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OPTIMAL ERROR BOUNDS ON THE EXPONENTIAL WAVE
INTEGRATOR FOR THE NONLINEAR SCHR\"ODINGER EQUATION
WITH LOW REGULARITY POTENTIAL AND NONLINEARITY\ast 
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Abstract. We establish optimal error bounds for the exponential wave integrator (EWI) applied
to the nonlinear Schr\"odinger equation (NLSE) with L\infty -potential and/or locally Lipschitz nonlin-
earity under the assumption of H2-solution of the NLSE. For the semidiscretization in time by the
first-order Gautschi-type EWI, we prove an optimal L2-error bound at O(\tau ) with \tau > 0 being the time
step size, together with a uniform H2-bound of the numerical solution. For the full-discretization
scheme obtained by using the Fourier spectral method in space, we prove an optimal L2-error bound
at O(\tau + h2) without any coupling condition between \tau and h, where h > 0 is the mesh size. In
addition, forW 1,4-potential and a little stronger regularity of the nonlinearity, under the assumption
of H3-solution, we obtain an optimal H1-error bound. Furthermore, when the potential is of low
regularity but the nonlinearity is sufficiently smooth, we propose an extended Fourier pseudospectral
method which has the same error bound as the Fourier spectral method, while its computational cost
is similar to the standard Fourier pseudospectral method. Our new error bounds greatly improve the
existing results for the NLSE with low regularity potential and/or nonlinearity. Extensive numerical
results are reported to confirm our error estimates and to demonstrate that they are sharp.

Key words. nonlinear Schr\"odinger equation, exponential wave integrator, low regularity poten-
tial, low regularity nonlinearity, optimal error bound, extended Fourier pseudospectral method
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1. Introduction. In this paper, we consider the following nonlinear Schr\"odinger
equation (NLSE):\Biggl\{ 

i\partial t\psi (x, t) = - \Delta \psi (x, t) + V (x)\psi (x, t) + f(| \psi (x, t)| 2)\psi (x, t), x\in \Omega , t > 0,

\psi (x,0) =\psi 0(x), x\in \Omega ,
(1.1)

where t is time, x = (x1, \cdot \cdot \cdot , xd)T \in \BbbR d (d = 1,2,3) is the spatial coordinate, \psi =
\psi (x, t) is a complex-valued wave function, and \Omega = \Pi d

i=1(ai, bi) \subset \BbbR d is a bounded
domain equipped with periodic boundary condition. Here, V = V (x) : \Omega \rightarrow \BbbR is a
real-valued potential, and f = f(\rho ) : [0,\infty ) \rightarrow \BbbR , with \rho = | \psi | 2 being the density,
describes the nonlinear interaction. We assume that V \in L\infty (\Omega ) and f(| z| 2)z :\BbbC \rightarrow \BbbC 
is locally Lipschitz continuous, and thus both V and f may be of low regularity.

When V (x) = | x| 2/2 and f(\rho ) = \rho , the NLSE (1.1) collapses to the NLSE with
harmonic potential and cubic nonlinearity (or smooth potential and nonlinearity)
or the Gross--Pitaevskii equation, which has been widely adopted for modeling and
simulation in quantum mechanics, nonlinear optics, and Bose--Einstein condensation
(BEC) [8, 28, 51]. For the smooth NLSE with sufficiently smooth initial data \psi 0,
many accurate and efficient numerical methods have been proposed and analyzed in
the past two decades, including the finite difference method [1, 9, 8, 6], the exponential
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94 WEIZHU BAO AND CHUSHAN WANG

wave integrator (EWI) [10, 33, 25], the time-splitting method [16, 20, 39, 27, 8, 6, 11],
the finite element method [2, 49, 52, 53, 32], etc. Recently, many works have been
done to analyze and design numerical methods for the cubic NLSE with low regularity
initial data \psi 0 and with/without potential (see [27, 40, 42, 37, 41, 47, 44, 43, 5, 4]
and references therein for other dispersive PDEs).

Arising from different physics applications, both V and f in (1.1) may be of low
regularity. Typical examples of the low regularity L\infty -potential include, in many
physical contexts, the square-well potential or step potential, both of which are dis-
continuous; in the study of BEC in different trapping shape, the power law potential
V (x) = | x| \gamma (\gamma > 0) [46, 19]; and in the analysis of the Josephson effect and An-
derson localization, some disorder potential [54, 48]. Low regularity nonlinearities,
such as f(\rho ) = \rho \sigma (\sigma > 0) or f(\rho ) = \rho ln\rho , are considered in, e.g., the Schr\"odinger--
Poisson--X\alpha model [17, 21]; the Lee--Huang--Yang correction [38], which is adopted to
model and simulate quantum droplets [35, 22, 7, 45]; and the mean-field model for
the Bose--Fermi mixture [31, 23].

Most numerical methods for the cubic NLSE with smooth potential can be ex-
tended straightforwardly to solve the NLSE (1.1) with L\infty -potential and/or locally
Lipschitz nonlinearity (different from the singular nonlinearity in [12, 13, 14, 15]).
However, the performance of these methods is quite different from the smooth case,
and the error analysis of them is a very subtle and challenging question. For (1.1)
with power-type nonlinearity f(\rho ) = \rho \sigma and sufficiently smooth potential, the Lie--
Trotter time-splitting method is analyzed in [18, 26, 34] with reduced convergence
order in L2-norm when \sigma < 1/2 and in H1-norm when \sigma < 1. The analysis of
(1.1) with smooth nonlinearity and L\infty -potential seems more challenging, and the
only known convergence result is the one obtained in [32] for the Crank--Nicolson
Galerkin scheme, where first-order convergence in time and less-than-second-order
convergence in space in L2-norm are shown under strong assumptions on the exact
solution (among others, \partial t\psi \in H2) and a coupling condition between the time step
size \tau and the mesh size h. Some low regularity integrators or resonance-based Fourier
integrators are also proposed to reduce the regularity requirements on both V and \psi ,
while the regularity assumption on V is still stronger than H1 [55, 4, 3], which still
excludes the popular well potential and step potential widely adopted in the physics
literature. The main difficulty comes from the low regularity of solution of the NLSE
with L\infty -potential and locally Lipschitz nonlinearity, where only H2 well-posedness is
guaranteed [36, 24], and the low regularity of the potential and the nonlinearity, which
causes order reduction in local truncation errors and prevents us from obtaining sta-
bility estimates in high-order Sobolev spaces H\alpha (\alpha > d/2) (see [18, 55, 32] for more
detailed discussion). Besides, for the NLSE (1.1) with purely L\infty -potential, how to
estimate the spatial discretization is also a challenging problem, and it turns out that
it is very subtle and challenging to estimate the classical methods, including the finite
difference method, the pseudospectral method, and the finite element method [32].

The main aim of this paper is to establish optimal error bounds for a first-order
Gautschi-type EWI, also known as the exponential Euler scheme in the literature [33],
applied to the NLSE with L\infty -potential and/or locally Lipschitz nonlinearity. Our
main results are as follows:

(i) For the semidiscretization in time (EWI (2.2)), we prove an optimal L2-error
bound at O(\tau ), with \tau > 0 being the time step size, and a uniform H2-bound
of the numerical solution, under the assumption of H2-solution of the NLSE
(see (3.2) in Theorem 3.1).
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ERROR ESTIMATES OF EWI FOR NLSE 95

(ii) For the full discretization of the EWI by using the Fourier spectral method
for spatial derivatives (EWI-FS (2.11)), we prove an optimal L2-error bound
at O(\tau + h2) without any coupling condition between \tau and the mesh size h
(see (4.1) in Theorem 4.1).

(iii) For W 1,4-potential and a little more regular nonlinearity, under the assump-
tion of H3-solution, we obtain optimal H1-error bounds for EWI and EWI-FS
schemes. (see (3.3) in Theorem 3.1 and (4.2) in Theorem 4.1).

(iv) When the potential is of low regularity but the nonlinearity is sufficiently
smooth, we propose an extended Fourier pseudospectral method for spatial
discretization of the EWI, leading to the EWI-extended Fourier pseudospec-
tral (EWI-EFP) scheme (2.13). For the EWI-EFP, we establish optimal error
bounds in L2- and H1-norms under the same assumption on the potential
and exact solution as the EWI-FS (see Corollary 4.4). However, the compu-
tational cost of EWI-EFP is similar to the standard Fourier pseudospectral
discretization of the EWI.

Our error bounds greatly improve the previous results for the NLSE with low
regularity potential and/or nonlinearity. In general, compared with the error esti-
mates of classical EWIs [4] and time-splitting methods [18] in the literature, to obtain
optimal error bounds, we reduce the differentiability requirement on the potential by
two orders and on the nonlinearity by one order. Moreover, when V \in L\infty and f
is smooth as considered in [32], compared with their results for the Crank--Nicolson
Galerkin scheme, we improve the convergence order in L2-norm to the optimal first
order in time and the optimal second order in space, remove the coupling condition
requirement between \tau and h in [32], relax the regularity assumption on the exact
solution such that it is theoretically guaranteed, and reduce the computational cost
in practical implementation.

Here, we briefly explain why we can obtain the improved error bounds. In gen-
eral, time-splitting methods and EWIs require weaker regularity on the exact solution
to obtain the same order of convergence compared with finite difference methods. In
practical computation, time-splitting methods tend to outperform EWIs when the
solution is smooth, which requires that the potential and nonlinearity as well as the
initial data are all smooth. The main reason is that time-splitting methods are usually
a structure-preserving scheme; i.e., they preserve mass conservation, time symmetry,
time-transverse invariance, and dispersion relation at the discretized level [6, 8]. On
the contrary, when the NLSE (1.1) involves low regularity potential and/or nonlinear-
ity, leading to a solution with low regularity, we find that the first-order Gautschi-type
EWI offers two major advantages in obtaining optimal error bounds: (i) In obtaining
local truncation errors, time-splitting methods need to apply the Laplacian \Delta to the
equation, while the EWI only needs to apply \partial t to the equation, and thus the EWI
needs a weaker regularity requirement on both potential and nonlinearity, and (ii) a
smoothing operator is adopted in the EWI scheme to control the dispersion of high
frequencies, and thus it helps to keep the numerical solution in H2 at each time step,
which makes it possible to obtain the stability estimates in high-order Sobolev spa-
ces, while it is a challenging and subtle task to establish H2-bounds of the numerical
solution obtained from time-splitting methods.

