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STRINGc STRUCTURES AND MODULAR INVARIANTS

RUIZHI HUANG, FEI HAN, AND HAIBAO DUAN

Abstract. In this paper, we study some algebraic topology aspects of Stringc

structures, more precisely, from the perspective of Whitehead tower and the
perspective of the loop group of Spinc(n). We also extend the generalized
Witten genera constructed for the first time by Chen et al. [J. Differential
Geom. 88 (2011), pp. 1–40] to correspond to Stringc structures of various
levels and give vanishing results for them.
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1. Introduction

1.1. Background. Let V be a real rank n oriented vector bundle over a connected
manifold M . Let FSO(n) be the oriented orthonormal frame bundle of V over M .
V is called Spin if FSO(n) has an equivariant lift with respect to the double covering
ρ : Spin(n) → SO(n). A Spin structure is a pair (P, fP ) with πP : P → M being
a principal Spin(n)-bundle over M and fP : P → FSO(n) being an equivariant
2-fold covering map. P is called the bundle of Spin frames of V . The topological
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obstruction to the existence of Spin structure is the second Stiefel-Whitney ω2(V ).
Furthermore, if it vanishes then the distinct Spin structures lifting the prescribed
oriented structure on V are in one-to-one correspondence with the elements in
H1(M ;Z/2) (see [23]).

A String structure is a higher version of Spin structure, which is related to quan-
tum anomaly in physics [18]. One mathematical way to look at String structures is
from the perspective of Whitehead tower. A String group is an infinite-dimensional
group String(n) introduced by Stolz [43] as a 3-connected cover of Spin(n). Let V
be a vector bundle with the Spin structure (P, fP ). Let g : M → BSpin(n) be the
classifying map of P . V is called (strong) String, if there is a lift,

BString(n)

��
M

g
��

���
�

�
�

�
BSpin(n).

The obstruction to the lift is 1
2p1(V ), and if it vanishes then the distinct String

structures lifting the prescribed Spin structure on V are in one-to-one correspon-
dence with the elements in H3(M ;Z).

Another way to look at String structure is from the perspective of free loop
space LM , namely by looking at lifting of the structure group of the looped Spin
frame bundle from the loop group to its universal central extension [35]. Under
this point of view, the obstruction to the existence of the (weak) String structure is
the transgression of 1

2p1(V ), and if it vanishes then the distinct String structures
lifting the prescribed Spin structure on V are in one-to-one correspondence with
the elements of H2(LM ;Z). These two approaches to look at String structures are
equivalent when M is 2-connected. In general strong String is strictly stronger than
weak String.

More geometrically, Stolz and Teichner gave the profound link of the String
structure on M to the fusive Spin structure on LM [45]. This was further developed
by Waldorf [49,50] and Kottke-Melrose [20]. In [3], Bunke studied the Pfaffian line
bundle of a certain family of real Dirac operators and showed that String structures
give rise to trivialisations of that Pfaffian line bundle. See also the study of String
structures from the differential and the twisted point of view [40, 41].

LetM be a 4m dimensional compact oriented smooth manifold. Let {±2π
√
−1zj ,

1 ≤ j ≤ 2m} denote the formal Chern roots of TCM , the complexification of the
tangent vector bundle TM of M . Then the famous Witten genus of M can be
written as (cf. [26])

W (M) =

〈⎛⎝ 2m∏
j=1

zj
θ′(0, τ )

θ(zj , τ )

⎞⎠ , [M ]

〉
∈ Q[[q]],

with τ ∈ H, the upper half-plane, and q = eπ
√
−1τ . The Witten genus was first

introduced in [52] and can be viewed as the loop space analogue of the Â-genus. It

can be expressed as a q-deformed Â-genus as

W (M) =
〈
Â(TM)ch (Θ (TCM)) , [M ]

〉
,
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where

Θ(TCM) =
∞
⊗

n=1
Sq2n(T̃CM), with T̃CM = TCM − C4m,

is the Witten bundle defined in [52]. When the manifold M is Spin, according to the
Atiyah-Singer index theorem [2], the Witten genus can be expressed analytically as
the index of twisted Dirac operators, W (M) = ind(D⊗Θ(TCM)) ∈ Z[[q]], where D
is the Atiyah-Singer Spin Dirac operator on M (cf. [16]). Moreover, if M is String,
i.e. 1

2p1(TM) = 0, or even weaker, if M is Spin and the first rational Pontryagin
class of M vanishes, then W (M) is a modular form of weight 2k over SL(2,Z)
with integral Fourier expansion [53]. The homotopy theoretical refinements of the
Witten genus on String manifolds leads to the theory of tmf (topological modular
form) developed by Hopkins and Miller [17]. The String condition is the orientablity
condition for this generalized cohomology theory.

As one of the important applications, the Witten genus can be used as ob-
struction to continuous symmetry on manifolds. In [25], Liu discovered a pro-
found vanishing theorem for the Witten genus under the anomaly condition that
p1(M)S1 = n · π∗u2, where p1(M)S1 is the equivariant first Pontrjagin class,
π : M ×S1 ES1 → BS1 is the projection from the Borel space to the classify-
ing space and u ∈ H2(BS1,Z) is a generator and n is an integer. Dessai [8] showed
that when the S1-action is induced from an S3-action and the manifold is String,
this anomaly condition holds. Liu’s vanishing theorem has been generalized in
[27–30, 32] for the family case, in [31] for the foliation case and recently in [12] for
proper actions of non-compact Lie groups on non-compact manifolds.

Spinc structure is the complex analogue of Spin structure. It is known that
there exists a Spin structure on a vector bundle V over M if and only if its second
Stiefel-Whitney class w2(V ) = 0. In contrast, if w2(V ) is only assumed to be trivial
after applying the Bockstein, or equivalently, w2(V ) is the mod 2 reduction of the
first Chern class c1(ξ) of some complex line bundle ξ over M , then the product
FSO(n)×S(ξ) of the frame bundle and the circle bundle of ξ admits an equivariant
double covering PSpinc(V ) with the structural group Spinc(n). By definition, this
specifies a Spinc-structure on V associated to ξ, and we may often refer to the Spinc

bundle V as the pair (V, ξ), or more explicitly the triple (V, ξ, c1(ξ)). Furthermore,
if such Spinc structure exists on V , then the distinct Spinc structures, with the
determinant line bundle ξ, lifting the prescribed oriented structure on V are in one-
to-one correspondence with the elements in H1(M ;Z/2). An excellent introduction
to the structural and index theoretical aspects of Spinc structures can be found in
Appendix D of the famous book of Lawson-Michelsohn [23].

In this paper, we study Stringc structures, which can be viewed as higher versions
of Spinc structures and the complex analogue of String structures. There are inter-
esting investigations of generalised String structures in the literature. For instance,
in [6] Chen-Han-Zhang studied two particular Stringc structures from geometric
point of view and in [42] Sati-Schreiber-Stasheff studied twisted String structures
with physical applications. Here, we study Stringc structures from the perspectives
of algebraic topology, including their definitions and geometric explanations, the
explicit construction of Stringc groups as well as the obstructions to and classi-
fication of Stringc structures. Parallel to the Witten genus for String manifolds,
we also construct generalized Witten genera corresponding to Stringc conditions of
various levels and obtain their vanishing theorem under the Stringc conditions and
give some applications.
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1.2. Stringc structures. As in the String case, Stringc structures can be under-
stood from the perspective of the Whitehead tower. This is studied in Section 3.
We find that one of the significant differences for this complex situation is that
there are infinitely many levels of Stringc-structures indexed by the infinite cyclic
group Z. Indeed, by analysing twisted embeddings of Spinc groups into large Spin
groups, we can define a Z-family of topological groups Stringck(n). In particular,
when k < 0, Stringck(n) is a group extension of Spinc(n) by a suitable group model
of K(Z, 2) (Section 3). In the famous paper [44] of Stolz-Teichner, they showed a
model of String as a group extension of Spin by a projective unitary group PU(A)
of a von Neumann algebra A, a model of K(Z, 2). For our Stringc groups of level
k < 0, we have the extensions of topological groups

(1) {1} → PU(A) → Stringck(n) → Spinc(n) → {1}.
Indeed every model of String group can induce a group model of Stringc group of
negative level. In contrast, when k ≥ 0, the topological group Stringck(n) can be
only defined as a homotopy group extension of Spinc(n), in the sense that there
exists a homotopy fibration

(2) K(Z, 3) � BK(Z, 2) → BStringck(n) → BSpinc(n).

Notice that when k < 0, (2) can obtained by simply applying the classifying functor
B to the group extension (1).

Then we use the classifying spaces BStringck(n) to define Stringc-structures. We
call a Spinc bundle (V, ξ) strong Stringc of level 2k + 1 for some k ∈ Z, if there is
a lift

BStringck(n)

��
M

g′
��

���
�

�
�

�
BSpinc(n),

where g′ is the classifying map of PSpinc(V ). We will show that under our con-
struction of the Stringck group, the obstruction to the lift is

q1(V, ξ)− kc1(ξ)
2 =

p1(V )− (2k + 1)c1(ξ)
2

2
∈ H4(M ;Z),

where q1(V, ξ) =
p1(V )−c21(ξ)

2 is known as the first Spinc class of (V, ξ) ([11]; cf. [47]).
Another significant difference for this complex situation is that the determinant

line bundle ξ of the underlying Spinc structure plays a prominent role. Actually, if

this obstruction class vanishes then the stable Spin bundle V ⊕ ξ
⊕(−2k−1)
R is String

and, moreover, we will show that the distinct Stringc structures on (V, ξ) are in
one-to-one correspondence with the elements in the image of

ρ∗ : H3(M ;Z) → H3(S(ξ);Z),

where ρ : S(ξ) → M is the projection onto M from the circle bundle S(ξ) of ξR, the
underlying rank 2 real vector bundle of ξ. With mild restrictions, ρ∗ is surjective
or injective and then the Stringc-structures are classified by the third cohomology
H3(S(ξ);Z) or H3(M ;Z).

The Stringc-structures can be also understood from the perspective of free loop
spaces. This is studied explicitly in Section 4. Recall that there is the canonical
fibration p : LM → M defined by p(λ) = λ(1) for any loop λ ∈ LM . In particular,
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any characteristic class of M can be pulled back to LM , and we may use same
notations for them by abuse of notation. With this in mind, we call a Spinc bundle
(V, ξ) weak Stringc of level 2k + 1 for some k ∈ Z, if the determinant obstruction
class

μ1(V, ξ)− (2k + 1)s1(Lξ)c1(ξ) ∈ H3(LM ;Z)

vanishes, where μ1(V, ξ) and s1(Lξ) are transgressed from q1(V, ξ) =
p1(V )−c21(ξ)

2
and c1(ξ) respectively. The weak Stringc condition can be also understood in terms
of liftings of structural groups of looped principal bundles. Actually, when k < 0,
a Spinc bundle V is weak Stringc of level 2k + 1 if and only if the structural group
LSpinc(n) of the loop principal bundle LPSpinc(V ) over LM can be lifted to the

group LŜpinc
k(n), defined by the central extension of LSpinc(n) by U(1) of level k

(3) {1} → U(1) → LŜpinc
k(n) → LSpinc(n) → {1},

where the level here arises from the way of embedding Spinc(n) into large Spin
group. In contrast, when k ≥ 0 we do not have such description of weak Stringc

structures by lifting of structural groups as nice as (3) . Nevertheless, similar to
(2), under this situation we have a homotopy group extension of level k

(4) K(Z, 2) � BU(1) → BLŜpinc
k(n) → BLSpinc(n),

for each k ≥ 0. Moreover, for any k ∈ Z, V admits a weak Stringc structure of level
2k + 1 if and only if there is a lift

BLŜpinc
k(n)

��
LM

Lg′
��

���
�

�
�

�
BLSpinc(n).

As in the case of String structures, this description via loop spaces in general
is weaker than the one via classifying spaces BSpinc(n), though in nice cases they
are equivalent. For the aspect of counting structures, the distinct weak Stringc

structures on (V, ξ) are in one-to-one correspondence with the elements in the image
of

(Lρ)∗ : H2(LM ;Z) → H2(LS(ξ);Z),

where Lρ : LS(ξ) → LM is the looping of ρ. In good situation, (Lρ)∗ can be surjec-
tive and then the weak Stringc-structures are classified by the second cohomology
H2(LS(ξ);Z). In particular, we see the role of the determinant line bundle in the
loop spaces approach as well.

In Section 5, to compare the two notions of Stringc structures, we will show that
the distinct strong Stringc-structures in the non-loop world can be transgressed to
their weak counterparts in the loop world via the transgression diagram

H3(M)

ν

��

ρ∗
�� H3(S(ξ))

ν

��
H2(LM)

(Lρ)∗�� H2(LS(ξ)).

Nevertheless, there are possibly strictly weaker Stringc-structures than the strong
ones.
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Since the Stringc structures can be understood from the String structures of the
vector bundle plus several copies of the determinant line bundle or its complement,
the fusive aspect of Stringc structures can be carried out by using the corresponding
descriptions of String structures in terms of fusive structures. Indeed, there are
notions of fusion (fusive loop) Spinc structures of various negative levels on the
loop space LM in the sense of Waldorf [50] or Kottke-Melrose [20]. Furthermore
the transgression of the structures discussed above factors through the enhanced
transgression isomorphism of Kottke-Melrose [21] (see Subsection 5.2). Hence, one
may view the fusion (fusive loop) Spinc structures as weak Stringc structures with
additional fusive conditions (see Subsection 5.2 for details).

