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The logarithmic nonlinearity has been used in many partial differential equations (PDEs)
for modeling problems in various applications. Due to the singularity of the logarithmic
function, it introduces tremendous difficulties in establishing mathematical theories, as
well as in designing and analyzing numerical methods for PDEs with such nonlinear-
ity. Here, we take the logarithmic Schrodinger equation (LogSE) as a prototype model.
Instead of regularizing f(p) = Inp in the LogSE directly and globally as being done in
the literature, we propose a local energy regularization (LER) for the LogSE by first
regularizing F'(p) = plnp — p locally near p = 0T with a polynomial approximation in
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the energy functional of the LogSE and then obtaining an energy regularized logarithmic
Schrodinger equation (ERLogSE) via energy variation. Linear convergence is established
between the solutions of ERLogSE and LogSE in terms of a small regularization param-
eter 0 < ¢ < 1. Moreover, the conserved energy of the ERLogSE converges to that
of LogSE quadratically, which significantly improves the linear convergence rate of the
regularization method in the literature. Error estimates are also presented for solving
the ERLogSE by using Lie-Trotter splitting integrators. Numerical results are reported
to confirm our error estimates of the LER and of the time-splitting integrators for the
ERLogSE. Finally, our results suggest that the LER performs better than regularizing
the logarithmic nonlinearity in the LogSE directly.

Keywords: Logarithmic Schrédinger equation; logarithmic nonlinearity; energy
regularization; error estimates; convergence rate; Lie-Trotter splitting.

AMS Subject Classification: 35Q40, 35Q55, 656M15, 81Q05

1. Introduction

The logarithmic nonlinearity appears in physical models from many fields. For
example, the logarithmic nonlinearity is introduced in quantum mechanics or quan-
tum optics, where a logarithmic Schrodinger equation (LogSE) is considered (e.g.

Refs. [T4HIG and [44]),
i0iu = —Au+Auln|ul?>, NER;

in oceanography and in fluid dynamics, with a logarithmic Korteweg-de Vries
(KdV) equation or a logarithmic Kadomtsev—Petviashvili (KP) equation (e.g.
Refs. BI50l and B51)); in quantum field theory and in inflation cosmology, via a loga-
rithmic Klein—-Gordon equation (e.g. Refs. 1235 and 49); or in material sciences, by
the introduction of a Cahn—Hilliard (CH) equation with logarithmic potentials (e.g.
Refs. 2428 and [33]). Recently, the heat equation with a logarithmic nonlinearity
has been investigated mathematically 122

In the context of quantum mechanics, the logarithmic nonlinearity was selected
by assuming the separability of noninteracting subsystems property (cf. Ref. [I4]).
This means that a solution of the nonlinear equation for the whole system can be
constructed, as in the linear theory, by taking the product of two arbitrary solu-
tions of the nonlinear equations for the subsystems. In other words, no correlations
are introduced for noninteracting subsystems. As for the physical reality, robust
physical grounds have been found for the application of equations with logarithmic
nonlinearity. For instance, it was found in the stochastic formulation of quantum
mechanics™8 that the logarithmic nonlinear term originates naturally from an
internal stochastic force due to quantum fluctuations. Such kind of nonlinearity also
appears naturally in inflation cosmology and in supersymmetric field theories 10

Remarkably enough for a nonlinear PDE, many explicit solutions are available
for the logarithmic mechanics (see e.g. Refs. 14l and 43). For example, the loga-
rithmic KdV equation, the logarithmic KP equation, the logarithmic Klein-Gordon
equation give Gaussons: solitary wave solutions with Gaussian shapes2%58 In the
case of LogSE (see Refs. [I7 and [31)), or the heat equation/I' every initial Gaussian
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function evolves as a Gaussian: solving the corresponding nonlinear PDE is equiva-
lent to solving ordinary differential equations (involving the purely time-dependent
parameters of the Gaussian). However, we emphasize that this is not so in the
case of, e.g. the logarithmic KdV equation, the logarithmic KP equation, or the
logarithmic Klein—Gordon equation. This can be directly seen by trying to plug
time-dependent Gaussian functions into these equations. Note that this distinction
between various PDEs regarding the propagation of Gaussian functions is the same
as at the linear level.

The well-posedness of the Cauchy problem for logarithmic equations is not triv-
ial since the logarithmic nonlinearity is not locally Lipschitz continuous, due to the
singularity of the logarithm at the origin. Existence was proved by compactness
argument based on regularization of the nonlinearity, for the CH equation with a
logarithmic potential2? and the LogSEI¥ Uniqueness is also a challenging question,
settled in the case of LogSE thanks to a surprising inequality discovered in Ref. 20,
recalled in Lemma 211

The singularity of the logarithmic nonlinearity also makes it very challenging
to design and analyze numerical schemes. There have been extensive numerical
works for the CH equation with a logarithmic Flory Huggins energy poten-
tia] ZH2EBAHOETEY gpecifically, a regularized energy functional was adopted for the
CH equation with a logarithmic free energy 2352 A regularization of the logarithmic
nonlinearity was introduced and analyzed in Refs. 4 and [5 in the case LogSE, see
also Ref.

In this paper, we introduce and analyze numerical methods for logarithmic
equations via a local energy regularization (LER). We consider the LogSE as an
example; the regularization can be extended to other logarithmic equations. The
LogSE which arises in a model of nonlinear wave mechanics reads (cf. Ref. [14),

{i@tu(w,t) = —Au(z,t) + Nu(z,t) f(Ju(z,1)]?), z€Q, t>0, (L1)

u(w, 0) = UO(w)v T < ﬁv

where t and = € R? (d = 1,2,3) represent the temporal and spatial coordi-
nates, respectively, A € R\{0} measures the force of the nonlinear interaction,
u = u(x,t) € Cis the dimensionless wave function, and

f(p)=Inp, p>0, withp=|ul’ (1.2)

The spatial domain is either Q = R%, or Q ¢ R? bounded with Lipschitz continuous
boundary; in the latter case the equation is subject to homogeneous Dirichlet or
periodic boundary conditions. This model has been widely applied in quantum
mechanics, nuclear physics, geophysics, open quantum systems and Bose-Einstein
condensation, see e.g. Refs. BI26I37I38 and 53l We choose to consider positive time
only merely to simplify the presentation, since (II]) is time reversible. Formally,



Math. Models Methods Appl. Sci. 2022.32:101-136. Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 02/11/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

104 W. Bao et al.
the flow of (1)) enjoys two important conservations. The mass, defined as

N(t) = N(u(-)) = [[ull” = / u(@, H)Pde = N(uo), >0,  (13)
and the energy, defined as

E(t) : = Eu(1)) = / (Vu(a, t)Pdz + AP (Ju(e, )[?))d

Q
= [19u(@)F + A (ua(e)P)ldz = B(w), 20, (14
where
F(p)=/Opf(s)dsz/oplnsds=plnp—p7 p>0. (1.5)

The total angular momentum is also conserved, an identity that we do not use in
the present paper. For the Cauchy problem (LLI]) in a suitable functional framework,
we refer to Refs. 1720 and For stability properties of standing waves for (L)),
we refer to Refs. 218 and 21l For the analysis of breathers and the existence of
multisolitons, see Refs. 31 and [32]

In order to avoid numerical blow-up of the logarithmic nonlinearity at the ori-
gin, two models of regularized logarithmic Schrodinger equation (RLogSE) were
proposed in Ref. Bl involving a direct regularization of f in (L2), relying on a small
regularized parameter 0 < ¢ < 1,

{i@tuf(w,t) = —Auc(z, 1) + A (2, 1) f(jus (2, 1)])?), x€ 87 t>0, (1.6)
u®(x,0) = uo(x), e,
and
{i@tus(m,t) = —Auf(xm, t) + Aus(z, t) fo(Jus (@, 1)]?)), @€ 8’ t>0, (1.7)
v (@,0) = uo(x), z e

Here, fs (p) and fs(p) are two types of regularization for f(p), given by
FEp) =2n(e+ o), Fi(p)=M(+p), p>0, withp=u> (18

Again, the RLogSEs ([L6)) and (7)) conserve the mass (1.3) with u = u®, as well
as the energies

E5(t) := E*(uf(-,1)) = /QHVus(w,t)\de + AFE([uf (2, 8))?)]dx = E°(ug), (1.9)
and
E°(t) := E(u° (-, 1)) = /Q[|Vu5(:c,t)\2dw +NFE(|uf (2, 8))?))de = E° (ug),
(1.10)
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respectively, with, for p > 0,

Fe(p) = /Op fe(s)ds = 2pIn(e + VP) +2ey/p—p—2e%In(1+ /p/e),
(1.11)

~

Fe(p) = /Op FE(s)ds = (€2 + p)In(e® + p) — p — 2% Ine.

