
g.

We would like to extend the map χ in (4.1) of maximal tori to a map of Lie
groups φ = φl|n : BU(1) × BU(n) −! BU(n)Q. For this purpose we may apply
Sullivan’s rational homotopy theory, for the details of which one can refer to the
standard reference [FHT01]. For a map h : X −! Z between nilpotent spaces.

Denote by ĥ : (ΛVZ , d) −! (ΛVX , d) a Sullivan representative of h, where (ΛVX , d)
and (ΛVZ , d) are Sullivan models of X and Z respectively.

The domain BU(1)×BU(n) of φ has Sullivan model (Λ(g, c1, . . . , cn), 0), where
each ck is a representative of the the universal Chern class ck ∈ H2k(BU(n)).
The codomain BU(n)Q of φ has a Sullivan model (Λ(c̃1, . . . , c̃n), 0), where each c̃k
is a representative of the the universal rational Chern class cQk ∈ H2k(BU(n)Q).
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Consider the diagram

(Λ(g, x1, . . . , xn), 0) (Λ(g, c1, . . . , cn), 0)
̂id×BIoo

(Λ(x̃1, . . . , x̃n), 0)

χ̂

OO

(Λ(c̃1, . . . , c̃n), 0),
B̂Ioo

φ̂

OO
(4.3)

where (̂) is to take a Sullivan representative,

I : U(1)× · · · × U(1)︸ ︷︷ ︸
n

) −! U(n)

is the inclusion of a maximal torus, B is the classifying functor, and φ̂ will be
defined momentarily. Indeed, since ck and c̃k are the k-th elementary symmetric
polynomials of the roots xi and x̃i respectively, we have by (4.2)

χ̂ ◦ B̂I(c̃k) = χ̂(σk(x̃1, . . . , x̃n))

= σk(x1 −
g

l
, . . . , xn − g

l
)

⊆ Λ(g, c1, . . . , cn).

Hence, there is a unique morphism φ̂ such that Diagram (4.3) commutes. Indeed
by the same computation in the proof of Lemma 3.1,

φ̂(c̃k) =

k∑

i=0

(−1

l

)i
(
n− k + i

i

)
gick−i.

Then we can define the composition map φ by

(4.4) φ = φl|n : BU(1)×BU(n)
r

−! (BU(1)×BU(n))Q
φ′

−! BU(n)Q,

where r is the rationalization, and φ′ is the geometric realization of φ̂. It is clear
that the following lemma holds.

Lemma 4.1. For the universal Chern classes,

(4.5) φ∗(cQk) =
k∑

i=0

(−1

l

)i
(
n− k + i

i

)
gick−i.

The map φ serves as a universal object for the bundle gerbe module E of L. To
be more precise, let f : Y ! BU(n) be the classifying map of the complex vector
bundle E. We have the map

fa := a× f : Y −! BU(1)×BU(n)

classifying La ⊕ E, where a is represented by a ∈ H2(Y ;Z). We need to construct
a nice classifying map f l : M ! BU(n)Q. Let π̂ : (ΛVM , d) −! (Λ(VM ⊕W ), d) be

a relative Sullivan model of π. Let f̂a : Λ(g, c1, . . . , cn), 0) −! (Λ(VM ⊕W ), d) be a

Sullivan representative of fa. Since by (4.5) and Lemma 3.1 the class of f̂a ◦ φ̂(c̃k)
is fa∗ ◦ φ∗(cQk) = π∗(cl,ak (E)), we have

f̂a ◦ φ̂(c̃k) = π̂(cl,ak (E)) + dzk



26 FEI HAN, RUIZHI HUANG, AND VARGHESE MATHAI

for some zk ∈ Λ(VM ⊕W ), where by abuse of notation we use cl,ak (E) to denote a
representative of the fractional Chern class. Define

f̂ l : (Λ(c̃1, . . . , c̃n), 0) −! (ΛVM , d)

by f̂ l(c̃k) = cl,ak (E). We need to show that the diagram

(Λ(VM ⊕W ), d) (Λ(g, c1, . . . , cn), 0)
f̂a

oo

(ΛVM , d)

π̂

OO

(Λ(c̃1, . . . , c̃n), 0),
f̂ l

oo

φ̂

OO
(4.6)

is commutative up to homotopy. Indeed, recall Λ(t, dt) with deg(t) = 0 is a model of
standard 1-simplex. Denote by ǫi : Λ(t, dt) ! Q the evaluation morphism defined
by ǫi(t) = i. Define a homotopy

H : (Λ(c̃1, . . . , c̃n), 0) −! (Λ(VM ⊕W ), d)⊗ Λ(t, dt)

by H(c̃k) = π̂(cl,ak (E)) + d(tzk). H is well defined since cl,ak (E) is a cycle, and

(id⊗ ǫi(0))◦H = π̂ ◦ f̂ l and (id⊗ ǫi(1))◦H = f̂a ◦ φ̂. This shows that Diagram (4.6)
commutes up to homotopy, and we can take the geometric realization of Diagram
(4.6) to obtain a composition map

f l :M
r

−!MQ
f l′

−! BU(n)Q

with r the rationalization and f l′ a geometric realization of f̂ l. Moreover, there is
the homotopy commutative diagram

Y

π

��

fa

// BU(1)×BU(n)

φ=φl|n

��
M

f l

// BU(n)Q

(4.7)

as the geometric realization of Diagram (4.6). From the definition of f̂ l, it is clear
that

cl,ak (E) = f l∗(cQk).

In particular, we have showed Theorem 1. The result illustrates that φ is a “clas-
sifying space” of the bundle gerbe module E on the level of characteristic classes.
Hence, we may call the universal map φ : BU(1) × BU(n) −! BU(n)Q the frac-
tional classifying space for rank n bundle gerbe modules of any flat bundle gerbe of
order l, and the pair of the maps (fa, f l) the classifying map of the bundle gerbe
module E.

Remark 4.2. • We should emphasize that the defined fractional classifying
space does not classify the bundle gerbes modules themselves. It is even
unclear how to construct a bundle gerbe module from Diagram (4.7) for a
given bundle gerbe L.

• As we explained, the terminologies, fractional classifying space and frac-
tional classifying map, should be understood on the level of characteristic
classes for bundle gerbe modules. In other words, it provides a uniform way
to understand the fractional Chern classes of bundle gerbe modules from
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the perspective of classifying spaces, and hence serves as a universal object
for the fractional Chern classes.

• This point of view particularly allows us to construct and study higher frac-
tional complex structures in the sequel, which are parallel to the higher spin
or spinc structures of real vector bundles and the higher complex structure
of complex vector bundles (for instance, see [DHH], or Subsection 1.1).

4.2. Fractional U-structure. Following the idea in Remark 4.2, Diagram (4.7)
itself suggests a notion of fractional structure without the background of bundle
gerbes and their modules. It serves as the starting point for the higher fractional
structures introduced in the sequel.

Definition 4.3. Let π : Y ! M be a map. Let La be a complex line bundle
determined by a ∈ H2(Y ;Z) and E be a complex vector bundle of rank n classified
by f : Y ! BU(n). Let l be a positive integer such that l|n. If we have a homotopy
commutative diagram (4.7) with fa = a× f and φ = φl|n defined in (4.4), we call

(E, π) or simply E an (a, 1l )-fractional U(n)-bundle, or simply a fractional U-bundle.

If we ideally interpret the map f l : M ! BU(n)Q as the classifying map of a
rational vector bundle overM , then a fractional U-bundle is roughly a proper vector
bundle over Y with a descent rational vector bundle over M . We may call the pair
of groups (U(1)×U(n), U(n)Q) the relative structure group of the fractional bundle
E. In terms of principal bundles, there exists the morphism of fibrations induced
from Diagram (4.7)

U(1)× U(n)
j //

Ωφ

��

PU (f
a)

pa //

Φ

��

Y

π

��
U(n)Q

j // PUQ
(f l)

pl // M,

(4.8)

where the top row is the principal bundle of La⊕E classified by fa, and the bottom
row is the principal fibration induced from f l. As before the latter fibration can
be ideally viewed as the rational principal bundle of the rational vector bundle
classified by f l, and Diagram (4.8) can be viewed as the fractional principal bundle
of the fractional U-bundle E.

When E admits a fractional U-structure in Definition 4.3, we have the k-th

fractional Chern classes cl,ak (E) defined by

cl,ak (E) := f l∗(cQk).

By Diagram (4.7) and (4.5)

π∗(cl,ak (E)) =

k∑

i=0

(−1

l

)i
(
n− k + i

i

)
aick−i(E).

When the fractional bundle E is derived from a bundle gerbe module structure, it
is clear that the fractional Chern class coincides with the twisted Chern class. This
justifies our choice of notation.
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5. Higher fractional structures

In this section, we introduce fractional SU-structure and fractional U〈6〉-
structure as higher fractional U-structures analogous to the spin and string struc-
tures as higher orientations. We work with general fractional U-bundles and the
constructions and arguments here can be applied to bundle gerbe modules auto-
matically. In particular, we characterize the two structures as lifting problems on
constructed fractional classifying spaces, and prove Theorem 7 and Theorem 8.

5.1. Fractional SU-structure. Let π : Y ! M be a map. Let La be a complex
line bundle determined by a ∈ H2(Y ;Z) and E be a complex vector bundle of
rank n classified by f : Y ! BU(n). Suppose E admits an (a, 1l )-fractional U(n)-
structure determined by Diagram (4.7). Then E has the fractional Chern class

cl,ak (E) = f l∗(cQk) ∈ H2k(M ;Q) for each 1 ≤ k ≤ n.

Definition 5.1. Let E be an (a, 1l )-fractional U(n)-bundle as above. E has an

(a, 1l )-fractional SU(n)-structure, or simply a fractional SU-structure if cl,a1 (E) = 0.

Let us study the universal case. Recall that n = ls. Consider the finite covering

Z/sZ −! U(n)l
ρs
−! U(n)

of U(n) corresponding to the subgroup sZ ⊆ Z ∼= π1(U(n)), which defines the Lie
group U(n)l and the covering map ρs. Since U(n) ∼= U(1)×Z/nZ SU(n), it is clear
that

(5.1) U(n)l ∼= U(1)×Z/lZ SU(n).