In a related paper [42], Sati-Schreiber-Stasheff studied the twisted String struc-
tures for Spin manifolds as well as their physical applications. Our paper studies
Stringc structures for Spinc manifolds by looking at the Stringc and LSpinc groups,
as well as their classifying spaces from the perspective of algebraic topology.

1.3. Generalized Witten genera and vanishing theorem. Parallel to the
Witten genus for String manifolds, we can construct generalized Witten genera
W c

2k+1;�a,�b
(M) for Stringc manifolds of level 2k+1 > 0 indexed by two integral vec-

tors 	a,	b under the condition (6.1), or (6.2) depending on the dimension of M . Such
kind of invariants were constructed in [6] for the first time. In this paper, we enrich
them to correspond to Stringc manifolds of various levels. It is worthwhile to note
that W c

2k+1;�a,�b
(M) are more flexible due to the freedom of the double vector-valued

indices. As application, we obtain Liu’s type vanishing theorem for W c
2k+1;�a,�b

(M)

as follows.
In the following, we always assume G is a simply connected compact Lie group.

If M is level 2k + 1 Stringc, then rationally p1(M)− (2k + 1)c1(ξ)
2 = 0. Suppose

G acts smoothly on M and the action lifts to the Spinc structure (and therefore
has a lift to the determinant line bundle ξ). Since G is simply connected, for
G-equivariant characteristic classes, we must have

(5) p1(M)G − (2k + 1)c1(ξ)
2
G = α · π∗q,

for some α ∈ Z, where π : M ×G EG → BG is the projection of the Borel fibre
bundle, and q ∈ H4(BG) is the canonical generator corresponding to the generator
u2 ∈ H4(BS1) (see Section 6 for details). We call the G-action positive on the level
2k + 1 Stringc manifold M if α > 0.

The following is a motivating example for the positivity.

Example 1. On CP 2n, consider the stable almost complex structure J such that

TCP 2n ⊕ R2 ∼= O(1)⊕ · · · ⊕ O(1)⊕O(−1)⊕ · · · ⊕ O(−1),

where O(1) is the canonical line bundle and O(−1) is its dual and in the above de-
composition, there are n+1 many O(1) and n many O(−1). It is clear that the de-
terminant line bundle of the Spinc structure induced by J isO(1) and c1(CP 2n, J) =
x ∈ H2(CP 2n;Z), the generator. As p1(CP 2n)− (2n+ 1)c1(CP 2n, J)2 = 0, we see
that it is level 2n+ 1 Stringc.

The linear action of SU(2n+1) on CP 2n obviously preserves J . Since SU(2n+1)
is simply connected, for SU(2n+ 1)-equivariant characteristic classes, we have

(6) p1(CP
2n)SU(2n+1) − (2n+ 1)c1(O(1))2SU(2n+1) = α · π∗q,
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where q ∈ H4(BSU(2n+ 1)) is the generator corresponding to the generator u2 ∈
H4(BS1). We claim that α = 1 and in particular the SU(2n + 1)-linear action is
positive.

Actually consider the embedding of the circle group S1 into SU(2n+ 1) defined
by

f : S1 → SU(2n+ 1), λ →

⎡⎢⎣ λa0

. . .

λa2n

⎤⎥⎦ ,

such that a0, a1, · · · a2n ∈ Z are distinct. Clearly
∑2n

i=0 ai = 0. Then S1 acts on
CP 2n through the linear action of SU(2n+ 1) in the following manner

λ[z0, z1, · · · , z2n] = [λa0z0, λ
a1z1, · · · , λa2nz2n].

Since ai’s are distinct from each other, we see that this action has 2n + 1 fixed
points

[1, 0, · · · , 0], [0, 1, 0, · · · , 0], · · · , [0, 0, · · · , 1].
The tangent space of the first fixed point has weights a1 − a0, a2 − a0, · · · , a2n − a0
and O(1) restricted at the first fixed point has weight a0. Then when restricted at
the first fixed point, we have

p1(CP
2n)S1 − (2n+ 1)c1(O(1))2S1

=[(a1 − a0)
2 + (a2 − a0)

2 + · · ·+ (a2n − a0)
2 − (2n+ 1)a20]π

∗u2

=

(
2n∑
i=0

a2i

)
π∗u2.

(7)

Indeed, similar computations imply that when restricted to any fixed point we
always have

(8) p1(CP
2n)S1 − (2n+ 1)c1(O(1))2S1 =

(
2n∑
i=0

a2i

)
π∗u2.

However it is also clear that for Bf : BS1 → BSU(2n + 1), we have (Bf)∗(q) =(∑2n
i=0 a

2
i

)
u2 and then by the naturality of equivariant characteristic classes and

(6)

(9) p1(CP
2n)S1 − (2n+ 1)c1(O(1))2S1 =

(
2n∑
i=0

a2i

)
· α · π∗u2.

Hence from (8) and (9), we see that α = 1 > 0. So this action is positive.

Remark 2.

(i) In [9], it has been shown that if G contains a Pin(2) and the induced action
of Pin(2) from that of G on M has a fixed point, then the G-action must be
positive. This is based on the fact if η is a Pin(2)-equivariant line bundle,
then the restriction of the Pin(2)-representation to S1 is trivial on the fibre
of η over the Pin(2)-fixed points.

(ii) In our example, the S1 action on O(1) has nonzero weights on each fixed
point. However in [9], it has been shown that Pin(2) actions on CP 2n must
have fixed points. This shows that the circle Im(f) is not contained in any
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Pin(2) subgroup of SU(2n + 1). Actually, the positivity seen from this
circle action does not come from a Pin(2) action.

We have the following Liu’s type vanishing theorem.

Theorem 3 (Theorem 6.2). Let M be a connected compact level 2k + 1 Stringc

manifold with 2k + 1 > 0. If M admits an effective action of G that lifts to the

underlying Spinc structure and is positive, then W c
2k+1;�a,�b

(M) = 0 for all the (	a,	b)

satisfying condition (6.1) or (6.2).

Theorem 3 can be applied to stable almost complex manifolds. Suppose (M,J) is
a compact stable almost complex manifold. ThenM has a canonical Spinc structure
determined by J . If G acts smoothly on M and preserves the stable almost complex
structure J , then the action of G can be lifted to the Spinc structure and the
determinant line bundle ξ. Applying the above vanishing theorem, we have

Theorem 4. Let (M,J) be a connected compact stable almost complex manifold,
which is level 2k+1 Stringc, i.e., p1(TM) = (2k+1)c21(J) and suppose 2k+1 > 0.
If M admits a positive effective action of G preserving J , then W c

2k+1;�a,�b
(M) = 0

for all the (	a,	b) satisfying condition (6.1) or (6.2).

This gives an interesting obstruction to simply connected compact Lie group ac-
tion preserving stable almost complex structure (Theorem 6.4 is stated and proved
in a more general setting).

Corollary 5 (Theorem 6.4). Let (M2n, J) be a compact 2n-dimensional stable
almost complex manifold. Suppose J gives a Stringc structure of level 2k + 1, i.e.,
p1(TM) = (2k + 1)c21(J). Then if

• 2k − n ≥ 18, and
• cn1 (J) �= 0 rationally,

then M does not admit positive effective action of a simply connected compact Lie
group preserving J .

The vanishing result and the proof in Theorem 6.4 can also be applied to study
Lie group actions on homotopy complex projective spaces. The Petrie’s conjecture
[39] states that if S1 acts smoothly and non-trivially on the homotopy projective
space X2n, then the total Pontryagin class p(X2n) of X2n must agree with that of
the standard CPn. The conjecture was proved particularly for X2n with n ≤ 4.
Furthermore, Hatorri [14] proved the conjecture when X2n admits an S1 invariant
stable almost complex structure with c1 = (n + 1)x, where x ∈ H2(X,Z) is the
generator. He also showed that when c1 = k0x with |k0| > n + 1, X2n admits
no S1 action preserving J . For the other variations of Petrie’s conjecture, Dessai
and Wilking [10] proved that the total Pontryagin class p(X2n) is standard if X2n

admits an effective torus action of large rank. On the other hand, by applying his
Spinc rigidity theorem as the main tool, Dessai [9] proved the following result for
S3 actions on homotopy complex projective spaces

Theorem 6 (Dessai). Let X be a closed smooth manifold homotopic to CP 2n. If
p1(X) > (2n+ 1)x2, then X does not support a nontrivial S3 action.

In Section 6.2, we will use the vanishing result in Theorem 6.4 to give a proof of
the above theorem. We would like to point out that our vanishing theorem for the
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generalized Witten genus is different from the vanishing theorem in [9]. Actually
the modular invariants we construct in this paper are level 1 modular forms, while
the modular invariants in [9] are level 2 modular forms.

1.4. Organization of the paper. The paper is organized as follows. In Section 2,
we first introduce the basic information around Spinc groups including cohomology
of related spaces in low dimensions, and then compute the free suspension (trans-
gression) of BSpinc which is the key to link the strong and weak Stringc structures.
In Section 3 and Section 4, we establish the basic theory of Stringc structures in
the strong and weak sense respectively, including their definitions, the construction
of Stringc groups, the geometric explanations and their structural theorems. We
then study their relations in Section 5 with discussions on fusive Spinc structures
on loop space. In Section 6, we construct generalized Witten genus W c

2k+1;�a,�b
(M)

for Stringc manifolds of level 2k + 1 and prove Liu’s type vanishing theorem for
them with some applications. We add four appendices for reference. Appendix A,
B, and C, are devoted to various homotopy techniques used in this paper including
fibration diagram techniques, cohomology suspension and transgression, and the
Blakers-Massey type theorems. These materials, though some of which may be not
included in standard textbooks of algebraic topology, are well known to homotopy
theorists. We add them here mainly for the readers and experts in other fields,
especially for geometers and mathematical physicists. The final section, Appendix
D, provides necessary number theoretical preliminaries for defining and computing
the generalized Witten genera in Section 6.

Conventions.

• We always use � to denote homotopy equivalence.
• In this paper, the manifold M under consideration is always assumed to be
connected.

• Throughout the paper, H∗(X) is used to denote the singular cohomology
H∗(X;Z).

• In order to keep the consistency with our terminologies of strong and weak
Stringc, we may use the term strong String to mean the usual String,
i.e., p1

2 = 0, while use the term weak String to mean the Spin structure
on loop manifolds in the sense of Waldorf [50], which was also known as
String structure on loop manifold by the earlier work of Killingback [18]
and McLaughlin [35].

• In this paper, the notations for characteristic classes of vector bundles fol-
low the usual conventions except for those of various universal bundles in
Section 2, where the subscript i of a universal class xi represents its coho-
mological degree.

2. Some aspects of algebraic topology around Spin
c

Throughout this section, we may use same notation for both a map and its
homotopy class, and add subscripts to cohomology classes to indicate their degrees
unless otherwise stated. For our purpose, we only need cohomology of spaces under
consideration up to dimension 4, and the cohomology Hi(−;Z) here should be
understood as reduced cohomology with one Z-summand omitted in H0.
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2.1. Spinc(n) and BSpinc(n). By definition, the topological group Spinc(n) is
given by

(2.1) Spinc(n) = (Spin(n)× S1)/{±1},
where Spin(n) ∩ S1 = {±1}. Alternatively, it is the central extension of SO(n) by
the circle group S1

(2.2) {1} → S1 ι→ Spinc(n)
p→ SO(n) → {1}.

From (2.1) we have a principal bundle

(2.3) Spin(n)
i→ Spinc(n)

π→ S1,

where i(x) = [x, 1] and π([x, z]) = z2 for any (x, z) ∈ Spin(n)× S1. It is then easy
to see that π1(Spin

c(n)) ∼= Z, the generator s1 of which serves as a right homotopy
inverse of π. Hence the composition map

Spin(n)× S1 i×s1→ Spinc(n)× Spinc(n)
μ→ Spinc(n)

is a weak equivalence, that is, induces isomorphisms of homotopy groups, where μ
is the group multiplication of Spinc(n). Then by the Whitehead theorem it follows
that (2.3) splits as spaces

(2.4) Spinc(n) � Spin(n)× S1.

Since Hi≤4(Spin(n);Z) ∼= Z{μ3} with the degree |μ3| = 3, we have

(2.5) Hi≤4(Spinc(n))) ∼= Z{s1} ⊕ Z{μ3} ⊕ Z{s1μ3},
where xy denotes the cup product of x and y.

For classifying spaces, it is well known that with the help of Serre spectral se-
quence, the cohomological transgression (see Appendix B) τ connects the cohomol-
ogy of BSpin(n) with that of Spin(n). In particular,

τ : H3(Spin(n)) → H4(BSpin(n))

is an isomorphism such that τ (μ3) = q4 is a typical generator of H4(BSpin(n)).
Similarly, from (2.5) it is easy to show that

(2.6) H≤4(BSpinc(n)) ∼= Z{t2} ⊕ Z{q4} ⊕ Z{t22},
such that τ (s1) = t2.