The rest of the paper is organized as follows. In section 2, we present a semidis-
cretization in time by the first-order Gautschi-type EWI and then a full discretiza-
tion by the Fourier spectral/extended pseudospectral method in space. Sections 3
and 4 are devoted to the error estimates of the semidiscretization scheme and the
full-discretization scheme, respectively. Numerical results are reported in section 5
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96 WEIZHU BAO AND CHUSHAN WANG

to confirm the error estimates. Finally, some conclusions are drawn in section 6.
Throughout the paper, we adopt the standard Sobolev spaces as well as their corre-
sponding norms and denote by C a generic positive constant independent of the mesh
size h and time step size \tau and by C(\alpha ) a generic positive constant depending only on
the parameter \alpha . The notation A\lesssim B is used to represent that there exists a generic
constant C > 0 such that | A| \leq CB.

2. The EWI Fourier spectral method. In this section, we introduce an EWI
and its spatial discretization to solve the NLSE with low regularity potential and
nonlinearity. For simplicity of the presentation and to avoid heavy notations, we only
carry out the analysis in one dimension and take \Omega = (a, b). The only dimension-
sensitive estimates are Sobolev embeddings and the inverse inequality to control L\infty -
norm by L2-norm. In our analysis, we only use the embeddings which hold for one,
two, and three dimensions, and for the inverse inequality, we clearly show how it
depends on the space dimension. Thus, generalizations to two and three dimensions
are straightforward, and the main results remain unchanged.

We define periodic Sobolev spaces as (see, e.g., [3, 29] for definition in phase
space)

Hm
per(\Omega ) := \{ \phi \in Hm(\Omega ) : \phi (k)(a) = \phi (k)(b), k= 0, \cdot \cdot \cdot ,m - 1\} , m\geq 1.

2.1. Semidiscretization in time by an EWI. Choose a time step size \tau > 0,
and denote time steps as tn = n\tau for n = 0,1, \cdot \cdot \cdot . By Duhamel's formula, the exact
solution of the NLSE (1.1) is given as

\psi (tn+1) =\psi (tn + \tau ) = ei\tau \Delta \psi (tn)

 - i

\int \tau 

0

ei(\tau  - s)\Delta 
\bigl[ 
V \psi (tn + s) + f(| \psi (tn + s)| 2)\psi (tn + s)

\bigr] 
ds, n\geq 0,(2.1)

where we abbreviate \psi (x, t) as \psi (t) for simplicity of notations when there is no con-
fusion. Let \psi [n] := \psi [n](x) be the approximation of \psi (x, tn) for n \geq 0. Applying
the approximation \psi (tn + s) \approx \psi (tn) for the integrand in (2.1) and integrating out
ei(\tau  - s)\Delta exactly, we get a semidiscretization in time by the first-order Gautschi-type
EWI as

\psi [n+1] =\Phi \tau (\psi [n]) := ei\tau \Delta \psi [n]  - i\tau \varphi 1(i\tau \Delta )
\Bigl( 
V \psi [n] + f(| \psi [n]| 2)\psi [n]

\Bigr) 
, n\geq 0,

\psi [0] =\psi 0,
(2.2)

where \varphi 1 is an entire function defined as

\varphi 1(z) =
ez  - 1

z
, z \in \BbbC .

The operator \varphi 1(i\tau \Delta ) is defined through its action in the Fourier space as

(\varphi 1(i\tau \Delta )v) (x) =
\sum 
l\in \BbbZ 

\varphi 1( - i\tau \mu 2
l )\widehat vlei\mu l(x - a)

= \widehat v0 + \sum 
l\in \BbbZ \setminus \{ 0\} 

1 - e - i\tau \mu 2
l

i\tau \mu 2
l

\widehat vlei\mu l(x - a), x\in \Omega ,(2.3)

where \mu l =
2\pi l
b - a for l \in \BbbZ and \widehat vl (l \in \BbbZ ) are the Fourier coefficients of the function

v \in L2(\Omega ) defined as

\widehat vl = 1

b - a

\int b

a

v(x)e - i\mu l(x - a)dx, l \in \BbbZ .(2.4)
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ERROR ESTIMATES OF EWI FOR NLSE 97

From (2.3), noting that | 1 - e - i\theta | \leq 2 for \theta \in \BbbR , we see that\bigm| \bigm| \bigm| \widehat (\varphi 1(i\tau \Delta )v)l

\bigm| \bigm| \bigm| \leq \Biggl\{ 
2
\tau 
| \widehat vl| 
\mu 2
l
, l \in \BbbZ \setminus \{ 0\} ,

| \widehat v0| , l= 0,
(2.5)

which implies that \varphi 1(i\tau \Delta )v \in H2
per(\Omega ) for all v \in L2(\Omega ). Hence, \Phi \tau is indeed a flow

in H2
per(\Omega ) for any V \in L\infty (\Omega ), making it possible to obtain uniform H2-bound of the

semidiscrete solution with some new analysis techniques we will introduce later.
In fact, the introduction of the smoothing function \varphi 1(i\tau \Delta ) in (2.2) is one of

the major advantages of the EWI (2.2) over the time-splitting methods in terms
of controlling the dispersion of high frequencies or resonance. With this smoothing
function, one can show that the numerical solution is in H2 at every time step. For
comparison, based on the results in [18] for time-splitting methods applied to the
NLSE with semismooth nonlinearity, the numerical solution of the semidiscretization
is not in H2 in general! The situation is even worse if there is purely L\infty -potential.

2.2. Full discretization by the Fourier spectral method. We further dis-
cretize the semidiscretization (2.2) in space by the Fourier spectral method to obtain
a full-discretization scheme. Choose a mesh size h= (b - a)/N with N being a positive
integer, and denote grid points as

xj = a+ jh, j = 0,1, \cdot \cdot \cdot ,N.

Define the index sets

\scrT N =

\biggl\{ 
 - N

2
, \cdot \cdot \cdot , N

2
 - 1

\biggr\} 
, \scrT 0

N = \{ 0,1, \cdot \cdot \cdot ,N\} ,

and denote

XN = span
\Bigl\{ 
ei\mu l(x - a) : l \in \scrT N

\Bigr\} 
,(2.6)

YN =
\bigl\{ 
v= (v0, v1, \cdot \cdot \cdot , vN )T \in \BbbC N+1 : v0 = vN

\bigr\} 
.(2.7)

Let PN :L2(\Omega )\rightarrow XN be the standard L2-projection onto XN and IN : YN \rightarrow XN be
the standard Fourier interpolation operator as

(PNu)(x) =
\sum 
l\in \scrT N

\widehat ulei\mu l(x - a),(2.8)

(INv)(x) =
\sum 
l\in \scrT N

\widetilde vlei\mu l(x - a), x\in \Omega = [a, b],(2.9)

where u \in L2(\Omega ), v \in YN , \widehat ul (l \in \BbbZ ) are the Fourier coefficients of u defined in (2.4)
and \widetilde vl (l \in \scrT N ) are the discrete Fourier transform coefficients defined as

\widetilde vl = 1

N

N - 1\sum 
j=0

vje
 - i\mu l(xj - a), l \in \scrT N .(2.10)

Let \psi n :=\psi n(x) be the approximation of \psi (x, tn) for n\geq 0. Then an EWI-FS for the
NLSE (1.1) is given as

\psi n+1 =\Phi \tau 
h(\psi 

n) := ei\tau \Delta \psi n  - i\tau \varphi 1(i\tau \Delta )PN

\bigl( 
V \psi n + f(| \psi n| 2)\psi n

\bigr) 
, n\geq 0,

\psi 0 = PN\psi 0.
(2.11)
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98 WEIZHU BAO AND CHUSHAN WANG

Note that \psi n \in XN for n\geq 0, and we have

\widehat (\psi n+1)l = e - i\tau \mu 2
l \widehat (\psi n)l  - i\tau \varphi 1( - i\tau \mu 2

l )
\Bigl( 
\widehat (V \psi n)l +

\widehat G(\psi n)l

\Bigr) 
, n\geq 0,\widehat (\psi 0)l =

\widehat (\psi 0)l, l \in \scrT N ,
(2.12)

where G(\psi n)(x) = G(\psi n(x)) := f(| \psi n(x)| 2)\psi n(x) for x \in \Omega . We remark here that
the EWI-FS is usually implemented by the Fourier pseudospectral method (see, e.g.,
[10, 29]) in practical computations. Of course, due to the low regularity of the po-
tential and/or nonlinearity, it is very hard to establish error bounds for the full dis-
cretization by the Fourier pseudospectral method.

2.3. Full discretization by an extended Fourier pseudospectral method.
In practice, the Fourier spectral method cannot be efficiently implemented. Here,
we propose an extended Fourier pseudospectral method when the potential is of low
regularity but the nonlinearity is sufficiently smooth; i.e., we adopt the Fourier spectral
method to discretize the linear potential and use the Fourier pseudospectral method
to discretize the nonlinearity. This full discretization has two advantages: (i) We can
establish its optimal error bounds, and (ii) the computational cost of this discretization
is similar to the standard Fourier pseudospectral method.

Let \psi 
\langle n\rangle 
j be the numerical approximation of \psi (xj , tn) for j \in \scrT 0

N and n \geq 0, and

denote \psi \langle n\rangle := (\psi 
\langle n\rangle 
0 ,\psi 

\langle n\rangle 
1 , \cdot \cdot \cdot ,\psi \langle n\rangle 

N )T \in YN . Then an EWI-EFP method for the NLSE
(1.1) reads

\psi 
\langle n+1\rangle 
j =

\sum 
l\in \scrT N

e - i\tau \mu 2
l \widetilde (\psi \langle n\rangle )le

i\mu l(xj - a)

 - i\tau 
\sum 
l\in \scrT N

\varphi 1( - i\tau \mu 2
l )

\biggl( 
\widehat \bigl( 

V IN\psi \langle n\rangle 
\bigr) 
l
+ \widetilde G(\psi \langle n\rangle )l

\biggr) 
ei\mu l(xj - a), n\geq 0,

\psi 
\langle 0\rangle 
j =\psi 0(xj), j \in \scrT 0

N ,

(2.13)

where G(\psi \langle n\rangle )j = f(| \psi \langle n\rangle 
j | 2)\psi \langle n\rangle 

j for j \in \scrT 0
N . To compute the Fourier projection

coefficients \widehat \bigl( 
V IN\psi \langle n\rangle 

\bigr) 
l
, we use an extended fast Fourier transform (FFT) as shown

below. Note that IN\psi 
\langle n\rangle \in XN for all n\geq 0, and thus we have

PN (V IN\psi 
\langle n\rangle ) = PN

\Bigl( 
P2N (V )IN\psi 

\langle n\rangle 
\Bigr) 
, n\geq 0.(2.14)

Moreover, since P2N (V )IN\psi 
\langle n\rangle \in X4N and I4N is an identity on X4N , we have

P2N (V )IN\psi 
\langle n\rangle = I4N

\Bigl( 
P2N (V )IN\psi 

\langle n\rangle 
\Bigr) 
, n\geq 0,

which, plugged into (2.14), yields

PN

\Bigl( 
V IN\psi 

\langle n\rangle 
\Bigr) 
= PNI4N

\Bigl( 
P2N (V )IN\psi 

\langle n\rangle 
\Bigr) 
, n\geq 0,(2.15)

where P2N (V ) can be precomputed numerically or analytically, and thus the right-
hand side of (2.15) can be computed exactly and efficiently using the extended FFT,
using FFT for P2N (V )IN\psi 

\langle n\rangle with length 4N instead of N . As a result, the memory
cost is O(4N), and the computational cost per time step is O(4N log(4N)). Note that
\psi \langle n\rangle (n\geq 0) obtained from (2.13) satisfies

IN\psi 
\langle n+1\rangle = ei\tau \Delta IN\psi 

\langle n\rangle  - i\tau \varphi 1(i\tau \Delta )
\Bigl( 
PN

\Bigl( 
V IN\psi 

\langle n\rangle 
\Bigr) 
+ ING(\psi 

\langle n\rangle )
\Bigr) 
,

IN\psi 
\langle 0\rangle = IN\psi 0, n\geq 0.

