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Improved uniform error bounds on time-splitting methods are rigorously proven for the long-time dyna-
mics of the weakly nonlinear Dirac equation (NLDE), where the nonlinearity strength is characterized by
a dimensionless parameter ε ∈ (0, 1]. We adopt a second-order Strang splitting method to discretize the
NLDE in time, and combine with the Fourier pseudospectral method in space for the full-discretization.
By employing the regularity compensation oscillation (RCO) technique, where the high frequency modes
are controlled by the regularity of the exact solution, and the low frequency modes are analyzed by phase
cancellation and energy method, we establish improved uniform error bounds at O(ε2τ2) and O(hm−1 +
ε2τ2) for the second-order Strang splitting semidiscretization and full-discretization up to the long-time
Tε = T/ε2 with T > 0 fixed, respectively. Furthermore, the numerical scheme and error estimates are
extended to an oscillatory NLDE, which propagates waves with O(ε2) wavelength in time and at O(ε−2)

wave speed in space. Finally, numerical examples verifying our analytical results are given.

Keywords: nonlinear Dirac equation; long-time dynamics; time-splitting method; improved uniform error
bound; regularity compensation oscillation (RCO).

1. Introduction

Long-time dynamics of Hamiltonian partial differential equations (PDE) has attracted much interest in
recent years from both analytical and numerical aspects (Cazenave & Vazquez, 1986; Faou et al., 2010;
Faou & Grébert, 2011; Sasaki, 2015). The change of a small nonlinear perturbation to the dynamics of
a linear Hamiltonian PDE deserves careful considerations (Hairer & Lubich, 2008; Gauckler & Lubich,
2010). The nonlinear Dirac equation (NLDE) is widely used in many fields such as the electron self-
interaction (Dirac, 1928; Esteban & Séré, 1997), quantum field theory (Thirring, 1958; Soler, 1970),
Bose–Einstein condensate (BEC) (Haddad & Carr, 2015) and graphene as well as other 2D materials
(Fefferman & Weistein, 2012; Brinkman et al., 2014).
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 655

We start with the NLDE in three dimensions (3D) (Dirac, 1928, 1958)

i�∂tΨ =
⎛⎝−ic�

3∑
j=1

αj∂j + mc2β

⎞⎠Ψ + F(Ψ )Ψ , x ∈ R3, t > 0. (1.1)

Here, i = √−1 is the imaginary unit, t is time, x = (x1, x2, x3)
T is the spatial coordinate vector,

∂j represents ∂xj
for j = 1, 2, 3 and Ψ := Ψ (t, x) = (ψ1(t, x), ψ2(t, x), ψ3(t, x), ψ4(t, x))T ∈ C4 is

the complex-valued spinor wave function. The physical constants in (1.1) include the reduced Planck
constant �, the speed of the light c and the particle’s rest mass m. In addition, the 4×4 matrices α1, α2, α3
and β are defined as

α1 =
(

0 σ1
σ1 0

)
, α2 =

(
0 σ2
σ2 0

)
, α3 =

(
0 σ3
σ3 0

)
, β =

(
I2 0
0 −I2

)
, (1.2)

where σj (j = 1, 2, 3) are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.3)

The nonlinearity F(Ψ ) in (1.1) is usually taken as

F(Ψ ) = g1(Ψ
∗βΨ )β + g2|Ψ |2I4, (1.4)

where g1, g2 ∈ R are two parameters, |Ψ |2 = Ψ ∗Ψ with Ψ ∗ = Ψ
T

the complex conjugate transpose of
Ψ and I4 is the 4 × 4 identity matrix. The choice of nonlinearity is motivated from BEC with a chiral
confinement and/or spin-orbit coupling, e.g., g1 = 0 and g2 �= 0 (Chang et al., 1975; Haddad & Carr,
2015), and the so-called Soler model in quantum field theory, e.g., g2 = 0 and g1 �= 0 (Thirring, 1958;
Soler, 1970; Fushchich & Shtelen, 1983).

To study the dynamics, the initial data is usually assigned as

Ψ (t = 0, x) = Ψ0(x), x ∈ R3.

The NLDE (1.1) is dispersive and time symmetric, and it conserves the total mass as

‖Ψ (t, ·)‖2 :=
∫
R3

|Ψ (t, x)|2 dx =
∫
R3

4∑
j=1

|ψj(t, x)|2 dx ≡ ‖Ψ (0, ·)‖2 = ∥∥Ψ0

∥∥2 , t > 0, (1.5)

and the energy as

E(t) :=
∫
R3

⎛⎝−ic�
3∑

j=1

Ψ ∗αj∂jΨ + mc2Ψ ∗βΨ + H(Ψ )

⎞⎠ dx ≡ E(0), t > 0, (1.6)
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656 W. BAO ET AL.

where

H(Ψ ) = g1

2

(
Ψ ∗βΨ

)2 + g2

2
|Ψ |4, Ψ ∈ C4. (1.7)

For the nondimensionalization of the NLDE (1.1), we take

x̃ = x
xs

, t̃ = t

ts
, Ψ̃ (t̃, x̃) = x3/2

s Ψ (t, x), (1.8)

where the scaling is L2 invariant, and xs and ts are the length unit and time unit, respectively. When
the interaction energy (of order gjx

−3
s , j = 1, 2 ) is significantly less than the kinetic energy (of order

c�/xs = mc2), i.e., gjx
−2
s /c� = ε2 (j = 1, 2) with the dimensionless parameter 0 < ε � 1, under the

choice in the standard regime as xs = �

mc and ts = �

mc2 , plugging (1.8) into (1.1), after some simplification
and then removing all ,̃ we obtain the following dimensionless NLDE in 3D

i∂tΨ =
⎛⎝−i

3∑
j=1

αj∂j + β

⎞⎠Ψ + ε2F(Ψ )Ψ , (1.9)

where

F(Ψ ) = λ1(Ψ
∗βΨ )β + λ2|Ψ |2I4, Ψ ∈ C4, (1.10)

with λ1, λ2 = O(1) two dimensionless constants for the interaction strength. The weakly interacting
regime has been adopted to study the BEC of 87Rb (Haddad & Carr, 2009).

By introducing a re-scaling in time s = ε2t and denoting Θ(s, x) = Ψ (s/ε2, x), we can reformulate
the weakly NLDE (1.9) to an oscillatory NLDE as

i∂sΘ(s, x) =
⎛⎝−i

1

ε2

3∑
j=1

αj∂j + 1

ε2 β

⎞⎠Θ(s, x) + F(Θ(s, x))Θ(s, x), x ∈ R3, s > 0, (1.11)

which is the NLDE in the simultaneously massless and nonrelativistic regime (Bao et al., 2022b), i.e.,
the mass of the particle is much less than the mass unit and the wave speed is much less than the speed
of light. The oscillatory NLDE (1.11) propagates waves with wavelength at O(ε2) in time and O(1) in
space with the wave speed at O(ε−2). We emphasize that it is quite different from the NLDE in the
nonrelativistic regime, where the wave speed is O(1) (Bao et al., 2020). The dynamics of the oscillatory
NLDE (1.11) up to the fixed time T is equivalent to the long-time dynamics of the weakly NLDE (1.9)
up to the time T/ε2.