2.2. LSpinc(n) and BLSpinc(n). For any pointed space X, we have the canonical
fibration

(2.7) ΩX
i→ LX

p→ X,

where LX = map(S1, X) is the free loop space of X, and p(λ) = λ(1). It is clear
that there is a cross section s : X → LX defined by constant loops such that
p ◦ s = idX . It follows that whenever X is an H-space, we have

(2.8) LX � ΩX ×X

as spaces, while LX inherits an H-structure naturally from that of X by point-wise
multiplications. When X = G is a topological group, LG is the so-called loop group,
and

(2.9) LG ∼= ΩG×G.
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Moreover, if G (X) is commutative (homotopically commutative), then LG (LX)
splits as groups (H-spaces) in (2.9) ((2.8)).

The classifying space of LG satisfies

(2.10) BLG � LBG,

and we have a fibration

(2.11) G → BLG
p→ BG,

which is fibrewise homotopy equivalent to the Borel fibration

(2.12) G → G×G EG → BG

induced by the adjoint action of G.
We are now interested in LSpinc(n). First by applying the free loop functor to

(2.3) we obtain the fibration

(2.13) LSpin(n) → LSpinc(n) → LS1,

where LS1 ∼= ΩS1 × S1 � Z × S1 as groups. Since there is a one-to-one corre-
spondence between the components of ΩSpinc(n) and of ΩS1 (π0(ΩSpin

c(n)) ∼=
π0(ΩS

1) ∼= Z), we see that

(2.14) ΩSpin(n) � ΩkSpin
c(n),

where ΩkSpin
c(n) denotes the k-th component of ΩSpinc(n) indexed by k ∈ Z ∼=

π0(ΩSpin
c(n)). It should be noticed that Ω0Spin

c(n) is a normal subgroup of
ΩSpinc(n), and the splitting (2.14) is an A∞-equivalence in this case (that is, a
group isomorphism up to homotopy). Hence the k-th component of LSpinc(n)

LkSpin
c(n) � ΩkSpin

c(n)× Spinc(n)

� ΩSpin(n)× Spinc(n)

� ΩSpin(n)× Spin(n)× S1,

and

(2.15) H∗(LkSpin
c(n)) ∼= H∗(LSpin(n))⊗H∗(S1).

In particular,

(2.16) Hi≤4(LkSpin
c(n))) ∼= Z≤4[s1, x2, μ3],

where Zi≤m[−] denotes graded truncated polynomial ring consisting of elements of
degree not greater than m, the generator x2 ∈ H2(ΩSpin(n)) satisfies τ (x2) = μ3.

L0Spin
c(n) is also a normal subgroup of LSpinc(n), and we have the group

extension

{1} → L0Spin
c(n) → LSpinc(n) → Z → {1}.

Then we see that BL0Spin
c(n) is the universal covering of BLSpinc(n)

(2.17) Z → BL0Spin
c(n) → BLSpinc(n).

Moreover, using (2.13) we have

(2.18) LSpin(n) → L0Spin
c(n) → S1,

which implies that BLSpin(n) is the 2-connected cover of BL0Spin
c(n), and then

of BLSpinc(n)

(2.19) S1 → BLSpin(n) → BL0Spin
c(n).
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In conclusion, we have the first two stages of the Whitehead tower of BLSpinc(n)

(2.20) · · · → BLSpin(n) → BL0Spin
c(n) → BLSpinc(n).

Now the cohomology of BL0Spin
c(n) can be computed via the Serre spectral

sequence of (2.19), while the cohomology of BLSpin(n) and BLSpinc(n) can be
calculated via that of the loop space fibration (2.11). Here we need to use the
fact that p∗ : H∗(BG) → H∗(BLG) is an injection due to the existence of cross
section of (2.11), which allows us to handle the E2-terms in low degrees easily. We
summarise the results in the next subsection.

2.3. Cohomology in low dimensions. Table 1 summarises the cohomology of
dimensions up to 4 for groups and their classifying spaces around Spinc based on
the discussion in the last two subsections.

Table 1. Cohomology in low dimensions

Hi=?(−) 1 2 3 4
Spin(n) 0 0 Z{μ3} 0
ΩSpin(n) 0 Z{x2} 0 Z{x2

2}
LSpin(n) 0 Z{x2} Z{μ3} Z{x2

2}
Spinc(n) Z{s1} 0 Z{μ3} Z{s1μ3}

LkSpin
c(n) Z{s1} Z{x2} Z{s1x2} ⊕ Z{μ3} Z{s1μ3} ⊕ Z{x2

2}
BSpin(n) 0 0 0 Z{q4}
BSpinc(n) 0 Z{t2} 0 Z{t22} ⊕ Z{q4}
BLSpin(n) 0 0 Z{μ3} Z{q4}
BL0Spin

c(n) 0 Z{t2} Z{μ3} Z{t22} ⊕ Z{q4}
BLSpinc(n) Z{s1} Z{t2} Z{s1t2} ⊕ Z{μ3} Z{t22} ⊕ Z{s1μ3} ⊕ Z{q4}

In the table, we indicate the generators of each group by abuse of notation, which
indeed show their connections through computations and ring structures, and any
two generators corresponding to each other via some map are denoted by same
letter. For later use, let us also recall that we have nontrivial transgressions (for
the discussions on transgressions, see Appendix B)

(2.21) τ (s1) = t2, τ (x2) = μ3, τ (μ3) = q4.

Notice that in Table 1, we do not consider SO(n) and its relatives. Indeed, there
are relations among the generators of classifying spaces. Recall that

(2.22) H∗(BSO(n);Q) ∼= Q[p1, p2, . . .],

where pi is the i-th universal Pontryagin class. Then by abuse of notation we have
the following relations of universal characteristic classes ([11])

(2.23) 2q4 = p1 ∈ H∗(BSpin(n);Z), 2q4 + t22 = p1 ∈ H∗(BSpinc(n);Z).

2.4. Evaluation map and free suspension. Let X be a pointed space. We
define the free evaluation map

(2.24) ev : S1 × LX → X

by ev((t, λ)) = λ(1). The free suspension

(2.25) ν : Hn+1(X) → Hn(LX)
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is then determined by the formula ev∗(x) = 1 ⊗ p∗(x) + s1 ⊗ ν(x) for any x ∈
Hn+1(X) (note that it is usually called transgression by geometers, but we prefer
the term free suspension here since it is naturally related to the cohomology sus-
pension, and also the term transgression is already used for a particular type of
differential in spectral sequences which is somehow the partial inverse of the coho-
mology suspension; see the discussions in the next paragraph and Appendix B for
details).

It is not hard to check that the free suspension satisfies the following properties
(the map i and p are defined in (2.7); see Section 3 of [22] or Section 2 of [19]):

(1) i∗ ◦ ν = σ∗ : Hn+1(X) → Hn(ΩX);
(2) ν(xy) = ν(x)p∗(y) + (−1)|x|ν(y)p∗(x), for any x and y ∈ Hn+1(X),

where σ∗ is the classic cohomology suspension (for details see Appendix B). The
Property (2) means that ν is a module derivation under p∗ (but since p∗ is always
injective, we may omit it and simply write ν(x)y for ν(x)p∗(y), etc.). It is helpful
to mention that the transgression τ is a partial inverse of σ∗, and in good cases they
are isomorphisms (again refer to Appendix B). In particular, for the transgressions
in (2.21) we have

(2.26) σ∗(t2) = s1, σ∗(μ3) = x2, σ∗(q4) = μ3.

Let us now study the free suspension for X = BSpinc(n). We then form a
commutative diagram of evaluation maps

S1 × LBSpin(n)
ev ��

��

BSpin(n)

��
S1 × LBSpinc(n)

ev ��

��

BSpinc(n)

��
S1 × LBS1 ev �� BS1,

(2.27)

which implies the diagram

H4(BSpin(n))
ν �� H3(BLSpin(n))

H4(BSpinc(n))
ν ��

��

H3(BLSpinc(n))

��

H4(BS1)
ν ��

��

H3(BLS1)

��
(2.28)

commutes. The morphisms ν for BSpin(n) and BS1 in Diagram 2.28 are easy.
Indeed, since

i∗ ◦ ν(t2) = σ∗(t2) = s1,

and i∗ : H1(LBS1) → H1(ΩBS1) is an isomorphism, we see that

ν(t2) = s1.

Similarly, since

i∗ ◦ ν(q4) = σ∗(q4) = μ3,
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and i∗ : H3(LBSpin(n)) → H3(ΩBSpin(n)) is an isomorphism, we see that

ν(q4) = μ3.

Lemma 2.1. ν : H4(BSpinc(n);Z) → H3(BLSpinc(n);Z) satisfies

ν(q4) = μ3 − s1t2, ν(t22) = 2s1t2,

while the i-th component of the cohomology suspension

σ∗
i : H3(BLSpinc(n);Z) → H2(LiSpin

c(n);Z)

satisfies

σ∗
i (μ3) = x2, σ∗

i (s1t2) = 0

for each i ∈ Z ∼= π1(LSpin
c(n)).

Proof. The computations of the value of σ∗
i are easy and will be omitted here. For

the free suspension, based on the previous calculations we have

(2.29) ν(t22) = 2s1t2, ν(q4) = μ3 + λs1t2,

for some λ ∈ Z by Property (2) of ν and the commutativity of Diagram 2.28. In
order to get the exact value of λ, we consider the homotopy commutative diagram
of fibrations

∗ ��

��

BSpin(n)

Bi

��

BSpin(n)

Bp

��
K(Z, 2)

Bι �� BSpinc(n)

Bπ

��

Bp �� BSO(n)

ω2

��
K(Z, 2)

2· �� K(Z, 2)
ρ2 �� K(Z/2, 2),

(2.30)

where 2· is a square map of H-spaces. By applying the functor L to the lower
part of Diagram 2.30 and composing with suspension, we can form a commutative
diagram

H4(BS1)

ν

��

H4(BSpinc(n))
(Bι)∗��

ν

��

H4(BSO(n))

ν

��

(Bp)∗��

H3(BLS1) H3(BLSpinc(n))
(BLι)∗�� H3(BLSO(n))

(BLp)∗��

H3(BLS1) H3(BLS1)
(BL2·)∗��

(BLπ)∗

��

H3(BLK(Z/2, 1))
(BLρ2)

∗
��

��
(2.31)

where (BL2·)∗ = 4·. Now we need to calculate the two sides of the following
equality:

(2.32) ((BLι)∗ ◦ ν)(q4) = (ν ◦ (Bι)∗)(q4).

For the left hand side of (2.32), (2.29) implies that

((BLι)∗ ◦ ν)(q4) = (BLι)∗(μ3) + λ(BLι)∗(s1t2).
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Recall that H3(SO(n)) ∼= Z{e3} such that τ (e3) = p1, and H3(Spinc(n)) ∼=
H3(Spin(n)) ∼= Z{μ3}. Then since τ (μ3) = q4 and 2q4 = p∗(p1) ∈ H4(BSpin(n))

p∗

←
H4(BSO(n)), by the naturality of τ we see that p∗(e3) = 2μ3 and 2(BLι)∗(μ3) =
(BLι)∗(BLp)∗(e3) = 0. It follows that (BLι)∗(μ3) = 0. Also, (BLι)∗(s1t2) =
(BLι)∗(BLπ)∗(s1t2) = 4s1t2. Hence

(2.33) t2((BLι)∗ ◦ ν)(q4) = 4λs1t2.

For the right hand side of (2.32), we know that (Bp)∗(p1) = 2q4+ t22 by (2.23), and
it follows that

0 = (Bι)∗(Bp)∗(p1) = (Bι)∗(2q4 + t22) = 2(Bι)∗(q4) + 4t22.

Hence, (Bι)∗(q4) = −2t22 and by (2.29)

(2.34) (ν ◦ (Bι)∗)(q4) = −2ν(t22) = −4s1t2.

Combining (2.32), (2.33) and (2.34) together, we see that λ = −1. This proves the
lemma for the value of ν. �

3. Strong String
c
-structures

Let V be an n-dimensional oriented vector bundle over a connected compact
oriented smooth manifold M . V is said to have a Spinc-structure if and only
if its second Stiefel-Whitney class ω2(V ) is in the image of the mod 2 reduction
homomorphism

ρ2 : H2(M ;Z) → H2(M ;Z/2).

Specifying such a structure is then equivalent to choosing a particular class c ∈
H2(M ;Z) such that ρ2(c) = ω2(V ), which determines and is determined by a
complex line bundle ξ with its associated circle bundle

(3.1) S1 → S(ξ) → M.

We may often refer to the Spinc bundle V as the pair (V, ξ), or more explicitly the
triple (V, ξ, c1(ξ)). Let FSO(V ) → M be the principal orthonormal frame bundle
of V with fibre SO(n). Then there exists a principal Spinc(n)-bundle

(3.2) Spinc(n)
i→ PSpinc(V )

π→ M,

defined as the fibrewise double cover of PSO(V ) × S(ξ) with classifying map g :
M → BSpinc(n).