(2.16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

1/
24

 to
 1

37
.1

32
.2

6.
12

2 
by

 C
hu

sh
an

 W
an

g 
(e

05
46

09
1@

u.
nu

s.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ERROR ESTIMATES OF EWI FOR NLSE 99

3. Optimal error bounds for the semidiscretization (2.2). In this section,
we establish optimal error bounds in L2-norm and H1-norm for the semidiscretization
(2.2) of the NLSE (1.1).

3.1. Main results. For the optimal L2-norm error bound, we assume that the
nonlinearity is locally Lipschitz continuous; i.e., there exists a fixed function CLip(\cdot ) :
\BbbR + \rightarrow \BbbR + such that

| f(| z1| 2)z1  - f(| z2| 2)z2| \leq CLip(M0)| z1  - z2| , zj \in \BbbC , | zj | \leq M0, j = 1,2.(A)

Assumption (A) is satisfied by f \in C1((0,\infty )) satisfying

| f(\rho )| + | \rho f \prime (\rho )| \leq L(M0), 0<\rho \leq M0,

with CLip(M0)\sim L(M0) for M0 > 0. In particular, (A) allows
(i) f(\rho ) = \lambda 1\rho 

\sigma 1 + \lambda 2\rho 
\sigma 2 for any 0 < \sigma 1 < \sigma 2 and \lambda 1, \lambda 2 \in \BbbR with CLip(M0) \sim 

| \lambda 1| M\sigma 1
0 + | \lambda 2| M\sigma 2

0 ;
(ii) f(\rho ) = \lambda \rho \sigma ln\rho for any \sigma > 0 and \lambda \in \BbbR with CLip(M0)\sim 1+M\sigma 

0 +M\sigma 
0 | lnM0| .

For the optimal H1-norm error bound, we assume that

\| f(| v| 2)v - f(| w| 2)w\| H1 \leq C(\| v\| H3 ,\| w\| H2)\| v - w\| H1 , v \in H3(\Omega ),w \in H2(\Omega ).(B)

Assumption (B) is satisfied by
(i) f(\rho ) = \lambda 1\rho 

\sigma 1 + \lambda 2\rho 
\sigma 2 for \sigma 2 >\sigma 1 \geq 1/2 and \lambda 1, \lambda 2 \in \BbbR with C(\cdot , \cdot ) depending

on \| v\| H3 and \| w\| H2 ;
(ii) f(\rho ) = \lambda \rho \sigma ln\rho for any \sigma > 1/2 and \lambda \in \BbbR with C(\cdot , \cdot ) depending on \| v\| H3

and \| w\| H2 .
We remark here that (B) implies (A) by taking v(x) \equiv z1 and w(x) \equiv z2 in (B).
Nonlinearity satisfying (B) occurs in physical applications, including the Lee--Huang--
Yang correction [38, 35, 22, 7, 45] and the Bose--Fermi mixture [31, 23] in one, two,
and three dimensions and the Schrodinger--Poisson--X\alpha model [17, 21] in two dimen-
sions. Assumption (A) covers, in addition to all those mentioned before, the case of
the Schrodinger--Poisson--X\alpha model in three dimensions.

Let Tmax be the maximal existing time of the solution of the NLSE (1.1), and
take 0<T <Tmax be a fixed time. Define

M :=max
\bigl\{ 
\| \psi \| L\infty ([0,T ];H2),\| \psi \| L\infty ([0,T ];L\infty ),\| \partial t\psi \| L\infty ([0,T ];L2),\| V \| L\infty 

\bigr\} 
.(3.1)

Let \psi [n] be the numerical approximation obtained by the EWI (2.2). Then we
have the following.

Theorem 3.1. Under the assumptions that V \in L\infty (\Omega ), f satisfies Assumption
(A), and the exact solution \psi \in C([0, T ];H2

per(\Omega )) \cap C1([0, T ];L2(\Omega )), there exists
\tau 0 > 0 depending on M and T and sufficiently small such that for any 0< \tau < \tau 0, we
have \psi [n] \in H2

per(\Omega ) for 0\leq n\leq T/\tau and

\| \psi (\cdot , tn) - \psi [n]\| L2 \lesssim \tau , \| \psi [n]\| H2 \leq C(M),

\| \psi (\cdot , tn) - \psi [n]\| H1 \lesssim 
\surd 
\tau , 0\leq n\leq T/\tau .

(3.2)

Moreover, if V \in W 1,4(\Omega ) \cap H1
per(\Omega ), f satisfies (B), and \psi \in C([0, T ];H3

per(\Omega )) \cap 
C1([0, T ];H1(\Omega )), then we have, for 0< \tau < \tau 0,

\| \psi (\cdot , tn) - \psi [n]\| H1 \lesssim \tau , 0\leq n\leq T/\tau .(3.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

1/
24

 to
 1

37
.1

32
.2

6.
12

2 
by

 C
hu

sh
an

 W
an

g 
(e

05
46

09
1@

u.
nu

s.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



100 WEIZHU BAO AND CHUSHAN WANG

Remark 3.2. According to the known regularity results (see, e.g., Corollary 4.8.6
of [24]), under the assumptions that V \in L\infty (\Omega ) and (A), it can be expected that
\psi \in C([0, T ];H2

per(\Omega ))\cap C1([0, T ];L2(\Omega )) for some 0<T <Tmax if \psi 0 \in H2
per(\Omega ).

Remark 3.3. Recall that, for the time-splitting methods analyzed in [18] with
f(\rho ) = \rho \sigma , the optimal L2-norm error bound in time is obtained for V \in H2(\Omega )
and \sigma \geq 1/2 and that the optimal H1-norm error bound in time is obtained for
V \in H3(\Omega ) and \sigma \geq 1. Hence, our results greatly relax the regularity requirements on
both potential and nonlinearity.

In the following, we shall prove Theorem 3.1. We start with the proof of (3.2), and
the proof of (3.3) can be obtained by the standard Lady Windermere's fan argument
with the established uniform H2-bound of the semidiscretization solution in (3.2).

In the rest of this section, we assume that V \in L\infty (\Omega ), f satisfies Assumption
(A) and \psi \in C([0, T ];H2

per(\Omega ))\cap C1([0, T ];L2(\Omega )).

3.2. Local truncation error. We define an operator B :L\infty (\Omega )\rightarrow L\infty (\Omega ) as

B(v) = V v+ f(| v| 2)v, v \in L\infty (\Omega ),(3.4)

and define a constant CL(\cdot ) := \| V \| L\infty + CLip(\cdot ) with CLip(\cdot ) given by Assumption
(A). For the operator B, we have the following.

Lemma 3.4. Let v,w \in L\infty (\Omega ) satisfying \| v\| L\infty \leq M0 and \| w\| L\infty \leq M0. Then

\| B(v) - B(w)\| L2 \leq CL(M0)\| v - w\| L2 .(3.5)

Proof. Recalling (3.4) and (A), we have

\| B(v) - B(w)\| L2 = \| V (v - w) + f(| v| 2)v - f(| w| 2)w\| L2

\leq \| V \| L\infty \| v - w\| L2 +CLip(M0)\| v - w\| L2

=CL(M0)\| v - w\| L2 ,

which completes the proof.

Lemma 3.5. For 0\leq n\leq T/\tau  - 1, define

gn(t) :=B(\psi (tn + t)) - B(\psi (tn)), 0\leq t\leq \tau .(3.6)

Then gn \in C([0, \tau ];L2(\Omega ))\cap W 1,\infty ([0, \tau ];L2(\Omega )) satisfies

\| gn\| L\infty ([0,\tau ];L2) \leq CL(M)M\tau ,(3.7)

\| \partial tgn\| L\infty ([0,\tau ];L2) \leq CL(M)M.(3.8)

Proof. Using Lemma 3.4, we have, for 0\leq s < t\leq \tau ,

\| gn(t) - gn(s)\| L2 = \| B(\psi (tn + t)) - B(\psi (tn + s))\| L2

\leq CL(M)\| \psi (tn + t) - \psi (tn + s)\| L2

\leq CL(M)

\int t

s

\| \partial t\psi (tn + \sigma )\| L2d\sigma .(3.9)

From (3.9), recalling (A), one has gn \in C([0, \tau ];L2(\Omega )), and, by using Lemma 3.4
again, one has

\| gn(t)\| L2 = \| B(\psi (tn + t)) - B(\psi (tn))\| L2 \leq CL(M)\| \psi (tn + t) - \psi (tn)\| L2

\leq \tau CL(M)\| \partial t\psi \| L\infty ([tn,tn+\tau ];L2) \leq CL(M)M\tau ,
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ERROR ESTIMATES OF EWI FOR NLSE 101

which proves (3.7). Noting (3.9), from the standard theory of Sobolev spaces (see,
e.g., Proposition 1.3.12 of [24]), we have gn \in W 1,\infty ([0, T ];L2(\Omega )), and by letting
\varphi (\sigma ) =CL(M)\| \partial t\psi (tn + \sigma )\| L2 for 0\leq \sigma \leq \tau ,

\| \partial tgn\| L\infty ([0,\tau ];L2) \leq \| \varphi \| L\infty ([0,\tau ]) \leq CL(M)M,

which concludes the proof.

Similar to Lemma 4.8.5 in [24], we have the following.