As a common practice, it is desirable to consider (1.11) or (1.9) on a bounded rectangular domain
with periodic boundary condition. In one dimension (1D) and two dimensions (2D), the weakly NLDE
(1.9) can be simplified to the following NLDE for the two-component wave function Φ := Φ(t, x) =
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 657

(φ1(t, x), φ2(t, x))T ∈ C2 (d = 1, 2) as (Bao et al., 2016)

i∂tΦ =
⎛⎝−i

d∑
j=1

σj∂j + σ3

⎞⎠Φ + ε2F(Φ)Φ, x ∈ Ω ⊂ Rd, (1.12)

where Ω = ∏d
j=1(aj, bj) ⊂ Rd is a bounded domain and the periodic boundary condition is imposed, I2

is the 2 × 2 identity matrix and

F(Φ) = λ1(Φ
∗σ3Φ)σ3 + λ2|Φ|2I2, Φ ∈ C2. (1.13)

The initial data is taken as

Φ(t = 0, x) = Φ0(x), x ∈ Ω . (1.14)

In addition, the NLDE (1.12) conserves the total mass as

‖Φ(t, ·)‖2 :=
∫

Ω

|Φ(t, x)|2 dx =
∫

Ω

2∑
j=1

|φj(t, x)|2 dx ≡ ‖Φ(0, ·)‖2 = ∥∥Φ0

∥∥2 , t � 0, (1.15)

and the energy as

E(t) :=
∫

Ω

⎛⎝−i
d∑

j=1

Φ∗σj∂jΦ + Φ∗σ3Φ + ε2G(Φ)

⎞⎠ dx ≡ E(0), t � 0, (1.16)

where

G(Φ) = λ1

2

(
Φ∗σ3Φ

)2 + λ2

2
|Φ|4, Φ ∈ C2. (1.17)

Furthermore, by introducing a new variable Υ := Υ (t, x) = εΦ(t, x), we can reformulate the weakly
NLDE (1.12) with initial data (1.14) into the following NLDE with O(ε) initial data as⎧⎪⎪⎪⎨⎪⎪⎪⎩

i∂tΥ =
⎛⎝−i

d∑
j=1

σj∂j + σ3

⎞⎠Υ + F(Υ )Υ , x ∈ Ω , t > 0,

Υ (t = 0, x) = εΦ0(x).

(1.18)

The problem with small initial data is widely used in the study on the existence of solutions and long-
time dynamics of the nonlinear problem. For convenience of readers, Table 1 shows the properties of the
NLDE in different scalings.

For the NLDE (1.12) with ε = 1, i.e., the classical regime, there are extensive analytical and
numerical studies in the literature. For the existence and multiplicity of bound states and/or standing wave
solutions, we refer to Cazenave & Vazquez (1986), Balabane et al. (1988), Fushchich & Zhdanov (1989),
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658 W. BAO ET AL.

Table 1 Comparison of the NLDE in different scalings

weakly
NLDE (1.12)

small data
(1.18)

oscillatory
(1.11)

nonrelativistic regime
(Bao et al., 2017)

amplitude O(1) O(ε) O(1) O(1)
wavelength in space O(1) O(1) O(1) O(1)

wavelength in time O(1) O(1) O(ε2) O(ε2)

wave velocity O(1) O(1) O(ε−2) O(1)

energy O(1) O(ε2) O(ε−2) O(ε−2)

life-span O(ε−2) O(ε−2) O(1) O(1)

Esteban & Séré (1997), Pecher (2014), Bartsch & Ding (2006), Komech & Komech (2010) and references
therein. For the special case d = 1 and ε = 1 in the NLDE (1.12) with λ1 = −1 and λ2 = 0 in the
nonlinearity (1.13), it admits explicit soliton solutions (Rafelski, 1977; Takahashi, 1979; Fushchich &
Shtelen, 1983; Mathieu, 1985). In the numerical aspects, various numerical schemes have been proposed
and analyzed, including finite difference time domain methods (Bao et al., 2016; Feng & Yin, 2022),
exponential wave integrator Fourier pseudospectral method (Bao et al., 2016; Feng et al., 2022) and
time-splitting Fourier pseudospectral (TSFP) method (De Frutos & Sanz-Serna, 1989; Fillion-Gourdeau
et al., 2012; Bao et al., 2020). However, for the NLDE (1.12) with 0 < ε � 1, it is interesting to
study the long-time dynamics for t ∈ [0, Tε] with Tε = O(1/ε2). To the best of our knowledge, there
are very few numerical analysis results on the error bounds of numerical methods for the long-time
dynamics of the NLDE (1.12) in the literature. Recently, we rigorously carried out the error bounds for
the long-time dynamics of the Dirac equation with small potentials (Bao et al., 2022b; Feng & Yin, 2022;
Feng et al., 2022). Based on the results for the linear case, the TSFP method performs much better than
other numerical methods, with the improved uniform error bounds established in the long-time regime
by employing the regularity compensation oscillation (RCO) technique (Bao et al., 2022b). The aim
of this paper is to establish improved uniform bounds on time-splitting methods for the NLDE (1.12)
up to the time at O(1/ε2). Then, we combine the Fourier pseudospectral method in space and extend
the improved uniform error bounds to the full-discretization. With the help of the RCO technique, the
improved uniform error bounds are at O(ε2τ 2 + τm−1

0 ) and O(hm−1 + ε2τ 2 + τm−1
0 ), respectively, for

the second-order semidiscretization and full-discretization for the NLDE with O(ε2)-nonlinearity up to
the time at O(1/ε2), with m � 3 depending on the regularity of the exact solution and τ0 ∈ (0, 1) a fixed
chosen parameter. Specifically, when the exact solution is smooth, the improved uniform error bounds
are at O(ε2τ 2) and O(hm−1 + ε2τ 2) for the second-order semidiscretization and full-discretization,
respectively. In contrast with the previous results by standard error estimates in the literature, they are
indeed better (or improved) than the uniform error bounds at O(τ 2) and O(hm−1 + τ 2) up to the time
at O(1/ε2) for the second-order time-splitting semidiscretization and full-discretization, respectively,
especially when 0 < ε � 1. Moreover, the improved uniform error bounds are extended to the discrete
energy of the TSFP method at O(hm−1 + ε2τ 2) up to the time at O(1/ε2).

The main idea of the RCO technique is to choose the frequency cut-off parameter τ0 and control
high frequency modes (> 1/τ0) by the regularity of the exact solution, and analyze low frequency
modes by phase cancellation and energy method. Similar to the (nonlinear) Schrödinger equation
on an irrational rectangle and the nonlinear Klein-Gordon equation as nonperiodic examples in
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 659

Bao et al. (2022a, 2023), the free Dirac operator is also nonperiodic in 1D. The RCO technique is,
not only applicable to the periodic evolutionary PDE, but also to the nonperiodic case.

The rest of this paper is organized as follows. In Section 2, we discretize the NLDE (1.12) in time
by the Strang splitting method to obtain the semidiscretization and combine the Fourier pseudospectral
method in space for the full-discretization. In Section 3, we establish improved uniform error bounds up
to the time at O(1/ε2) for the semidiscretization and full-discretization, respectively. In Section 4, we
present some numerical results to confirm our error estimates and discuss the improved error bounds for
an oscillatory NLDE. Finally, some conclusions are drawn in Section 5. Throughout this paper, we adopt
the notation A � B to represent that there exists a generic constant C > 0, which is independent of the
mesh size h and time step τ , as well as the parameter ε such that |A| � CB.

2. Discretizations

In this section, we apply a second-order time-splitting method to discretize the NLDE (1.12) and combine
the Fourier pseudospectral method in space to derive the TSFP method. For simplicity of notations,
we only present the numerical methods and their analysis in 1D, i.e., d = 1. Numerical schemes and
corresponding results can be easily generalized to the NLDE (1.12) in 2D and to the four-component
NLDE (1.9) in 3D. In 1D, the NLDE (1.12) on the computational domain Ω = (a, b) with periodic
boundary conditions collapses to

i∂tΦ = (−iσ1∂x + σ3

)
Φ + ε2F(Φ)Φ, x ∈ Ω , t > 0, (2.1)

Φ(t, a) = Φ(t, b), t � 0; Φ(0, x) = Φ0(x), x ∈ Ω , (2.2)

where Φ := Φ(t, x), Φ0(a) = Φ0(b) and the nonlinearity F(Φ) is given in (1.13).
For an integer m � 0, we denote by Hm(Ω) the set of functions u(x) ∈ L2(Ω) with finite Hm-norm

given by

‖u‖2
Hm =

∑
l∈Z

(
1 + μ2

l

)m ∣∣̂ul

∣∣ 2, for u(x) =
∑
l∈Z

ûl eiμl(x−a), μl = 2π l

b − a
, (2.3)

where ûl(l ∈ Z) are the Fourier coefficients of the function u(x) (Shen et al., 2011). In fact, the
space Hm(Ω) is the subspace of the classic Sobolev space Wm,2(Ω), which consists of functions with
derivatives of order up to m − 1 being (b − a)-periodic.

Denote the index set TM = {l | l = −M/2, −M/2 + 1, . . . , M/2 − 1} and the spaces

XM =
{

U = (U0, . . . , UM)T | Uj ∈ C2, j = 0, 1, . . . , M, U0 = UM

}
,

YM = ZM × ZM , ZM = span
{
φl(x) = eiμl(x−a), l ∈ TM

}
.

