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Summary

The Dirac equation is a relativistic wave equation describing the motion of spin-1/2

massive particles such as electrons and quarks. It can be seen as the relativistic version of

the Schrödinger equation, and thus plays an important role in quantum mechanics. There

are three interesting scaling parameters in the non-dimensionalized Dirac equation. Taking

different limits of these parameters results in the nonrelativistic limit regime, the semiclassical

regime and the massless regime of the Dirac equation. The dynamics of the Dirac equation

behaves differently under these regimes, and it is worthwhile to study the performance of

various numerical methods respectively.

The aim of this thesis is to propose efficient numerical methods to solve the Dirac

equation in different limit regimes, and study their properties. Rigorous proof are presented

and numerical results are reported to verify the error bounds and compare the performance of

the methods. The thesis mainly consists of three parts:

In the first part, a new fourth-order compact time-splitting (S4c) Fourier pseudospectral

method is put forward for the Dirac equation. The method splits the Dirac equation into two

parts and uses a double commutator between them to integrate the Dirac equation at each

time interval. It is explicit, fourth-order in time and spectral order in space, and it is called a

compact time-splitting method since, at each time step, the number of sub-steps in S4c is much

less than those of the standard fourth-order splitting method and the fourth-order partitioned

Runge-Kutta splitting method. Another advantage of S4c is that it avoids using negative time

steps in integrating sub-problems at each time interval. Comparison between S4c and many

other existing time-splitting methods for the Dirac equation are carried out in terms of accuracy

and efficiency as well as long time behavior. Numerical results demonstrate the advantage

in terms of efficiency and accuracy of the proposed S4c. The spatial/temporal resolutions of

S4c for the Dirac equation in different parameter regimes including the nonrelativistic limit

regime and the semiclassical limit regime are reported through numerical examples.

The second part deals with super-resolution of the time-splitting methods, especially

the Lie-Trotter splitting (S1) and the Strang splitting (S2) for the Dirac and nonlinear Dirac

equation without external magnetic potentials in the nonrelativistic limit regime, with a small

parameter 0 < ε ≤ 1 inversely proportional to the speed of light. In this limit regime, the

v



solution highly oscillates in time with wavelength at O(ε2) in time. The splitting methods

surprisingly show super-resolution, in the sense of breaking the resolution constraint under

the Shannon’s sampling theorem, i.e. the methods can capture the solution accurately even if

the time step size τ is much larger than the sampled wavelength at O(ε2). In both the Dirac

equation and the nonlinear Dirac equation cases, S1 shows 1/2 order convergence uniformly

with respect to ε , as there are two independent error bounds τ + ε and τ + τ/ε . Moreover,

if τ is non-resonant, i.e. τ is away from certain region determined by ε , S1 would yield an

improved uniform first order O(τ) error bound. In addition, S2 is uniformly convergent for the

Dirac/nonlinear Dirac equation with 1/2 order rate for general time step size τ and uniformly

convergent with 3/2 order rate for non-resonant time step size. Numerical results are reported

to confirm these rigorous results. Furthermore, it is noted that super-resolution is still valid

for higher order splitting methods.

The third part is devoted to studying rigorously the error bounds of four frequently-used

finite difference time domain (FDTD) methods for the Dirac equation in the semiclassical

regime, involving a small dimensionless parameter 0 < δ ≤ 1 representing the scaled Planck

constant. In this regime, there are highly oscillatory propogating waves with wavelength

O(δ ) in both time and space of the solution. The leap-frog, two semi-implicit, and the

Crank-Nicolson finite difference methods are applied to numerically solve the Dirac equation

in the semiclassical regime, and their error estimates are rigorously established respectively. It

is proved that these methods share the same error bounds, which are explicitly related to time

step size τ , mesh size h, as well as the small parameter δ . Furthermore, the dependence of the

observables, i.e. the total probability density and the current density on the parameters τ , h

and δ are found out. Based on the error bounds, in the semiclassical regime, i.e. 0 < δ � 1, to

obtain ‘correct’ numerical solutions and related observables, the δ -scalabilities τ = O(δ 3/2)

and h = O(δ 3/2) are required for all these FDTD methods. Numerical tests are carried out to

support the error estimates.

vi
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This chapter serves as an introduction of the thesis. A brief overview of different regimes

of the Dirac equation is presented, and the relation among Dirac, Weyl and Majorana equations

is discussed. In the third section, we introduce the nonlinear Dirac equation. The last two

sections summarize the problems studied and show the structure and scope of the thesis.

1.1 The Dirac equation and its different regimes
The Schrödinger equation plays an important role in quantum mechanics, just as Newton’s

second law does in classical physics. It is a scalar equation describing the evolution of a

quantum system [103]. However, the Schrödinger equation would no longer be valid when

the velocity of the particle is very high so that special relativity should be taken into accout.

In this case, the Klein-Gordon equation was first proposed in 1926 [49]. It solved many

problems, but the most severe drawback is that its probability density may be negative. To

solve this problem, Paul Dirac derived the Dirac equation in 1928 , which could be seen as

the square root of the Klein-Gordon equation, and has only the first order time derivative.

The standard expression of the Dirac equation under external electromagnetic potentials

is given as [27, 50, 51, 52, 121]

ih̄∂tΨ =

(
−ich̄

3

∑
j=1

α j∂ j +mc2
β

)
Ψ+ e

(
V (t,x)I4−

3

∑
j=1

A j(t,x)α j

)
Ψ, x ∈ R3. (1.1.1)

In the equation, Ψ := Ψ(t,x) = (ψ1(t,x), ψ2(t,x),ψ3(t,x),ψ4(t,x))T ∈ C4 is the complex-

valued spinor wave function, with t representing the time, and x = (x1,x2,x3)
T representing

1



CHAPTER 1. INTRODUCTION

the spatial coordinate. ∂ j means ∂x j for j = 1,2,3. V (t) := V (t,x), and A(t) := A(t,x) =

(A1(t,x),A2(t,x),A3(t,x))T respectively stand for the external electric and magnetic poten-

tials, which are all real-valued given functions. There are also many constants including

i =
√
−1, h̄ the Planck constant, m the mass, c the speed of light and e the unit charge. Finally,

β and α j ( j = 1,2,3) are 4×4 Dirac representation matrices of the four-dimensional Clifford

algebra:

β =

(
I2 0

0 −I2

)
, α j =

(
0 σ j

σ j 0

)
, j = 1,2,3, (1.1.2)

where In is the n×n identity matrix and σ j ( j = 1,2,3) are the Pauli matrices defined as:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.1.3)

The Dirac equation is widely applied in relativistic quantum mechanics. It describes

the motion of relativistic spin-1/2 massive particles, such as electrons and quarks. It fully

explained the hydrogen spectrum and predicted the existence of antimatter. Recently, the

Dirac equation has been extensively adopted to investigate theoretically the structures and/or

dynamical properties of graphene and graphite as well as other two-dimensional (2D) materials

[1, 59, 96, 95], and to study the relativistic effects in molecules in super intense lasers, e.g.,

attosecond lasers [31, 63].

The Dirac equation (1.1.1) could be nondimensionalized using

x̃ =
x
xs
, t̃ =

t
ts
, m̃ =

m
ms

, Ṽ =
V
As

, Ã =
A
As

, Ψ̃(t̃, x̃) =
Ψ(t,x)

ψs
, (1.1.4)

where xs, ts and ms are respectively length unit, time unit and mass unit. Plugging (1.1.4) into

(1.1.1) and taking ψs = x−3/2
s and As =

msx2
s

et2
s

, after some simplification and then removing all ,̃

we obtain the dimensionless Dirac equation in 3D

iδ∂tΨ =

(
−i

δ

ε

3

∑
j=1

α j∂ j +
ν

ε2 β

)
Ψ+

(
V (t,x)I4−

3

∑
j=1

A j(t,x)α j

)
Ψ, x ∈ R3, (1.1.5)

where the three dimensionless parameters 0 < ε,δ ,ν ≤ 1 are given as

ε =
xs

tsc
=

vs

c
, δ =

h̄ts
msx2

s
, ν = m̃ =

m
ms

, (1.1.6)
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with vs = xs/ts defined as the velocity unit. Indeed, here ε indicates the ratio between the

wave velocity and the speed of light, δ stands for the scaled Planck constant and ν is the ratio

between the mass of the particle and the mass unit.

As discussed in [15], under certain assumptions on the electromagnetic potentials V (t,x)

and A(t,x), the Dirac equation (1.1.5) in 3D could be reduced to equations in two dimensions

(2D) and one dimension (1D). Specifically, the Dirac equation in 2D has been widely applied

in modeling the electron structure and dynamics of graphene and other 2D materials as they

share the same dispersion relation on certain points in the phase space which are called Dirac

or conical points [59, 61, 62, 95]. Actually, the Dirac equation (1.1.5) in 3D and its dimension

reduction to 2D and 1D can be expressed in a unified way as

iδ∂tΨ =

(
−i

δ

ε

d

∑
j=1

α j∂ j +
ν

ε2 β

)
Ψ+

(
V (t,x)I4−

d

∑
j=1

A j(t,x)α j

)
Ψ, x ∈ Rd, (1.1.7)

where d = 1,2,3 indicates the dimension, x is set to be (x1,x2)
T in 2D and x1 in 1D. To study

the dynamics of the Dirac equation (1.1.7), the initial condition is usually taken as

Ψ(t = 0,x) = Ψ0(x), x ∈ Rd. (1.1.8)

The Dirac equation (1.1.7) with (1.1.8) is dispersive, time-symmetric, and it conserves

the total probability [15]

‖Ψ(t, ·)‖2 :=
∫
Rd
|Ψ(t,x)|2dx =

∫
Rd

4

∑
j=1
|ψ j(t,x)|2dx≡‖Ψ(0, ·)‖2 = ‖Ψ0‖2, t ≥ 0, (1.1.9)

and the energy [15]

E(Ψ(t, ·)) :=
∫
Rd

(
−i

δ

ε

d

∑
j=1

Ψ
∗
α j∂ jΨ+

ν

ε2 Ψ
∗
βΨ+V (t,x)|Ψ|2−

d

∑
j=1

A j(t,x)Ψ∗α jΨ

)
dx

≡ E(Ψ0), t ≥ 0, (1.1.10)

where Ψ∗ = Ψ
T with f denoting the complex conjugate of f .

