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ABSTRACT

The dripping-to-jetting transitions in coaxial flows have been experimentally well studied for systems of high interfacial tension, where the
capillary number of the outer fluid and the Weber number of the inner fluid are in control. Recent experiments have shown that in systems
of low interfacial tension, the transitions driven by the inner flow are no longer dominated by the inertial force alone, and the viscous drag
force due to the inner flow is also quantitatively important. In the present work, we carry out numerical simulations based on the
Cahn–Hilliard–Navier–Stokes model, aiming for a more complete and quantitative study to understand the effects of interfacial tension
when it becomes sufficiently low. The Cahn–Hilliard–Navier–Stokes model is solved by using an accurate and efficient spectral method in a
cylindrical domain with axisymmetry. Plenty of numerical examples are systematically presented to show the dripping-to-jetting transitions
driven by the outer flow and inner flow, respectively. In particular, for transitions dominated by the inner flow, detailed results reveal how
the magnitude of interfacial tension quantitatively determines the relative importance of the inertial and viscous forces due to the inner flow
at the transition point. Our numerical results are found to be consistent with the experimental observation. Finally, the degree of bulk
diffusion is varied to investigate its quantitative effect on the condition for the occurrence of transition. Such effect is expected for systems of
ultralow interfacial tension where interfacial motion is more likely to be driven by bulk diffusion.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157191

I. INTRODUCTION

Dripping and jetting in coaxial flows of two immiscible fluids
refer to the phenomena in which two fluids are forced to flow through
a cylindrical conduit, with one fluid, namely, the inner fluid, flowing at
the center and the other, namely, the outer fluid, flowing around it in a
coaxial manner. When the flow rates of both fluids are low, dripping
occurs due to the capillary instability, with the inner fluid forming dis-
crete drops close to the orifice. On the other hand, when the flow rates
are high enough, jetting occurs, with the inner fluid forming a continu-
ous jet that extends out of the orifice and breaks into drops further
downstream. The dripping and jetting of coaxial flows of two immisci-
ble fluids have many applications in ink jet printing, biomedical engi-
neering, and materials engineering,1,2 and the transition from dripping
to jetting is of fundamental importance in these applications involving
drop formation.3,4 Extensive research efforts have been made to study
the dripping-to-jetting transition in coaxial geometry.5–7 Among these

works, Utada et al.5 demonstrated that the transitions in coflowing
streams can be characterized by the capillary number of the outer fluid
and the Weber number of the inner fluid. The dripping-to-jetting
transitions have also been investigated in other geometries, such as
flow-focusing8,9 and T-junction.10,11 For a review summarizing the
main observations and understandings for common device geome-
tries, we refer to Ref. 12 and the references therein.

To understand the hydrodynamics of the dripping-to-jetting
transitions, most of the previous studies have focused on systems, e.g.,
oil–water ones, of high interfacial tension. For these systems, as dem-
onstrated in Ref. 5, the dripping-to-jetting transitions can be described
by a state diagram that is controlled by the capillary number of the
outer fluid and the Weber number of the inner fluid. This means that
for transitions driven by the inner fluid, the effect of the viscous force
due to the inner flow is negligible. However, it has been shown experi-
mentally in Ref. 13 that when the interfacial tension is sufficiently low,
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the dripping-to-jetting transitions driven by the inner fluid are no lon-
ger dominated by the inertial force alone, and the viscous force due to
the inner flow also plays a quantitatively important role. Therefore, for
a comprehensive understanding of the dripping-to-jetting transitions,
a more complete and quantitative study is needed to investigate the
effect of interfacial tension when it becomes sufficiently low. This will
help clarify the relative importance of the inertial and viscous forces
due to the inner flow in inducing the transitions. In addition, recent
observations in aqueous two-phase systems with ultra-low surface ten-
sion have revealed novel and interesting pinch-off dynamics domi-
nated by bulk diffusion.14 To the best of our knowledge, the effect of
bulk diffusion on the dripping-to-jetting transitions in systems of
ultra-low interfacial tension has never been investigated before.

The main purpose of the present work is to investigate the drip-
ping-to-jetting transitions in coaxial flows over a wide range of interfa-
cial tension and with variable bulk diffusion. First, we aim to
numerically observe and examine the dripping-to-jetting transitions
driven by the outer and inner fluids, respectively. This is to provide a
crucial indicator to distinguish jetting from dripping and hence locate
the point of transition and the critical flow rate. Second, regarding the
contributions of inertial and viscous forces due to the inner flow, we
aim to establish a quantitative relationship between them at the point
of transition over a wide range of interfacial tension. Last but not least,
we will examine the quantitative effect of bulk diffusion on the critical
flow rate at the point of transition. This will also show if bulk diffusion
can change the relative importance of the inertial and viscous forces
due to the inner flow at the transition point.

