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Abstract

We propose an accurate and energy-stable parametric finite element method for solving

the sharp-interface continuum model of solid-state dewetting in three-dimensional space.

The model describes the motion of the film/vapor interface with contact line migration

and is governed by the surface diffusion equation with proper boundary conditions at the

contact line. We present a weak formulation for the problem, in which the contact angle

condition is weakly enforced. By using piecewise linear elements in space and backward

Euler method in time, we then discretize the formulation to obtain a parametric finite

element approximation, where the interface and its contact line are evolved simultaneously.

The resulting numerical method is shown to be well-posed and unconditionally energy-

stable. Furthermore, the numerical method is generalized to the case of anisotropic surface

energies in the Riemannian metric form. Numerical results are reported to show the

convergence and efficiency of the proposed numerical method as well as the anisotropic

effects on the morphological evolution of thin films in solid-state dewetting.

Mathematics subject classification: 74H15, 74S05, 74M15, 65Z99.
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1. Introduction

A thin solid film deposited on the substrate will agglomerate or dewet to form isolated

islands due to surface tension/capillarity effects when heated to high enough temperatures

but well below the thin film’s melting point. This process is referred to as the solid-state

dewetting (SSD) [1] since the thin film remains solid. In recent years, SSD has been found wide

applications in thin film technologies, and it is emerging as a promising route to produce well-

controlled patterns of particle arrays used in sensors [2], optical and magnetic devices [3], and

catalyst formations [4]. A lot of experimental (e.g., [5–11]) and theoretical efforts (e.g., [12–21])

have been devoted to SSD not just because of its importance in industrial applications but also

the arising scientific questions within the problem.

In general, SSD can be regarded as a type of open surface evolution problem governed

by surface diffusion [22] and moving contact lines [23]. When the thin film moves along the

solid substrate, a moving contact line forms where the three phases (i.e., solid film, vapor and

substrate) meet. This brings an additional kinetic feature to this problem. Recently, different
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Fig. 1.1. Left panel: A geometric setup of SSD, where a thin film (shaded in blue) is deposited on a flat

rigid substrate (shaded in gray), S is the film/vapor interface and S1 is the film/substrate interface.

Right panel: configuration of the contact angle: θd = cos−1(c
Γ
· n

Γ
) at the contact line (green).

mathematical models and simulation methods have been proposed to study SSD, such as sharp-

interface models [14, 19, 23, 24], phase-field models [12, 25–27] and other models including the

crystalline formulation [28,29], discrete chemical potential method [18] and kinetic Monte Carlo

method [30].

In this work, we will restrict ourselves to the model in [24]. It is a sharp-interface model in

three dimensions (3D) and was developed based on the thermodynamic variation. As illustrated

in Fig. 1.1(a), we consider the case when a thin film is deposited on a flat substrate. The evolving

film/vapor interface is described by a moving open surface S(t) with mapping given by (with

X = (x, y, z)T or X = (x1, x2, x3)
T )

X(ρ, t) =
(
x1(ρ, t), x2(ρ, t), x3(ρ, t)

)T
: S0 × [0, T ] → R

3, (1.1)

where S0 = S(0) is the initial surface. The film/substrate interface is a flat surface, i.e., a two-

dimensional moving domain and denoted by S1(t). The two interfaces intersect at the contact

line and form a closed curve Γ(t) := S(t) ∩ S1(t). We assume Γ(t) is a simple closed curve and

positively orientated with the mapping given by: Γ(t) := X
Γ
(ρ, t), ρ ∈ Γ0 = Γ(0).

Some relevant geometric parameters are defined as follows: n and H are the unit outward

normal vector and mean curvature of S(t), respectively; c
Γ
and n

Γ
represent the outward unit

conomral vector of S(t) and S1(t), respectively, and ∇s is the surface gradient operator defined

in (A.1). The sharp-interface model of SSD in 3D can be stated as [24]:

∂tX = ∆sH n, (1.2a)

H = − (∆sX) · n, (1.2b)

where ∆s = ∇s · ∇s is the surface Laplacian operator. The above equations are supplemented

with the following conditions at Γ(t):

(i) The contact line condition

x3(·, t)|Γ = 0, t ≥ 0. (1.3a)

(ii) The relaxed contact angle condition

∂tXΓ
= −η (c

Γ
· n

Γ
− cos θY ) nΓ

, t ≥ 0. (1.3b)

(iii) The zero-mass flux condition

(c
Γ
· ∇sH)|

Γ
= 0, t ≥ 0. (1.3c)
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Here θY is the Young’s equilibrium angle, and η > 0 is the contact line mobility which controls

the relaxation rate of the dynamical contact angles to the equilibrium contact angle. Condition

(i) ensures that the contact line always move along the substrate surface. When η → ∞,

condition (ii) collapses to the well-known Young’s equation. Condition (iii) implies that there

is no mass-flux at the contact line thus the total mass/volume of the thin film is conserved.

The total free energy of the system consists of the film/vapor interfacial energy and the

substrate surface energy:

W (t) := |S(t)| − cos θY |S1(t)|, (1.4)

where |S(t)| and |S1(t)| denote the surface area of S(t) and S1(t), respectively. Let Ω(t) be the

region enclosed by S(t) and S1(t), then the dynamic system obeys the conservation law for the

total volume (mass) and the dissipation law for the total surface energy [24]

d

dt
|Ω(t)| =

∫

S(t)

∆sH dA ≡ 0, t ≥ 0, (1.5a)

d

dt
W (t) = −

∫

S(t)

‖∇sH‖
2
dA− η

∫

Γ(t)

(c
Γ
· n

Γ
− cos θY )

2
ds ≤ 0, (1.5b)

where ‖·‖ is the Euclidean norm in R
3.

There exist several numerical methods for simulating interface evolution under surface

diffusion as well as its applications in SSD. The main difficulty of the problem arises from the

complexity of the high-order and nonlinear governing equations and the possible deterioration of

the interface mesh during numerical implementation. Therefore, most front tracking methods,

no matter in the framework of finite difference [14, 19, 31, 32] or finite element method [33–35],

generally have to introduce mesh regularization/smoothing algorithms or artificial tangential

velocities to prevent the mesh distortion. By reformulating (1.2) into a mixed-type formulation

as

n · ∂tX = ∆sH, (1.6a)

Hn = −∆sX. (1.6b)

Barrett et al. [36, 37] introduced a new variational formulation and designed an elegant semi-

implicit parametric finite element method (PFEM) for the surface diffusion equation. The

PFEM enjoys a few important and valuable properties including unconditional stability, en-

ergy dissipation, and asymptotic mesh equal distribution. It has been successfully extended

for solving anisotropic surface diffusion flow under a specific form of convex anisotropies in

Riemannian metric form, for simulating the evolution of coupled surface with grain boundary

motions and triple junctions [38–40]. Recently, the PFEM has been extended for solving the

sharp interface models of SSD in both 2D and 3D [16, 41, 42]. However, in those extensions of

the PFEM for SSD, they evolve the motions of the interface and the contact lines separately,

and do not make full use of the variational structure of the SSD problem. The stability condi-

tion depends strongly on the mesh size and the contact line mobility. The convergence rate in

space deteriorates and reduces to only first-order.

Motivated by our recent work in 2D [43], the main aim of this work is to propose a new

variational formulation and to design an energy-stable parametric finite element method (ES-

PFEM) for the 3D SSD problem (1.2) with the boundary conditions (1.3a)-(1.3c). We first

reformulate the relaxed contact angle condition (1.3b) into a Robin-type boundary condition



774 W.Z. BAO AND Q. ZHAO

such that it can be naturally absorbed into the weak formulation. This novel treatment helps

to maintain the unconditional energy stability of the fully discretized scheme. Furthermore, we

extend our ES-PFEM for solving the SSD problem with Riemannian metric type anisotropic

surface energies, where the anisotropy is formulated as sums of weighted vector norms [38]. We

report the convergence rate of our ES-PFEM and also investigate the anisotropic effects in SSD

via different numerical setups.