Introduce the total probability density ρ := ρ(t,x) as

ρ(t,x) =
4

∑
j=1

ρ j(t,x) = Ψ(t,x)∗Ψ(t,x), x ∈ Rd, (1.1.11)

3
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where the probability density ρ j := ρ j(t,x) of the j-th ( j = 1,2,3,4) component is defined as

ρ j(t,x) = |ψ j(t,x)|2, x ∈ Rd, (1.1.12)

and the current density J(t,x) = (J1(t,x), . . . ,Jd(t,x)))T is defined as

Jl(t,x) =
1
ε

Ψ(t,x)∗αlΨ(t,x), l = 1, . . . ,d, (1.1.13)

then we could derive the following conservation law from the Dirac equation (1.1.7) [15]

∂tρ(t,x)+∇ ·J(t,x) = 0, x ∈ Rd, t ≥ 0. (1.1.14)

Moreover, if the electric potential V is perturbed by a real constant V 0, i.e., V →V +V 0,

then the solution Ψ(t,x)→ e−iV 0t
δ Ψ(t,x), which implies that the probability density of each

component ρ j( j = 1,2,3,4) and the total probability density ρ are all unchanged. In addition,

when d = 1, if the magnetic potential A1 is perturbed by a real constant A0
1, i.e., A1→ A1+A0

1,

then the solution Ψ(t,x)→ ei
A0

1t
δ

α1Ψ(t,x), which implies that only the total probability density

ρ is unchanged; however, this property is unfortunately not valid in 2D and 3D. Furthermore,

if the external electromagnetic potentials are all real constants, i.e. V (t,x)≡V 0 and A j(t,x)≡
A0

j ( j = 1, . . . ,d) with A0 = (A0
1, ...,A

0
d)

T , the Dirac equation (1.1.7) admits the plane wave

solution Ψ(t,x) = Bei(k·x−ω

δ
t) with ω the time frequency, B ∈ R4 the amplitude vector and

k = (k1, ...,kd)
T ∈ Rd the spatial wave number, which satisfies the following eigenvalue

problem

ωB =

(
d

∑
j=1

(
δk j

ε
−A0

j

)
α j +

ν

ε2 β +V 0I4

)
B. (1.1.15)

Solving the above equation, we can get the dispersion relation of the Dirac equation (1.1.7)

ω := ω(k) =V 0± 1
ε2

√
ν2 + ε2|δk− εA0|2, k ∈ Rd. (1.1.16)

In 2D and 1D, i.e. d = 2 or 1 in (1.1.7), similar to the process in [14], the Dirac

equation (1.1.7) can be decoupled into simplified PDEs with two-component wave function

Φ := Φ(t,x) = (φ1(t,x),φ2(t,x))T ∈ C2 satisfying

iδ∂tΦ =

(
−i

δ

ε

d

∑
j=1

σ j∂ j +
ν

ε2 σ3

)
Φ+

(
V (t,x)I2−

d

∑
j=1

A j(t,x)σ j

)
Φ, x ∈ Rd, (1.1.17)
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where Φ = (ψ1,ψ4)
T (or Φ = (ψ2,ψ3)

T ) gives the relation between Φ and Ψ. Again, to study

the dynamics of the Dirac equation (1.1.17), we usually take the initial condition as

Φ(t = 0,x) = Φ0(x), x ∈ Rd. (1.1.18)

The Dirac equation (1.1.17) with (1.1.18) share similar properties with (1.1.7). It is dispersive,

time-symmetric, and it conserves the total probability [15]

‖Φ(t, ·)‖2 :=
∫
Rd
|Φ(t,x)|2dx =

∫
Rd

2

∑
j=1
|φ j(t,x)|2dx

≡ ‖Φ(0, ·)‖2 = ‖Φ0‖2, t ≥ 0, (1.1.19)

and the energy [15]

E(Φ(t, ·)) :=
∫
Rd

(
−i

δ

ε

d

∑
j=1

Φ
∗
σ j∂ jΦ+

ν

ε2 Φ
∗
σ3Φ+V (t,x)|Φ|2−

d

∑
j=1

A j(t,x)Φ∗σ jΦ

)
dx

≡ E(Φ0), t ≥ 0. (1.1.20)

By taking proper definitions of the total probability density ρ := ρ(t,x) and the current

density J(t,x) = (J1(t,x), . . . ,Jd(t,x)))T , we could get the same conservation law (1.1.14)

from the Dirac equation (1.1.17) [15].

Furthermore, the dispersion relation of (1.1.17) is

ω := ω(k) =V 0± 1
ε2

√
ν2 + ε2|δk− εA0|2, k ∈ Rd, (1.1.21)

which is derived from a similar process as for (1.1.7).

If mass unit is chosen as ms = m, length unit xs =
h̄

mc , and time unit ts = xs
c = h̄

mc2 , then

we would have ε = δ = ν = 1, which corresponds to the classical (or standard) scaling. This

choice of xs, ms and ts is appropriate when the wave speed is at the same order of the light

velocity. However, a different choice of xs, ms and ts is more appropriate in other cases. We

remark that the choice of xs, ms and ts determines the observation scale of time evolution

of the system and decides which phenomena can be resolved by discretization on specified

spatial/temporal grids and which phenomena is ‘visible’ by asymptotic analysis.

More specifically, different parameter regimes could be considered for the Dirac equation

(1.1.7) (or (1.1.17)), which are displayed in Fig. 1.1.1:

5
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Dirac Eq.
(1.1.7) (or (1.1.17))

with ε , δ , ν

Standard Dirac Eq.

Weyl Eq.
Schrödinger Eq.

or
Pauli Eq.

relativistic Euler Eqs.

Euler Eqs.

ε = δ = 1

ν → 0

(m→ 0)

massless
limit

δ = ν = 1

ε → 0

(c→ ∞)

nonrelativistic
limit

ε = δ = ν = 1
classical
regime

ε = ν = 1

δ → 0 (h̄→ 0)
semiclassical
limit

ν = 1

ε → 0

(c→ ∞)

nonrelativistic
limit

ν = 1

δ → 0

(h̄→ 0)

semiclassical
limit

Figure 1.1.1: Diagram of different parameter regimes and limits of the Dirac equation (1.1.7)
(or (1.1.17)).

• Standard (or classical) regime, i.e. ε = δ = ν = 1 (⇐⇒ms = m, xs =
h̄

mc , and ts = h̄
mc2 ).

In this regime, the wave velocity is at the order of the speed of light. The dispersion

relation (1.1.16) (or (1.1.21)) suggests that in this case ω(k) = O(1) when |k|= O(1),

and thus the solution propagates waves with wavelength at O(1) in space and time.

In addition, if the initial data Ψ0 = O(1) in (1.1.8) (or Φ0 = O(1) in (1.1.18)), then

the solution Ψ = O(1) of (1.1.7) with (1.1.8) (or Φ = O(1) of (1.1.17) with (1.1.18)),

which implies that the probability density ρ = O(1), current density J = O(1), and

the energy E(Ψ(t, ·)) = O(1). For the classical regime of the Dirac equation, there

have been extensive analytical and numerical studies in the literatures. In the analytical

aspect, we refer to [47, 48, 56, 71, 72, 101] and references therein for the existence and

multiplicity of bound states and/or standing wave solutions. In the numerical part, there

are many efficient and accurate numerical methods [4], including the finite difference

time domain (FDTD) methods [5, 36, 97], time-splitting Fourier pseudospectral (TSFP)

method [15, 80], exponential wave integrator Fourier pseudospectral (EWI-FP) method

6
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[15], the Gaussian beam method [126], etc.

• Massless regime, i.e. ε = δ = 1 and 0 < ν � 1 (⇐⇒ xs =
h̄

msc
and ts = h̄

msc2 ). In this

regime, the mass of the particle is much less than the mass unit. When ν → 0, the

Dirac equation (1.1.7) (or (1.1.17)) converges to the Weyl equation [98, 129] with linear

convergence rate in terms of ν . Any numerical methods for the Dirac equation (1.1.7)

(or (1.1.17)) in the standard regime can be extended to apply in this parameter regime.

• Nonrelativistic regime, i.e. δ = ν = 1 and 0< ε� 1 (⇐⇒ms =m and ts =
mx2

s
h̄ ). In this

regime, the wave speed is much less than the speed of light. From the dispersion relation

(1.1.16) (or (1.1.21)), this regime suggests ω(k) = ε−2 +O(1) when |k|= O(1), and

thus the solution propagates waves with wavelength at O(ε2) and O(1) in time and

space, respectively, when 0 < ε � 1. In addition, if the initial data Ψ0 = O(1) in

(1.1.8) (or Φ0 = O(1) in (1.1.18)), then the solution Ψ = O(1) of (1.1.7) with (1.1.8)

(or Φ = O(1) of (1.1.17) with (1.1.18)), which implies that the probability density

ρ = O(1), current density J = O(ε−1) and the energy E(Ψ(t, ·)) = O(ε−2). The highly

oscillatory nature of the solution in time and the unboundedness of the energy bring

significant difficulty in mathematical analysis and numerical simulation of the Dirac

equation in the nonrelativistic regime, i.e. 0 < ε � 1. It is proved that the Dirac

equation (1.1.7) (or (1.1.17)) converges – ‘singularly’ – to the Pauli equation [29, 81]

and/or the Schrödinger equation [7, 29] when ε → 0+ through diagonalizing the Dirac

operator and using proper ansatz. Rigorous error estimates have been established for

the FDTD, TSFP and EWI-FP methods in this parameter regime [15]. The error bounds

depend explicitly on the mesh size h, time step τ and the small parameter ε . Recently,

a uniformly accurate multiscale time integrator pseudospectral method was proposed

and analyzed for the Dirac equation in the nonrelativistic regime, which converges

uniformly with respect to ε ∈ (0,1] [14, 90], making the time step sizes independent of

the small parameter ε .

• Semiclassical regime, i.e. ε = ν = 1 and 0 < δ � 1 (⇐⇒ ms = m and ts = xs
c ), where

the quantum effect is neglected. In this regime, the solution propagates waves with

wavelength at O(δ ) in space and time [32] when 0 < δ � 1. In addition, if the initial

7
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data Ψ0 = O(1) in (1.1.8) (or Φ0 = O(1) in (1.1.18)), then the solution Ψ = O(1) of

(1.1.7) with (1.1.8) (or Φ = O(1) of (1.1.17) with (1.1.18)), which implies that the prob-

ability density ρ = O(1), current density J = O(1) and the energy E(Ψ(t, ·)) = O(1).

Similar to the nonrelativistic regime, the severe oscillation of the solution in time and

space makes it difficult to carry out the mathematical analysis and numerical simulation

of the Dirac equation in the semiclassical regime. When δ → 0, the Dirac equation

(1.1.7) (or (1.1.17)) converges – ‘singularly’ – to the relativistic Euler equations [6, 70,

112]. The convergence could be proved by using the Wigner transformation method. It

is an interesting question to establish rigorous error estimates of different numerical

methods for the Dirac equation in the semiclassical regime, just as the case for the

Schrödinger equation [3, 11, 21, 22, 39, 40, 86]. Specifically, it is meaningful to find

out the dependence of the mesh size h and time step τ on the small parameter δ ∈ (0,1].

• Simultaneously nonrelativistic and massless regime, i.e. δ = 1, ν ∼ ε and 0 < ε � 1

(⇐⇒ ts =
msx2

s
h̄ ). In this regime, the wave speed is much less than the speed of light and

the mass of the particle is much less than the mass unit. Here we assume ν = ν0ε with

ν0 > 0 a constant independent of ε ∈ (0,1]. In this case, the Dirac equation (1.1.7) can

be re-written as (d = 1,2,3)

i∂tΨ =

(
−i

1
ε

d

∑
j=1

α j∂ j +
ν0

ε
β

)
Ψ+

(
V (t,x)I4−

d

∑
j=1

A j(t,x)α j

)
Ψ, x ∈ Rd,

(1.1.22)

and similarly, the Dirac equation (1.1.17)) can be re-written as (d = 1,2)

i∂tΦ =

(
−i

1
ε

d

∑
j=1

σ j∂ j +
ν0

ε
σ3

)
Φ+

(
V (t,x)I2−

d

∑
j=1

A j(t,x)σ j

)
Φ, x ∈ Rd.