Lemma 3.6. Assume that \tau > 0 and g \in C([0, \tau ];L2(\Omega ))\cap W 1,1([0, \tau ];L2(\Omega )). If

w(t) = - i
\int t

0

ei(t - s)\Delta g(s)ds, t\in [0, \tau ],(3.10)

then we have

\| \Delta w\| L\infty ([0,\tau ];L2) \leq \| g\| L\infty ([0,\tau ];L2) + \| g(0)\| L2 + \| \partial tg\| L1([0,\tau ];L2).(3.11)

Proof. Taking the time derivative on both sides of (3.10) and noting that g \in 
W 1,1([0, \tau ];L2(\Omega )), we have, for 0\leq t\leq \tau ,

\partial tw(t) = - i d
dt

\int t

0

eis\Delta g(t - s)ds= - ieit\Delta g(0) - i

\int t

0

eis\Delta \partial tg(t - s)ds

= - ieit\Delta g(0) - i

\int t

0

ei(t - s)\Delta \partial tg(s)ds.(3.12)

From (3.12), using the isometry property of eit\Delta , we have

\| \partial tw(t)\| L2 \leq \| g(0)\| L2 + \| \partial tg\| L1([0,\tau ];L2), 0\leq t\leq \tau .(3.13)

Note that w defined in (3.10) satisfies the equation

i\partial tw= - \Delta w+ g, 0\leq t\leq \tau ,

which implies, by using (3.13), that

\| \Delta w(t)\| L2 \leq \| \partial tw(t)\| L2 + \| g(t)\| L2 \leq \| g(0)\| L2 + \| \partial tg\| L1([0,\tau ];L2) + \| g(t)\| L2 ,(3.14)

and the conclusion follows from taking the supremum of t on both sides.

Now we can obtain the following local truncation error estimates.

Proposition 3.7 (local truncation error). For 0\leq n\leq T/\tau  - 1, we have

\| \psi (tn+1) - \Phi \tau (\psi (tn))\| H\alpha \leq C(M)\tau 2 - \alpha /2, 0\leq \alpha \leq 2,(3.15)

where C(M)\sim CL(M)M .

Proof. Recalling (2.1) and (3.4), we have

\psi (tn+1) = ei\tau \Delta \psi (tn) - i

\int \tau 

0

ei(\tau  - s)\Delta B(\psi (tn + s))ds, 0\leq n\leq T/\tau  - 1.(3.16)

By the construction of the EWI (2.2) and (3.4), we have

\Phi \tau (\psi (tn)) = ei\tau \Delta \psi (tn) - i

\int \tau 

0

ei(\tau  - s)\Delta B(\psi (tn))ds, 0\leq n\leq T/\tau  - 1.(3.17)
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102 WEIZHU BAO AND CHUSHAN WANG

Subtracting (3.17) from (3.16) and recalling (3.6), we have

\psi (tn+1) - \Phi \tau (\psi (tn)) = - i
\int \tau 

0

ei(\tau  - s)\Delta (B(\psi (tn + s)) - B(\psi (tn)))ds

= - i
\int \tau 

0

ei(\tau  - s)\Delta gn(s)ds, 0\leq n\leq T/\tau  - 1.(3.18)

From (3.18), using (3.7), one gets

\| \psi (tn+1) - \Phi \tau (\psi (tn))\| L2 \leq 
\int \tau 

0

\| gn(s)\| L2ds\leq CL(M)M\tau 2,(3.19)

which proves (3.15) for \alpha = 0. Then we shall establish (3.15) with \alpha = 2, and (3.15)
with 0 < \alpha < 2 will follow from the Gagliardo--Nirenberg interpolation inequalities.
Applying Lemma 3.6 to (3.18), using (3.8), and noting that gn(0) = 0, we have

\| \Delta (\psi (tn+1) - \Phi \tau (\psi (tn)))\| L2

\leq \| gn\| L\infty ([0,\tau ];L2) + \| gn(0)\| L2 + \| \partial tgn\| L1([0,\tau ];L2)

\leq CL(M)M\tau + \tau \| \partial tgn\| L\infty ([0,\tau ];L2) \leq 2CL(M)M\tau ,(3.20)

which, combined with (3.19), implies that

\| \psi (tn+1) - \Phi \tau (\psi (tn))\| H2 \leq C(M)\tau , 0\leq n\leq T/\tau  - 1,(3.21)

where C(M) \sim CL(M)M . The conclusion follows from (3.19) and (3.21) and the
Gagliardo--Nirenberg interpolation inequalities.

Remark 3.8. In (3.19), the optimal local truncation error in L2-norm is obtained
with the boundedness of \| \partial tB(\psi (t))\| L2 (recalling Lemma 3.5) instead of \| \Delta B(\psi (t))\| L2

in the time-splitting methods [18].

3.3. \bfitL \infty -conditional stability estimate of (2.2). We shall establish the L\infty -
conditional stability estimate of the numerical flow (2.2). The key is the following
lemma, which can be understood as the smoothing effect of the operator \varphi 1(i\tau \Delta ),
which is another major advantage of the EWI (2.2).

Lemma 3.9. Let v,w \in L2(\Omega ) and 0< \tau < 1. Then we have

\| \varphi 1(i\tau \Delta )v - \varphi 1(i\tau \Delta )w\| H\alpha \leq C(\alpha )\tau  - \alpha /2\| v - w\| L2 , 0\leq \alpha \leq 2,

where C(\alpha ) = 2
\alpha 
2 (1 + \mu  - 2

1 )
\alpha 
2 .

Proof. It suffices to show that for any v \in L2(\Omega ),

\| \varphi 1(i\tau \Delta )v\| H\alpha \leq C(\alpha )\tau  - \alpha /2\| v\| L2 , 0\leq \alpha \leq 2.(3.22)

Note that

| ei\theta  - 1| \leq 2\gamma \theta 1 - \gamma , \theta \in \BbbR , 0\leq \gamma \leq 1.(3.23)
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ERROR ESTIMATES OF EWI FOR NLSE 103

By Parseval's identity, using (3.23) with \gamma = \alpha /2 and recalling (2.3), we have

1

b - a
\| \varphi 1(i\tau \Delta )v\| 2H\alpha =

\sum 
l\in \BbbZ 

(1 + \mu 2
l )

\alpha | \varphi 1( - i\tau \mu 2
l )| 2| \widehat vl| 2

= | \widehat v0| 2 + \sum 
l\in \BbbZ \setminus \{ 0\} 

(1 + \mu 2
l )

\alpha 

\bigm| \bigm| \bigm| \bigm| \bigm| ei\tau \mu 
2
l  - 1

\tau \mu 2
l

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

| \widehat vl| 2
\leq | \widehat v0| 2 + 2\alpha 

\sum 
l\in \BbbZ \setminus \{ 0\} 

(1 + \mu 2
l )

\alpha 
\bigl( 
\tau \mu 2

l

\bigr)  - \alpha | \widehat vl| 2
= | \widehat v0| 2 + 2\alpha \tau  - \alpha 

\sum 
l\in \BbbZ \setminus \{ 0\} 

\biggl( 
1 + \mu 2

l

\mu 2
l

\biggr) \alpha 

| \widehat vl| 2
\leq | \widehat v0| 2 +C(\alpha )2\tau  - \alpha 

\sum 
l\in \BbbZ \setminus \{ 0\} 

| \widehat vl| 2
\leq C(\alpha )2\tau  - \alpha 

\sum 
l\in \BbbZ 

| \widehat vl| 2 =C(\alpha )2\tau  - \alpha 1

b - a
\| v\| 2L2 ,

which proves (3.22) and concludes the proof.

With Lemma 3.9, we are able to obtain the stability estimate of the numerical
flow (2.2) up to H2 without additional regularity on the potential and nonlinearity.

Proposition 3.10 (stability estimate). Let v,w \in H2
per(\Omega ) such that \| v\| L\infty \leq M0

and \| w\| L\infty \leq M0, and let 0< \tau < 1. Then we have, for 0\leq \alpha \leq 2,

\| \Phi \tau (v) - \Phi \tau (w)\| H\alpha \leq \| v - w\| H\alpha +C(M0)\tau 
1 - \alpha /2\| v - w\| L2 .

Proof. Recalling (2.2) and 3.4, we have

\Phi \tau (u) = ei\tau \Delta u - i\tau \varphi 1(i\tau \Delta )B(u), u\in H2
per(\Omega ).(3.24)

Taking u = v and u = w in (3.24), subtracting one from the other, and using the
isometry property of eit\Delta and Lemmas 3.9 and 3.4, we have

\| \Phi \tau (v) - \Phi \tau (w)\| H\alpha \leq \| ei\tau \Delta v - ei\tau \Delta w\| H\alpha + \tau \| \varphi 1(i\tau \Delta )(B(v) - B(w))\| H\alpha 

\leq \| v - w\| H\alpha +C(\alpha )\tau 1 - \alpha /2\| B(v) - B(w)\| L2

\leq \| v - w\| H\alpha +C(\alpha )\tau 1 - \alpha /2CL(M0)\| v - w\| L2 .

The conclusion follows from letting C(M0) =C(\alpha )CL(M0) with \alpha = 2.

3.4. Proof of the optimal \bfitL 2-error bound (3.2). With the local trunca-
tion error estimate in Proposition 3.7 and the L\infty -conditional stability estimate in
Proposition 3.10, we can prove (3.2) by mathematical induction.

Proof of (3.2) in Theorem 3.1. Define the error function e[n] := \psi (tn) - \psi [n] for
0\leq n\leq T/\tau . For 0\leq n\leq T/\tau  - 1 and 0\leq \alpha \leq 2, we have

\| e[n+1]\| H\alpha = \| \psi (tn+1) - \psi [n+1]\| H\alpha = \| \psi (tn+1) - \Phi \tau (\psi [n])\| H\alpha 

\leq \| \psi (tn+1) - \Phi \tau (\psi (tn))\| H\alpha + \| \Phi \tau (\psi (tn)) - \Phi \tau (\psi [n])\| H\alpha .(3.25)

In the following, we first establish the error bounds in L2-norm and H
7
4 -norm together

by the mathematical induction, which, in particular, yields the uniform L\infty -bound
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104 WEIZHU BAO AND CHUSHAN WANG

of \psi [n]. With the uniform L\infty -bound, we can obtain the uniform H2-bound of \psi [n].
The error bound in H1-norm will follow from the error bound in L2-norm and the
uniform H2-bound by using the standard interpolation inequalities.