In particular, U(n)n = U(n) and U(n)1 = U(1) × SU(n) as Lie groups. Define a
Lie group homomorphism

dl : U(n)l −! U(1)

by dl([z, A]) = zl. Then under the isomorphism (5.1), dn is the canonical determi-
nant homomorphism det : U(n) −! U(1), and ρ1 : U(1)× SU(n) −! U(n) is the
Lie group homomorphism defined by ρ1(z, A) = zA. Hence there is the morphism
of Lie group extensions

{1} // SU(n)
i′2 // U(n)l

ρs

��

dl // U(1)

τs

��

// {1}

{1} // SU(n)
i2 // U(n)

det // U(1) // {1},

(5.2)

where i2 and i′2 are the standard inclusions, and τs(z) = zs for any z ∈ U(1). In
particular, the right square of Diagram (5.2) is a pullback of Lie groups, which
determines the Lie group extension

(5.3) {1} −! U(n)l
(dl,ρs)
−! U(1)× U(n)

µs
−! U(1) −! {1},

where µs(z, A) = (τ−s × det)(z, A) = z−s · det(A) for any (z, A) ∈ U(1)× U(n).
From now on let us suppose l > 1. Recall that we have the class g ∈ H2(BU(1))

such that (Bdet)∗(g) = c1. Applying the classifying functor B to Diagram (5.2), it
is easy to compute that as graded rings

(5.4) H∗(BU(n)l;Z) ∼= Z[c1, c2, . . . , cn],
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such that (Bi′2)
∗(ci) ∈ H2i(BSU(n);Z) is the i-th universal Chern class for each

i ≥ 2, and

(5.5) (Bdl)
∗(g) = c1, (Bρs)

∗(c1) = sc1, (Bρs)
∗(ci) = ci, for each i ≥ 2.

Hence, when a rank n complex bundle ζ satisfies that s | c1(ζ), its structure group
U(n) can be lifted to U(n)l.

It is clear that Bµs represents the class c1 − sg ∈ H2(BU(1) × BU(n)). Since
φ∗(cQ1) = c1 − sg by (4.5), we can construct the following homotopy commutative
diagram of fibrations

BU(n)l
B(dl,ρs)//

φ2

��

BU(1)×BU(n)
Bµs //

φ

��

K(Z, 2)

r

��
BSU(n)Q

Bi2Q // BU(n)Q
cQ
1 // K(Q, 2),

(5.6)

where the top row is obtained from (5.3) by taking the classifying functor B, r is
the rationalization, and φ2 is induced from φ. Indeed, let φQ : BU(1)Q×BU(n)Q !

BU(n)Q be the rationalization of φ. The homotopy pullback of φQ along Bi2Q gives

a map φ̃2 : BU(n)lQ ! BSU(n)Q. Then φ2 can be chosen to be the composition

(5.7) φ2 : BU(n)l
r

−! BU(n)lQ
φ̃2
−! BSU(n)Q,

where r is the rationalization.
Now let us turn to the fractional bundle E determined by Diagram (4.7). We

summarize the formulae for the involved obstructions in the following lemma.

Lemma 5.2.

fa∗(c1 − sg) = c1(E)− sa, f l∗(cQ1) = cl,a1 (E).

Proof. f l∗(cQ1) = cl,a1 (E) is obtained by Theorem 4. Then with Diagram (4.7)
fa∗(c1 − sg) = c1(E)− sa follows from (4.5) and (3.5). �

We are ready to prove Theorem 7.

Proof of Theorem 7. The bottom square in Diagram (14) is Diagram (4.7), while
with the convention i2l = (dl, ρs) the top right square in Diagram (14) is the left
square in Diagram (5.6).

If E is a fractional SU-bundle, then cl,a1 (E) = 0, and hence π∗(cl,a1 (E)) = c1(E)−
sa = 0 by Lemma 5.2. With Diagram (5.6), this is equivalent to that both the
compositions cQ1 ◦ f l and Bµs ◦ fa are null homotopic. It follows that there exist
fa2 : Y ! BU(n) and f l2 : M ! BSU(n)Q such that B(dl, ρs) ◦ fa2 ≃ fa and
Bi2Q ◦ f l2 ≃ f l, in other words, the front and back triangles in Diagram (14)
commute up to homotopy.

In particular,

(5.8) Bi2Q ◦ φ2 ◦ fa2 ≃ φ ◦B(dl, ρs) ◦ fa2 ≃ φ ◦ fa ≃ f l ◦ π ≃ Bi2Q ◦ f l2 ◦ π.
On the other hand, by Sullivan’s rational homotopy theory it is easy to see that
BU(n)Q ≃ BSU(n)Q × BS1

Q such that Bi2Q admits a left homotopy inverse q. It

follows from (5.8) that

φ2 ◦ fa2 ≃ q ◦Bi2Q ◦ φ2 ◦ fa2 ≃ q ◦Bi2Q ◦ f l2 ◦ π ≃ f l2 ◦ π,
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that is, the left top square commutes up to homotopy. Hence we have showed that
Diagram (14) exists and commutes up to homotopy if E is a fractional SU-bundle.
The proof of the converse statement is similar and omitted. Moreover, (15) follows
immediately from (5.5) and Theorem 4.

We are left to count the number of the fractional SU-structures. Suppose E is a
fractional SU-bundle. From Diagram (4.8) and Diagram (4.7), by the dual Blakers-
Massey theorem [DHH, Theorem C.3] there is the commutative diagram of exact
sequences

0 // H1(Y )
pa∗

// H1(PU (f
a))

δ◦j∗ // H2(BU(1)×BU(n))
fa∗

// H2(Y )

0 // H1(M)
pl∗ //

π∗

OO

H1(PUQ
(f l))

δ◦j∗ //

Φ∗

OO

H2(BU(n)Q)
f l∗

//

φ∗

OO

H2(M),

π∗

OO

(5.9)

where the transgressions δ : H1(U(1) × U(n)) ! H2(BU(1) × BU(n)) and δ :

H1(U(n)Q) ! H2(BU(n)Q) are isomorphisms. Since f l∗(cQ1) = cl,a1 (E) = 0 and
fa∗(c1−sg) = c1(E)−sa = 0, a fractional SU-structure is determined by the choice
of the pair (P,Φ∗(P )) ∈ H1(PUQ

(f l))×H1(PU (f
a)) such that δ ◦ j∗(P ) = cQ1. From

Diagram (5.9), there are exactly H1(M) many of such choices. Hence the fractional
SU-structures on E are in one-to-one correspondence with the elements of H1(M).
This completes the proof of the theorem. �

By Theorem 7 φ2 is a “classifying space” of the fractional SU-bundle E on the
level of characteristic classes. Hence, we may call the universal map φ2 : BU(n)l −!
BSU(n)Q the fractional classifying space of the fractional SU-structure, and the
fractional SU-bundle E has the classifying map (fa2 , f

l
2).

Geometrically, in Diagram (14) the structure group U(n)Q of the rational vector
bundle determined by f l is lifted to SU(n)Q through Bi2Q, while the structure
group U(1)×U(n) of the vector bundle La⊕E is lifted to U(n) through B(dl, ρs).
Hence a fractional U-bundle E admits a fractional SU-structure if and only if its
relative structural group (U(1)×U(n), U(n)Q) can be lifted to (U(n), SU(n)Q). In
terms of principal bundles, this means that the fractional principal bundle (4.8) of
the fractional U-bundle E can be lifted to the fractional principal bundle

U(n)l
j2 //

Ωφ2

��

PUl
(fa2 )

pa2 //

Φ2

��

Y

π

��
SU(n)Q

j2 // PSUQ
(f l2)

pl2 // M,

(5.10)

where the top row is the principal bundle classified by fa2 , and the bottom row is
the principal fibration induced from f l2.

5.2. Fractional U〈6〉-structure. Let π : Y !M be a map. Let La be a complex
line bundle determined by a ∈ H2(Y ;Z) and E be a complex vector bundle of rank
n classified by f : Y ! BU(n). Suppose l > 1 and E admits an (a, 1l )-fractional
SU(n)-structure as described in Definition 5.1.

Definition 5.3. Let E be an (a, 1l )-fractional SU(n)-bundle. E has an (a, 1l )-

fractional U〈6〉(n)-structure, or simply a fractional U〈6〉-structure if cl,a2 (E) = 0.
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Let us study the universal case. Consider the fractional classifying space φ2 :
BU(n)l ! BSU(n)Q of fractional SU-structure.

Lemma 5.4. For each k ≥ 2,

φ∗2(c
Q

k) =
k−2∑

i=0

(−1

l

)i
(
n− k + i

i

)
ci1ck−i +

(−1

l

)k
(1 − k)

(
n

k

)
ck1 .

Proof. Recall n = ls. By Diagram (5.6), (4.5) and (5.5), we have

φ∗2(c
Q

k) = φ∗2 ◦Bi∗2Q(cQk) = B(dl, ρs)
∗ ◦ φ∗(cQk)

= B(dl, ρs)
∗
( k∑

i=0

(−1

l

)i
(
n− k + i

i

)
gick−i

)

=

k−2∑

i=0

(−1

l

)i
(
n− k + i

i

)
ci1ck−i +

(−1

l

)k−1
(
n− 1

k − 1

)
sck1 +

(−1

l

)k
(
n

k

)
ck1

=

k−2∑

i=0

(−1

l

)i
(
n− k + i

i

)
ci1ck−i +

(−1

l

)k
(1− k)

(
n

k

)
ck1 .

�

In particular, for k = 2,

(5.11) φ∗2(c
Q

2) = c2 −
s(n− 1)

2l
c21.

We may define a topological group U〈6〉(n)l by the pullback

U〈6〉(n)l
Ωφ3

��

i3l // U(n)l

Ωφ2

��
U〈6〉(n)Q

i3Q // SU(n)Q,

(5.12)

where i3Q is the rationalization of the group extension

(5.13) {1} −! K(Z, 2) −! U〈6〉(n) i3
−! SU(n) −! {1}

with suitable group structure on K(Z, 2) (see Remark 5.6 for more detials), and
φ3 = BΩφ3 : BU〈6〉(n)l ! BU〈6〉(n)Q is the induced map between classifying
spaces. Hence there is the induced group extension

(5.14) {1} −! K(Q, 2) −! U〈6〉(n)l i3l
−! U(n)l −! {1}.

In particular, let us denote c̄1 = Bi∗3l(c1) and ci = Bi∗3l(ci) for each 1 ≤ i ≤ n.
From (5.12) and (5.11) we have that

(5.15) c2 =
s(n− 1)

2l
c̄21.

Now let us turn to the fractional SU-bundle E determined by Diagram (14) in
Theorem 7. In particular, the SU-structure on E is classified by the pair of maps
(fa2 , f

l
2). We summarize the formulae for the involved obstructions in the following

lemma.
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Lemma 5.5.

fa∗2 (c2 −
s(n− 1)

2l
c21) = c2(E)− s(n− 1)

2l
a2, f l∗2 (cQ2) = cl,a2 (E).

Moreover, c1(E) = sa.

Proof. First c1(E) = sa by (15) since E is fractional SU. f l∗2 (cQ2) = cl,a2 (E) is

obtained by Theorem 4. Then with Diagram (14) fa∗2 (c2 − s(n−1)
2l c21) = c2(E) −

s(n−1)
2l a2 follows from (15). �

We are ready to prove Theorem 8.

Proof of Theorem 8. By Theorem 7 the bottom square in Diagram (17) commutes
up to homotopy. The top right square in Diagram (17) is Diagram (5.12) after
applying the classifying functor B.