(1.1.23)

In this parameter regime, formally the dispersion relation (1.1.16) (or (1.1.21)) suggests

ω(k) = O(ε−1) when |k|= O(1) and thus the solution propagates waves with wave-

length at O(ε) and O(1) in time and space respectively when 0 < ε � 1. In addition,

if the initial data Ψ0 = O(1) in (1.1.8) (or Φ0 = O(1) in (1.1.18)), then the solution

Ψ = O(1) of (1.1.22) with (1.1.8) (or Φ = O(1) of (1.1.23) with (1.1.18)), which im-

plies that the probability density ρ = O(1), current density J = O(ε−1) and the energy

8
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E(Ψ(t, ·)) = O(ε−1). Again, because of the difficulty in analysis and numerical simu-

lation of the Dirac equation in this regime, which is caused by the highly oscillatory

nature of the solution in time and the unboundedness of the energy, it is worthwhile to

study the singular limit of the Dirac equation (1.1.22) (or (1.1.23)) when ε → 0+ and

establish rigorous error estimates of various numerical methods for it. Specifically, we

could try to find out the explicit dependence of the mesh size h and time step size τ on

the small parameter ε ∈ (0,1].

1.2 Relation to the Weyl and Majorana equations
In the representation of the Dirac equation (1.1.1), if there is no external electromagnetic

potentials, then by taking natural units (h̄ = c = 1), the equation can be expressed in a compact

form (
i

3

∑
k=0

γ
k
∂k−m

)
Ψ = 0, x ∈ R3. (1.2.1)

In this expression, ∂0 is used to represent ∂t , and ∂1, ∂2, ∂3 have the same meaning as in

(1.1.1). The γ matrices are

γ
0 =

(
I2 0

0 −I2

)
, γ

j =

(
0 σ j

−σ j 0

)
, j = 1,2,3, (1.2.2)

where σ j ( j = 1,2,3) are still the Pauli matrices defined in (1.1.3).

Actually, to describe a fermion field, the γ-matrices could also be taken in other forms as

long as they satisfy the two requirements [99]{
[γ j,γk]+ = 2g jkI4

γ0γkγ0 = (γk)
∗

(1.2.3)

which are obtained from the energy-momentum relation, and the requirement that the Hamil-

tonian should be Hermitian, respectively. In (1.2.3), the anticommutator of two elements A, B

is defined as [A,B]+ = AB+BA; g indicates the Minkowski metric with signature (+ − −−),
which means it could be seen as a 4×4 matrix with diagonal line (1,−1,−1,−1); g jk is the

element on the j-th row and k-th column of g in the matrix form; γk = gkkγk, which gives

γ0 = γ
0, ,γ j =−γ

j, j = 1,2,3. (1.2.4)

9
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The γ-matrices in (1.2.2) is one possible choice satisfying (1.2.3). It is called the Dirac

representation of the γ-matrices, as it results in the Dirac equation (1.1.1). Besides this choice,

there are also other two meaningful representations which are named the Weyl representation

and the Majorana representation respectively, because from these two set of γ-matrices, Weyl

equation and Majorana equation could be derived. In this sense, the Dirac equation, Weyl

equation and Majorana equation are closely related through the unified equation (1.2.1).

• The Weyl representation

The choice of the γ-matrices

γ
0 =

(
0 I2

I2 0

)
, γ

j =

(
0 σ j

−σ j 0

)
, j = 1,2,3, (1.2.5)

is called the Weyl representation or the chiral representation [99]. Plugging (1.2.5) into

(1.2.1), and taking m = 0 for massless particles, we could get two decoupled equations

∂tΨ+(t,x)+
3

∑
j=1

σ3∂ jΨ+(t,x) = 0, x ∈ R3, (1.2.6)

∂tΨ−(t,x)−
3

∑
j=1

σ3∂ jΨ−(t,x) = 0, x ∈ R3, (1.2.7)

where Ψ+(t,x), Ψ−(t,x) respectively correspond to the upper two and lower two

components of Ψ(t,x), i.e. (ΨT
+(t,x),ΨT

−(t,x))T = Ψ(t,x). Equations (1.2.6) and

(1.2.7) are both Weyl equations, (1.2.6) describes right-handed Weyl spinors, while

(1.2.7) decribes left-handed Weyl spinors.

• The Majorana representation

It could be noticed that if all the non-zero elements in the γ-matrices are purely imagi-

nary, then with real initial conditions, the solution to (1.2.1) would always be real. In

fact, there is such a choice of γ-matrices:

γ
0 =

(
0 σ2

σ2 0

)
, γ

1 =

(
iσ1 0

0 iσ1

)
,

γ
2 =

(
0 σ2

−σ2 0

)
, γ

3 =

(
iσ3 0

0 iσ3

)
.

(1.2.8)

10
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By taking this set of γ-matrices in (1.2.1), we would get an equation equivalent to

the Majorana equation [99], and this choice of γ-matrices is called the Majorana

representation. The Majorana equation depicts Majorana fermions, which are quantum

particles which are their own antiparticles. As a result, their wave function should

always remain real with real initial conditions, which corresponds with the property of

(1.2.1) with (1.2.8).

The three choices of γ-matrices mentioned (1.2.2), (1.2.5) and (1.2.8) are just frequently

used ones out of infinitely many choices satisfying (1.2.3). There is definitely some connection

among different sets of the matrices. Actually, there is a theorem stating that any two of the

choices are related by a similarity transformation with a unitary matrix [83]. More detailedly,

suppose {γk|k = 0,1,2,3} and {γ̃k|k = 0,1,2,3} are two representations of the γ-matrices

satisfying (1.2.3), then there exists a unitary matrix U , such that

γ
k =U γ̃

kU∗, k = 0,1,2,3, (1.2.9)

and the respective solutions Ψ and Ψ̃ are related by

Ψ(t,x) =UΨ̃(t,x), t > 0, x ∈ R3, (1.2.10)

which can easily be checked from (1.2.1).

1.3 The nonlinear Dirac equation
To meet the need of simulating self-interacting Dirac fermions [64, 67, 111, 122], the

nonlinear Dirac equation (NLDE) was introduced in 1938 [82], which has the form [50, 64,

67, 73, 74, 111, 122]

ih̄∂tΨ =
[
−ich̄

3

∑
j=1

α j∂ j +mc2
β

]
Ψ+ e

[
V (t,x)I4−

3

∑
j=1

A j(t,x)α j

]
Ψ+F(Ψ)Ψ, x ∈ R3.

(1.3.1)

The nonlinear Dirac equation (1.3.1) is similar to the Dirac equation (1.1.1) except for the

nonlinear term F(Ψ). The nonlinearity is introduced for self-interaction, and in the resulting

field equations, it is cubic with respect to the wave function, which is only significant
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at extremely high densities.There have been different cubic nonlinearities generated from

different applications [64, 67, 73, 74, 111, 122, 128]. Here we take F(Ψ) = g1 (Ψ
∗βΨ)β +

g2|Ψ|2I4 with g1,g2 ∈ R two constants and Ψ∗ = Ψ
T , while f denotes the complex conjugate

of f . The first term, i.e. g2 = 0 and g1 , 0 is motivated from the Soler model in quantum field

theory [64, 67, 111, 122], and the second term i.e. g1 = 0 and g2 , 0 is generated from BECs

with a chiral confinement and/or spin-orbit coupling [42, 73, 74]. A remark is given here that

our numerical methods and their error estimates in this thesis can be easily extended to the

NLDE with other nonlinearities [102, 105, 122].

In fact, the NLDE has also been proposed in the Einstein-Cartan-Sciama-Kibble theory of

gravity in order to extend general relativity to matter with intrinsic angular momentum (spin)

[78]. And recently, the NLDE has been adapted as a mean field model for Bose-Einstein

condensates (BECs) [42, 73, 74] and/or cosmology [102]. Moreover, the experimental

advances in BECs, graphene and other 2D materials have also stimulated the research interests

on the mathematical analysis and numerical simulations of the Dirac equation and/or the

NLDE without/with electromagnetic potentials, especially the honeycomb lattice potential [2,

59, 61].

Similar to the process for Dirac equation [15], through a proper nondimensionalization

(with the choice of xs, ts =
mx2

s
h̄ , As =

mv2

e and ψs = x−3/2
s as the dimensionless length unit,

time unit, potential unit and spinor field unit, respectively) and dimension reduction [15], we

can obtain the dimensionless NLDE in d-dimensions (d = 3,2,1)

i∂tΨ=
[
− i

ε

d

∑
j=1

α j∂ j+
1
ε2 β

]
Ψ+

[
V (t,x)I4−

d

∑
j=1

A j(t,x)α j

]
Ψ+F(Ψ)Ψ, x∈Rd, (1.3.2)

where ε is a dimensionless parameter inversely proportional to the light speed given by

0 < ε :=
xs

ts c
=

v
c
≤ 1, (1.3.3)

with v = xs
ts

the wave speed, and

F(Ψ) = λ1 (Ψ
∗
βΨ)β +λ2|Ψ|2I4, Ψ ∈ C4, (1.3.4)

where λ1 =
g1

mv2x3
s
∈ R and λ2 =

g2
mv2x3

s
∈ R are two dimensionless constants for the interaction

strength.

12



CHAPTER 1. INTRODUCTION

To study the dynamics, we give the initial condition

Ψ(t = 0,x) = Ψ0(x), x ∈ Rd.

The NLDE (1.3.2) is dispersive and time symmetric [127]. Similar to the case for the

Dirac equation, after introducing proper total probability density ρ as well as the current

density J(t,x) = (J1(t,x),J2(t,x), we could get the conservation law (1.1.14). Moreover,

the NLDE (1.3.2) conserves the total mass. The energy is conserved if the electromagnetic

potentials are time-independent, i.e. if V (t,x) = V (x) and A j(t,x) = A j(x) for j = 1,2,3,

then

E(t) :=
∫
Rd

[
− i

ε

d

∑
j=1

Ψ
∗
α j∂ jΨ+

1
ε2 Ψ

∗
βΨ+V (x)|Ψ|2 +G(Ψ)−

d

∑
j=1

A j(x)Ψ∗α jΨ

]
dx

≡ E(0), t ≥ 0, (1.3.5)

where

G(Ψ) =
λ1

2
(Ψ∗βΨ)2 +

λ2

2
|Ψ|4, Ψ ∈ C4. (1.3.6)

In (1.3.2), if the external electromagnetic potentials are taken to be constants, i.e. V (t,x)≡
V 0 and A j(t,x)≡ A0

j for j = 1,2,3, then the NLDE (1.3.2) admits the plane wave solution

as Ψ(t,x) = Bei(k·x−ωt), where the time frequency ω , amplitude vector B ∈ R4 and spatial

wave number k = (k1, . . . ,kd)
T ∈ Rd satisfy

ωB =

[
d

∑
j=1

(
k j

ε
−A0

j

)
α j +

1
ε2 β +V 0I4 +λ1 (B∗βB)β +λ2|B|2I4

]
B, (1.3.7)

which immediately gives the dispersion relation of the NLDE (1.3.2) as

ω := ω(k,B) =V 0 +λ2|B|2±
1
ε2

√
[1+ ε2λ1 (B∗βB)]2 + ε2 |k− εA0|2, k ∈ Rd.