Definition 3.1. Let V be an n-dimensional real Spinc-vector bundle over M with
the complex determinant line bundle ξ. For any k ∈ Z, V is said to be level 2k+ 1
strong Stringc if the characteristic class

p1(V )− (2k + 1)c2

2
= 0,

where p1(V ) is the first Pontryagin class of V and c = c1(ξ) is the first Chern class
of ξ.

In particular, a manifold M is said to be level 2k+1 strong Stringc if its tangent
bundle TM is level 2k + 1 strong Stringc.
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Let us look at the universal case and define BStringck(n) to be the homotopy
fibre of the map

(3.3)
p1 − (2k + 1)t22

2
: BSpinc(n) → K(Z, 4),

where p1 and t2 are the universal classes specified in Table 1 and Subsection 2.3
(and we will use them and other universal classes without further reference in many
places of the rest of the paper). At this moment, this is just a space with specified
notation. We want to construct BStringck(n) explicitly as the classifying space
of the (2k + 1)-level strong Stringc-structure, and then the bundle V would be a
strong Stringc-bundle of level 2k + 1 if the classifying map of the associated frame
Spinc(n)-bundle of V can be lifted to a map to BStringck serving as the classifying
map of the desired (2k + 1)-level Stringc-structure

BStringck(n)

��
M

g
��

���
�

�
�

�
BSpinc(n).

(3.4)

For this purpose, we need to show that BStringck(n) is really a classifying space of
some topological group Stringck(n) with suitable group model, which justifies our
choice of notation as well.

3.1. Construction of Stringc groups. Let us firstly consider the case when k <
0. The first step is to embed the group Spinc(n) into a larger Spin group Spin(n−
4k − 2) through the pullback of groups

Spinc(n)
λ2k+1 ��

ρ

��

Spin(n− 4k − 2)

p

��
SO(n)× S1

idSO(n)×Δ−2k−1�� SO(n)× S1 × · · · × S1︸ ︷︷ ︸
−2k−1

� � χ−2k−1 �� SO(n− 4k − 2),

(3.5)

where ρ([x, z]) = (p(x), z2) (p is the standard projection map; see (2.2)), Δ−2k−1

is the diagonal map, and

χ−2k−1(A, z1, . . . , z−2k−1) = diag(A, z1, . . . , z−2k−1)

is the standard embedding mapping any (n× n)-matrix A and (2× 2)-matrix zi to
be block diagonal matrix. Then we may use the group embedding of Diagram (3.5)
to define the group Stringck(n) as the pullback

Stringck(n)��

γ2k+1 ��

jk

��

String(n− 4k − 2)

j

��
Spinc(n)

λ2k+1 �� Spin(n− 4k − 2),

(3.6)

where j : String(n − 4k − 2) → Spin(n − 4k − 2) can be chosen as any group
extension by group model of K(Z, 2).
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So far we have defined Stringck(n) for any k < 0, the group structure of which
can be understood through that of String group. In particular, the group models
of String will induce group models of Stringc. Indeed, there is a topological group
model of String by Stolz and Teichner [44] in terms of group extension by a pro-
jective unitary group PU(A) as a model of K(Z, 2). On the other hand, Nikolaus,
Sachse and Wockel [38] constructed an infinite-dimensional Lie group model for
String. In either case, we obtain a real topological or smooth group Stringck(n) as
a group extension of Spinc(n).

In order to get similar definitions of Stringck(n) when k ≥ 0, we need to modify
our embeddings in Diagram (3.5). Recall that the stable special orthogonal group
SO = SO(∞) = limn SO(n) is an infinite loop space, and in particular there is an
A∞ map (i.e., a group homomorphism up to homotopy)

ν : SO → SO,

which is the homotopy inverse of the identity map (that is, represents the loop
element Ω[−1] of [−1] in the group [BSO,BSO]). Our aim is to construct the
following homotopy commutative diagram twisted by ν

Spinc(n)
λ2k+1 ��

ρ

��

Spin

p

��
SO(n)× S1 �

� idSO(n)×χ
�� SO(n)× SO

idSO(n)×ν
�� SO(n)× SO � � j �� SO,

(3.7)

such that λ2k+1 is a loop map from Spinc(n) to the stable group Spin; here j is
the standard embedding and χ is defined as the composition

S1 Δ2k+1−→ S1 × · · · × S1︸ ︷︷ ︸
2k+1

χ2k+1−→ SO(2k + 1) ↪→ SO.

For this we need to work on the level of classifying spaces. Denote the composition of
the bottom maps in Diagram (3.7) by φ2k+1. After applying the classifying functor
B, it is not hard to show that there exists a homotopy commutative diagram of
fibrations

BSpinc(n)
Bρ ��

Λ2k+1

��

BSO(n)×BS1
ω2×

¯
c2 ��

Bφ2k+1

��

K(Z/2, 2)

BSpin
Bp �� BSO

ω2 �� K(Z/2, 2),

(3.8)

where
¯
c2 := ρ2(t2) is the mod-2 reduction of t2 ∈ H2(BS1;Z), Λ2k+1 is any map

induced from the homotopy commutativity of the right square. Hence, we may let
λ2k+1 = ΩΛ2k+1, and in particular obtain Diagram (3.7).

Now since Spinc(n) is compact, λ2k+1 indeed maps it into some finite stage of
Spin as loop map, that is, for sufficient large m

λ2k+1 : Spinc(n) → Spin(m+ n+ 4k + 2).

Hence, as in Diagram (3.6) we may define HStringck(n) as the homotopy pullback
of λ2k+1 along j : String(m + n + 4k + 2) → Spin(m + n + 4k + 2) when k ≥ 0,
which is clearly independent of the choice of m. In particular, HStringck(n) is a
loop space since λ2k+1 is a loop map. Finally by passing from loops to Moore loops,
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there exists a topological group Stringck(n) serving as the group model of the loop
space HStringck(n).

To summarise, we have constructed Stringck(n) for any k ∈ Z. When k < 0,
Stringck(n) is a group extension of Spinc(n) by any suitable model of K(Z, 2),
and can be embedded to a large String group. However, when k ≥ 0, the group
Stringck(n) is constructed neither as a group extension of Spinc(n) nor as a group
directly related to String group. The reason is due to the lack of a self group
homomorphism ν′ of SO such that (Bν′)∗(p1) = −p1 for the first Pontryagin class.
Indeed, if such a self group homomorphism exists, its effect on the cohomology of the
maximal torus implies that t22 ∈ H4(BS1) will be sent to −t22 for some subgroup
S1 of SO. But it is clear that this cannot happen. Nevertheless, there are still
relations among the groups at the homotopical level when k ≥ 0. Informally we
may say Stringck(n) is a homotopy group extension of Spinc(n) by K(Z, 2), and a
homotopy subgroup of String as well. This just means that both relations are only
valid in the homotopy category. Since we only need to deal with classifying spaces
and maps among them, these descriptions of the groups Stringck(n) are sufficient
for our purpose in this paper.

3.2. Classifying spaces and counting strong Stringc structures. Let us
check that our constructions are the right choices for the defining obstructions
of Stringc structures. Applying the classifying functor B to Diagram (3.5), there is
particularly an SO(n− 4k − 2)-bundle over BSO(n)× BS1 with first Pontryagin
class p1 − (2k + 1)t22 presented by the bottom composition. Since by (2.23)

(Bρ)∗(p1 − (2k + 1)t22) = 2q4 − 2kt22,

and also p1 = 2q4 in H4(Spin(n+ 4k + 2)), we see that

(3.9) (Bλ2k+1)
∗(q4) = q4 − kt22.

Applying the classifying functor B to Diagram (3.6), by (3.9) we have the commu-
tative diagram

BSpinc(n)
Bλ2k+1��

p1−(2k+1)t22
2

����
���

���
���

��
BSpin(n− 4k − 2)

p1
2

��
K(Z, 4),

(3.10)

which justifies the definition of BStringck(n) by (3.3) for k < 0. The case when
k ≥ 0 can be treated similarly with the facts that (Bν)∗(p1) = −p1 and then p1 will
be pulled back to p1 − (2k+1)t22 ∈ H4(SO(n)×S1) along the bottom composition
in Diagram (3.7).

The process of constructing these groups also suggests geometric explanations
for the Stringc-structures. Let ξR be the underlying rank 2 real bundle of the
determinant line bundle ξ. For our Spinc-bundle V over M , let us consider the real

(n − 4k − 2)-bundle V ⊕ ξ
⊕(−2k−1)
R when k < 0. Then it is easy to calculate its

second Stiefel-Whitney class

ω2(V ⊕ ξ
⊕(−2k−1)
R ) = ω2(M)− (2k + 1)c1(ξ) mod 2 = 0,

where c1(ξ) is the first Chern class of ξ. In particular, the principal frame bundle

PSO(V ⊕ ξ
⊕(−2k−1)
R ) has a fibrewise two-sheeted covering P k

Spin(V, ξ), which is a
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Spin bundle

(3.11) Spin(n− 4k − 2)
i→ P k

Spin(V, ξ)
π→ M.

Then by Diagram (3.5) and our above calculations, there is a bundle embedding

Spinc(n)
i ��

��

λ2k+1

��

PSpinc(V )
��

Θ2k+1

��

π �� M
g �� BSpinc(n)

Bλ2k+1

��
Spin(n− 4k − 2)

i �� P k
Spin(V, ξ)

π �� M
h �� BSpin(n− 4k − 2).

(3.12)

When k ≥ 0, we may consider the stable vector bundle V ⊕ ξ
⊕(−2k−1)
R , and go

through the argument above with Diagram (3.7) to map the bundle PSpinc(V ) to
P k
Spin(V, ξ) similarly (while Θ2k+1 is only a map of principal homotopy fibrations).

Note that in this case the bundle P k
Spin(V, ξ) is of dimension (m + n + 4k + 2).

Recall that a Spin bundle E admits a strong String structure if p1(E)
2 = 0.

Theorem 3.2. Let V be an n-dimensional Spinc-vector bundle over M with a
complex determinant line bundle ξ. V admits a strong Stringc-structure if and
only if the stable Spin bundle associated with V ⊕ ξ⊕(−2k−1) admits a strong String
structure for some k ∈ Z.

Furthermore, if V is level 2k + 1 strong Stringc, i.e. the obstruction class
p1(V )−(2k+1)c1(ξ)

2

2 = 0, then the (2k + 1)-level Stringc-structures on V are in one-
to-one correspondence with the elements in the image of the morphism

ρ∗ : H3(M) → H3(S(ξ)),

where ρ : S(ξ) → M is the circle bundle of ξ.

Proof. We may consider the diagram

M

g

��

(2)

��
(1)

		
BStringck(n)

Bγ2k+1 ��

Bjk

��

BString

Bj

��
BSpinc(n)

Bλ2k+1 �� BSpin,

(3.13)

where the square is a homotopy pullback by (3.6) or (3.7). Then by the universal
property of homotopy pullback, the existence of a lifting at (1) in Diagram (3.13)
is equivalent to the existence of a lifting at (2). For the bundle V ⊕ ξ⊕(−2k−1), it is
easy to show that its first Pontryagin class is

p1(V ⊕ ξ
⊕(−2k−1)
R ) = p1(V )− (2k + 1)c1(ξ)

2

(notice that c1(ξ⊕ξ̄) = 0 and p1(ξ
⊕(−2k−1)
R ) = −(2k+1)c1(ξ)

2). Then by definition,

the Spin bundle associated to V ⊕ ξ⊕(−2k−1) admits a (strong) String structure if
and only if

p1(V )− (2k + 1)c1(ξ)
2

2
= 0.

This proves the first claim of the theorem.
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For the second claim of the theorem, we first prove that the different Stringc-
structures on V are classified by the image of

π∗ : H3(M) → H3(PSpinc(V )).

By Diagram (3.12) we can construct a commutative diagram

H3(M)
π∗

�� H3(PSpinc(V ))
i∗ �� H3(Spinc(n))

δ̃k �� H4(M)

H3(M)
π∗

�� Im Θ∗ i∗ ����

��

H3(Spinc(n))
δ̃k �� H4(M)

H3(M) �
� π∗

�� H3(P k
Spin(V, ξ))

i∗ ��

Θ∗

����

H4(BSpin) ∼= H3(Spin)
δ̃ ��

λ∗
2k+1

∼=

��

H4(M),

(3.14)

where δ̃k is defined by δ̃k(μ3) = q1(V ) − kc1(ξ)
2, and the third row is exact by

applying the dual Blakers-Massey theorem (Theorem C.3) to the lower right part
of Diagram (3.12)

P k
Spin(V, ξ)

π→ M
h→ BSpin(n− 4k − 2)

(notice that BSpin(n− 4k− 2) is 3-connected and P k
Spin(V, ξ) is connected). Here

q1(V ) = g∗(q4) : H
4(M) ← H4(BSpinc(n))

is the characteristic class defined by universal class q4. It is easy to see that the
second row of the diagram is exact (this gives a second proof for the first claim).
Notice that KerΘ∗ ⊆ H3(M) and the first morphism π∗ in the second row has
KerΘ∗ as its kernel. Hence the distinct Stringc structures on V are classified by

Keri∗ ∼= Imπ∗ ∼= H3(M)/KerΘ∗.