The rest of the paper is organized as follows. In Section 2, we present the weak formulation

and show that it satisfies the mass conservation and energy dissipation. In Section 3, we propose

an ES-PFEM as the full discretization of the formulation and show the well-posedness and

unconditional energy stability of the numerical method. Subsequently, we extend our numerical

method for solving the model of SSD with Riemannian metric type anisotropic surface energies

in Section 4. Numerical results are reported with convergence test and some applications in

Section 5. Finally, we draw some conclusions in Section 6.

2. A Weak Formulation

In this section, we present a weak formulation for the sharp interface model of SSD in (1.6)

(and thus (1.2)) with boundary conditions (1.3a)-(1.3c), and show the mass conservation and

energy dissipation within the weak formulation.

2.1. The formulation

We define the function space L2(S(t)) by

L2(S(t)) :=

{
ψ : S(t) → R,

∫

S(t)

ψ2 dA <∞

}
, (2.1)

equipped with the L2-inner product over S(t)

(
u, v

)
S(t)

:=

∫

S(t)

u v dA, u, v ∈ L2(S(t)), (2.2)

and the associated L2-norm

‖u‖S(t) :=
√
(u, u)S(t).

The Sobolev space H1(S(t)) can be naturally defined as

H1(S(t)) :=
{
ψ ∈ L2(S(t)), and Diψ ∈ L2(S(t)), i = 1, 2, 3

}
, (2.3)

where Dif is the derivative in weak sense. On the boundary Γ(t), we define

(
u, v

)
Γ(t)

=

∫

Γ(t)

u v ds. (2.4)

The interface velocity of S(t) is given by

v(X(ρ, t), t) = ∂tX(ρ, t), ∀X := X(ρ, t) ∈ S(t). (2.5)

We define the function space for v as

X := H1(S(t))×H1(S(t))×H1
0 (S(t)), (2.6)
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where the third component of the velocity on Γ(t) is zero in time. Multiplying a test function

ψ ∈ H1(S(t)) to (1.6a), integrating over S(t), using integration by parts and the zero-mass flux

condition (1.3c), we obtain

(
v · n, ψ

)
S(t)

+
(
∇sH, ∇sψ

)
S(t)

= 0. (2.7)

Besides, we note the following two equations hold

c
Γ
· n

Γ
= −

1

η
(v · n

Γ
) |Γ(t) + cos θY , (2.8a)

c
Γ
= (c

Γ
· ez) ez + (c

Γ
· n

Γ
)n

Γ
, (2.8b)

where (2.8a) is a reformulation of the relaxed contact angle condition (1.3b) and (2.8b) is a

decomposition of c
Γ
with ez = (0, 0, 1)T . Now choosing v = g ∈ X in (B.6), we obtain

0 =
(
Hn, g

)

S(t)
−
(
∇sX, ∇sg

)

S(t)
+
(
c

Γ
, g
)

Γ(t)

=
(
Hn, g

)

S(t)
−
(
∇sX, ∇sg

)

S(t)
+
(
c

Γ
· n

Γ
, g · n

Γ

)

Γ(t)

=
(
Hn, g

)

S(t)
−
(
∇sX, ∇sg

)

S(t)
−

1

η

(
v · n

Γ
, g · n

Γ

)

Γ(t)
+ cos θY

(
g, n

Γ

)

Γ(t)
,

where in the second equality we have used (2.8b) and the fact g · ez = 0 on Γ(t) and the last

equality results from (2.8a).

Collecting these results, we obtain the weak formulation for the sharp-interface model of

SSD (1.2) with boundary conditions (1.3): Given an initial interface S(0) with boundary Γ(0),

we use the velocity equation (2.5) and find the interface velocity v(·, t) ∈ X and the mean

curvature H(·, t) ∈ H1(S(t)) such that

(
n · v, ψ

)

S(t)
+
(
∇sH, ∇sψ

)

S(t)
= 0 ∀ψ ∈ H1(S(t)), (2.9a)

(
Hn, g

)

S(t)
−
(
∇sX, ∇sg

)

S(t)
−

1

η

(
v · n

Γ
, g · n

Γ

)

Γ(t)
+ cos θY

(
n

Γ
, g
)

Γ(t)

= 0 ∀g ∈ X. (2.9b)

The above weak formulation is an extension of the previous 2D work in Ref. [43] to 3D. Similar

work for coupled surface or clusters can be found in Refs. [39, 40].

2.2. Volume/mass conservation and energy dissipation

For the weak formulation in (2.9), we have

Proposition 2.1 (Mass conservation and energy dissipation). Let (X, v, H) be a so-

lution of the weak formulation (2.9) and (2.5), then the total mass of the thin film is conserved,

i.e.,

|Ω(t)| ≡ |Ω(0)|, t ≥ 0, (2.10)

and the total free energy of the system defined in (1.4) is decreasing, i.e.,

W (t) ≤W (t′) ≤W (0) = |S(0)| − cos θY |S1(0)|, ∀t ≥ t′ ≥ 0. (2.11)
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Proof. By the Reynolds transport theorem for the moving domain Ω(t) (see Theorem 33

in [37]), we have

d

dt
|Ω(t)| =

∫

S(t)

v · n dA, t ≥ 0,

where we have used the fact that the normal velocity of S1(t) is zero. Now setting ψ = 1 in

(2.9a) yields

d

dt
|Ω(t)| =

(
∇sH, ∇s1

)

S(t)
= 0, t ≥ 0,

which implies the conservation of the total mass.

Again, using the Reynolds transport theorem for the 2D moving domain S1(t) yields

d

dt
|S1(t)| =

∫

Γ(t)

n
Γ
· v ds.

By noting (B.4) and (1.4), we then have

d

dt
W (t) =

(
∇sX, ∇sv

)

S(t)
− cos θY

(
n

Γ
, v
)

Γ(t)
. (2.12)

Now choosing ψ = H in (2.9a) and g = v in (2.9b) and using (2.12), we obtain

d

dt
W (t) = −

(
∇sH, ∇sH

)

S(t)
−

1

η

(
v · n

Γ
, v · n

Γ

)

Γ(t)
≤ 0,

which immediately implies (2.11). �

3. Parametric Finite Element Approximation

In this section, we present an energy-stable PFEM (ES-PFEM) as the full discretization of

the weak formulation (2.9) by using continuous piecewise linear elements in space and the (semi-

implicit) backward Euler method in time. We show the well-posedness and the unconditional

energy stability of the resulting method.

3.1. The discretization

Take τ > 0 as the uniform time step size and denote the discrete time levels as tm = mτ for

m = 0, 1, · · · . We then approximate the evolution surface S(tm) by the polygonal surface mesh

Sm with a collection of K vertices {qm
k }Kk=1 and N mutually disjoint non-degenerate triangles

Sm :=

N⋃

j=1

σm
j , m ≥ 0. (3.1)

For 1 ≤ j ≤ N , we take σm
j := △{qm

jk
}3k=1 to indicate that {qm

j1
, qm

j2
, qm

j3
} are the three

vertices of σm
j and ordered anti-clockwise on the outer surface of Sm. The boundary of Sm

is a collection of N
Γ
connected line segments denoted by Γm :=

⋃N
Γ

j=1 l
m
j . Similarly, we take

lmj = [pm
j1
, pm

j2
] to indicate that pm

j1
and pm

j2
are the two endpoints of the jth line segment and

ordered according to the orientation of the curve Γm.
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We define the following finite-dimensional spaces over Sm as

M
m :=

{
ψ ∈ C(Sm) : ψ|σm

j
∈ P1(σm

j ), ∀1 ≤ j ≤ N
}
, (3.2a)

M
m
0 :=

{
ψ ∈ M

m : ψ|lm
j
= 0, ∀1 ≤ j ≤ N

Γ

}
, (3.2b)

X
m := M

m ×M
m ×M

m
0 , (3.2c)

where P1(σm
j ) denotes the spaces of all polynomials with degrees at most 1 on σm

j .