(1.3.8)

Again, similar to the Dirac equation [15], for one dimension (1D) and two dimensions

(2D), the NLDE (1.3.2) can be simplified to the following one [64, 67, 111]

i∂tΦ =
[
− i

ε

d

∑
j=1

σ j∂ j +
1
ε2 σ3

]
Φ+

[
V (t,x)I2−

d

∑
j=1

A j(t,x)σ j

]
Φ+F(Φ)Φ, x ∈ Rd,

(1.3.9)

13
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where

F(Φ) = λ1 (Φ
∗
σ3Φ)σ3 +λ2|Φ|2I2, Φ ∈ C2, (1.3.10)

with λ1 and λ2 both real numbers. In (1.3.9), the two-component wave function Φ is defined

as Φ := Φ(t,x) = (φ1(t,x),φ2(t,x))T ∈ C2. The initial condition for dynamics is given as

Φ(t = 0,x) = Φ0(x), x ∈ Rd. (1.3.11)

The NLDE (1.3.9) has similar properties to its four-component version (1.3.2). It is dispersive

and time symmetric, satisfies the conservation law (1.1.14) [34], conserves total mass, and

also conserves energy

E(t) :=
∫
Rd

(
− i

ε

d

∑
j=1

Φ
∗
σ j∂ jΦ+

1
ε2 Φ

∗
σ3Φ+V (x)|Φ|2−

d

∑
j=1

A j(x)Φ∗σ jΦ+G(Φ)

)
dx

≡ E(0), t ≥ 0, (1.3.12)

where

G(Φ) =
λ1

2
(Φ∗σ3Φ)2 +

λ2

2
|Φ|4, Φ ∈ C2. (1.3.13)

if the electromagnetic potentials are time-independent.

Under constant external electromagnetic potentials, i.e. V (t,x)≡V 0 and A j(t,x)≡ A0
j for

j = 1,2, the NLDE (1.3.9) admits the plane wave solution as Φ(t,x) = Bei(k·x−ωt), with the

time frequency ω , amplitude vector B ∈ R2 and spatial wave number k = (k1, . . . ,kd)
T ∈ Rd

satisfy

ωB =
[ d

∑
j=1

(
k j

ε
−A0

j

)
σ j +

1
ε2 σ3 +V 0I2 +λ1 (B∗σ3B)σ3 +λ2|B|2I2

]
B. (1.3.14)

which implies the dispersion relation of the NLDE (1.3.9) directly as

ω := ω(k,B) =V 0 +λ2|B|2±
1
ε2

√
[1+ ε2λ1 (B∗σ3B)]2 + ε2 |k− εA0|2, k ∈ Rd.

(1.3.15)

The NLDE (1.3.2) (or (1.3.9)) has different regimes with different choices of the dimen-

sionless parameter ε . When ε = 1, which corresponds to the classical regime, extensive

analytical and numerical results have been obtained in the literature. We refer to [8, 9, 28,

41, 53, 54, 55, 88] and references therein for the existence and multiplicity of bound states
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and/or standing wave solutions, Specifically, when ε = 1 with d = 1, V (t,x)≡ A1(t,x)≡ 0

in (1.3.9), and in the nonlinearity (1.3.10), λ1 =−1 and λ2 = 0 is taken , the NLDE (1.3.9)

gives soliton solutions with explicit form derived in [46, 67, 75, 89, 93, 100, 114, 119]. On

the other hand, we refer to[23, 33, 34, 77, 79, 80, 97, 106, 108] and references therein for the

numerical methods and comparison. The numerical methods include the finite difference time

domain (FDTD) methods [34, 77, 97], time-splitting Fourier spectral (TSFP) methods [23,

33, 66, 80], and Runge-Kutta discontinuous Galerkin methods [107, 125, 127].

When 0 < ε � 1, this is the nonrelativistic regime. In this case, there has not been much

work on the analysis and computation of the NLDE (1.3.2) (or (1.3.9)). This is because as

indicated by the dispersion relation (1.1.16) (or (1.3.14)), the solution of the NLDE propogates

waves with wavelength O(ε2) and O(1) respectively in time and space, i.e. the solution is

highly oscillatory in time. Furthermore, the corresponding energy functionals (1.3.5) and

(1.3.12) are indefinite [29, 55] and would become unbounded when ε → 0. Recently, several

numerical methods were applied to the NLDE and the error estimates were carried out [16].

The methods include the finite difference time domain (FDTD) methods, the exponential

wave integrator Fourier pseudospectral (EWI-FP) method, and the time-splitting Fourier

pseudospectral (TSFP) method. To overcome the strict dependency of the time step size on ε ,

uniform accurate (UA) schemes with two-scale formulation approach [90] or multiscale time

integrator pseudospectral method [35] were also designed for NLDE in the nonrelativistic

regime.

1.4 Problems to study
As is pointed out in the previous sections, although there has been much effort devoted

to the study of the Dirac equation, there still lacks thorough understanding of it in different

regimes. This motivates us to design new efficient and accurate numerical methods to solve

the Dirac equation in different regimes, and establish the error estimates. Specifically, the

purposes of the thesis are:

• Find out a proper splitting of the Dirac operator so that a new fourth order compact

splitting method (S4c) could be designed and applied to the Dirac equation. Compare
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the performance of S4c with other fourth-order splitting methods in efficiency and

accuracy. Test numerically the error bounds of S4c for the Dirac equation in different

regimes. Moreover, extend the method to the case of time-dependent electromagnetic

potentials.

• Give rigorous proof for the super-resolution property, which is observed through

extensive numerical tests, of the splitting methods in solving the Dirac and nonlinear

Dirac equation in the nonrelativistic regime without external magnetic potential.

• Apply several finite difference time domain methods to the Dirac equation in the

semiclassical regime. Prove rigorously the error estimates and validate them through

numerical examples.

1.5 Structure and scope of the thesis
The thesis is organized as follows.

Chapter 2 proposes a new fourth-order compact time-splitting (S4c) Fourier pseudospectral

method for the Dirac equation. It is applied through splitting the Dirac equation into two

parts and introducing a double commutator between them to help reduce computational

cost. This method successfully cuts down the number of sub-steps in S4c, compared to

the standard fourth-order splitting and the fourth-order partitioned Runge-Kutta splitting.

Comparison in accuracy, efficiency as well as long time behavior among S4c and many

other existing time-splitting methods for the Dirac equation are carried out. The error

bounds and the spatial/temporal resolutions of S4c are also inferred for the Dirac equation

in different parameter regimes including the nonrelativistic regime and the semiclassical

regime. Furthermore, extension to time-dependent potentials is also considered by using the

time-ordering operator.

In Chapter 3, super-resolution of the time-splitting methods for the Dirac equation in the

absence of external magnetic potentials in the nonrelativistic regime is studied. Specifically,

the first-order splitting S1 and the second-order splitting S2 are examined carefully. These

methods surprisingly break the resolution constraint under the Shannon’s sampling theorem,

as they can capture the solution accurately with much larger time step sizs τ than the sampled
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wavelength. Rigorous error estimates and proof for all time step sizes and non-resonant time

step sizes are established respectively, and they are verified through numerical examples. The

error bounds in the full-discretization form are also given and proved.

Chapter 4 deals with the super-resolution of splitting methods for the nonlinear Dirac

equation in the nonrelativistic regime, still without magnetic potentials. The results are

similar to those in the linear case, but the proof is quite different because of the nonlinearity.

Furthermore, it is noticed that super-resolution also holds true for higher-order splitting

methods. Numerical results are presented to give an intuitive understanding.

Chapter 5 is devoted to studying rigorously the Dirac equation in the semiclassical regime,

a small dimensionless parameter 0 < δ ≤ 1 representing the scaled Planck constant. In this

regime, there are highly oscillatory propogating waves with wavelength O(δ ) in both time and

space of the solution. Four frequently-used finite difference time domain (FDTD) methods

are applied, and their error estimates are rigorously proved. Numerical tests are carried out to

support the error estimates.

Finally, the conclusions are drawn in Chapter 6, and some possible future work is also put

forward.

Research in this thesis may give new insights into the regimes not well studied for Dirac

equation, including the nonrelativistic regime, the semiclassical regime, and the simultaneous

nonrelativistic and massless regime. It would also improve the computational efficiency for

Dirac equation with small parameters, especially in the absence of external magnetic potential.

This thesis mainly deals with Dirac equation in 1D. Extension to 2D and 3D is briefly

mentioned, but the details are omitted for concision. Furthermore, during computation, a

bounded domain with periodic boundary conditions is always assumed, which is an acceptable

approximation of the real domain for highly centered wave functions.
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Chapter 2

A Fourth-Order Compact Time-splitting
Method

To solve the Dirac equation (1.1.7) (or (1.1.17)), first- and second-order time-splitting

spectral methods have been applied and analyzed [15]. The splitting methods could be

straightforwardly extended to higher order, e.g. fourth-order methods [24, 94, 116], such

as the standard fourth-order splitting (S4) [65, 118, 130] and the fourth-order partitioned

Runge-Kutta (S4RK) splitting [30, 69]. However, as has been observed in the literature [94],

S4 has to use negative time step in at least one of the sub-problems at each time interval

[65, 118, 130], which causes some drawbacks in practical computation, and the number

of sub-problems in S4RK at each time interval is much bigger than that of S4 [30], which

increases the computational cost at each time step a lot.

In this chapter, we introduce a fourth-order compact time-splitting method (S4c) for

(1.1.7) (and (1.1.17)), in order to overcome the above mentioned problems caused by S4 and

S4RK. We first give a brief review of the time-splitting methods, and then show the detailed

computation of the double commutator for (1.1.7) (and/or (1.1.17)), which is the key point

in applying S4c. The full discretization and properties of S4c are discussed, and comparison

among it and other splitting methods is carried out through numerical examples. Finally, we

show the extension to the equation with time-dependent potentials.
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2.1 Review of different time-splitting schemes
The splitting technique introduced by Trotter in 1959 [123] has been widely applied in

analysis and numerical simulation [3, 21, 22, 39, 40, 94], especially in computational quantum

physics. For details, we refer to [115, 116, 117] and references therein. In the Hamiltonian

system and general ordinary differential equations (ODEs), the splitting approach has been

shown to preserve the structural/geometric properties [76, 124] and is superior in many

applications. Developments of splitting type methods in solving partial differential equations

(PDEs) include utilization in Schrödinger/nonlinear Schrödinger equations [3, 21, 22, 39, 40,

92, 120], Dirac/nonlinear Dirac equations [15, 16, 27, 91], Maxwell-Dirac system [23, 80],

Zakharov system [24, 25, 26, 68, 85, 87], Stokes equation [38], and Enrenfest dynamics [57],

etc.

To review the frequently used time-splitting schemes for integrating differential equations,

we introduce a model equation (d = 1,2,3)

∂tu(t,x) = (T +W )u(t,x), t > 0, x ∈ Rd, (2.1.1)

with the initial data

u(0,x) = u0(x), x ∈ Rd, (2.1.2)

where T and W are two time-independent operators. For any time step τ > 0, the solution of

(2.1.1) with (2.1.2) can be formally represented as

u(τ,x) = eτ(T+W )u0(x), x ∈ Rd. (2.1.3)

A splitting (or split-step or time-splitting) scheme can be designed by approximating the

operator eτ(T+W ) by a sequential product of eτT and eτW [118, 130], i.e.

eτ(T+W ) ≈Π
n
j=1ea jτ T eb jτ W , (2.1.4)

where n ≥ 1, a j, b j ∈ R ( j = 1, . . . ,n) are to be determined so that the approximation has

certain order of accuracy in terms of τ [118, 130]. Without loss of generality, here we suppose

that the computation of eτW is easier and/or more efficient than of eτT .
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2.1.1 First- and second-order time-splitting schemes

Taking n = 1 and a1 = b1 = 1 in (2.1.4), one can obtain the first-order Lie-Trotter

splitting (S1) as [123] (d = 1,2,3)

u(τ,x)≈ S1(τ)u0(x) := eτT eτW u0(x), x ∈ Rd. (2.1.5)

In this method, one needs to integrate each of the operators T and W once. By using Taylor

expansion, one can formally show the local truncation error as [113]

‖u(τ,x)−S1(τ)u0(x)‖ ≤C1τ
2, (2.1.6)

where C1 > 0 is a constant independent of τ and ‖ ·‖ is a norm depending on the problem. As

a result, S1 is formally a first-order integrator [94].