The projection operator PM : (L2(Ω))2 → YM is defined as

(PMU)(x) :=
∑

l∈TM

Ûl eiμl(x−a), U(x) ∈ (L2(Ω))2, (2.4)
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660 W. BAO ET AL.

where

Ûl = 1

b − a

∫ b

a
U(x) e−iμl(x−a) dx, l ∈ TM . (2.5)

Define the space (Cper(Ω))2 = {U ∈ (C(Ω))2 | U(a) = U(b)} and the interpolation operator IM :

(Cper(Ω))2 → YM or IM : XM → YM as

(IMU)(x) :=
∑

l∈TM

Ũl eiμl(x−a), U(x) ∈ (Cper(Ω))2 or U ∈ XM , (2.6)

where

Ũl = 1

M

M−1∑
j=0

Uj e−2ijlπ/M , l ∈ TM , (2.7)

with Uj = U(xj) for a function U(x).

2.1 Semidiscretization by a second-order time-splitting method

Denote the free Dirac operator as

T := −iσ1∂x + σ3, (2.8)

then the NLDE (2.1) can be expressed as

i∂tΦ(t, x) = TΦ(t, x) + ε2F(Φ(t, x))Φ(t, x), x ∈ Ω , t > 0. (2.9)

Choose the time step size as τ = Δt > 0 and time steps tn = nτ for n = 0, 1, . . .. Denote by
Φ[n] := Φ[n](x) the approximation of Φ(tn, x) for n � 0, then a semidiscretization for the NLDE (2.1)
via the second-order time-splitting (Strang splitting) could be expressed as (Strang, 1968; Lubich, 2008;
Bao et al., 2016, 2021b)

Φ[n+1] = Sτ

(
Φ[n]

)
:= e− iτ

2 Te
−iε2τF

(
e− iτ

2 T
Φ[n]

)
e− iτ

2 TΦ[n], n = 0, 1, . . . , (2.10)

with the initial data taken as Φ[0] = Φ0(x) for x ∈ Ω .

Remark 2.1 The second-order time-splitting (Strang splitting) method is applied to discretize the NLDE
(2.1) in time and it is straightforward to design the first-order Lie–Trotter splitting (Trotter, 1959)
and higher order schemes, e.g., the fourth-order partitioned Runge–Kutta (PRK4) splitting method
(McLachlan & Quispel, 2002; Bao & Yin, 2019).

2.2 Full-discretization

Given a spatial mesh size h = (b − a)/M with M an even positive integer, the spatial grid points
are xj := a + jh for j = 0, 1, . . . , M. Let Φn

j be the numerical approximation of Φ(tn, xj) and denote
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 661

Φn = (Φn
0 , Φn

1 , . . . , Φn
M)T ∈ XM as the solution vector at t = tn. The initial data is taken as Φ0

j = Φ0(xj)

for j = 0, 1, . . . , M, then from time t = tn to t = tn+1, the TSFP method for discretizing the NLDE (2.1)
is given as

Φ
(1)
j =

∑
l∈TM

e−i
τΓl

2 (̃Φn)l eiμl(xj−a) =
∑

l∈TM

Ql e−i
τDl

2 (Ql)
T (̃Φn)l e

2ijlπ
M ,

Φ
(2)
j = e

−iε2τF
(
Φ

(1)
j

)
Φ

(1)
j = e−iε2τΛjΦ

(1)
j , 0 � j � M, n � 0, (2.11)

Φn+1
j =

∑
l∈TM

e−i
τΓl

2 (̃Φ(2))l eiμl(xj−a) =
∑

l∈TM

Ql e−i
τDl

2 (Ql)
T (̃Φ(2))l e

2ijlπ
M ,

where Γl = μlσ1 + σ3 = QlDl(Ql)
T with δl =

√
1 + μ2

l ,

Γl =
(

1 μl
μl −1

)
, Ql =

( 1+δl√
2δl(1+δl)

− μl√
2δl(1+δl)

μl√
2δl(1+δl)

1+δl√
2δl(1+δl)

)
, Dl =

(
δl 0
0 −δl

)
, (2.12)

and Λj = diag(Λj,+, Λj,−) with Λj,± = λ2

∣∣∣Φ(1)
j

∣∣∣ 2 ± λ1

(
Φ

(1)
j

)∗
σ3Φ

(1)
j .

3. Improved uniform error bounds

In this section, we rigorously prove the improved uniform error bounds for the second-order time-
splitting method in propagating the NLDE with O(ε2) nonlinearity up to the long-time at O(1/ε2). For
the simplicity of presentation, we shall assume λ1 = 0 in the subsequent discussion, where the results
and the proof are also valid if λ1 �= 0 by using the same arguments.

3.1 Main results

We assume the exact solution Φ(t, x) of the NLDE (2.1) up to the time at Tε = T/ε2 with T > 0 fixed
satisfies

(A) Φ ∈ L∞([0, Tε]; (Hm(Ω))2), m � 3.

Let Φ[n] be the approximation obtained from the time-splitting method (2.10) and λ1 = 0 in (1.13).
According to the standard analysis in Bao et al. (2016), under the assumption (A), for sufficiently small
0 < τ � τc with τc > 0 a constant, there exists a constant M > 0 depending on T and ‖Φ‖L∞([0,Tε];(Hm)2)

such that

∥∥∥Φ[n]
∥∥∥

H1
� M,

∥∥IMΦn
∥∥

H1 � M, 0 � n � T/ε2

τ
. (3.1)

In this work, we will establish the following improved uniform error bounds up to the long-time Tε.
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662 W. BAO ET AL.

Theorem 3.1 Under the assumption (A), for 0 < τ0 < 1 sufficiently small and independent of ε such
that, when 0 < τ � α

π(b−a)τ0

2
√

τ 2
0 (b−a)2+4π2(1+τ 2

0 )
for a fixed constant α ∈ (0, 1), we have the following

improved uniform error bound for any ε ∈ (0, 1]∥∥∥Φ(tn, x) − Φ[n]
∥∥∥

H1
� ε2τ 2 + τm−1

0 , 0 � n � T/ε2

τ
. (3.2)

In particular, if the exact solution is sufficiently smooth, e.g., Φ(t, x) ∈ (H∞(Ω))2, the last term τm−1
0

decays exponentially fast and could be ignored practically for small enough τ0, and the improve uniform
error bound would become ∥∥∥Φ(tn, x) − Φ[n]

∥∥∥
H1

� ε2τ 2, 0 � n � T/ε2

τ
. (3.3)

Let Φn be the numerical approximation obtained from the TSFP (2.11), then we have the following
improved uniform error bounds for the full-discretization.

Theorem 3.2 Under the assumption (A), there exist h0 > 0 and 0 < τ0 < 1 sufficiently small and
independent of ε such that, for any 0 < ε � 1, when 0 < h � h0 and 0 < τ � α

π(b−a)τ0

2
√

τ 2
0 (b−a)2+4π2(1+τ 2

0 )

for a fixed constant α ∈ (0, 1), the following improved uniform error bound holds∥∥Φ(tn, x) − IMΦn
∥∥

H1 � hm−1 + ε2τ 2 + τm−1
0 , 0 � n � T/ε2

τ
. (3.4)

Similarly, for the sufficiently smooth exact solution, e.g., Φ(t, x) ∈ (H∞(Ω))2, the improve uniform
error bound would become∥∥Φ(tn, x) − IMΦn

∥∥
H1 � hm−1 + ε2τ 2, 0 � n � T/ε2

τ
. (3.5)

Remark 3.3 Here, we prove H1-error bounds for 1D problem to control the nonlinearity since H1(R)

is an algebra. Corresponding error estimates should be in H2-norm for 2D and 3D cases (2D case in the
sense of (1.12), and 3D case in the sense of the four-component NLDE given in Bao et al., 2016). Of
course, higher regularity assumptions of the exact solution are required for higher order Sobolev norm
estimates.

Remark 3.4 Under appropriate assumptions of the exact solution, the improved uniform error bounds
could be extended to the first-order Lie–Trotter splitting and the fourth-order PRK splitting method with
improved uniform error bounds at ε2τ and ε2τ 4, respectively.

Remark 3.5 For the NLDE (2.1) with general matrix nonlinearity F(Φ) in (1.13) when λ1 �= 0, the
proof is similar and we omit the details here for brevity.