While numerous experimental studies have been carried out on the
dripping-to-jetting transitions in coaxial flows, there have been very few
works focusing on numerical simulations. Guillaument et al.15 utilized
the one-fluid model and the volume of fluid method to simulate seg-
mented micro coflows of CO2 and water in two dimensions. Lei and
Wang16 employed the phase-field model to investigate two types of tran-
sitions driven by the outer flow and the inner flow in two dimensions.
Shahin and Mortazavi17 simulated dripping and jetting in a coflowing
system using a one-fluid model in three dimensions and developed a
novel algorithm to handle the topological change of the interface mesh.

To investigate the dripping-to-jetting transitions in immiscible
two-phase flows, we will employ the Cahn–Hilliard–Navier–Stokes
(CHNS) model and carry out numerical computation in a cylindrical
domain with axisymmetry. The phase-field methods have been widely
used in the simulations of interfacial motion in multiphase flows18–23

as they avoid the need for interface tracking and can easily and effi-
ciently accommodate topological changes such as pinch-off, a key fea-
ture of the dripping and jetting phenomena.

To the best of our knowledge, there has been no prior work that
investigates the dripping-to-jetting transitions in three dimensions
using the phase-field method. For the CHNS model employed here, a
characteristic length scale has been introduced in Ref. 24 to measure
the competition between diffusion and viscous flow in interfacial
motion. Parameters involved in defining this length scale can be
adjusted to tune the effect of bulk diffusion in the simulated system.
Numerically, we solve the CHNS model by using the spectral
method25 for the spatial discretization and the pressure-correction
method26,27 for the temporal discretization. These methods have been
demonstrated to be accurate and efficient in treating the phase-field
models in cylindrical domains.23,27,28

This paper is organized as follows. In Sec. IIA, the CHNS model
is derived by applying Onsager’s variational principle.29–31 In Sec. II B,
the dimensionless equation system is presented with important
dimensionless parameters associated with the dripping-to-jetting tran-
sitions, and the simulated systems are described in a cylindrical
domain with necessary boundary conditions for the inner and outer
flows with adjustable flow rates. In Sec. III, numerical results are pre-
sented to show the distinct between dripping and jetting in the regime
dominated by the outer flow and that by the inner flow, respectively.
Furthermore, in the regime dominated by the inner flow, the relative
importance of the inertial and viscous forces at the transition point is
investigated over a wide range of interfacial tension, with numerical
results showing agreement with recent experiments. Finally, the quan-
titative effect of bulk diffusion on the critical flow rates at the transition
point is also measured. In Sec. IV, the paper is concluded with a few
remarks.

II. MODELING AND SIMULATION FOR IMMISCIBLE
TWO-PHASE FLOWS
A. The Cahn–Hilliard–Navier–Stokes model

Consider a multi-component fluid with two co-existing immiscible
phases. A diffuse-interface model uses a Ginzberg–Landau-type free
energy functional to describe the thermodynamic properties of the fluid.
Here, we use the Cahn–Hilliard (CH) free energy functional32

FCH /½ � ¼
ð

K
2

r/ð Þ2 þ f ð/Þ
� �

dr; (1)

in which / :¼ /ðrÞ is the phase-field variable to measure the local rel-
ative concentration, f ð/Þ is the Helmholtz free energy density for a
homogeneous phase, and K is a positive material parameter. The free
energy density f is given by f ð/Þ ¼ � a

2/
2 þ b

4/
4, which has a

double-well structure to stabilize the fluid–fluid interface between the

two co-existing phases around /6 ¼ 6/0 ¼ 6
ffiffi
a
b

q
, where a and b

are the two positive parameters. Subject to appropriate boundary con-
ditions, FCH½/� can be minimized to stabilize a flat interface between
the two equilibrium phases of / ¼ 6/0. The interfacial structure

gives the interfacial tension c ¼ 2
ffiffi
2

p
a2n

3b and the characteristic length

scale n ¼
ffiffiffi
K
a

q
for the interfacial thickness.29 Note that in many litera-

tures, /0 is made equal to 1 through a rescaling. Here, /0 ¼
ffiffi
a
b

q
is

purposely retained to measure the distance away from the critical
point where /0 vanishes.

For an incompressible fluid, the velocity field v is subject to the
incompressibility condition r � v ¼ 0, and the phase field / satisfies
the continuity equation

@/
@t

¼ �r � J ¼ �r � /v þ jð Þ; (2)

where J ¼ /v þ j is the total current density, in which /v is contrib-
uted by the flow and j is the diffusive current density contributed by
the bulk diffusion.