Similarly, taking n = 2, a1 = 0, b1 =
1
2 , a2 = 1 and b2 =

1
2 , one can obtain the second-

order Strang splitting (S2) method as [113] (d = 1,2,3)

u(τ,x)≈ S2(τ)u0(x) := e
τ

2W eτT e
τ

2W u0(x), x ∈ Rd. (2.1.7)

In this method, one needs to integrate the operator T once and W twice. Again, by using

Taylor expansion, one can formally show the local truncation error as [113]

‖u(τ,x)−S2(τ)u0(x)‖ ≤C2τ
3, (2.1.8)

where C2 > 0 is a constant independent of τ . As a result, S2 is formally a second-order

integrator [94].

2.1.2 Fourth-order time-splitting schemes

Besides first- and second-order, high order, especially fourth-order, splitting methods for

(2.1.1) with (2.1.2) via the construction (2.1.4) have been extensively studied in the literature

[43, 44].

For brevity, here we only mention a popular fourth-order Forest-Ruth (or Yoshida)

splitting (S4) method [65, 118, 130] as (d = 1,2,3)

u(τ,x)≈ S4(τ)u0(x) := S2(w1τ)S2(w2τ)S2(w1τ)u0(x), x ∈ Rd, (2.1.9)
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where

w1 =
1

2−21/3 , w2 =−
21/3

2−21/3 . (2.1.10)

In this method, the operators T and W need to be integrated three times and four times,

respectively. Still by using Taylor expansion, one can formally show the local truncation error

as [65]

‖u(τ,x)−S4(τ)u0(x)‖ ≤C4τ
5, (2.1.11)

where C4 > 0 is a constant independent of τ . As a result, S4 is formally a fourth-order

integrator [94]. As mentioned before, due to the fact that negative time steps, e.g. w2 < 0, are

used in the method, in general, it cannot be applied to solve dissipative differential equations.

In addition, as noticed in the literature [94], some drawbacks of the S4 method were reported,

such as the constant C4 is usually much larger than C1 and C2, and the fourth-order accuracy

could be observed only when τ is very small [94, 117].

To overcome the drawbacks of the S4 method, the fourth-order partitioned Runge-

Kutta splitting (S4RK) was proposed [30, 69] for x ∈ Rd (d = 1,2,3) as

u(τ,x) ≈ S4RK(τ)u0(x) (2.1.12)

:= ea1τW eb1τT ea2τW eb2τT ea3τW eb3τT ea4τW eb3τT ea3τW eb2τT ea2τW eb1τT ea1τW u0(x),

where

a1 = 0.0792036964311957, a2 = 0.353172906049774,

a3 =−0.0420650803577195, a4 = 1−2(a1 +a2 +a3),

b1 = 0.209515106613362, b2 =−0.143851773179818, b3 =
1
2
− (b1 +b2).

This method requires much more repetitions of the operators T and W . It can be easily

observed that six integration of T and seven integration of W are required for each time step.

Again, by using Taylor expansion, one can formally show the local truncation error as [30]

‖u(τ,x)−S4RK(τ)u0(x)‖ ≤ C̃4τ
5, (2.1.13)

where C̃4 > 0 is a constant independent of τ . As a result, S4RK is also formally a fourth-order

integrator [94]. Although some problems caused by S4 are solved, it is easy to see that the

computational cost of S4RK is about twice that of S4. Meanwhile, in this method, negative

time steps, e.g. a3 < 0, are still not totally prevented.
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S1 S2 S4 S4RK S4c

T 1 1 3 6 2
W 1 2 4 7 3

Table 2.1.1: The numbers of operators T and W to be implemented in different time-splitting
methods.

2.1.3 Fourth-order compact time-splitting schemes

In order to avoid the negative time steps, a fourth-order gradient symplectic integrator

was proposed by S. A. Chin, motivated by the numerical integration of the Schrödinger

equation [43, 44, 45] as (d = 1,2,3)

u(τ,x)≈ S4c(τ)u0(x) := e
1
6 τW e

1
2 τT e

2
3 τŴ e

1
2 τT e

1
6 τW u0(x), x ∈ Rd, (2.1.14)

where

Ŵ :=W +
1
48

τ
2[W, [T,W ]], (2.1.15)

with [T,W ] := TW −WT the commutator of the two operators T and W and [W, [T,W ]] a

double commutator. Again, Taylor expansion formally gives the local truncation error as [43,

44]

‖u(τ,x)−S4c(τ)u0(x)‖ ≤ Ĉ4τ
5, (2.1.16)

where Ĉ4 > 0 is a constant independent of τ . As a result, S4c is also a fourth-order integrator

[94]. In this method, the operator T only needs to be integrated twice while the operator W

needs to be integrated three times in one time step, under the assumption that the computation

of Ŵ is equivalent to that of W , which means that S4c is much more efficient than S4 and S4RK.

In this sense, it is appropriate to name it a fourth-order compact splitting (S4c) since, at

each time step, the number of sub-steps in it is much less than those in S4 and S4RK. We could

also observe that there is no negative time step in S4c, which serves as its advantage as well.

For comparison, Table 2.1.1 lists the numbers of integration for T and W required by

different splitting methods in each time step. From the table, under the assumptions that the

computation for eτW is easier and/or more efficient than that for eτT and the computation of

eτŴ is similar to that for eτW , we could draw the following conclusions: (i) the computational

time for S2 is almost the same as that for S1; (ii) the computational time for S4c is about
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twice that for S2 (or S1); (iii) among the three fourth-order splitting methods, S4c is the most

efficient and S4RK is the most time-consuming.

2.2 Derivation of double commutators and full discretiza-
tion

Motivated by S4c introduced above, a new fourth-order compact time-splitting Fourier

pseudospectral method could be proposed for the Dirac equation.

In this section, we first show that the double commutator [W, [T,W ]] is linear in T and

then compute it for the Dirac equations (1.1.17) for d = 1,2 and (1.1.7) for d = 1,2,3 with

time-independent electromagnetic potentials. After that, we introduce the full discretization

of S4c for the Dirac equation (1.1.17) in 1D as a simple illustration.

Lemma 2.1. Let T and W be two operators, then we have

[W, [T,W ]] = 2WTW −WWT −TWW. (2.2.1)

Thus the double commutator [W, [T,W ]] is linear in T , i.e. for any two operators T1 and T2,

we have

[W, [a1T1 +a2T2,W ]] = a1[W, [T1,W ]]+a2[W, [T2,W ]], a1,a2 ∈ R. (2.2.2)

Proof. Noticing [T,W ] := TW −WT , we have

[W, [T,W ]] = [W,(TW −WT )] =W (TW −WT )− (TW −WT )W

= WTW −WWT −TWW +WTW

= 2WTW −WWT −TWW. (2.2.3)

From (2.2.3), it is easy to see that the double commutator [W, [T,W ]] is linear in T , i.e. (2.2.2)

is valid. �

2.2.1 The double commutator for 1D

Lemma 2.2. For the Dirac equation (1.1.17) in 1D, i.e. d = 1, with time-independent

potentials V (x), A1(x), define

T =−1
ε

σ1∂1−
iν

δε2 σ3, W =− i
δ

(
V (x)I2−A1(x)σ1

)
, (2.2.4)
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we have

[W, [T,W ]] =− 4iν
δ 3ε2 A2

1(x)σ3. (2.2.5)

Proof. Combining (2.2.4) and (2.2.2), we obtain

[W, [T,W ]] =−1
ε
[W, [σ1∂1,W ]]− iν

δε2 [W, [σ3,W ]]. (2.2.6)

Noticing (2.2.1) and (2.2.4), we have

[W, [σ1∂1,W ]] = 2
(
− i

δ

(
V (x)I2−A1(x)σ1

))
(σ1∂1)

(
− i

δ

(
V (x)I2−A1(x)σ1

))
−
(
− i

δ

(
V (x)I2−A1(x)σ1

))2

(σ1∂1)− (σ1∂1)

(
− i

δ

(
V (x)I2−A1(x)σ1

))2

= − 2
δ 2

(
V (x)I2−A1(x)σ1

)
σ1∂1

(
V (x)I2−A1(x)σ1

)
+

1
δ 2

(
V (x)I2−A1(x)σ1

)2
σ1∂1 +

1
δ 2 σ1∂1

(
V (x)I2−A1(x)σ1

)2

= − 2
δ 2 σ1

(
V (x)I2−A1(x)σ1

)
∂1
(
V (x)I2−A1(x)σ1

)
− 2

δ 2 σ1
(
V (x)I2−A1(x)σ1

)2
∂1 +

2
δ 2 σ1

(
V (x)I2−A1(x)σ1

)2
∂1

+
2

δ 2 σ1
(
V (x)I2−A1(x)σ1

)
∂1
(
V (x)I2−A1(x)σ1

)
= 0. (2.2.7)

[W, [σ3,W ]] = 2
(
− i

δ

(
V (x)I2−A1(x)σ1

))
σ3

(
− i

δ

(
V (x)I2−A1(x)σ1

))
−
(
− i

δ

(
V (x)I2−A1(x)σ1

))2

σ3−σ3

(
− i

δ

(
V (x)I2−A1(x)σ1

))2

= − 2
δ 2

(
V (x)I2−A1(x)σ1

)(
V (x)I2 +A1(x)σ1

)
σ3 +

1
δ 2

(
V (x)I2−A1(x)σ1

)2
σ3

+
1

δ 2

(
V (x)I2 +A1(x)σ1

)2
σ3

= − 1
δ 2

(
2V 2(x)I2−2A2

1(x)I2−
(
V 2(x)I2 +A2

1(x)I2−2A1(x)V (x)σ1
)

−
(
V 2(x)I2 +A2

1(x)I2 +2A1(x)V (x)σ1
))

σ3

= − 1
δ 2

(
−4A2

1(x)I2
)
σ3 =

4
δ 2 A2

1(x)σ3. (2.2.8)

Plugging (2.2.7) and (2.2.8) into (2.2.6), we can obtain (2.2.5) immediately. �
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Combining (2.2.5), (2.2.4) and (2.1.15), we have

Ŵ =W +
1

48
τ

2[W, [T,W ]] =− i
δ

(
V (x)I2−A1(x)σ1

)
− iντ2

12δ 3ε2 A2
1(x)σ3, (2.2.9)

which immediately implies that the computation of eτŴ is similar (or at almost the same

computational cost) to that for eτW in this case.