The idea of this regularization is that the function p — In p causes no (analytical or
numerical) problem for large values of p, but is singular at p = 0. A linear conver-
gence was established between the solutions of the LogSE ([LT) and the regularized
model () or () for bounded €2 in terms of the small regularization parameter
0<ex 1, ie.
sup ||u®(t) —u(t)||L20) = O(e), VT >0.
te[0,T]

Applying this regularized model, a semi-implicit finite difference method (FDM)
and a time-splitting method were proposed and analyzed for the LogSE (L6 in
Refs. 5l and [ respectively. The above regularization saturates the nonlinearity in
the region {p < €2} (where p = |uf|?), but of course has also some (smaller) effect
in the other region {p > &2}, i.e. it regularizes f(p) = In p globally.

Energy regularization is a method which has been adapted in different fields
for dealing with singularity and/or roughness: in materials science, for establishing
the well-posedness of the Cauchy problem for the CH equation with a logarithmic
potential 22 and for treating strongly anisotropic surface energy®#2 in mathemat-
ical physics, for the well-posedness of the LogSEI® in scientific computing, for
designing regularized numerical methods in the presence of singularities 2352 The
main goal of this paper is to present a LER for the LogSE (CI]). We regularize the
interaction energy density F(p) only locally in the region {p < £2} by a sequence
of polynomials, and keep it unchanged in {p > £%}. The choice of the regularized
interaction energy density F); is prescribed by the regularity n imposed at this step,
involving the matching conditions at {p = £2}. We then obtain a sequence of energy
regularized logarithmic Schrodinger equations (ERLogSEs), from the regularized
energy functional density F¢, via energy variation. Unlike in Refs. 25 and [52], where
the interaction energy density F'(p) is approximated by a second-order polynomial
near the origin, here we present a systematic way to regularize the interaction energy
density near the origin, i.e. locally, by a sequence of polynomials such that the order
of regularity n of the overall regularized interaction energy density is arbitrary.
We establish convergence rates between the solutions of ERLogSEs and LogSE in
terms of the small regularized parameter 0 < ¢ < 1. In addition, we also prove
error estimates of numerical approximations of ERLogSEs by using time-splitting
integrators.

The rest of this paper is organized as follows. In Sec.[2] we introduce a sequence
of regularization F; for the logarithmic potential. A regularized model is derived
and analyzed in Sec. [ via the LER of the LogSE. Some numerical methods are
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proposed and analyzed in Sec. @l In Sec. Bl we present numerical experiments.
Throughout the paper, we adopt the standard L2-based Sobolev spaces as well as
the corresponding norms, and denote by C' a generic positive constant independent
of g, the time step 7 and the function u, and by C(c) a generic positive constant
depending on c.

2. Local Regularization for F(p) = plnp —p

We consider a local regularization starting from an approximation to the interaction
energy density F(p) in ([3) (and thus in (TA).

2.1. A sequence of local regularization

In order to make a comparison with the former global regularization (L6l), we again
distinguish the regions {p > 2} and {p < £2}. Instead of saturating the nonlinearity
in the second region, we regularize it locally as follows. For an arbitrary integer
n > 2, we approximate F'(p) by a piecewise smooth function which is polynomial
near the origin,

Fi(p) = F(p)X{p>e2y + Pry1(P)X{p<e2y, 1 2>2, (2.1)

where 0 < ¢ < 1 is a small regularization parameter, x, is the characteristic
function of the set A, and Pj,, is a polynomial of degree n + 1. We demand
Fg e C™(]0,+00)) and F£(0) = F(0) = 0 (this allows the regularized energy to be
well-defined on the whole space). The above conditions determine Py, as we now
check. Since P;,,(0) = 0, write

Priilp) = pQulp), (2.2)

with Q% a polynomial of degree n. Correspondingly, denote F(p) = pQ(p) with
Q(p) = Inp — 1. The continuity conditions read

Pa(E®) = F(E), (Pr)' (@) =F(),..., (Pr)™ () =FM(),
which in turn yield
Q) =QE), (@)(E)=Q(E),..., (@)™ =QM().
Thus Q¢ is nothing else but Taylor polynomial of @ of degree n at p = &2, i.e.
" k) (g2 " k
cr 2 QMWEY, ok _q 2 4 Lo _r
Qilp) = Q) + Y T - =2 —1-Y (1= 5) . 23)

!
= M il

In particular, Taylor’s formula yields

- @i = [ e Las= [T

|
e2 uz &2
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Plugging (Z3) into (Z2), we get the explicit formula of P;_ ,(p). We emphasize a
formula which will be convenient for convergence results:

@ =53 (1-2) T =L (1-4)). 0<p<e @9
k=1

p g2

2.2. Properties of the local regularization functions

Differentiating (Z.I) with respect to p and noting (22)), [23]) and [Z3]), we get
falp) = () (p) = pX(p>e2y + a5 (P)X(pezys P20, (2.6)

where

0 (p) = (Pry1)'(p) = @n(p) + £ (Q5) (p)
o n+1 noEL1 k
- (- £ - 510 4)

k=1

Noticing that ¢ is increasing in [0,&2], f¢ and f* are increasing on [0,00), thus
all three types of regularization (1) and (II) preserve the convexity of F.
Moreover, as a sequence of local regularization (or approximation) for the semi-
smooth function F(p) € C°([0,00)) N C°°((0,00)), we have F: € C"(]0, +00)) for
n > 2, while = € C*(0,00)) N C*°((0,00)) and F* € C°°([0,00)). Similarly, as
a sequence of local regularization (or approximation) for the logarithmic function
f(p) = Inp € C*((0,00)), we observe that f € C" 1([0,00)) for n > 2, while
f5 € €>([0,00)) and f= € CO([0,00)) N C>((0, 0)).
Recall the following lemma, established initially in Lemma 1.1.1 of Ref.

Lemma 2.1. For z1, 22 € C, we have
Tm( (21 In(|21]*) = 22 In(|22[*)) (21 — 22))| < 2|21 — 22/,

where Im(z) and Z denote the imaginary part and the complex conjugate of z, respec-
tively.

Next, we highlight some properties of f;.
Lemma 2.2. Letn > 2 and € > 0. For z1, zo € C, we have
(212 = fa(l22?)] < smmr ity (
Im[ (21 f5(|21]%) — 2z2f7(221%)) (77 = 22)]| < 4dnfa1 — 2], (
2
p(f2) (0 <3, W) (o)l <2, 10°2(f2) (P < 3= p>0, (2.9
If2(p)| < max{|InA],2 +1In(ne=2)}, pel0,A]. (2.10

Proof. When |z, |22| > ¢, we have

£2(2f?) — f2(l2f?)] = 21 (1 +

|[21] — |22]| )< 2|21 — 2]
min{|z1|, [22} / ~ min{[z1], [22]}
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A direct calculation gives

1 n P\l 1 Pk
(fs)/(p) - ;X{PZE2} + (6_2 (1 - 5—2) + 2 Z (1 — 5—2) X{p<e2}- (2.11)

Thus when |21]| < |22] < ¢, we have

|22]?
€ 7«'12 _ TEL 222 _ 7sL/ d
[fa(lz1]%) = fallz2l)] / (fa)(p)dp

z1]?
|22 n—1 n—1 |z A

5 (8) a0 8)
-2 1-= dp+ — 1—=) dp

€2 Jyap2 & 52;; a2 e’

" 2 2 S 2 2
< 5_2(‘ZZ| - |Zl‘ )+ 6_2 (‘Zz| — |2:1‘ )

k=0

2n 4n

= 5_2(‘22|2 - |Zl|2) < ?‘Zl — 2’2‘.