With the finite element spaces defined above, we can naturally parameterize Sm+1 over Sm

such that Sm+1 := Xm+1(·) ∈ X
m. In particular, Sm := Xm(·) ∈ X

m can be considered as

the identity function. Let nm := n(Xm) be the outward unit normal to Sm. It is a piecewise

constant vector-valued function and can be defined as

nm :=

n∑

j=1

nm
j χ

σm
j

with nm
j =

(qm
j2
− qm

j1
)× (qm

j3
− qm

j1
)∥∥(qm

j2
− qm

j1
)× (qm

j3
− qm

j1
)
∥∥ , (3.3)

where χ
E
is the usual characteristic function with set E, and nm

j is the outward unit normal on

the triangle σm
j := ∆{qm

jk
}3k=1. At the boundary Γm, we denote by nm

Γ
:= n

Γ
(Xm) the outward

unit conormal vector of Sm
1 . Then we can compute it at each line segment lmj = [pm

j1
, pm

j2
] as

nm
Γ,j

:= nm
Γ

∣∣
lm
j

=

(
pm
j2
− pm

j1

)
× ez∥∥(pm

j2
− pm

j1

)
× ez

∥∥ , ∀1 ≤ j ≤ N
Γ
. (3.4)

If f, g are two piecewise continuous functions with possible discontinuities across the edges

of the triangle element, we define the following mass-lumped inner product to approximate the

inner product over S(tm)

(
f, g

)h
Sm :=

1

3

N∑

j=1

3∑

k=1

|σm
j | f

(
(qm

j
k
)−
)
· g
(
(qm

j
k
)−
)
, (3.5)

where |σm
j | = 1

2

∥∥(qm
j2
− qm

j1
)× (qm

j3
− qm

j1
)
∥∥ is the surface area of σm

j , and f((qm
j
k
)−) denotes

the one-sided limit of f(q) when q approaches towards qm
j
k
from triangle σm

j , i.e.,

f((qm
j
k
)−) = lim

σm
j
∋q→qm

j
k

f(q).

Let Hm(·) ∈ M
m be the numerical solution of the mean curvature at tm. We propose the

following ES-PFEM as the full discretization of the weak formulation (2.9). Given the polygonal

surface S0 := X0(·) ∈ X
0 as a discretization of the initial surface S(0), for m ≥ 0 we find the

evolution surface Sm+1 := Xm+1(·) ∈ X
m and the mean curvature Hm+1(·) ∈ M

m via solving

the following two equations

(Xm+1 −Xm

τ
, nm ψh

)h
Sm

+
(
∇sH

m+1, ∇sψ
h
)

Sm
= 0 ∀ψh ∈ M

m, (3.6a)

(
Hm+1 nm, gh

)h
Sm

−
(
∇sX

m+1, ∇sg
h
)

Sm
+ cos θY

(
nm+ 1

2
Γ

, gh
)

Γm

−
1

η τ

(
(Xm+1

Γ
−Xm

Γ
) · nm

Γ
, gh · nm

Γ

)

Γm
= 0 ∀gh ∈ X

m, (3.6b)
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where ∇s is defined over Sm and

nm+ 1
2

Γ
=

1

2

(
∂sX

m
Γ
+ ∂sX

m+1
Γ

)
× ez, (3.7)

with s being the arc length parameter of Γm. We will show in Lemma. 3.1 that this semi-implicit

approximation helps to maintain the energy stability for the substrate energy.

The proposed numerical method is semi-implicit, i.e. only a linear system needs to be solved

at each time step. It conserves the total volume very well up to the truncation error from the

time discretization. Besides, a spatial discretization of (2.9a) by using the piecewise linear

elements introduces an implicit tangential velocity of the mesh points and result in the good

mesh quality. The detailed investigation of this property has been presented in [36].

3.2. Well-posedness

Let Jm
k := {1 ≤ j ≤ N | qm

k ∈ σm
j } be the index collection of triangles that contain the

vertex qm
k , 1 ≤ k ≤ K. We define the weighted unit normal at the vertex qm

k as

ωm
k :=

1∑
j∈Jm

k
|σm

j |




∑

j∈Jm
k

|σm
j |nm

j



 , (3.8)

where nm
j is defined in (3.3) as the unit normal of the triangle σm

j .

For the discretization in (3.6), we have

Theorem 3.1 (Existence and uniqueness). Assume that Sm satisfies:

(i) min1≤j≤N |σm
j | > 0;

(ii) dim{nm
Γ,j

}
N

Γ

j=1 = 2;

(iii) there exist a vertex qk0
on the polygonal curve Γm such that ωm

k0
= (wm

k0,1
, wm

k0,2
, wm

k0,3
)T

satisfies
(
wm

k0,1

)2
+
(
wm

k0,2

)2
> 0.

If cos θY = 0, i.e., θY = π
2 , then the linear system in (3.6) admits a unique solution.

Proof. It is sufficient to prove the corresponding homogeneous linear system only has zero

solution. Therefore we consider the following homogeneous linear system: Find
(
Xh, Hh

)
∈

(
X

m, Mm
)
such that ∀ψh ∈ M

m, gh ∈ X
h

(
Xh, nm ψh

)h
Sm

+
(
∇sH

h, ∇sψ
h
)

Sm
= 0, (3.9a)

(
Hh nm, gh

)h
Sm

−
(
∇sX

h, ∇sg
h
)
Sm −

1

η τ

(
Xh

Γ
· nm

Γ
, gh · nm

Γ

)

Γm
= 0. (3.9b)

Setting ψh = Hh in (3.9a) and gh = Xh in (3.9b), and combining these two equations, we

arrive at

(
∇sH

h, ∇sH
h
)

Sm
+
(
∇sX

h, ∇sX
h
)

Sm
+

1

ητ

(
Xh

Γ
· nm

Γ
, Xh

Γ
· nm

Γ

)

Γm
= 0.
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This implies

Hh ≡ Hc, Xh ≡ Xc, Xh
Γ
· nm

Γ
= 0,

where Hc and Xc represent constants. By assumption (ii), we obtain Xh
Γ
= 0, and thus we get

Xh ≡ 0. Plugging Hc and Xc = 0 into (3.9b) yields

Hc
(
gh, nm

)h
Sm

= 0, ∀gh ∈ X
m. (3.10)

Now we choose gh ∈ X
m such that

gh
∣∣
qm
k

=






(
wm

k0,1
, wm

k0,2
, 0
)T
, k = k0,

0, otherwise.

Plugging gh into (3.10) and by noting the mass-lumped norm in (3.5), we obtain

Hc
(
gh, nm

)h
Sm

=
Hc

3

N∑

j=1

3∑

i=1

gh(qm
ji
)|σm

j |nm
j =

Hc

3

∑

j∈Jm
k0

|σm
j |
[(
wm

k0,1

)2
+
(
wm

k0,2

)2]
= 0.