Corollary 2.1. For the Dirac equation (1.1.7) in 1D, i.e. d = 1, define

T =−1
ε

α1∂1−
iν

δε2 β , W =− i
δ

(
V (x)I4−A1(x)α1

)
, (2.2.10)

we have

[W, [T,W ]] =− 4iν
δ 3ε2 A2

1(x)β . (2.2.11)

2.2.2 The double commutators for 2D and 3D

Similar to the 1D case, we have

Lemma 2.3. For the Dirac equation (1.1.17) in 2D, i.e. d = 2, with time-independent

potentials, define

T =−1
ε

σ1∂1−
1
ε

σ2∂2−
iν

δε2 σ3, W =− i
δ

(
V (x)I2−A1(x)σ1−A2(x)σ2

)
, (2.2.12)

we have

[W, [T,W ]] = F3(x)+F1(x)∂1 +F2(x)∂2, (2.2.13)

where

F1(x) =
4

δ 2ε

(
−A2

2(x)σ1 +A1(x)A2(x)σ2

)
, F2(x) =

4
δ 2ε

(
A1(x)A2(x)σ1−A2

1(x)σ2

)
,

F3(x) =
4

δ 2ε

(
A1(x)∂2A2(x)−A2(x)∂1A2(x)

)
σ1 +

4
δ 2ε

(
A2(x)∂1A1(x)−A1(x)∂2A1(x)

)
σ2

+
4i

δ 2ε

(
A2(x)∂1V (x)−A1(x)∂2V (x)− ν

δε

(
A2

1(x)+A2
2(x)

))
σ3.

Proof. Combining (2.2.12) and (2.2.2), we obtain

[W, [T,W ]] =−1
ε
[W, [σ1∂1,W ]]− 1

ε
[W, [σ2∂2,W ]]− iν

δε2 [W, [σ3,W ]]. (2.2.14)
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From (1.1.3), we have

σ
2
j = I2, σ jσl =−σlσ j, 1≤ j , l ≤ 3,

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2.
(2.2.15)

Noticing (2.2.12), (2.2.1) and (2.2.15), we get

[W, [σ1∂1,W ]]

=− 1
δ 2

(
2
(
V (x)I2−A1(x)σ1−A2(x)σ2

)
(σ1∂1)

(
V (x)I2−A1(x)σ1−A2(x)σ2

)
−
(
V (x)I2−A1(x)σ1−A2(x)σ2

)2
(σ1∂1)− (σ1∂1)

(
V (x)I2−A1(x)σ1−A2(x)σ2

)2
)

=− 2
δ 2 σ1A2(x)σ2

(
∂1V (x)I2−∂1A1(x)σ1−∂1A2(x)σ2

)
− 2

δ 2 σ1
(
V (x)I2−A1(x)σ1 +A2(x)σ2

)(
V (x)I2−A1(x)σ1−A2(x)σ2

)
∂1

+
1

δ 2 σ1
(
V (x)I2−A1(x)σ1 +A2(x)σ2

)2
∂1 +

1
δ 2 σ1

(
V (x)I2−A1(x)σ1−A2(x)σ2

)2
∂1

− 2
δ 2 σ1A2(x)σ2

(
∂1V (x)I2−∂1A1(x)σ1−∂1A2(x)σ2

)
=− 4

δ 2 A2(x)
(
∂1V (x)σ1σ2 +∂1A1(x)σ2−∂1A2(x)σ1

)
+

4
δ 2 A2

2(x)σ1∂1

− 4
δ 2 A1(x)A2(x)σ2∂1

=
4

δ 2

(
A2

2(x)σ1−A1(x)A2(x)σ2
)
∂1 +

4
δ 2 A2(x)

(
∂1A2(x)σ1−∂1A1(x)σ2

)
− 4i

δ 2 A2(x)∂1V (x)σ3. (2.2.16)

[W, [σ3,W ]] = − 1
δ 2

(
2
(
V (x)I2−A1(x)σ1−A2(x)σ2

)
σ3
(
V (x)I2−A1(x)σ1−A2(x)σ2

)
−
(
V (x)I2−A1(x)σ1−A2(x)σ2

)2
σ3−σ3

(
V (x)I2−A1(x)σ1−A2(x)σ2

)2
)

=
2

δ 2 σ3
(
V (x)I2 +A1(x)σ1 +A2(x)σ2

)(
A1(x)σ1 +A2(x)σ2

)
− 2

δ 2 σ3
(
A1(x)σ1 +A2(x)σ2

)(
V (x)I2−A1(x)σ1−A2(x)σ2

)
=

4
δ 2

(
A2

1(x)+A2
2(x)

)
σ3. (2.2.17)

[W, [σ2∂2,W ]] = − 4
δ 2

(
A1(x)A2(x)σ1−A2

1(x)σ2
)
∂2−

4
δ 2 A1(x)

(
∂2A2(x)σ1−∂2A1(x)σ2

)
+

4i
δ 2 A1(x)∂2V (x)σ3. (2.2.18)
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Plugging (2.2.16), (2.2.18) and (2.2.17) into (2.2.14), after some computation, we can get

(2.2.13). �

Corollary 2.2. For the Dirac equation (1.1.7) in 2D, i.e. d = 2, with time-independent

potentials, define

T =−1
ε

α1∂1−
1
ε

α2∂2−
iν

δε2 β , W =− i
δ

(
V (x)I2−A1(x)α1−A2(x)α2

)
, (2.2.19)

we have

[W, [T,W ]] = F3(x)+F1(x)∂1 +F2(x)∂2, (2.2.20)

where

F1(x) =
4

δ 2ε

(
−A2

2(x)α1 +A1(x)A2(x)α2

)
, F2(x) =

4
δ 2ε

(
A1(x)A2(x)α1−A2

1(x)α2

)
,

F3(x) =
4

δ 2ε

(
A1(x)∂2A2(x)−A2(x)∂1A2(x)

)
α1 +

4
δ 2ε

(
A2(x)∂1A1(x)−A1(x)∂2A1(x)

)
α2

+
4i

δ 2ε

(
A2(x)∂1V (x)−A1(x)∂2V (x)

)
γα3−

4iν
δ 3ε2

(
A2

1(x)+A2
2(x)

)
β ,

where

γ =

(
0 I2

I2 0

)
. (2.2.21)

For the Dirac equation (1.1.7) in 3D, i.e. d = 3, we have

Lemma 2.4. For the Dirac equation (1.1.7) in 3D, i.e. d = 3, with time-independent potentials,

define

T =−1
ε

3

∑
j=1

α j∂ j−
iν

δε2 β , W =− i
δ

(
V (x)I4−

3

∑
j=1

A j(x)α j

)
, (2.2.22)

we have

[W, [T,W ]] = F4(x)+F1(x)∂1 +F2(x)∂2 +F3(x)∂3, (2.2.23)
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where

F1(x) =
4

δ 2ε

(
−
(
A2

2(x)+A2
3(x)

)
α1 +A1(x)A2(x)α2 +A1(x)A3(x)α3

)
,

F2(x) =
4

δ 2ε

(
A2(x)A1(x)α1−

(
A2

1(x)+A2
3(x)

)
α2 +A2(x)A3(x)α3

)
,

F3(x) =
4

δ 2ε

(
A3(x)A1(x)α1 +A3(x)A2(x)α2−

(
A2

1(x)+A2
2(x)

)
α3

)
,

F4(x) =
4

δ 2ε

(
A1(x)

(
∂2A2(x)+∂3A3(x)

)
−A2(x)∂1A2(x)−A3(x)∂1A3(x)

)
α1

+
4

δ 2ε

(
A2(x)

(
∂1A1(x)+∂3A3(x)

)
−A1(x)∂2A1(x)−A3(x)∂2A3(x)

)
α2

+
4

δ 2ε

(
A3(x)

(
∂1A1(x)+∂2A2(x)

)
−A1(x)∂3A1(x)−A2(x)∂3A2(x)

)
α3

+
4i

δ 2ε

(
A1(x)

(
∂2A3(x)−∂3A2(x)

)
+A2(x)

(
∂3A1(x)−∂1A3(x)

)
+A3(x)

(
∂1A2(x)−∂2A1(x)

))
γ +

4i
δ 2ε

(
A3(x)∂2V (x)−A2(x)∂3V (x)

)
γα1

+
4i

δ 2ε

(
A1(x)∂3V (x)−A3(x)∂1V (x)

)
γα2

+
4i

δ 2ε

(
A2(x)∂1V (x)−A1(x)∂2V (x)

)
γα3−

4iν
δ 3ε2

(
A2

1(x)+A2
2(x)+A2

3(x)
)

β .

Proof. By combining (2.2.22) and (2.2.2), we obtain

[W, [T,W ]] =−1
ε
[W, [α1∂1,W ]]− 1

ε
[W, [α2∂2,W ]]− 1

ε
[W, [α3∂3,W ]]− iν

δε2 [W, [β ,W ]].

(2.2.24)

From (1.1.2) and (2.2.21), we have

β
2 = I4, α

2
j = I4, α jαl =−αlα j,

βα j =−α jβ , γα j = α jγ, 1≤ j , l ≤ 3,

α1α2 = iγα3, α2α3 = iγα1, α3α1 = iγα2.

(2.2.25)
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Noticing (2.2.22), (2.2.1) and (2.2.25), we get

[W, [β ,W ]] = − 1
δ 2

(
2
(

V (x)I4−
3

∑
j=1

A j(x)α j

)
β

(
V (x)I4−

3

∑
j=1

A j(x)α j

)
−
(

V (x)I4−
3

∑
j=1

A j(x)α j

)2
β −β

(
V (x)I4−

3

∑
j=1

A j(x)α j

)2
)

= − 2
δ 2 β

(
V (x)I4 +

3

∑
j=1

A j(x)α j

)(
V (x)I4−

3

∑
j=1

A j(x)α j

)
+

1
δ 2 β

(
V (x)I4 +

3

∑
j=1

A j(x)α j

)2
+

1
δ 2 β

(
V (x)I4−

3

∑
j=1

A j(x)α j

)2

=
4

δ 2

(
A2

1(x)+A2
2(x)+A2

3(x)
)
β . (2.2.26)

[W, [α1∂1,W ]]

=− 1
δ 2

(
2
(

V (x)I4−
3

∑
j=1

A j(x)α j

)
(α1∂1)

(
V (x)I4−

3

∑
j=1

A j(x)α j

)
−
(

V (x)I4−
3

∑
j=1

A j(x)α j

)2
(α1∂1)− (α1∂1)

(
V (x)I4−

3

∑
j=1

A j(x)α j

)2
)

=− 4
δ 2 α1

(
A2(x)α2 +A3(x)α3

)(
∂1V (x)I4−∂1A1(x)α1−∂1A2(x)α2−∂1A3(x)α3

)
+

1
δ 2 α1

((
V (x)I4−A1(x)α1 +A2(x)α2 +A3(x)α3

)2
+
(

V (x)I4−
3

∑
j=1

A j(x)α j

)2

−2
(

V (x)I4−A1(x)α1 +A2(x)α2 +A3(x)α3

)(
V (x)I4−

3

∑
j=1

A j(x)α j

))
∂1,

=
4

δ 2

(
A2(x)α2 +A3(x)α3

)
α1
(
∂1V (x)I4−∂1A1(x)α1−∂1A2(x)α2−∂1A3(x)α3

)
+

4
δ 2

((
A2

2(x)+A2
3(x)

)
α1−A1(x)A2(x)α2−A1(x)A3(x)α3

)
∂1

=
4

δ 2

((
A2(x)∂1A2(x)+A3(x)∂1A3(x)

)
α1−A2(x)∂1A1(x)α2−A3(x)∂1A1(x)α3

+
(
iA2(x)∂1A3(x)− iA3(x)∂1A2(x)

)
γ + iA3(x)∂1V (x)γα2− iA2(x)∂1V (x)γα3

)
+

4
δ 2

((
A2

2(x)+A2
3(x)

)
α1−A1(x)A2(x)α2−A1(x)A3(x)α3

)
∂1. (2.2.27)
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[W, [α2∂2,W ]]

=
4

δ 2

(
−A1(x)∂2A2(x)α1 +

(
A1(x)∂2A1(x)+A3(x)∂2A3(x)

)
α2−A3(x)∂2A2(x)α3

+
(
iA3(x)∂2A1(x)− iA1(x)∂2A3(x)

)
γ− iA3(x)∂2V (x)γα1 + iA1(x)∂2V (x)γα3

)
+

4
δ 2

((
A2

1(x)+A2
3(x)

)
α2−A2(x)A1(x)α1−A2(x)A3(x)α3

)
∂2. (2.2.28)

[W, [α3∂3,W ]]

=
4

δ 2

(
−A1(x)∂3A3(x)α1−A2(x)∂3A3(x)α2 +

(
A1(x)∂3A1(x)+A2(x)∂3A2(x)

)
α3

+
(
iA1(x)∂3A2(x)− iA2(x)∂3A1(x)

)
γ + iA2(x)∂3V (x)γα1− iA1(x)∂3V (x)γα2

)
+

4
δ 2

((
A2

1(x)+A2
2(x)

)
α3−A3(x)A1(x)α1−A3(x)A2(x)α2

)
∂3. (2.2.29)

Plugging (2.2.27), (2.2.28), (2.2.29) and (2.2.26) into (2.2.24), after some computation, we

obtain (2.2.23). �

From Lemmas 2.2, 2.3 and 2.4 and Corollaries 2.1 and 2.2, it is easy to observe that the

double commutator will vanish when the Dirac equation (1.1.17) (or (1.1.7)) has no magnetic

potentials, as is stated in the following lemma.