Remark 3.6 Define the discrete energy at t = tn with the mesh size h as

En
h = h

M−1∑
j=0

[
−i
(
Φn

j

)∗
σ1(Φ

′)n
j +

(
Φn

j

)∗
σ3Φ

n
j + ε2G

(
Φn

j

)]
, (3.6)
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 663

where

(Φ ′)n
j = i

∑
l∈TM

μl(̃Φ
n)l eiμl(xj−a), j = 0, 1, . . . , M − 1, (3.7)

then we have the following estimate for the discrete energy∣∣∣En
h − E0

h

∣∣∣ � hm−1 + ε2τ 2 + τm−1
0 , 0 � n � T/ε2

τ
. (3.8)

Similarly, for the sufficiently smooth exact solution, e.g., Φ(t, x) ∈ (H∞(Ω))2, the estimate for the
discrete energy would become

∣∣∣En
h − E0

h

∣∣∣ � hm−1 + ε2τ 2, 0 � n � T/ε2

τ
. (3.9)

3.2 Proof for Theorem 3.1

For the simplicity of notation, we shall write Φ(tn) := Φ(tn, x) for x ∈ Ω in the proof. Denote the exact
solution flow Φ(tn) → Φ(tn+1) as

Φ(tn+1) = Se,τ (Φ(tn)), 0 � n � T/ε2

τ
. (3.10)

We begin with the local truncation error that is generated by one time step computed via (2.10). By Taylor
expansion, we have

Sτ (Φ(tn)) = e−iτTΦ(tn) − iε2τe− iτ
2 T
(

F
(

e− iτ
2 TΦ(tn)

)
e− iτ

2 TΦ(tn)
)

− ε4τ 2
∫ 1

0
(1 − θ) e− iτ

2 Te
−iθτF

(
e− iτ

2 T
Φ(tn)

) (
F
(

e− iτ
2 TΦ(tn)

))2
e− iτ

2 TΦ(tn) dθ .

On the other hand, by repeatedly using Duhamel’s principle (variation-of-constants formula), we can
write the exact solution Φ(tn+1) as

Φ(tn+1) = e−iτTΦ(tn) − iε2
∫ τ

0
e−i(τ−s)T (F(Φ(tn + s))Φ(tn + s)

)
ds

= e−iτTΦ(tn) − iε2
∫ τ

0
e−i(τ−s)T

(
F(Φ(tn + s)) e−isTΦ(tn)

)
ds

− ε4
∫ τ

0

∫ s

0
e−i(τ−s)TF(Φ(tn + s))

(
e−i(s−ω)TF(Φ(tn + ω))Φ(tn + ω)

)
dω ds.
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664 W. BAO ET AL.

Denote

fs(Φ(tn)) = e−i(τ−s)T
(

F(Φ(tn + s)) e−isTΦ(tn)
)

, (3.11)

Bs,ω(Φ(tn)) = e−i(τ−s)TF(Φ(tn + s)) e−i(s−ω)TF(Φ(tn + ω)) e−iωTΦ(tn), (3.12)

then we have the following estimates for the local truncation error.

Lemma 3.7 For 0 < ε � 1, the local truncation error for the discrete-in-time second-order splitting
(2.10) can be written as

E n := Sτ (Φ(tn)) − Φ(tn+1)

= F (Φ(tn)) + ε4
[∫ τ

0

∫ s

0
Bs,ω(Φ(tn)) dω ds − τ 2

2
Bτ/2,τ/2(Φ(tn))

]
+ ε2Rn

1 + ε4Rn
2 + ε4Rn

3 ,

where

F (Φ(tn)) = iε2
(∫ τ

0
fs(Φ(tn)) ds − τ fτ/2(Φ(tn))

)
,

Rn
1 = iτe− iτ

2 T
[
F(Φ(tn + τ/2)) − F

(
e− iτ

2 TΦ(tn)
)]

e− iτ
2 TΦ(tn),

Rn
2 = τ 2

2
Bτ/2,τ/2(Φ(tn)) − τ 2

∫ 1

0
(1 − θ) e− iτ

2 Te
−iθτF

(
e− iτ

2 T
Φ(tn)

) (
F
(

e− iτ
2 TΦ(tn)

))2
e− iτ

2 TΦ(tn) dθ ,

Rn
3 =

∫ τ

0

∫ s

0
e−i(τ−s)TF(Φ(tn + s))

(
e−i(s−ω)TF(Φ(tn + ω))Φ(tn + ω)

)
− Bs,ω(Φ(tn)) dω ds.

Under the assumption (A), the following error bounds hold∥∥F (Φ(tn))
∥∥

H1 � ε2τ 3,
∥∥Rn

1

∥∥
H1 � ε2τ 3,

∥∥Rn
2

∥∥
H1 � τ 3,

∥∥Rn
3

∥∥
H1 � τ 3, (3.13)∥∥∥∥∫ τ

0

∫ s

0
Bs,ω(Φ(tn)) dω ds − τ 2

2
Bτ/2,τ/2(Φ(tn))

∥∥∥∥
H1

� τ 3. (3.14)

Proof. We are going to estimate the terms in the local truncation error one-by-one. Express the quadrature
error in the second-order Peano form as∫ τ

0
fs(Φ(tn)) ds − τ fτ/2(Φ(tn)) = τ 3

∫ 1

0
κ2(θ)∂2

s fs(Φ(tn))|s=θτ dθ , κ2(θ) = 1

2
min{θ2, (1 − θ)2},

which implies

∥∥F (Φ(tn))
∥∥

H1 = ε2
∥∥∥∥∫ τ

0
fs(Φ(tn)) ds − τ fτ/2(Φ(tn))

∥∥∥∥
H1

� ε2τ 3. (3.15)
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 665

By Duhamel’s principle and Taylor expansion, we have

Φ(tn + τ/2) = e− iτ
2 TΦ(tn) − iε2

∫ τ
2

0
e−i(τ/2−s)TF(Φ(tn + s))Φ(tn + s) ds

= e− iτ
2 TΦ(tn) − iε2

(τ

2
e− iτ

2 TF(Φ(tn))Φ(tn) + O
(
∂s(F(Φ(tn + s))Φ(tn + s))τ 2

))
.

With a direct computation and the definition of the nonlinearity F(Φ), we have∥∥∥F(Φ(tn + τ/2)) − F
(

e− iτ
2 TΦ(tn)

)∥∥∥
W1,∞ � ε2τ 2,

which immediately implies
∥∥Rn

1

∥∥
H1 � ε2τ 3. Similarly, we can prove

∥∥Rn
2

∥∥
H1 � τ 3.

Moreover, the quadrature rule implies∥∥∥∥∫ τ

0

∫ s

0
Bs,ω(Φ(tn)) dω ds − τ 2

2
Bτ/2,τ/2(Φ(tn))

∥∥∥∥
H1

� τ 3 max
0�ω�s�τ

(∥∥∂sBs,ω(Φ(tn))
∥∥

H1 + ∥∥∂ωBs,ω(Φ(tn))
∥∥

H1

)
� τ 3,

and∥∥Rn
3

∥∥
H1 � τ 3 max

0�ω�s�τ

∥∥∥ e−i(τ−s)TF(Φ(tn + s))
(

e−i(s−ω)TF(Φ(tn + ω))∂ωΦ(tn + ω)
)∥∥∥

H1
� τ 3.

Combining above estimates, we complete the proof of Lemma 3.7. �
Now, we are ready to prove Theorem 3.1. Under the assumption (A), the nonlinearity could be

controlled by the estimates (3.1) for the numerical solution Φ[n]. Introducing the error function

e[n] := e[n](x) = Φ[n] − Φ(tn), n = 0, 1, . . . , (3.16)

we have the error equation as

e[n+1] = Sτ (Φ
[n]) − Sτ (Φ(tn)) + E n = e−iτTe[n] + Wn + E n, n � 0, (3.17)

where Wn := Wn(x) is given by

Wn(x) = e− iτ
2 T

⎡⎣⎛⎝e
−iε2τF

(
e− iτ

2 T
Φ[n]

)
− I2

⎞⎠ e− iτ
2 TΦ[n] −

⎛⎝e
−iε2τF

(
e− iτ

2 T
Φ(tn)

)
− I2

⎞⎠ e− iτ
2 TΦ(tn)

⎤⎦ ,

with the bound implied by (3.1)

∥∥Wn(x)
∥∥

H1 � ε2τ

∥∥∥e[n]
∥∥∥

H1
. (3.18)
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666 W. BAO ET AL.