If E is a fractional U〈6〉-bundle, then cl,a1 (E) = 0 and cl,a2 (E) = 0. It follows that
there exists a map f l3 : M ! BU〈6〉(n)Q such that Bi3Q ◦ f l3 ≃ f l2, and we obtain
the front triangle in Diagram (17). Then since the top right square in Diagram (17)
is a homotopy pullback, there exists a unique fa3 : Y ! BU〈6〉(n)l up to homotopy
such that Bi3l ◦ fa3 ≃ fa2 and φ3 ◦ fa3 ≃ f l3 ◦ π. Thus the back triangle and the
top left square in Diagram (17) commute up to homotopy. We have showed that
Diagram (17) exists and commutes up to homotopy if E is a fractional U〈6〉-bundle.
The proof of the converse statement is similar and omitted. Moreover, (18) follows
immediately from (15), (5.15) and Diagram (17).

We are left to count the number of the fractional U〈6〉-structures. Suppose
E is a fractional U〈6〉-bundle. From Diagram (5.10) and the bottom square of
Diagram (17), by the dual Blakers-Massey theorem [DHH, Theorem C.3] there is
the commutative diagram

H3(Y )
pa∗
2 // H3(PUl

(fa2 ))
δ◦j∗2 // H4(BU(n)l)

fa∗
2 // H4(Y )

0 // H3(M)
pl∗2 //

π∗

OO

H3(PSUQ
(f l2))

δ◦j∗2 //

Φ∗
2

OO

H4(BSU(n)Q)
f l∗
2 //

φ∗
2

OO

H4(M),

π∗

OO
(5.16)

where the second row is exact with the isomorphic transgression δ : H3(SU(n)Q) !
H4(BSU(n)Q), and in the top row the transgression δ : H3(U(n)) ! H4(BU(n))

is a monomorphism. Since f l∗2 (cQ2) = cl,a2 (E) = 0 and fa∗2 ◦ φ∗2(cQ2) = fa∗2 (c2 −
s(n−1)

2l c21) = c2(E) − s(n−1)
2l a2 = 0 by Lemma 5.5, a fractional U〈6〉-structure is

determined by the choice of the pair (P,Φ∗
2(P )) ∈ H3(PSUQ

(f l2))×H3(PUl
(fa2 )) such

that δ ◦ j∗2 (P ) = cQ2. From Diagram (5.16), there are exactly H3(M) many of such
choices. Hence the fractional U〈6〉-structures on E are in one-to-one correspondence
with the elements of H3(M). This completes the proof of the theorem. �

By Theorem 8 φ3 is a “classifying space” of the fractional U〈6〉-bundle E on
the level of characteristic classes. Hence, we may call the universal map φ3 :
BU〈6〉(n)l −! BU〈6〉(n)Q the fractional classifying space of the fractional U〈6〉-
structure, and the fractional U〈6〉-bundle E has the classifying map (fa3 , f

l
3).

Geometrically, in Diagram (17) the structure group SU(n)Q of the rational vector
bundle determined by f l2 is lifted to U〈6〉(n)Q through Bi3Q, while the structure
group U(n) of the vector bundle La⊕E is lifted to U〈6〉(n)l through Bi3l. Hence a
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fractional SU-bundle E admits a fractional U〈6〉-structure if and only if its relative
structural group (U(n), SU(n)Q) can be lifted to (U〈6〉(n)l, U〈6〉(n)Q). In terms
of principal bundles, this means that the fractional principal bundle (5.10) of the
fractional U-bundle E can be lifted to the fractional principal bundle

U〈6〉(n)l
j3 //

Ωφ3

��

PU〈6〉l(f
a
3 )

pa3 //

Φ3

��

Y

π

��
U〈6〉(n)Q

j3 // PU〈6〉Q(f
l
3)

pl3 // M,

(5.17)

where the top row is the principal bundle classified by fa3 , and the bottom row is
the principal fibration induced from f l3.

Remark 5.6. The group extension (5.13) can be compared with the extension

(5.18) {1} −! K(Z, 2) −! String(2n)
q3
−! Spin(2n) −! {1},

where String(2n) is the string group. Indeed, recall there is the standard Lie group
homomorphism r : SU(n) ! Spin(2n) such that Br∗(p1) = −2c2 where p1 is the
first universal Pontryagin class. Since p1

2 ∈ H4(BSpin(2n)) is a generator, we can
define U〈6〉(n) by the pullback of groups

U〈6〉(n) //

i3

��

String(2n)

q3

��
SU(n)

r // Spin(2n).

(5.19)

In particular, any group model of String(2n) induces a group structure of U〈6〉(n)
by Diagram (5.19). Indeed, in the literature there are more elaborated descriptions
of string group. For instance, Stolz and Teichner [ST] modelled String as a topo-
logical group in terms of group extension by a projective unitary group PU(A) as
a model of K(Z, 2). Moreover, Nikolaus, Sachse and Wockel [NSW] constructed an
infinite-dimensional Lie group model for String.

6. Fractional loop structures

Motivated by the way that loop spin structures, or weak string structures, can
be studied in terms of spin structures on loop spaces, we define fractional loop
structures of various levels, which in general are weaker than the corresponding
notions introduced in Section 5. Indeed, we will introduce the fractional loop U-
structure and the fractional loop SU-structure as the fractional complex analogues
of the loop orientation and loop spin. For this purpose, we need to study the
involved free suspension to analyze the related loop characteristic classes. We then
introduce and study the two fractional loop structures for general fractional U-
bundle after looping, and the constructions and arguments here can be applied
to bundle gerbe modules automatically. In particular, we characterize the two
structures as lifting problems on constructed fractional classifying spaces and prove
Theorem 10 and Theorem 11. Finally, we compare these two loop structures with
their non-loop counterparts in Section 5 from both the perspective of classifying
space and the perspective of free suspension.
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6.1. The free suspension. To begin with, let us recall the notion of free trans-
gression. Let X be a pointed space. There is the canonical fibration

(6.1) ΩX
i
! LX

p
! X.

We define the free evaluation map

(6.2) ev : S1 × LX ! X

by ev((t, λ)) = λ(1). The free suspension (called transgression by geometers)

(6.3) ν : Hn+1(X) ! Hn(LX)

is then determined by the formula ev∗(x) = 1⊗p∗(x)+s⊗ν(x) for any x ∈ Hn+1(X),
where s ∈ H1(S1) is a generator. It is not hard to check that the free suspension is
natural and satisfies the following properties (see [Kur, Section 3] or [KK, Section
2]):

(1) i∗ ◦ ν = σ∗ : Hn+1(X) ! Hn(ΩX);
(2) ν(xy) = ν(x)p∗(y) + (−1)|x|ν(y)p∗(x), for any x and y ∈ Hn+1(X),

where σ∗ is the classical cohomology suspension (see [DHH, Appendix B]). The
Property (2) means that ν is a module derivation under p∗. Since p∗ is always
injective, we may omit it and simply write ν(x)y for ν(x)p∗(y), etc.

In order to compute the free suspension forBU(n), let us recall the corresponding
result for BSpinc(2n) studied in [DHH, Section 2]. First we have

H≤4(BSpinc(2n)) ∼= Z≤4[t, q1], H≤3(BLSpinc(2n)) ∼= Z≤3[s, t, µ]

where deg(t) = 2 with p∗(t) = t by abuse of notation, deg(q1) = 4 is the first
universal spinc class, and σ∗(t) = i∗(s), σ∗(q1) = i∗(µ). In particular, deg(s) = 1
and deg(µ) = 3. Moreover, by [DHH, Lemma 2.1]

(6.4) ν(t) = s, ν(q1) = µ− st, ν(t2) = 2st.

Now let us turn to BU(n). Recall there is the standard inclusion of Lie groups
r : U(n) ! Spinc(2n) such that

Br∗(t) = c1, Br∗(p1) = c21 − 2c2.

Moreover, since by [Dua] 2q1+t
2 = p1 ∈ H∗(BSpinc(n)) we see thatBr∗(q1) = −c2.

For the free loop group, by an augment of Serre spectral sequence it is clear that

(6.5) H≤4(BLU(n)) ∼= Z≤4[z1, c1, z2, c2]

where p∗(ci) = ci with i = 1 or 2 by abuse of notation, and σ∗(c1) = i∗(z1) and
σ∗(c2) = i∗(z2). In particular, deg(z1) = 1 and deg(z2) = 3. The classes z1, c1, z2
and c2 are the universal loop U(n)-classes in the low degrees.

Lemma 6.1. The free suspension for BU(n) satisfies

ν(c1) = z1, ν(c2) = z2 + z1c1, ν(c21) = 2z1c1.

Proof. The formulae ν(c1) = z1 and ν(c21) = 2z1c1 can be obtained easily from
Property (1) and (2) of ν, or by the following similar argument for ν(c2). Indeed,
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since ν is natural we have the commutative diagram

H4(BSpinc(2n))
ν //

Br∗

��

H3(BLSpinc(2n))

BLr∗

��
H4(BU(n))

ν // H3(BLU(n)).

(6.6)

It is easy to check that by our choice of generators BLr∗(s) = z1, BLr
∗(t) = c1.

Also since σ∗ is natural we see that for µ ∈ H3(ΩBSpinc(2n) ≃ Spinc(2n))

r∗(µ) = r∗ ◦ σ∗(q1) = σ∗ ◦Br∗(q1) = σ∗(−c2) = −z2.
Again by our choice of generators it implies that BLr∗(µ) = −z2. Hence by Dia-
gram (6.6) and (6.4)

ν(−c2) = ν ◦Br∗(q1) = BLr∗ ◦ ν(q1) = BLr∗(µ− st) = −z2 − z1c1.

This proves the lemma. �

Let us consider the free transgression for BLU(n)l in (5.1) and (5.2). From (5.4)
and (5.5) it is easy to check that

(6.7) H≤4(BLU(n)l) ∼= Z≤4[z1, c1, z2, c2],

such that

(BLdl)
∗(g) = c1, (BLdl)

∗(h) = z1, (BLρs)
∗(z1) = sz1,

(BLρs)
∗(c1) = sc1, (BLρs)

∗(z2) = z2, (BLρs)
∗(c2) = c2.

(6.8)

Corollary 6.2. The free suspension for BU(n)l satisfies

ν(c1) = z1, ν(c2) = z2 + s2z1c1, ν(c21) = 2z1c1.

Proof. By the naturality of free transgression, there is the commutative diagram

H∗(BU(n))
ν //

Bρ∗s
��

H∗−1(BLU(n))

BLρ∗s
��

H∗(BU(n)l)
ν // H∗−1(BLU(n)l).