Hydrodynamic equations for immiscible two-phase flows can be
derived by applying Onsager’s variational principle (cf. Appendix A in
Ref. 24) as follows. The Rayleighian R is given by R ¼ _FCH þ U in
the bulk region. Here, _FCH is the rate of change of FCH½/�, given by
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_FCH /½ � ¼
ð
l
@/
@t

dr ¼
ð
rl � /v þ jð Þdr; (3)

in which l ¼ dFCH
d/ is the chemical potential, given by

l ¼ �Kr2/þ f 0ð/Þ, and the continuity Eq. (2) has been used with
the impermeability conditions for v and j at the solid boundary. The
other part inR is the dissipation functional U, which is half the rate of
free energy dissipation and is given by

U ¼
ð
g
4

rv þ rvð ÞT
h i2

drþ
ð

j2

2M
dr; (4)

which is contributed by the viscous dissipation, with g being the shear
viscosity, and the diffusive dissipation, with M being the mobility
coefficient.

Subject to the incompressibility condition, the Rayleighian can be
minimized with respect to the rates v and j. This gives the force bal-
ance equation

�rpþr � rvisc � /rl ¼ 0 (5)

for v, and the constitutive equation

j ¼ �Mrl (6)

for j. Here, p is the pressure, which is the Lagrange multiplier to locally
impose r � v ¼ 0, and rvisc is the Newtonian stress tensor given by
rvisc ¼ g½rv þ ðrvÞT �. Equation (5) is the Stokes equation with the
capillary force density, and it can be readily generalized to the
Navier–Stokes equation

q
@v
@t

þ v � rð Þv
� �

¼ �rpþr � rvisc � /rl: (7)

Combining Eqs. (2) and (6) gives the advection–diffusion equation for
the phase field / as follows:

@/
@t

þ v � r/ ¼ �r � j ¼ Mr2l; (8)

which is the CH equation for a constant mobility M. Equations (7)
and (8) govern the hydrodynamics of immiscible two-phase flows. In
the present work, the simplest situation is treated with the two fluids
having equal density, equal viscosity, and equal mobility.

B. Dimensionless equations and simulated systems

Numerical simulations are carried out by solving the CHNS sys-
tem as follows:

@/
@t

þ v � r/ ¼ Mr2l; (9a)

l ¼ �Kr2/� a/þ b/3; (9b)

q
@v
@t

þ v � rv

� �
¼ �rpþ gr2v þ lr/; (9c)

r � v ¼ 0; (9d)

in a cylindrical domain X ¼ fr ¼ ðx; y; zÞ : x2 þ y2 < L2;
z 2 ð0;HÞg. Here, M, K, a, b, q, and g are the material parameters
introduced in Sec. IIA. Note that the pressure p in Eq. (9c) is different
from that in Eq. (7), with �/rl being replaced by lr/ here. The
boundary conditions on x2 þ y2 ¼ L2 are

@/
@n

¼ 0;
@l
@n

¼ 0; v ¼ 0: (10)

In our simulations, two immiscible phases flow into the cylinder on
the boundary z¼ 0 and out of the cylinder on the boundary z¼H.
The boundary conditions for / and l are given by

/ ¼ tanh
r � Rffiffiffi

2
p

n

� �
; l ¼ 0; (11)

on z¼ 0, with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, R being the radius of the inner tube,

and

@/
@n

¼ 0;
@l
@n

¼ 0; (12)

on z¼H. Finally, the boundary conditions for v :¼ ðvx; vy; vzÞ on
z¼ 0 and z¼H are given by

vx ¼ vy ¼ 0; vz ¼
aðR2 � r2Þ; 0 < r < R;

�bðr2 � R2Þ þ bðL2 � R2Þ
ln

L
R

ln
r
R
; R � r < L;

8>>><
>>>:

(13)

on z¼ 0, where a and b are the parameters determining the mean
velocities (i.e., flow rates) of the inner and outer phases, respectively,
and

vx ¼ vy ¼ 0; vz ¼ cðL2 � r2Þ; (14)

on z¼H, where c is the parameter determining the mean velocity of
the flow out of the cylinder. Note that these flow profiles are based on
the Poiseuille profile, and the parameters a, b, and c satisfy

aR4 þ bðL4 � R4Þ � b
ðL2 � R2Þ2

ln
L
R

¼ cL4; (15)

for the volume conservation.
To nondimensionalize the above system, we use the radius L of

the computational domain X as the length unit, u ¼ c
g as the velocity

unit, s ¼ L
u as the time unit, and p0 ¼ g

s as the pressure unit. We also
define the following quantities:

• �H ¼ H
L as the dimensionless length of the computational domain,

• �R ¼ R
L as the dimensionless radius of the inner tube,

• /0 ¼
ffiffi
a
b

q
, with the two equilibrium phases separated by a flat

interface being of / ¼ 6/0,

• e ¼ n
L ¼ 1

L

ffiffiffi
K
a

q
as the dimensionless interfacial thickness of the

diffuse interface,
• D ¼ 2Ma as the diffusion coefficient for / close to 6/0 far away
from the interface,