Let C0 := max\{ C(1 +M),M,1\} \geq 1 with M given in (3.1) and C(\cdot ) defined
in Proposition 3.10, and let C1 := C(M) with C(\cdot ) defined in Proposition 3.7. Let
0< \tau 0 < 1 be chosen such that

2C0Te
C0TC1\tau 

1
8
0 \leq 1/c,(3.26)

where c is the constant given by the Sobolev embedding H
7
4 \lhook \rightarrow L\infty . We are going to

prove that when 0< \tau < \tau 0, we have, for 0\leq n\leq T/\tau ,

\| e[n]\| L2 \leq eC0TC1\tau , \| e[n]\| 
H

7
4
\leq 2C0Te

C0TC1\tau 
1
8 .(3.27)

We shall prove (3.27) by mathematical induction. When n = 0, e[n] = \psi [0]  - \psi 0 = 0,
and (3.27) holds trivially. We assume that (3.27) holds for 0 \leq n \leq m \leq T/\tau  - 1.
Under this assumption, we have, by Sobolev embedding, \tau < \tau 0, and (3.26),

\| \psi [n]\| L\infty \leq \| \psi (tn)\| L\infty + \| e[n]\| L\infty \leq M + c\| e[n]\| 
H

7
4
\leq M + 1, 0\leq n\leq m.(3.28)

Taking \alpha = 0 and \alpha = 7/4 in (3.25), we have, for 0\leq n\leq T/\tau  - 1,

\| e[n+1]\| L2 \leq \| \psi (tn+1) - \Phi \tau (\psi (tn))\| L2 + \| \Phi \tau (\psi (tn)) - \Phi \tau (\psi [n])\| L2 ,(3.29)

\| e[n+1]\| 
H

7
4
\leq \| \psi (tn+1) - \Phi \tau (\psi (tn))\| 

H
7
4
+ \| \Phi \tau (\psi (tn)) - \Phi \tau (\psi [n])\| 

H
7
4
.(3.30)

Using Propositions 3.7 and 3.10 with \alpha = 0 and \alpha = 7/4 for (3.29) and (3.30),
respectively, and noting (3.28), we have, for 0\leq n\leq m,

\| e[n+1]\| L2 \leq (1 +C0\tau )\| e[n]\| L2 +C1\tau 
2,(3.31)

\| e[n+1]\| 
H

7
4
\leq \| e[n]\| 

H
7
4
+C0\tau 

1
8 \| e[n]\| L2 +C1\tau 

1+ 1
8 .(3.32)

From (3.31), using the standard discrete Gronwall's inequality, we have

\| e[m+1]\| L2 \leq eC0TC1\tau .(3.33)

From (3.32), using the assumption that (3.27) holds for 0\leq n\leq m, we have

\| e[n+1]\| 
H

7
4
\leq \| e[n]\| 

H
7
4
+C0\tau 

1
8 eC0TC1\tau +C1\tau 

1+ 1
8 , 0\leq n\leq m.(3.34)

Summing over n from 0 to m in (3.34), noting that e[0] = 0 and C0 \geq 1, we obtain

\| e[m+1]\| 
H

7
4
\leq C0\tau 

1
8 eC0TC1m\tau +C1m\tau 

1+ 1
8

\leq C0Te
C0TC1\tau 

1
8 +C1T\tau 

1
8

\leq 2C0Te
C0TC1\tau 

1
8 .(3.35)

Combining (3.33) and (3.35), we prove (3.27) for n=m+1 and thus for all 0\leq n\leq T/\tau 
by mathematical induction.

Then we prove the uniform H2 bound of \psi [n]. We first note that (3.28) now holds
for any 0 \leq n \leq T/\tau . Taking \alpha = 2 in (3.25), using Propositions 3.10 and 3.7 with
\alpha = 2 and (3.27), we have, for 0\leq n\leq T/\tau  - 1,

\| e[n+1]\| H2 \leq \| \Psi \tau (\psi (tn)) - \Phi \tau (\psi (tn))\| H2 + \| \Phi \tau (\psi (tn)) - \Phi \tau (\psi [n])\| H2

\leq \| e[n]\| H2 +C0\| e[n]\| L2 +C1\tau 

\leq \| e[n]\| H2 +C0e
C0TC1\tau +C1\tau .(3.36)
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ERROR ESTIMATES OF EWI FOR NLSE 105

Summing (3.36) from 0 to n - 1, we obtain

\| e[n]\| H2 \leq C0e
C0TC1n\tau +C1n\tau \leq 2C0e

C0TC1T, 0\leq n\leq T/\tau .(3.37)

Finally, combining (3.27) and (3.37) and using the interpolation inequality for the
H1-error bound, we prove (3.2).

3.5. Proof of the optimal \bfitH 1-error bound (3.3). To prove (3.3), we assume
that V \in W 1,4(\Omega ) \cap H1

per(\Omega ), f satisfies Assumption (B), \psi \in C([0, T ];H3
per(\Omega )) \cap 

C1([0, T ];H1(\Omega )), and 0 < \tau < \tau 0 with \tau 0 given in (3.26). Under the assumptions
above, B :H2

per(\Omega )\rightarrow H1
per(\Omega ) satisfies

\| B(v) - B(w)\| H1 \leq C(\| v\| H3 ,\| w\| H2 ,\| V \| W 1,4(\Omega ))\| v - w\| H1 , v,w \in H2
per(\Omega ).

(3.38)

Proof of (3.3) in Theorem 3.1. From (3.18), using (3.38) and the isometry property
of eit\Delta and noting that \psi \in C1([0, T ];H1(\Omega )), we have, for 0\leq n\leq T/\tau  - 1,

\| \psi (tn+1) - \Phi \tau (\psi (tn))\| H1 \leq 
\int \tau 

0

\| B(\psi (tn + s)) - B(\psi (tn))\| H1ds\lesssim \tau 2.(3.39)

Noting that | \varphi 1(i\theta )| \leq 1 for \theta \in \BbbR , we have

\| \varphi 1(i\tau \Delta )v\| H1 \leq \| v\| H1 , v \in H1
per(\Omega ),(3.40)

which implies, by recalling (3.24) and using (3.38) again, that

\| \Phi \tau (\psi (tn)) - \Phi \tau (\psi [n])\| H1 \leq \| \psi (tn) - \psi [n]\| H1 + \tau \| B(\psi (tn)) - B(\psi [n])\| H1

\leq (1 +C\tau )\| \psi (tn) - \psi [n]\| H1 , 0\leq n\leq T/\tau  - 1,(3.41)

where C depends on \| V \| W 1,4 , \| \psi (tn)\| H3 , and \| \psi [n]\| H2 , which are uniformly bounded.
Then (3.3) follows from (3.39) and (3.41) by the standard Lady Windermere's fan
argument.

4. Optimal error bounds for the full discretization (2.11). In this section,
we establish optimal error bounds in L2- and H1-norms for the full-discretization
scheme EWI-FS (2.11) and generalize them to the EWI-EFP scheme (2.13).

4.1. Main results. For \psi n (0 \leq n \leq T/\tau ) obtained by the EWI-FS scheme
(2.11), we have the following.

Theorem 4.1. Assuming that V \in L\infty (\Omega ), f satisfies Assumption (A), and the
exact solution \psi \in C([0, T ];H2

per(\Omega ))\cap C1([0, T ];L2(\Omega )), there exists \tau 0 > 0 and h0 > 0
depending on M and T and sufficiently small such that for any 0 < \tau < \tau 0 and
0<h<h0, we have

\| \psi (\cdot , tn) - \psi n\| L2 \lesssim \tau + h2, \| \psi n\| H2 \leq C(M),

\| \psi (\cdot , tn) - \psi n\| H1 \lesssim 
\surd 
\tau + h, 0\leq n\leq T/\tau .

(4.1)

Moreover, if V \in W 1,4(\Omega ) \cap H1
per(\Omega ), f satisfies (B), and \psi \in C([0, T ];H3

per(\Omega )) \cap 
C1([0, T ];H1(\Omega )), then we have, for 0< \tau < \tau 0 and 0<h<h0,

\| \psi (\cdot , tn) - \psi n\| L2 \lesssim \tau + h3, \| \psi (\cdot , tn) - \psi n\| H1 \lesssim \tau + h2, 0\leq n\leq T/\tau .(4.2)
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106 WEIZHU BAO AND CHUSHAN WANG

Remark 4.2. Thanks to the strong H2-control of the semidiscretization solution
in (3.2), there is no coupling condition between \tau and h for all 1\leq d\leq 3 in Theorem
4.1.

In the following, we shall prove Theorem 4.1. We use different methods to prove
(4.1) and (4.2). For the L2-norm error bound (4.1), we compare the full-discretization
solution \psi n with the semidiscretization solution \psi [n] to avoid the coupling condition
between \tau and h when using the inverse inequalities. Then, for the H1-norm error
bound (4.2), we can directly compare the full-discretization solution with the exact
solution since we already have control of the full-discretization solution in H2-norm.

In the rest of this section, we assume that V \in L\infty (\Omega ), f satisfies Assumption
(A), and \psi \in C([0, T ];H2

per(\Omega ))\cap C1([0, T ];L2(\Omega )).

4.2. Proof of the optimal \bfitL 2-error bound (4.1). We start with the er-
ror estimates between the semidiscretization solution \psi [n] and the full-discretization
solution \psi n.

Proposition 4.3. Let 0< \tau < \tau 0 with \tau 0 given in Theorem 3.1. Then there exists
h0 depending on M and T and small enough such that for 0<h<h0, we have

\| PN\psi 
[n]  - \psi n\| L2 \leq C(M,T )h2, 0\leq n\leq T/\tau .