By noting the assumptions (i) and (iii), we obtain Hc = 0. This shows the homogenous system

(3.9) has only zero solution. Thus the numerical scheme (3.6) admits a unique solution. �

Assumption (i) implies that each triangle element is non-degenerate, assumption (ii) implies

that there exist at least two line segments on the polygonal curve of contact line not parallel

to each other, and assumption (iii) implies that the weighted normal vector at qm
k0

∈ Γm is not

perpendicular to the substrate surface (xoy-plane). We note the well-posedness is only proved

when cos θY = 0. By using matrix perturbation theory, we can also show that (3.6a)-(3.6b) is

well-posed as long as | cos θY | ≪ 1. In practical computation, we observe the linear system in

(3.6) is always invertible.

3.3. Energy dissipation

For n
m+ 1

2
Γ defined in (3.7), we have the following lemma.

Lemma 3.1. It holds that

|Sm+1
1 | − |Sm

1 | =
(
nm+ 1

2
Γ

, [Xm+1
Γ

−Xm
Γ
]
)

Γm
, m ≥ 0, (3.11)

where |Sm
1 | denotes the surface area enclosed by the closed plane curve Γm on the substrate.

Proof. Denote Γm := Xm
Γ
(s) and Γm+1 := Xm+1

Γ
(s), where s ∈ [0, Lm] is the arc length

parameter of Γm. We can compute
(
nm+ 1

2
Γ

, [Xm+1
Γ

−Xm
Γ
]
)

Γm

=
1

2

∫ Lm

0

(
∂sX

m+1
Γ

× ez
)
·Xm+1

Γ
ds

︸ ︷︷ ︸
A

−
1

2

∫ Lm

0

(
∂sX

m
Γ
× ez

)
·Xm

Γ
ds

︸ ︷︷ ︸
B

+
1

2

∫ Lm

0

(
∂sX

m
Γ
× ez

)
·Xm+1

Γ
ds

︸ ︷︷ ︸
C

−
1

2

∫ Lm

0

(
∂sX

m+1
Γ

× ez
)
·Xm

Γ
ds

︸ ︷︷ ︸
D

.
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Now we can recast the first two terms as

A =
1

2

(
nm+1

Γ
, Xm+1

Γ

)

Γm+1
= |Sm+1

1 |, B =
1

2

(
nm

Γ
, Xm+1

Γ

)

Γm
= |Sm

1 |. (3.12)

For the third term, using integration by parts and the identity (a× b) · c = −(c× b) · a yields

C = −
1

2

∫ Lm

0

(
Xm

Γ
× ez

)
· ∂sX

m+1
Γ

ds = D. (3.13)

Collecting these results in (3.12) and (3.13), we obtain (3.11). �

Denote

Wm := |Sm| − cos θY |Sm
1 |. (3.14)

Similar to the previous work in [36], we can prove:

Theorem 3.2. Let
(
Xm+1, Hm+1

)
be the numerical solution of (3.6), then the energy is

decreasing during the evolution: i.e.,

Wm+1 ≤Wm ≤W 0 = |S0| − cos θY |S
0
1 |, m ≥ 0. (3.15)

Moreover, we have,

m+1∑

l=1

∥∥∇sH
l
∥∥2
Sl−1 +

1

η

m+1∑

l=1

∥∥∥∥∥

(
Xl

Γ
−Xl−1

Γ

τ

)
· nl−1

Γ

∥∥∥∥∥

2

Γl−1

≤
W 0 −Wm+1

τ
, ∀m ≥ 0, (3.16)

where ‖·‖Sl and ‖·‖Γl are the L2-norm over Sl and Γl, respectively.

Proof. Setting ψh = τ Hm+1 in (3.6a) and gh = Xm+1−Xm in (3.6b), combining these two

equations yields

τ
∥∥∇sH

+1
∥∥
Sm +

(
∇sX

m+1, ∇s

[
Xm+1 −Xm

])

Sm
+

1

η τ

∥∥(Xm+1
Γ

−Xm
Γ
) · nm

Γ

∥∥
Γm

− cos θY

(
nm+ 1

2
Γ

, [Xm+1
Γ

−Xm
Γ
]
)

Γm
= 0. (3.17)

Using the inequality a(a− b) ≥ 1
2

(
a2 − b2

)
, we get

(
∇sX

m+1, ∇s

[
Xm+1 −Xm

])

Sm
≥

1

2

∥∥∇sX
m+1

∥∥2
Sm −

1

2
‖∇sX

m‖
2
Sm .

By noting (C.2) and choosing Y = Xm+1, we have

1

2

∥∥∇sX
m+1

∥∥2
Sm ≥ |Sm+1|,

1

2
‖∇sX

m‖2Sm = |Sm|.

This gives
(
∇sX

m+1, ∇s

[
Xm+1 −Xm

])

Sm
≥ |Sm+1| − |Sm|. (3.18)

Plugging (3.18) and (3.11) into (3.17) and noting (3.14), we then obtain

Wm+1 + τ
∥∥∇s Hm+1

∥∥2
Sm +

1

ητ

∥∥(Xm+1
Γ

−Xm
Γ
) · nm

Γ

∥∥2
Γm ≤Wm, (3.19)

which immediately implies (3.15). Reformulating (3.19) as

∥∥∇sH
l
∥∥2
Sl−1 +

1

η

∥∥∥∥∥

(
Xl

Γ
−Xl−1

Γ

τ

)
· nl−1

Γ

∥∥∥∥∥

2

Γl−1

≤
W l−1 −W l

τ
, l ≥ 1,

summing up for l = 1, · · · ,m+ 1, we obtain (3.16). �
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4. For Anisotropic Surface Energies in Riemannian Metric form

In this section, we first present the sharp-interface model of SSD with anisotropic surface

energies in the Riemannian metric form, and then generalize our ES-PFEM for solving the

anisotropic model.

4.1. The model and its weak form

In the case of anisotropic surface energies, the total free energy of the SSD system reads

Wγ(t) :=

∫

S(t)

γ(n) dA− cos θY |S1(t)|, (4.1)

where γ(n) represents the anisotropic surface energy density. In the current work we restrict

ourselves to the anisotropy which is given by the sums of weighted vector norms as discussed

in [38]:

γ(n) =

L∑

i=1

γi(n) =

L∑

i=1

√
nT Gi n, (4.2)

where Gi ∈ R
3×3 is symmetric positive definite for i = 1, · · · , L. Some typical examples of γ(n)

are: (1) isotropic surface energy: L = 1, G1 = I, which gives γ(n) ≡ 1; (2) ellipsoidal surface

energy: L = 1, G1 = diag(a21, a
2
2, a

2
3), which gives the ellipsoidal surface energy

γ(n) =

√√√√
3∑

i=1

a2in
2
i , ai > 0; (4.3)

and (3) “cusped” surface energy: L = 3, G1 = diag(1, δ2, δ2), G2 = diag(δ2, 1, δ2), G3 =

diag(δ2, δ2, 1), which gives the “cusped” surface energy

γ(n) =

3∑

i=1

√
(1− δ2)n2

i + δ2 ‖n‖
2
. (4.4)

In fact, (4.4) is a smooth regularization of γ(n) =
∑3

i=1 |ni| by introducing a small parameter

0 < δ ≪ 1. For other choices of L and Gi, readers can refer to Ref. [38] and references therein.

