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UNIFORM ERROR BOUNDS OF TIME-SPLITTING

SPECTRAL METHODS FOR THE LONG-TIME DYNAMICS

OF THE NONLINEAR KLEIN–GORDON EQUATION

WITH WEAK NONLINEARITY

WEIZHU BAO, YUE FENG, AND CHUNMEI SU

Abstract. We establish uniform error bounds of time-splitting Fourier pseu-
dospectral (TSFP) methods for the nonlinear Klein–Gordon equation (NKGE)
with weak power-type nonlinearity and O(1) initial data, while the nonlinear-
ity strength is characterized by εp with a constant p ∈ N+ and a dimensionless
parameter ε ∈ (0, 1], for the long-time dynamics up to the time at O(ε−β)
with 0 ≤ β ≤ p. In fact, when 0 < ε � 1, the problem is equivalent to the
long-time dynamics of NKGE with small initial data and O(1) nonlinearity
strength, while the amplitude of the initial data (and the solution) is at O(ε).
By reformulating the NKGE into a relativistic nonlinear Schrödinger equation,
we adapt the TSFP method to discretize it numerically. By using the method
of mathematical induction to bound the numerical solution, we prove uniform
error bounds at O(hm + εp−βτ2) of the TSFP method with h mesh size, τ
time step and m ≥ 2 depending on the regularity of the solution. The error
bounds are uniformly accurate for the long-time simulation up to the time at

O(ε−β) and uniformly valid for ε ∈ (0, 1]. Especially, the error bounds are

uniformly at the second-order rate for the large time step τ = O(ε−(p−β)/2)
in the parameter regime 0 ≤ β < p. Numerical results are reported to confirm
our error bounds in the long-time regime. Finally, the TSFP method and its
error bounds are extended to a highly oscillatory complex NKGE which prop-
agates waves with wavelength at O(1) in space and O(εβ) in time and wave
velocity at O(ε−β).

1. Introduction

The nonlinear Klein–Gordon equation (NKGE) is widely used to model nonlinear
phenomena in many fields of science and engineering. It plays a fundamental role in
quantum electrodynamics, particle and/or plasma physics to describe the motion of
spinless particles within the framework of quantum mechanics and Einstein’s special
relativity [33, 40, 52, 57]. The NKGE with power-type nonlinearity has attracted
much attention in investigating the dislocation of crystals, nonlinear optics and
quantum field theory [42, 60]. In particular, the NKGE with cubic nonlinearity is

Received by the editor October 9, 2020, and, in revised form, May 14, 2021, and August 11,
2021.

2020 Mathematics Subject Classification. Primary 35L70, 65M12, 65M15, 65M70, 81-08.
Key words and phrases. Nonlinear Klein–Gordon equation, long-time dynamics, time-splitting

spectral method, uniform error bounds, weak nonlinearity, relativistic nonlinear Schrödinger
equation.

This work was partially supported by the Ministry of Education of Singapore grant R-146-
000-290-114 (the first and second authors) and Alexander von Humboldt Foundation (the third
author).

The second author is the corresponding author.

c©2021 American Mathematical Society
811

https://www.ams.org/mcom/
https://doi.org/10.1090/mcom/3694


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

812 WEIZHU BAO ET AL.

called ϕ4 model to describe the relativistic Bose gas, the dynamics of Copper pairs
in superconductors as well as displacive and order-disorder transitions in solids
[28, 39]; and the sine-Gordon and sinh-Gordon equations arise in the propagation
of fluxons in Josephon junctions between two superconductors [60].

In this paper, we consider the following NKGE with power-type nonlinearity on
the unit torus Td (d = 1, 2, 3) as

(1.1)

{
∂ttu(x, t)−Δu(x, t) + u(x, t) + εpup+1(x, t) = 0, x ∈ Td, t > 0,

u(x, 0) = u0(x) = O(1), ∂tu(x, 0) = u1(x) = O(1), x ∈ Td.

Here, t is time, x is the spatial coordinate, u := u(x, t) is a real-valued scalar
field, p ∈ N+ is the exponent of the power-type nonlinearity, ε ∈ (0, 1] is a dimen-
sionless parameter used to characterize the nonlinearity strength, and the initial
datum u0(x) and u1(x) are two given real-valued functions which are independent
of the parameter ε. Thus formally, the amplitude of the solution u is at O(1), the
wavelength in space and time is also at O(1), and the wave velocity is at O(1) too.
In addition, if u(·, t) ∈ H1(Td) and ∂tu(·, t) ∈ L2(Td), the NKGE (1.1) is time
symmetric or time reversible and conserves the energy [5, 6, 26] as

E(t) := E(u(·, t))

=

∫
Td

[
|∂tu(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + 2εp

p+ 2
u(x, t)p+2

]
dx

≡
∫
Td

[
|u1(x)|2 + |∇u0(x)|2 + |u0(x)|2 +

2εp

p+ 2
u0(x)

p+2

]
dx

= E(0) = O(1), t ≥ 0.

In fact, when 0 < ε � 1, by introducing w(x, t) = εu(x, t), we can reformulate the
NKGE (1.1) with weak nonlinearity and O(1) initial data into the following NKGE
with small initial data and O(1) nonlinearity strength:

(1.2)

{
∂ttw(x, t)−Δw(x, t) + w(x, t) + wp+1(x, t) = 0, x ∈ Td, t > 0,

w(x, 0) = εu0(x) = O(ε), ∂tw(x, 0) = εu1(x) = O(ε), x ∈ Td.

Noticing that the amplitude of the initial data in (1.2) is at O(ε), formally we
can get the amplitude of the solution w of (1.2) is also at O(ε). Of course, the
wavelength of (1.2) in space and time is at O(1), and the wave velocity of (1.2)
is at O(1). Similarly, the NKGE (1.2) is time symmetric or time reversible and
conserves the energy [5, 6, 26] as

Ẽ(t) := Ẽ(w(·, t))

=

∫
Td

[
|∂tw(x, t)|2 + |∇w(x, t)|2 + |w(x, t)|2 + 2

p+ 2
w(x, t)p+2

]
dx

=

∫
Td

[
|εu1(x)|2 + |ε∇u0(x)|2 + |εu0(x)|2 +

2εp+2

p+ 2
u0(x)

p+2

]
dx

= ε2
∫
Td

[
|u1(x)|2 + |∇u0(x)|2 + |u0(x)|2 +

2εp

p+ 2
u0(x)

p+2

]
dx

= ε2E(0) = O(ε2), t ≥ 0.

Thus, the long-time dynamics of the NKGE (1.2) with small initial data and O(1)
nonlinearity strength is equivalent to the long-time dynamics of the NKGE (1.1)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

UNIFORM ERROR BOUNDS OF TSFP FOR NKGE 813

with weak nonlinearity and O(1) initial data. In both cases, the solutions propagate
waves with wavelength in space and time at O(1) and the wave velocity at O(1).

There are two different dynamical problems related to the time evolution of the
NKGE (1.1) (or (1.2)): (i) when ε = ε0 (e.g., ε = 1) fixed, i.e., in the standard
nonlinearity strength regime, to study the finite time dynamics of (1.1) (or (1.2))
for t ∈ [0, T ] with T = O(1); and (ii) when 0 < ε � 1, i.e., in the weak nonlinearity
strength regime, to study the long-time dynamics of (1.1) (or (1.2)) for t ∈ [0, Tε]
with Tε = O(ε−p). Extensive mathematical and numerical studies have been done
in the literature for the finite time dynamics of (1.1) with ε = 1, i.e., in the standard
nonlinearity strength regime. Along the analytical front, for the existence of global
classical solutions, approximate and almost periodic solutions as well as asymptotic
behavior of the solution of (1.1) with ε = 1, we refer to [14,15,20,37,38,50,59] and
references therein. For the numerical aspects, different numerical methods have
been presented and analyzed in the literature, such as finite difference time domain
(FDTD) methods, spectral methods, etc. For details, we refer to [4,5,18,26,27,30]
and references therein. Recently, there are several analytical studies for the long-
time dynamics of (1.1) in the weak nonlinearity strength regime (or (1.2) with
small initial data), i.e., 0 < ε � 1 [37, 43]. According to the analytical results, the
life-span of a smooth solution to the NKGE (1.1) (or (1.2)) is at least up to the
time at O(ε−p) [23–25,29, 37, 38].

However, to the best of our knowledge, there are very few numerical analytical
results on error bounds of the numerical methods for the long-time dynamics of
(1.1) in the literature, especially the error bounds which are valid up to the time at
Tε = O(ε−p) and how the error bounds depend explicitly on the mesh size h and
time step τ as well as the small parameter ε ∈ (0, 1]. We notice that some numerical
analysis results on the long-time near-conservation (or approximate preservation)
of energy, momentum and harmonic actions have been established for some semi-
discretizations or full-discretizations of the NKGE (1.2) with small initial data
via the technique of modulated Fourier expansions [21, 22, 35], however, no error
estimate of the numerical solution itself has been given in the literature. Recently,
for the NKGE (1.1) with cubic nonlinearity (i.e., p = 2), error estimates of four
different FDTD methods were established for the long-time dynamics of the NKGE
(1.1) up to the long-time at O(ε−β) with 0 < β ≤ 2 [6,31]. Specifically, in order to
obtain ‘correct’ numerical approximations of the NKGE (1.1) (or (1.2)) up to the
long-time at O(ε−β) with 0 < β ≤ 2, the ε-scalability (or meshing strategy) of the
FDTD methods should be

(1.3) h = O(εβ/2) and τ = O(εβ/2),

which immediately suggests that the FDTD methods are under-resolution in
both space and time with respect to ε ∈ (0, 1] in terms of the resolution capacity
of the Shannon’s information theory [41, 54] – to resolve a wave one needs a few
points per wave – since the wavelength of the solution of the NKGE (1.1) (or (1.2))
in space and time is at O(1), while the mesh size h and time step τ have to be
taken at O(εβ/2) which is much smaller than O(1)! In fact, the FDTD methods
can also be regarded as over-sampling methods in the sense that the number
of points needed per wave in space and time has to be taken as O(ε−β/2) which
is much larger than O(1)! To improve this, a Gautschi-type exponential wave
integrator Fourier pseudospectral (EWI-FP) method was proposed and analyzed
in [32], where a uniform error bound was established at O(hm + ε2−βτ2) under a
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stability condition τ � h, while m ≥ 2 depends on the regularity of the solution,
for the long-time dynamics up to the time at O(ε−β) with 0 < β ≤ 2.

As we know, the time-splitting Fourier pseudospectral (TSFP) method has been
widely used to numerically solve dispersive partial differential equations (PDEs)
[1–3, 8, 26, 36, 44, 56]. In many cases, the TSFP method demonstrates much bet-
ter spatial/temporal resolution than the FDTD methods, especially when they are
used for integrating highly oscillatory PDEs, such as for the Schrödinger/nonlinear
Schrödinger equation in the semiclassical regime [7,16], for the NKGE in the nonrel-
ativistic regime [26], for the Zakharov system in the subsonic limit regime [9], for the
Dirac/nonlinear Dirac equation in the nonrelativistic regime [2, 3], etc. The main
aim of this paper is to adapt the TSFP method for discretizing the NKGE (1.1)
and establish its error bound for the long-time dynamics up to the time at O(ε−β)
with 0 ≤ β ≤ p. In order to do so, we first reformulate the NKGE (1.1) into a rela-
tivistic nonlinear Schrödinger equation (NLSE) and then apply the TSFP method
to discretize it numerically. By employing the method of mathematical induction
to bound the numerical solution, we establish an error bound at O(hm + εp−βτ2)
without any stability condition, while m ≥ 2 depends on the regularity of the so-
lution, for the long-time dynamics up to the time at O(ε−β) with 0 ≤ β ≤ p. The
error bound immediately indicates that the TSFP method is uniformly accurate
for the long-time simulation up to the time at O(ε−p) and is uniformly valid for
ε ∈ (0, 1]. Thus, the TSFP method is an optimal resolution method for the
long-time dynamics of the NKGE (1.1) up to the time at O(ε−p). Compared to
the EWI-FP method in [32], the TSFP method is superior on several aspects: (i)
the strict stability condition τ � h is removed, (ii) the error bounds are uniformly
second-order accurate for the large time step τ = O(ε−(p−β)/2) when 0 ≤ β < p,
and (iii) we observe numerically the TSFP method has an improved convergence
when 0 < ε � 1, which is not valid for the EWI-FP method (cf. Sect. 4).