Proof. Define the error function en := PN\psi 
[n]  - \psi n for 0 \leq n \leq T/\tau . Then

e0 = PN\psi 
[0]  - \psi 0 = 0. Applying PN on both sides of (2.2), noting that PN commutes

with ei\tau \Delta and \varphi 1(i\tau \Delta ), and recalling (3.4), we have

PN\psi 
[n+1] = ei\tau \Delta PN\psi 

[n]  - i\tau \varphi 1(i\tau \Delta )PNB(\psi [n]), 0\leq n\leq T/\tau  - 1.(4.3)

Recalling (2.11) and (3.4), we have

\psi n+1 = ei\tau \Delta \psi n  - i\tau \varphi 1(i\tau \Delta )PNB(\psi n), 0\leq n\leq T/\tau  - 1.(4.4)

Subtracting (4.4) from (4.3), we have, for 0\leq n\leq T/\tau  - 1,

en+1 = ei\tau \Delta en  - i\tau \varphi 1(i\tau \Delta )PN (B(\psi [n]) - B(\psi n)).(4.5)

From (4.5), using the isometry property of eit\Delta , the L2-projection property of PN ,
and Lemma 3.9 with \alpha = 0, we have, for 0\leq n\leq T/\tau  - 1,

\| en+1\| L2 \leq \| en\| L2 + \tau \| \varphi 1(i\tau \Delta )PN ((B(\psi [n]) - B(\psi n))\| L2

\leq \| en\| L2 + \tau \| (B(\psi [n]) - B(\psi n)\| L2

\leq \| en\| L2 + \tau \| (B(\psi [n]) - B(PN\psi 
[n])\| L2 + \tau \| (B(PN\psi 

[n]) - B(\psi n)\| L2 .(4.6)

By (3.2), using Sobolev embedding and the boundedness of PN , we have

\| PN\psi 
[n]\| L\infty \leq \~c\| PN\psi 

[n]\| H2 \leq \~c\| \psi [n]\| H2 \leq \~cC(M) =:M0, 0\leq n\leq T/\tau ,(4.7)

where \~c is given by the Sobolev embedding H2 \lhook \rightarrow L\infty . Similarly, \| \psi [n]\| L\infty \leq M0.
From (4.6), noting (4.7) and using Lemma 3.4, the uniform H2-bound in (3.2), and
the standard projection error estimate \| \phi  - PN\phi \| L2 \lesssim h2| \phi | H2 \forall \phi \in H2

per(\Omega ), we have,
for 0\leq n\leq T/\tau  - 1,

\| en+1\| L2 \leq \| en\| L2 +CL(max\{ M0,\| \psi n\| L\infty \} )\tau \| en\| L2 + \~C1\tau h
2,(4.8)
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ERROR ESTIMATES OF EWI FOR NLSE 107

where \~C1 depends exclusively on M . The conclusion then follows from the discrete
Gronwall's inequality and the standard induction argument by using the inverse in-
equality [50]

\| \phi \| L\infty \leq Cinvh
 - d

2 \| \phi \| L2 , \phi \in XN ,(4.9)

where d is the dimension of the space, i.e., d= 1 in the current case. For the conve-
nience of the reader, we present this process in the following.

Let \~C0 :=CL(1+M0)+ 1 with CL(\cdot ) given in Lemma 3.4, and recall \~C1 given by
(4.8). Let 0<h0 < 1 be chosen such that

Cinve
\~C0T \~C1h

2 - d/2
0 \leq 1.(4.10)

We shall show that, when 0<h<h0, for 0\leq n\leq T/\tau ,

\| en\| L2 \leq e
\~C0T \~C1h

2, \| \psi n\| L\infty \leq 1 +M0.(4.11)

Recall that e0 = 0, and by (4.7), \| \psi 0\| L\infty = \| PN\psi 0\| L\infty = \| PN\psi 
[0]\| L\infty \leq M0. Then

(4.11) holds for n = 0. Assume that (4.11) holds for 0 \leq n \leq m \leq T/\tau  - 1, which
implies, from (4.8), that

\| en+1\| L2 \leq (1 + \~C0\tau )\| en\| L2 + \~C1\tau h
2, 0\leq n\leq m,(4.12)

which further implies, by using the discrete Gronwall's inequality, that

\| em+1\| L2 \leq e
\~C0T \~C1h

2.(4.13)

From (4.13), using (4.9) and recalling (4.7) and (4.10), we have, by the triangle
inequality,

\| \psi m+1\| L\infty \leq \| em+1\| L\infty + \| PN\psi 
[m+1]\| L\infty \leq Cinvh

2 - d/2\| em+1\| L2 +M0

\leq Cinve
\~C0T \~C1h

2 - d/2 +M0 \leq 1 +M0.
(4.14)

Combing (4.13) and (4.10) proves (4.11) for n =m+ 1 and thus for all 0 \leq n \leq T/\tau 
by mathematical induction, which completes the proof.

Proof of (4.1) in Theorem 4.1. By the triangle inequality, for 0\leq \alpha \leq 2,

\| \psi (tn) - \psi n\| H\alpha \leq \| \psi (tn) - \psi [n]\| H\alpha + \| \psi [n]  - PN\psi 
[n]\| H\alpha + \| PN\psi 

[n]  - \psi n\| H\alpha .

(4.15)

From (3.2), using the interpolation inequalities, we have

\| \psi (tn) - \psi [n]\| H\alpha \lesssim \tau 1 - \alpha /2, 0\leq \alpha \leq 2.(4.16)

From (4.15), using (4.16) and the standard Fourier projection error estimates

\| \phi  - PN\phi \| H\alpha \lesssim h2 - \alpha | \phi | H2 , 0\leq \alpha \leq 2, \phi \in H2
per(\Omega ),(4.17)

and noting (3.2), we have

\| \psi (tn) - \psi n\| H\alpha \lesssim \tau 1 - \alpha /2 + h2 - \alpha + \| PN\psi 
[n]  - \psi n\| H\alpha .(4.18)

From (4.18), using the inverse estimate \| \phi \| H\alpha \lesssim h - \alpha \| \phi \| L2 \forall \phi \in XN [30, 50] and
Proposition 4.3, we have

\| \psi n  - \psi (tn)\| H\alpha \lesssim \tau 1 - \alpha /2 + h2 - \alpha + h - \alpha h2 \lesssim \tau 1 - \alpha /2 + h2 - \alpha , 0\leq \alpha \leq 2,(4.19)

which proves (4.1) by taking \alpha = 0,1,2.
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108 WEIZHU BAO AND CHUSHAN WANG

4.3. Proof of the optimal \bfitH 1-error bound (4.2). To prove (4.2), we assume
that V \in W 1,4(\Omega ) \cap H1

per(\Omega ), f satisfies Assumption (B), \psi \in C([0, T ];H3
per(\Omega )) \cap 

C1([0, T ];H1(\Omega )), and 0 < \tau < \tau 0, 0 < h < h0. Since we already have the uniform
control of \psi n in H2-norm, (4.2) can be proved similarly to (3.3), and we just sketch
the outline here.

Proof of (4.2) in Theorem 4.1. Recalling (2.11) and (3.16), we have

PN\psi (tn+1) - \Phi \tau 
h(PN\psi (tn))

= - i
\int \tau 

0

ei(\tau  - s)\Delta PN (B(\psi (tn + s)) - B(PN\psi (tn)))ds, 0\leq n\leq T

\tau 
 - 1,(4.20)

which implies, by the property of eit\Delta and PN for X =L2 or H1, that

\| PN\psi (tn+1) - \Phi \tau 
h(PN\psi (tn))\| X

\leq 
\int \tau 

0

(\| B(\psi (tn + s)) - B(\psi (tn))\| X + \| B(\psi (tn)) - B(PN\psi (tn))\| X)ds.(4.21)

From (4.21), using Lemma 3.4 and (3.38), we have, for 0\leq n\leq T/\tau  - 1,

\| PN\psi (tn+1) - \Phi \tau 
h(PN\psi (tn))\| L2 \lesssim \tau 2 + \tau h3,

\| PN\psi (tn+1) - \Phi \tau 
h(PN\psi (tn))\| H1 \lesssim \tau 2 + \tau h2.

(4.22)

Besides, recalling (2.11), using Lemmas 3.9 and 3.4, (3.22), and (3.38), we have

\| \Phi \tau 
h(PN\psi (tn)) - \Phi \tau 

h(\psi 
n)\| L2 \leq (1 +C1\tau )\| PN\psi (tn) - \psi n\| L2 ,

\| \Phi \tau 
h(PN\psi (tn)) - \Phi \tau 

h(\psi 
n)\| H1 \leq (1 +C2\tau )\| PN\psi (tn) - \psi n\| H1 ,

(4.23)

where C1 depends on \| PN\psi (tn)\| L\infty and \| \psi n\| L\infty and C2 depends on \| PN\psi (tn)\| H3

and \| \psi n\| H2 for 0\leq n\leq T/\tau  - 1. Thus, both C1 and C2 are under control. Then the
proof can be completed by the Lady Windermere's fan argument and the standard
projection error estimates of PN .

4.4. Extension to the EWI-EFP (2.13). For IN\psi 
\langle n\rangle (0\leq n\leq T/\tau ) obtained

from the EWI-EFP scheme (2.13), it satisfies the same error bounds as \psi n(0 \leq n \leq 
T/\tau ) in Theorem 4.1 under the same assumptions on potential and the exact solution
but with a little more regular nonlineairty. To be precise, we introduce another
assumption on the nonlinearity as

f(| v| 2)v \in H\alpha 
per(\Omega ) \forall v \in H\alpha 

per(\Omega ).(C)

For the optimal L2-norm error bound, we assume that f satisfies Assumptions
(A) and (C) with \alpha = 2. Two typical examples of f include (i) f(\rho ) = \lambda 1\rho 

\sigma 1 + \lambda 2\rho 
\sigma 2

with \sigma 2 >\sigma 1 \geq 1/2 and \lambda 1, \lambda 2 \in \BbbR and (ii) f(\rho ) = \lambda \rho \sigma ln\rho with \sigma > 1/2 and \lambda \in \BbbR .
For the optimal H1-norm error bound, we assume, in addition to Assumption

(B), that f satisfies (C) with \alpha = 3 and the discrete counterpart of Assumption (B),

\| IN (f(| v| 2)v - f(| w| 2)w)\| H1 \leq C(\| v\| H3 ,\| w\| H2)\| v - w\| H1 , v,w \in XN ,(B')

with two typical examples of f : (i) f(\rho ) = \lambda 1\rho 
\sigma 1 + \lambda 2\rho 

\sigma 2 with \sigma 2 > \sigma 1 \geq 1 and
\lambda 1, \lambda 2 \in \BbbR and (ii) f(\rho ) = \lambda \rho \sigma ln\rho with \sigma > 1 and \lambda \in \BbbR (see, e.g., [18] for the proof).

Then we have the following error bounds for the EWI-EFP scheme (2.13).
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ERROR ESTIMATES OF EWI FOR NLSE 109

Corollary 4.4. Assume that V \in L\infty (\Omega ), f satisfies Assumptions (A) and (C)
with \alpha = 2, and the exact solution \psi \in C([0, T ];H2

per(\Omega )) \cap C1([0, T ];L2(\Omega )). There
exists \tau 0 > 0 and h0 > 0 depending on M and T and sufficiently small such that for
any 0< \tau < \tau 0 and 0<h<h0, we have

\| \psi (\cdot , tn) - IN\psi 
\langle n\rangle \| L2 \lesssim \tau + h2, \| IN\psi \langle n\rangle \| H2 \leq C(M),

\| \psi (\cdot , tn) - IN\psi 
\langle n\rangle \| H1 \lesssim 

\surd 
\tau + h, 0\leq n\leq T/\tau .

