Reference Books:
- G. W. Strang: An analysis of the finite element method (2008), Publisher: Wellesley-Cambridge.
- W. G. Strang and G. J. Fix, An Analysis of the Finite Element Method (1973), Publisher: Prentice-Hall.
- P. G. Ciarlet: The finite element method for elliptic problems (1978), Publisher: Elsevier.
- K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations (1996), Publisher: Cambridge University Press.
- C. Johnson, Numerical Solution of Partial Differential Equation by the Finite Element Method (1987), Publisher: Cambridge University Press.
- O. C. Zienkiewicz, The finite element method in engineering science (1971), Publisher: McGraw-Hill.
- D. L. Logan, A first course in the finite element method (2011), Publisher: Cengage Learning.
- J. N. Reddy, An Introduction to the Finite Element Method (Third ed.) (2006), Publisher: McGraw-Hill.
- O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals (Sixth ed.) (2005), Publisher: Butterworth-Heinemann.
- K. J. Bathe, Finite Element Procedures (2006), ISBN: 097900490X.
- K. J. Bathe, Numerical methods in finite element analysis (1976), Publisher: Prentice-Hall.
- T. J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Publisher: Prentice-Hall.
- J. Chaskalovic, Finite Elements Methods for Engineering Sciences (2008), Springer-Verlag.
For Adaptive Finite Element Method - J.M. Melenk, hp-Finite Element Methods for Singular Perturbations (2002), Publisher: Springer.
- C. Schwab, p- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (1998), Publisher: Oxford University Press.
- L. Demkowicz, J. Kurtz, D. Pardo, W. Rachowicz, M. Paszynski and A. Zdunek: Computing with hp-Adaptive Finite Elements (2007).
- C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element Method (1987), Cambridge University Press.
- W.L. Briggs, V.E. Henson and S.F. McCormick: A Multigrid Tutorial (2000), Publisher: SIAM.
- G.E. Karniadakis and S. J. Sherwin: Spectral/hp Element Methods for CFD (1999), Publisher: Oxford University Press
- Barry F. Smith, Peter E. Bjrstad and William D. Gropp: Domain Decomposition: Parallel multilevel Methods for Elliptic Differential Equations, Publisher: Cambridge University Press.
For Discontinuous Galerkin (DG) Method - A. Cangiani, Z. Dong, E.H. Georgoulis, and P. Houston, hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes (2017), Springer Briefs in Mathematics.
- B. Cockburn, G. E. Karniadakis and C.-W. Shu (eds.), Discontinuous Galerkin methods. Theory, computation and applications (2000), Lecture Notes in Computational Science and Engineering, 11. Springer-Verlag, Berlin, 2000.
- D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Application (2011)s Vol. 69, Springer-Verlag.
- J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2008), Springer Texts in Applied Mathematics 54. Springer Verlag.
- B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM Frontiers in Applied Mathematics.
- Adaptive Finite Element Methods by R. Verfurth.
- PLTMG 12.0 by R. E. Bank.