On the other hand, there is a bundle morphism

Spin(n) ��

��

PSpinc(V )
π �� S(ξ)

g̃ ��

ρ

��

BSpin(n)

��
Spinc(n) �� PSpinc(V )

π �� M
g �� BSpinc(n),

(3.15)

where the existence of lifting g̃ is due to the vanishing of the second Stiefel-Whitney
class of S(ξ). This diagram then induces a commutative diagram of cohomology
groups

0 = H2(Spin(n)) �� H3(S(ξ))
π∗

�� H3(PSpinc(V ))

H3(M)
π∗

��

ρ∗

��

H3(PSpinc(V )),

(3.16)

where the first row is exact again by Theorem C.3. Hence Imπ∗ ∼= Imρ∗ and the
proof of the theorem is completed. �

There are some cases when ρ∗ are surjective or injective.
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Corollary 3.3. Let (V, ξ) as in Theorem 3.2. Then

(1) if the cup product by c1(ξ)

∪c1(ξ) : H2(M ;Z) → H4(M ;Z)

is injective, then ρ∗ is surjective. In particular, the strong Stringc structures
of level 2k + 1 on V are in one-to-one correspondence with elements of
H3(S(ξ));

(2) if the fundamental group π1(M) is a torsion group (e.g., when M is simply
connected), then ρ∗ is injective. In particular, the strong Stringc structures
of level 2k + 1 on V are in one-to-one correspondence with elements of
H3(M).

Proof. Let us look at the Gysin sequence of the line bundle ξ

· · · → H1(M)
∪c1(ξ)→ H3(M)

ρ∗

→ H3(S(ξ))
δ→ H2(M)

∪c1(ξ)→ H4(M) → · · · .
For Case (1), in the exact sequence the second cup product ∪c1(ξ) is injective,
which implies that δ is trivial. Hence ρ∗ is surjective, and by Theorem 3.2 the
Stringc structures on V are classified by Im ρ∗ = H3(S(ξ)).

For Case (2), the condition on the fundamental group of M is equivalent to that
H1(M) = 0. Then from the Gysin sequence above we see that ρ∗ is injective,
and again by Theorem 3.2 the Stringc structures on V are classified by Im ρ∗ ∼=
H3(M). �

4. Weak String
c
-structures

Motivated by the way that (weak) String structures can be studied in terms
of Spin structures on loop spaces, we define Stringc-structures in terms of Spinc-
structures on loop spaces, which in general are weaker than the notion of Stringc

defined in Section 3.
Let (V, ξ) be the Spinc-bundle defined in Section 3. By applying free loop functor

to (3.2), we get a principal fibre bundle

(4.1) LSpinc(n)
Li→ LPSpinc(V )

Lπ→ LM

classified by Lg : LM → BLSpinc(n). In particular, we may define the LSpinc

characteristic classes of M as the pullbacks of the elements of H∗(BLSpinc(n)) in
H∗(LM) through Lg. In low degrees, let us denote by s = s(Lξ), c = c1(ξ), μ1(V ) =
μ1(V, ξ), q1(V ) = q1(V, ξ) and p1(V ) the LSpinc-classes of LV corresponding to
the universal classes s1, t2, μ3, q4 and p1 respectively. We then notice that c1(ξ)
and p1(V ) correspond to usual Euler class of ξ and the first Pontryagin class of
V respectively via the projection p in the loop fibration (2.7), which justifies our
notations.

Throughout the remaining part of this section, let us assume x2 ∈ H2(LSpinc(n))
is always chosen from the 0-th component H2(L0Spin

c(n)). Recall that the coho-
mology suspension σ∗ is trivial on decomposable elements and σ∗(μ3) = x2 (Lemma
2.1; also see Appendix B).

Definition 4.1. Let V be an n-dimensional Spinc-vector bundle over a manifold
M with a complex determinant line bundle ξ. V is said to be level 2k + 1 weak
Stringc if the obstruction class

δk(x2) = μ1(V )− (2k + 1)sc
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vanishes, where δk is the composition

(4.2) H2(LSpinc(n);Z)
sk→ H3(BLSpinc(n);Z)

(Lg)∗→ H3(LM ;Z),

and sk is a section of cohomology suspension

σ∗ : H3(BLSpinc(n);Z) → H2(LSpinc(n);Z)

defined by sk(x2) = μ3 − (2k + 1)s1t2 for each integer k ∈ Z.

This definition of weak Stringc-structures also has geometric explanations. By
using the group and bundle embeddings (e.g., Diagram (3.5), Diagram (3.12)) con-
structed in Section 3, we want to construct a commutative diagram (when k < 0)

H2(L0Spin
c(n))

sk �� H3(BLSpinc(n))
(Lg)∗ �� H3(LM)

H2(LSpin(n− 4k − 2))
τ ��

∼= (Lλ2k+1)
∗

��

H3(BLSpin(n− 4k − 2))

(BLλ2k+1)
∗

��

(Lh)∗�� H3(LM).

(4.3)

For this purpose, firstly apply free loop functor to Diagram (3.5), and denote φ =
χ2k+1 ◦ (idSO(n) ×Δ−2k−1). Recall that (3.9)

(Bφ)∗(p1) = p1 − (2k + 1)t22, (Bλ2k+1)
∗(q4) = q4 − kt22.

Then by the naturality of the free suspension ν and Lemma 2.1, the homomorphism

(BLλ2k+1)
∗ : H3(BLSpin(n+ 4k + 2)) → H3(BLSpinc(n))

satisfies

(4.4) (BLλ2k+1)
∗(μ3) = μ3 − (2k + 1)s1t2 = sk(x2).

Similarly, by applying cohomology suspensions for the both sides of (4.4), we obtain

(4.5) (Lλ2k+1)
∗(x2) = x2.

Combining (4.4), (4.5) and the fact τ (x2) = μ3 for the transgression homomor-
phism, we see that the left square of Diagram (4.3) commutes. The right square of
Diagram (4.3) is natural by applying loop functor L to Diagram (3.12).

We have showed the commutativity of Diagram (4.3) when k < 0, while the
case when k ≥ 0 can be done similarly. From the diagram, we notice that the
composition of the morphisms in the first row is the defined Stringc-obstruction
δk, while the composition δ of those in the second row is the obstruction to the
existence of String structure on the bundle V ⊕ ξ⊕(−2k−1) from the point of view
of loop spaces. Indeed, by observing the Serre spectral sequence of the spin bundle
(3.11) after looping (or simply applying the dual Blakers-Massey Theorem), the
second row of Diagram (4.3) can be fitted into an exact sequence
(4.6)

0 → H2(LM)
(Lπ)∗→ H2(LP k

Spin(V, ξ))
(Li)∗→ H2(LSpin(n− 4k − 2))

δ→ H3(LM).

As in [35], x2 ∈ H2(LSpin(n − 4k − 2)) ∼= [LSpin(n − 4k − 2), BS1] corresponds

to the universal central extension LŜpin(n− 4k − 2) of LSpin(n− 4k − 2) by S1.
If δ(x2) = 0 the exactness of the above sequence implies that the structural group

of LP k
Spin(V, ξ) → LM can be lifted to LŜpin(n − 4k − 2), which, by definition,

assures a weak String structure on P k
Spin(V, ξ) (cf. [18,35,50]). Hence, a level 2k+1
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weak Stringc-structure on M induces a (weak) String structure on a larger bundle
V ⊕ ξ⊕(−2k−1) over M .

Hence from the geometric explanation, we can interpret the Stringc-structures

in terms of liftings of structural groups. Indeed, we can define LŜpinc
k(n) for k < 0

by the morphism of group extensions

{1} �� U(1) �� LŜpinc
k(n)

q2k+1 ��

Lλ̂2k+1

��

LSpinc(n) ��

Lλ2k+1

��

{1}

{1} �� U(1) �� LŜpin(n− 4k − 2)
q �� LSpin(n− 4k − 2) �� {1},

(4.7)

where the bottom row is the universal extension of LSpin, λ2k+1 is the group
embedding defined in Diagram 3.5, and the right square is a pullback defining

the homomorphisms Lλ̂2k+1 and q2k+1. Recall that by (4.4), after applying the
classifying functor B to (4.7) the universal obstruction class μ3 of weak String
structures will be sent to the universal obstruction class sk(x2) of weak Stringc

structures via (BLλ2k+1)
∗. In particular, for the looped classifying map Lg of the

Spinc principal bundle of V (4.1), it can be lifted to BLŜpinc
k(n) if and only if the

composition Lh = BLλ2k+1 ◦ Lg, as the classifying map of LP k
Spin(V, ξ), can be

lifted to LŜpin(n− 4k − 2).
In contrast, when k ≥ 0 since we only have a loop map fitting into Diagram

3.7, we cannot construct the morphism of group extension as in Diagram 4.7, but
instead we can formulate a homotopy commutative diagram of fibrations

BS1 ���� BLŜpinc
k(n)

q2k+1 ��

LΛ̂2k+1

��

BLSpinc(n)

BLλ2k+1

��
BS1 �� BLŜpin(N)

Bq �� BLSpin(N),

(4.8)

where N is sufficiently large, and BLŜpinc
k(n) is just a topological space as the

homotopy pullback of the right square at this moment. Nevertheless, we can justify

that it can be chosen as the classifying space of some topological group LŜpinc
k(n)

analogous to the arguments of constructing the Stringc groups of negative levels in
Subsection 3.1. Indeed, first we can take the homotopy pullback of q and Lλ2k+1 to

obtain a space LŜpinc
k(n). Moreover notice that the maps Bq and BLλ2k+1 induce

the morphisms of the universal fibrations of involved classifying spaces respectively,
we indeed have a homotopy fibration

LŜpinc
k(n) → ∗ → BLŜpinc

k(n).

Hence the space LŜpinc
k(n) can be chosen to the Moore loop space corresponding

to the loop space ΩBLŜpinc
k(n) as we did for Stringck(n) when k ≥ 0, and then

BΩBLŜpinc
k(n) � BLŜpinc

k(n). Let q2k+1 = Ωq2k+1 and Lλ̂2k+1 = ΩLΛ̂2k+1.

Then we can re-choose Bq2k+1 to be q2k+1 and BLλ̂2k+1 to be LΛ̂2k+1. To sum-
marize, when k ≥ 0, we have constructed a homotopy commutative diagram similar
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to Diagram 4.7 where LŜpinc
k(n) is a topological group and the maps q2k+1 and

Lλ̂2k+1 are loop maps.

Theorem 4.2. Let V be an n-dimensional Spinc-vector bundle over a manifold M
with a complex determinant line bundle ξ. V admits a weak Stringc-structure if
and only if the stable Spin bundle associated to V ⊕ ξ⊕(−2k−1) admits a weak String
structure for some k ∈ Z. Furthermore, when k < 0, a weak Stringc-structure of
level 2k+1 on V is also equivalent to, for the associated LSpinc-bundle LPSpinc(V )

over LM , a structural group lifting to LŜpinc
k(n).

Suppose the obstruction class μ3(V ) − (2k + 1)sc = 0, then the weak Stringc-
structures of level 2k + 1 on (V, ξ) are in one-to-one correspondence with the ele-
ments in the image of the morphism

(Lρ)∗ : H2(LM) → H2(LS(ξ)).

Proof. First notice that we have proved the first two statements in the previous
discussions. We now prove the last statement of the theorem on counting the
distinct Stringc structures for k < 0 while the proof for k ≥ 0 is similar. And the
proof is similar to that of Theorem 3.2. By Diagram (3.12) after looping, we can
construct a commutative diagram

H2(LM)
(Lπ)∗ �� H2(LPSpinc(V ))

(Li)∗ �� H2(LSpinc(n))
δk �� H3(LM)

H2(LM)
(Lπ)∗ �� Im (LΘ)∗

(Li)∗ ��
��

��

H2(LSpinc(n))
δk �� H3(LM)

H2(LM) �
� (Lπ)∗�� H2(LP k

Spin(V, ξ))
(Li)∗��

(LΘ)∗
����

H2(LSpin(n− 4k − 2))
δ ��

(Lλ2k+1)
∗∼=

��

H3(LM),

(4.9)

where the third row is exact. It is easy to see that the second row of the diagram
is exact. Now notice that Ker(LΘ)∗ ⊆ H2(LM) and the first morphism (Lπ)∗ in
the second row has Ker(LΘ)∗ as its kernel. Hence the distinct Stringc structures
on V are classified by

Ker(Li)∗ ∼= H2(LM)/Ker(LΘ)∗ ∼= Im((Lπ)∗ : H2(LM) → H2(LPSpinc(V )).

On the other hand, by considering the bundle morphism in Diagram (3.15) after
looping, we obtain the commutative diagram of cohomology groups

0 = H1(LSpin(n)) �� H2(LS(ξ))
(Lπ)∗ �� H2(LPSpinc(V ))

H2(LM)
(Lπ)∗ ��

(Lρ)∗

��

H2(LPSpinc(V )),

(4.10)

where the first row is exact again by Theorem C.3. Then Im(Lπ)∗ ∼= Im(Lρ)∗ and
the proof of the theorem is completed. �

Remark 4.3. Notice when k ≥ 0, we cannot talk about lifting the structural groups
of the looped Spinc principal bundles. However, it is true that V admits a weak
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Stringc structure of level 2k + 1 if and only if there is a lift

BLŜpinc
k(n)

��
LM

Lg
��

���
�

�
�

�
BLSpinc(n).