(4.24)

Moreover, if V \in W 1,4(\Omega )\cap H1
per(\Omega ); f satisfies Assumptions (B), (B'), and (C) with

\alpha = 3; and \psi \in C([0, T ];H3
per(\Omega )) \cap C1([0, T ];H1(\Omega )), then we have, for 0 < \tau < \tau 0

and 0<h<h0,

\| \psi (\cdot , tn) - IN\psi 
\langle n\rangle \| L2 \lesssim \tau + h3, \| \psi (\cdot , tn) - IN\psi 

\langle n\rangle \| H1 \lesssim \tau + h2, 0\leq n\leq T/\tau .

(4.25)

For notational simplicity, we define BN :Cper(\Omega )\rightarrow XN as

BN (\phi ) := PN (V \phi ) + ING(\phi ), \phi \in Cper(\Omega ),(4.26)

where G(\phi )(x) = f(| \phi (x)| 2)\phi (x) for x\in \Omega . Then we have the following.

Lemma 4.5. Let v,w \in XN . Assume that V \in L\infty (\Omega ) and f satisfies (A) and (C)
with \alpha = 2. If \| v\| H2 \leq M0 and \| w\| L\infty \leq M1, then we have

\| PNB(v) - BN (w)\| L2 \leq C(\| V \| L\infty ,M0,M1)\| v - w\| L2 +C(M0)h
2.(4.27)

Moreover, if V \in W 1,4(\Omega )\cap H1
per(\Omega ), f satisfies Assumptions (B') and (C) with \alpha = 3,

and \| v\| H3 \leq M2 and \| w\| H2 \leq M3, we have

\| PNB(v) - BN (w)\| H1 \leq C(\| V \| W 1,4 ,M2,M3)\| v - w\| H1 +C(M2)h
2.(4.28)

Proof. Recalling (3.4) and (4.26), we have

PNB(v) - BN (w) = PN (V (v - w)) + PNG(v) - ING(w)

= PN (V (v - w)) + (PN  - IN )G(v) + ING(v) - ING(w).(4.29)

From (4.29), using assumption (C) with \alpha = 2, we have

\| PNB(v) - BN (w)\| L2 \lesssim \| V \| L\infty \| v - w\| L2 +C(M0)h
2 + \| ING(v) - ING(w)\| L2

\leq \| V \| L\infty \| v - w\| L2 +C(M0)h
2 +C(M0,M1)\| v - w\| L2 ,(4.30)

where we use \| ING(\phi )\| 2L2 = h
\sum N - 1

j=0 | G(\phi (xj))| 2 and IN is an identity on XN in the
last line, and we prove (4.27).

To prove (4.28), using (C) with \alpha = 3 and (B'), from (4.29), we have

\| PNB(v) - BN (w)\| H1 \lesssim \| V \| W 1,4\| v - w\| H1 +C(M2)h
2 +C(M2,M3)\| v - w\| H1 ,

which proves (4.28) and completes the proof.

Proof of Corollary 4.4. The proof is similar to the proof of Theorem 4.1, and
we sketch it here for the convenience of the reader. We start with the proof of
(4.24). Define the error function e\langle n\rangle := PN\psi 

[n]  - IN\psi 
\langle n\rangle for 0 \leq n \leq T/\tau . Then
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110 WEIZHU BAO AND CHUSHAN WANG

e\langle 0\rangle = PN\psi 0  - IN\psi 0 satisfies \| e\langle 0\rangle \| L2 \leq C(M)h2. Recalling (2.16), (4.26), and (4.3),
we obtain, for 0\leq n\leq T/\tau  - 1,

e\langle n+1\rangle = ei\tau \Delta e\langle n\rangle  - i\tau \varphi 1(i\tau \Delta )(PNB(\psi [n]) - BN (IN\psi 
\langle n\rangle )).(4.31)

From (4.31), by the boundedness of ei\tau \Delta , PN , and \varphi 1(i\tau \Delta ); Lemma 3.4; the triangle
inequality; the uniform H2-bound of \psi [n] in (3.2); and (4.27), we get

\| e\langle n+1\rangle \| L2 \leq \| e\langle n\rangle \| L2 + \tau 
\Bigl( 
\| PNB(\psi [n]) - PNB(PN\psi 

[n])\| L2

+ \| PNB(PN\psi 
[n]) - BN (IN\psi 

\langle n\rangle )\| L2

\Bigr) 
\leq \| e\langle n\rangle \| L2 +C(M)\tau h2 + (1+C(M,\| IN\psi \langle n\rangle \| L\infty )\tau )\| e\langle n\rangle \| L2 .(4.32)

From (4.32), by the discrete Gronwall's inequality and the same induction process as
in the proof of Proposition 4.3, noting first step error \| e\langle 0\rangle \| L2 \leq C(M)h2, we obtain

\| e\langle n\rangle \| L2 \leq C(M,T )h2, 0\leq n\leq T/\tau .(4.33)

The rest of the proof of (4.24) can be completed by following the proof of (4.1).

Then we outline the proof of (4.25). Define the numerical flow \Phi 
\langle \tau \rangle 
h :XN \rightarrow XN

associated with the EWI-EFP scheme (2.13) as

\Phi 
\langle \tau \rangle 
h (v) = ei\tau \Delta v - i\tau \varphi 1(i\tau \Delta )BN (v), v \in XN .(4.34)

Recalling (2.16), we have IN\psi 
\langle n+1\rangle = \Phi 

\langle \tau \rangle 
h (IN\psi 

\langle n\rangle ) for n \geq 0. Recalling (3.16) and
(4.34), the local truncation error can be decomposed as

PN\psi (tn+1) - \Phi 
\langle \tau \rangle 
h (PN\psi (tn)) = - i

\int \tau 

0

ei(\tau  - s)\Delta 
\bigl( 
PNB(\psi (tn + s)) - PNB(\psi (tn))+

PNB(\psi (tn)) - PNB(PN\psi (tn)) + PNB(PN\psi (tn)) - BN (PN\psi (tn))
\bigr) 
ds,(4.35)

which implies, by the boundedness of eit\Delta and PN and using (3.38) and (4.28), that

\| PN\psi (tn+1) - \Phi 
\langle \tau \rangle 
h (PN\psi (tn))\| H1 \lesssim \tau 2 + \tau h2.(4.36)

Besides, recalling (4.34) and using (B'), we have H1-stability estimate

\| \Phi \langle \tau \rangle 
h (PN\psi (tn)) - \Phi 

\langle \tau \rangle 
h (IN\psi 

\langle n\rangle )\| H1 \leq (1 +C3\tau )\| PN\psi (tn) - IN\psi 
\langle n\rangle \| H1 ,(4.37)

where C3 depends on \| V \| W 1,4 , \| \psi (tn)\| H3 , and \| IN\psi \langle n\rangle \| H2 and thus is under control.
The proof of the H1-error bound in (4.25) can be completed by applying the standard
Lady Windermere's fan argument with (4.36) and (4.37). The proof of the L2-error
bound in (4.25) can be obtained similarly. Then the proof is completed.

5. Numerical results. In this section, we present some numerical examples for
the NLSE with either low regularity potential or nonlinearity. In the following, we
fix \Omega = ( - 16,16), T = 1, d = 1 and consider the power-type nonlinearity f(\rho ) =
 - \rho \sigma (\sigma > 0).

Let \psi n(0\leq n\leq T/\tau ) be the numerical solution obtained by the EWI-FS method
(2.11) or the EWI-EFP method (2.13), which will be made clear in each case. Define
the error functions

ekL2 = \| \psi (tk) - IN\psi 
k\| L2 , ekH1 = \| \psi (tk) - IN\psi 

k\| H1 , 0\leq k\leq n := T/\tau .
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ERROR ESTIMATES OF EWI FOR NLSE 111

5.1. For the NLSE with locally Lipschitz nonlinearity. In this subsection,
we only consider the NLSE with the power-type nonlinearity and without potential,

i\partial t\psi (x, t) = - \Delta \psi (x, t) - | \psi (x, t)| 2\sigma \psi (x, t), x\in \Omega , t > 0,(5.1)

where \sigma > 0. Recall that Assumption (A) is satisfied for any \sigma > 0 and that As-
sumption (B) is satisfied for any \sigma \geq 1/2. Note that when there is no potential,
the extended Fourier pseudospectral method collapses to the standard Fourier pseu-
dospectral method.

Two types of initial data are considered:
(i) Type I. The H2 initial datum:

\psi 0(x) = x| x| 0.51e - x2

2 , x\in \Omega .(5.2)

(ii) Type II. The smooth initial datum:

\psi 0(x) = xe - 
x2

2 , x\in \Omega .(5.3)

The two initial data are specially chosen to demonstrate the influence of the
low regularity of f around the origin. Since both Type I and II initial data are odd
functions, the corresponding solutions of the NLSE will satisfy \psi (0, t)\equiv 0 for all t\geq 0.
The difference of these two initial data lies in the regularity.

We shall test the convergence order in both time and space for Types I and II
initial data. For each initial datum, we choose \sigma = 0.1,0.2,0.3,0.4. The ``exact""
solutions are computed by the Strang splitting Fourier pseudospectral method with
\tau = \tau e := 10 - 6 and h = he := 2 - 9. When testing the spatial errors, we fix the time
step size \tau = \tau e, and when testing the temporal errors, we fix the mesh size h= he.

We start with the Type I H2 initial datum (5.2). Figure 5.1 exhibits the spatial
error in L2- and H1-norms of the EWI-FS (solid lines) and the EWI-EFP (dotted
lines) method for \sigma = 0.1 with the Type I initial datum. We can observe that the
EWI-FS method is second-order convergent in L2-norm and first-order convergent in
H1-norm. Moreover, we see that there is almost no difference between the spatial
error of the EWI-FS method and the EWI-EFP method, which suggests that the
Fourier pseudospectral method seems also suitable to discretize the low regularity
nonlinearity.

0.1 0.4

10-3

10-1

Fig. 5.1. Comparison of the Fourier spectral and pseudospectral discretization of the nonlinear
term in (5.1) with \sigma = 0.1 and Type I initial datum (5.2).
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112 WEIZHU BAO AND CHUSHAN WANG

10-4 10-3 10-2 10-1

10-4

10-2

10-4 10-3 10-2 10-1

10-3

10-1

Fig. 5.2. Temporal errors of the EWI for the NLSE (5.1) with Type I initial datum (5.2):
(a) L2-norm errors and (b) H1-norm errors.