The rest of the paper is organized as follows. In Sect. 2, we first reformulate
the NKGE (1.1) into a relativistic NLSE and then present the TSFP method to
discretize it numerically. In Sect. 3, we establish uniform error bounds of the TSFP
method for the long-time dynamics of the NKGE (1.1) up to time at O(ε−β) with
0 ≤ β ≤ p. Numerical results are reported in Sect. 4 to confirm the error estimates.
Extension to a highly oscillatory complex NKGE in the whole space is presented in
Sect. 5. Finally, some conclusions are drawn in Sect. 6. Throughout this paper, C
represents a generic constant which is independent of the discretization parameters
h and τ as well as the nonlinearity strength parameter ε ∈ (0, 1]. We adopt the
notation A � B to represent that there exists a generic constant C > 0 such that
|A| ≤ CB, while C is independent of h and τ as well as ε.

2. A time-splitting Fourier pseudospectral (TSFP) method

In this section, we first reformulate the NKGE (1.1) into a relativistic NLSE and
then adopt the TSFP method [1, 8, 26, 36, 44, 61] to discretize it numerically.

2.1. A relativistic nonlinear Schrödinger equation (NLSE). For simplicity
of notations, we only illustrate the approach in one dimension (1D) and all the
notations and results can be easily generalized to higher dimensions with minor
modifications. In 1D, the NKGE (1.1) with periodic boundary condition collapses
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to
(2.1)⎧⎪⎨⎪⎩

∂ttu(x, t)− ∂xxu(x, t) + u(x, t) + εpup+1(x, t) = 0, x ∈ Ω = (a, b), t > 0,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω = [a, b].

For an integer m ≥ 0, Ω = (a, b), we denote by Hm(Ω) the standard Sobolev
space with norm

(2.2) ‖z‖2m =
∑
l∈Z

(1 + |μl|2)m|ẑl|2, for z(x) =
∑
l∈Z

ẑle
iμl(x−a), μl =

2πl

b− a
,

where ẑl(l ∈ Z) are the Fourier transform coefficients of the function z(x) [3, 4].
For m = 0, the space is exactly L2(Ω) and the corresponding norm is denoted as
‖ · ‖. Furthermore, we denote by Hm

per(Ω) the subspace of Hm(Ω) which consists of
functions with derivatives of order up to m− 1 being (b− a)-periodic. We see that
the space Hm(Ω) with fractional m is also well-defined which consists of functions
with finite norm ‖ · ‖m [55].

Define the operator

(2.3) 〈∇〉 =
√
1−Δ,

through its action in the Fourier space by [30, 58]:

〈∇〉z(x) =
∑
l∈Z

√
1 + |μl|2ẑleiμl(x−a), for z(x) =

∑
l∈Z

ẑle
iμl(x−a), x ∈ [a, b].

Then we can rewrite the NKGE (2.1) as

(2.4) ∂ttu(x, t) + 〈∇〉2u(x, t) + εpup+1(x, t) = 0, x ∈ Ω, t > 0.

In addition, we introduce the operator 〈∇〉−1 as

〈∇〉−1z(x) =
∑
l∈Z

ẑl√
1 + |μl|2

eiμl(x−a), x ∈ Ω.

It is obvious that

‖〈∇〉−1z‖s = ‖z‖s−1 ≤ ‖z‖s.
Denote v(x, t) = ∂tu(x, t) and set

(2.5) ψ(x, t) = u(x, t)− i〈∇〉−1v(x, t), x ∈ [a, b], t ≥ 0.

By a short calculation, we can reformulate the NKGE (2.1) into a relativistic NLSE
in ψ := ψ(x, t) as
(2.6)⎧⎪⎪⎨⎪⎪⎩

i∂tψ(x, t) + 〈∇〉ψ(x, t) + εp〈∇〉−1f
(1
2

(
ψ + ψ

) )
(x, t) = 0, x ∈ Ω, t > 0,

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t ≥ 0,

ψ(x, 0) = ψ0(x) := u0(x)− i〈∇〉−1u1(x), x ∈ [a, b],

where f(z) = zp+1 and ψ denotes the complex conjugate of ψ. Noticing (2.5), we
can recover the solution of the NKGE (2.1) by

(2.7) u(x, t) =
1

2

(
ψ(x, t) + ψ(x, t)

)
, v(x, t) =

i

2
〈∇〉

(
ψ(x, t)− ψ(x, t)

)
.
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We remark here that the NKGE (2.1) can also be reformulated as the following
first-order (in time) PDEs:

(2.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu(x, t)− v(x, t) = 0, x ∈ (a, b), t > 0,

∂tv(x, t)− ∂xxu(x, t) + u(x, t) + εpup+1(x, t) = 0, x ∈ (a, b), t > 0,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0,

u(x, 0) = u0(x), v(x, 0) = u1(x), x ∈ [a, b].

2.2. Semi-discretization by using the second-order time-splitting. In order
to discretize the NKGE (2.1) in time by a time-splitting method, we first discretize
the relativistic NLSE (2.6) by a time-splitting method and then recover the solution
of (2.1) via (2.7). In fact, the relativistic NLSE (2.6) can be decomposed into the
following two subproblems via the time-splitting technique [44, 58]

(2.9)

⎧⎪⎨⎪⎩
i∂tψ(x, t) + 〈∇〉ψ(x, t) = 0, x ∈ (a, b), t > 0,

ψ(a, t) = ψ(b, t), ∂xψ(a, t) = ∂xψ(b, t), t ≥ 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b],

and

(2.10)

⎧⎨⎩i∂tψ(x, t) + εp〈∇〉−1f
(1
2
(ψ + ψ)

)
(x, t) = 0, x ∈ (a, b), t > 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b].

The linear equation (2.9) can be solved exactly in phase space and the associated
evolution operator is given by

(2.11) ψ(·, t) = ϕt
T (ψ0) := eit〈∇〉ψ0, t ≥ 0,

which satisfies the isometry relation

‖ϕt
T (v0)‖s = ‖v0‖s, s ≥ 0, t ∈ R.

Recalling that the nonlinear part of (2.10) is real, this implies that ∂t
(
ψ + ψ

)
(x, t)

= 0 for any fixed x ∈ [a, b]. Thus ψ + ψ is invariant in time, i.e.,

(2.12)
(
ψ + ψ

)
(x, t) ≡

(
ψ + ψ

)
(x, 0) = ψ0(x) + ψ0(x), t ≥ 0, a ≤ x ≤ b.

Plugging (2.12) into (2.10), we get

(2.13)

⎧⎨⎩i∂tψ(x, t) + εp〈∇〉−1f
(1
2
(ψ0 + ψ0)

)
(x) = 0, x ∈ [a, b], t > 0,

ψ(x, 0) = ψ0(x), x ∈ [a, b].

Thus (2.13) (or (2.10)) can be integrated exactly in time as:

(2.14) ψ(x, t) = ϕt
V (ψ0) := ψ0(x) + εpt F (ψ0(x)), t ≥ 0,

where the operator F is defined by

(2.15) F (φ) = i〈∇〉−1G(φ), G(φ) = f
(1
2
(φ+ φ)

)
.

Let τ > 0 be the time step and define tn = nτ for n = 0, 1, . . .. Denote ψ[n] :=
ψ[n](x) by the approximation of ψ(x, tn) for n ≥ 0, then a second-order semi-
discretization of the relativistic NLSE (2.6) via the Strang splitting [44] can be
given as:

(2.16) ψ[n+1] = Sτ (ψ
[n]) = ϕ

τ/2
T ◦ ϕτ

V ◦ ϕτ/2
T (ψ[n]), n = 0, 1, 2, . . . ,
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with ψ[0] = ψ0 = u0 − i〈∇〉−1u1. Noticing (2.7) and (2.16), we can get a second-
order semi-discretization of the NKGE (2.1):

(2.17) u[n] =
1

2

(
ψ[n] + ψ[n]

)
, v[n] =

i

2
〈∇〉

(
ψ[n] − ψ[n]

)
, n = 0, 1, . . . ,

where u[n] := u[n](x) and v[n] := v[n](x) are the approximations of u(x, tn) and
∂tu(x, tn) (n = 0, 1, 2, . . .), respectively.

We remark here that another way to discretize the NKGE (2.1) by a time-
splitting method, which is exactly the same discretization as the one presented
above, is to discretize the NKGE (2.8) by a time-splitting method. In fact, the
NKGE (2.8) can be decomposed into the following two subproblems via the time-
splitting technique [26]

(2.18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu(x, t)− v(x, t) = 0,

∂tv(x, t)− ∂xxu(x, t) + u(x, t) = 0, x ∈ (a, b), t > 0,

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0,

u(x, 0) = u0(x), v(x, 0) = u1(x), x ∈ [a, b],

and

(2.19)

⎧⎪⎨⎪⎩
∂tu(x, t) = 0,

∂tv(x, t) + εpup+1(x, t) = 0, x ∈ [a, b], t > 0,

u(x, 0) = u0(x), v(x, 0) = u1(x), x ∈ [a, b].

Similarly, the linear problem (2.18) can be solved exactly in phase space and the
associated evolution operator is given by

(2.20)

(
u(·, t)
v(·, t)

)
= χt

T

(
u0

u1

)
:=

(
cos(t〈∇〉)u0 + 〈∇〉−1 sin(t〈∇〉)u1

− 〈∇〉 sin(t〈∇〉)u0 + cos(t〈∇〉)u1

)
, t ≥ 0.

From (2.19), we obtain immediately that u(x, t) is invariant in time for any fixed
x ∈ [a, b], i.e.,

(2.21) u(x, t) ≡ u(x, 0) = u0(x), x ∈ [a, b].

Plugging (2.21) into (2.19), we get

(2.22)

⎧⎪⎨⎪⎩
∂tu(x, t) = 0,

∂tv(x, t) + εpup+1(x, 0) = 0, x ∈ [a, b], t > 0,

u(x, 0) = u0(x), v(x, 0) = u1(x), t ≥ 0, x ∈ [a, b].

Thus (2.22) (and (2.19)) can be integrated exactly in time as:

(2.23)

(
u(·, t)
v(·, t)

)
= χt

V

(
u0

u1

)
:=

(
u0

u1 − εptup+1
0

)
, t ≥ 0.

Let u[n] := u[n](x) and v[n] := v[n](x) be the approximations of u(x, tn) and v(x, t) =
∂tu(x, tn) (n = 0, 1, 2, . . .), respectively, which are the solutions of the NKGE (2.8)
(and (2.1)). Then a second-order semi-discretization of the NKGE (2.8) (and (2.1))
via the second-order Strang splitting [26] can be given as:

(2.24)

(
u[n+1]

v[n+1]

)
= Sτ

(
u[n]

v[n]

)
= χ

τ/2
T ◦ χτ

V ◦ χτ/2
T

(
u[n]

v[n]

)
, n = 0, 1, . . . ,
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with u[0] = u0 and v[0] = u1. In fact, it is easy to verify that (2.9), (2.10), (2.11)
and (2.14) are equivalent to (2.18), (2.19), (2.20) and (2.23), respectively. Thus it
is straightforward to get that (2.16) is equivalent to (2.24), and (2.17) is the same
as (2.24).