• lc ¼
ffiffiffiffiffi
Mg

p
/0

as the characteristic length scale, determined from the
competition between diffusion and viscous flow,24

• c ¼ 2
ffiffi
2

p
3 a/2

0n as the interfacial tension,
• Rec ¼ quL

g as the Reynolds number defined from the velocity unit
u ¼ c

g and the length unit L,
• B ¼ gD

a/2
0L

2 ¼ 2l2c
L2 as the dimensionless parameter measuring the

characteristic length scale lc with respect to L.
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Dimensionless variables, denoted by using overbar, are defined as
follows:

• �/ ¼ /
/0
, �v ¼ v

u, �l ¼ l
a/0e

, �p ¼ p
p0
, and the dimensionless operators

• @
@�t ¼ s @

@t,
�r ¼ Lr.

Using the above definitions, we obtain the dimensionless CHNS
system in the cylindrical domain �X ¼ fð�x;�y;�zÞ : �x2 þ �y2 < 1;
�z 2 ð0; �HÞg as

@�/
@�t

þ �v � �r�/ ¼ 3

4
ffiffiffi
2

p B �r2
�l; (16a)

�l ¼ �e �r2�/ þ 1
e
ð��/ þ �/

3Þ; (16b)

Rec
@�v
@�t

þ �v � �r�v

� �
¼ � �r�p þ �r2

�v þ 3

2
ffiffiffi
2

p �l �r�/; (16c)

�r � �v ¼ 0: (16d)

The boundary conditions are

@�/
@n

¼ 0;
@�l
@n

¼ 0; �v ¼0; (17)

on �x2 þ �y2 ¼ 1,

�l ¼ 0; �/ ¼ tanh
�r � �Rffiffiffi

2
p

e

 !
; �vx ¼ �vy ¼ 0;

�vz ¼
�að�R2 � �r2Þ; 0 < �r < �R;

��bð�r2 � �R2Þ þ
�bð1� �R2Þ

ln
1
�R

ln
�r
�R
; �R � �r < 1;

8>>><
>>>:

(18)

on �z ¼ 0 with �r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

p
, and

@�/
@n

¼ 0;
@�l
@n

¼ 0;

�vx ¼ �vy ¼ 0; �vz ¼ �cð1� �r2Þ;
(19)

on �z ¼ �H , with the dimensionless parameters �a; �b, and�c satisfying

�a�R4 þ �bð1� �R4Þ � �b
ð1� �R2Þ2

ln
1
�R

¼ �c: (20)

Here, the dimensionless �a; �b, and �c are obtained by multiplying the
dimensional ones by L2

u . The above dimensionless CHNS system
involves the dimensionless parameters e; Rec, B, �R; �H ; �a, and �b.
Here, e is the dimensionless interfacial thickness, which is the smallest
length to be resolved, Rec is the Reynolds number defined from the
velocity unit u ¼ c

g, B controls the competition between bulk diffusion

and viscous flow, �R measures the size of the orifice (i.e., the radius of
the inner tube), �H measures the length of the computational domain,
and �a and �b control the flow rates of the inner and outer fluids.

From our three-dimensional (3D) simulations, it is verified that
given an axisymmetric initial condition in the cylindrical domain, the
axisymmetry can be accurately preserved during the whole dynamic
process. Therefore, in the absence of any evidence for non-
axisymmetric modes, we treat the axisymmetric 3D problem as a

reduced two-dimensional (2D) problem by making use of the cylindri-
cal coordinates to improve the computational efficiency.24 Technically,
we first transform the 3D problem into a 2D problem using the cylin-
drical coordinates.25 We then adopt the usual semi-implicit scheme to
solve the phase-field variable and the spectral-projection method to
solve the velocity and pressure fields for the Navier–Stokes equation in
cylindrical geometry.27 At each time step, we can efficiently solve a
series of Poisson-type equations with constant coefficients.

III. RESULTS AND DISCUSSION

With the dimensionless parameters introduced in Sec. II, the
average velocity of the inner flow �v in and that of the outer flow �vout is
given by

�v in ¼ 1
2
�a�R2

; �vout ¼
�b
2
ð1þ �R2Þ þ

�b
2
1� �R2

ln �R
: (21)

Using �v in and �vout, the capillary number of the outer flow C out and
the Weber number of the inner flowW in can be expressed as

C out ¼ �vout; W in ¼ �v2inRec�R: (22)

Here, C out is defined by C out ¼ gð�voutuÞ
c , and W in is defined by

W in ¼ qð�v inuÞ2R
c , where �v inu and �voutu are the dimensional average

velocities with u being the velocity unit. Physically, the capillary num-
ber measures the viscous drag force, and the Weber number measures
the inertial force relative to the interfacial tension force.