Another case when |z2| < |z1] < € can be established similarly. Supposing, for
example, |z2| < € < |21], denote by z3 the intersection point of the circle {z € C :
|z| = €} and the line segment connecting z; and zp. Combining the inequalities
above, we have

[fa(lz?) = £R(z2 )] < 1£5(122l*) = fi(lzsl®)] + a2 ]*) — In(lzs]?)]

n 4n
< ?(|Z2 —z3| + |21 — 23]) = ?|Zl — 2|,

which completes the proof for (27).
Noticing that

Im|[(z1 f5(|21]%) — 22/5(|22%)) (71 — 22))]
= —Im(z122) f5;(|22]%) — Im(2122) f;; (|21]?)

= Im(Z122)[f5 (121 %) — f5(|22/?)]
1

= g(z_wz —22)f5(121 %) = fi(l122),
and
|Z1zo — 2172| = |22(71 — Z2) + Z2(22 — 21)| < 2|22] |21 — 22,
|Z1zo — 2172| = [Z1(22 — 21) + 21(71 — 22)| < 2|21 |21 — 22,

which implies
[Z122 — z172| < 2min{|z1], [22(} |21 — 22,

one can conclude (Z8) by applying 271).
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It follows from (2IT) that

n—1
np PNt P P\*
9(p) = p(£3) (p) = X{pze2y + =3 (1 - 6—2) + = E (1 - 5_2) X{p<e?}
k=0

np P n—1 P n
= X{p2e2} + (5—2 (1 - E—2> +1- (1 - 5—2) ) X{p<<?}s

which gives that

’ n
9 (P)X{p<ezy = 2 ( -

|F=(p) — F(p)| \F(p) — F(p)|

. e

10"

-1
10 102}

1073
1074}

10°
10}

107
10® 10® 10* P 102 10° 102 10® 10® 10* P 102

o |55 (p) — F(p)| o |55 (p) — F(p)|

107 Nt 1 107+

107 107

10718 10718
0 or
10® 10°® 10™* P 102 10° 102 10® 10°® 10™* P 102 10° 102

107" 107"
107 107
107 107
1018 ) 1018 |
(0] ol|—e¢ =0.05
10® 10® 10* P 107 10° 102 10® 10 10* P 107 10° 102

Fig. 1. (Color online) Comparison of different regularizations for F(p) = plnp — p.
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This leads to

2
0 = alp) < maxfrg (2 )} <1 2 <

which completes the proof for the first inequality in (Z3]). Finally, it follows from

(ZII) that

VAU () = —=xqpzey + Y (n (1 -

NG

1 n?—1
(2" (0) = ~ptpzeny = (

X X{p<e2}s

|F=(p) — F(p)I

10"

10°

115 (p) — f(p)]

Areeen
<

10"

1072}
10+

108}

10"
102
107}

108

1 0—15 L
0 L "
10®  10® 10* P 102 10° 10?
Fig. 2. (Color online) Comparison of different

p n—1 p k
5_2) + Z (1 - 5_2) X{p<e?}s

107 e

107"

10°
108  10® 10* P 102 10° 102
|fi(p) — f(p)]
10" :

1072
107° ¢

10®

10% P 102 10° 102

1078 10

regularizations for the nonlinearity f(p) = Inp.
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which immediately yields that

2n

VAU ()] < .

3n(n—1)  3n?

n—3
1
3/2( pe\I < = 2 _ _
P O 2 (0= e ) <o

For p € [0,?], in view of € € (0, 1], one deduces
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Fig. 3. (Color online) Comparison of different regularizations for f'(p) = 1/p.
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which together with |fS(p)| < max{In(e=2),|In(A4)|} when p € [¢2, A] concludes

2.10). O

-107 -107

-10° -10°f

—

_10% (JTUA)// _10%
___________ (]’Fo.z)u
———— (]i().l)//
_108 R (f().()a)u | 1 08
10% 102 102 107'” 10° 10" 10 10% 10° 102 107'” 10° 10' 10
-10™ -10™
-10° 100}
104 0.4\/ B Yol A ™ (f()_4)//
........ 0.2/ | i PETTeIT 1
———— (f2().1211
-108 - = (2|1 108
10% 102 102 107'” 10° 10" 102 10% 102 102 107'” 10° 10' 102
-10™* -107 ¢ a
109+ 100+

1 1
104+t f f _10% — 7
10 (f{o)[.)zj)// 10 (f%)zj)n
"""" (fb()ﬁ]) ( E(v)()i))
"""" T ) T )
.05\ .05\
108 - = (f160")" ] 1 108 - = (f960")" ] -
10% 10° 102 1077 10° 10" 102 10% 10° 102 107P 10° 10" 102

Fig. 4. (Color online) Comparison of different regularizations for f”/(p) = —1/p>.
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. [FRt(p) — F(p)| L2 (p) — f(p)]
10 10°T boEE n=4
——n = 16
1074 . —n = 64
107} -~ n =256
—-—-n = 1024
10711+ BT S O T
-15 |
10 1 0-15 L
of ol
107® 1078 102
10° -107 ¢ +
10%F ~10°|
> 1
107+ -10% | 0.1\7 |1
........ Fo3.) (f% 1)”
4 — (f%]()l)
100 ¢ _108 — (fei)”
- - (fé’s%)"
.. "
> - (fgo‘lu)
= E . "
10 10”12 e (f4096)
10 104 p 1072 10° 102 107 10% P 102 10° 102

Fig. 5. (Color online) Comparison of regularizations g% (g = F, f, f/, f") with different order
n.

2.3. Comparison between different regularizations

To compare different regularizations for F'(p) (and thus for f(p)), Fig. [l shows F<
(n =2,4,100,500), F* and F* for different ¢, from which we can see that the newly
proposed local regularization F;; approximates F' more accurately.

Figure 2l shows various regularizations f; (n = 2,4,100,500), ]?E and ]?E for
various &, while Figs. [3] and @] show their first- and second-order derivatives. From
these figures, we can see that the newly proposed local regularization f& (and its
derivatives with larger n) approximates the nonlinearity f (and its derivatives)
more accurately. In addition, Fig. Bl depicts F<(p) (with e = 0.1) and its derivatives
for different n, from which we can clearly see the convergence of FZ(p) (and its
derivatives) to F'(p) (and its derivatives) with respect to order n.

3. Local Energy Regularization (LER) for the LogINLS

In this section, we consider the regularized energy

E£ (u) ::/Q[\Vu\2+>\F§(|u\2)]dw, (3.1)
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where Ff is defined in (ZI)). The Hamiltonian flow of the regularized energy id;u =
6E (u) yields the following ERLogSE with a regularizing parameter 0 < ¢ < 1,

{i@tus(w,t) = —Auf (@, t) + Auf (@, t) f(|uf (z, 1)[2), xeQ, t>0, 52)

uf(x,0) = uo(x), z € Q.
We recall that fZ is defined by (2.0]).

3.1. The Cauchy problem

To investigate the well-posedness of the problem ([B2]), we first introduce some
appropriate spaces. For a > 0 and Q = R?, denote by L2 the weighted L? space

L% = {ve L*(RY), =z~ (x)%(x)c L*(RY)},

where (x) := /1+ |z|?, with norm [[v|z2 = [(z)*v(x)| L 2re). Regarding the
Cauchy problem ([B2]), we have similar results as for the regularization (L) in
Ref. B, but not quite the same. For the convenience of the reader, we recall the
main arguments.

Theorem 3.1. Let A€ R, ug € HY(Q), and 0 < e < 1.