Remark 2.1. Another second-order semi-discretization of the relativistic NLSE (2.6)
can be given as

(2.25) ψ[n+1] = ϕ
τ/2
V ◦ ϕτ

T ◦ ϕτ/2
V (ψ[n]), n = 0, 1, 2, . . . ,

which can immediately generate a semi-discretization of the NKGE (2.1) via (2.17).
Again, it is easy to check that this discretization is the same as that of the NKGE
(2.8) (and (2.1)) by a similar second-order Strang-type time-splitting as

(2.26)

(
u[n+1]

v[n+1]

)
= χ

τ/2
V ◦ χτ

T ◦ χτ/2
V

(
u[n]

v[n]

)
, n = 0, 1, 2, . . . .

Furthermore, the above second-order time-splitting discretization of the NKGE
(2.1) is equivalent to an exponential wave integrator (EWI) via the trapezoidal
quadrature (or Deuflhard-type exponential integrator) for discretizing the NKGE
(2.1) directly (cf. [26]).

Remark 2.2. It is straightforward to design higher order semi-discretizations of the
NKGE (2.1) via the relativistic NLSE (2.6) by adopting a higher order time-spitting
method [47], e.g., the fourth-order partitioned Runge-Kutta time-splitting method
[8].

2.3. Full-discretization by the Fourier pseudospectral method. Let N be
an even positive integer and define the spatial mesh size h = (b − a)/N , then the
grid points are chosen as

(2.27) xj := a+ jh, j ∈ T 0
N = {j | j = 0, 1, . . . , N}.

Denote XN := {z = (z0, z1, . . . , zN )T ∈ RN+1 | z0 = zN} with the l2-norm and
l∞-norm in XN given as

(2.28) ‖z‖2l2 = h
N−1∑
j=0

|zj |2, ‖z‖l∞ = max
0≤j≤N−1

|zj |, z ∈ XN .

Define Cper(Ω) = {z ∈ C(Ω) | z(a) = z(b)} and

YN :=span
{
eiμl(x−a), x∈Ω, l∈TN

}
, TN =

{
l | l=−N

2
,−N

2
+ 1, . . . ,

N

2
− 1

}
.

For any z(x) ∈ Cper(Ω) and a vector z ∈ XN , let PN : L2(Ω) → YN be the
standard L2-projection operator onto YN , IN : Cper(Ω) → YN or IN : XN → YN

be the trigonometric interpolation operator [55], i.e.,

(2.29) (PNz)(x) =
∑
l∈TN

ẑle
iμl(x−a), (INz)(x) =

∑
l∈TN

z̃le
iμl(x−a), x ∈ Ω,

where

(2.30) ẑl =
1

b− a

∫ b

a

z(x)e−iμl(x−a)dx, z̃l =
1

N

N−1∑
j=0

zje
−iμl(xj−a), l ∈ TN ,

with zj interpreted as z(xj) when involved.
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Let ψn
j be the numerical approximation of ψ(xj , tn) for j ∈ T 0

N and n ≥ 0 and

denote ψn = (ψn
0 , ψ

n
1 , . . . , ψ

n
N )T ∈ CN+1 for n = 0, 1, . . .. Then a time-splitting

Fourier pseudospectral (TSFP) method for discretizing the relativistic NLSE (2.6)
via (2.16) with a Fourier pseudospectral discretization in space can be given as

ψ
(n,1)
j =

∑
l∈TN

ei
τζl
2 (̃ψn)l e

iμl(xj−a),

ψ
(n,2)
j = ψ

(n,1)
j + εpτ Fn

j , Fn
j = i

∑
l∈TN

1

ζl
˜(

G(ψ(n,1))
)
l
eiμl(xj−a),

ψn+1
j =

∑
l∈TN

ei
τζl
2 ˜(ψ(n,2)

)
l
eiμl(xj−a), j ∈ T 0

N , n = 0, 1, . . . ,

(2.31)

where ζl =
√
1 + μ2

l for l ∈ TN , ψ(n,k) = (ψ
(n,k)
0 , ψ

(n,k)
1 , . . ., ψ

(n,k)
N )T ∈ CN+1 for

k = 1, 2, G(ψ(n,1)) := (G(ψ
(n,1)
0 ), G(ψ

(n,1)
2 ), . . . , G(ψ

(n,1)
N ))T ∈ RN+1 and

ψ0
j = u0(xj)− i

∑
l∈TN

(̃u1)l√
1 + |μl|2

eiμl(xj−a), j ∈ T 0
N .

Let un
j and vnj be the approximations of u(xj , tn) and v(xj , tn), respectively,

for j ∈ T 0
N and n ≥ 0, and denote un = (un

0 , u
n
1 , . . . , u

n
N )T ∈ RN+1 and vn =

(vn0 , v
n
1 , . . . , v

n
N )T ∈ RN+1 for n = 0, 1, . . .. Combining (2.31) and (2.17), we can

obtain a full-discretization of the NKGE (2.1) by the TSFP method as

un+1
j =

1

2

(
ψn+1
j + ψn+1

j

)
,

vn+1
j =

i

2

∑
l∈TN

ζl
[
˜(ψn+1)l −

˜(ψn+1)l
]
eiμl(xj−a),

j ∈ T 0
N , n ≥ 0,(2.32)

with

u0
j = u0(xj), v0j = u1(xj), j ∈ T 0

N .

Specifically, plugging (2.31) into (2.32) or discretizing (2.24) directly in space by
the Fourier pseudospectral method, we get a full-discretization of the NKGE (2.1)
by the TSFP method (in explicit formulation in the original variable u) as

u
(n,1)
j = Lu

(τ
2
, un, vn

)
j
, v

(n,1)
j = Lv

(τ
2
, un, vn

)
j
,

u
(n,2)
j = u

(n,1)
j , v

(n,2)
j = v

(n,1)
j − τεp

(
u
(n,1)
j

)p+1
,

un+1
j = Lu

(τ
2
, u(n,2), v(n,2)

)
j
, vn+1

j = Lv

(τ
2
, u(n,2), v(n,2)

)
j
,

(2.33)

where

Lu (τ, u, v)j =
∑
l∈TN

[
cos(τζl)ũl + ζ−1

l sin(τζl)ṽl
]
eiμl(xj−a),

Lv (τ, u, v)j =
∑
l∈TN

[−ζl sin(τζl)ũl + cos(τζl)ṽl] e
iμl(xj−a),

j ∈ T 0
N .(2.34)

The TSFP method (2.33) (or (2.32) with (2.31)) for the NKGE (2.1) is explicit,
time symmetric and easy to be extended to higher dimensions. The memory cost of
the TSFP method is O(N) and the computational cost per time step is O(N lnN).
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In addition, the total cost for the long-time dynamics up to the time Tε = T0/ε
β

(0 ≤ β ≤ p) with fixed T0 > 0 is O
(
Tε N lnN

τ

)
= O

(
T0N lnN

τεβ

)
.

3. Uniform error bounds of the TSFP method

In this section, we establish error bounds of the TSFP method (2.32) via (2.31)
(or equivalently (2.33)) for the NKGE (2.1) up to the time at O(ε−p), which are
uniformly valid for 0 < ε ≤ 1.

3.1. Main results. Motivated by the discussions in [24, 29, 50] and references
therein, we make the following assumptions on the exact solution u := u(x, t)
of the NKGE (2.1) up to the time at Tε = T0/ε

β with β ∈ [0, p] and T0 > 0 fixed:

(A)
u ∈ L∞ (

[0, Tε];H
m+1
per

)
, ∂tu ∈ L∞ (

[0, Tε];H
m
per

)
,

‖u‖L∞([0,Tε];H
m+1
per ) � 1, ‖∂tu‖L∞([0,Tε];Hm

per)
� 1,

withm ≥ 1. Then we can establish the following error bounds of the TSFP method.

Remark 3.1. For the quadratic nonlinearity, i.e., p = 1, the assumption (A) can be
established under the condition on the initial data satisfying

u0 ∈ Hm+1
per , u1 ∈ Hm

per,

if m > d
2 + 1 with d representing the dimension of the torus [23]. For p > 1, the

regularity of the solution u(x, t) can be preserved and the uniform boundedness in
(A) can be established up to the time until Tε = T0/ε

p when m is large enough
[13, 24, 29].

Theorem 3.2. Let un be the numerical approximation obtained from the TSFP
(2.31)–(2.32) (or equivalently (2.33)). Under the assumption (A), there exist h0 > 0
and τ0 > 0 sufficiently small and independent of ε such that, for any 0 < ε ≤ 1,
when 0 < h ≤ h0 and 0 < τ ≤ τ0ε

(β−p)/2, we have the error estimates for s ∈
(1/2,m]
(3.1)

‖u(·, tn)−IN (un)‖s+‖∂tu(·, tn)−IN (vn)‖s−1 � h1+m−s+εp−βτ2, 0 ≤ n ≤ T0/ε
β

τ
.

Furthermore, there exists a constant M > 0 depending on T0, ‖u0‖m+1, ‖u1‖m,
‖u‖L∞([0,Tε];Hm

per)
and ‖∂tu‖L∞([0,Tε];H

m−1
per ) such that the numerical solution satisfies

(3.2) ‖IN (un)‖m+1 + ‖IN (vn)‖m ≤ M, 0 ≤ n ≤ T0/ε
β

τ
.

Remark 3.3. It follows from the ε-dependent error estimate that large time step at
τ ∼ ε−(p−β)/2 when 0 ≤ β < p is allowed to simulate the long-time dynamics of the
NKGE up to time T0/ε

β . Particularly, the error bound is uniformly at the second
order for the large time step τ = O(ε−(p−β)/2) in the parameter regime 0 ≤ β < p.
While for β = p, τ has to be taken as O(1).

Remark 3.4. The results in Theorem 3.2 are still valid in high dimensions, i.e.,
d > 1, if m > d

2 .
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3.2. Preliminary estimates. In this subsection, we prepare some results for prov-
ing the main theorem. Denote

Ft : φ �→ e−it〈∇〉F
(
eit〈∇〉φ

)
, t ∈ R,

where F is defined by (2.15), then we have Proposition 3.5 on the properties of Ft.

Proposition 3.5.
(i) Let s > 1/2, then for any t ∈ R, the function Ft : Hs(Ω) → Hs+1(Ω) is C∞

and satisfies

‖Ft(φ)‖s+1 ≤ C‖φ‖p+1
s , ‖F ′

t(φ)(η)‖s+1 ≤ C‖φ‖ps ‖η‖s,
‖F ′′

t (φ)(η, ζ)‖s+1 ≤ C‖φ‖p−1
s ‖η‖s ‖ζ‖s.

(3.3)

(ii) If s ≥ 1, then the derivatives with respect to t satisfy
(3.4)

‖∂tFt(φ)‖s ≤ C‖φ‖p+1
s ,

∥∥∂2
t Ft(φ)

∥∥
s
≤ C‖φ‖p+1

s+1 , ‖∂tF ′
t(φ)(η)‖s ≤ C‖φ‖ps‖η‖s.

(iii) Assume s > 1/2, φ, η ∈ Bs
R := {v ∈ Hs(Ω), ‖v‖s ≤ R}, then there exists a

constant L > 0 depending on R such that for all t ∈ R and σ ∈ [0, s], the Lipschitz
estimate is valid:

(3.5) ‖G(φ)−G(η)‖σ ≤ L‖φ− η‖σ, ‖Ft(φ)− Ft(η)‖σ+1 ≤ L‖φ− η‖σ.

Proof. Firstly, we recall the inequality which was established in [19]:

(3.6) ‖vw‖σ ≤ C‖v‖σ ‖w‖s, v ∈ Hσ(Ω), w ∈ Hs(Ω),

for s > 1/2 and σ ∈ [0, s]. Hence for φ ∈ Hs(Ω), one has

‖Ft(φ)‖s+1 =
∥∥∥F (

eit〈∇〉φ
)∥∥∥

s+1
=

∥∥∥∥f (
1

2

(
eit〈∇〉φ+ e−it〈∇〉φ

))∥∥∥∥
s

≤ C
∥∥∥eit〈∇〉φ+ e−it〈∇〉φ

∥∥∥p+1

s
≤ C‖φ‖p+1

s .