Together with Lemma 6.1 and (6.8) the corollary follows. �

6.2. Fractional loop U-structure. Let π : Y ! M be a map. Let La be a
complex line bundle determined by a ∈ H2(Y ;Z) and E be a complex vector bundle
of rank n classified by f : Y ! BU(n). Suppose E admits an (a, 1l )-fractional U(n)-
structure determined by Diagram (4.7). Recall E has the fractional Chern class

cl,ak (E) = f l∗(cQk) for each 1 ≤ k ≤ n. By applying the free loop functor L to
Diagram (4.8) and Diagram (4.7), we obtain the morphism of loop fibrations

LU(1)× LU(n)
Lj //

ΩLφ

��

LPU (f
a)

Lpa //

LΦ

��

LY

Lπ

��
LU(n)Q

Lj // LPUQ
(f l)

Lpl // LM,

(6.9)



36 FEI HAN, RUIZHI HUANG, AND VARGHESE MATHAI

classified by

LY

Lπ

��

Lfa

// BLU(1)×BLU(n)

Lφ

��
LM

Lf l

// BLU(n)Q,

(6.10)

where we have used the fact that BLG ≃ LBG for any topological group G. We
may call Diagram (6.9) the fractional loop principal bundle of LE with the rela-
tive structure group (LU(1)× LU(n), LU(n)Q) and the classifying map (Lfa, Lf l)
mapping to the fractional loop classifying space Lφ.

By (6.5), we have

(6.11) H≤4(BLU(n);Q) ∼= Q≤4[zQ

1 , c
Q

1, z
Q

2, c
Q

2],

where as before we use xQ to denote its counterpart x in the rational cohomology.
From (6.11) we can define the fractional loop U-classes of LE by

(6.12) zl,ai (LE) = Lf l∗(z̃i), cl,ai (LE) = Lf l∗(cQi ),

for i = 1 or 2. Moreover, by (6.5) we have the loop U-classes

(6.13) zi(LE) = Lfa∗(z1), ci(LE) = Lfa∗(c1),

for i = 1 or 2. Then by the naturality of the free suspension and Lemma 6.1, we
have that

ν(cl,a1 (E)) = zl,a1 (LE), ν((cl,a1 (E))2) = 2zl,a1 (LE)cl,a1 (LE),

ν(cl,a2 (E)) = zl,a2 (LE) + zl,a1 (LE)cl,a1 (LE),
(6.14)

and

ν(c1(E)) = z1(LE), ν(c21(E)) = 2z1(LE)c1(LE),

ν(c2(E)) = z2(LE) + z1(LE)c1(LE).
(6.15)

Definition 6.3. Let E be an (a, 1l )-fractional U(n)-bundle as above. E has

an (a, 1l )-fractional loop U(n)-structure, or simply a fractional loop U-structure if

zl,a1 (LE) = 0.

Let us study the universal case. Recall that LU(1) ∼= U(1)×ΩS1 ≃ U(1)×Z as
groups, and then LU(n) ∼= LSU(n)×U(1)×ΩS1 ≃ LSU(n)×U(1)×Z as spaces.
Define the group homomorphism

(6.16) θ : LU(1) −! ΩS1

by θ(z(t)) = z(t)
z(1) . Consider the two group homomorphisms

θs : LU(1)
Lτs
−! LU(1)

θ
−! ΩS1, ε : LU(n)

Ldet
−! LU(1)

θ
−! ΩS1.

Then θs(z(t)) =
( z(t)
z(1)

)s
and ε(A(t)) = det(A(t))

det(A(1)) . Up to homotopy θs can be identi-

fied with the composition

U(1)× Z
q2
−! Z

×s
−! Z,

where q2 is the projection onto the second direct summand.
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Let LU(n)l be the group defined by pullback diagram

LU(n)l
ε //

ρs

��

ΩS1

Ωτs

��
LU(n)

ε // ΩS1.

(6.17)

If we view the components of LU(n) are indexed by Z under the isomorphism
π0(LU(n)) ∼= Z, it is not hard to see that LU(n)l is the subgroup of LU(n) con-
sisting of all the components indexed in sZ. Define κl as the composition

(6.18) κl : U(1)× LU(n)l
id×ε
−! U(1)× ΩS1 ∼=

−! LU(1),

and ψs as the composition

(6.19) ψs : U(1)× LU(n)l
p2
−! LU(n)l

ρs
−! LU(n),

where p2 is the projection onto the second factor. It follows that there is the
morphism of (homotopy) group extensions

{1} // L0U(n)
ι2l // U(1)× LU(n)l

ψs

��

κl // LU(1)

θs

��

// {1}

{1} // L0U(n)
ι2 // LU(n)

ε // ΩS1 // {1},

(6.20)

where L0U(n) denotes the component of LU(n) corresponding to 0 ∈ Z ∼=
π0(LU(n)), ι2 is the obvious inclusion, and ι2l is the induced map. The right
square of Diagram (6.20) is a pullback and determines the group extension

(6.21) {1} −! U(1)× LU(n)l
(κl,ψs)
−! LU(1)× LU(n)

θ−s×ε
−! ΩS1

−! {1}.
By our convention of notation we may denote

(6.22) H∗(BLU(1)) ∼= Z[g]{h}
where g and h are the generators corresponding to g ∈ H2(BU(1)) and h ∈
H1(BΩS1 ≃ S1) respectively. Moreover, Diagram (6.17) gives the finite covering

Z/sZ −! BLU(n)l
Bρs
−! BLU(n).

It follows that there is a class z1 ∈ H1(BLU(n)l) such that

(6.23) (Bε)∗(h) = z1, (Bρs)
∗(z1) = sz1.

With (6.5) denote z2 := (Bρs)
∗(z2) and ci := (Bρs)

∗(ci) for i = 1, 2. Consider
Diagram (6.20) after applying the classifying functor B. By the above argument,
we have

Bκ∗l (h) = z1, Bκ∗l (g) = g,

Bψ∗
s (c1) = c1, Bψ∗

s (z1) = sz1,

Bψ∗
s (c2) = c2, Bψ∗

s (z2) = z2,

Bε∗(h) = z1, B(θ−s × ε)∗(h) = z1 − sh.

(6.24)

Since the transgression ν is natural, by Lemma 6.1 and (4.5) we have

Lφ∗(zQ

1) = Lφ∗ ◦ ν(cQ1) = ν ◦ φ∗(cQ1) = ν(c1 − sg) = z1 − sh.
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Hence there is the homotopy commutative diagram of fibrations

BU(1)×BLU(n)l
B(κl,ψs)//

ξ2

��

BLU(1)×BLU(n)
B(θ−s×ε)//

Lφ

��

S1

r

��
BL0U(n)Q

Bι2Q // BLU(n)Q
zQ
1 // S1

Q,

(6.25)

where the top row is obtained from (6.21) by taking the classifying functor B, zQ

1

is represented by BεQ, and ξ2 is induced from Lφ. Indeed, let φQ : BU(1)Q ×
BU(n)Q ! BU(n)Q be the rationalization of φ. The homotopy pullback of LφQ
along Bι2Q gives a map ξ̃2 : BU(1)Q × BLU(n)lQ ! BL0U(n)Q. Then ξ2 can be
chosen to be the composition

(6.26) ξ2 : BU(1)×BLU(n)l
r

−! BU(1)Q ×BLU(n)lQ
ξ̃2
−! BL0U(n)Q,

where r is the rationalization.
Now let us turn to the fractional loop bundle LE determined by Diagram (4.7).

Besides the loop U(n)-classes in (6.13), by (6.22) we have the class a ∈ H2(LY )
corresponding to the class a ∈ H2(Y ) by abuse of notation such that Lfa∗(g) = a,
and the class a ∈ H1(LY ) such that Lfa∗(h) = a and ν(a) = a. We summarize the
formulae for the involved obstructions in the following lemma.

Lemma 6.4.

Lfa∗(z1 − sh) = z1(LE)− sa, Lf l∗(zQ

1) = zl,a1 (LE).

Proof. Lfa∗(z1 − sh) = z1(LE) − sa follows from (6.13) and Lfa∗(h) = a.

Lf l∗(zQ

1) = zl,a1 (LE) by definition (6.12). �

We are ready to prove Theorem 10.

Proof of Theorem 10. The bottom square in Diagram (26) is Diagram (6.10). The
top right square in Diagram (26) is the left square in Diagram (6.25).

If E is a fractional loop U-bundle, then zl,a1 (LE) = 0, and hence by (6.14), (6.15)
and (3.5)

Lπ∗(zl,a1 (LE)) = Lπ∗◦ν(cL,a1 (E)) = ν◦π∗(cL,a1 (E)) = ν(c1(E)−sa) = z1(LE)−sa = 0.

With Diagram (6.25), this is equivalent to that both the compositions zQ

1 ◦ Lf l
and B(θ−s × ε) ◦ Lfa are null homotopic. It follows that there exist ga2 : LY !

BU(1) × BLU(n) and gl2 : B ! BL0U(n)Q such that B(κl, ψs) ◦ ga2 ≃ Lfa and
Bι2Q ◦ gl2 ≃ Lf l, in other words, the front and back triangles in Diagram (26)
commute up to homotopy.

In particular,

(6.27) Bι2Q ◦ ξ2 ◦ ga2 ≃ Lφ◦B(κl, ψs)◦ ga2 ≃ Lφ◦Lfa ≃ Lf l ◦Lπ ≃ Bι2Q ◦ gl2 ◦Lπ.
On the other hand, it is clear that BLU(n) ≃ BL0U(n) × U(1) such that Bι2Q
admits a left homotopy inverse q. It follows from (6.27) that

ξ2 ◦ ga2 ≃ q ◦Bι2Q ◦ ξ2 ◦ ga2 ≃ q ◦Bι2Q ◦ gl2 ◦ Lπ ≃ gl2 ◦ Lπ,
that is, the left top square commutes up to homotopy. Hence we have showed
that Diagram (26) exists and commutes up to homotopy if E is a fractional loop
U-bundle. The proof of the converse statement is similar and omitted. Moreover,
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by the homotopy commutativity of the back triangle in Diagram (26), (27) follows
immediately from (6.24), (6.12) and (6.13).