With the mapping X(·, t) given in (1.1), the sharp interface model of SSD with anisotropic

surface energies can be derived as [24]

∂tX = ∆sµ n, t ≥ 0, (4.5a)

µ = ∇s · ξ, ξ(n) =

L∑

i=1

1

γi(n)
Gi n, (4.5b)

where µ(X, t) is the chemical potential and ξ(n) is the associated Cahn-Hoffman ξ-vector

[44, 45]. The above equations are supplemented with the contact line condition in (1.3a) and

the following two additional boundary conditions at the contact line Γ(t):

(ii’) The relaxed anisotropic contact angle condition

∂tXΓ
= −η

(
cγ

Γ
· n

Γ
− cos θY

)
n

Γ
, t ≥ 0. (4.6)
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(iii’) The anisotropic zero-mass flux condition

(c
Γ
· ∇sµ) |Γ = 0, t ≥ 0; (4.7)

where cγ
Γ
is the anisotropic conormal vector defined as

cγ
Γ
= (ξ · n) c

Γ
− (ξ · c

Γ
)n. (4.8)

When η → ∞, (4.6) will reduce to the anisotropic Young’s equation: cγ
Γ
· n

Γ
− cos θY = 0.

To obtain the weak formulation for the above model, we shall make use of the anisotropic

surface gradient defined in Appendix A. In a similar manner as we did in the isotropic case,

we choose v = g ∈ X in (B.5), use the decomposition cγ
Γ
=
(
cγ

Γ
· ez
)
ez +

(
cγ

Γ
· n

Γ

)
n

Γ
and the

relaxed anisotropic contact angle condition in (4.6). This gives

0 =
(
µn, g

)

S(t)
−

L∑

i=1

(
γi(n),

(
∇G̃i

s X, ∇G̃i

s g
)

G̃i

)

S(t)

+
(
cγ

Γ
· n

Γ
, g · n

Γ

)

Γ(t)

=
(
µn, g

)

S(t)
−

L∑

i=1

(
γi(n),

(
∇G̃i

s X, ∇G̃i
s g
)

G̃i

)

S(t)

−
1

η

(
∂tXΓ

· n
Γ
, g · n

Γ

)

Γ(t)

+ cos θY

(
n

Γ
, g
)

Γ(t)
.

Collecting these results, the generalized weak formulation for anisotropic case is given as

follows: for t > 0 we use the velocity equation (2.5) and seek the interface velocity v(·, t) ∈ X

as well as the chemical potential µ(·, t) ∈ H1(S(t)) via solving the following two equations
(
v · n, ψ

)

S(t)
+
(
∇sµ, ∇sψ

)

S(t)
= 0 ∀ψ ∈ H1(S(t)), (4.9a)

(
µn, g

)

S(t)
−

L∑

i=1

(
γi(n),

(
∇G̃i

s X, ∇G̃i

s g
)

G̃i

)

S(t)

−
1

η

(
v · n

Γ
, g · n

Γ

)

Γ(t)

+ cos θY

(
n

Γ
, g
)

Γ(t)
= 0 ∀g ∈ X. (4.9b)

For the above weak formulation (4.9), we have

Proposition 4.1 (Mass conservation and energy dissipation). Let (X, v, H) be a so-

lution of the weak formulation (4.9) and (2.5), then the total mass of the thin film is conserved,

i.e.,

|Ω(t)| ≡ |Ω(0)|, t ≥ 0, (4.10)

and the total free energy of the system defined in (4.1) is decreasing, i.e.,

Wγ(t) ≤Wγ(t
′) ≤Wγ(0) =

L∑

i=1

∫

S(0)

γi(n(X, 0)) dA− cos θY |S1(0)|, ∀t ≥ t′ ≥ 0. (4.11)

Proof. The proof of the mass conservation is the same as the that in Proposition 2.1. For

the energy dissipation, by noting (B.2) and (4.1), we have

d

dt
Wγ(t) =

L∑

i=1

∫

S(t)

γi(n)
(
∇G̃i

s X, ∇G̃i

s v
)

G̃i

dA− cos θY

(
n

Γ
, v
)

Γ(t)
. (4.12)
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Setting ψ = µ in (4.9a) and g = v in (4.9b), and using (4.12), we obtain

d

dt
Wγ(t) = −

(
∇sµ, ∇sµ

)

S(t)
−

1

η

(
v · n

Γ
, v · n

Γ

)

Γ(t)
≤ 0, (4.13)

which implies the energy dissipation. �

4.2. The ES-PFEM and its properties

Following the discretization in Section 3.1, we propose an ES-PFEM as the full discretization

of the weak formulation (4.9) as follows: Given the polygonal surface S0 := X0(·) ∈ X
0, for

m ≥ 0 we find Sm+1 := Xm+1(·) ∈ X
m and the chemical potential µm+1(·) ∈ M

m via solving

the following two equations

(Xm+1 −Xm

τ
, nm ψh

)h
Sm

+
(
∇sµ

m+1, ∇sψ
h
)

Sm
= 0 ∀ψh ∈ M

m, (4.14a)

(
µm+1 nm, gh

)h
Sm

−
L∑

i=1

(
γi(n

m),
(
∇G̃i

s Xm+1, ∇G̃i

s gh
)

G̃i

)

Sm

+ cos θY

(
nm+ 1

2
Γ

, gh
)

Γm

−
1

η τ

(
[Xm+1

Γ
−Xm

Γ
] · nm

Γ
, gh · nm

Γ

)

Γm
= 0 ∀gh ∈ X

m, (4.14b)

where ∇s and ∇G̃i
s are defined on Sm, and n

m+ 1
2

Γ is defined in (3.7). In practical computation,

∇G̃
s f on a typical triangle σ = ∆{qk}

3
k=1 is computed by using the definition (A.2) as

∇G̃
s f |σ := (∇sf · t1) t1 + (∇sf · t2) t2,

where t1 and t2 are parallel to the triangle σ and satisfy (A.3). In the case when L = 1 and

G1 = I, the numerical scheme (4.14) reduces to the scheme (3.6).

For the discretization in (4.14), similar to the proof of Theorem 3.1 (with details omitted

for brevity), we have:

Theorem 4.1 (Existence and uniqueness). Assume that Sm satisfies:

(i) min1≤j≤N |σm
j | > 0;

(ii) dim{nm
Γ,j

}
N

Γ

j=1 = 2;

(iii) there exists a vertex qk0
of the polygonal curve Γm such that ωm

k0
= (wm

k0,1
, wm

k0,2
, wm

k0,3
)T

satisfies
(
wm

k0,1

)2
+
(
wm

k0,2

)2
> 0.

If cos θY = 0, i.e. θY = π
2 , then the linear system in (4.14) admits a unique solution.

Denote

Wm
γ :=

∫

Sm

γ(nm) dA− cos θY |S
m
1 | =

N∑

j=1

γ(nm
j )|σm

j | − cos θY |S
m
1 |, (4.15)

where γ(n) is defined in (4.2). Similar to the previous work in [38], we can prove:
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Theorem 4.2. Let (Xm+1, µm+1) be the numerical solution of (4.14), then the total energy

of the system decrease in time, i.e.,

Wm+1
γ ≤Wm

γ ≤W 0
γ =

L∑

i=1

N∑

j=1

γi(n
0
j )|σ

0
j | − cos θY |S

0
1 |, ∀m ≥ 0. (4.16)

Moreover, we have

m+1∑

l=1

∥∥∇sµ
l
∥∥2
Sl−1 +

1

η

m+1∑

l=1

∥∥∥∥∥

(
Xl

Γ
−Xl−1

Γ

τ

)
· nl−1

Γ

∥∥∥∥∥

2

Γl−1

≤
W 0

γ −Wm+1
γ

τ
, ∀m ≥ 0. (4.17)

Proof. Setting ψh = µm+1 in (4.14a) and gh = Xm+1−Xm in (4.14b), and combining these

two equations we obtain

τ
∥∥∇sµ

m+1
∥∥
Sm − cos θY

(
nm+ 1

2
Γ

, [Xm+1
Γ

−Xm
Γ
]
)