Noticing that f(v) = vp+1, a direct calculation gives

(3.7) F ′(φ)(η) =
(p+ 1)i

2p+1
〈∇〉−1

(
(φ+ φ)p(η + η)

)
,

which implies that

(3.8) ‖F ′(φ)(η)‖s+1 =
p+ 1

2p+1

∥∥(φ+ φ)p(η + η)
∥∥
s
≤ C‖φ‖ps‖η‖s.

Note that

F ′
t (φ)(η) = e−it〈∇〉F ′

(
eit〈∇〉φ

)(
eit〈∇〉η

)
,

and this immediately yields the second inequality in (3.3). The second derivative
of F takes the form

F ′′(φ)(η, ζ) =
p(p+ 1)i

2p+1
〈∇〉−1

(
(φ+ φ)p−1(η + η)(ζ + ζ)

)
,

which leads to that

‖F ′′(φ)(η, ζ)‖s+1 =
p(p+ 1)

2p+1

∥∥(φ+ φ)p−1(η + η)(ζ + ζ)
∥∥
s
≤ C‖φ‖p−1

s ‖η‖s‖ζ‖s.
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Thus the last inequality in (3.3) can be obtained by recalling

F ′′
t (φ)(η, ζ) = e−it〈∇〉F ′′

(
eit〈∇〉φ

)(
eit〈∇〉η, eit〈∇〉ζ

)
.

The first derivative of Ft with respect to t reads as

∂tFt(φ) = −i〈∇〉Ft(φ) + e−it〈∇〉F ′(μ)(i〈∇〉μ), μ = eit〈∇〉φ.

Applying (3.3), (3.6) and (3.7), we obtain

‖∂tFt(φ)‖s ≤ ‖Ft(φ)‖s+1 + ‖F ′(μ)(i〈∇〉μ)‖s
≤ C‖φ‖p+1

s + C‖(μ+ μ)p(〈∇〉μ− 〈∇〉μ)‖s−1

≤ C‖φ‖p+1
s + C‖(μ+ μ)p‖s‖〈∇〉(μ− μ)‖s−1

≤ C‖φ‖p+1
s + C‖μ+ μ‖ps‖μ− μ‖s

≤ C‖φ‖p+1
s .

Further computations give that

∂2
t Ft(φ) = −〈∇〉2Ft(φ)− 2i〈∇〉e−it〈∇〉F ′(μ)(i〈∇〉μ) + e−it〈∇〉F ′(μ)(−〈∇〉2μ)

+ e−it〈∇〉F ′′(μ)(i〈∇〉μ, i〈∇〉μ),

which leads to

‖∂2
t Ft(φ)‖s

≤ ‖Ft(φ)‖s+2 + 2‖F ′(μ)(i〈∇〉μ)‖s+1 + ‖F ′(μ)(−〈∇〉2μ)‖s
+ ‖F ′′(μ)(i〈∇〉μ, i〈∇〉μ)‖s

≤ C‖φ‖p+1
s+1 + C‖(μ+ μ)p〈∇〉2(μ+ μ)‖s−1 + C‖(μ+ μ)p−1(〈∇〉(μ− μ))2‖s−1

≤ C‖φ‖p+1
s+1 + C‖μ+ μ‖ps‖μ+ μ‖s+1 + C‖μ+ μ‖p−1

s ‖μ− μ‖2s+1

≤ C‖φ‖p+1
s+1.

For the last inequality of (3.4), note that

∂tF
′
t(φ)(η) = −i〈∇〉F ′

t(φ)(η) + e−it〈∇〉F ′′(μ)(ν, i〈∇〉μ) + e−it〈∇〉F ′(μ)(i〈∇〉ν),

where ν = eit〈∇〉η. Thus we get

‖∂tF ′
t(φ)(η)‖s
≤ ‖F ′

t(φ)(η)‖s+1 + ‖F ′′(μ)(ν, i〈∇〉μ)‖s + ‖F ′(μ)(i〈∇〉ν)‖s
≤ C‖φ‖ps‖η‖s + C‖(μ+ μ)p−1(ν + ν)〈∇〉(μ− μ)‖s−1 + C‖μ+ μ‖ps‖ν − ν‖s
≤ C‖φ‖ps‖η‖s + C‖μ+ μ‖p−1

s ‖ν + ν‖s‖〈∇〉μ− 〈∇〉μ‖s−1

≤ C‖φ‖ps‖η‖s,

which completes the proof for (3.4).
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For the Lipschitz estimate (3.5), a straightforward calculation shows that

‖G(φ)−G(η)‖σ

=
∥∥∥f(1

2
(φ+ φ)

)
− f

(1
2
(η + η)

)∥∥∥
σ

=
1

2p+1

∥∥∥∥∥
[

p∑
q=0

(
p+ 1

q

)
(φ+ φ− η − η)p−q(η + η)q

]
(φ− η + φ− η)

∥∥∥∥∥
σ

≤ 1

2p+1

p∑
q=0

(
p+ 1

q

)∥∥φ+ φ− η − η
∥∥p−q

s
‖η + η‖qs

∥∥φ− η + φ− η
∥∥
σ

≤ CRp ‖φ− η‖σ .
Noticing that

‖Ft(φ)− Ft(η)‖σ+1 =
∥∥F (eit〈∇〉φ)− F (eit〈∇〉η)

∥∥
σ+1

=
∥∥G(eit〈∇〉φ)−G(eit〈∇〉η)

∥∥
σ

≤ CRp ‖φ− η‖σ ,
the proof is completed. �

Concerning on the flow Sτ in (2.16), we have the stability estimate as follows.

Lemma 3.6. Assume φ0, η0 ∈ Bs
R with s > 1/2, then for any τ > 0, we have

‖Sτ (φ0)− Sτ (η0)‖s ≤ (1 + Lεpτ )‖φ0 − η0‖s,
where L depends on R.

Proof. Since the operator eiτ〈∇〉 is an isometry, we only need to consider the oper-
ator associated with the nonlinear subproblem. By the definition and the Lipschitz
estimate (3.5), we have

‖ϕτ
V (φ0)− ϕτ

V (η0)‖s ≤ ‖φ0 − η0‖s + εpτ‖F (φ0)− F (η0)‖s
≤ ‖φ0 − η0‖s + Lεpτ‖φ0 − η0‖s
≤ (1 + Lεpτ )‖φ0 − η0‖s,

which completes the proof. �

Lemma 3.7. Denote the exact solution of (2.6) with initial data ψ0 as ψ(t) =
Se,t(ψ0). Assume ψ(t) ∈ Hs+1(s ≥ 1), then for 0 < ε ≤ 1 and 0 < τ ≤ 1/εp, the
local error of the Strang splitting (2.16) is bounded by

‖Sτ (ψ(tn))− Se,τ (ψ(tn))‖s ≤ M0ε
pτ3,

where M0 depends on ‖ψ‖L∞([0,Tε];Hs+1).

Proof. For simplicity of notation, we denote ψn = ψ(tn). An application of the
Duhamel’s principle leads to the following representation of the exact solution

(3.9) ψ(tn + t) = eit〈∇〉ψn + εpeit〈∇〉
∫ t

0

e−iθ〈∇〉F (ψ(tn + θ)) dθ.

Introducing ηn(t) := e−i(tn+t)〈∇〉ψ(tn + t), we have

(3.10) ηn(t) = ηn(0) + εp
∫ t

0

Ftn+θ(ηn(θ))dθ.
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Applying the Taylor expansion

Ft(z1 + z2) = Ft(z1) + F ′
t (z1)(z2) +

∫ 1

0

(1− θ)F ′′
t (z1 + θz2)(z

2
2)dθ,

we yield

ηn(τ) = ηn(0) + εp
∫ τ

0

Ftn+θ

(
ηn(0) + εp

∫ θ

0

Ftn+θ1 (ηn(θ1)) dθ1
)
dθ

= ηn(0) + εp
∫ τ

0

Ftn+θ(ηn(0))dθ + ε2p
∫ τ

0

∫ θ

0

F ′
tn+θ(ηn(0))Ftn+θ1(ηn(θ1))dθ1dθ

+ ε3p
∫ τ

0

∫ 1

0

(1− ζ)F ′′
tn+θ ((1− ζ)ηn(0) + ζηn(θ))

(∫ θ

0

Ftn+θ1(ηn(θ1))dθ1
)2

dζdθ

= ηn(0) + εp
∫ τ

0

Ftn+θ(ηn(0))dθ + ε2p
∫ τ

0

∫ θ

0

F ′
tn+θ(ηn(0))Ftn+θ1(ηn(0))dθ1dθ

+ ε3p
∫ τ

0

∫ 1

0

(1− ζ)F ′′
tn+θ ((1− ζ)ηn(0) + ζηn(θ))

(∫ θ

0

Ftn+θ1 (ηn(θ1)) dθ1
)2

dζdθ

+ ε3p
∫ τ

0

∫ θ

0

∫ 1

0

F ′
tn+θ(ηn(0))F

′
tn+θ1 ((1− ζ)ηn(0) + ζηn(θ1))

(∫ θ1

0

Ftn+θ2 (ηn(θ2)) dθ2
)
dζdθ1dθ.

Twisting the variable back, we obtain

Se,τ (ψn) = ei(tn+τ)〈∇〉ηn(τ )

= eiτ〈∇〉ψn + εpeiτ〈∇〉
∫ τ

0

Fθ (ψn) dθ + ε3peiτ〈∇〉E3

+ ε2peiτ〈∇〉
∫ τ

0

∫ θ

0

F ′
θ (ψn)Fθ1 (ψn) dθ1dθ,(3.11)

where E3 = E3,1 + E3,2 with

E3,1 =

∫ τ

0

∫ 1

0

(1− ζ)F ′′
θ

(
(1− ζ)ψn + ζe−iθ〈∇〉ψ(tn + θ)

)
(∫ θ

0

Fθ1

(
e−iθ1〈∇〉ψ(tn + θ1)

)
dθ1

)2

dζdθ,

E3,2 =

∫ τ

0

∫ θ

0

∫ 1

0

F ′
θ(ψn)F

′
θ1

(
(1− ζ)ψn + ζe−iθ1〈∇〉ψ(tn + θ1)

)
( ∫ θ1

0

Fθ2

(
e−iθ2〈∇〉ψ(tn + θ2)

)
dθ2

)
dζdθ1dθ.

On the other hand, noticing (2.14), for the Strang splitting we get

Sτ (ψn) = eiτ〈∇〉/2
[
eiτ〈∇〉/2ψn + εpτF

(
eiτ〈∇〉/2ψn

)]
= eiτ〈∇〉 (ψn + εpτFτ/2(ψn)

)
.

Then the local truncation error can be written as

(3.12) Sτ (ψn)− Se,τ (ψn) = εpeiτ〈∇〉r1 − ε2peiτ〈∇〉r2 − ε3peiτ〈∇〉E3,

where

r1 = τFτ/2(ψn)−
∫ τ

0

Fθ(ψn)dθ, r2 =

∫ τ

0

∫ θ

0

F ′
θ (ψn)Fθ1 (ψn) dθ1dθ.
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Next we estimate each term individually. Express the quadrature error in the
second-order Peano form,

r1 = −τ3
∫ 1

0

κ2(θ)∂
2
ωFω(ψn)|ω=θτdθ, κ2(θ) =

1

2
min{θ2, (1− θ)2}.

Applying (3.4), we obtain

(3.13) ‖r1‖s ≤ Cτ3 ‖ψn‖p+1
s+1

∫ 1

0

κ2(θ)dθ � τ3.

Inserting the identities

Fθ1(ψn) = Fτ/2(ψn) +

∫ θ1

τ/2

∂ωFω(ψn)dω, F ′
θ(ψn) = F ′

τ/2(ψn) +

∫ θ

τ/2

∂ωF
′
ω(ψn)dω

into the double integral term, we get

r2 =
1

2
τ2F ′

τ/2(ψn)Fτ/2(ψn) +

∫ τ

0

∫ θ

0

F ′
τ/2(ψn)

∫ θ1

τ/2

∂ωFω(ψn)dωdθ1dθ

+

∫ τ

0

θ

∫ θ

τ/2

∂ωF
′
ω(ψn)Fτ/2(ψn)dωdθ

+

∫ τ

0

∫ θ

0

∫ θ

τ/2

∫ θ1

τ/2

∂ωF
′
ω(ψn)∂ω1

Fω1
(ψn)dω1dωdθ1dθ.