Lemma 2.5. For the Dirac equation (1.1.17) in 1D and 2D, and for the Dirac equation (1.1.7)

in 1D, 2D and 3D, when there is no magnetic potential, i.e., when A1(x) = A2(x) = A3(x)≡ 0,

we have

[W, [T,W ]] = 0. (2.2.30)

2.2.3 Full discretization in 1D

In this section, we present the fourth-order compact time-splitting Fourier pseudospectral

method for the Dirac equation (1.1.7) (or (1.1.17)) by applying S4c (2.1.14) for time integration

and the Fourier pseudospectral discretization in space. For simplicity of notations, we present

the numerical method for (1.1.17) in 1D first. Similar to most works in the literature for

the analysis and computation of the Dirac equation (cf. [14, 15, 16, 23] and references

therein), in practical computation, we truncate the whole space problem onto an interval

Ω = (a,b) with periodic boundary conditions. The truncated interval is large enough such
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that the truncation error is negligible. In 1D, the Dirac equation (1.1.17) (V (t,x) ≡ V (x),

A j(t,x)≡ A j(x), j = 1,2) with periodic boundary conditions collapses to

iδ∂tΦ =

(
−i

δ

ε
σ1∂x +

ν

ε2 σ3

)
Φ+

(
V (x)I2−A1(x)σ1

)
Φ, x ∈Ω, t > 0,

Φ(t,a) = Φ(t,b), ∂xΦ(t,a) = ∂xΦ(t,b), t ≥ 0;

Φ(0,x) = Φ0(x), a≤ x≤ b;

(2.2.31)

where Φ := Φ(t,x), Φ0(a) = Φ0(b) and Φ′0(a) = Φ′0(b).

Choose a time step τ > 0, denote tn = nτ for n≥ 0 and let Φn(x) be an approximation of

Φ(tn,x). Re-write the Dirac equation (2.2.31) as

∂tΦ =

(
−1

ε
σ1∂x−

iν
δε2 σ3

)
Φ− i

δ

(
V (x)I2−A1(x)σ1

)
Φ := (T +W )Φ, (2.2.32)

then we can apply the S4c method (2.1.14) for time integration over the time interval [tn, tn+1]

as

Φ
n+1(x) = S4c(τ)Φ

n(x) := e
1
6 τW e

1
2 τT e

2
3 τŴ e

1
2 τT e

1
6 τW

Φ
n(x), a≤ x≤ b, n≥ 0, (2.2.33)

where the two operators T and W are given in (2.2.4) and the operator Ŵ is given in (2.2.9).

In order to calculate e
1
2 τT , we can discretize it in space via Fourier spectral method and then

integrate (in phase space or Fourier space) in time exactly [15, 23]. Since W is diagonalizable

[15], e
1
6 τW can be evaluated very efficiently [15]. For e

2
3 τŴ , by plugging (1.1.3) into (2.2.9),

we can diagonalize it as

Ŵ =− i
δ

(
V (x)I2−A1(x)σ1

)
− iντ2

12δ 3ε2 A2
1(x)σ3 =−iP2(x)Λ2(x)P2(x)∗ := Ŵ (x), (2.2.34)

where Λ2(x) = diag(λ (2)
+ (x),λ (2)

− (x)) with λ
(2)
± (x) = V (x)

δ
± A1(x)

12δ 3ε2

√
144δ 4ε4 +ν2τ4A2

1(x),

and

P2(x) =
1√

2β1(x)

( √
β1(x)+β2(x)

√
β1(x)−β2(x)

−
√

β1(x)−β2(x)
√

β1(x)+β2(x)

)
, a≤ x≤ b, (2.2.35)

with

β1(x) =
√

144δ 4ε4 +ν2τ4A2
1(x), β2(x) = ντ

2A1(x), a≤ x≤ b. (2.2.36)

31



CHAPTER 2. A FOURTH-ORDER COMPACT TIME-SPLITTING METHOD

Thus we have

e
2
3 τŴ = e−

2i
3 τP2(x)Λ2(x)P2(x)∗ = P2(x)e−

2i
3 τΛ2(x)P2(x)∗, a≤ x≤ b. (2.2.37)

Choose a mesh size h := ∆x = b−a
M with M being an even positive integer and denote the

grid points as x j := a+ jh, for j = 0,1, . . . ,M. Denote XM = {U = (U0,U1, ...,UM)T |U j ∈
C2, j = 0,1, . . . ,M, U0 =UM}. For any U ∈ XM, its Fourier representation is given as

U j =
M/2−1

∑
l=−M/2

Ũl eiµl(x j−a) =
M/2−1

∑
l=−M/2

Ũl e2i jlπ/M, j = 0,1, . . . ,M, (2.2.38)

where µl and Ũl ∈ C2 are defined as

µl =
2lπ

b−a
, Ũl =

1
M

M−1

∑
j=0

U j e−2i jlπ/M, l =−M
2
, . . . ,

M
2
−1. (2.2.39)

For U ∈ XM and u(x) ∈ L2(Ω), their l2-norms are defined as

‖U‖2
l2 := h

M−1

∑
j=0
|U j|2, ‖u‖2

l2 := h
M−1

∑
j=0
|u(x j)|2. (2.2.40)

Let Φn
j be the numerical approximation of Φ(tn,x j) and denote Φn =

(
Φn

0,Φ
n
1, . . . ,Φ

n
M
)T ∈XM

as the solution vector at t = tn. Take Φ0
j = Φ0(x j) for j = 0, . . . ,M, then a fourth-order

compact time-splitting Fourier pseudospectral (S4c) discretization for the Dirac equation

(2.2.31) is given as

Φ
(1)
j = e

τ

6W (x j)Φ
n
j = P1 e−

iτ
6 Λ1(x j)P∗1 Φ

n
j ,

Φ
(2)
j =

M/2−1

∑
l=−M/2

eτΓl
(

Φ̃(1)
)

l
eiµl(x j−a) =

M/2−1

∑
l=−M/2

Ql e−iτDl Q∗l
(

Φ̃(1)
)

l
e2i jlπ/M,

Φ
(3)
j = e

2τ

3 Ŵ (x j)Φ
(2)
j = P2(x j)e−

2iτ
3 Λ2(x j)P2(x j)

∗
Φ

(2)
j , j = 0,1, . . . ,M,

Φ
(4)
j =

M/2−1

∑
l=−M/2

eτΓl
(

Φ̃(3)
)

l
eiµl(x j−a) =

M/2−1

∑
l=−M/2

Ql e−iτDl Q∗l
(

Φ̃(3)
)

l
e2i jlπ/M,

Φ
n+1
j = e

τ

6W (x j)Φ
(4)
j = P1 e−

iτ
6 Λ1(x j)P∗1 Φ

(4)
j ,

(2.2.41)

where

W (x j) :=− i
δ

(
V (x j)I2−A1(x j)σ1

)
=−iP1 Λ1(x j)P∗1 , j = 0,1, . . . ,M,

Γl =−
iµl

ε
σ1−

iν
δε2 σ3 =−iQl Dl Q∗l , l =−M

2
, . . . ,

M
2
−1,

(2.2.42)

32



CHAPTER 2. A FOURTH-ORDER COMPACT TIME-SPLITTING METHOD

with Dl = diag
(

1
δε2

√
ν2 +δ 2ε2µ2

l ,−
1

δε2

√
ν2 +δ 2ε2µ2

l

)
, Λ1(x)= diag

(
λ
(1)
+ (x),λ (1)

− (x)
)

with λ
(1)
± (x) = 1

δ

(
V (x)±A1(x)

)
, ηl =

√
ν2 +δ 2ε2µ2

l , and

P1 =

 1√
2

1√
2

− 1√
2

1√
2

 , Ql =
1√

2ηl(ηl +ν)

(
ηl +ν −δεµl

δεµl ηl +ν

)
, l =−M

2
, . . . ,

M
2
−1.

(2.2.43)

We remark here that full discretization by other time-splitting methods together with

Fourier pseudospectral method for spatial discretization can be implemented similarly [15]

and the details are omitted here for brevity.

The S4c (2.2.41) is explicit, its memory cost is O(M) and its computational cost per time

step is O(M lnM). It obtains fourth-order accuracy in time and spectral accuracy in space. In

addition, it conserves the total probability in the discretized level, as shown in the following

lemma.

Lemma 2.6. For any τ > 0, S4c (2.2.41) conserves the mass in the discretized level, i.e.∥∥∥Φ
n+1
∥∥∥2

l2
:= h

M−1

∑
j=0

∣∣∣Φn+1
j

∣∣∣2 ≡ h
M−1

∑
j=0

∣∣∣Φ0
j

∣∣∣2 = h
M−1

∑
j=0

∣∣∣Φ0(x j)
∣∣∣2 = ∥∥∥Φ0

∥∥∥2

l2
, n≥ 0. (2.2.44)

Proof. Noticing W (x j)
∗ = −W (x j) and thus

(
e

τ

6W (x j)
)∗

e
τ

6W (x j) = I2, from (2.2.41) and

summing for j = 0,1, . . . ,M−1, we get∥∥∥Φ
n+1
∥∥∥2

l2
= h

M−1

∑
j=0

∣∣∣Φn+1
j

∣∣∣2 = h
M−1

∑
j=0

∣∣∣e τ

6W (x j)Φ
(4)
j

∣∣∣2 = h
M−1

∑
j=0

(Φ
(4)
j )∗

(
e

τ

6W (x j)
)∗

e
τ

6W (x j)Φ
(4)
j

= h
M−1

∑
j=0

(Φ
(4)
j )∗ I2 Φ

(4)
j = h

M−1

∑
j=0

∣∣∣Φ(4)
j

∣∣∣2 = ∥∥∥Φ
(4)
∥∥∥2

l2
, n≥ 0. (2.2.45)

Similarly, we have∥∥∥Φ
(3)
∥∥∥2

l2
=
∥∥∥Φ

(2)
∥∥∥2

l2
,

∥∥∥Φ
(1)
∥∥∥2

l2
=
∥∥∥Φ

n
∥∥∥2

l2
, n≥ 0. (2.2.46)