It has been well established that there are two classes of dripping-
to-jetting transitions in coflowing streams.5 The first one is driven by
strong outer flows and will be numerically investigated in Sec. IIIA by
fixing a small �v in and varying �vout. The second one is driven by strong
inner flows and will be numerically investigated in Sec. III B by fixing
a small �vout and varying �v in. In this regime, our numerical results
show that in addition to the inertial force measured by W in, the vis-
cous force due to the inner flow, measured by the capillary number
C in ¼ �v in, also contributes to the occurrence of dripping-to-jetting
transition when the interfacial tension is sufficiently low. This numeri-
cal observation is in agreement with recent experiments.13 Finally, Sec.
III C demonstrates the quantitative effect of bulk diffusion on the criti-
cal flow rates at the transition point. Such an effect is expected for sys-
tems of ultralow interfacial tension where interfacial motion is more
likely to be driven by bulk diffusion.14

A. Transitions dominated by outer flows

In this subsection, we investigate the first class of dripping-to-jet-
ting transitions driven by strong outer flows. For this purpose, the
value of �v in is fixed to be small, and the value of �vout is increased to
induce the transition.

We start by demonstrating the dripping-to-jetting transitions in
the regime dominated by strong outer flows. Let Zp denote the distance
between the pinch-off position and the boundary of �z ¼ 0 (the ori-
fice). For a slow inner flow with �a ¼ 15 being fixed, Zp is expected to
increase with the increasing outer flow rate, i.e., the increasing �b.
Figure 1 shows two different pinch-off positions for two different outer
flow rates. It is clearly observed from Fig. 2 that Zp exhibits a sharp
increase from �b ¼ 0:575 [Fig. 1(a)] to �b ¼ 0:6 [Fig. 1(b)], indicating a
transition from a dripping state to a jetting state as C out is increased
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from 0.1450 to 0.2030. This critical magnitude of C out is in agreement
with the experimental results in Ref. 5. According to the state diagram
reported in Ref. 5, for the dripping-to-jetting transitions dominated by
outer flows, the critical values of C out are typically distributed between
0.2 and 0.4.

A jetting state maintained by a strong outer flow is characterized
by a long, narrow jet and small drops.5 In fact, a stronger outer flow
results in a narrower jet and smaller drops. Here, we present some
quantitative results on the relationship between the outer flow rate and

the size of the corresponding jet, i.e., the radius of the jet. To obtain
reliable data, we have ensured that the jets are long and wide enough
by using values of �b and �R that are sufficiently large. Figure 3(a)
presents a jetting state obtained from our simulations, and Fig. 3(b)
shows the dependence of the jet radius rj on the outer flow rate
(�vout / �b), with the jet radius rj being measured at the plane of �z ¼ �H

2 .
When both �a and �R are fixed, the total flux of the inner fluid is given,
and a faster outer flow (with a larger �b) leads to a thinner jet in which
the inner fluid flows with a larger average velocity (/ �b). According to
mass conservation, �br2j must be a constant in order to maintain the
total flux of the inner fluid, as shown in Fig. 3(b).

We can measure both the jet diameter djet and the drop diameter
ddrop in the jetting regime. From these two diameters, we obtain kf, the
wavelength of the fastest growing mode of the Rayleigh–Plateau insta-
bility, through the relation p

4 d
2
jetkf ¼ p

6 d
3
drop for drop volume. Using

the simulation results shown in Fig. 3(a), we obtain ddrop � 2djet and
hence k � 5:3djet, which is in the physically reasonable range. It is
noted that for dripping-to-jetting transitions dominated by outer
flows, ddrop � 2djet has been experimentally observed.5,13

FIG. 1. Two different pinch-off positions for two different outer flow rates. (a) A drip-
ping state for �b ¼ 0:575. (b) A jetting state for �b ¼ 0:6. Other parameter values
used in simulations are e ¼ 0:01; Rec ¼ 500, B¼ 0.0002, �R ¼ 0:1; �H ¼ 6, and
�a ¼ 15.

FIG. 2. Variation of the pinch-off position Zp with the parameter �b, which controls
the outer flow rate. A transition is noted to occur between �b ¼ 0:575 [dripping in
Fig. 1(a)] and �b ¼ 0:6 [jetting in Fig. 1(b)]. Other parameter values used in simula-
tions are e ¼ 0:01; Rec ¼ 500, B¼ 0.0002, �R ¼ 0:1; �H ¼ 6, and �a ¼ 15.