By definition, we have

F ′
τ/2(ψn)Fτ/2(ψn) = e−i τ

2 〈∇〉F ′(ei
τ
2 〈∇〉ψn)

(
F (ei

τ
2 〈∇〉ψn)

)
= 0,

by recalling (3.7) and the fact that F (·) is purely imaginary. Applying (3.3) and
(3.4), we obtain

‖r2‖s ≤ Cτ3‖ψn‖ps sup
0≤ω≤τ

‖∂ωFω(ψn)‖s + Cτ3‖ψn‖ps
∥∥Fτ/2(ψn)

∥∥
s

+ Cτ4‖ψn‖ps sup
0≤ω≤τ

‖∂ωFω(ψn)‖s

≤ C(τ3 + τ4)‖ψn‖2p+1
s � (τ3 + τ4).

(3.14)

Using (3.3), we derive

‖E3‖s ≤ ‖E3,1‖s + ‖E3,2‖s

≤ Cτ3 sup
0≤θ≤τ

‖ψ(tn + θ)‖p−1
s sup

0≤θ≤τ

∥∥∥Fθ

(
e−iθ〈∇〉ψ(tn + θ)

)∥∥∥2
s

+ Cτ3‖ψn‖ps sup
0≤θ≤τ

‖ψ(tn + θ)‖ps sup
0≤θ≤τ

∥∥∥Fθ

(
e−iθ〈∇〉ψ(tn + θ)

)∥∥∥
s

≤ Cτ3 sup
0≤θ≤τ

‖ψ(tn + θ)‖3p+1
s � τ3.(3.15)

Combining (3.12)-(3.15), we arrive at the conclusion and the proof is complete. �

3.3. Proof of Theorem 3.2. Similar to the proof of the TSFP method for the
Dirac equation [3], the proof will be divided into two parts: (I) to prove the con-
vergence of the semi-discretization, and (II) to complete the error analysis by com-
paring the semi-discretization (2.16) and the full-discretization (2.31).
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Part I (Convergence of the semi-discretization). Firstly, we observe that the as-
sumption (A) is equivalent to the regularity of ψ(x, t) as

ψ ∈ L∞ (
[0, Tε];H

m+1
per

)
, ‖ψ‖L∞([0,Tε];H

m+1
per ) � 1.

Now, we give a global error on the Strang splitting (2.16): there exists τ0 > 0
independent of ε such that when 0 < τ ≤ τ0ε

(β−p)/2, the error of the Strang
splitting satisfies

(3.16) ‖ψ[n] − ψ(·, tn)‖m ≤ M1ε
p−βτ2, ‖ψ[n]‖m ≤ R+ 1, 0 ≤ n ≤ T0/ε

β

τ
,

where R := ‖ψ‖L∞([0,Tε];Hm
per)

and M1 depends on T0, R and ‖ψ‖L∞([0,Tε];H
m+1
per ).

Furthermore, for the regularity of ψ[n], we have ψ[n] ∈ Hm+1
per when τ ≤ τ0ε

(β−p)/2

with

(3.17) ‖ψ[n]‖m+1 ≤ M2, 0 ≤ n ≤ T0/ε
β

τ
,

where M2 depends on T0, R and ‖ψ0‖m+1.
We apply a standard induction argument for proving (3.16). Firstly, it is obvious

for n = 0 since ψ[0] = ψ0 ∈ Bm
R . Assume ψ[k] ∈ Bm

R+1 for 0 ≤ k ≤ n < T0/ε
β

τ .

Denote e[k] = ψ[k] − ψ(·, tk). By definition,

e[k+1] = Sτ (ψ
[k])− Sτ (ψ(tk)) + Sτ (ψ(tk))− Se,τ (ψ(tk)).

Using Lemmas 3.6 and 3.7, we get when τ ≤ 1/εp,∥∥e[k+1]
∥∥
m
− ‖e[k]‖m ≤ Lεpτ

∥∥e[k]∥∥
m
+M0ε

pτ3,

where L and M0 depend on R and
∥∥ψ∥∥

L∞([0,Tε];H
m+1
per )

, respectively, as claimed in

Lemmas 3.6 and 3.7. Summing the above inequality for k = 0, . . . , n, one gets

∥∥e[n+1]
∥∥
m

≤
∥∥e[0]∥∥

m
+ Lεpτ

n∑
k=0

∥∥e[k]∥∥
m
+M0ε

pτ3(n+ 1)

≤ M0T0ε
p−βτ2 + Lεpτ

n∑
k=0

∥∥e[k]∥∥
m
.

Applying the Gronwall’s inequality, we derive

∥∥e[n+1]
∥∥
m

≤ M0T0e
LT0εp−βτ2, 0 ≤ n <

T0/ε
β

τ
.

Then the triangle inequality yields that

∥∥ψ[n+1]
∥∥
m

≤
∥∥ψ(·, tn+1)

∥∥
m
+ 1, 0 ≤ n <

T0/ε
β

τ
,

when 0 < τ ≤ 1/εp and τ ≤ (M0T0)
−1/2e−LT0/2ε(β−p)/2. Set

τ0 = min{1, (M0T0)
−1/2e−LT0/2},
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then the induction (3.16) holds when τ ≤ τ0ε
(β−p)/2 and ε ∈ (0, 1]. For the last

inequality (3.17), recalling (2.14) and (3.3), we have∥∥ψ[n+1]
∥∥
m+1

=
∥∥ϕτ

V (e
iτ/2〈∇〉ψ[n])

∥∥
m+1

≤
∥∥eiτ/2〈∇〉ψ[n]

∥∥
m+1

+ εpτ
∥∥∥F (

eiτ/2〈∇〉ψ[n]
)∥∥∥

m+1

≤
∥∥ψ[n]

∥∥
m+1

+ Cεpτ
∥∥ψ[n]

∥∥p+1

m

≤
∥∥ψ[n]

∥∥
m+1

+ Cεpτ (R+ 1)p+1

≤
∥∥ψ[0]

∥∥
m+1

+ C(n+ 1)εpτ (R+ 1)p+1

≤
∥∥ψ0

∥∥
m+1

+ CT0(R+ 1)p+1,

and (3.17) is established.

Part II (Convergence of the full-discretization). For 0 ≤ n ≤ T0/ε
β

τ , we rewrite
the error as

(3.18) ψ(·, tn)− IN (ψn) = ψ(·, tn)− ψ[n] + ψ[n] − PN (ψ[n]) + PN (ψ[n])− IN (ψn).

For 0 ≤ s ≤ m, the regularity result (3.17) implies that

(3.19) ‖ψ[n] − PN (ψ[n])‖s ≤ CM2h
1+m−s,

and by (3.16),

(3.20) ‖ψ(·, tn)− ψ[n]‖s ≤ ‖ψ(·, tn)− ψ[n]‖m ≤ M1ε
p−βτ2.

Thus, it remains to establish the error bound for the error

en := PN (ψ[n])− IN (ψn), 0 ≤ n ≤ T0/ε
β

τ
.

Now, we’ll use an induction to show that when h is sufficiently small, we have

(3.21) ‖en‖l ≤ M3h
1+m−l, l ∈ (1/2,m+ 1]; ‖IN (ψn)‖m ≤ C(1 +R) + 1,

where M3 depends on T0, R and ‖ψ0‖m+1.
For n = 0, (3.21) is obvious by using the projection and interpolation errors [55]:

‖e0‖l = ‖PN (ψ0)− IN (ψ0)‖l ≤ C1h
1+m−l‖ψ0‖m+1,

‖IN (ψ0)‖m ≤ ‖PN (ψ0)‖m + ‖e0‖m ≤ C‖ψ0‖m + C1h‖ψ0‖m+1 ≤ C(1 +R) + 1,

when h ≤ 1
C1‖ψ0‖m+1

. For n ≥ 1, assume (3.21) holds for 0 ≤ k ≤ n < T0/ε
β

τ . We

rewrite (2.31) as

ψ(n,1) = eiτ〈∇〉/2IN (ψn), ψ(n,2) = ψ(n,1) + iεpτ 〈∇〉−1IN (G(ψ(n,1))),

IN (ψn+1) = eiτ〈∇〉/2IN (ψ(n,2)).

Hence we get ψ(n,1), ψ(n,2) ∈ YN . Similarly, (2.16) can be expressed as

ψ〈n,1〉=eiτ〈∇〉/2ψ[n], ψ〈n,2〉=ψ〈n,1〉+ iεpτ 〈∇〉−1G(ψ〈n,1〉), ψ[n+1]=eiτ〈∇〉/2ψ〈n,2〉,

which implies that

PN (ψ〈n,1〉) = eiτ〈∇〉/2PN (ψ[n]),

PN (ψ〈n,2〉) = PN (ψ〈n,1〉) + iεpτ 〈∇〉−1PN (G(ψ〈n,1〉)),

PN (ψ[n+1]) = eiτ〈∇〉/2PN (ψ〈n,2〉).
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Thus by definition, we get

‖en+1‖l =
∥∥PN (ψ[n+1])− IN (ψn+1)

∥∥
l
=

∥∥PN (ψ〈n,2〉)− IN (ψ(n,2))
∥∥
l

≤
∥∥PN (ψ〈n,1〉)− IN (ψ(n,1))

∥∥
l
+ εpτ

∥∥PN (G(ψ〈n,1〉))− IN (G(ψ(n,1)))
∥∥
l−1

≤ ‖en‖l + εpτ
∥∥PN (G(ψ〈n,1〉))− IN (G(ψ〈n,1〉))

∥∥
l

+ εpτ
∥∥IN (G(ψ〈n,1〉))− IN (G(ψ(n,1)))

∥∥
min{l,m}

≤ ‖en‖l + Cεpτh1+m−l
∥∥G(ψ〈n,1〉)

∥∥
m+1

+ Cεpτ
∥∥G(ψ〈n,1〉)−G(ψ(n,1))

∥∥
min{l,m}

≤ ‖en‖l + Cεpτh1+m−l‖ψ〈n,1〉‖p+1
m+1 + CLεpτ‖ψ〈n,1〉 − ψ(n,1)‖l

≤ (1 + CLεpτ )‖en‖l + CMp+1
2 εpτh1+m−l + CLεpτ

∥∥PN (ψ[n])− ψ[n]
∥∥
l

≤ (1 + CLεpτ )‖en‖l + CM2(L+Mp
2 )ε

pτh1+m−l,

where we have used the fact that ψ[n], ψ〈n,1〉, G(ψ〈n,1〉) ∈ Hm+1, (3.5) and L de-
pends on ‖ψ〈n,1〉‖m and ‖ψ(n,1)‖m, or equivalently depends on R due to (3.16) and
(3.21) by induction. Hence

‖en+1‖l ≤ eCLεpτ‖en‖l + CM2(L+Mp
2 )ε

pτh1+m−l

≤ eCLεp(n+1)τ‖e0‖l + CM2(L+Mp
2 )ε

pτh1+m−l
n∑

k=0

ekCLεpτ

≤ CeCLT0h1+m−l‖ψ0‖m+1 +
LM2 +Mp+1

2

L
eCLT0h1+m−l

≤ M3h
1+m−l,

where M3 := max{C1‖ψ0‖m+1, CeCLT0‖ψ0‖m+1 +
LM2+Mp+1

2

L eCLT0} depends on
T0, R and ‖ψ0‖m+1. The second inequality in (3.21) can be derived by using the
triangle inequality and (3.16):

‖IN (ψn)‖m ≤ ‖PN (ψ[n])‖m + ‖en‖m ≤ C‖ψ[n]‖m +M3h ≤ C(1 +R) + 1,

when h ≤ h0 := 1/M3. Furthermore, it follows from (3.21) that for any 0 ≤ n ≤
T0/ε