(1) For B2) posed on Q = R% or a bounded domain Q with homogeneous Dirichlet
or periodic boundary condition, there exists a unique, global weak solution u® €
L (R HY(Q)) to B2) (with HE(Q) instead of HY(Q) in the Dirichlet case).

loc
Furthermore, for any given T > 0, there exists a positive constant C(\,T)

(independent of n) such that
[l Loe o, 73511 (2)) < CNT)l[woll (), Ve > 0. (3.3)

(2) For B2) posed on a bounded domain Q with homogeneous Dirichlet or periodic
boundary condition, if in addition ug € H?(Q), then u® € L2 (R; H*(2)) and
there exists a positive constant C(n, \,T) such that

1w (| Lo (0,1 m2(02)) < C(n, X, T)|luo| g2y, Ve >0. (3.4)

(3) For B2) on Q =RY, suppose moreover ug € L2, for some 0 < a < 1.
e There exists a unique, global weak solution u® € L (R; HY(RY) N L2) to

loc
B2), and

lu®|| oo o, 13;m1) < C(n, A, T)Jwol| a1,

(3.5)
||’LLEHL<X>([0’T];L3) S C’(n,)\,T, ||u0||H1)Hu0||L27 Ve >0.
e If in addition ug € H*(RY), then u® € LS (R; H*(RY)), and
[ul[ e o,rm2) < C(n, AT [Juoll 2, [luol[z2), Ve > 0. (3.6)

o Ifug € HXRY) N L2, then v € L (R; H2(RY) N L3).

loc
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Proof. (1) For fixed ¢ > 0, the nonlinearity in ([B2]) is locally Lipschitz contin-
uous, and grows more slowly than any power of |uf|. Standard Cauchy theory
for nonlinear Schrodinger equations implies that there exists a unique solution
u® € L (R; HY(Q)) to B2) (respectively, u® € L (R; Hi(Q)) in the Dirichlet

loc loc

case); see e.g. Corollary 3.3.11 and Theorem 3.4.1 in Ref. In addition, the L2-
norm of u® is independent of time,

[u(®)l72() = luolliz), YteR.
For j € {1,...,d}, differentiate ([B2) with respect to x;:
(0 + A) dyu° = Aoyt f5([u ) + 22 (£5)'(|u® ) Re (F0,0)
Multiply the above equation by 0;uf, integrate on 2, and take the imaginary part:
23) implies

1d
571070 122y < 6195 1220

hence (B3), by Gronwall lemma.

(2) The propagation of the H? regularity is standard, since f¢ is smooth, so we
focus on ([BA]). We now differentiate ([B:2)) with respect to time: we get the same
estimate as above, with J; replaced by J;, and so

10 @)113 20 < (100 (0)][ 32y e 2 1.
In view of (32)),
i@tuft:o = —Aup + Auof5(|“0|2)-

For 0 < § < 1, we have

Volfa(e)l < C(0) <p1/2—5/2 n p1/2+5/2) 7

for some C(6) independent of ¢ and n, so for § > 0 sufficiently small, Sobolev
embedding entails

10¢u®(0)[ 222y < [Juoll a2 () + C(0) (HHOHILEé%(Q) n ”“OH}JJTEQ)) .
Since () is bounded, Holder inequality yields
luoll 2250y < lluoll 2l 3727,

Thus, the first term in B2 is controlled in L2. Using the same estimates as above,
we control the last term in (B2) (thanks to (33))), and we infer an L2?-estimate for
Auf, hence ([B7).

(3) In the case Q = R?, we multiply 32) by (z)®, and the same energy estimate
as before now yields

d x-Vu® a—
T lullZz = daTm / e 0 () da S @) 0 e | V| 2y
R

S @) w2 gray | VUF| L2 ey,
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where the last inequality follows from the assumption o < 1, hence (B.3]). To prove
B3), we resume the same approach as to get ([34), with the difference that the
Holder estimate must be replaced by some other estimate (see e.g. Ref. [I7): for
6 > 0 sufficiently small,

_ 2—286—d§ ds
/ P72 < Nl ey ™ el ull 2 -

The L2 estimate follows easily, see e.g. Ref. [{ for details. O

3.2. Convergence of the regularized model
In this subsection, we show an approximation property of the regularized model

B2) to (@I).

Lemma 3.1. Suppose Eq. (32) is set on Q, where Q@ =R% or Q C R? is a bounded
domain with homogeneous Dirichlet or periodic boundary condition. We have the
general estimate:

d
1@ —u@®z2 < M(Aes (@) = w@)lIZ: + 62llu(t) = w@)llz). (3.7)

Proof. Subtracting ([T from (B2), we see that the error function e® := u® —u
satisfies

ik + A = Alu® In((u ) — wln(fuf®)] + Mo [£5(1u ) = () <o)

Multiplying the above error equation by e®(t), integrating in space and taking
imaginary parts, we can get by using Lemma 2] ([24]) and (23] that

Ld

S le B3 =2A1m/ﬂ[u81n<|uf|) — wln(|u|)JeE (z, t)da

+AIm wf (e ) = In(ju® )]s (2, t)dae

|ue|<e
SONN @+ | [ T ~ o)
|lus|<e

+ Q7)) (Jut*))dec|
2 N P AT
/ efu® / %d{s -1
|us|<e |us |2 S

+ u“(@i)/(uslz)l dx

< 2[Allle*(®)lI72 + A
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2
[ me|[ ey,
lus|<e [us|2 sntl

=2\ le*(IIZ2 + A

2

e
0 |lus|?2<s

<2\ [le(@)NZ2 +elAlletllz2 + (A

x eEuf (s — |uf|?)"dxds

< 2[Al[le*(t) 122 + BelAlll€®| -
This yields the result. O

Invoking the same arguments as in Ref. [5 based on the previous error estimate,
and interpolation between L? and H?, we get the following error estimate.

Proposition 3.1. If Q has finite measure and ug € H*(SY), then for any T > 0,
0 = ull = orzay < Cres lu® = ull Loy (o)) < Cae'/?,

where Cy depends on ||, T, |9, and Co depends in addition on ||uol|g2(q). If
Q=R 1<d<3 andug € H*(RY) N L2, then for any T > 0, we have

_4 _2
[ = ull oo (o, 1y;22ey) < D1e™,  ||[u® — ul| oo jo,1) 1 (re)) < D2e ™,

where D1 and Do depend on d, |A|, T', |luol| Lz and |[uoll m2(me)-

Proof. The proof is the same as that in Ref.[5l We just list the outline for the read-
ers’ convenience. When €2 is bounded, the convergence in L? follows from Gronwall’s
inequality by applying B77) and the estimate |[v| ;1 < |Q|Y/?||v| z2. The estimate
in H! follows form the Gagliardo—Nirenberg inequality ||v]| g1 < C||1)H1L/22Hv||}q/22
and the property (34). For Q = R, the convergence in L? can be established by
Gronwall’s inequality and the estimate (cf. Ref. [5)
1—d/4) jd/4 _ i—a, o 2h
lollzr < Calloll " lvll75" < Ca ( Hollze + 54 o] )

which is derived by the Cauchy—Schwarz inequality and Young’s inequality. The
convergence in H' can similarly derived by the Gagliardo-Nirenberg inequality. O

3.3. Convergence of the energy

By construction, the energy is conserved, i.e.
By (u®) = / (VU (@, 6)7 + N (Juf (2, 1)|*)]da = B, (uo). (3.8)
Q

For the convergence of the energy, we have the following estimate.
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Proposition 3.2. For ug € H*(Q) N LY(Q) with a € (0,2), the energy EZ (up)
converges to E(ug) with

62—04

|E7, (u0) — E(uo)| < [Al \|Uo||%am~

In addition, for bounded €2, we have
|E;, (uo) — E(uo)| < [A]|Q2] €2

Proof. It can be deduced from the definition (B8] and ([24]) that

12 (o) — uo|—|A\ [ Gu(@)) - Fi(lun(e) e
W[ @) - Q@)
[uo(x)]|<e
=\ up(x)|? . s s — |ug(x)|?)"dsdz
A @ [ @)

52
N / / o ) 2(s — [uo()2)" dxds.
0 |uo (@) |2<s

If Q is bounded, we immediately get
|E5, (uo) — E(uo)| < N9 €2
For unbounded §2, one gets
2
€
| B (uo) — E(uo)| < I/\\/O s g | 2ads = (A [uollZe 7——75
which completes the proof. O

Remark 3.1. Recall that it was shown in Ref. [5l that for the regularized model
(L6 with the energy density (LI, the energy

E* (ug) = [ Vauol|22 + )\/ F*(Jug|?)da (3.9)
Q

converges to E(ug) with an error O(e). For the regularization (7)) with the energy
density (LII)) and the regularized energy

E=(uo) = || Vg2 +)\/ F(|uo|?)de, (3.10)
Q

we have

| B (uo) — E(uo)]

N ] / (o @) ?) — B (juo () )]z
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= [Al

/Q [ 4 uo ) In(e2 + upl?) — 2 In(=2) — fuol? In(|uo|*)]dz

2 2
< \A|52/1n <1+ |“02| )d:c+)\|/ luo|? In <1+€—2> da
Q S Q |uol

< \)\|E2*QC(04)/ |uo|“da
Q

= [\ e C(a)luol e

where we have used the inequality In(1 + z) < C(B)2? for 8 € (0,1] and = > 0.
Hence for ug € HY(Q) N L*(Q) with a € (0,2), we infer

|E* (u) — E(u)| < |\ 27*C(a)]|uo||F

that is, the same convergence rate as . Thus the newly proposed LER F; is more
accurate than F'¢) and than F¢ in the case of bounded domains, from the viewpoint
of energy.