Γm
+

1

η τ

∥∥(Xm+1
Γ

−Xm
Γ
) · nm

Γ

∥∥
Γm

+

L∑

i=1

(
γi(n

m),
(
∇G̃i

s Xm+1, ∇G̃i

s

(
Xm+1 −Xm

))

G̃i

)

Sm

= 0. (4.18)

Using the identity a(a− b) = 1
2

(
a2 − b2 + (a− b)2

)
, we obtain

(
γi(n

m),
(
∇G̃i

s Xm+1, ∇G̃i
s

(
Xm+1 −Xm

))

G̃i

)

Sm

=
1

2

(
γi(n

m),
∥∥∥∇G̃i

s Xm+1
∥∥∥
2

G̃
−
∥∥∥∇G̃i

s Xm
∥∥∥
2

G̃
+
∥∥∥∇G̃i

s

(
Xm+1 −Xm

)∥∥∥
2

G̃

)

Sm

≥

∫

Sm+1

γi(n
m+1) dA−

∫

Sm

γi(n
m) dA, (4.19)

where ‖·‖
G̃
is the induced norm of the inner product in (B.3), and the last inequality is a direct

application of (C.1):

1

2

(
γi(n

m),
∥∥∥∇G̃i

s Xm+1
∥∥∥
2

G̃

)

Sm

≥

∫

Sm+1

γi(n
m+1) dA, (4.20a)

1

2

(
γi(n

m),
∥∥∥∇G̃i

s Xm
∥∥∥
2

G̃

)

Sm

=

∫

Sm

γi(n
m) dA. (4.20b)

Substituting (4.19), (4.2) and (4.15) into (4.18), and also noting the equality (3.11) yields

Wm+1
γ + τ

∥∥∇sµ
m+1

∥∥2
Sm +

1

ητ

∥∥(Xm+1
Γ

−Xm
Γ

)
· nm

Γ

∥∥2
Γm ≤Wm

γ , m ≥ 0. (4.21)

Reformulating (4.21) as

∥∥∇s µ
l
∥∥2
Sl−1 +

1

η

∥∥∥∥∥

(
Xl

Γ
−Xl−1

Γ

τ

)
· nl−1

Γ

∥∥∥∥∥

2

Γl−1

≤
W l−1

γ −W l
γ

τ
, l ≥ 1,

summing up for l = 1, · · · ,m+ 1 yields (4.17). �



An Energy-stable Parametric Finite Element Method 785

5. Numerical Results

In this section, we first present the convergence tests of our method in (3.6) and (4.14), and

then report numerical examples to demonstrate the morphological features in SSD. The resulting

linear system in (3.6) and (4.14) can be efficiently solved via the Schur complement method

discussed in [36] or simply GMRES method with preconditioners based on incomplete LU

factorization. The contact line mobility η in (1.3b) controls the relaxation rate of the dynamic

contact angle to the equilibrium angle, and large η accelerates the relaxation process [14, 42].

In what follows, we will always choose η = 100 unless otherwise stated.

5.1. Convergence tests

We test the convergence rate of the numerical methods in (3.6) and (4.14) by carrying out

numerical simulations under different mesh sizes and time step sizes. Initially, the island film

is chosen as a cuboid island with (3, 3, 1) representing its length, width and height. The

region occupied by the initial thin film is then given by [−1.5, 1.5]× [−1.5, 1.5]× [0, 1]. Let

S0 := ∪N
j=1σ

0
j be the initial partition of S(0) and Xh,τ (·, tm) be the numerical solution of the

interface S(tm) obtained using mesh size h = maxNj=1

√
|σ0

j | and time step size τ . Then we

measure the error of the numerical solutions by comparing Xh,τ and Xh
2
, τ
4
.

To measure the difference between two polygonal surfaces given by

S := ∪N
j=1σj with vertices {qk}

K

k=1 , (5.1a)

S′ = ∪N ′

j=1σ
′
j with vertices {q′

k}
K′

k=1 , (5.1b)

Fig. 5.1. The interface partition of a (3, 3, 1) cuboid with mesh size h = 0.5 (left panel), and a refined

polygonal surface mesh with mesh size h = 0.25 (right panel) obtained by subdividing each triangle

into 4 smaller triangles.

0 0.5 1 1.5 2

t

0.4

0.45

0.5

0.55

0 0.1 0.2
0.4

0.5

0 1 2 3 4

t

0.5

0.55

0.6

0.65

0.7

0 0.05

0.55

0.6

0.65

Fig. 5.2. The time history of the average contact angle defined in (5.4) by using different mesh sizes

and time step sizes, where h0 = 0.5 and τ0 = 0.01. (a) θY = π/2; (b) θY = 2π/3.
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Table 5.1: Error eh,τ and the rate of convergence for the dynamic interface under the isotropic surface

energy (upper panel) and the ellipsoidal surface energy (4.3) with a1 = 2, a2 = 1, a3 = 1 (lower panel)

at three different times. Other parameters are chosen as θY = 2π/3, h0 = 0.5 and τ0 = 0.01.

(h, τ ) eh,τ (t = 0.5) order eh,τ (t = 1.0) order eh,τ (t = 2.0) order

(h0, τ0) 8.17E-2 - 7.19E-2 - 6.61E-2 -

(h0

2
, τ0

22
) 2.05E-2 1.99 1.71E-2 2.07 1.71E-2 1.95

(h0

22
, τ0

24
) 4.80E-3 2.07 4.85E-3 1.82 5.20E-3 1.72

(h, τ ) eh,τ (t = 0.5) order eh,τ (t = 1.0) order eh,τ (t = 2.0) order

(h0, τ0) 8.03E-2 - 7.93E-2 - 7.85E-2 -

(h0

2
, τ0

22
) 2.03E-2 1.98 2.15E-2 1.88 2.25E-2 1.80

(h0

22
, τ0

24
) 5.31E-3 1.93 5.46E-3 2.09 5.45E-3 2.05

Table 5.2: Numerical errors between the numerical equilibrium contact angle (at time t = 10) and the

Young’s angle θY for isotropic surface energy, where h0 = 0.5, τ0 = 0.01.

(h, τ )
θY = π/2 θY = 2π/3

|θ − θY |(t = 10) order |θ − θY |(t = 10) order

(h0, τ0) 1.00E-1 - 2.03E-1 -

(h0

2
, τ0

22
) 5.70E-2 0.81 1.10E-1 0.88

(h0

22
, τ0

24
) 2.90E-2 0.97 5.72E-2 0.95

(h0

23
, τ0

26
) 1.44E-2 1.05 2.98E-2 0.94

we define the following manifold distance

M (S, S′) =
1

2

(
max

1≤k≤K′

min
1≤j≤N

dist (q′
k, σj) + max

1≤k≤K
min

1≤j≤N ′

dist
(
qk, σ

′
j

))
, (5.2)

where dist(q, σ) = infp∈σ ‖p− q‖ represents the distance of the vertex q to the triangle σ.

We fix θY = 2π/3 and consider the isotropic surface energies and ellipsoidal surface energies

in (4.3) with a1 = 2, a2 = 1, a3 = 1. The numerical errors are computed based on the manifold

distance (5.2) by

eh,τ (tm) := M
(
Xh,τ , Xh

2
, τ
4

)
, m ≥ 0. (5.3)

Numerical errors for the two cases are reported in Table 5.1. We observe that the error decreases

with refined mesh size and time step size, and the order of convergence can reach about 2 for

spatial discretization.