0.1 0.4

10-6

10-3

Fig. 5.3. Comparison of the Fourier spectral and pseudospectral discretizations of the nonlinear
term in (5.1) with \sigma = 0.1 and Type II initial datum (5.3).

Figure 5.2 plots the temporal error in L2- and H1-norms of the EWI for different
0 < \sigma < 1/2 with Type I initial datum. Figure 5.2(a) shows that the temporal
convergence is first order in L2-norm for all the four \sigma 's, and Figure 5.2 (b) shows
that the temporal convergence is half order in H1-norm for all the four \sigma 's.

The results in Figures 5.1 and 5.2 confirm our optimal L2-norm error bound for
the NLSE with locally Lipschitz nonlinearity and demonstrate that it is sharp.

Then we consider the Type II smooth initial datum (5.3). Figure 5.3 shows the
spatial error in L2- and H1-norms of the EWI-FS (solid lines) and the EWI-EFP (dot-
ted lines) method for \sigma = 0.1 with the Type II initial datum. We can observe that
the convergence orders in H1-norm of the EWI-FS (solid lines) and the EWI-EFP
(dashed lines) are almost the same (roughly 2.5), though the value of the error of
the EWI-FS is smaller than the EWI-EFP. The convergence order in L2-norm of the
EWI-FS method is roughly 3.5, which is almost one order higher than that of the
EWI-EFP method. This observation suggests that when the solution has better reg-
ularity, the Fourier spectral method outperforms the Fourier pseudospectral method
for discretizing the low regularity nonlinearity.

Figure 5.4 displays the temporal error in L2- and H1-norms of the EWI for dif-
ferent 0< \sigma < 1 with the Type II initial datum. Figure 5.4 shows that the temporal
convergence is first order in both L2- and H1-norms for all the four \sigma 's. However,
currently, we can only prove the first-order H1-convergence in time under Assumption
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10-4 10-3 10-2 10-1

10-4

10-2

10-4 10-3 10-2 10-1

10-4

10-2

Fig. 5.4. Temporal errors of the EWI for the NLSE (5.1) with Type II initial datum (5.3): (a)
L2-norm errors and (b) H1-norm errors.

(B), which holds only when \sigma \geq 1/2. Besides, as shown in Figure 5.3 of [18], for the
time-splitting methods, we can observe first-order convergence in H1-norm only when
\sigma \geq 1/2, which suggests that the EWI may be better than the time-splitting methods
when the nonlinearity is of low regularity.

The results in Figures 5.3 and 5.4 confirm our optimal H1-norm error bound for
the NLSE with low regularity nonlinearity but also indicate that Assumption (B) may
be relaxed.

5.2. For the NLSE with low regularity potential. In this subsection, we
only consider the cubic NLSE with low regularity potential as

i\partial t\psi (x, t) = - \Delta \psi (x, t) + V (x)\psi (x, t) - | \psi (x, t)| 2\psi (x, t), x\in \Omega , t > 0,(5.4)

where V is chosen as either V1 \in L\infty (\Omega ) or V2 \in W 1,4(\Omega ) defined as

V1(x) =

\Biggl\{ 
 - 4, x\in ( - 2,2),

0 otherwise,
V2(x) = | x| 0.76, x\in \Omega .(5.5)

We shall test the convergence orders for the NLSE (5.4) with V = V1 and \psi 0 \in 
H2(\Omega ) and V = V2 and \psi 0 \in H3(\Omega ), respectively. The ``exact"" solutions are computed
by the EWI-EFP method with \tau = \tau e := 10 - 6 and h = he := 2 - 9. When we test the
spatial errors, we fix the time step size \tau = \tau e, and when we test the temporal errors,
we fix the mesh size h= he.

We start with the spatial error and compare the performance of the extended
Fourier pseudospectral method and the standard Fourier pseudospectral (FP) method,

which can be obtained by replacing \widehat (V IN\psi \langle n\rangle )l with
\widetilde (V \psi \langle n\rangle )l in (2.13). We remark

here that, since the nonlinearity is smooth in (5.4), the results of the EWI-FS method
are almost the same as those of the EWI-EFP method.

Figure 5.5(a) shows the spatial error in L2- and H1-norms of the EWI-EFP
method (solid lines) and the EWI-FP method (dotted lines) with V = V1 \in L\infty (\Omega )
given in (5.5) and \psi 0 \in H2(\Omega ) given in (5.2). We can observe that the EWI-EFP is
second-order convergent in L2-norm and first-order convergent in H1-norm in space.
However, the spatial convergence order of the EWI-FP method is only first order in
both L2- and H1-norms, and the value of the error is much larger. This implies that
when discretizing purely L\infty -potential, the extended Fourier pseudospectral method
is much better than the standard Fourier pseudospectral method. Figure 5.5(b) plots
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10-2 10-1

10-5

10-1

10-4 10-2

10-4

10-1

Fig. 5.5. Convergence tests of the EWI for (5.4) with V = V1 \in L\infty (\Omega ) and \psi 0 \in H2(\Omega ): (a)
spatial errors of the Fourier spectral and pseudospectral discretizations for the linear potential and
(b) temporal errors in L2-norm and H1-norm.

0.02 0.2

10-6

10-4

10-2

10-4 10-2

10-4

10-1

Fig. 5.6. Convergence tests of the EWI for (5.4) with V = V2 \in W 1,4(\Omega ) and \psi 0 \in H3(\Omega ): (a)
spatial errors of the Fourier spectral and pseudospectral discretizations for the linear potential and
(b) temporal errors in L2-norm and H1-norm.

the temporal convergence of the EWI in L2- and H1-norms with the Type I initial da-
tum. We can observe that the EWI is first-order convergent in L2-norm and half-order
convergent in H1-norm in time.

The results in Figure 5.5 validate our optimal L2-norm error bound for the NLSE
with L\infty -potential and demonstrate that it is sharp.

Figure 5.6(a) shows the spatial error in L2- and H1-norms of the EWI-EFP
method (solid lines) and the EWI-FP method (dotted lines) with V = V2 \in W 1,4(\Omega )
given in (5.5) and \psi 0 \in H3(\Omega ) given by \psi 0(x) = (1 + | x| 2.51)e - x2/2. We can observe
that the EWI-EFP is third-order convergent in L2-norm and second-order convergent
in H1-norm in space. However, the spatial convergence order of the EWI-FP method
is only 1.7 orders in both L2- and H1-norms, and the value of the error is much larger.
This implies again that the extended Fourier pseudospectral method is much better
than the standard Fourier pseudospectral method when the potential is of low regu-
larity. Figure 5.6(b) plots the temporal convergence of the EWI in L2- and H1-norms
with the H3 initial datum. We can observe that the EWI is first-order convergent in
H1-norm in time for V \in W 1,4(\Omega ).

The results in Figure 5.6 validate our optimal H1-norm error bound for the NLSE
with W 1,4-potential and demonstrate that it is sharp.
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10-4 10-2

10-5

10-2

EWI
TSFP

10-4 10-2
10-5

10-3

EWI
TSFP

Fig. 5.7. Comparison of EWI and LTFP for the NLSE (5.1) with \sigma = 0.1: (a) temporal errors
in L2-norm and (b) temporal errors in H1-norm.

10-3 10-1

10-2

10-1

TSFP
EWI

10-3 10-1

10-2

100

TSFP
EWI

Fig. 5.8. Comparison of EWI and LTFP for the NLSE (5.4) with V = V1 \in L\infty (\Omega ) in (5.5):
(a) temporal errors in L2-norm and (b) temporal errors in H1-norm.

5.3. Comparison with the time-splitting method. In this subsection, we
present some numerical results to compare the performance of the EWI and the time-
splitting method applied to the NLSE with low regularity potential and nonlinearity.
To be precise, we compare the EWI with the first-order Lie--Trotter time-splitting
method with the standard Fourier pseudospectral method for spatial discretization
(abbreviated as TSFP in the following). Here, we fix h = he and compare the tem-
poral errors; roughly speaking, this is equivalent to doing a comparison for semidis-
cretization in time by different time integrators.

First, we consider the NLSE (5.1) with low regularity nonlinearity \sigma = 0.1 and
the smooth initial datum (5.3). In Figure 5.7, we can observe that both the EWI and
the TSFP are first-order convergent in L2-norm, although the value of the error of the
TSFP method is smaller than the EWI. However, when measured in H1-norm, the
EWI is still first-order convergent (although this is not covered by our error estimates,
as already mentioned in the discussion of Figure 5.4), but the error of the TSFP
method fluctuates a lot and leads to order reduction.

Then we consider the NLSE (5.4) with low regularity potential V = V1 \in L\infty (\Omega )
in (5.5) and an H2-initial datum given in (5.2). In Figure 5.8, we can observe that
the EWI is first-order and half-order convergent in L2- and H1-norms, respectively.
However, both the L2- and H1-errors of the TSFP method fluctuate drastically and
suffer from severe order reduction.
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116 WEIZHU BAO AND CHUSHAN WANG

Based on the discussion above, we can conclude that, in general, the EWI is
better than the TSFP method when approximating the NLSE with low regularity
potential and nonlinearity. However, the numerical results also necessitate the design
and analysis of higher-order and structure-preserving (e.g., time-symmetric) EWIs for
better error constant. This will be considered in our future work.

6. Conclusions. We established optimal error bounds for the first-order
Gautschi-type EWI applied to the NLSE with L\infty -potential and/or locally Lipschitz
nonlinearity under the assumption of H2-solution. For the semidiscretization in time
by the first-order Gautschi-type EWI, we proved an optimal L2-norm error bound at
O(\tau ) and a uniform H2-bound of the numerical solution. For the full discretization
obtained from the semidiscretization by using the Fourier spectral method in space, we
proved an optimal L2-norm error bound at O(\tau +h2) without any coupling condition
between \tau and h. For W 1,4-potential and a little more regular nonlinearity, under the
assumption of H3-solution of the NLSE, we proved optimal H1-norm error bounds
for both the semidiscrete and fully discrete schemes. As a by-product, we proposed
an extended Fourier pseudospectral method to implement the full discretization when
the potential is of low regularity and the nonlinearity is smooth, in which the poten-
tial and nonlinearity were discretized by the Fourier spectral method and the Fourier
pseudospectral method, respectively. The proposed numerical implementation has
similar computational cost as the standard Fourier pseudospectral method, but we
can establish rigorous error bounds for this method. On the contrary, one cannot
establish optimal error bounds for the standard Fourier pseudospectral method for
the NLSE when the potential is of low regularity, e.g., V \in L\infty . In the future, we
will consider even weaker potential, e.g., V \in L1, including Coulomb potential and/or
spatial/temporal Dirac delta potential.
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