4. Regularized Lie—Trotter Splitting Methods

In this section, we investigate approximation properties of the Lie-Trotter splitting
(LTSP) methods™327 for solving the regularized model ([B2)) in one dimension
(1D). Extensions to higher dimensions are straightforward. To simplify notations,
we set A = 1.

4.1. A time-splitting for [B2)
The operator splitting methods are based on a decomposition of the flow of (B:2]):
Opu® = A(u®) + B(u®),
where
Av) = idv,  B(v) = —ivf (),

and the solution of the sub-equations

{&v(x,t) = A(v(z,t)), 2€Q, t>0, (4.1)

v(z,0) = vy (z),

{atw(x,t) = B(w(z,t)), z2€Q, t>0, (42)
w(z,0) = wo(),

where 2 = R or 2 C R is a bounded domain with homogeneous Dirichlet or periodic
boundary condition on the boundary. Denote the flow of ([@Il) and (£2) by

0(-,t) = DY (v0) = €Puy,  w(- ) = Dly(wg) = woe a0l ¢ >0 (4.3)
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As is well known, the flow ®, satisfies the isometry relation
| ®% (vo) |l s = l|lvollms, Vs€R, Vt>0. (4.4)
Regarding the flow ®%;, we have the following properties.
Lemma 4.1. Assume 7 > 0 and wy € H'(2), then
1@ (wo)llz2 = llwollz2,  [[®B(wo)llar < (1+67) [[wolle- (4.5)
For v, w € L*(Q),

[@5(v) = PR (w)|[L2 < (1 +4n7) lv —wl|L>. (4.6)

Proof. By direct calculation, we get
0s 2T (wo) = e 00" D0 — i (2 (jwol”) (@B a5 + o |*Dueo)],
which immediately gives ([{3) by recalling (Z9). We claim that for any = € Q,
|5 (v)(z) — @R (w)(z)| < (1 +4n7) [v(z) — w(z)|.

Assuming, for example, [v(z)| < |w(z)|, by inserting a term v(z)e~ /2 (W@D* e
can get

[05(0)(@) — O (w) )|
= (z)e T @D® _ y(g)emiTFnlw@)D?)
— () — w(z) + v(@) (@7 @D =@ D) )
< lo(@) = w@)| + 2v(@)| fsin (F1E(w@)) = F(lo@))]
< o) = w(@)| + rlo(@)] £ (w@)?) = fi(lo())]
< (1+4+4n7) |v(z) — w(z)],

where we have used the estimate ([Z7). When |v(x)| > |w(x)|, the same inequality
can be obtained by exchanging v and w in the above computation. Thus the proof
for (4 is complete. |

4.2. Error estimates for &7 = &7, PL

We consider the LTSP
s = o7 () = L (DR (w)), k>0, w0 =wug, 7> 0. (4.7)
For ug € H(), it follows from @) and @I that
s

st

lp2 = a2 = Jullz2 = [luollLz,

gt S (L+67) [[u™™ g <e uo|| g1, > 0.
<(1+6 skl < OkT k>0
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Theorem 4.1. Let T > 0 and 19 > 0 be given constants. Assume that the solution
of B2) satisfies u® € L>=([0,T); HX(Q)) and the time step 7 < 19. Then there
exists 0 < g < 1 depending on n, 7o and M := ||u®|| o ((0,1);H1 (0)) such that when
e <egg and ty ==kt < T, we have

us* — us (tr)]| 2 < C(n, 70, T, M) In(e~1)71/2. (4.9)
Proof. Denote the exact flow of B2) by u®(t) = Wi(ug). First, we establish the
local error for v € H(Q):
|07 (v) — B (v)|| 2 < C(n,70)||v]| g In(e™ 72, 7 < 70, (4.10)
when ¢ is sufficiently small. Note that definitions imply
i0,U" (v) + AV (v) = V¥ (v) 7 (|2 (v)]?),
10,9 (v) + AD (v) = @ (P (v) f (|12 (v)[*)).
Denote £ (v) = Vi (v) — ®!(v), we have
10,8 (v) + A (v) = V() fr ([T () [P) — @4 (PH(v) [ (125 (0)[*)).  (4.11)

Multiplying (@IT]) by £*(v), integrating in space and taking the imaginary part, we
get

%%Hft(v)lliz = Im (2" (v) f (1" (v)[*) — D% (D (0) [ (125 (v)[*)). £ (v))
= Im (¥ (v) f (| (v)[*) — ' (v) f (12" () [*), £ (1)
+1Im (0" (0) £ (|2 (v)]*) — DY (P (v) £ (12 (v)]*)), € (v))
< 4n|E4 ()13
+ (2 (0) 2 (12 ()*) = @4 (@5(0) (125 () ) 2 lIE€ (v)l] 2,

where we have used ([Z.8) and the scalar product is the standard one in L?: (u,w) =

Jo u(z)w(z)dz. This implies

L€ W)l < AnlE Wl + 1+ . (412
where
T = 12 )12 W)) — @l (0)f2 (1@ (0) ) 2
To = |05 (0) £ (105 (0)) — BBl ()5 (124 (0) ) 2

To estimate J; in @IZ), first we try to find the bound of
@ (v)|| Loe, |4 (v)]| Lo . It follows from (@A) and (@H) that

[@° ()]l = @) < (1 +60)|v]m: < (1+6to)||v]me, T < to.
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Hence by Sobolev embedding, we have
12 ()l 2o < (1 +6to)|[v]|ar, [ P)l|lze < (14 6to)l|v]mr,  (4.13)

where c is the constant in the Sobolev inequality ||w|| e < ¢||w| g1. Next, we claim
that for y, z satisfying |y|, |z| < D, it can be established that

lyfr(yl?) — 2£5(12%)] < 4ln(e™ )y — 2], (4.14)

when ¢ is sufficiently small. It follows from ZI0) that |f<(|y|?)] < 2 + In(ne~2),
when |y| < D and e < y/n/D. Assuming, for example, 0 < |z| < |y|, and applying

@), we get
fa(yl?) = 2£502)] = [y = 2) £y + A (1) = fR =)

_ dnly — z
< (2+In(ne )|y — 2| + z%
<2(3n+1In(e™))|y — 2|

< 4ln(e Yy - 2],

when e < £ := min{y/n/D, e 3"}. The case when y = 0 or z = 0 can be handled

similarly. Recalling [@I3]), taking D = ¢(1 + 6t¢)||v| g1, we obtain, when € < e :=
Vn 73n}

i T ©

Ji < 4In(e™Y)[0(v) — Bl (0)]| 12 < 4In(e W2 O(0)l|: < 61n(e )] i,
(4.15)
where we have used the estimate
lo = %4 (@) 22 < V2 |lw] 1, (4.16)
as in Ref. 4] instead of the estimate from Ref. [13]
lor = @Y (@)l e < 2wl g2,

which in our case yields an extra 1/¢ factor in the error estimate.
To estimate Jo, we first claim that

195 (0) £ (125 () *) [ 1 < 61n(e™) (1 + 3to) [[v]| 1, (4.17)
when € < g1 and t < ty. Recalling that
1 pE 2

O5(0) £ (125 (0)[*) = vy (o)1),
and | f2(Jv[?)| < 3In(e™!), when & < ey, this implies