We are left to count the number of the fractional loop U-structures. Suppose E
is a fractional loop U-bundle. From Diagram (6.9) and Diagram (6.10), there is the
commutative diagram

0 // H1(M)
pl∗ //

ν ∼=
��

H1(PUQ
(f l))

δ◦j∗ //

ν ∼=
��

H2(BU(n)Q)
f l∗

//

ν ∼=
��

H2(M)

ν

��
0 // H0(LM)

Lpl∗ //

Lπ∗

��

H0(LPUQ
(Lf l))

δ◦Lj∗ //

LΦ∗

��

H1(BLU(n)Q)
Lf l∗

//

Lφ∗

��

H1(LM)

Lπ∗

��
H0(LY )

Lpa∗

// H0(LPU (f
a))

δ◦Lj∗ // H1(BLU(1)×BLU(n))
Lfa∗

// H1(LY ),

(6.28)

where the first row, as the second row in Diagram (5.9), is exact and transgresses
to the second row by the naturality of the free suspension, and the transgres-
sions δ : H0(LU(1) × LU(n)) ! H1(BLU(1) × BLU(n)) and δ : H0(LU(n)Q) !
H1(BLU(n)Q) are isomorphisms. Since for i = 0, or 1,

Hi(X ;Q) ∼= Hom(Hi(X),Q) ∼= Hom(πi(X),Q),

it is easy to see that the free suspensions ν in the first three columns of Diagram
(6.28) are isomorphisms. Hence the second row in Diagram (6.28) is exact except

the last term. Since Lf l∗(zQ

1) = zl,a1 (LE) = 0 and Lfa∗(z1−sh) = z1(LE)−sa = 0
by Lemma 6.4, a fractional loop U-structure is determined by the choice of the pair
(P,LΦ∗(P )) ∈ H0(LPUQ

(f l))×H0(LPU (f
a)) such that δ ◦Lj∗(P ) = zQ

1 . From the
exactness of first three arrows in the second row of Diagram (6.28), there are exactly
H0(LM) many of such choices. Hence the fractional loop U-structures on LE are
in one-to-one correspondence with the elements of H0(LM). This completes the
proof of the theorem. �

By Theorem 10 ξ2 is a “classifying space” of the fractional loop U-bundle E on
the level of characteristic classes. Hence, we may call the universal map ξ2 : BU(1)×
BLU(n)l −! BL0U(n)Q the fractional classifying space of the fractional loop U-
structure, and the fractional loop U-bundle E has the classifying map (ga2 , g

l
2).

Geometrically, in Diagram (26) the structure group LU(n)Q of the rational loop
vector bundle determined by Lf l is lifted to L0U(n)Q through Bι2Q, while the
structure group LU(1) × LU(n) of the loop vector bundle L(La ⊕ E) is lifted to
U(1) × LU(n)l through B(κl, ψs). Hence a fractional U-bundle E after looping
admits a fractional loop U-structure if and only if its relative structural group
(LU(1)×LU(n), LU(n)Q) can be lifted to (U(1)×LU(n)l, L0U(n)Q). In terms of
principal bundles, this means that the fractional loop principal bundle (6.9) of the
fractional U-bundle E after looping can be lifted to the fractional loop principal
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bundle

U(1)× LU(n)l
2l //

Ωξ2

��

PU(1)×LUl
(ga2 )

pa
2 //

Θ2

��

LY

Lπ

��
L0U(n)Q

2 // PL0UQ
(gl2)

pl
2 // LM,

(6.29)

where the top row is the principal bundle classified by ga2 , and the bottom row is
the principal fibration induced from gl2.

6.3. Fractional loop U-structure vs fractional SU-structure. There are two
ways to compare the fractional loop U-structure with the fractional SU-structure,
from the perspective of classifying spaces or from the perspective of free suspension.

Let us first look at the universal case from the perspective of classifying spaces.
Note that the universal diagram for fractional SU-structure is Diagram (5.6). Apply
the free loop functor on it, we obtain the diagram

BLU(n)l
BL(dl,ρs)//

Lφ2

��

BLU(1)×BLU(n)
BLµs //

Lφ

��

BLU(1)

BLr

��
BLSU(n)Q

BLi2Q // BLU(n)Q
BLdetQ // BLU(1)Q,

(6.30)

which is different from the universal diagram for fractional loop U-structure, Di-
agram (6.25). Indeed, by the free suspension formulae in Lemma 6.1, it is clear
that in Diagram (6.30) BLi2Q kills the universal classes zQ

1 and cQ1 represented by
the map BLdetQ, while in Diagram (6.25) Bι2Q only kills zQ

1 represented by the
map BεQ; similarly for the top rows of both diagrams. Nevertheless, if we kills the
class cQ1 in Diagram (6.25) through a suitable way, we can achieve Diagram (6.30)
to make both structures match with each other.

Consider the diagram of groups

LU(n)l
Ldl

$$

Lρs

))

L̂i2l

''
U(1)× LU(n)l

ψs

��

κl // LU(1)

θs

��
LU(n)

ε // ΩS1,

(6.31)

where the lower right square is the pullback defined in (6.20), dl and ρs are defined

in (5.2), and the map L̂i2l will be defined momentarily. Indeed, by (5.2) and the
definition of the involved maps (6.16),

θs ◦ Ldl = θ ◦ Lτs ◦ Ldl = θ ◦ Ldet ◦ Lρs = ε ◦ Lρs.

Then by the universal property of pullback, there is a unique group homomorphism

L̂i2l : LU(n)l ! U(1) × LU(n)l such that κl ◦ L̂i2l = Ldl and ψs ◦ L̂i2l = Lρs.
Apply the classifying functor B to Diagram (6.31). By (6.24) and (6.8) it follows
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that

(BL̂i2l)
∗(g) = c1, (BL̂i2l)

∗(z1) = z1,

(BL̂i2l)
∗(c1) = sc1, (BL̂i2l)

∗(z2) = z2, (BL̂i2l)
∗(c2) = c2.

(6.32)

Denote by q1 : LU(1) ∼= U(1) × ΩS1
−! U(1), and p2 : U(1) × LU(n)l −!

LU(n)l the projections onto the first and second direct summands respectively.
Consider the diagram

LU(n)l
Ldl //

p2◦L̂i2l
��

LU(1)
q1 //

Lτs

��

U(1)

τs

��
LU(n)l

Ldet◦ρs// LU(1)
q1 // U(1),

(6.33)

where the right square commutes by naturality. By the definition of ψs (6.19),
Diagram (6.31) and (5.2)

Ldet ◦ ρs ◦ p2 ◦ L̂i2l = Ldet ◦ ψs ◦ L̂i2l = Ldet ◦ Lρs = Lτs ◦ Ldl,

and then the left square of (6.33) commutes. Moreover, from the definition of ρs
in (6.17) and (5.2), it is easy to see that the outer square of Diagram (6.33) is a
pullback. It follows that there is a group extension

(6.34) {1} −! LU(n)l
L̂i2l
−! U(1)× LU(n)l

τ−s×ε′
−! U(1) −! {1},

where ε′ is defined to be q1 ◦Ldet ◦ ρs, and L̂i2l = (q1 ◦Ldl, p2 ◦ L̂i2l) by definition.
It is easy to check that B(τ−s × ε′)∗(g) = c1 − sg.

On the other hand, by the bottom row of Diagram (6.25) and (6.11), it is clear
that

(6.35) H≤3(BL0U(n);Q) ∼= Q≤3[cQ1, z
Q

2 ].

Lemma 6.5. For ξ2 : BU(1)×BLU(n)l ! BL0U(n)Q in Diagram (6.25),

ξ∗2(c
Q

1) = c1 − sg, ξ∗2 (z
Q

2) = z2 +
1

l
z1c1.

Proof. Recall by (4.5),

φ∗(cQ1) = c1 − sg, φ∗(cQ2) = c2 −
n− 1

l
gc1 +

s(n− 1)

2l
g2.

Then by (6.24) and Diagram (6.25)

ξ∗2(c
Q

1) = ξ∗2 ◦Bι∗2Q(cQ1) = B(κl, ψs)
∗ ◦ Lφ∗(cQ1) = B(κl, ψs)

∗(c1 − sg) = c1 − sg,
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and moreover with the naturality of the free suspension and Lemma 6.1

ξ∗2(z
Q

2) = B(κl, ψs)
∗ ◦ Lφ∗(ν(cQ2)− zQ

1c
Q

1)

= B(κl, ψs)
∗(ν ◦ φ∗(cQ2)− (z1 − sh)(c1 − sg)

)

= B(κl, ψs)
∗(ν(c2 −

n− 1

l
gc1 +

s(n− 1)

2l
g2)− (z1 − sh)(c1 − sg)

)

= B(κl, ψs)
∗(z2 + z1c1 −

n− 1

l
(hc1 + gz1) +

s(n− 1)

l
gh− (z1 − sh)(c1 − sg)

)

= B(κl, ψs)
∗(z2 + z1c1 −

n− 1

l
hc1 +

1

l
(z1 − sh)(g − lc1))

= z2 +
1

l
z1c1.

�

Recall p : LU(n) ! U(n) is the evaluation map at 1 ∈ S1 defined in (6.1). The
composition

BL0U(n)Q
Bι2Q
−! BLU(n)Q

B(det◦p)Q
−! BU(1)Q,

satisfies that B(det ◦ p ◦ ι2)∗Q(cQ1) = cQ1. By Lemma 6.5 and the previous discussion,
we can construct the homotopy commutative diagram of homotopy fibrations

BLU(n)l
BL̂i2l //

ξ′2
��

BU(1)×BLU(n)l
B(τ−s×ε′) //

ξ2

��

BU(1)

Br

��
BLSU(n)Q

BL̂i2Q // BL0U(n)Q
B(det◦p◦ι2)Q // BU(1)Q,

(6.36)

where the homotopy fibration in the top row is obtained by applying the classifying

functor to the extension (6.21), L̂i2 : LSU(n) ! L0U(n) is the loop inclusion Li2
restricted into the component of LU(n) containing the image, and ξ′2 is the induced
map.

Lemma 6.6. In Diagram (6.36), ξ′2 can be chosen to be Lφ2, and

(κl, ψs) ◦ L̂i2l = L(dl, ρs), ι2 ◦ L̂i2 = Li2.

Proof. First, ι2 ◦ L̂i2 = Li2 holds by definiton, and (κl, ψs) ◦ L̂i2l = L(dl, ρs) holds
by (6.31). To show that ξ′2 can be chosen to be Lφ2, notice that by the homotopy
commutativity of Diagram (6.30) and (5.6),

Bι2Q ◦ ξ2 ◦BL̂i2l ≃ Lφ ◦B(κl, ψs) ◦BL̂i2l
≃ Lφ ◦BL(dl, ρs) ≃ BLi2Q ◦ Lφ2 ≃ Bι2Q ◦BL̂i2Q ◦ Lφ2.

(6.37)

On the other hand, the homotopy fibration BL0U(n)
Bι2
! BLU(n) ! U(1) splits,

and Bι2 admits a left homotopy inverse q. Hence by (6.37)

ξ2 ◦BL̂i2l ≃ qQ ◦Bι2Q ◦ ξ2 ◦BL̂i2l ≃ qQ ◦Bι2Q ◦BL̂i2Q ◦ Lφ2 ≃ BL̂i2Q ◦ Lφ2,

which means that the left square in Diagram (6.36) commutes up to homotopy if
we let ξ′2 = Lφ2. This completes the proof of the lemma. �
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By Lemma 6.6, we see that the left square of Diagram (6.30) admits a factoriza-
tion

BLU(n)l
BL̂i2l //

Lφ2

��

BL(dl,ρs)

))
BU(1)×BLU(n)l

ξ2

��

B(κl,ψs) // BLU(1)×BLU(n)

Lφ

��
BLSU(n)Q

BL̂i2Q //

BLi2Q

55
BL0U(n)Q

Bι2Q // BLU(n)Q,

(6.38)

which establishes the relation between the fractional loop U-structure and the frac-
tional SU-structure in the universal case.