To further assess the accuracy of the numerical method in (3.6), we define the following

average contact angle θ

θ
∣∣
t=tm

:=
1

N
Γ

N
Γ∑

j=1

arccos
(
cm

Γ,j
· nm

Γ,j

)
, (5.4)

where cm
Γ,j

and nm
Γ,j

are numerical approximations of c
Γ
and n

Γ
at jth line segment of Γm,

respectively. The time history of the average contact angles computed using different mesh

sizes and time step sizes for θY = π/2 and θY = 2π/3 are presented in Fig. 5.2. We observe

the convergence of the dynamic contact angle as the mesh is refined. A more quantitative

assessment for the average contact angel θ is provided in Table 5.2, where we show the error

between θ for the equilibrium state (t = 10) and the Young’s angle θY . We observe the error

decreases as mesh is refined, and the convergence rate for |θ − θY | is about 1.
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Fig. 5.3. Several snapshots in the evolution of an initially square island film towards its equilibrium

shape under the isotropic surface energy: (a) t = 0; (b) t = 0.004; (c) t = 0.008; (d) t = 0.012; (e)

t = 0.020; (f) t = 0.080. The initial shape is chosen as a (3.2, 3.2, 0.1) cuboid, and θY = 2π/3.

5.2. Applications

We present several numerical examples to demonstrate the anisotropic effects on the mor-

phological evolution of thin films in SSD.

Example 5.1. In this example, we consider the evolution of square island films under: (1)

isotropic surface energy γ(n) = 1; (2) ellipsoidal surface energy in (4.3) with a1 = 2, a2 =

1, a3 = 1; and (3) “cusped” surface energy in (4.4) with δ = 0.1. The initial film is chosen

as a (3.2, 3.2, 0.1) cuboid island. The interface is partitioned into N = 18432 triangles with

K = 9345 vertices, and we take τ = 1× 10−4, θY = 2π/3.

Several snapshots of the morphological evolutions for the thin film under the three anisotropies

are shown in Figs. 5.3–5.5, respectively. In the isotropic case, we observe the four corners of

the square island retract much more slowly than that of the four edges at the beginning, thus

forming a cross-shaped geometry. As time evolves, the island finally forms a perfectly spherical

shape as equilibrium. For ellipsoidal surface energy, the square island forms a grooved shape

and then reach an ellipsoidal shape as equilibrium. In the case of “cusped” surface energy,

the island maintains a self-similar cuboid shape by gradually decreasing its length, width and

increasing its height until reaching the equilibrium state.
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Fig. 5.4. Several snapshots in the evolution of an initially square island film towards its equilibrium

shape under the ellipsoidal surface energy: (a) t = 0; (b) t = 0.004; (c) t = 0.008; (d) t = 0.012; (e)

t = 0.020; (f) t = 0.080. The initial shape is chosen as a (3.2, 3.2, 0.1) cuboid, and θY = 2π/3. The

surface energy is chosen in (4.3) with a1 = 2, a2 = 1, a3 = 1.

In Fig. 5.6, we plot the temporal evolution of the normalized energy W (t)/W (0) and the

relative volume loss ∆V defined as

∆V :=
V h(t)− V h(0)

|V h(0)|
, t ≥ 0, (5.5)

where V h(0) is the total volume of the initial shape. We observe the total free energy of

the discrete system decays in time, and the relative volume loss is about 1% to 2%. We note

recently a structure-preserving method that can conserve the enclosed volume exactly for surface

diffusion was presented in [46], and the generalization to axisymmetric geometric equations was

considered in [47]. In addition, an energy-stable method for anisotropic surface diffusion under

general anisotropies has been discussed in [48].

Example 5.2. We investigate the equilibrium shapes of SSD by using different θY and surface

energies. We consider the “cusped” surface energy defined in (4.4) with four different rotations:

(1) γ(n) defined in (4.4) with δ = 0.1; (2) γ (Rx(π/4)n); (3) γ (Ry(π/4)n); (4) γ (Rz(π/4)n),

where Rx(π/4), Ry(π/4) and Rz(π/4) represent the orthogonal matrix for the rotation by an

angle π/4 about the x,y,z-axis using the right-hand rule, respectively. The initial thin film is
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Fig. 5.5. Several snapshots in the evolution of an initially square island film towards its equilibrium

shape under the “cusped” surface energy: (a) t = 0; (b) t = 0.004; (c) t = 0.008; (d) t = 0.012; (e)

t = 0.020; (f) t = 0.080, where the initial shape is chosen as a (3.2, 3.2, 0.1) cuboid, and θY = 2π/3.

The surface energy is chosen in (4.4) with δ = 0.1.
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Fig. 5.6. The temporal evolution of the normalized energy W (t)/W (0) (left panel) and the relative

volume loss ∆V (t) (right panel) by using the isotropic surface energy, the ellipsoidal surface energy

and cusped surface energy.
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Fig. 5.7. The equilibrium profiles of the island film obtained using different θY and anisotropies. For

(a)-(c), we fix γ(n) in (4.4) with δ = 0.1, and θY = π/3, π/2, 2π/3, respectively. For (d) -(f), we set

θY = 2π/3 but choose γ (Rx(π/4)n), γ (Ry(π/4)n) and γ (Rz(π/4)n), respectively.

Fig. 5.8. Snapshots of the island film in the evolution of an initially square-ring patch with θY = 2π/3.

The surface energy is given by (4.4) with δ = 0.1. (a) t = 0; (b) t = 1.0; (c) t = 8.0; (d) t = 12.6.

chosen as a (3, 3, 1) cuboid island. The interface is partitioned into N = 5376 triangles with

K = 2737 vertices, and τ = 10−2.

As it can be seen from Fig. 5.7(a)-(c), θY controls the equilibrium contact angle and thus the

equilibrium shape. From Fig. 5.7(d)-(f), we observe that a rotation of the “cusped” anisotropy

will result in a corresponding rotation of the equilibrium shape.

Example 5.3. We examine the geometric evolution of the square-ring patch under the “cusped”

surface energies used in Fig. 5.7(c)-(f). The initial island is chosen as a (12, 12, 1) cuboid by

cutting out a (10, 10, 1) cuboid from the centre. The interface is partitioned into N = 33792

triangles with K = 17248 vertices, and we take τ = 2× 10−4, θY = 2π/3.

The geometric evolutions for the square-ring island are shown in Figs. reffig:Ani -5.11 for

the four cases, respectively. When the surface energy density is given by (4.4), we observe that

the thin square-ring patch gradually shrinks towards the centre to form a self-similar square-



An Energy-stable Parametric Finite Element Method 791

Fig. 5.9. Snapshots of the island film in the evolution of an initially square-ring patch with θY = 2π/3.

The surface energy is given by γ(Rx(π/4)n), where γ(n) is defined in (4.4) with δ = 0.1. (a) t = 0;

(b) t = 0.1; (c) t = 0.5; (d) t = 1.12.

Fig. 5.10. Snapshots of the island film in the evolution of an initially square-ring patch with θY = 2π/3.

The surface energy is chosen as γ(Ry(π/4)n), where γ(n) is defined in (4.4) with δ = 0.1. (a) t = 0;

(b) t = 0.1; (c) t = 0.5; (d) t = 1.12.

ring shape. When the orientation of the anisotropy is rotated with respect to x-axis by π/4,

we observe from Fig. 5.9 that a break-up of the island along the y-direction occures. Similarly,

a rotation of the anisotropy with respect to y-axis results in the breakup of the island along

x-axis, as expected in Fig. 5.10. Furthermore, we observe that when the orientation of the

anisotropy is rotated with respect to the z-axis, the square-ring forms several isolated particles.

In these experiments, topological change event could occur when the island is breaking up into

small particles. In this situation, we simply show the results before the blowup of the numerical

solutions.