(@5 () £ (125 ()2 < 3In(e™)]v]| 2.
Noticing that

0o [0 (0) f (195 (0))] = e~ 1D, £ (Jo]?)
+ (@ =t (J0) () (1) (v*Tz + [v|*vs)],
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which together with ([23]) yields
102127 (0) £ (125 (0)[*)]] < [6+ 3In(e™") (1 + 6t0)][ve| < 61n(e™") (1 + 3to)|val,
which immediately gives (£I7). Applying [EI0) again entails
Jo < V2 |(@5(0)) (195 (0) )l < 9In(e™")(1 + 3to)VE[vlla,  (4.18)
for e < &7 and t < tp. Combining ([EI2), (AI5) and EIF), we get
%Hgt(v)\lm < An||EF (V)| 2 + 15(1 + 2t0) In(e ™) VE|[v]| a1

Invoking Gronwall’s inequality, we have
IET (W) ]|z < e™T[IE% (V)| 2 + 15(1 + 270) In(e™ ) [|v]| a2 / V/sds]
0

< 30(1 + 270)e*™ |Jv]| g2 In(e 1) r3/2
< C(n,70)|[v]| 2 In(e ™) r3/2,

when 7 < 79 and € < g := min{%,e_?’"} depending on 19, n and M =

|u¥]| o< (j0,77;E1), Which completes the proof for (EI0).
Next, we infer the stability analysis for the operator ®¢:

@7 (v) — @7 (w)||2 < (14 4n7)||v — w2, for v,we L*(Q).  (4.19)

Noticing that ®7 is a linear isometry on H*(Q2), [@0) gives (LI9) directly. Thus
the error (@3] can be established by combining the local error ([I0]), the stability
property ([@I9) and a standard argument 213

lu* = u ()| 2
= @7 (uF ) = U7 (uF (b1 ]| 2
< @7 (@) = 7w (te-1)) | 2 + |7 (u (tp—1)) — T (u (th-1))| 2
< (L4 dn7)[[usF ! = w(tk-1) | 22 + C(n, 70) In(e™ )72 |us (b1 || 10
<(1+ 47”LT)||uE’k_1 —u(tg—1)| L2z + MC(n, 1) ln(€_1)73/2
< (1 4+4n7)?[u "% — uf (te—2) |2 + MC(n, 70) In(e™")7/2[1 + (1 + 4n7)]

k—1 ‘
< (14 4n7)*[|us0 — ug| 2 + MC(n,70) In(e~)7%/2 > (1 + 4nt)’
j=0

< C(ny70,T, M) In(e~ )72,

which completes the proof. O
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Remark 4.1. As established in Theorem Bl for an arbitrarily large fixed T > 0,
we have u® € L>([0,T]; H(2)) as soon as ug € H'(2) when € is bounded. More
specifically,

M = |[u|| g qo,rpsm9) < C(n, AT [luollgs), 5= 1,2,

for a constant C' independent of e. When Q = R? we require in addition uy € L?
for some 0 < o < 1 and C depends additionally on |[lug| zz. Hence the constant in
(@3N as well as (£22) in Theorem L2 is independent of .

Remark 4.2. By applying similar arguments as in Ref. 4 for d = 2,3, the
error estimate (@) can be established under a more restrictive condition u® €
L>([0,T]; H*(£2)), in which case gy depends on n and |[uf||e(01,n2()), and
[|®% (v)| 72 has to be further investigated due to the Sobolev inequality H?(Q2) —
L>°(Q). For details, we refer to Ref. [l

4.3. Error estimates for &7 = ®LP7,

We consider another LTSP
Skt = @T(us’k) = @g(@;(uf”“)), E>0; v =uwg, 7€ (0,70].  (4.20)
In the same fashion as above, we have

[ us* i < €957 ug| 1, k> 0. (4.21)

22 = uollze,  flus*

Theorem 4.2. Let T > 0. Assume that the solution of [B2) satisfies u® €
L*([0,T]; H*(Q)). Then there exists ¢g > 0 depending on n, 70 and M =
l|u|| o< ([0, 7; 7 (2)) such that when & < eo and kT <T', we have

.
[usF —uf ()| 2 < C(n, 70, T, HUEHLOQ([O,T];Hz(Q)))ga (4.22)
where C(-,-,-,-) is independent of .

Proof. First, we prove the local error estimate: for vg € H*((2),
72
17 (00) = @7 (w0) |12 < Cln ol ) =, e <5, (4.23)
where 7 = ®LP7, U7 (vy) is the exact flow of (B2)) with initial data vy and C(-, «)
is increasing with respect to o and & depends on n and |lvo|| 2. We start from the
Duhamel formula for v(t) = ¥t(vg):

t
U (vg) = ePuvg + / e =2 B(y(s))ds. (4.24)
0

Recall

B(v(s)) :B(eiSAvo)Jr/Os dB(e'* "% 0(y)) [TV Bu(y))ldy,  (4.25)
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which is the variation-of-constants formula

B(g(s)) — B(9(0)) = /OS dB(g(y))lg' W)y, gly) = "2 u(y).
Here dB(-)[-] is the Gateaux derivative:

dB(wy)[ws] = 512% B(w; + 5w52) — B(wy)

= —iwa f; (Jw1*) — w1 () (Jwi [*) w1 @z + Wrws).  (4.26)
Plugging ([@27]) into {@24]) with ¢t = 7, we get
\I/T(’Uo) _ ei‘rA,UO +/ ei(rfs)AB(eisA,UO)ds_’_el’
0
where
er = / / 7= IAGB (DA () [V B(o(y))]dyds.
o Jo
On the other hand, for the Lie splitting ®7(vg) = ®PEP7 (vo), applying the first-
order Taylor expansion
1
Pp(w) =w+7B(w) + 72/ (1= s)dB(®F (w))[B(®F (w))]ds,
0

for w = @7 (vg) = €™ 2vy, we get

D7 (vg) = PRD7 (vo) = e Pvg + TB(em P ug) + e,

with
er =7 /01(1 — S)AB(RE (B0 [B@F (¢ v0))]ds.
Thus
U (vg) — @7 (vo) = €1 — ez + e3,
where

€3 = / TR B (e B yg)ds — TB(e ).
0

Noticing that e3 is the quadrature error of the rectangle rule approximating the
integral on [0, 7] of the function g(s) = e("=9)2 B(e***y), this implies

€3 =—T /0 0g'(07)do,
where ¢'(s) = —e'(""9)A[A, B](e"**vy), with
[A, B](w) = dA(w)[Bw] — dB(w)[Aw] = iA(Bw) — dB(w)[Aw]
= () (Jwl*) (2wi® + dwlw, |* + 3w Tzs — [w[*wes)

+w(f5)" (Jw]?)(w, @ + wi;)?,
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by recalling ([@26]) and

2
14, BJ(w)] < —————|wa* + 12|wgal,

which implies
12n + 6n2
I[A, Bl(w)]|z> < fllwz\lﬂ + 12[|wgel| L2

12n + 6n2
————lwel|LelJwz |l 2 + 12| wee || L2

12¢en?
< 12fjwl| gz +

[[wll2

(4.27)

where we have used n > 2 and the Sobolev embedding ||w||p~ < ¢||w|| g for d = 1.

This yields that for any s € [0, 1],
lg"(s)llz2 = I[A, Bl(e"*2v0) 22 < 12[voll = (1 + en®|lvo ]| = /<),

which immediately gives

1
lesl|z2 < 72/ 9" (07)l| L2d6 < 12[vo|sr2 (1 + en®|lvo g2 /)72
0

Next, we estimate e; and eq. In view of (Z9), we have
ldB(w1)[ws]l|z2 < (8 + In(ne™?))[[ws] Lz,
when ¢ < £:= \/n/||w1|| L. Thus one gets

(4.28)

ldB(e"* =% 0(y)) [’ 2 B(u(y))]l|2 < (8 + In(ne™?)) [~ B(u(y)) |12

= (8 +In(ne™))[IB(v(y))l| 2,

when ¢ < &1 = /n/||e?"92(y)| L~. By Sobolev embedding,
=20 ()1 < el B0 ()| = el| W (vo)l|

Nait:

maxye(o,7] ¥ (vo)[l ;1

leillzz < /OT /S ldB ("% 0(y))[e"* ™2 B(o(y))]|| L2 dyds

< (8+1In(n / / I1B(v(y))|| L2dyds

< (8 + In(ne™?))r” orax luy)fu(lvoly )1z

thus when € < g9 := we have

< (8 + In(ne?))?7? qmax [lo(y)llze

= (8 4+ In(ne2))?||vo|| 272.