Now let us turn to the fractional U-bundle E defined by Diagram (4.7). The
criteria of fractional SU-structure and fractional loop U-structure are given in The-
orem 7 and Theorem 10 respectively. By the above analysis, if E admits a fractional
SU-structure, it is clear that E is fractional loop U. Conversely, if E is fractional
loop U, then in order to lift it to a fractional SU-structure, one has to further kill

the first fractional Chern class cl,a1 (LE).

Theorem 6.7. Let E be an (a, 1l )-fractional U(n)-bundle determined by Diagram
(6) and l > 1.

If E admits an (a, 1l )-fractional SU(n)-structure, then E is fractional loop U.

Conversely, suppose E is fractional loop U with the classifying map (ga2 , g
l
2) in

Diagram (26). Then it can be lifted to a fractional SU-structure if and only if there
exists a map gl′2 such that the following diagram commutes up to homotopy

BLSU(n)Q
BL̂i2Q

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

LM

gl′2

99

gl2 // BL0U(n)Q.

(6.39)

Proof. Suppose that the lift gl′2 in Diagram (6.39) exists. Then by Diagram (6.36)

B(det ◦ p ◦ ι2)Q ◦ gl2 ≃ B(det ◦ p ◦ ι2)Q ◦BL̂i2Q ◦ gl′2
is null homotopic. It implies that the first fractional Chern class cl,a1 (LE) = 0.

Since p∗(cl,a1 (E)) = cl,a1 (LE) with p the evaluation map in (6.1) and p∗ is injective,

we have cl,a1 (E) = 0, and then E is fractional SU. Suppose a fractional SU-structure
is given by a lift f l2 as in Diagram (14), we have to show that after looping it lifts the
original fractional loop U-structure given by gl2. Indeed, by the similar argument
as in the last part in the proof of Lemma 6.6 we have

Bι2Q ◦BL̂i2Q ◦ Lf l2 ≃ BLi2Q ◦ Lf l2 ≃ Lf l ≃ Bι2Q ◦ gl2.

Then since Bι2Q admits a left homotopy inverse, BL̂i2Q ◦ Lf l2 ≃ gl2. This shows

that the fractional SU-structure defined by f l2 lifts the fractional loop U-structure
given by gl2. The converse statement and the other part of the theorem follow
immediately from Diagram (6.38). �
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Theorem 6.7 and Diagram (6.38) are to compare the fractional SU-structure and
the fractional loop U-structure from the perspective of classifying spaces. Classi-
cally we can also compare them from the perspective of the free suspension.

Theorem 6.8. Let E be an (a, 1l )-fractional U(n)-bundle determined by Diagram
(6) and l > 1.

If E is fractional SU, then E is fractional loop U. Moreover, the distinct frac-
tional SU-structures on E transgress to the fractional loop U-structures via the
isomorphic free suspension

ν : H1(M)
∼=
−! H0(LM).

The converse statement is also true if the first fractional Chern class cl,a1 (E) is

rationally spherical, that is, there exists a map k1 : S2
! M such that k∗1(c

l,a
1 (E))

is nontrivial.
In particular, when M is rationally simply connected, E is fractional loop U

implies that E admits a fractional SU-structure.

Proof. Recall by (6.14) ν(cl,a1 (E)) = zl,a1 (LE). Then if E admits a fractional SU-

structure, cl,a1 (E) = 0 implies that zl,a1 (LE) = 0 which means that E admits a
fractional loop U-structure. By Theorem 7 and Theorem 10, the two structures are
classified by H1(M) and H0(LM) ∼= H1(M) respectively. Then by the naturality
of the free suspension, there is a one-to-one correspondence between the distinct
fractional SU-structures and the fractional loop U-structures on E through the free
suspension.

To prove the converse statement, we adopt the idea in the proof of Theorem 3.1
in [Mcl] which describes the free suspension ν geometrically for the elements in the
Hurewicz image. As summarized in the proof of Theorem 5.1 of [DHH], there is
the commutative diagram

π2(M)⊗Q
h⊗Q //

_�

i⊗Q

��

H2(M ;Q)
dual

∼=
// H2(M ;Q)

ν

��
π1(LM)⊗Q

h⊗Q

∼=
// H1(LM ;Q)

dual
∼=

// H1(LM ;Q),

(6.40)

where h is the Hurewicz homomorphism, and i is the inclusion under the isomor-

phism π1(LM) ∼= π2(M) ⊕ π1(M). By the assumption, cl,a1 (E) ∈ H2(M ;Q) is
rationally spherical. It follows that the composition in the top row of Diagram

(6.40) sends the class [k1] to c
l,a
1 (E) up to a nonzero constant. If E is fractional

loop U, or equivalently ν(cl,a1 (E)) = zl,a1 (LE) = 0, by the commutativity of Dia-

gram (6.40) i([k1]) = 0 and then [k1] = 0. Hence cl,a1 (E) = 0 and E is fractional
SU. This proved the converse statement.

IfM is rationally simply connected, then h⊗Q in the top row of Diagram (6.40)
is an isomorphism by the rational Hurewicz theorem. Hence the spherical condition
is satisfied and E is fractional SU. This proves the special case and the theorem is
proved. �

6.4. Fractional loop SU-structure. Let π : Y ! M be a map. Let La be
a complex line bundle determined by a ∈ H2(Y ;Z) and E be a complex vector
bundle of rank n classified by f : Y ! BU(n). Suppose l > 1 and E admits an
(a, 1l )-fractional SU(n)-structure as described in Definition 5.1.
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Definition 6.9. Let E be an (a, 1l )-fractional SU(n)-bundle. E has an (a, 1l )-
fractional loop SU(n)-structure, or simply a fractional loop SU-structure if

zl,a2 (LE) = 0.

Let us study the universal case. Applying the free loop functor to the fractional
classifying map φ2 in Diagram (5.6) we get Lφ2 : BLU(n)l ! BLSU(n)Q. By either
Diagram (6.38), Lemma 6.5 and (6.32), or Lemma 6.2, (5.11) and the naturality of
free suspension, one can check that

(6.41) Lφ∗2(z
Q

2) = z2 +
s

l
z1c1.

We may define a topological group L̂SU(n)l by the pullback

L̂SU(n)l

Ωξ3
��

ι3l // LU(n)l

ΩLφ2

��
L̂SU(n)Q

ι3Q // LSU(n)Q,

(6.42)

where i3Q is the rationalization of the group extension

(6.43) {1} −! U(1) −! L̂SU(n)
ι3
−! LSU(n) −! {1}

corresponding to the class z2 ∈ H3(BLSU(n)), and ξ3 = BΩξ3 : BL̂SU(n)l !

BL̂SU(n)Q is the induced map between classifying spaces. Hence there is the
induced group extension

(6.44) {1} −! S1
Q −! L̂SU(n)l

ι3l
−! LU(n)l −! {1}.

Let us denote

z̄1 = Bι∗3l(z1), c̄1 = Bι∗3l(c1), z2 = Bι∗3l(z2), c2 = Bι∗3l(c2).

From (6.42) and (6.41) we have that

(6.45) z2 = −s
l
z̄1c̄1.

Now let us turn to the fractional SU-bundle E determined by Diagram (14) in
Theorem 7. In particular, the SU-structure on E is classified by the pair of maps
(fa2 , f

l
2). Applying the free loop functor on E. We summarize the formulae for the

involved obstructions in the following lemma.

Lemma 6.10.

Lfa∗2 (z2 +
s

l
z1c1) = z2(LE) +

1

n
z1(LE)c1(LE), Lf l∗2 (zQ

2) = zl,a2 (LE).

Moreover, c1(LE) = sa and z1(LE) = sa.

Proof. First c1(LE) = sa and z1(LE) = sa by (15) and (27) since E is fractional SU

and hence fractional loop U. Lf l∗2 (zQ

2) = zl,a2 (LE) by definition (6.12). Moreover,
by (15), (27), Lemma 6.2 and the naturality of the free suspension,

Lfa∗2 (z2) = Lfa∗2 (ν(c2)− s2z1c1) = ν(c2(E)) − z1(LE)c1(LE) = z2(LE),
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and hence

Lfa∗2 (z2 +
s

l
z1c1)

= z2(LE) +
s

l
· 1

s2
z1(LE)c1(LE)

= z2(LE) +
1

n
z1(LE)c1(LE).

This proves the first formula and hence the lemma. �

We are ready to prove Theorem 11.

Proof of Theorem 11. By Theorem 7 the bottom square in Diagram (29) commutes
up to homotopy. The top right square in Diagram (29) is Diagram (6.42) after
applying the classifying functor B.

If E is a fractional loop SU-bundle, then zl,a2 (LE) = 0. It follows that there

exists a map gl3 : LM ! BL̂SU(n)Q such that Bι3Q ◦ gl3 ≃ Lf l2, and we obtain
the front triangle in Diagram (29). Then since the top right square in Diagram

(29) is a homotopy pullback, there exists a unique ga3 : LY ! BL̂SU(n)l up to
homotopy such that Bι3l ◦ ga3 ≃ Lfa2 and ξ3 ◦ ga3 ≃ gl3 ◦Lπ. Thus the back triangle
and the top left square in Diagram (29) commute up to homotopy. We have showed
that Diagram (29) exists and commutes up to homotopy if E is a fractional loop
SU-bundle. The proof of the converse statement is similar and omitted. Moreover,
by straightforward computation (30) follows from (15), (6.45) and Diagram (29).
For instance, by the proof of Lemma 6.10

ga∗3 (z2) = ga∗3 ◦Bι∗3l(z2) = Lfa∗2 (z2) = z2(LE).