(4.11)

Corollary 4.4. Let (V, ξ) as in Theorem 4.2. Suppose that M is simply connected,
and c1(ξ) is a generator element of H2(M), then (Lρ)∗ : H2(LM) → H2(LS(ξ))
is surjective. In particular, the weak Stringc structures of level 2k + 1 on V are in
one-to-one correspondence with elements of H2(LS(ξ)).

Proof. We need to analyse the homotopy commutative diagram of fibrations

ΩS(ξ)
Ωρ ��

��

ΩM
Ωc ��

��

S1

��
LS(ξ)

Lρ ��

��

LM
Lc ��

��

S1 ×K(Z, 2)

��
S(ξ)

ρ �� M
c �� K(Z, 2)

(4.12)

using the Serre spectral sequences. First, from the Serre spectral sequence (or Gysin
sequence) of the fibration in the third row of Diagram 4.12 there is a short exact
sequence

(4.13) 0 → H2(K(Z, 2))
c∗→ H2(M)

ρ∗

→ H2(S(ξ)) → 0.

On the other hand, since M is simply connected,

H2(M) ∼= Hom(H2(M),Z) ∼= Hom(π2(M),Z)

is torsion free and (Ωc)∗ : π1(ΩM) → π1(S
1) is surjective. Then the fibration in

the top row of Diagram (4.12) splits

ΩM � S1 × ΩS(ξ),

which particularly implies that (Ωρ)∗ : H2(ΩM) → H2(ΩS(ξ)) is surjective. Now
since c1(ξ) is a generator element of H2(M) by assumption, S(ξ) is simply con-
nected. We then can consider Serre spectral sequences of the fibrations in the first
two columns of Diagram (4.12). By the naturality of Serre spectral sequences and
the fact that loop projection induces monomorphism on cohomology, we have the
induced morphism of short exact sequences

0 �� H2(M) ��

ρ∗

����

H2(LM) ��

(Lρ)∗

��

H2(ΩM) ��

(Ωρ)∗

����

0

0 �� H2(S(ξ)) �� H2(LS(ξ)) �� H2(ΩS(ξ)) �� 0.

(4.14)

Since we have showed that ρ∗ and (Ωρ)∗ are surjective, we see that the middle
morphism (Lρ)∗ in the diagram is also surjective by the (sharp) five lemma. Hence
the corollary follows. �
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5. Relations between strong and weak String
c
structures

In this section, we discuss the relations between strong and weak Stringc struc-
tures, and also the fusion Spinc structures on looped manifolds and their relations
with Stringc structures.

5.1. Strong Stringc vs. Weak Stringc. The relations between strong Stringc-
and weak Stringc-structures are characterized by the following theorems:

Theorem 5.1. Let V be an n-dimensional Spinc-vector bundle over M with a
complex determinant line bundle ξ. If V is strong Stringc of level 2k+1, then V is
level 2k+1 weak Stringc. The converse is also true, if the image of the cohomology
of the classifying map

g∗ : H4(BSpinc(n);Z) → H4(M ;Z)

is a subgroup of the dual of the Hurewicz image h : π4(M) → H4(M ;Z), and the
rational Hurewicz morphism

h⊗Q : π3(LM)⊗Q → H3(LM ;Q)

is injective.

Proof. We use the free suspension ν to prove the theorem. By Lemma 2.1, for the
universal case

ν
(p1 − (2k + 1)t22

2

)
= ν(q4 − kt22) = μ3 − (2k + 1)s1t2 = sk(x2).

By the naturality of ν, we see that the obstructions to the weak and strong Stringc-
structures are connected via the equality

(5.1) ν(
p1(V )− (2k + 1)c2

2
) = μ1(V )− (2k + 1)sc.

Hence the first claim of the theorem follows immediately. For the converse part
of the theorem, we use the similar strategy used in the proof of Theorem 3.1 in
[35] for the String case. The idea is to describe the free suspension ν geometrically
at least for the elements in the Hurewicz image. Choose any f ∈ π4(M). S4 can
be covered by loops which meet only at one point (say the base point), and the
parameter space for this set of loops is its equator S3. By this view we obtain a
class g ∈ π3(LM); indeed, this operation is equivalent to take the adjoint of f to get
g ∈ π3(ΩM) and we notice that in general π∗(LM) ∼= π∗(M)⊕ π∗(ΩM). In either
way, this operation is the free suspension after taking the composition of Hurewicz
map and the dual map, that is, we have the commutative diagram

π4(M)
h ��

��

i

��

H4(M ;Z)
dual �� H4(M ;Z)

ν

��
π3(LM)

h �� H3(LM ;Z)
dual �� H3(LM ;Z).

(5.2)

Now by assumption, the obstruction class p1(M)−(2k+1)c2

2 ∈ H4(M) is from an
element f ∈ π4(M). If f is a torsion, then the dual of h(f) will be 0 (recall here
dual is defined by the natural paring H∗(M ;Z)×H∗(M ;Z) → Z). Otherwise f is
torsion free. Then by the above argument, we obtain an element g = i(f) ∈ π3(LM)
such that h(g) is non-zero by assumption. Take the dual of h(g), we obtain the free
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suspension ν( p1(M)−(2k+1)c2

2 ) which is non-zero. This is a contradiction, and then
p1(M)−(2k+1)c2

2 = 0. The converse statement is proved. �

Theorem 5.2. Let (V, ξ) be as in Theorem 5.1. Suppose (V, ξ) is (strong) Stringc

of level 2k+1. Then the distinct strong Stringc-structures lifting the original Spinc-
structure on V transgress to the weak Stringc-structures via the transgression ν

H3(M)

ν

��

ρ∗
�� H3(S(ξ))

ν

��
H2(LM)

(Lρ)∗�� H2(LS(ξ)).

(5.3)

Proof. This follows immediately from the naturality of the involved constructions.
�

Corollary 5.3. Let (V, ξ) as in Theorem 5.2. Suppose M is simply connected, and
the Euler class c1(ξ) is a generator element of H2(M). Then the distinct Stringc-
structures on V transgress to the weak Stringc-structures via the composition of the
free suspension and the pullback

(Lρ)∗ ◦ ν = ν ◦ ρ∗ : H3(M) → H2(LS(ξ)).

Proof. The corollary follows immediately from Theorem 5.2, Corollary 3.3 and
Corollary 4.4. �

5.2. Fusive Spinc structures on looped manifolds. The Stringc structures can
be also understood from the perspective of fusion structures, the study of which
was initiated by Stolz and Teichner [45]. In particular, they showed that an ori-
ented manifold N is Spin if and only if the loop space LN is fusion orientable.
Moreover, the equivalence classes of Spin structures on N are in one-to-one corre-
spondence with the fusion-preserving orientations of LN . If one drops the fusion
conditions, the orientations on LN can be viewed as weak Spin structures on N in
our terminology.

Similar results hold for the String case as well. For a Spin manifold N , a weak
String structure one LN can be defined as a lifting of the structure group of the

looped frame bundle LPSpin(N) to the universal central extension LŜpin(n). It may
be also called Spin structure on loop manifold following Waldorf [50], which was
known as String structure on loop manifold by the earlier work of Killingback [18]
and McLaughlin [35]. In order to characterize String structures via Spin structures
on loop manifolds, Waldorf [50] introduced additional fusion conditions and defined
the so-called fusion Spin structure on LN , and proved that the universal central

extension LŜpin(n) is a fusion extension in a canonical way. He then showed that
N is (strong) String if and only if LN is fusion Spin. However, in this situation the
fusion conditions are not enough to establish the bijection between the set of strong
String structures and the set of fusion Spin structures, as remarked by Waldorf.
Instead, he used thin homotopies of loops [48,49] to investigate the correspondence.
In contrast, Kottke-Melrose [20] defined another modification of fusion Spin with
some additional reparameterization equivariant conditions, which they called fusive
loop Spin structures over LN . They then showed that the equivalence classes of
strong String structures on N are in one-to-one correspondence with the equivalence
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classes of fusive loop Spin structures on LN . It should be noticed that all of these
discussions are valid for general vector bundles with Spin structures.

Now let us consider the Stringc structures of negative levels on the Spinc man-
ifold (M, ξ). Let k < 0 for the rest of this subsection. Recall that we have
the S1-invariant morphism of group extensions (4.7). From that, the extension

LŜpinc
k(n) inherits a fusion structure from LŜpin(N). If the looped principal bun-

dle LP k
Spin(M, ξ) of the vector bundle TM⊕ξ⊕−2k−1 admits a fusion Spin structure

in the sense of Waldorf, by Theorem 4.2 and its proof, we may define the fusion
Spinc structure of level 2k + 1 on LM to be the restriction of the fusion Spin
structure through the bundle embedding (cf. Diagram 3.12)

LΘ2k+1 : LPSpinc(M) ↪→ LP k
Spin(M, ξ).

Similarly we can also define fusive loop Spinc structures on LM of various levels
following Kottke-Melrose. It is clear that if we drop the fusion conditions, the notion
of the Spinc structures on LM coincides with that of the weak Stringc structures on
M . Now recall by Theorem 3.2, strong Stringc structures can be also understood
as strong String structures on TM ⊕ ξ⊕−2k−1. Hence, the work of Waldorf [50] or
Kottke-Melrose [20] implies that M is level 2k+1 Stringc if and only if LM is fusion
(fusive loop) Spinc of level 2k+1. Further by Kottke-Melrose [20], the equivalence
classes of strong Stringc structures on M are in one-to-one correspondence with the
equivalence classes of fusive loop Spinc structures on LM .

Additionally, Kottke-Melrose [20,21] defined the loop-fusion (Čech) cohomology,
Ȟ∗

lf (LM ;Z), and showed that the transgression map (i.e., the free suspension) ν
factors through the isomorphic enhanced transgression νlf

Ȟ∗(M ;Z)
νlf

∼=
��

ν


��

���
���

���
�

Ȟ∗−1
lf (LM ;Z)

f

��
Ȟ∗−1(LM ;Z),

(5.4)

where f is the forgetful morphism. Recall that the Čech cohomology is naturally
isomorphic to the singular cohomology for CW complexes. The relations among
strong Stringc, weak Stringc and fusive loop Spinc then can be understood through
this commutative diagram. Explicitly, the enhanced transgression of the obstruc-

tion to strong Stringc structure νlf (
p1(M)−(2k+1)c2

2 ) is the obstruction class to fusive
loop Spinc structure, which reduces to μ1(M) − (2k + 1)sc the obstruction class
to weak Stringc structure via the forgetful morphism f . Moreover, for the circle
bundle ρ : S(ξ) → M of the determinant line bundle ξ, we have the commutative
diagram

Ȟ3(M ;Z)
νlf

∼=
��

ν

��

ρ∗

��

Ȟ2
lf (LM ;Z)

f ��

(Lρ)∗

��

Ȟ2(LM ;Z)

(Lρ)∗

��
Ȟ3(S(ξ);Z)

νlf

∼=
��

ν

��
Ȟ2

lf (LS(ξ);Z)
f �� Ȟ2(LS(ξ);Z),

(5.5)
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where the outer rectangle is Diagram 5.3 in Theorem 5.2. Then by Theorem 3.2
and Theorem 4.2, we see that the equivalence classes of strong Stringc structures
on M transgress to the equivalence classes of fusive loop Spinc structures on LM ,
and then to the weak Stringc-structures.

Let us summarise the above discussions in the following theorem. For details of
the precise definitions of various fusion structures, loop-fusion (Čech) cohomology
and others, the readers can refer to Waldorf [50] and Kottke-Melrose [20, 21].

Theorem 5.4. Let M be a connected compact Spinc manifold. Let k < 0. Then

(1) M is level 2k+1 Stringc if and only if LM is fusion (or fusive loop) Spinc

of level 2k + 1;
(2) the equivalence classes of strong Stringc structures on M are in one-to-one

correspondence with the equivalence classes of fusive loop Spinc structures
on LM ;

(3) the equivalence classes of strong Stringc structures on M transgress to the
equivalence classes of fusive loop Spinc structures on LM through the en-
hanced transgression, and then to the weak Stringc-structures after compos-
ing with the forgetful map.

6. Modular invariants and group actions on String
c
manifolds

In this section, for even dimensional level (2k+1) Stringc manifolds with 2k+1 >
0, we construct Witten type genera, which are modular invariants taking values in
Z[ 12 ] and prove Liu’s type vanishing theorem for them. They extend the generalized
Witten genera for level 1 and level 3 Stringc manifolds constructed in [5,6]. We also
give some applications of these vanishing results to Lie group actions on manifolds.

6.1. Generalized Witten genera and vanishing theorems. Let M be a Spinc

manifold, which is level 2k + 1 Stringc with 2k + 1 > 0. Let

	a = (a1, a2, · · · , ar) ∈ Zr, 	b = (b1, b2, · · · , bs) ∈ Zs

be two vectors of integers such that
∑r

j=1 aj +
∑s

j=1 bj is even. If M is 4m dimen-
sional, we require that

(6.1) 3||	a||2 + ||	b||2 = 2k − 2;

and if M is 4m+ 2 dimensional, we require that

(6.2) 3||	a||2 + ||	b||2 = 2k.