(4.29)

(4.30)
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Similarly, by recalling
125 (™ vo)|[Loe = [le™vo |l Lo < eflvoll

when ¢ < e3 := /n/(c|vo|lg1),

1
leallze < (8+1n(ne*2))72/0 1B (672 00)) | 2ds

1
< (8 +In(n=2)r® [ 8500 pads
0

= (8 +In(ne=2))?|jvol| 27> (4.31)
Combining (£28)), @30) and (£31]), when ¢ < &y = min{eg, 3} = €2, we have

197 (v0) — @7 (wo)ll 2 < 7*[lvoll 2 [01 +c2In(ne™?) + es(In(ne~?))?

12¢n?
+

|vo||Hz]

cr Cynl'/? 12en?
< ol | L+

l[voll 72

7_2
< Cl, loolli) =

where we have employed the inequalities In(z) < Cz'/? and In(z) < Cx'/* for
x € [1,00). Hence [@23)) is established.
Similarly the stability can be yielded by (@6):
[@7(v) = @7 (w)([L2 < (1 4 4nT)[[ @] (v —w)| L2 = (1 +4n7)|lv — w]|L2,
(4.32)

N

for v,w € L?(Q2). Denote g¢g = Talooe ot then by applying similar arguments
Lo ([0, T);H

in the proof of Theorem F1] we can get the error estimate ([A.22). m|

Remark 4.3. For d = 2,3, the error estimate ([{L22) can be established with &
depending on n, 7o and ||uF|| (0,7, m2(x)) by noticing that H?(2) — L*(Q2) and
H?(Q) — WhH4(Q) for d = 2,3.

Remark 4.4 (Strang splitting). When considering a Strang splitting,
uh = oA @ (@ 2w h)), or wtt = @ P(@p @] P (), (4.33)

by applying similar but more intricate arguments as above, we can prove the error

bound
2

-
[uF —uf ()| L2 < C(n,y 70, T, ||u|| oo 0,17 14 (2))) =

under the assumption that u® € L°°([0, T]; H4(9)).
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Remark 4.5. In view of Theorems Bl Tl and rely on a regularity that we
know is available. On the other hand, the regularity assumed in the above remark
on Strang splitting is unclear in general, in the sense that we don’t know how to
bound uf in L>([0,T]; H*(2)).

5. Numerical Results

In this section, we first test the convergence rate of the local energy regularized
model (32) and compare it with the other two (L6l and (7). We then test the order
of accuracy of the regularized LTSP schemes (@) and (Z20) and Strang splitting
(STSP) scheme [33)). To simplify the presentation, we unify the regularized models

(C0), D) and B2) as follows:
{iatuf(w,t) + Al (2, 1) = M () o, (Jus (2, 1)]?), z€Q, t>0,

reg

us(x,0) = up(x), z e Q.

(5.1)

With the regularized nonlinearity fg.,(p) being chosen as fe, F¢ and fe, &0 cor-
responds to the regularized models (L), (L7) and B2), respectively. In practical
computation, we impose periodic boundary condition on 2 and employ the stan-
dard Fourier pseudo-spectral method®™® for spatial discretization. The details are
omitted here for brevity.

Hereafter, unless specified, we consider the following Gaussian initial data in

d-dimension (d = 1,2), i.e. up(x) is chosen as
up(w) = by et g e RY, (5.2)
In this case, the LogSE (T) admits the moving Gausson solution
w(x, t) = by el @v(aatlvtale—2wi®  p cpd 4> (5.3)

with ag = —\ (d —In|bg|?). In this paper, we let A = —1, by = 1/v/—Ax and choose
Q = [-16,16]¢. Moreover, we fix v = 1 and v = (1,1)7 as well as take the mesh
size as h = 1/64 and h, = h, = 1/16 for d = 1 and 2, respectively. To quantify the
numerical errors, we define the following error functions:

& (tk) == p(-, tr) — p° (o tr) = |ul-, te)|* — [u (-, 1) %,
e (t) == ulytr) —u (-, tr), & (t) = u(-, ty) — u™F, (5.4)

e (tr) == u(-,tg) — uk, €% = |E(ug) — B, (ug)]-

reg

Here, v and u® are the exact solutions of the LogSE (1)) and RLogSE (G),
respectively, while u** is the numerical solution of the RLogSE (5.I)) obtained
by LTSP [@7) (or (@20)) or STSP ([@33). The “exact” solution u® is obtained
numerically by STSP ([@33) with a very small time step, e.g. 7 = 1075. The energy
is obtained by the trapezoidal rule for approximating the integrals in the energy

T4, GBI, BI) and B.I0).
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107" f

107 10° & 10 107 107 10° & 10°

J 10710,
107 10° & 10 107" 107 10°% & 10 107"

Fig 6. (Color online) Convergence of the RLogSE (5)) with various regularized nonlinearities
Fog to the LogSE (L)), i.e. the error [|€(t)|| 1 and [[€5(t)|1 versus the regularization parameter
catt =3 for d=1 (upper) and t = 2 for d = 2 (lower)

5.1. Convergence rate of the regularized model

Here, we consider the error between the solutions of the RLogSE (G and the
LogSE (). For various regularized models (i.e. different choices of regularized
nonlinearity f, in Eq. (1), Fig. B shows [[é°(¢)||z: and [[€5(¢)[|1 at t = 3 and
t = 2, respectively, for d = 1 and 2, while Fig. [ depicts e3, versus €. The results
are similar when ¢°(t) is measured by L2- or L®-norm.

From these figures and additional similar numerical results not shown here for
brevity, we could clearly see: (i) The solution of the RLogSE (5.]) converges linearly
to that of the LogSE (ILT) in terms of ¢ for all the three types of regularized models.
Moreover, the regularized energy E° converges linearly to the original energy F in
terms of e, while E* and E: (for any n > 2) converges quadratically. These results
confirm the theoretical results from Secs. and (ii) In L'-norm, the density
p° of the solution of the RLogSE with regularized nonlinearity fs converges linearly
to that of the LogSE (LT)) in terms of €, while the convergence rate is not clear
for those of RLogSE with other regularized nonlinearities. Generally, for fixed e,
the errors of the densities measured in L!'-norms are smaller than those of wave
functions (measured in L2, H! or L*-norm). (iii) For any fixed £ > O the proposed
LER (i.e. fr, = f) outperforms the other two (i.e. 5, = f¢ and reg = = f°) in the
sense that its corresponding errors in wave function and total energy are smaller.
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10°F

107

-4 L
108 10
W 9

-8 L
10 10
10—13, ‘ ‘ ‘ ‘ ‘ 10—12_ ‘ ‘ ‘ ‘ |

10° 107 108 € 102 107 10° 107 10° € 10? 10™

Fig. 7. (Color online) Convergence of the RLogSE (G.I)) with various regularized nonlinearities
5e to the LogSE (II): the energy error e5,(t) E4) at t = 3 for d =1 (left) and t = 2 for d = 2

reg

(right).

The larger the order (i.e. n) of the energy-regularization is chosen, the smaller the
difference between the solutions of the ERLogSE ([3.2)) and LogSE is obtained.