Based on (3.17), we obtain

e[n+1] = e−i(n+1)τTe[0] +
n∑

k=0

e−i(n−k)τT
(

Wk + E k
)

, 0 � n � T/ε2

τ
− 1. (3.19)

Noticing e[0] = 0, combining (3.13), (3.14) and (3.18), we have the estimates for 0 � n � Tε/τ − 1,

∥∥∥e[n+1]
∥∥∥

H1
� ε2τ 2 + ε2τ

n∑
k=0

∥∥∥e[k]
∥∥∥

H1
+
∥∥∥∥∥

n∑
k=0

e−i(n−k)τTF (Φ(tk))

∥∥∥∥∥
H1

. (3.20)

In order to obtain the improved uniform error bounds (3.2), we will employ the RCO technique (Bao et
al., 2022a, 2023) to deal with the last term on the RHS of (3.20). From the NLDE (2.1), we find that
∂tΦ + iTΦ = O(ε2). It is natural to consider the ‘twisted variable’

Ψ (t, x) = eitTΦ(t, x), t � 0, (3.21)

which satisfies the equation ∂tΨ (t, x) = ε2eitT
(
F
(
e−itTΨ (t, x)

)
e−itTΨ (t, x)

)
. Under the assumption

(A), we have ‖Ψ ‖L∞([0,Tε];(Hm(Ω))2) � 1 and ‖∂tΨ ‖L∞([0,Tε];(Hm(Ω))2) � ε2 with

∥∥Ψ (tn+1) − Ψ (tn)
∥∥

Hm � ε2τ , 0 � n � T/ε2

τ
− 1. (3.22)

Step 1. Choose the cut-off parameter on the Fourier modes. Let τ0 ∈ (0, 1) and M0 = 21/τ0� ∈ Z+
(·� is the ceiling function) with 1/τ0 � M0/2 < 1 + 1/τ0. Under the assumption (A), we have the
following estimate ∥∥∥PM0

F
(

e−itkTPM0
Ψ (tk)

)
− F

(
e−itkTΨ (tk)

)∥∥∥
H1

� ε2ττm−1
0 . (3.23)

Based on above estimates, (3.20) would imply for 0 � n � Tε/τ − 1,

∥∥∥e[n+1]
∥∥∥

H1
� τm−1

0 + ε2τ 2 + ε2τ

n∑
k=0

∥∥∥e[k]
∥∥∥

H1
+ ∥∥L n

∥∥
H1 , (3.24)

with

L n =
n∑

k=0

ei(k+1)τTPM0
F
(

e−ikτT (PM0
Ψ (tk)

))
. (3.25)

Step 2. Analyze the low Fourier modes term L n. For l ∈ TM0
, define the index set I M0

l associated to l
as

I M0
l = {

(l1, l2, l3) | l1 − l2 + l3 = l, l1, l2, l3 ∈ TM0

}
. (3.26)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/2/654/7175097 by A*STAR
 c/o N

U
S C

entral Library user on 11 April 2024



IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 667

We introduce

Π+
l = Qldiag(1, 0)(Ql)

T , Π−
l = Qldiag(0, 1)(Ql)

T , (3.27)

where Π±
l are the projectors onto the eigenspaces of Γl corresponding to the eigenvalues ±δl,

respectively. Moreover, we have (Π±
l )T = Π±

l , Π+
l + Π−

l = I2, (Π±
l )2 = Π±

l , Π±
l Π∓

l = 0. By
direct computation, we have

eitTPM0
Ψ (tk) =

∑
l∈TM0

(
eitδlΠ+

l + e−itδlΠ−
l

)
Ψ̂l(tk) eiμl(x−a). (3.28)

In view of the definition of F in Lemma 3.7, we have the following expansion

ei(k+1)τTPM0

(
fs

(
e−ikτTPM0

Ψ (tk)
))

= λ2

∑
l∈TM0

∑
(l1,l2,l3)∈I

M0
l

∑
νj=±,j=1,2,3,4

G ν1,ν2,ν3,ν4
k,l,l1,l2,l3

(s) eiμl(x−a),

where the coefficients G ν1,ν2,ν3,ν4
k,l,l1,l2,l3

(s) are functions of s defined as

G ν1,ν2,ν3,ν4
k,l,l1,l2,l3

(s) = e
i(tk+s)δ

ν1,ν2,ν3,ν4
l,l1,l2,l3 Π

ν1
l

(
Ψ̂l2(tk)

)∗
Π

ν3
l2

Π
ν2
l1

Ψ̂l1(tk)Π
ν4
l3

Ψ̂l3(tk) (3.29)

with δ
ν1,ν2,ν3,ν4
l,l1,l2,l3

= ν1δl − ν2δl1 + ν3δl2 − ν4δl3 . Thus, we have

L n = λ2iε2
n∑

k=0

∑
l∈TM0

∑
(l1,l2,l3)∈I

M0
l

∑
νj=±,j=1,2,3,4

Υ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3

eiμl(x−a), (3.30)

where

Υ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3

= −τG ν1,ν2,ν3,ν4
k,l,l1,l2,l3

(τ/2) +
∫ τ

0
G ν1,ν2,ν3,ν4

k,l,l1,l2,l3
(s) ds = rν1,ν2,ν3,ν4

l,l1,l2,l3
e

itkδ
ν1,ν2,ν3,ν4
l,l1,l2,l3 cν1,ν2,ν3,ν4

k,l,l1,l2,l3
, (3.31)

and the vector coefficients cν1,ν2,ν3,ν4
l,l1,l2,l3

and the scalar coefficient rν1,ν2,ν3,ν4
l,l1,l2,l3

are given as

cν1,ν2,ν3,ν4
l,l1,l2,l3

= Π
ν1
l (Ψ̂l2(tk))

∗Πν3
l2

Π
ν2
l1

Ψ̂l1(tk)Π
ν4
l3

Ψ̂l3(tk), (3.32)

rν1,ν2,ν3,ν4
l,l1,l2,l3

= −τe
iτδ

ν1,ν2,ν3,ν4
k,l,l1,l2,l3

/2 +
∫ τ

0
e

isδ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3 ds

= O

(
τ 3
(
δ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3

)2
)

. (3.33)
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We only need to consider the case δ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3

�= 0 as rν1,ν2,ν3,ν4
l,l1,l2,l3

= 0 if δ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3

= 0. For l ∈ TM0
and

(l1, l2, l3) ∈ I M0
l , we have

∣∣∣δν1,ν2,ν3,ν4
l,l1,l2,l3

∣∣∣ � 4δM0/2 = 4
√

1 + μ2
M0/2 < 4

√
1 + 4π2(1 + τ0)

2

τ 2
0 (b − a)2

, (3.34)

which implies τ
2

∣∣∣δν1,ν2,ν3,ν4
l,l1,l2,l3

∣∣∣ < απ when 0 < τ � α
π(b−a)τ0

2
√

τ 2
0 (b−a)2+4π2(1+τ0)

2
:= τα

0 (0 < τ0, α < 1).

Since G ν1,ν2,ν3,ν4
k,l,l1,l2,l3

in (3.29) is similar, it suffices to consider the typical case ν1 = ν2 = ν3 = ν4 = +.