FIG. 3. (a) A jetting state obtained from our simulations. Note that the radius of the
jet rj is measured at the plane of �z ¼ �H

2 . (b) Log –log plot of the jet radius rj vs �b,
which controls the outer flow rate. Here, the mass conservation of the inner fluid is
ensured by �br2j � 0:011. The jetting state in panel (a) is obtained for �b ¼ 0:5.
Other parameter values used in simulations are e ¼ 0:01; Rec ¼ 10, B¼ 0.0002,
�R ¼ 0:2; �H ¼ 8, and �a ¼ 6.
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B. Transitions dominated by inner flows

In this subsection, we investigate the second class of dripping-to-
jetting transitions driven by strong inner flows. For this purpose, the
value of �vout is fixed to be small, and the value of �v in is increased to
induce the transition.

For �R ¼ 0:1, we have �vout ¼ 0:29�b and C out ¼ 0:029 for the
typical value 0.1 used for �b.

We start from the drop size in the dripping regime. When �v in is
not large enough, the system is in a dripping state in which drops of
the same size are periodically generated at the same pinch-off position.
From the periodic dynamics and mass conservation, we obtain
4
3 pðde2 Þ3 ¼ p�R2

�v intp, where �R is the radius of the orifice, �v in is the aver-
age velocity of the inner fluid, tp is the time period of the periodic gen-
eration of drops, and de is the diameter of the drops expected from
mass conservation. Figure 4(a) shows a comparison between the
expected diameter de and the diameter dm, which is measured in our
numerical simulations. It is noted that in each simulation, dm is slightly
smaller than de expected from mass conservation. This is attributed to
the bulk diffusion that continuously reduces the size of drops.

To understand how the drop size is controlled by the inner and
outer flows, we show that the time period tp can be related to the drop
diameter d as follows:

tp � jd

�vout þ �
�R2

d2
�v in

; (23)

where l and � are the two adjustable parameters of the order of mag-
nitude of 1, and �v in and �vout have been defined in Eq. (21). For
�R ¼ 0:1, we have

tp � jd

0:29�b þ �
10�4

2d2
�a

� � ; (24)

which has been numerically verified by Fig. 4(b) in which the mea-
sured diameter dm is used for the drop diameter d. Physically, Eq. (23)
describes the advection of a growing drop, with the advected distance

being � d and the velocity being � �vout þ �
�R2

d2 �v in, in which the con-

tribution of �v in is rescaled by a factor � �R2

d2 . Equation (24) is then
obtained by using Eq. (21) to express �v in and �vout for �R ¼ 0:1. From
our simulation results, the data points in Fig. 4(b) are produced by
using optimal values for the adjustable parameters j and � to best fit
the solid line representing Eq. (24). Furthermore, it is seen from the
inset to Fig. 4(b) that the contribution of �vout is much larger than that

of � �R2

d2 �v in in Eq. (23), i.e., the contribution of 0:29�b is much larger

than that of � 10�4

2d2 �a in Eq. (24) for �R ¼ 0:1. This means that for the
advection of a growing drop, the distance is typically � d, and the
velocity is predominantly � �vout. It follows that the time period tp of

drop generation is � d
�vout

. Combining tp � d
�vout

and 4
3pðd2Þ3 ¼ p�R2

�v intp

from mass conservation, we have d � �R
ffiffiffiffiffiffi
�v in
�vout

q
, which has been experi-

mentally verified.5

Now, we focus on the dripping-to-jetting transitions dominated
by inner flows. The same as done in Subsection IIIA, we use Zp to
denote the distance between the pinch-off position and the boundary
of �z ¼ 0 (the orifice). For a slow outer flow fixed at �b ¼ 0:1, Zp is
expected to increase with the increasing inner flow rate, i.e., the

increasing �a. Figure 5(a) shows the pinch-off position in a dripping
state for �a ¼ 24 just before the transition, and Fig. 5(b) shows the
pinch-off position in a jetting state for �a ¼ 25 just after the transition.
It is clearly observed that there is a sharp increase in Zp from Figs. 5(a)
and 5(b), indicating the occurrence of a dripping-to-jetting transition.
Here, the value of Rec is 500, and we have W in ¼ 0:72 and
C in ¼ 0:12 for �a ¼ 24, and W in ¼ 0:781 and C in ¼ 0:125 for
�a ¼ 25. It is noted that the value of Rec used here is large enough to
let W in be in control, with C in being less important. It is also noted
that the critical magnitude of W in is in agreement with the

FIG. 4. (a) A comparison between the diameter de expected from mass conserva-
tion and the diameter dm measured in our simulations. Note that dm is always
slightly smaller than de due to the bulk diffusion. (b) The relation between the drop
diameter dm and the time period tp of drop generation. Here, the parameters �a and
�b, which control �v in and �v out, are also involved according to Eqs. (23) and (24),
with j ¼ 3:1 and �¼ 3. The inset shows that the contribution of 0:29�b is much
larger than that of � 10�4

2d2
�a in Eq. (24), indicating that the growing drop is mainly

advected by the outer flow. The data are obtained by using e ¼ 0:01, B¼ 0.0002,
�R ¼ 0:1; �H ¼ 4, and different combinations of Rec; �a, and �b.
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experimental results in Ref. 5. According to the state diagram reported
in Ref. 5, for the dripping-to-jetting transitions dominated by inner
flows, the critical values ofW in are typically distributed around 1.