5.2. Convergence rate of the time-splitting spectral method

Here, we investigate the model RLogSE (&.Il) with fr, = f5, i.e. the ERLogSE
(B2). We will test the convergence rate of type-1 LTSP (7)) and type-2 LTSP
(#20) and the STSP (#33) to the ERLogSE ([B.2) or the LogSE () in terms of
the time step 7 for fixed e € (0,1). Figure B shows the errors ||e(3)|| g1 versus time
step 7 for f§ and f§. In addition, Table [l displays Hés(3)|| versus ¢ and 7 for f5.
From Fig. B Table[I and additional similar results not shown here for brevity,
we can observe that: (i) In H! norm, for any fixed ¢ € (0,1) and n > 2, the

LTSP scheme converges linearly while the STSP scheme converges quadratically

e _ fe e _ fe
0 reg f2 0 reg f4
10 | | | ! 10 !
T T o
e
e
3| e-0-9° 3 o v
10 i 10 e -d
- o - o
= = /"-’ ,P //
g *,—;i" % e
= [ —Lie-typel, e = 0.1 == /ﬁ—Lie-typel, e=0.1
106/ —--Lietypel, e =0.1/42 10| oA me-Lietypel, e = 0.1/42]
Lie-type2, e = 0.1 ,of/" f Lie-type2, e = 0.1
------ Lie-type2, e = 0.1/4!2 2* T |esenLie-type2, e = 0.1/412
-0 Strang, ¢ = 0.1 A -o Strang, ¢ = 0.1
10_9 L -+-Strang, ¢ = 0.1/4° || 10_9 L / -+-Strang, e = 0.1/4° ||
e Strang, € = 0.1/4'2 e Strang, ¢ = 0.1/412
107 107 10° 7 107 107 10° 107 10° 7 10?7 10

Fig. 8. (Color online) Convergence of the type-1 LTSP (7)) and type-2 LTSP ([@20) as well as
the STSP @33) to the ERLogSE ([B2) with regularized nonlinearity f5 (left) and f§ (right), i.e.
errors ||e%(3)|| g, versus T for various e.
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Table 1.  Convergence of the STSP ([33) (via solving the ERLogSE 2] with f5) to the LogSE
D), i.e. |€°(3)]|| for different € and 7.

T=0.1 /2 7/22 /23 /2% /2% 7/28 /27 /28 7/2°
e =0.025 7.98E-3 2.13E-3 8.86E-4 7.28E-4 7.14E-4 7.12E-4 7.12E-4 7.12E-4 7.12E-4 7.12E-4
rate — 1.91 1.27 0.28 0.03 0.00 0.00 0.00 0.00 0.00
c/4 7.77E-3 1.96E-3 5.02E-4 1.67E-4 1.12E-4 1.08B-4 1.08E-4 1.08E-4 1.08E-4 1.08E-4
rate — 1.99 1.97 1.59 0.57 0.06 0.01 0.00 0.00 0.00
c/4? 7.76E-3 1.95E-3 4.88E-4 1.25E-4 3.81E-5 2.40BE-5 2.28E-5 2.27E-5 2.27E-5 2.27E-5
rate — 2.00 2.00 1.97 1.71 0.67 0.07 0.01 0.00 0.00
e/43 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.08E-5 8.95E-6 5.09E-6 4.74E-6 4.72E-6 4.71E-6
rate — 2.00 2.00 2.00 1.98 1.78 0.82 0.10 0.01 0.00
e/at 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.66E-6 2.092E-6 9.93E-7 8.80E-7 8.72E-7
rate — 2.00 2.00 2.00 2.00 1.99 1.87 1.08 0.18 0.01
c/4° 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.92E-6 5.26E-7 2.54E-7 2.27E-7
rate — 2.00 2.00 2.00 2.00 2.00 1.99 1.87 1.05 0.16
/46 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.90E-6 4.78E-7 1.27E-7 5.36E-8
rate — 2.00 2.00 2.00 2.00 2.00 2.00 1.99 1.91 1.25
e/47 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.90E-6 4.76E-7 1.19E-7 3.13E-8
rate — 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.93
c/48 7.76E-3 1.95E-3 4.87E-4 1.22E-4 3.04E-5 7.61E-6 1.90E-6 4.76E-7 1.19E-7 2.98E-8
rate — 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

when e < gg for some g9 > 0. (ii) For any f¢ with n > 2, the STSP converges
quadratically to the LogSE (LI only when ¢ is sufficiently small, i.e. ¢ < 72 (cf.
each row in the lower triangle below the diagonal in bold letter in Table [I). (iii)
When 7 is sufficiently small, i.e. 72 < e, the ERLogSE ([32)) converges linearly at
O(e) to the LogSE (L)) (cf. each column in the upper triangle above the diagonal
in bold letter in Table[]). (iv) The numerical results are similar for other f¢ with
n > 3 and when the errors are measured in L>- and L?-norm, which confirm the
theoretical conclusion in Theorem and Remark (L4

5.3. Application for interaction of 2D Gaussons

In this section, we apply the STSP method to investigate the interaction of Gaussons
in dimension 2. To this end, we fix n = 4, ¢ = 107!2, 7 = 0.001, hy, = hy, = 1/16,
Q = [-16,16]? for Cases 1 and 2 while Q) = [—48,48]? for Case 3. The initial data
is chosen as

g 2

. A 02 ; A
Uo(m) _ blezm-v1+§\m—ml| + erzm-v2+5|m—m (55)

where b;, v; and w? (j = 1,2) are real constant vectors, i.e. the initial data is
the sum of two Gaussons (5.3) with velocity v; and initial location x. Here, we
consider the following cases:

(i) by = by = 4%/5’ vy =v2 = (0,0)7, 2§ = —x§ = (-2,0)T;
(ii) by = 1.5by = %ﬁ vy = (—0.15,0)T, va = 2§ = (0,0)T, 9 = (5,0)T;
(111) bl = b2 = 4%/;7 v = (OvO)Tv V2 = (07085)T7 l’? = —ZB(Z) = (_270)T'

Figure [ shows the contour plots of |uf(x,y,t)|? at different time as well as the

evolution of \/|u(x,0,t)| for Cases (i) and (ii). While Fig. [I0 illustrates that for
Case (iii). From these figures we clearly see that: (1) Even for two static Gaussons,
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t=7.2

t =0 0.56 1.04 0.56
0 0 0

t =0 058 il 0.58 ) 0.58
0 0 o

Fig. 9. (Color online) Plots of |u®(z,y,t)|? at different times (first three column) and contour
plot of |uf(x,0,t)|? (last column) for Case (i) (Upper) in region [—6,6]% and Case (ii) (Lower) in
region [—13,7] x [—6, 6].

=0 0.58 = 0.58 0.58

- ﬂ h - ﬂ h h
0 0 0

t=10 0.58 =y 0.58 0.58

- ﬂ h - ﬂ h h
0 0 0

£ =20 0.58 =k 0.58 0.58 0.58

- ﬂ h - ﬂ h - -
0 0 0 0

Fig. 10. (Color online) Plots of |u(z,y,t)|? at different times for Case (iii) in region [—9,9] x
[—5,32].

if they stay close enough, they will contact and undergo attractive interactions.
They will collide and stick together shortly then separate again. The Gaussons will
swing like a pendulum and small solitary waves are emitted outward during the
interaction (cf. Fig. [@). This dynamics phenomena is similar to that in 1D case®
(2) For Case (ii), the two Gaussons also undergo attractive interactions. The slowly
moving Gausson will drag its nearby static Gausson to move in the same direction
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(cf. Fig. [, which is also similar to that in 1D case (3) For two Gaussons (one
static and the other moving) staying close enough, if the moving Gausson move
perpendicular to the line connecting the two Gaussons, the static Gausson will be
dragged to move and the direction of the moving Gausson will be altered. The two
Gaussons will rotate with each other and gradually drift away, which is similar to
the dynamics of a vortex pair in the cubic Schrédinger equation ¥

6. Conclusion

We proposed a new systematic LER approach to overcome the singularity of the
nonlinearity in the LogSE. With a small regularized parameter 0 < ¢ < 1, in
contrast to the existing ones that directly regularize the logarithmic nonlinearity,
we regularized locally the interaction energy density in the energy functional of
the LogSE. The Hamiltonian flow of the new regularized energy then yields an
ERLogSE. Linear and quadratic convergence in terms of ¢ was established between
the solutions, and between the conserved total energy of ERLogSE and LogSE,
respectively. Then we presented and analyzed time-splitting schemes to solve the
ERLogSE. The classical first order of convergence was obtained both theoretically
and numerically for the LTSP scheme. Numerical results suggest that the error
bounds of splitting schemes to the LogSE clearly depend on the time step 7 and
mesh size h as well as the small regularized parameter €. Our numerical results
confirm the error bounds and indicate that the ERLogSE model outperforms the
other existing ones in accuracy.
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