β

τ ,

‖IN (ψn)‖m+1 ≤ ‖PN (ψ[n])‖m+1 + ‖en‖m+1 ≤ C‖ψ[n]‖m+1 +M3 ≤ CM2 +M3,

which immediately gives (3.2) by recalling (2.32).
Combining (3.18)-(3.21), we derive for s ∈ (1/2,m],

‖ψ(·, tn)− IN (ψn)‖s ≤ M1ε
p−βτ2 +M4h

1+m−s,

where M1 depends on T0, R and ‖ψ‖L∞([0,Tε];H
m+1
per ), and M4 depends on T0, R and

‖ψ0‖m+1. Recalling (2.32), we obtain error bounds for un and vn as

‖u(·, tn)− IN (un)‖s =
1

2

∥∥∥ψ(·, tn) + ψ(·, tn)− IN (ψn)− IN (ψn)
∥∥∥
s

≤ ‖ψ(·, tn)− IN (ψn)‖s ≤ M1ε
p−βτ2 +M4h

1+m−s,

‖v(·, tn)− IN (vn)‖s−1 =
1

2
‖〈∇〉(ψ(·, tn)− ψ(·, tn))− 〈∇〉(IN (ψn)− IN (ψn))‖s−1

≤ ‖ψ(·, tn)− IN (ψn)‖s ≤ M1ε
p−βτ2 +M4h

1+m−s,

which shows (3.1) and the proof for Theorem 3.2 is completed. �
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Remark 3.8. We remark here that the same error bounds can be established under
the same assumption for the other Strang splitting

ψ[n+1] = Sτ (ψ
[n]) = ϕ

τ/2
V ◦ ϕτ

T ◦ ϕτ/2
V (ψ[n]),

and the corresponding full-discretization. Note that

Sτ (ψn) = ϕ
τ/2
V

[
eiτ〈∇〉ψn +

1

2
εpτeiτ〈∇〉F (ψn)

]
= eiτ〈∇〉ψn +

1

2
εpτeiτ〈∇〉F (ψn) +

1

2
εpτF

(
eiτ〈∇〉ψn +

1

2
εpτeiτ〈∇〉F (ψn)

)
= eiτ〈∇〉ψn +

1

2
εpτeiτ〈∇〉F (ψn) +

1

2
εpτF

(
eiτ〈∇〉ψn

)
+ E2,

where

E2 =
1

4
ε2pτ2

∫ 1

0

F ′(eiτ〈∇〉ψn +
θ

2
εpτeiτ〈∇〉F (ψn)

)(
eiτ〈∇〉F (ψn)

)
dθ.

Thus by (3.11), we get

(3.22) Sτ (ψn)− Se,τ (ψn) = εpeiτ〈∇〉r3 + E2 − ε2peiτ〈∇〉r2 − ε3peiτ〈∇〉E3,

where

r3 =
τ

2
(F0(ψn) + Fτ (ψn))−

∫ τ

0

Fθ(ψn)dθ =
τ3

2

∫ 1

0

θ(1−θ)∂2
ωFω(ψn)|ω=θτdθ � τ3.

It remains to estimate E2. By (3.7), we have

F ′(eiτ〈∇〉ψn +
θ

2
εpτeiτ〈∇〉F (ψn)

)(
eiτ〈∇〉F (ψn)

)
=

(p+ 1)i

2p+1
〈∇〉−1

[
eiτ〈∇〉(ψn +

θ

2
εpτF (ψn)

)
+ e−iτ〈∇〉(ψn − θ

2
εpτF (ψn)

)]p
(
eiτ〈∇〉F (ψn)− e−iτ〈∇〉F (ψn)

)
= −(p+ 1)〈∇〉−1

[
Re

(
eiτ〈∇〉(ψn +

θ

2
εpτF (ψn)

))]p
sin(τ 〈∇〉)F (ψn),

which implies that∥∥∥F ′(eiτ〈∇〉ψn +
θ

2
εpτeiτ〈∇〉F (ψn)

)(
eiτ〈∇〉F (ψn)

)∥∥∥
s

≤ C

∥∥∥∥ψn +
θ

2
εpτF (ψn)

∥∥∥∥p
s

∥∥ sin(τ 〈∇〉)F (ψn)
∥∥
s

≤ Cτ (‖ψn‖s + εpτ‖F (ψn)‖s)p ‖F (ψn)‖s+1

≤ Cτ
(
‖ψn‖s + Cεpτ‖ψn‖p+1

s

)p ‖ψn‖p+1
s � τ.

This suggests that E2 � ε2pτ3, which directly yields that

Sτ (ψn)− Se,τ (ψn) � εpτ3.

Then the error estimates can be derived by similar and standard arguments.
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4. Numerical results

In this section, we present numerical results concerning spatial and temporal ac-
curacy of the TSFP method (2.32) via (2.31) for the NKGE (2.1). In our numerical
experiments, we take p = 2, a = 0 and b = 2π in (2.1) and choose the initial data
as

(4.1) u0(x) =
3

2
sin(2x) and u1(x) =

5

1 + cos2(x)
, x ∈ [0, 2π].

The computation is carried out on a time interval [0, T0/ε
β ] with 0 ≤ β ≤ p = 2

and T0 > 0 fixed. Here, we study the following three cases with respect to different
β:

(i) Fixed time dynamics up to the time at O(1), i.e., β = 0;
(ii) Intermediate long-time dynamics up to the time at O(ε−1), i.e., β = 1;
(iii) Long-time dynamics up to the time at O(ε−2), i.e., β = 2.
The ‘exact’ solution u(x, t) is obtained numerically by using the TSFP (2.31)–

(2.32) with a fine mesh size he = π/64 and a very small time step τe = 10−5.
Denote un

h,τ as the numerical solution obtained by the TSFP (2.31)–(2.32) with

mesh size h and time step τ at the time t = tn. The errors are denoted as e(x, tn) =
u(x, tn) − IN (un

h,τ )(x). In order to quantify the numerical errors, we measure the

H1-norm of e(·, tn).
The errors are displayed at T0 = 1 with different ε and β. For spatial error

analysis, we fix the time step as τ = 10−5 such that the temporal errors can be
neglected; for temporal error analysis, a very fine mesh size h = π/64 is chosen
such that the spatial errors can be ignored. Table 1 shows the spatial errors under
different mesh size h and Figures 4.1–4.3 depict the temporal errors for β = 0,
β = 1 and β = 2, respectively.

10-2 10 -1

10-4

10-2

100
(a)

10-1 100

10-4

10-2

100 (b)

Figure 4.1. Temporal errors of the TSFP (2.31)–(2.32) for the
NKGE (2.1) with β = 0 for different ε and τ

From Table 1 and Figures 4.1–4.3, we can draw the following observations:
(1) The TSFP method converges uniformly for 0 < ε ≤ 1 in space with expo-

nential convergence rate (cf. each row in Table 1).
(2) For any fixed ε = ε0 > 0, the TSFP method (2.31)–(2.32) is second-order

accurate in time (cf. each line in Figures 4.1(a)–4.3(a)). When β = 0, the temporal
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Table 1. Spatial errors of the TSFP (2.31)–(2.32) for the NKGE
(2.1) with (4.1) for different β and ε

‖e(·, Tε)‖1 h0 = π/4 h0/2 h0/2
2 h0/2

3

β = 0

ε0 = 1 1.12E-1 1.22E-3 5.03E-6 1.54E-12
ε0/2 8.99E-2 6.32E-4 2.05E-6 1.25E-12
ε0/2

2 9.04E-2 4.67E-4 1.95E-6 1.19E-12
ε0/2

3 8.85E-2 4.47E-4 1.93E-6 1.18E-12
ε0/2

4 8.82E-2 4.47E-4 1.93E-6 1.19E-12
ε0/2

5 8.81E-2 4.48E-4 1.93E-6 1.18E-12

β = 1

ε0 = 1 1.12E-1 1.22E-3 5.03E-6 1.54E-12
ε0/2 2.14E-1 2.10E-3 1.58E-6 5.72E-13
ε0/2

2 1.08E-1 2.36E-3 7.09E-7 1.24E-12
ε0/2

3 4.47E-2 9.27E-4 7.72E-7 1.52E-13
ε0/2

4 1.14E-1 8.11E-4 7.13E-7 7.97E-13
ε0/2

5 7.29E-2 1.24E-3 9.83E-7 1.26E-12

β = 2

ε0 = 1 1.12E-1 1.22E-3 5.03E-6 1.54E-12
ε0/2 5.22E-1 6.58E-3 5.81E-7 1.16E-12
ε0/2

2 5.79E-1 1.52E-3 1.82E-6 1.20E-12
ε0/2

3 5.82E-1 1.03E-3 6.05E-7 9.90E-13
ε0/2

4 9.17E-1 1.68E-3 6.69E-7 4.78E-12
ε0/2

5 7.67E-1 1.79E-3 3.52E-7 1.22E-11

10-2 10-1

10-4

10-2

100
(a)

10-1 100

10-6

10-4

10-2

100
(b)

Figure 4.2. Temporal errors of the TSFP (2.31)–(2.32) for the
NKGE (2.1) with β = 1 for different ε and τ

error behaves like O(ε2τ2) (cf. Figure 4.1(b)), which agrees with the theoretical
result in Theorem 3.2. Figure 4.2(b) and Figure 4.3(b) show that the temporal
error is at O(ετ2) and O(τ2) for β = 1 and β = 2, respectively.

(3) Our numerical results confirm the uniform error bounds in Theorem 3.2.
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10-2 10-1
10-4

10-2

100
(a)

10-1 100

10-4

10-2

100
(b)

Figure 4.3. Temporal errors of the TSFP (2.31)–(2.32) for the
NKGE (2.1) with β = 2 for different ε and τ

Table 2. Comparison of the properties of the TSFP method
(2.31)–(2.32) for the NKGE (1.1) at different long-time dynamics
regimes with T0 and τ0 are fixed and independent of 0 < ε ≤ 1

O(1)-time
with β = 0

intermediate
long-time

with
0 < β ≤ p

3

long-time with
p
3 < β < p

super
long-time with

β = p

final time
Tε =

T0

εβ

O(1) long-time
O(ε−β)

longer-time
O(ε−β)

longest-time
O(ε−p)

largest time
step size

τε = τ0ε
β−p
2

largest time
step size at
O(ε−p/2)

larger time
step size at

O(ε
β−p
2 )

large time
step size at

O(ε
β−p
2 )

O(1)

total time
steps

Nε =
Tε

τε
=

T0

τ0
ε

p−3β
2

O(1) O(1) O(ε
p−3β

2 ) O(ε−p)

total compu-
tational
cost

O(N lnN) O(N lnN) O(ε
p−3β

2 N lnN) O(ε−pN lnN)

spatial error uniform
spectral

uniform
spectral

uniform
spectral

uniform
spectral

temporal
error in term

of τ0

uniform
second-order

uniform
second-order

uniform
second-order

uniform
second-order

We remark here that, when 0 < ε � 1, our numerical results suggest a better
error bound as (cf. left-bottom parts in Figures 4.2(b)–4.3(b))

‖u(·, tn)− IN (un)‖s � h1+m−s + εpτ2, 0 ≤ n ≤ T0/ε
β

τ
.
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We emphasized this improved convergence when ε � 1 is missing for the EWI-FP
method presented in [32], which shows the superiority of the TSFP method.

For convenience of readers, Table 2 summarizes the properties of the TSFP
method (2.31)–(2.32) for the NKGE (1.1) at different long-time dynamics regimes.

5. Extension to an oscillatory complex NKGE in the whole space

In this section, we begin with a complex NKGE in the whole space, re-scale it
into an oscillatory complex NKGE, compare properties of the NKGE under differ-
ent scalings and extend the TSFP method and its error bounds to the oscillatory
complex NKGE.