It is well-known in isotropic case, the Rayleigh-like instability in the azimuthal direction

and the shrinking instability in the radial direction are competing with each other to determine

the geometric evolution of a square-ring island [42, 49]. Generally, a very thin square island

always breaks up into isolated particles since the Rayleigh-like instability dominates the kinetic

evolution; while for a fat square-ring island, the shrinking instability dominates the evolution

and makes the island shrink towards the center. Our numerical simulations indicate that

anisotropic surface energies play an important role in the evolution of the square-ring island.
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Fig. 5.11. Snapshots of the island film in the evolution of an initially square-ring patch with θY = 2π/3.

The surface energy is given by γ(Rz(π/4)n), where γ(n) is defined in (4.4) with δ = 0.1. (a) t = 0;

(b) t = 0.1; (c) t = 0.4; (d) t = 0.76.

They can either enhance or mitigate the Rayleigh-like instability in the azimuthal direction,

depending on the crystalline alignments.

6. Conclusions

We developed an efficient, accurate, and energy-stable parametric finite element method

(ES-PFEM) for solving the sharp-interface model of solid-state dewetting in both the isotropic

case and the anisotropic case with anisotropic surface energies in the Riemannian metric for-

m. By reformulating the relaxed contact angle condition as a time-dependent Robin-type of

boundary condition for the interface, we obtained a new weak formulation. By using continuous

piecewise linear elements in space and the backward Euler method in time, we then discretized

the weak formulation to obtain the semi-implicit ES-PFEM. We proved the well-posedness and

unconditional energy stability of the numerical method.

We assessed the accuracy and convergence of the proposed ES-PFEM and found that it

can attain the second-order convergence rate of the spatial error for the dynamic interface and

the first-order convergence rate of the contact angle for the equilibrium interface. Finally, we

investigated the anisotropic effects on the evolution of large square islands and square-ring

islands by using different anisotropic surface energies. In fact, the proposed ES-PFEM provides

a nice tool for simulating different applications in solid-state dewetting in three dimensions.

Appendix A Anisotropic Surface Gradient

Given a two-dimensional manifold S and a smooth scalar field f , the surface gradient of f

over S is defined as

∇sf(X) = (I− n⊗ n)∇f(X) := (D1f(X), D2f(X), D3f(X))T , X ∈ S, (A.1)

where I ∈ R
3×3 is the identity matrix and n is the unit normal to S.

Let G ∈ R
3×3 be a symmetric positive definite (SPD) matrix, we follow the notations in [38]
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and define the anisotropic surface gradient associated with the SPD matrix G̃ = (detG)−
1
2G as

∇G̃
s f(X) =

2∑

i=1

(∂tif)(X) ti, X ∈ S, (A.2)

where ∂tif = ti · (∇s f) is the directional derivative, and {t1, t2} is the orthogonal basis of the

tangential space of S with respect to G̃ at the point of interest X, i.e.,

ti · (G̃ tj) = δij , ti · n(X) = 0, i, j = 1, 2. (A.3)

Moreover, given a vector-valued smooth function g, the anisotropic surface divergence and

anisotropic surface gradient are then defined respectively as

(∇G̃
s · g)(X) =

2∑

i=1

(∂tig)(X) · (G̃ ti), (A.4a)

(∇G̃
s g)(X) =

2∑

i=1

(∂ti g)(X)⊗ (G̃ti). (A.4b)

Appendix B Differential Calculus

Given the surface energy density γ(n) in (4.2) and the moving surface S(t) with boundary

Γ(t), then we have the following equation hold (see Lemma 2.1 in [24]):

d

dt

∫

S(t)

γ(n) dA =

∫

S(t)

µn · v dA+

∫

Γ(t)

cγ
Γ
· v ds, (B.1)

where µ is the chemical potential defined in (4.5b) and v is the velocity of S(t).

Besides, we have (see Lemma 3.2 in [39]):

d

dt

L∑

i=1

∫

S(t)

γi(n) dA :=

L∑

i=1

∫

S(t)

γi(n)
(
∇G̃i

s X, ∇G̃i

s v
)

G̃i

dA, (B.2)

where we define the inner product with respect to a particular matrix G̃ for u, v via

(
∇G̃

s u, ∇
G̃
s v
)

G̃
=

2∑

i=1

(
∂tiu, ∂tiv

)

G̃
=

2∑

i=1

∂tiu · (G̃ ∂tiv), (B.3)

with {t1, t2} satisfying (A.3). In particular, when L = 1 and G̃1 = G1 = I, Eq. (B.2) will

reduce to the Reynolds transport theorem on S(t)

d

dt
|S(t)| =

∫

S(t)

∇sX : ∇sv dA. (B.4)

Combining (B.1) and (B.2) yields

∫

S(t)

µn · v dA−

L∑

i=1

∫

S(t)

γi(n)
(
∇G̃i

s X, ∇G̃i

s v
)

G̃i

dA+

∫

Γ(t)

cγ
Γ
· v ds = 0. (B.5)

When L = 1 and G̃1 = G1 = I, Eq. (B.5) will reduce to
∫

S(t)

Hn · v dA−

∫

S(t)

∇sX : ∇sv dA+

∫

Γ(t)

c
Γ
· v ds = 0. (B.6)
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Appendix C Relevant Inequalities

Given the surface energy density γ(n) in (4.2), and the polygonal surface Sm := Xm(·) ∈ X
m

in (3.1), where X
m is defined in (3.2). For Y ∈ X

m, we have (see Lemma 3.1 in [38]):

1

2

∫

σm
j

γi(n
m)
(
∇G̃i

s Y, ∇G̃i

s Y
)

G̃i

dA

≥

∫

Y(σm
j )

γi(n(Y)) dA, 1 ≤ i ≤ L, 1 ≤ j ≤ N, (C.1)

and the equality holds when Y = Xm. When γi ≡ 1, i.e, Gi = G̃i = I, we obtain for 1 ≤ j ≤ N

1

2

∫

σm
j

∇sY : ∇sY dA ≥

∫

Y(σm
j
)

dA = |Y(σm
j )|, (C.2a)

1

2

∫

σm
j

∇sX
m : ∇sX

m dA =

∫

σm
j

dA = |σm
j |. (C.2b)
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[11] O. Kovalenko, S. Szabó, L. Klinger, E. Rabkin, Solid state dewetting of polycrystalline Mo film

on sapphire, Acta Mater., 139 (2017), 51–61.

[12] W. Jiang, W. Bao, C.V. Thompson, D.J. Srolovitz, Phase field approach for simulating solid-state

dewetting problems, Acta Mater., 60:15 (2012), 5578–5592.



An Energy-stable Parametric Finite Element Method 795

[13] D.J. Srolovitz, S.A. Safran, Capillary instabilities in thin films: I. Energetics, J. Appl. Phys., 60:1

(1986), 247–254.

[14] Y. Wang, W. Jiang, W. Bao, D.J. Srolovitz, Sharp interface model for solid-state dewetting

problems with weakly anisotropic surface energies, Phys. Rev. B, 91 (2015), 045303.

[15] W. Jiang, Y. Wang, Q. Zhao, D.J. Srolovitz, W. Bao, Solid-state dewetting and island morpholo-

gies in strongly anisotropic materials, Scr. Mater., 115 (2016), 123–127.

[16] W. Bao, W. Jiang, Y. Wang, Q. Zhao, A parametric finite element method for solid-state dewetting

problems with anisotropic surface energies, J. Comput. Phys., 330 (2017), 380–400.

[17] W. Bao, W. Jiang, D.J. Srolovitz, Y. Wang, Stable equilibria of anisotropic particles on substrates:

a generalized Winterbottom construction, SIAM J. Appl. Math., 77:6 (2017), 2093–2118.
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