Denoting Sn
l,l1,l2,l3

= ∑n
k=0 e

itkδ
+,+,+,+
l,l1,l2,l3 (n � 0), for 0 < τ < τα

0 , we have

∣∣∣Sn
l,l1,l2,l3

∣∣∣ � 1∣∣∣sin (τδ
+,+,+,+
l,l1,l2,l3

/2
)∣∣∣ � C

τ

∣∣∣δ+,+,+,+
l,l1,l2,l3

∣∣∣ , ∀n ≥ 0, (3.35)

with C = 2απ
sin(απ)

. Using summation-by-parts, we find from (3.31) that

n∑
k=0

Υ
+,+,+,+
k,l,l1,l2,l3

= r+,+,+,+
l,l1,l2,l3,l4

[
n−1∑
k=0

Sk
l,l1,l2,l3

(
c+,+,+,+

k,l,l1,l2,l3
− c+,+,+,+

k+1,l,l1,l2,l3

)
+ Sn

l,l1,l2,l3 c+,+,+,+
n,l,l1,l2,l3

]
, (3.36)

with

c+,+,+,+
k,l,l1,l2,l3

− c+,+,+,+
k+1,l,l1,l2,l3

= Π+
l

((
Ψ̂l2(tk)

)∗
Π+

l2
Π+

l1

(
Ψ̂l1(tk) − Ψ̂l1(tk+1)

))
Π+

l3
Ψ̂l3(tk)

+ Π+
l

(
Ψ̂l2(tk) − Ψ̂l2(tk+1)

)∗
Π+

l2
Π+

l1
Ψ̂l1(tk+1)Π

+
l3

Ψ̂l3(tk)

+ Π+
l

(
Ψ̂l2(tk+1)

)∗
Π+

l2
Π+

l1
Ψ̂l1(tk+1)Π

+
l3

(
Ψ̂l3(tk) − Ψ̂l3(tk+1)

)
. (3.37)

Combining (3.33), (3.35), (3.36) and (3.37), we have

∣∣∣∣∣
n∑

k=0

Υ
+,+,+,+
k,l,l1,l2,l3

∣∣∣∣∣ � τ 2
∣∣∣δ+,+,+,+

l,l1,l2,l3

∣∣∣ n−1∑
k=0

( ∣∣Ψ̂l1(tk) − Ψ̂l1(tk+1)
∣∣ ∣∣Ψ̂l2(tk)

∣∣ ∣∣Ψ̂l3(tk)
∣∣

+ ∣∣Ψ̂l1(tk+1)
∣∣ ∣∣Ψ̂l2(tk) − Ψ̂l2(tk+1)

∣∣ ∣∣Ψ̂l3(tk)
∣∣

+ ∣∣Ψ̂l1(tk+1)
∣∣ ∣∣Ψ̂l2(tk+1)

∣∣ ∣∣Ψ̂l3(tk) − Ψ̂l3(tk+1)
∣∣ )

+ τ 2
∣∣∣δ+,+,+,+

l,l1,l2,l3

∣∣∣ ∣∣Ψ̂l1(tn)
∣∣ ∣∣Ψ̂l2(tn)

∣∣ ∣∣Ψ̂l3(tn)
∣∣ . (3.38)
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 669

The same estimates (3.38) above hold for
∑n

k=0 Υ
±,±,±,±
k,l,l1,l2,l3

(l ∈ TM0
, (l1, l2, l3) ∈ T M0

l ). For the H1-

norm estimates, we notice that for l ∈ TM0
and (l1, l2, l3) ∈ I M0

l , there holds

(
1 + |μl|

) ∣∣∣δν1,ν2,ν3,ν4
l,l1,l2,l3

∣∣∣ � 3∏
j=1

(
1 + μ2

lj

)
. (3.39)

Based on (3.30), (3.38) and (3.39), we have

∥∥L n
∥∥2

H1 =λ2
2ε

4
∑

l∈TM0

(
1 + μ2

l

) ∣∣∣∣∣∣∣
∑

(l1,l2,l3)∈I
M0

l

∑
νj=±

n∑
k=0

Υ
ν1,ν2,ν3,ν4
k,l,l1,l2,l3

∣∣∣∣∣∣∣ 2

� ε4τ 4

⎧⎪⎨⎪⎩
∑

l∈TM0

⎛⎜⎝ ∑
(l1,l2,l3)∈I

M0
l

∣∣Ψ̂l1(tn)
∣∣ ∣∣Ψ̂l2(tn)

∣∣ ∣∣Ψ̂l3(tn)
∣∣ 3∏

j=1

(1 + μ2
lj)

⎞⎟⎠
2

+ n
n−1∑
k=1

⎡⎢⎣ ∑
l∈TM0

⎛⎜⎝ ∑
(l1,l2,l3)∈I

M0
l

∣∣Ψ̂l1(tk) − Ψ̂l1(tk+1)
∣∣ ∣∣Ψ̂l2(tk)

∣∣ ∣∣Ψ̂l3(tk)
∣∣ 3∏

j=1

(
1 + μ2

lj

)⎞⎟⎠
2

+
⎛⎜⎝ ∑

(l1,l2,l3)∈I
M0

l

∣∣Ψ̂l1(tk+1)
∣∣ ∣∣Ψ̂l2(tk) − Ψ̂l2(tk+1)

∣∣ ∣∣Ψ̂l3(tk)
∣∣ 3∏

j=1

(
1 + μ2

lj

)⎞⎟⎠
2

+
⎛⎜⎝ ∑

(l1,l2,l3)∈I
M0

l

∣∣Ψ̂l1(tk+1)
∣∣ ∣∣Ψ̂l2(tk+1)

∣∣ ∣∣Ψ̂l3(tk) − Ψ̂l3(tk+1)
∣∣ 3∏

j=1

(
1 + μ2

lj

)⎞⎟⎠
2⎤⎥⎦
⎫⎪⎬⎪⎭ .

(3.40)

Introduce the auxiliary function Θ(x) = ∑
l∈Z(1 + μ2

l )
∣∣Ψ̂l(tn)

∣∣ eiμl(x−a), where Θ(x) ∈ Hm−2 implied
by assumption (A) and ‖Θ‖Hs � ‖Ψ (tn)‖Hs+2 (s � m − 2). Expanding

|Θ(x)|2Θ(x) =
∑
l∈Z

∑
l1−l2+l3=l,lj∈Z

3∏
j=1

((
1 + μ2

lj

) ∣∣∣Ψ̂lj(tn)
∣∣∣) eiμl(x−a),

we could obtain that

∑
l∈TM0

⎛⎜⎝ ∑
(l1,l2,l3)∈I

M0
l

∣∣Ψ̂l1(tn)
∣∣ ∣∣Ψ̂l2(tn)

∣∣ ∣∣Ψ̂l3(tn)
∣∣ 3∏

j=1

(
1 + μ2

lj

)⎞⎟⎠
2

�
∑
l∈Z

⎛⎝ ∑
l1−l2+l3=l,lj∈Z

∣∣Ψ̂l1(tn)
∣∣ ∣∣Ψ̂l2(tn)

∣∣ ∣∣Ψ̂l3(tn)
∣∣ 3∏

j=1

(
1 + μ2

lj

)⎞⎠2

= ‖|Θ(x)|2Θ(x)‖2
L2 � ‖Θ(x)‖6

H1 � ‖Ψ (tn)‖6
H3 � 1. (3.41)
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670 W. BAO ET AL.

Thus, in light of (3.22), we could obtain the estimate for each term in (3.25) similarly as

∥∥L n
∥∥2

H1 � ε4τ 4

[
‖Ψ (tk)‖6

H3 + n
n−1∑
k=1

‖Ψ (tk) − Ψ (tk+1)‖2
H3(‖Ψ (tk)‖H3 + ‖Ψ (tk+1)‖H3)

4

]

� ε4τ 4 + nε4τ 4(ε2τ)2 � ε4τ 4, 0 � n � T/ε2

τ
− 1. (3.42)

Finally, combining (3.24) and (3.42), we have

‖e[n+1]‖H1 � τm−1
0 + ε2τ 2 + ε2τ

n∑
k=0

‖e[k]‖H1 , 0 � n � T/ε2

τ
− 1. (3.43)

Discrete Gronwall inequality would yield

‖e[n+1]‖H1 � τm−1
0 + ε2τ 2, 0 � n � T/ε2

τ
− 1, (3.44)

and the improved uniform error bound (3.2) in Theorem 3.1 holds.

3.3 Proof for Theorem 3.2

Before the proof of the improved estimate (3.4) for the fully discrete scheme (2.11), we have the following
observations. Previous work on establishing the error estimates for the splitting scheme was mainly based
on the error splitting approach, i.e., to estimate the semidiscrete-in-time error (3.2), and the difference
between Φ[n](·) and Φn. To maintain the full convergence order hm in space, we need the bound of
‖Φ[n]‖Hm , which is generally not available under the assumption (A) for arbitrary T > 0 in the nonlinear
case. Following the classical arguments of Gronwall type, we can show ‖Φ[n]‖Hm is bounded for certain
nτ � T0/ε

2, and T0 > 0 is determined by ‖Φ0‖Hm only, which is not suitable to derive the estimates over
the whole interval [0, T/ε2] in the assumption (A). Another typical approach is to use the error estimates
to control the ‖Φ[n]‖Hm−2 (or ‖Φ[n]‖Hm−1 by the first order estimates) following Theorem 3.1, which
would yield a sub-optimal H1 estimate in space as hm−3 (or hm−2). Here, we shall present a different
approach to directly work with the fully discrete scheme (2.11) without the detour via semidiscretization-
in-time. Using same notations and similar to the proof of Lemma 3.7, we have the following results for
the local truncation error for the TSFP (2.11).