5.1. Comparisons of the complex NKGE under different scalings. Con-
sider the following complex NKGE with a power-type nonlinearity in the whole
space Rd (d = 1, 2, 3) as

(5.1)

{
∂ttu(x, t)−Δu(x, t) + u(x, t) + εp|u(x, t)|pu(x, t) = 0, x ∈ Rd, t > 0,

u(x, 0) = u0(x) = O(1), ∂tu(x, 0) = u1(x) = O(1), x ∈ Rd.

Here, u := u(x, t) is a complex-valued scalar field, and the initial datum u0(x)
and u1(x) are two given complex-valued functions which are independent of the
parameter ε. Again formally, the amplitude of the solution u is at O(1). The
local/global well-posedness of the Cauchy problem (5.1) and scattering properties
have been extensively studied in a considerable literature [34,37,38,41,45,48,49,51].
Particularly, under appropriate assumptions on p, d, ε and the initial conditions,
the solutions of (5.1) are global [17] and scatter as |t| → ∞ for small initial values
(low energy scattering) [38, 45], or for all initial values (asymptotic completeness)
[48, 49]. In addition, under proper regularity of the solution, the complex NKGE
(5.1) is time symmetric or time reversible and conserves the energy [5, 6, 26] as

E1(t) := E1(u(·, t))(5.2)

=

∫
Rd

[
|∂tu(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + 2εp

p+ 2
|u(x, t)|p+2

]
dx

≡
∫
Rd

[
|u1(x)|2 + |∇u0(x)|2 + |u0(x)|2 +

2εp

p+ 2
|u0(x)|p+2

]
dx

= E1(0) = O(1), t ≥ 0.

Plugging the plane wave solution u(x, t) = Aei(ξ·x−ω1t) (with A the amplitude, ξ
the spatial wave number and ω1 := ω1(ξ) the time frequency) into the complex
NKGE (5.1), we get the dispersion relation:

(5.3) ω1 = ω1(ξ) = ±
√
1 + |ξ|2 + εpAp = O(1), ε ∈ (0, 1], for fixed ξ ∈ Rd,

which immediately implies the group velocity

(5.4) v1 := v1(ξ) = ∇ω1(ξ) = ± ξ√
1 + |ξ|2 + εpAp

= O(1).

Thus the solution of the complex NKGE (5.1) propagates waves with amplitude at
O(1), wavelength in space and time at O(1) and wave velocity at O(1).
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By introducing w(x, t) = εu(x, t), we can reformulate the complex NKGE (5.1)
with weak nonlinearity (and initial data with amplitude at O(1)) into the following
complex NKGE with small initial data (and O(1) nonlinearity):

(5.5)

{
∂ttw(x, t)−Δw(x, t) + w(x, t) + |w(x, t)|pw(x, t) = 0, x ∈ Rd, t > 0,

w(x, 0) = εu0(x) = O(ε), ∂tw(x, 0) = εu1(x) = O(ε), x ∈ Rd.

Noticing that the amplitude of the initial data in (5.5) is at O(ε), formally we can
get the amplitude of the solution w of (5.5) is at O(ε), too. Similarly, the complex
NKGE (5.5) is time symmetric or time reversible and conserves the energy [5,6,26]
as

E2(t) := E2(w(·, t))

=

∫
Rd

[
|∂tw(x, t)|2 + |∇w(x, t)|2 + |w(x, t)|2 + 2

p+ 2
|w(x, t)|p+2

]
dx

≡ ε2
∫
Rd

[
|u1(x)|2 + |∇u0(x)|2 + |u0(x)|2 +

2εp

p+ 2
|u0(x)|p+2

]
dx

= E2(0) = ε2E1(0) = O(ε2), t ≥ 0.

In addition, plugging the plane wave solution w(x, t) = εAei(ξ·x−ω1t) into the com-
plex NKGE (5.5), we get the same dispersion relation (5.3) and the same group
velocity (5.4) of the complex NKGE (5.5), i.e., the complex NKGEs (5.5) and (5.1)
share the same dispersion relation (5.3) and the same group velocity (5.4). Again,
the solution of the complex NKGE (5.5) propagates waves with amplitude at O(ε),
wavelength in space and time at O(1) and wave velocity at O(1).

Introducing a re-scale in time

(5.6) t =
s

εβ
⇔ s = εβt, ν(x, s) = u(x, t),

with 0 < β ≤ p fixed, we can re-formulate the complex NKGE (5.1) into the
following oscillatory complex NKGE
(5.7)⎧⎨⎩∂ssν(x, s) +

1

ε2β
(−Δ+ 1)ν(x, s) + εp−2β |ν(x, s)|pν(x, s) = 0, x ∈ Rd, s > 0,

ν(x, 0) = u0(x) = O(1), ∂sν(x, 0) = ε−βu1(x) = O(ε−β), x ∈ Rd.

Formally, the amplitude of the solution ν of the oscillatory complex NKGE (5.7)
is at O(1). Again, the oscillatory complex NKGE (5.7) is time symmetric or time
reversible and conserves the energy [5, 6, 26] as

E3(s) := E3(ν(·, s)) =
∫
Rd

[
|∂sν|2 +

1

ε2β
(
|∇ν|2 + |ν|2

)
+

2εp−2β

p+ 2
|ν|p+2

]
dx

≡ 1

ε2β

∫
Rd

[
|u1(x)|2 + |∇u0(x)|2 + |u0(x)|2 +

2εp

p+ 2
|u0(x)|p+2

]
dx(5.8)

= E3(0) = ε−2βE1(0) = O(ε−2β), s ≥ 0.

Again, plugging the plane wave solution ν(x, s) = Aei(ξ·x−ω2s) (with A the am-
plitude, ξ the spatial wave number and ω2 := ω2(ξ) the time frequency) into the
oscillatory complex NKGE (5.7), we get the dispersion relation:

(5.9) ω2 = ω2(ξ) = ± 1

εβ

√
1 + |ξ|2 + εpAp = O(ε−β), ξ ∈ Rd,
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which immediately implies the group velocity

(5.10) v2 := v2(ξ) = ∇ω2(ξ) = ± ξ

εβ
√
1 + |ξ|2 + εpAp

= O(ε−β).

Thus the solution of the oscillatory complex NKGE (5.7) propagates waves with
amplitude at O(1), wavelength in space and time at O(1) and O(εβ), respectively,
and wave velocity at O(ε−β).

Remark 5.1. We remark here that the above scalings of the complex NKGE are
different from the following complex NKGE in the nonrelativistic regime, which has
been widely used and studied in the literature [4, 5, 10–12,46, 53]:

(5.11)

⎧⎨⎩∂ttu(x, t)−
1

ε2
Δu(x, t) +

1

ε4
u(x, t) +

1

ε2
|u(x, t)|2u(x, t) = 0, t > 0,

u(x, 0) = u0(x) = O(1), ∂tu(x, 0) = ε−2u1(x) = O(ε−2), x ∈ Rd.

The above complex NKGE conserves the energy [5, 6, 26] as

E4(t) := E4(u(·, t))(5.12)

=

∫
Rd

[
|∂tu(x, t)|2 +

|∇u(x, t)|2
ε2

+
1

ε4
|u(x, t)|2 + 1

2ε2
|u(x, t)|4

]
dx

≡ 1

ε4

∫
Rd

[
|u1(x)|2 + ε2|∇u0(x)|2 + |u0(x)|2 +

ε2

2
|u0(x)|4

]
dx

= E5(0) = O(ε−4), t ≥ 0.

Plugging the plane wave solution u(x, t) = Aei(ξ·x−ω3t) into the complex NKGE
(5.11), we get the dispersion relation:

(5.13) ω3 = ω3(ξ) = ± 1

ε2

√
1 + ε2|ξ|2 + ε2A2 = O(ε−2), ξ ∈ Rd,

which immediately implies the group velocity

(5.14) v3 := v3(ξ) = ∇ω3(ξ) = ± ξ√
1 + ε2|ξ|2 + ε2A2

= O(1).

Thus the solution of the complex NKGE (5.11) propagates waves with amplitude
at O(1), wavelength in space and time at O(1) and O(ε2), respectively, and wave
velocity at O(1).

For convenience of readers, Table 3 shows the properties of the complex NKGE
under different scalings

Table 3. Comparison of the complex NKGE under different scalings

(5.1) (5.5) (5.7) (5.11)

amplitude O(1) O(ε) O(1) O(1)

wavelength in space O(1) O(1) O(1) O(1)

wavelength in time O(1) O(1) O(εβ) O(ε2)

wave velocity O(1) O(1) O(ε−β) O(1)

energy O(1) O(ε2) O(ε−2β) O(ε−4)
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5.2. The TSFP method for the complex NKGE (5.7) and main results.
Similar to those in the literature, we truncate the oscillatory complex NKGE (5.7)
in 1D onto a bounded interval Ω = (a, b) with periodic boundary conditions as

(5.15)

⎧⎪⎪⎨⎪⎪⎩
∂ssν(x, s) +

1

ε2β
(−∂xx + 1)ν(x, s) + εp−2β |ν(x, s)|pν(x, s) = 0, s > 0,

ν(a, t) = ν(b, t), ∂xν(a, t) = ∂xν(b, t), t ≥ 0,

ν(x, 0) = u0(x), ∂sν(x, 0) = ε−βu1(x), x ∈ Ω = [a, b].

Denote q(x, s) = ∂sν(x, s), by taking k = εβτ and assuming u0 and u1 to be
real-valued in (5.15), the TSFP discretization can be similarly obtained via (2.31).
Under the following reasonable assumptions on the exact solution ν of the oscillatory
NKGE (5.15)

(B)

ν ∈ L∞ (
[0, T0];H

m+1
per

)
, ∂sν ∈ L∞ (

[0, T0];H
m
per

)
,

‖ν‖L∞([0,T0];H
m+1
per ) � 1, ‖∂sν‖L∞([0,T0];Hm

per)
� 1

εβ
,

with m ≥ 1, we can establish the following error bounds of the TSFP method for
the oscillatory complex NKGE (5.15) (the proof is omitted here for brevity).

Theorem 5.2. Let νn, qn be the numerical approximation obtained from the TSFP
method. Under the assumption (B), there exist h0 > 0 and k0 > 0 sufficiently
small and independent of ε such that, for any 0 < ε ≤ 1, when 0 < h ≤ h0 and

0 < k ≤ k0ε
3β−p

2 , we have the error estimates for l ∈ (1/2,m]

‖ν(·, sn)−IN (νn)‖l+εβ‖∂sν(·, sn)−IN (qn)‖l−1 � h1+m−l+εp−3βk2, 0 ≤ n ≤ T0

k
.

Remark 5.3. From Theorem 5.2, we clearly see that the TSFP is uniformly second-
order accurate in the weakly oscillatory case, i.e., 0 ≤ β ≤ p

3 . Furthermore, large

time step size at k ∼ ε
3β−p

2 is allowed in practical computation when 0 ≤ β < p
3 .

While for β ∈ ( p3 , p], the TSFP method fails to be uniformly convergent and tiny

time step is required as k � ε
3β−p

2 .

5.3. Numerical results. In order to verify the error bounds in Theorem 5.2, we
take d = 1 and p = 3 in (5.7) and the initial data

(5.16) u0(x) = (2 + i)e−x2/2, u1(x) = sech(x2), x ∈ R.

The problem is solved on a bounded interval Ωε = [−8 − ε−β , 8 + ε−β ] since the
wave velocity is at O(ε−β), which is large enough to guarantee that the periodic
boundary condition does not introduce a significant truncation error relative to the
original problem. The ‘exact’ solution ν(x, s) is obtained numerically by using the
TSFP method with a fine mesh size he = 1/16 and a very small time step ke = 10−5.
We also measure the H1-norm and the errors are displayed at T0 = 1 with different
ε and β. For the oscillatory complex NKGE (5.7), we study the following three
cases:

Case I. Weakly oscillatory regime, i.e., β = 1;

Case II. Intermediate oscillatory regime, i.e., β = 2;

Case III. Highly oscillatory regime, i.e., β = 3.
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For spatial error analysis, we fix the time step as k = 10−5 such that the temporal
errors can be neglected; for temporal error analysis, a very fine mesh size h = 1/16
is chosen such that the spatial error can be ignored. Table 4 shows the spatial errors
under different mesh size for these three cases and Tables 5-7 depict the temporal
errors for β = 1, 2, 3, respectively. In order to quantify the error, we introduce

e∞(t) := max
0<ε≤1

{‖e(·, t)‖1}.