To understand the underlying mechanism of the dripping-to-jet-
ting transitions dominated by inner flows, we use Figs. 5(c) and 5(d)
to show the variation of the neck radius rn with the neck position zn as
time goes on. Note that as the neck radius approaches 0, i.e., rn ! 0,
pinch-off occurs with the neck position approaching the pinch-off
position, i.e., zn ! Zp. In the dripping regime, it is observed that rn
decreases monotonically to 0 [as shown in Fig. 5(c)], while in the jet-
ting regime, rn exhibits a transient increase before it eventually
decreases to 0 [as shown in Fig. 5(d)]. It is this transient increase in rn
that leads to a visible jump in the value of Zp that marks the transition
from dripping to jetting.

Figure 6 shows the variation of the pinch-off position Zp with the
parameter a, which controls the inner flow rate. For each value of Rec,
a transition is noted around a critical value of a. Furthermore, this crit-
ical value of a increases with the decreasing Rec.

The jump in the pinch-off position is a clear indicator that can be
used to locate the dripping-to-jetting transition. In the following, we
focus on the critical velocity of the inner flow that is needed to induce
the transition, with the interfacial tension c being varied for nearly two
orders of magnitude. The dripping-to-jetting transitions in systems of
high interfacial tension have been extensively studied.5 In particular,
when the transition is dominated by the inner flow (with the outer
flow rate measured by C out being negligible), the inertial force due to
the inner flow, measured by W in, plays a dominant role in systems of
high interfacial tension. However, when the interfacial tension is con-
tinuously lowered, the viscous force due to the inner flow, measured
by C in, becomes more and more important in driving the transition.
This trend has been reported experimentally,13 and a theoretical
understanding can be described as follows. The Weber number of the
inner flow is given by W in ¼ �v2inRec�R, where the interfacial tension c

FIG. 5. (a) and (b) Two different pinch-off positions for two different inner flow rates,
with �a ¼ 24 for a dripping state in panel (a) and �a ¼ 25 for a jetting state in panel
(b). (c) and (d) Variation of the neck radius rn with the neck position zn as time goes
on. Here, the third inset to panel (c) corresponds to panel (a) for dripping, and the
third inset to panel (d) corresponds to panel (b) for jetting. It is noted in panel (d)
that before rn eventually decreases to 0, it exhibits a transient increase that leads to
a visible jump in the value of Zp. The data are obtained by using
e ¼ 0:01; Rec ¼ 500, B¼ 0.0002, �R ¼ 0:1; �H ¼ 4, and �b ¼ 0:1.

FIG. 6. Variation of the pinch-off position Zp with the parameter �a, which controls
the inner flow rate. For each value of Rec, a transition is noted around a critical
value of �a. The data are obtained by using e ¼ 0:01, B¼ 0.0002,
�R ¼ 0:1; �H ¼ 4, and �b ¼ 0:1.
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is involved in the Reynolds number Rec defined by Rec ¼ quL
g , with

u ¼ c
g being the velocity unit. Let us suppose that the transition occurs

at W in � 1, with the interfacial tension force being balanced by the
inertial force due to the inner flow. If Rec is made sufficiently small by
a sufficiently low interfacial tension, then the value of �v in correspond-
ing to W in ¼ �v2inRec�R � 1 can be made large enough to be compara-
ble to W in. Note that the capillary number of the inner flow is given
by C in ¼ �v in. With C in being comparable to W in � 1 for sufficiently
low interfacial tension, it is deduced that the viscous force due to the
inner flow is no longer negligible compared to the inertial force in
driving the transition in systems of low interfacial tension.

Let �V in denote the critical velocity of the inner flow. In systems
of high interfacial tension, the inertial force due to the inner flow is
dominant, and hence the transition occurs at �V 2

inRec�R � 1 for the
critical Weber number W in � 1. As a result, �V 2

inRec ¼ const: is
expected for large Rec. This is indeed observed in Fig. 7(a). When Rec
is no longer large enough, deviation from �V 2

inRec ¼ const: does show
up. From Fig. 7(a), it is seen that toward the low end of the range of
Rec, the critical �V in is actually below that predicted by
�V 2
inRec ¼ const:, which only considers the inertial force due to the

inner flow. As explained above, when the interfacial tension is low and
hence Rec is small, the value of �V in predicted by �V 2

inRec ¼ const: is
large. This means a large viscous force due to the inner flow. As a
result, the viscous force and inertial force due to the inner flow are
added up to jointly balance the interfacial tension force. Consequently,
the critical �V in becomes smaller than that predicted by
�V 2
inRec ¼ const:, which only considers the inertial force due to the

inner flow.
For Rec being varied between 100 and 4000, numerical simula-

tions have been carried out to determine the critical velocity of the
inner flow �V in at which the transition occurs. The data obtained for
�V in are used to produce a formula that describes the contributions of
the Weber number of the inner flow W in and the capillary number of
the inner flow C in at the transition. Figure 7(b) shows that W in and
C in at the transition satisfy a linear relation given by W in þ 2:6C in