Lemma 3.8 The local truncation error of the TSFP (2.11) for the NLDE (2.1) can be written as

E
n

:= PMSτ (PMΦ(tn)) − PMΦ(tn+1) = PMF (PMΦ(tn)) + Y n, 0 � n � T/ε2

τ
− 1,

where the following error bounds hold under the assumption (A),

∥∥F (PMΦ(tn))
∥∥

H1 � ε2τ 3,
∥∥Y n

∥∥
H1 � ε4τ 3 + ε2τhm−1. (3.45)

Proof. The proof can be conducted similarly to that for Lemma 3.7 and we omit the details here for
brevity. �
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 671

We shall establish the error bound (3.4) for the full-discretization (2.11). By the standard Fourier
projection and interpolation results,

∥∥Φ(tn) − IMΦn
∥∥

H1 �
∥∥IMΦn − PMΦ(tn)

∥∥
H1 + hm−1, and it

suffices to consider the growth of the error function en = IMΦn − PMΦ(tn) ∈ YM (n ≥ 0). For

0 � n � T/ε2

τ
− 1, we have

en+1 = IMΦn+1 − PMSτ (PMΦ(tn)) + E
n = e−iτTen + Zn + E

n
, (3.46)

where Zn ∈ YM is given by

Zn = e− iτ
2 T

⎡⎣IM

⎛⎝⎛⎝e
−iε2τF

(
e− iτ

2 TIMΦn
)

− I2

⎞⎠ e− iτ
2 TIMΦn

⎞⎠
−PM

⎛⎝⎛⎝e
−iε2τF

(
e− iτ

2 TPMΦ(tn)

)
− I2

⎞⎠ e− iτ
2 TPMΦ(tn)

⎞⎠⎤⎦ .

Under the assumption (A), we shall prove by induction that, there exist two constants hc > 0 and τc > 0
such that for 0 < h < hc and 0 < τ < τc,

‖en‖H1 � C(hm−1 + τ 2), ‖IMΦn‖H1 � M + 1, 0 � n � T/ε2

τ
, (3.47)

where M = ‖Φ‖L∞([0,Tε];(H1)2), and C > 0 is independent of n, h, ε and τ .
For n = 0, (3.47) holds for sufficiently small 0 < h < h1 (h1 > 0) by the standard Fourier

interpolation results, i.e., ‖e0‖H1 � C1hm−1 (C1 > 0) and ‖IMΦ0‖H1 � M + 1.

Assume (3.47) holds for 0 � n � p � T/ε2

τ
− 1 (C to be chosen later), and we consider the case

n = p + 1. Recalling the definition of Zn, replacing PM by IM , using the equivalence between the H1

norm of IMΦn with its grid version for the finite difference as discussed in the appendix of Bao & Cai
(2014), we have the estimates on Zn (n � p) for 0 < h < h2 (h2 > 0) and 0 < τ < τ2 (τ2 > 0),

∥∥Zn
∥∥

H1 � ε2τ
(

C2hm−1 + CM‖en‖H1

)
, n � p, (3.48)

where C2 > 0 depends on ‖Φ‖L∞([0,Tε];(Hm)2) and CM depends on M. From (3.46), we obtain

en+1 = e−i(n+1)τTe0 +
n∑

k=0

e−i(n−k)τT
(

Zk + E
k
)

, 0 � n � T/ε2

τ
− 1. (3.49)

Combining the estimates (3.45) and (3.48), we derive for 0 � n � p � T/ε2

τ
− 1, 0 < h < h3 (h3 > 0)

and 0 < τ < τ3 (τ3 > 0)

‖en+1‖H1 � C3(h
m−1 + τ 2) + CMε2τ

n∑
k=0

‖ek‖H1 , (3.50)
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672 W. BAO ET AL.

and the discrete Gronwall inequality implies for 0 < τ < τ4 (τ4 > 0),

‖en+1‖H1 � C4(h
m−1 + τ 2), (3.51)

with C4 > 0 independent of ε, τ , h and m. By the Fourier interpolation and projection properties, we
have for sufficiently small mesh size and time step size 0 < h < h4 (h4 > 0) and 0 < τ < τ5 (τ5 > 0),

‖IMΦp+1‖H1 � ‖ep+1‖H1 + ‖PMΦ(tp+1)‖H1 � C4(h
m−1 + τ 2) + M � 1 + M. (3.52)

By taking C = max{C1, C2, C3, C4}, and choosing τc = min{τ1, τ2, τ3, τ4, τ5}, hc = min{h1, h2, h3, h4},
we conclude that (3.47) holds for n = p + 1. By induction, we obtain the estimates in (3.47) for all

0 � n � T/ε2

τ
.

Having established (3.47), we have the control on the nonlinear term Zn in (3.48), and we are ready to
show the improved error estimates in the fully discrete case. Combining the estimates (3.45) and (3.48),

we get for 0 � n � T/ε2

τ
− 1,

‖en+1‖H1 � hm−1 + ε2τ 2 + ε2τ

n∑
k=0

‖ek‖H1 +
∥∥∥∥∥

n∑
k=0

e−i(n−k)τTPMF (PMΦ(tk))

∥∥∥∥∥
H1

, (3.53)

where F (·) is defined in Lemma 3.7. Following the semidiscrete case, we introduce a cut-off parameter
τ0 ∈ (0, 1) and M0 = 21/τ0� ∈ Z+ (·� is the ceiling function) with 1/τ0 � M0/2 < 1 + 1/τ0. Under
the assumption (A), replacing PM by PM0

in (3.53), we can derive

∥∥∥en+1
∥∥∥

H1
� hm−1 + τm−1

0 + ε2τ 2 + ε2τ

n∑
k=0

∥∥∥ek
∥∥∥

H1
+ ∥∥L n

∥∥
H1 , (3.54)

where L n is defined in (3.25). Recalling the estimate (3.42) for L n, we obtain

∥∥∥en+1
∥∥∥

H1
� hm−1 + τm−1

0 + ε2τ 2 + ε2τ

n∑
k=0

∥∥∥ek
∥∥∥

H1
, 0 � n � T/ε2

τ
− 1. (3.55)

The discrete Gronwall inequality would then yield

∥∥∥en+1
∥∥∥

H1
� hm−1 + τm−1

0 + ε2τ 2, 0 � n � T/ε2

τ
− 1, (3.56)

which completes the proof for the error bound (3.4).

4. Numerical results and extensions

In this section, we present some numerical results of the TSFP method for solving the NLDE (1.12) in
terms of the mesh size h, time step τ and the parameter 0 < ε � 1 to illustrate our improved uniform
error bounds.
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 673

Fig. 1. Long-time temporal errors for the wave function of the TSFP method for the NLDE (1.12) in 1D with different ε. Stars on
each line refer to the errors at the long time Tj = T1/ε2

j for j = 1, 2, 3.

4.1 The long-time dynamics in 1D

To test the accuracy, we choose the initial data as

φ1(0, x) = 2

2 + sin2(x)
, φ2(0, x) = 2

1 + sin2(x)
, x ∈ (0, 2π). (4.1)

Since the exact solution is unknown, we use the TSFP method with a very small time step τe =
10−4 and a fine mesh size he = π/64 to generate the ‘reference’ solution numerically. Let Φn =
(Φn

0 , Φn
1 , . . . , Φn

M)T be the numerical solution obtained by the TSFP method with a given mesh size h,
time step τ and the parameter ε at time t = tn, then we introduce the discrete H1-error of the wave
function as

e(tn) = ‖Φn − Φ(tn, ·)‖H1 =

√√√√√h
M−1∑
j=0

∣∣∣Φn
j − Φ(tn, xj)

∣∣∣ 2 + h
M−1∑
j=0

∣∣∣(Φ ′)n
j − Φ ′(tn, xj)

∣∣∣ 2,

where (Φ ′)n
j is defined in (3.7).