Let ξ be the determinant line bundle of the Spinc structure. Let hξ be a Her-
mitian metric on ξ and ∇ξ be a Hermitian connection. Let hξR and ∇ξR be the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

3520 RUIZHI HUANG ET AL.

induced Euclidean metric and connection on ξR. Construct

Θ�a,�b(TCM, ξR ⊗ C)

:=

( ∞⊗
n=1

Sq2n(T̃CM)

)

⊗⊗r
j=1

( ∞⊗
n=1

Λq2n(
˜

ξ
⊗aj

R ⊗ C)⊗
∞⊗

n=1

Λ−q2n−1(
˜

ξ
⊗aj

R ⊗ C)⊗
∞⊗

n=1

Λq2n−1(
˜

ξ
⊗aj

R ⊗ C)

)

⊗⊗s
j=1

( ∞⊗
n=1

Λ−q2n(
˜

ξ
⊗bj
R ⊗ C)

)
,

(6.3)

where Ẽ = E − Cdim(E) for any complex bundle E. Then ∇TM and ∇ξ induce

connections ∇Θ
�a,�b

(TCM,ξR⊗C) on Θ�a,�b(TCM, ξR ⊗ C). Let c = c1(ξ,∇ξ) be the first

Chern form of (ξ,∇ξ).

If dimM = 4m, define the type (2k + 1;	a,	b) Witten form

Wc
2k+1;�a,�b

(M)

:=Â(TM,∇TM )e
c
2

r∏
j=1

cosh
(ajc

2

) s∏
j=1

sinh

(
bjc

2

)

· ch
(
Θ�a,�b(TCM, ξR ⊗ C)⊗

∞⊗
n=1

Λq2n(ξ̃R ⊗ C)⊗
∞⊗
n=1

Λ−q2n−1(ξ̃R ⊗ C)

⊗
∞⊗

n=1

Λq2n−1(ξ̃R ⊗ C)

)
.

(6.4)

If dimM = 4m+ 2, define the type (2k + 1;	a,	b) Witten form

(6.5)

Wc
2k+1;�a,�b

(M)

:= Â(TM,∇TM )e
c
2

r∏
j=1

cosh
(ajc

2

) s∏
j=1

sinh

(
bjc

2

)
ch

(
Θ�a,�b(TCM, ξR ⊗ C)

⊗
∞⊗

n=1

Λq−2n(ξ̃R ⊗ C)

)
.

We can express these generalized Witten forms by using the Chern-root algo-
rithm. Let {±2π

√
−1zj} be the formal Chern roots for (TCM,∇TCM ) and set

u = −
√
−1
2π c. In terms of the theta-functions (the details about which are discussed
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in Appendix D), we get through direct computations that (c.f. [5, 6, 25, 26])

Wc
2k+1,�a,�b

(M4m)

=

⎛⎝ 2m∏
j=1

zj
θ′(0, τ )

θ(zj , τ )

⎞⎠ θ1(u, τ )θ2(u, τ )θ3(u, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

r∏
j=1

θ1(aju, τ )θ2(aju, τ )θ3(aju, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

·
s∏

j=1

√
−1θ(bju, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

(6.6)

and

Wc
2k+1,�a,�b

(M4m+2)

=

⎛⎝ 2m∏
j=1

zj
θ′(0, τ )

θ(zj , τ )

⎞⎠ r∏
j=1

θ1(aju, τ )θ2(aju, τ )θ3(aju, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

·
√
−1θ(u, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

s∏
j=1

√
−1θ(bju, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )
.

(6.7)

Define the type (2k + 1;	a,	b) Witten genus by

(6.8) W c
2k+1,�a,�b

(M4m) :=

∫
M4m

Wc
2k+1,�a,�b

(M4m),

and

(6.9) W c
2k+1,�a,�b

(M4m+2) :=

∫
M4m+2

Wc
2k+1,�a,�b

(M4m+2).

Note that
r∏

j=1

cosh
(ajc

2

) s∏
j=1

sinh

(
bjc

2

)

=
1

2r+s
e−

∑r
j=1 aj+

∑s
j=1 bj

2 c
r∏

j=1

(eajc + 1)

s∏
j=1

(
ebjc − 1

)
.

(6.10)

However since
∑r

j=1 aj +
∑s

j=1 bj is even, one has that

e−
∑r

j=1 aj+
∑s

j=1 bj

2 c
r∏

j=1

(eajc + 1)

s∏
j=1

(
ebjc − 1

)
is the Chern character of some vector bundle. Hence by the Atiyah-Singer index
theorem, 2r+sW c

2k+1,�a,�b
(M4m) and 2r+sW c

2k+1,�a,�b
(M4m+2) are analytic, i.e., they

are indices of q-series of twisted Spinc Dirac operators. We therefore see that
W c

2k+1;�a,�b
(M4m) ∈ Z[ 12 ] and W c

2k+1;�a,�b
(M4m+2) ∈ Z[ 12 ].

By the same method in [24], using the conditions (6.1) or (6.2) when performing
the transformation laws of theta functions, we have

Theorem 6.1. If dimM = 4m, then W c
2k+1;�a,�b

(M4m) ∈ Z[ 12 ] is a modular form of

weight 2m over SL(2,Z); if dimM = 4m + 2, then W c
2k+1;�a,�b

(M4m+2) ∈ Z[ 12 ] is a

modular form of weight 2m over SL(2,Z).
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For the generalized Witten genus W c
2k+1;�a,�b

(M), we have the following Liu’s type

vanishing theorem.

Theorem 6.2. Let M be a connected compact level 2k+1 Stringc manifold with 2k+
1 > 0. If M admits an effective action of a simply connected compact Lie group that
can be lifted to the Spinc structure and the action is positive, then W c

2k+1;�a,�b
(M) = 0.

Proof. Let G be the simply connected compact Lie group. It has been shown in
[36] that G contains SU(2) or SO(3) as subgroup. Since there exists the standard
2-sheet covering p : SU(2) → SO(3), in either case we see that there exists a SU(2)-
action on M factoring through G. Then choose any subgroup S1 ↪→ SU(2). Since
G acts effectively on M and can be lifted to the Spinc structure, we have that the
induced S1-action is non-trivial and can be lifted to the bundle TM − ξ⊕(2k+1). In
particular, through the induced composition map of classifying spaces

BS1 → BSU(2) → BG,

there exists the canonical generator q ∈ H4(BG) restricted to the generator u2 ∈
H4(BS1).

We now can apply the similar argument of Dessai [8] to the bundle TM−ξ⊕(2k+1).
If the S1-action has no fixed points, the generalized Witten genus vanishes by the
Atiyah-Bott-Segal-Singer-Lefschetz fixed point formula ([1, 2]). Otherwise suppose
that there are some fixed points. Let EG be the universal G-principal bundle
over the classifying space BG of any topological group G. By applying the dual
Blakers-Massey theorem (Theorem C.3 in Appendix C) to the Borel fibre bundle

M
i→ M ×G EG

π→ BG

(with the fact that BG is 3-connected), we see that there exists a commutative
diagram

0 �� H4(BG)

��

π∗
�� H4(M ×G EG)

i∗��

��

H4(M)

H4(BS1)
π∗

�� H4(M ×S1 ES1)
i∗ �� H4(M),

such that the first row is exact, and maps to the second row by restricting the
action to S1. On the other hand, since the level 2k + 1 Stringc condition tells us
that p1(TM − ξ⊕(2k+1)) = 0, we have

p1(TM)G − (2k + 1)c1(ξ)
2
G = p1(TM − ξ⊕(2k+1))G = n · π∗q

for some n > 0 by positive assumption (5). Hence by the above commutative
diagram we see that the restriction of the equivariant Pontryagin class

p1(TM)S1 − (2k + 1)c1(ξ)
2
S1 = p1(TM − ξ⊕(2k+1))S1 = n · π∗u2, n > 0.

The theorem then follows by the proof of Liu’s vanishing theorem [25] for nonzero
anomaly about Witten genus. �

6.2. Some applications of the vanishing theorem. Suppose (M,J) is a com-
pact stable almost complex manifold. Then M has a canonical Spinc structure
determined by J . If G acts smoothly on M and preserves the stable almost com-
plex structure J , then the action of G can be lifted to the Spinc structure and the
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bundle ξ, the determinant line bundle. Applying the above vanishing theorem, we
immediately obtain

Theorem 6.3 (Theorem 4). Let (M,J) be a compact stable almost complex mani-
fold, which is level 2k+1 Stringc, i.e., p1(TM) = (2k+1)c21 and suppose 2k+1 > 0.
If M admits a positive effective action of G preserving J , then W c1

2k+1;�a,�b
(M) = 0.

Recall that our generalized Witten genera are indexed by the pair of vectors

(	a,	b). It turns out that this flexibility allows us to deduce results concerning the
group actions on manifolds with particular arithmetic conditions. In particular, we
prove a slightly stronger version of Corollary 5.

Theorem 6.4. Let (M, ξ, c = c1(ξ)) be a compact Stringc manifold of level 2k + 1
with the determinant line bundle ξ. If M satisfies one of the following

(A) M = M4m, and c2m �= 0 rationally,
(A.1) k −m ≡ 0 mod 3, and k −m ≥ 9,
(A.2) k −m ≡ 1 mod 3, and k −m ≥ 1,
(A.3) k −m ≡ −1 mod 3, and k −m ≥ 5;

(B) M = M4m+2, and c2m+1 �= 0 rationally,
(B.1) k −m ≡ 0 mod 3, and k −m ≥ 0,
(B.2) k −m ≡ 1 mod 3, and k −m ≥ 4,
(B.3) k −m ≡ −1 mod 3, and k −m ≥ 8,

then M does not admit a positive effective action of a simply connected compact
Lie group that can be lifted to the underlying Spinc structure.

Proof. Suppose M = M4m, and consider the quadratic indefinite equation

(6.11) 3||	a||2 + b21 + b22 + · · ·+ b22m = 2k − 2,

where we let s = 2m. Let 	b = (b1, b2, . . . , b2m) = (1, 1, . . . , 1, 3, 3) for Case (A.1),
	b = (1, 1, . . . , 1) for Case (A.2), and 	b = (1, 1, . . . , 1, 3) for Case (A.3) respectively.

In particular, we see that ||	b||2 = 2m+16, 2m, or 2m+8 in each case, the collection
of which is a complete residue system modulo 3. Then it is easy to check that

2k − 2− ||	b||2 ≡ 0 mod 3

in each of the three cases, where the left hand side is also non-negative. Hence the
equation (6.11) always has an integer solution for some 	a by Lagrange’s four-square
theorem.

By (6.6), we have

W c
2k+1;�a,�b

(M4m)

=

∫
M4m

⎛⎝ 2m∏
j=1

zj
θ′(0, τ )

θ(zj , τ )

⎞⎠ θ1(u, τ )θ2(u, τ )θ3(u, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

r∏
j=1

θ1(aju, τ )θ2(aju, τ )θ3(aju, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

·
( √

−1θ(u, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

)p( √
−1θ(3u, τ )

θ1(0, τ )θ2(0, τ )θ3(0, τ )

)q

,

where u = −
√
−1
2π c, and p, q are non-negative integers depending on the different

cases, but always satisfy p + q = 2m. Note that θ(ν, τ ) is an odd function of ν
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starting from 2π
√
−1ν in the expansion while θi(ν, τ ) are all even functions of ν for

i = 1, 2, 3, we have

W c
2k+1;�a,�b

(M4m) =

∫
M4m

d · c2m �= 0,

where d is some non-zero constant. Hence by Theorem 6.2, we see that M4m admits
no effective positive action of a compact non-abelian Lie group that can be lifted
to ξ. For the cases when M = M4m+2, the proof is similar and omitted. We then
obtain the theorem. �

Our vanishing theorem can be applied to study group actions on homotopy
complex projective spaces. Let X be a closed smooth manifold homotopic to CP 2n.
Let x ∈ H2(X;Z) be a generator. Using his twisted Spinc rigidity theorem, Dessai
[9] proved the following

Theorem 6.5 (Dessai). Let X be a closed smooth manifold homotopic to CP 2n.
If p1(X) > (2n+ 1)x2, then X does not support a nontrivial smooth S3 action.

We give a proof of this theorem by using the vanishing of the generalized Witten
genera.

Proof. By Masudai-Tsai [33], one knows that the first Pontryagin class of X takes
the form p1(X) = (2n + 1 + 24α(X))x2 for certain integer α(X). Therefore X is
Stringc of level 2n + 1 + 24α(X) with the underlying Spinc structure determined
by x. By the assumption p1(X) > (2n + 1)x2, we have α(X) > 0. And therefore,
similar to the proof of Theorem 6.4, the indefinite equation

3||	a||2 + b21 + b22 + · · ·+ b22n = 2n− 2 + 24α(X)

must have a solution (	a,	b) such that all the b′is are nonzero. It implies that
W c

2n+1+24α(X);�a,�b
(X) is well defined, and again by similar argument as in the proof

of Theorem 6.4, it can be showed that this general Witten genus does not vanish.
Now assume that there is a nontrivial S3 action on X. First by [15], this action

can be lifted to the determinant line bundle determined by x. Also by Lemma 3.8
of [9], since X has odd Euler characteristic, the induced action of the subgroup
Pin(2) of S3 on X has a fixed point. Hence from Remark 2, we see that the S3

action is positive. In addition, from the fact that S3 is covered by the conjugate
classes of its maximal torus T ∼= S1, it follows that there exists a subgroup S1 of
S3 which acts nontrivially on X. Consequently by the proof of Theorem 6.2, we
see that W c

2n+1+24α(X);�a,�b
(X) must vanish, which is a contradiction. �

Appendix A. Basics on homotopy fibre sequences

For any pointed map f : X → Y , there is a canonical way to turn it into a
fibration with a homotopy fibre F

F
i→ X

f→ Y.