¼ 1:13 approximately. It is worth emphasizing that this equation
holds for the interfacial tension c being varied for nearly two orders of
magnitude. Note that from the upper left to the lower right, the value
of Rec decreases and consequently the relative importance of C in

increases. Therefore, it is numerically verified that the viscous force
due to the inner flow plays a quantitatively important role in driving
the dripping-to-jetting transitions in systems of low interfacial tension.

C. Effect of bulk diffusion

In this subsection, we investigate the effect of bulk diffusion on
the condition for the occurrence of transition. Physically, bulk diffu-
sion is a dissipative process that can lower the interfacial energy and
lead to the breakup of a liquid thread.14,24 Therefore, adding bulk dif-
fusion to the system will facilitate the pinch-off dynamics and hence
hinder the development of jetting state. As a result, a larger critical
velocity �V in is needed to induce the dripping-to-jetting transition. In
an earlier work,24 we demonstrate that the effect of bulk diffusion can
be enhanced by increasing the characteristic length scale lc, which
enters the dimensionless system through the parameter B ¼ 2l2c

L2 .
Figure 8 shows that at different levels of bulk diffusion controlled by B,
W in and C in at the transition always satisfy a linear relation for transi-
tions dominated by the inner flow. Two important observations are

made from Fig. 8: (i) stronger diffusion indeed necessitates a larger
critical velocity �V in to induce the transition and (ii) the three fitting
lines are parallel, showing that the relative contributions of the inertial
force and viscous force due to the inner flow remain the same regard-
less of the variation of bulk diffusion.

IV. CONCLUDING REMARKS

The CHNS model has been solved in a cylindrical domain with
axisymmetry to investigate the dripping-to-jetting transitions in

FIG. 7. (a) Log –log plot for the critical velocity of the inner flow �V in vs the
Reynolds number Rec. For large Rec; �V

2
inRec ¼ const:, while for small Rec,

the critical �V in becomes smaller than that predicted by a constant �V
2
inRec. (b) The

Weber number of the inner flow Win and the capillary number of the inner flow C in
at the transition satisfyW in þ 2:6C in ¼ 1:13 approximately. The data are obtained
by using e ¼ 0:01, B¼ 0.0002, �R ¼ 0:1; �H ¼ 4, and �b ¼ 0:1, with Rec being
varied between 100 and 4000. A thin dotted line with an arrow is used to indicate
the direction of change of Rec. Note that �b ¼ 0:1 used here gives C out ¼ 0:029,
which is much smaller than the typical values of W in and C in at the transition.
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coaxial flows of two immiscible fluids. Numerous numerical examples
are presented to demonstrate that the distance between the orifice and
pinch-off position increases when either the outer or the inner flow
rate is enhanced. It is observed that there is an apparent jump in this
distance when the outer or the inner flow rate reaches the critical value
for the dripping-to-jetting transition to occur. The critical flow rates
numerically obtained for both the outer and inner flows are consistent
with the corresponding experimental results in order of magnitude.
For transitions dominated by outer flows, a thin and long jet is gener-
ated when jetting occurs, and our numerical results for the jet radius
are validated by its dependence on the outer flow rate according to the
mass conservation. For transitions dominated by inner flows, the
interfacial tension is varied for nearly two orders of magnitude, and a
quantitative relation is established between the contributions of the
inertial and viscous forces due to the inner flow at the transition point.
Finally, the degree of bulk diffusion is varied to show its quantitative
effect on the critical flow rate at the transition point.

To the best of our knowledge, there has been no prior work that
employs a phase-field model to investigate the dripping-to-jetting
transitions in three dimensions, with a focus on the effects of low
interfacial tension and bulk diffusion. In the present work, we have
considered the simplest situation in which the two fluids have equal
density, equal viscosity, and equal diffusion coefficient. Actually, these
restrictions can be lifted in both experiments5,13,14 and numerical sim-
ulations.33 Although the dripping-to-jetting transitions for high inter-
facial tension have been extensively studied in the past two decades,
low interfacial tension and bulk diffusion may inject new ingredients
into this classical problem. In this regard, quantitative effects of density
ratio, viscosity ratio, and diffusivity ratio largely remain to be explored
in both experiments and numerical simulations.
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