For the long-time dynamics, we quantify the errors as emax(tn) = max0�q�n e(tq). In the rest of
the paper, the spatial mesh size is always chosen sufficiently small such that the spatial errors can be
neglected when considering the long-time temporal errors.

Figure 1 displays the long-time errors of the TSFP method (2.11) for the NLDE (1.12) in 1D with
fixed time step size τ and different ε. Stars on each line refer to the errors at the long time Tj = T1/ε

2
j

for j = 1, 2, 3, and the long-time error up to the time at O(1/ε2) becomes quarter when ε is half, which
verifies that the improved uniform error bounds behave like O(ε2) for fixed time step size τ . In addition,
Fig. 2 and Fig. 3 show the spatial and temporal errors of the TSFP methods for the NLDE (1.12) in
1D at t = 1/ε2, respectively. Figure 2 indicates the spectral accuracy of the TSFP method in space
and the spatial errors are independent of the parameter ε. From Fig. 3(a), we observe the second-order
convergence of the TSFP method in time for the fixed ε. Figure 3(b) again validates that the long-time
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674 W. BAO ET AL.

Fig. 2. Long-time spatial errors of the TSFP method for the NLDE (1.12) in 1D at t = 1/ε2.

Fig. 3. Long-time temporal errors of the TSFP method for the NLDE (1.12) in 1D at t = 1/ε2.

errors behave like O(ε2τ 2) up to the time at O(1/ε2). Figure 4 shows the error of the discrete energy En
h

also behaves like O(ε2τ 2) up to the time at O(1/ε2).

4.2 The long-time dynamics in 2D

In this subsection, we show an example in 2D with the irrational aspect ratio of the domain (x, y) ∈
(0, 2π) × (0, 1). In the numerical experiment, we choose the initial data as

φ1(0, x) = sin(2x) + sin(2πy), φ2(0, x) = 1

1 + cos2(2x)
+ cos(2πy). (4.2)

Figure 5 presents the long-time errors of the TSFP method for the NLDE (1.12) in 2D with fixed
time step size τ and different ε. Stars on each line refer to the errors at the long time Tj = T1/ε

2
j for

j = 1, 2, 3, which confirm the improved uniform error bounds in 2D. Figure 6 plots the temporal errors
of the TSFP method for the NLDE in 2D at t = 1/ε2, which indicates the second-order convergence in
time and again validates the improved uniform error bounds at O(ε2τ 2) up to the time at O(1/ε2).
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 675

Fig. 4. Long-time error for the discretized energy En
h of the TSFP method for the NLDE (1.12) in 1D at t = 1/ε2.

Fig. 5. Long-time temporal errors of the TSFP method for the NLDE (1.12) in 2D with different. ε Stars on each line refer to the
errors at the long time Tj = T1/ε2

j for j = 1, 2, 3.

4.3 Extension to the oscillatory NLDE

In this subsection, we extend the TSFP method and error estimates to an oscillatory NLDE, which
propagates waves with wave length at O(ε2) in time and wave speed at O(ε−2) in space. Introduce a
re-scale in time s = ε2t and Φ̃(s, x) = Φ(t, x), then the NLDE (1.12) could be reformulated into the
following oscillatory NLDE

i∂sΦ̃ = 1

ε2

⎡⎣−i
d∑

j=1

σj∂j + σ3

⎤⎦ Φ̃ + F(Φ̃)Φ̃ x ∈ Ω , t > 0, (4.3)

with the initial data

Φ̃(s = 0, x) = Φ̃0(x) = O(1), x ∈ Ω . (4.4)
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676 W. BAO ET AL.

Fig. 6. Long-time temporal errors of the TSFP method for the NLDE (1.12) in 2D at t = 1/ε2.

The solution of the oscillatory NLDE (4.3) propagates waves with amplitude at O(1), wavelength at
O(1) and O(ε2) in space and time, respectively, and wave speed at O(ε−2) in space. We remark here
the oscillatory nature of the NLDE (4.3) is quite different from the NLDE in the nonrelativistic limit
regime, which has been widely studied in Hunziker (1975), Bao et al. (2016), Lemou et al. (2017), Cai
& Wang (2019) and Krämer et al. (2021). In fact, in this regime, the wave speed is at O(1/ε2), while
the NLDE in the nonrelativistic limit regime propagates waves with wave speed at O(1). According to
the time rescaling, by taking the time step κ = ε2τ , we could extend the improved error bounds on the
TSFP method for the long-time problem to the oscillatory NLDE (4.3) up to the fixed time T . We also
just present the result in 1D and it is straightforward to extend to 2D and 3D cases.

Theorem 4.1 Let Φ̃n be the numerical approximation obtained from the TSFP method for the oscillatory
NLDE (4.3) in 1D. Assume the exact solution Φ̃(s, x) satisfies

Φ̃(s, x) ∈ L∞([0, T]; (Hm(Ω))2), m � 3,

then there exist h0 > 0 and 0 < κ0 < 1 sufficiently small and independent of ε such that for any
0 < ε � 1, when 0 < h � h0 and 0 < κ � ε2ακ0 for a fixed constant α ∈ (0, 1), the following
improved uniform error bound holds

∥∥Φ̃(sn, x) − IMΦ̃n
∥∥

H1 � hm−1 + κ2

ε2 + κm−1
0 , 0 � n � T

κ
. (4.5)

In particular, if the exact solution is sufficiently smooth, e.g., Φ̃(t, x) ∈ (H∞)2, the improved uniform
error bound for small κ0 would become

∥∥Φ̃(sn, x) − IMΦ̃n
∥∥

H1 � hm−1 + κ2

ε2
, 0 � n � T

κ
. (4.6)

The proof of the improved error bounds for the oscillatory NLDE (4.3) in Theorem 4.1 is quite similar
to the long-time problem. We omit the details here for brevity and present some numerical results to
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IMPROVED ERROR BOUNDS ON SPLITTING METHODS FOR NLDE 677

Table 2 Temporal errors of the TSFP method for the NLDE (4.3) in 1D at t = 1

e(t = 1) κ0 = 0.05 κ0/4 κ0/42 κ0/43 κ0/44

ε0 = 1 1.26E−2 7.57E−4 4.72E−5 2.95E−6 1.84E−7
order – 2.03 2.00 2.00 2.00
ε0/2 1.21E−1 5.71E−3 3.52E−4 2.20E−5 1.37E−6
order – 2.20 2.01 2.00 2.00
ε0/22 5.39E−2 9.18E−3 3.85E−4 2.37E−5 1.48E−6
order – 1.23 2.29 2.01 2.00
ε0/23 2.40E−1 1.08E−2 2.13E−3 8.68E−5 5.34E−6
order - 2.24 1.17 2.31 2.01
ε0/24 1.17E−1 3.80E−2 2.46E−3 6.76E−4 2.46E−5
order – 0.81 1.97 0.93 2.39
The bold entries stand for the ε dependent step sizes satisfying κ = O(ε2).

confirm the sharpness of the improved error bounds. The initial data is chosen as

φ̃1(0, x) = 4x4(1 − x)4 + 2, φ̃2(0, x) = 4x4(1 − x)4, x ∈ (0, 1). (4.7)

The regularity is enough to ensure the improved error bounds.
Table 2 lists the temporal errors of the TSFP method for the oscillatory NLDE (4.3) in 1D with

different ε. It can be clearly observed that the second-order convergence can only be observed when
κ � ε2 (cf. the upper triangle above the diagonal with bold letters) and the temporal errors behave like
O(κ2/ε2). Along each diagonal in the table, i.e., with κ = O(ε2), we observe linear convergence with

respect to κ , which confirms the error bound at κ2

ε2 = O
(

κ2

κ

)
= O(κ) in (4.1).

5. Conclusions

Improved uniform error bounds on time-splitting methods for the long-time dynamics of the weakly
NLDE were rigorously proven. With the help of the RCO technique, the long-time errors up to the
time at O(1/ε2) for the semidiscretization and full-discretization are at O(ε2τ 2) and O(hm−1 + ε2τ 2),
respectively, which improve the standard error bounds in the literature at O(τ 2) and O(hm−1 + τ 2) for
the semidiscretization and full-discretization, respectively, especially when 0 < ε � 1. The improved
error bounds were extended to an oscillatory NLDE up to a fixed time T . Numerical results in 1D and
2D agreed well with the theoretical results and suggested that the error bounds are sharp.
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