We are left to count the number of the fractional loop SU-structures. Suppose E
is a fractional loop SU-bundle. From Diagram (5.10) after applying the free loop
functor L and the bottom square of Diagram (29), by the dual Blakers-Massey
theorem [DHH, Theorem C.3] there is the commutative diagram

H2(LY )
Lpa∗

2 // H2(LPUl
(fa2 ))

δ◦Lj∗2 // H3(BLU(n)l)
Lfa∗

2 // H3(LY )

0 // H2(LM)
Lpl∗2 //

Lπ∗

OO

H2(LPSUQ
(Lf l2))

δ◦Lj∗2 //

LΦ∗
2

OO

H3(BLSU(n)Q)
Lf l∗

2 //

Lφ∗
2

OO

H3(LM),

Lπ∗

OO

(6.46)

where the second row is exact with the isomorphic transgression δ :
H2(LSU(n)Q) ! H3(BLSU(n)Q), and in the top row the transgression δ :
H2(LU(n)l) ! H3(BLU(n)l) is a monomorphism. A fractional loop SU-
structure is determined by the choice of the pair (P,LΦ∗

2(P )) ∈ H2(LPSUQ
(f l2)) ×

H2(LPUl
(fa2 )) such that δ ◦ Lj∗2(P ) = zQ

2 . From Diagram (6.46), there are exactly
H2(LM) many of such choices. Hence the fractional loop SU-structures on E are
in one-to-one correspondence with the elements of H2(LM). This completes the
proof of the theorem. �

By Theorem 11 ξ3 is a “classifying space” of the fractional loop SU-bundle E
on the level of characteristic classes. Hence, we may call the universal map ξ3 :

BL̂SU(n)l −! BL̂SU(n)Q the fractional classifying space of the fractional loop
SU-structure, and the fractional loop SU-bundle E has the classifying map (ga3 , g

l
3).
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Geometrically, in Diagram (29) the structure group LSU(n)Q of the rational

vector bundle determined by Lf l2 is lifted to L̂SU(n)Q through Bι3Q, while the
structure group LU(n) of the vector bundle La ⊕ E after looping is lifted to

L̂SU(n)l through Bι3l. Hence a fractional SU-bundle E admits a fractional loop
SU-structure if and only if its relative structural group (LU(n), LSU(n)Q) can be

lifted to (L̂SU(n)l, L̂SU(n)Q). In terms of principal bundles, this means that after
looping the fractional principal bundle (5.10) of the fractional SU-bundle E can be
lifted to the fractional principal bundle

L̂SU(n)l
3 //

Ωξ3

��

P
L̂SUl

(ga3 )
pa
3 //

Θ3

��

LY

Lπ

��
L̂SU(n)Q

3 // P
L̂SUQ

(gl3)
pl
3 // LM,

(6.47)

where the top row is the principal bundle classified by ga3 , and the bottom row is
the principal fibration induced from gl3.

Remark 6.11. The group extension (6.43) can be compared with the extension

(6.48) {1} −! U(1) −! L̂Spin(2n)
h3
−! LSpin(2n) −! {1}

corresponding to the generator µ ∈ H3(BLSpin(2n)) such that ν(p12 ) = µ. Recall
there is the standard Lie group homomorphism r : SU(n) ! Spin(2n) such that

Br∗(p1) = −2c2. We then have BLr∗(µ) = −z2. Hence we can define L̂SU(n) by
the pullback of groups

L̂SU(n) //

ι3

��

L̂Spin(2n)

h

��
LSU(n)

Lr // LSpin(2n).

(6.49)

6.5. Fractional loop SU-structure vs fractional U〈6〉-structure. There are
two ways to compare the fractional loop SU-structure with the fractional U〈6〉-
structure, from the perspective of classifying spaces or from the perspective of free
suspension.

Let us first look at the universal case from the perspective of classifying spaces.
Recall that the universal diagram for fractional U〈6〉-structure is Diagram (5.12)
after applying the classifying functor M . Apply the free loop functor on it, we
obtain the pullback diagram

BLU〈6〉(n)l
Lφ3

��

BLi3l // BLU(n)l

Lφ2

��
BLU〈6〉(n)Q

BLi3Q // BLSU(n)Q,

(6.50)

which is different from the universal diagram for fractional loop SU-structure, Dia-
gram (6.42) after applying the classifying functorM . Indeed, by the free suspension
formulae in Lemma 6.1, it is clear that in Diagram (6.50) BLi3Q kills the universal
classes zQ

2 and cQ2, while in Diagram (6.42) Bι3Q only kills zQ

2 ; similarly for the top
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rows of both diagrams. Nevertheless, there is a canonical way to kill the class cQ2 in
Diagram (6.42) to make both structures match with each other.

Indeed, in the group extension (6.43) L̂SU(n) is the 2-connected cover of
LSU(n). Hence by connectivity the extension Li3 factors as

Li3 : LU〈6〉(n) L̂i3
−! L̂SU(n)

ι3
−! LSU(n),

where L̂i3 can be chosen to be a loop map. To see this we can apply the same
argument on the level of the classifying spaces and then take the loop functor Ω to

get a loop model of L̂i3. Then there are the fibration

BLU〈6〉(n) BL̂i3−! BL̂SU(n)
c2
−! K(Z, 4)

such that BL̂i3 kills the class c2, and the pullback factorization

BLU〈6〉(n)l
BL̂i3l //

Lφ3

��

BLi3l

))
BL̂SU(n)l

ξ3
��

Bι3l // BLU(n)l

Lφ2

��
BLU〈6〉(n)Q

BL̂i3Q //

BLi3Q

55
BL̂SU(n)Q

Bι3Q // BLSU(n)Q

(6.51)

by the uniqueness of homotopy pullback. Diagram (6.51) establishes the relation
between the fractional loop SU-structure and the fractional U〈6〉-structure in the
universal case.

Now let us turn to the fractional SU-bundle E defined by Diagram (14). The
criteria of fractional U〈6〉-structure and fractional loop SU-structure are given in
Theorem 8 and Theorem 11 respectively. By the above analysis, if E admits a
fractional U〈6〉-structure, it is clear that E is fractional loop SU. Conversely, if E
is fractional loop SU, then in order to lift it to a fractional U〈6〉-structure, one has

to further kill the second fractional Chern class cl,a2 (LE).

Theorem 6.12. Let E be an (a, 1l )-fractional SU(n)-bundle determined by Dia-
gram (14) and l > 1.

If E admits an (a, 1l )-fractional U〈6〉(n)-structure, then E is fractional loop SU.

Conversely, suppose E is fractional loop SU with the classifying map (ga3 , g
l
3) in

Diagram (29). Then it can be lifted to a fractional U〈6〉-structure if and only if
there exists a map gl′3 such that the following diagram commutes up to homotopy

BLU〈6〉(n)Q
BL̂i3Q

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

LM

gl′3

99

gl3 // BL̂SU(n)Q.

(6.52)

Proof. Suppose that the lift gl′3 in Diagram (6.52) exists. Then cl,a2 (LE) = gl
∗

3 (cQ2) =

gl′∗3 ◦BL̂i3
∗
Q(c

Q

2) = 0. Since p∗(cl,a2 (E)) = cl,a2 (LE) with p the evaluation map in (6.1)

and p∗ is injective, we have cl,a2 (E) = 0, and then E is fractional U〈6〉. Suppose
a fractional U〈6〉-structure is given by a lift f l3 as in Diagram (17), we have to
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show that after looping it lifts the original fractional loop SU-structure given by gl3.
Indeed, by Diagram (6.52) we have

Bι3Q ◦BL̂i3Q ◦ Lf l3 ≃ BLi3Q ◦ Lf l3 ≃ Lf l2 ≃ Bι3Q ◦ gl3.
On the other hand, since zQ

2 is spherical the rational fibration

BL̂SU(n)Q
Bι3Q
−! BLSU(n)Q −! K(Q, 3) ≃ S3

Q

splits, and then Bι3Q admits a left homotopy inverse. It follows that BL̂i3Q ◦Lf l3 ≃
gl3. This shows that the fractional U〈6〉-structure defined by f l3 lifts the fractional
loop SU-structure given by gl3. The converse statement and the other part of the
theorem follow immediately from Diagram (6.52). �

Theorem 6.12 and Diagram (6.52) are to compare the fractional U〈6〉-structure
and the fractional loop SU-structure from the perspective of classifying spaces.
Classically we can also compare them from the perspective of the free suspension.

Theorem 6.13. Let E be an (a, 1l )-fractional SU(n)-bundle determined by Dia-
gram (14) and l > 1.

If E is fractional U〈6〉, then E is fractional loop SU. Moreover, the distinct
fractional U〈6〉-structures on E transgress to the fractional loop SU-structures via
the free suspension

ν : H3(M) −! H2(LM).

The converse statement is also true if the second fractional Chern class cl,a2 (E) is

rationally spherical, that is, there exists a map k2 : S4
! M such that k∗2(c

l,a
2 (E))

is nontrivial, and the rational Hurewicz morphism

h⊗Q : π3(LM)⊗Q −! H3(LM ;Q)

is injective.
In particular, when M is rationally 2-connected, E is fractional loop SU implies

that E admits a fractional U〈6〉-structure. Moreover, if M is 2-connected, there is
a one-to-one correspondence between the distinct fractional U〈6〉-structures and the
fractional loop SU-structures on E through the isomorphic free suspension.

Proof. Recall by (6.14) ν(cl,a2 (E)) = zl,a2 (LE) provided by E is fractional SU. Then

if E admits a fractional U〈6〉-structure, cl,a2 (E) = 0 implies that zl,a2 (LE) = 0 which
means that E admits a fractional loop SU-structure. By Theorem 8 and Theorem
11, the two structures are classified by H3(M) and H2(LM) respectively. Then by
the naturality of the free suspension, the distinct fractional U〈6〉-structures on E
transgress to the fractional loop SU-structures via the free suspension.

To prove the converse statement, we adopt the idea in the proof of Theorem 3.1
in [Mcl] which describes the free suspension ν geometrically for the elements in the
Hurewicz image. As summarized in the proof of Theorem 5.1 of [DHH], there is
the commutative diagram

π4(M)⊗Q
h⊗Q //

_�

i⊗Q

��

H4(M ;Q)
dual

∼=
// H4(M ;Q)

ν

��
π3(LM)⊗Q

h⊗Q // H3(LM ;Q)
dual

∼=
// H3(LM ;Q),

(6.53)
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where h is the Hurewicz homomorphism, and i is the inclusion under the isomor-

phism π3(LM) ∼= π4(M) ⊕ π3(M). By the assumption, cl,a2 (E) ∈ H4(M ;Q) is
rationally spherical. It follows that the composition in the top row of Diagram

(6.53) sends the class [k2] to c
l,a
2 (E) up to a nonzero constant. Suppose E is frac-

tional loop SU, or equivalently ν(cl,a2 (E)) = zl,a2 (LE) = 0. By the commutativity of
Diagram (6.53) and the assumption on the injectivity of h⊗Q we have i([k2]) = 0

and then [k2] = 0. Hence cl,a2 (E) = 0 and E is fractional U〈6〉. This proved the
converse statement.

If M is rationally 2-connected, then h ⊗ Q in the top row of Diagram (6.53) is
an isomorphism by the rational Hurewicz theorem. Further by the naturality of
Hurewicz homomorphism, the diagram

π3(LM)⊗Q
h⊗Q //

p∗⊗Q∼=
��

H3(LM)⊗Q

p∗⊗Q∼=
��

π3(M)⊗Q
h⊗Q

∼=
// H3(M)⊗Q

commutes and implies that h ⊗ Q in the bottom row of Diagram (6.53) is an
isomorphism. Hence the two conditions in the theorem are satisfied and then E is
fractional U〈6〉. If M is further 2-connected, ν : H3(M) ! H2(LM) ∼= H2(ΩM) is
an isomorphism. Hence, there is a one-to-one correspondence between the distinct
fractional U〈6〉-structures and the fractional loop SU-structures on E through ν.
This proves the two special cases and the theorem is proved. �
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List of notations for characteristic classes

We list the characteristic classes defined and used in this paper in the following
table. In the second column, ν is the free suspension defined in Subsection 6.1, and
the mentioned maps are in Diagram (6). In the third column, the page number is
listed for the place where the classes first appear from Section 2 forward.