Continue the process for the leftmost maps, we then obtain the so-called Puppe
sequence of f (e.g. See Chapter 2 of [46])

· · · Ωj→ ΩF
Ωi→ ΩX

Ωf→ ΩY
j→ F

i→ X
f→ Y,

of which any three consecutive terms give a homotopy fibration. The following
lemma is used frequently in this paper without further reference.
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Lemma A.1 (Lemma 2.1 of [7]). A homotopy commutative diagram

A ��

��

B

��
C �� D

can be embedded in a homotopy commutative diagram

Q ��

��

J ��

��

K

��
F ��

��

A ��

��

B

��
G �� C �� D,

in which the rows and columns are fibration sequences up to homotopy.

Appendix B. Cohomology suspension and transgression

In cohomology theory there are two classical kinds of suspensions (e.g., see Sec-
tion 1.3 of [13]): Mayer-Vietoris suspension (MV-suspension)

(B.1) Δ∗ : H̄n(X) → Hn+1(ΣX),

and cohomology suspension

(B.2) σ∗ : Hn+1(X) → Hn(ΩX).

The MV-suspension Δ∗ is also known as part of the axioms of general reduced
cohomology theories and is always an isomorphism. The cohomology suspension
then does not hold in general, and can be defined as

(B.3) σ∗ : Hn+1(X)
p→ Hn+1(PX,ΩX)

δ←−∼= Hn(ΩX),

where p : (PX,ΩX) → (X, ∗) is the canonical path fibration, δ is the connecting
homomorphism in the long exact sequence of the cohomology of the pair (PX,ΩX).

There are other two useful alternative descriptions. Firstly we may identify
cohomology groups with groups of homotopy classes of maps into Eilenberg-Maclane
spaces via the Brown representability theorem

(B.4) H̄n(X;Z) ∼= [X,K(Z, n)].

Then the MV -suspension is just to take the adjoint map and the cohomology
suspension is to take the loop functor

(B.5) Ω : [X,K(Z, n+ 1)] → [ΩX,K(Z, n)].

We may also define the cohomology suspension via the evaluation map

(B.6) ev : S1 × ΩX → X

defined by ev((t, ω)) = ω(1). In this case, σ∗ is a slant-product by the fundamental
class [S1] of S1

(B.7) ev∗(x) = s1 ⊗ σ∗(x).
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Both the MV-suspension and the cohomology suspension are natural and have
a useful connection, that is,

(B.8) Δ ◦ σ∗ = ēv∗ : Hn+1(X) → Hn+1(ΣΩX),

where ēv : ΣΩX → X is the (reduced) evaluation map. In particular, σ∗ is trivial on
decomposable elements since the ring structure of the cohomology of a suspension
is trivial.

We should be careful to use cohomology suspension when n = 0 or X is not
simply connected. In these cases, we may define the k-th component cohomology
suspension of σ∗ by

(B.9) σ∗
k : Hn+1(X)

σ∗
→ Hn(ΩX)

(ik)
∗

→ Hn(ΩkX),

where ik : ΩkX ↪→ ΩX is the inclusion of the k-th component of ΩX for k ∈
π0(ΩX). The other two equivalent definitions of σ∗

k can be easily obtained from
(B.5) and (B.7).

Example B.1. Let us compute

σ∗ : H1(S1) → H0(ΩS1),

which is equivalent to

Ω : [S1, S1] → 〈ΩS1,ΩS1〉,

where 〈−,−〉 denotes the set of homotopy classes of free maps. We notice that
there are group isomorphisms

〈ΩS1,ΩS1〉 ∼= Func(Z,Z) ∼=
∏
k∈Z

Func(k,Z),

where Func(−,−) denotes the set of functions and the group structure of∏
k∈Z Func(k,Z) is defined pointwise and inherited from the targets Z. Further

combining with the Brown representability theorem, H0(Ωk(S
1)) corresponds ex-

actly to Func(k,Z). Since Ω(id) = id corresponds to
∏

k∈Z(λk : k �→ k), we see
that

σ∗
k(s1) = k.

The cohomology suspension has a “partial” inverse, known as cohomology trans-
gression (e.g. see Section 6.2 of [34] or Section XIII.7 of [51]). For simplicity let us
introduce it directly by the Serre spectral sequence (E∗,∗

r , dr) of any given orientable

fibration F
i→ E

p→ B.

Definition B.2. The cohomology transgression is the differential homomorphism

(B.10) dn : E0,n−1
n → En,0

n

for each n ≥ 2.
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The cohomology transgression fits into following commutative diagram

Hn−1(E)
i∗ ��

����

Hn−1(F )
δ �� Hn(E,F )

j∗ �� Hn(E)

E0,n−1
∞

∼= E0,n−1
n+1

� � �� E0,n−1
n

dn ��
��

��

En,0
n

��

��

�� �� En,0
n+1

∼= En,0
∞

��

��

Hn(B, ∗)

����

p∗



j∗ �� Hn(B),

����

p∗

��

(B.11)

where the first line is part of the long exact sequence of the cohomology of the pair
(E,F ), and the second row is exact by the definition of dn. Then it is easy to show
that dn can be described as a homomorphism

(B.12) τ : Hn−1(F ) ⊇ δ−1(Im p∗) → Hn(B)/j∗(Ker p∗).

To consider the connection to cohomology suspension, we specify the above ar-
gument to the loop fibration ΩX → PX → X. In this case both dn and δ are
isomorphisms and the composition δ−1 ◦ p∗ : Hn(X) → Hn−1(ΩX) is exactly the
cohomology suspension σ∗ by definition. Hence we see that τ is a partial inverse of
σ∗.

Appendix C. Blakers-Massey type theorems

Definition C.1. Let f : X → Y be a pointed map between pointed spaces X and
Y . Then f is n-connected if it induces isomorphisms on k-dimensional homotopy
groups for k < n and an epimorphism for k = n. The space X is m-connected if
πi(X) = 0 for any i ≤ m. We use the convention that any space is (−1)-connected.

It is then easy to check that f is n-connected is equivalent to any of the following:

(1) the homotopy fibre of f is (n− 1)-connected;
(2) the homotopy cofibre of f is n-connected;
(3) f∗ : Hi(X;Z) → Hi(Y ;Z) is an isomorphism for each k < n and an epi-

morphism for k = n;
(4) f∗ : Hi(Y ;Z) → Hi(X;Z) is an isomorphism for each k < n and a

monomorphism for k = n.

Theorem C.2 (An elegant form of Blakers-Massey Theorem; e.g., see Theorem
4.2.1 [37]). Let

B
f ��

g

��

A

h
��

C
k �� X
��

be a homotopy pushout diagram. Let

Y
��

��

��

A

h
��

C
k �� X

be the homotopy pullback diagram defining Y . Suppose f is m-connected and g is
n-connected. Then the induced map B → Y is (m+ n− 1)-connected.
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Theorem C.3 (Dual Blakers-Massey Theorem of fibrations; a folklore theorem for
homotopy theorists). Let

F → E
p→ B

be a fibration with the base B and the total space E path connected. Assume that
B is m-connected and F is n-connected. Then there exists a partial long exact
sequence

0 → H0(B) → H0(E) → H0(F ) → H1(B) → · · ·
· · · → Hm+n(F ) → Hm+n+1(B) → Hm+n+1(E) → Hm+n+1(F );

in other words, the fibration is a cofibration up to degree (m+ n+ 1).

Proof. Let us define a homotopy commutative diagram of fibration

Y

h
��

Y

ρ

��

�� ∗

��
F

0

��

i �� E

j

��

p �� B

Z �� X
f �� B,

(C.1)

where X is the homotopy cofibre of i, Y and Z is the homotopy fibre of j and f
respectively. In order to construct the exact sequence of the theorem, we only need
to estimate the connectivity of the map f , which is equivalent to that of the space
Z.

We then apply Theorem C.2 to the homotopy pushout and homotopy pullback
diagrams

F
i ��

��

E

��

Y
��

ρ ��

��

E

��
∗ �� X,

��

∗ �� X,

to conclude that the induced map g : F → Y is (m+ n)-connected (since F → ∗ is
(n+ 1)-connected and i is m-connected). But we need to choose a nice g. Indeed,
we may apply the functor [F,−] to Diagram C.1 to get a commutative diagram of
exact sequences of pointed sets

[F, Y ]

h∗

��

[F, Y ]

ρ∗

��

�� ∗

��
[F, F ]

0

��

i∗ �� [F,E]

j∗

��

p∗ �� [F,B]

[F,Z] �� [F,X]
f �� [F,B].

(C.2)

Then there exists a map g : F → Y such that h ◦ g = id and i = i∗h∗(g) = ρ∗(g) =
ρ ◦ g. This nice g as a section of h splits the long exact sequence of the homotopy
groups of the fibration h to direct sums

πi(Y ) ∼= πi(ΩZ)⊕ πi(F ).
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Then g∗ : πi(F ) → πi(Y ) is indeed an isomorphism for each i ≤ m + n. Hence,
ΩZ is (m+ n)-connected. We should also notice that Z is 0-connected due to the
commutative diagram of exact sequences

π1(B) �� π0(F )

0

��

i∗ �� π0(E) = 0

j∗

��

p∗ �� π0(B)

π1(B)
0 �� π0(Z) �� π0(X) = 0

f∗ �� π0(B) = 0.

Combining the above two facts together, we see that Z is (m + n + 1)-connected,
which implies that f : X → B is (m + n + 2)-connected. Then the long exact

sequence of the cohomology of the cofibration F
i→ E

j→ X gives us the desired
exact sequence in the theorem. �

Appendix D. The Jacobi theta functions

A general reference for this appendix is [4].
Let

SL2(Z) :=

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
as usual be the modular group. Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
be the two generators of SL2(Z). Their actions on H are given by

S : τ → −1

τ
, T : τ → τ + 1.

Let

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod 2)

}
,

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 (mod 2)

}
Γθ =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ ( a b
c d

)
≡
(

1 0
0 1

)
or

(
0 1
1 0

)
(mod 2)

}
be the three modular subgroups of SL2(Z). It is known that the generators of Γ0(2)
are T, ST 2ST , the generators of Γ0(2) are STS, T 2STS and the generators of Γθ

are S, T 2 (cf. [4]).
The four Jacobi theta-functions (c.f. [4]) defined by infinite multiplications are

(D.1) θ(v, τ ) = 2q1/8 sin(πv)
∞∏
j=1

[(1− qj)(1− e2π
√
−1vqj)(1− e−2π

√
−1vqj)],

(D.2) θ1(v, τ ) = 2q1/8 cos(πv)
∞∏
j=1

[(1− qj)(1 + e2π
√
−1vqj)(1 + e−2π

√
−1vqj)],

(D.3) θ2(v, τ ) =
∞∏
j=1

[(1− qj)(1− e2π
√
−1vqj−1/2)(1− e−2π

√
−1vqj−1/2)],
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(D.4) θ3(v, τ ) =
∞∏
j=1

[(1− qj)(1 + e2π
√
−1vqj−1/2)(1 + e−2π

√
−1vqj−1/2)],

where q = e2π
√
−1τ , τ ∈ H.

They are all holomorphic functions for (v, τ ) ∈ C×H, where C is the complex
plane and H is the upper half plane.

Let θ
′
(0, τ ) = ∂

∂v θ(v, τ )|v=0. The Jacobi identity [4],

θ
′
(0, τ ) = πθ1(0, τ )θ2(0, τ )θ3(0, τ )

holds.
The theta functions satisfy the following transformation laws (cf. [4]),

(D.5)

θ(v, τ + 1) = e
π
√

−1
4 θ(v, τ ), θ (v,−1/τ ) =

1√
−1

(
τ√
−1

)1/2

eπ
√
−1τv2

θ (τv, τ ) ;

(D.6)

θ1(v, τ + 1) = e
π
√

−1
4 θ1(v, τ ), θ1 (v,−1/τ ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ2(τv, τ ) ;

(D.7) θ2(v, τ + 1) = θ3(v, τ ), θ2 (v,−1/τ ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ1(τv, τ ) ;

(D.8) θ3(v, τ + 1) = θ2(v, τ ), θ3 (v,−1/τ ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ3(τv, τ ) .

Let Γ be a subgroup of SL2(Z). A modular form over Γ is a holomorphic function
f(τ ) on H ∪ {∞} such that for any

g =

(
a b
c d

)
∈ Γ ,

the following property holds

f(gτ ) := f

(
aτ + b

cτ + d

)
= χ(g)(cτ + d)kf(τ ),

where χ : Γ → C∗ is a character of Γ and k is called the weight of f .
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