Table 4. Spatial errors of the TSFP method for the oscillatory
complex NKGE (5.15) with (5.16) for different β and ε

‖e(·, 1)‖1 h0 = 1 h0/2 h0/2
2 h0/2

3

β = 1

ε0 = 1/2 1.57E-1 2.40E-3 5.82E-6 1.77E-9
ε0/2

1 9.52E-2 2.91E-3 8.47E-6 2.59E-10
ε0/2

2 5.85E-2 3.31E-3 1.11E-5 3.32E-10
ε0/2

3 1.03E-1 1.63E-3 1.18E-5 4.10E-10

β = 2

ε0 = 1/2 2.01E-1 3.24E-3 1.02E-5 1.52E-9
ε0/2

1 1.11E-1 1.64E-3 1.19E-5 4.34E-10
ε0/2

2 1.28E-1 3.57E-3 1.55E-5 1.61E-10
ε0/2

3 1.18E-1 3.81E-3 1.34E-5 2.21E-10

β = 3

ε0 = 1/2 1.91E-1 3.90E-3 1.40E-5 6.95E-9
ε0/2

1 1.55E-1 3.43E-3 1.58E-5 1.66E-10
ε0/2

2 1.30E-1 5.79E-3 5.94E-6 4.32E-10
ε0/2

3 1.25E-1 5.15E-3 1.59E-5 5.95E-10

Table 5. Temporal errors of the TSFP method for the oscillatory
complex NKGE (5.15) with (5.16) and β = 1

‖e(·, 1)‖1 k0 = 0.1 k0/2 k0/2
2 k0/2

3 k0/2
4 k0/2

5 k0/2
6

ε0 = 1 2.82E-1 6.71E-2 1.66E-2 4.13E-3 1.03E-3 2.58E-4 6.45E-5
order - 2.07 2.02 2.01 2.00 2.00 2.00
ε0/2 1.15E-1 2.77E-2 6.85E-3 1.71E-3 4.27E-3 1.07E-4 2.67E-5
order - 2.05 2.02 2.00 2.00 2.00 2.00
ε0/2

2 4.20E-2 9.45E-3 2.31E-3 5.75E-4 1.43E-4 3.58E-5 8.96E-6
order - 2.15 2.03 2.01 2.01 2.00 2.00
ε0/2

3 4.91E-2 6.43E-3 1.46E-3 3.57E-4 8.89E-5 2.22E-5 5.54E-6
order - 2.93 2.14 2.03 2.01 2.00 2.00
ε0/2

4 2.29E-2 8.02E-3 1.01E-3 2.29E-4 5.60E-5 1.39E-5 3.48E-6
order - 1.51 2.99 2.14 2.03 2.01 2.00
ε0/2

5 8.77E-3 3.48E-3 1.21E-3 1.51E-4 3.43E-5 8.40E-6 2.09E-6
order - 1.33 1.52 3.00 2.14 2.03 2.01
ε0/2

6 9.87E-4 1.25E-3 4.88E-4 1.70E-4 2.10E-5 4.78E-6 1.17E-6
order - -0.34 1.36 1.52 3.02 2.14 2.03

e∞(t = 1) 2.82E-1 6.71E-2 1.66E-2 4.13E-3 1.03E-3 2.58E-4 6.45E-5
order - 2.07 2.02 2.01 2.00 2.00 2.00
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Table 6. Temporal errors of the TSFP method for the oscillatory
complex NKGE (5.15) with (5.16) and β = 2

‖e(·, 1)‖1 k0 = 0.1 k0/2 k0/2
2 k0/2

3 k0/2
4 k0/2

5

ε0 = 1 2.82E-1 6.71E-2 1.66E-2 4.13E-3 1.03E-3 2.58E-4
order - 2.07 2.02 2.01 2.00 2.00

ε0/4
1/3 5.15E-1 1.14E-1 2.77E-2 6.89E-3 1.72E-3 4.30E-4

order - 2.18 2.04 2.01 2.00 2.00

ε0/4
2/3 1.52 2.20E-1 5.08E-2 1.25E-2 3.11E-3 7.76E-4

order - 2.79 2.11 2.02 2.01 2.00
ε0/4 1.40 6.80E-1 8.95E-2 2.03E-2 4.96E-3 1.23E-3
order - 1.04 2.93 2.14 2.03 2.01

ε0/4
4/3 9.33E-1 6.94E-1 3.18E-1 3.88E-2 8.11E-3 1.96E-3

order - 0.43 1.13 3.03 2.26 2.05

ε0/4
5/3 3.10E-1 2.48E-1 2.85E-1 1.19E-1 2.07E-2 3.45E-3

order - 0.32 -0.20 1.26 2.52 2.58

Table 7. Temporal errors of the TSFP method for the oscillatory
complex NKGE (5.15) with (5.16) and β = 3

‖e(·, 1)‖1 k0 = 0.1 k0/4 k0/4
2 k0/4

3 k0/4
4 k0/4

5

ε0 = 1 2.82E-1 1.66E-2 1.03E-3 6.45E-5 4.03E-6 2.50E-7
order - 2.04 2.01 2.00 2.00 2.01

ε0/4
1/3 3.82 1.34E-1 8.23E-3 5.14E-4 3.21E-5 1.99E-6

order - 2.42 2.01 2.00 2.00 2.01

ε0/4
2/3 8.46 6.37E-1 3.35E-2 2.08E-3 1.30E-4 8.03E-6

order - 1.87 2.12 2.00 2.00 2.01
ε0/4 4.08 1.95 1.22E-1 6.76E-3 4.20E-4 2.60E-5
order - 0.53 2.00 2.09 2.00 2.01

ε0/4
4/3 1.39 1.15 5.40E-1 2.61E-2 1.45E-3 8.92E-5

order - 0.14 0.55 2.19 2.08 2.01

ε0/4
5/3 4.26E-1 3.59E-1 2.98E-1 1.39E-1 6.17E-3 3.40E-4

order - 0.12 0.13 0.55 2.25 2.09

From Tables 4-6 and additional similar results not shown here for brevity, we
can draw the following observations for the TSFP method:

(1) The TSFP method is uniformly and spectrally accurate in space for any
0 ≤ β ≤ p (cf. Table 4).

(2) When β = 1, the TSFP method converges quadratically in time, which is
uniformly for 0 < ε ≤ 1 (cf. last row in Table 5). While for cases β = 2 and
β = 3, second-order convergence can only be observed when k � ε3/2 and k � ε3,
respectively (cf. the upper triangle above the main diagonal in Tables 6 and 7).
This agrees with the analytical result in Theorem 5.2.
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(3) For β = 2 and β = 3, when 0 < ε � 1 and k � ε
3β−p

2 , Tables 6 and 7 suggest
the following improved error bound

‖v(·, sn)− IN (vn)‖l � h1+m−l + εp−2βk2, 0 ≤ n ≤ T0/k.

Again, for convenience of readers, Table 8 summarizes the properties of the TSFP
method for the oscillatory NKGE (5.7) at different parameter regimes.

Table 8. Comparison of the properties of the TSFP method for
the oscillatory NKGE (5.15) at different parameter regimes, while
T0 and k0 are fixed and independent of 0 < ε ≤ 1

β = 0 0 < β < p
3 β = p

3
p
3 < β < p

2 β = p
2

p
2 < β ≤ p

nonlinearity
strength
εp−2β

weakest
O(εp)

weaker
O(εp−2β)

weak
O(εp/3)

weak
O(εp−2β)

O(1)
strong
O(εp−2β)

time step
size kε =

k0ε
3β−p

2

larger
O(ε−p/2)

large

O(ε
3β−p

2 )
O(1)

small
O(ε

3β−p
2 )

smaller
O(εp/4)

smallest
O(ε

3β−p
2 )

total time
steps
Nε = T0

kε
=

T0

k0
ε

p−3β
2

O(1) O(1) O(1)
many steps

at O(ε
p−3β

2 )

many steps
at O(ε−

p
4 )

many steps

at O(ε
p−3β

2 )

total cost O(N lnN) O(N lnN) O(N lnN) O

(
N lnN

ε
3β−p

2

)
O
(
ε

p
4 N lnN

)
O

(
N lnN

ε
3β−p

2

)

spatial
error

uniform
spectral

uniform
spectral

uniform
spectral

uniform
spectral

uniform
spectral

uniform
spectral

temporal
error

uniform uniform uniform non-uniform non-uniform
non-
uniform

6. Conclusion

An efficient and accurate time-splitting Fourier pseudospectral (TSFP) method
was proposed and analyzed for the long-time dynamics of the nonlinear Klein–
Gordon equation (NKGE) with weak nonlinearity or small initial data. Uniform
error bounds of the TSFP method were established up to the time at O(ε−p)
with 0 < ε ≤ 1 a dimensionless parameter used to characterize the nonlinear-
ity strength. Numerical results were reported to confirm our error bounds in the
long-time regime. Extension of the method and its error bounds to an oscillatory
complex NKGE in the whole space were discussed.
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for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations, Numer. Math. 129
(2015), no. 2, 211–250, DOI 10.1007/s00211-014-0638-9. MR3300419

[19] P. Chartier, F. Méhats, M. Thalhammer, and Y. Zhang, Improved error estimates for split-
ting methods applied to highly-oscillatory nonlinear Schrödinger equations, Math. Comp. 85
(2016), no. 302, 2863–2885, DOI 10.1090/mcom/3088. MR3522973

[20] S. C. Chikwendu and C. V. Easwaran, Multiple-scale solution of initial-boundary value prob-
lems for weakly nonlinear wave equations on the semi-infinite line, SIAM J. Appl. Math. 52
(1992), no. 4, 946–958, DOI 10.1137/0152054. MR1174039

[21] D. Cohen, E. Hairer, and C. Lubich, Conservation of energy, momentum and actions in
numerical discretizations of non-linear wave equations, Numer. Math. 110 (2008), no. 2,
113–143, DOI 10.1007/s00211-008-0163-9. MR2425152

[22] D. Cohen, E. Hairer, and C. Lubich, Long-time analysis of nonlinearly perturbed wave equa-
tions via modulated Fourier expansions, Arch. Ration. Mech. Anal. 187 (2008), no. 2, 341–
368, DOI 10.1007/s00205-007-0095-z. MR2366141

https://www.ams.org/mathscinet-getitem?mr=3528498
https://www.ams.org/mathscinet-getitem?mr=3268616
https://www.ams.org/mathscinet-getitem?mr=2874965
https://www.ams.org/mathscinet-getitem?mr=3997383
https://www.ams.org/mathscinet-getitem?mr=2047194
https://www.ams.org/mathscinet-getitem?mr=2196586
https://www.ams.org/mathscinet-getitem?mr=3780752
https://www.ams.org/mathscinet-getitem?mr=3996337
https://www.ams.org/mathscinet-getitem?mr=3766386
https://www.ams.org/mathscinet-getitem?mr=2033563
https://www.ams.org/mathscinet-getitem?mr=4073882
https://www.ams.org/mathscinet-getitem?mr=1384610
https://www.ams.org/mathscinet-getitem?mr=606174
https://www.ams.org/mathscinet-getitem?mr=3632926
https://www.ams.org/mathscinet-getitem?mr=4228955
https://www.ams.org/mathscinet-getitem?mr=3300419
https://www.ams.org/mathscinet-getitem?mr=3522973
https://www.ams.org/mathscinet-getitem?mr=1174039
https://www.ams.org/mathscinet-getitem?mr=2425152
https://www.ams.org/mathscinet-getitem?mr=2366141


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

UNIFORM ERROR BOUNDS OF TSFP FOR NKGE 841

[23] J.-M. Delort, Temps d’existence pour l’équation de Klein-Gordon semi-linéaire à données
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