(1 ≤ k ≤ n, i = 1, 2)

Universal classes:

g ∈ H2(BU(1)) Page 24
ck ∈ H2k(BU(n)) the k-th universal Chern class Page 24
cQk ∈ H2k(BU(n);Q) the k-th universal rational Chern class Page 24
c̄1, ck ∈ H2k(BU(n)l) sc̄1 = c1 Page 28
c̄1, ck ∈ H2k(BU〈6〉(n)l) sc̄1 = c1 Page 31

g, h ∈ H∗(BLU(1)) h = ν(g) Page 37
ci ∈ H2i(BLU(n)) z2 + z1c1 = ν(c2), z1 = ν(c1) Page 34
zi ∈ H2i−1(BLU(n)) Page 34
cQi ∈ H2i(BLU(n);Q) universal rational loop classes Page 36
zQ

i ∈ H2i−1(BLU(n);Q) Page 36

z̄1, ci, zi ∈ H∗(BLU(n)l) sz̄1 = z1, Page 37
c̄1, z̄1, ci, zi ∈ H∗(BLU(n)l) sc̄1 = c1, sz̄1 = z1 Page 35

c̄1, z̄1, ci, zi ∈ H∗(BL̂U(n)l) sc̄1 = c1, sz̄1 = z1 Page 45

For a fractional U-bundle E:

a ∈ H2(Y ) fa∗(g) = a Page 21
ck(E) ∈ H2k(Y ) the k-th Chern class Page 22

cl,ak (E) ∈ H2k(M ;Q) the k-th fractional Chern class Page 22

a ∈ H2(LY ) Lfa∗(g) = a Page 38
a ∈ H1(LY ) Lfa∗(h) = a = ν(a) Page 38
ci(LE) ∈ H2i(LY ) z2(LE) + z1(LE)c1(LE) = ν(c2(E)) Page 36
zi(LE) ∈ H2i−1(LY ) z1(LE) = ν(c1(E)) Page 36

cl,ai (LE) ∈ H2i(LM ;Q) fractional loop classes Page 36

zl,ai (LE) ∈ H2i−1(LM ;Q) Page 36



52 FEI HAN, RUIZHI HUANG, AND VARGHESE MATHAI

References

[AS1] M. Atiyah and G. Segal, Twisted K-theory, Ukr. Mat. Visn. 1 (2004) 287–330.
(document)

[AS2] M. Atiyah and G. Segal, Twisted K-theory and cohomology, Inspired by S.
S. Chern, Nankai Tracts Mathematics 11 (World Scientific Publishing, Hack-
ensack, 2006) 5–43. (document)

[Ada] J.F. Adams, Chern characters and structure of the unitary group, Proc. Cam.
Phi. Soc. Vol 57 (1961), 189-199. (document), 1.1

[AHS] M. Ando, M. J. Hopkins and N. P. Strickland, Elliptic spectra, the Witten
genus and the theorem of the cube, Invent. Math. 146 (2001), no. 3, 595-687.
(document), 1.1, 1.1

[AS] M. F. Atiyah and I. M. Singer, The index of elliptic operators, III, Ann. Math.
87 (1968), 546-604. (document), 1.1

[BCMMS] P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray and D. Stevenson,
Twisted K-theory and K-theory of bundle gerbes, Commun. Math. Phys. 228
(2002), 17-45. (document), 1.2

[Bun] U. Bunke, String structures and trivializations of a Pfaffian line bundle,
Comm. Math. Phys. 307 (2011), 675-712. 1.1

[DK] P. Donovan and M. Karoubi, Graded Brauer groups and K-theory with local
coefficients, Publ. Math. Inst. Hautes Etudes Sci. 38 (1970) 5–25. (document)

[Dua] H. Duan, Characteristic classes and invariants of Spin geometry, preprint,
2018. 6.1

[DHH] H. Duan, F. Han and R. Huang, Stringc Structures and Modular Invariants,
Trans. Amer. Math. Soc., Volume 374, Number 5, May 2021, 3491-3533. 1.1,
4.2, 5.1, 5.2, 6.1, 6.3, 6.4, 6.5

[FHT01] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Grad-
uate Texts in Mathematics 205, Springer-Verlag, New York, 2001. 1.2, 4.1

[FHT1] D.S. Freed, M.J. Hopkins and C. Teleman, Loop groups and twisted K-
theory I, Journal of Topology 4 (2011) 737–798. (document)

[FHT2] D.S. Freed, M.J. Hopkins and C. Teleman, Loop groups and twisted K-
theory II, Journal of American Mathematical Society, Volume 26, Number 3,
July 2013, Pages 595–644. (document)

[FHT3] D.S. Freed, M.J. Hopkins and C. Teleman, Loop groups and twisted K-
theory III, Annals of Mathematics 174 (2011), 947–1007. (document)

[HM1] F. Han and V. Mathai, Projective Elliptic Genera and Elliptic Pseudodif-
ferential Genera, Advances in Mathematics, 358 (2019), 1-25. (document),
6

[HM2] F. Han and V. Mathai, T-duality, Jacobi forms and Witten Gerbe Modules,
Adv. Theor. Math. Phys., 25 no. 5 (2021) 23 pp. (document), 6

[Hop] M. J. Hopkins, Algebraic Topology and Modular Forms, Plenary talk, ICM,
Beijing, 2002. (document), 1.1

[Kil] T.P. Killingback, World-sheet anomalies and loop geometry, Nuclear Physics
B, Vol 288 (1987), 577-588. (document), 1.1

[KK] D. Kishimoto and A. Kono, On the cohomology of free and twisted loop spaces,
J. Pure Appl. Algebr. 214 (2010), 646-653. 6.1

[KM] C. Kottke and R. Melrose, Equivalence of string and fusion loop-spin struc-
tures, Alge. Geom. Topology 21 (2021) 3335–3399. (document), 1.1



FRACTIONAL STRUCTURES 53

[Kur] K. Kuribayashi, Module derivations and the adjoint action of a finite loop
space, J. Math. Kyoto Univ. 39 (1997), 67-85. 6.1

[LM] H. B. Lawson and M-L. Michelsohn, Spin geometry, Princeton Mathematical
Series 38, Princeton University Press, Princeton, NJ, 1989. (document), 1.1

[Liu] K. Liu, Modular invariance and characteristic numbers, Comm. Math. Phys.
174 (1995), no. 1, 29-42. 6

[MMS] V. Mathai, R.B. Melrose, I.M. Singer, Fractional analytic index, J. Differ-
ential Geom. 74 (2) (2006) 265–292. (document)

[MMS2] V. Mathai, R.B. Melrose, I.M. Singer, Equivariant and fractional index
of projective elliptic operators, J. Differential Geom. 78 (3) (2008) 465–473.
(document)

[Mcl] D. A. McLaughlin, Orientation and string structures on loop space, Pacific
J. Math. 155 (1) (1992), 143-156. (document), 1.1, 1.1, 1.1, 6.3, 6.5

[MM] R. Minasian and G. Moore, K-theory and Ramond-Ramond charge, J. High
Energy Phys. 9711 (1997), Paper 2, 7 pp. (electronic). (document)

[Mur] M. K. Murray, Bundle gerbes, J. London Math. Soc. (2) 54 (1996), no. 2,
403-416. (document)

[NSW] T. Nikolaus, C. Sachse, and C. Wockel, A smooth model for the string group,
Int. Math. Res. Not. IMRN no. 16 (2013), 3678-3721. 5.6

[Red] C. Redden, String structures and canonical 3-forms, Pacific J. Math, 249(2):
447-484, 2011. 1.1

[Ros] J. Rosenberg, Continuous-trace algebras from the bundle theoretic point of
view, J. Aust. Math. Soc. Ser. A 47 (1989) 368–381. (document)

[Sat] H. Sati, Geometric and topological structures related to M-branes II: Twisted
String and Stringc structures, J. Australian Math. Soc. 90 (2011), 93-108. 1.1

[Sin] W. M. Singer, Connective fiberings over BU and U , Topology 7 (1968), 271-
303. 1.1

[ST] S. Stolz and P. Teichner, What is an elliptic object?, Topology, geometry and
quantum field theory, London Math. Soc. Lecture Note Ser., 308, Cambridge
Univ. Press, Cambridge, 2004, 247-343. (document), 1.1, 5.6

[Sul] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci.
Publ. Math. No. 47 (1977), 269-331. (document)

[Tom] A. Tomoda, On the splitting principle of bundle gerbe modules, Osaka J.
Math. 44 (2007), no. 1, 231-246. 1, 1.2, 2, 3

[Wal1] K. Waldorf, String geometry vs. spin geometry on loop spaces, J. Geom.
Phys. 97 (2015), 190-226. (document), 1.1

[Wal2] K. Waldorf, Spin structures on loop spaces that characterize string mani-
folds, Algebr. Geom. Topol. 16 (2016) 675-709. 1.1

[Wit1] E. Witten, The index of the Dirac operator in loop space, in P.S. Landweber,
ed., Elliptic Curves and Modular Forms in Algebraic Topology (Proceedings,
Princeton 1986), Lecture Notes in Math., 1326, pp. 161-181, Springer, 1988.
(document), 1.1

[Wit2] E. Witten, D-branes and K-theory, J. High Energy Phys. 9812 (1998), Paper
19, 41 pp. (electronic). (document)

[Zig] D. Zagier, Note on the Landweber-Stong elliptic genus, in P.S. Landweber,
ed., Elliptic Curves and Modular Forms in Algebraic Topology (Proceedings,
Princeton 1986), Lecture Notes in Math., 1326, pp. 216-224, Springer, 1988.
(document), 1.1



54 FEI HAN, RUIZHI HUANG, AND VARGHESE MATHAI

Department of Mathematics, National University of Singapore, Singapore 119076

Email address: mathanf@nus.edu.sg

Institute of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing

100190, China

Email address: huangrz@amss.ac.cn

URL: https://sites.google.com/site/hrzsea

School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia

Email address: mathai.varghese@adelaide.edu.au


	Introduction
	1. Fractional structures and statement of results
	1.1. Background
	1.2. Twisted Chern classes and fractional U-structure
	1.3. Higher fractional structures
	1.4. Higher fractional loop structures
	1.5. Higher fractional structures vs higher fractional loop structures

	2. Bundle gerbe modules and splitting principle
	3. Fractional Chern classes
	4. Fractional classifying spaces and fractional U-structure
	4.1. Fractional classifying spaces
	4.2. Fractional U-structure

	5. Higher fractional structures
	5.1. Fractional SU-structure
	5.2. Fractional U6 -structure

	6. Fractional loop structures
	6.1. The free suspension
	6.2. Fractional loop U-structure
	6.3. Fractional loop U-structure vs fractional SU-structure
	6.4. Fractional loop SU-structure
	6.5. Fractional loop SU-structure vs fractional U6 -structure

	List of notations for characteristic classes
	References