Similarly, using the Parsval’s identity and noticing Γ∗l =−Γl and thus
(
eτΓl
)∗ eτΓl = I2, we

get ∥∥∥Φ
(4)
∥∥∥2

l2
=
∥∥∥Φ

(3)
∥∥∥2

l2
,

∥∥∥Φ
(2)
∥∥∥2

l2
=
∥∥∥Φ

(1)
∥∥∥2

l2
. (2.2.47)
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Combining (2.2.45), (2.2.46) and (2.2.47), we obtain∥∥∥Φ
n+1
∥∥∥2

l2
=
∥∥∥Φ

(4)
∥∥∥2

l2
=
∥∥∥Φ

(3)
∥∥∥2

l2
=
∥∥∥Φ

(2)
∥∥∥2

l2
=
∥∥∥Φ

(1)
∥∥∥2

l2
=
∥∥∥Φ

n
∥∥∥2

l2
, n≥ 0. (2.2.48)

Using the mathematical induction, we get the mass conservation (2.2.44). �

2.2.4 Discussion on extension to 2D and 3D

When there is no magnetic potential, i.e., when A1(x) = A2(x) = A3(x)≡ 0 in the Dirac

equation (1.1.17) in 2D and (1.1.7) in 2D and 3D, from Lemma 2.5, we know that the double

commutator [W, [T,W ]] = 0. In this case, noticing (2.1.15), we have

Ŵ =W +
1

48
τ

2[W, [T,W ]] =W, (2.2.49)

and then the S4c method (2.1.14) collapses to

u(τ,x)≈ S4c(τ)u0(x) := e
1
6 τW e

1
2 τT e

2
3 τW e

1
2 τT e

1
6 τW u0(x). (2.2.50)

Applying the S4c method (2.2.50) to integrate the Dirac equation (1.1.17) in 2D over the time

interval [tn, tn+1] with Φ(tn,x) = Φn(x) given, we obtain

Φ
n+1(x) = S4c(τ)Φ

n(x) = e
1
6 τW e

1
2 τT e

2
3 τW e

1
2 τT e

1
6 τW

Φ
n(x), x ∈Ω, n≥ 0, (2.2.51)

where T and W are given in (2.2.12). Similarly, applying the S4c method (2.2.50) to integrate

the Dirac equation (1.1.7) in 2D and 3D over the time interval [tn, tn+1] with Ψ(tn,x) = Ψn(x)

given, we obtain

Ψ
n+1(x) = S4c(τ)Ψ

n(x) = e
1
6 τW e

1
2 τT e

2
3 τW e

1
2 τT e

1
6 τW

Ψ
n(x), x ∈Ω, n≥ 0, (2.2.52)

where T and W are given in (2.2.19) and (2.2.22) for 2D and 3D, respectively. In practical

computation, the operators e
1
6 τW and e

2
3 τW in (2.2.51) and (2.2.52) can be evaluated in physical

space directly and easily [15]. For the operator e
1
2 τT , it can be discretized in space via Fourier

spectral method and then integrate (in phase space or Fourier space) in time exactly. For

details, we refer to [15, 23] and references therein. In fact, the implementation of the S4c

method in this case is much simpler than that of the S4 and S4RK methods.
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On the other hand, when the magnetic potential is nonzero in the Dirac equation (1.1.17)

in 2D and (1.1.7) in 2D and 3D, one has to adapt the formulation (2.2.50) for S4c method. In

this case, the main difficulty is how to efficiently and accurately evaluate the operator e
2
3 τŴ .

This can be done by using the method of characteristics and the nonuniform fast Fourier

transform (NUFFT), which has been developed for the magnetic Schrödinger equation. For

details, we refer to [37, 84] and references therein. Of course, in this situation, it is a little

more tedious in practical implementation for S4c than that for S4 and S4RK.

2.3 Numerical results
In this section, we compare the accuracy and efficiency as well as long time behavior of

the fourth-order compact time-splitting Fourier pseudospectral S4c method (2.2.41) with other

time-splitting methods including the first-order time-splitting (S1) method, the second-order

time-splitting (S2) method, the fourth-order time-splitting (S4) method and the fourth-order

partitioned Runge-Kutta time-splitting (S4RK) method for the Dirac equation in the classical

regime. We also report the spatial/temporal resolution of the S4c method for the Dirac equation

in different parameter regimes.

2.3.1 Comparison with other time-splitting methods in the classical regime

For simplicity, we first consider an example in 1D. In the Dirac equation (1.1.17), we take

d = 1, ε = δ = ν = 1 and

V (x) =
1− x
1+ x2 , A1(x) =

(x+1)2

1+ x2 , x ∈ R. (2.3.1)

The initial data in (1.1.18) is taken as:

φ1(0,x) = e−x2/2, φ2(0,x) = e−(x−1)2/2, x ∈ R. (2.3.2)

The problem is solved numerically on a bounded domain Ω = (−32,32), i.e. a =−32 and

b = 32.

Due to the fact that the exact solution is unavailable, we obtain a numerical ‘exact’ solution

by utilizing the S4c method with a fine mesh size he =
1

16 and a small time step τe = 10−5.
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h0 = 1 h0/2 h0/22 h0/23

S1 1.01 5.16E-2 7.07E-5 –
S2 1.01 5.16E-2 6.96E-5 1.92E-10
S4 1.01 5.16E-2 6.96E-5 3.52E-10
S4c 1.01 5.16E-2 6.96E-5 3.06E-10

S4RK 1.01 5.16E-2 6.96E-5 5.15E-10

Table 2.3.1: Spatial errors eΦ(t = 6) of different time-splitting methods under different mesh
size h for the Dirac equation (1.1.17) in 1D.

Let Φn be the numerical solution obtained by a numerical method with mesh size h and time

step τ , then the error is quantified as

eΦ(tn) = ‖Φn−Φ(tn, ·)‖l2 =

√√√√h
M−1

∑
j=0
|Φ(tn,x j)−Φn

j |2. (2.3.3)

In order to compare the spatial errors, we take time step τ = τe = 10−5 such that the

temporal discretization error could be negligible. Table 2.3.1 lists numerical errors eΦ(t = 6)

for different time-splitting methods under different mesh sizes h. We remark here that, for

the S1 method, in order to observe the spatial error when the mesh size h = h0/23, one has to

choose time step τ ≤ 10−10 which is too small and thus the error is not shown in the table for

this case. From Table 2.3.1, we could see that all the numerical methods are spectral order

accurate in space (cf. each row in Table 2.3.1).

On the other hand, in order to compare the temporal errors, we take the mesh size

h = he =
1

16 such that the spatial discretization error is negligible. Table 2.3.2 lists numerical

errors eΦ(t = 6) for different time-splitting methods under different time step τ . In the table,

we use second (s) as the unit for CPU time. For comparison, Figure 2.3.1 plots eΦ(t = 6)

and eΦ(t = 6)/τα with α taken as the order of accuracy of a certain numerical method (in

order to show the constants C1 in (2.1.6), C2 in (2.1.8), C4 in (2.1.11), C̃4 in (2.1.13) and Ĉ4

in (2.1.16)) for different time-splitting methods under different time step τ .

From Table 2.3.2 and Figure 2.3.1, we can draw the following conclusions: (i) S1 is

first-order in time, S2 is second-order in time, and S4, S4c and S4RK are all fourth-order in time

(cf. Table 2.3.2 and Figure 2.3.1 left). (ii) For any fixed mesh h and time τ , the computational
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τ0 = 1/2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

S1

eΦ(t = 6) 1.17 4.71E-1 2.09E-1 9.90E-2 4.82E-2 2.38E-2 1.18E-2

rate – 1.31 1.17 1.08 1.04 1.02 1.01

CPU Time 0.02 0.05 0.11 0.16 0.37 0.62 1.31

S2

eΦ(t = 6) 7.49E-1 1.87E-1 4.66E-2 1.16E-2 2.91E-3 7.27E-4 1.82E-4

rate – 2.00 2.00 2.00 2.00 2.00 2.00

CPU Time 0.04 0.06 0.11 0.21 0.37 0.75 1.42

S4

eΦ(t = 6) 3.30E-1 3.73E-2 3.05E-3 2.07E-4 1.32E-5 8.29E-7 5.20E-8

rate – 3.15 3.61 3.89 3.97 3.99 4.00

CPU Time 0.10 0.16 0.38 0.58 1.09 2.23 4.41

S4c

eΦ(t = 6) 1.66E-2 9.54E-4 5.90E-5 3.68E-6 2.30E-7 1.43E-8 8.12E-10

rate – 4.12 4.01 4.00 4.00 4.01 4.13

CPU Time 0.06 0.09 0.18 0.35 0.68 1.36 2.68

S4RK

eΦ(t = 6) 2.87E-3 1.78E-4 1.11E-5 6.97E-7 4.34E-8 2.58E-9 1.66E-10

rate – 4.01 3.99 4.00 4.00 4.07 3.96

CPU Time 0.15 0.28 0.57 1.24 2.66 3.94 7.79

Table 2.3.2: Temporal errors eΦ(t = 6) of different time-splitting methods under different
time step τ for the Dirac equation (1.1.17) in 1D. Here we also list convergence rates and
computational time (CPU time in seconds) for comparison.

times for S1 and S2 are quite similar, the computational times of S4c, S4 and S4RK are about

two times, three times and six times of the S2 method, respectively (cf. Table 2.3.2). (iii)

Among the three fourth-order time-splitting methods, S4c and S4RK are quite similar in terms

of numerical errors for any fixed τ and they are much smaller than that of the S4 method,

especially when the τ is not so small (cf. Table 2.3.2 and Figure 2.3.1 left). (iv) For the

constants in front of the convergence rates of different methods, C4�C1 ∼C2� Ĉ4 ∼ C̃4

(cf. Figure 2.3.1 right). (v) S4 suffers from convergence rate reduction when the time step is

not small and there is a very large constant in front of the convergence rate. As a result, this

method is, in general, to be avoided in practical computation, as has been observed when it is
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Figure 2.3.1: Temporal errors eΦ(t = 6) (left) and eΦ(t = 6)/τα with α taken as the order
of accuracy of a certain numerical method (right) of different time-splitting methods under
different time step τ for the Dirac equation (1.1.17) in 1D.
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Figure 2.3.2: Time evolution of the errors eΦ(t) under h = 1
16 and τ = 0.1 over long time of

different time-splitting methods for the Dirac equation (1.1.17) in 1D.

applied for the nonlinear Schrödinger equation as well [120].

To compare the long time behavior of different time-splitting methods, Figure 2.3.2 depicts

eΦ(t) under mesh size h = 1
16 and time step τ = 0.1 for 0≤ t ≤ T := 50.

From Figure 2.3.2, we can observe: (i) The errors increase very fast when t is small, e.g.

0≤ t ≤ O(1), and they almost don’t change when t� 1, thus they are suitable for long time
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simulation, especially the fourth-order methods. (ii) When t is not large, the error of S4 is

about 10 times bigger than that of S4c; however, when t � 1, it becomes about 100 times

larger. (iii) The error of S4RK is always the smallest among all the time-splitting methods.

Based on the efficiency and accuracy as well as long time behavior, in conclusion, among

the three fourth-order time-splitting methods, S4c is more accurate than S4 and it is more

efficient than S4RK. Thus S4c is highly recommended for studying the dynamics of the Dirac

equation, especially in 1D.

Next, we consider an example in 2D. For simplicity, here we only compare the three

fourth-order integrators, i.e., S4c, S4 and S4RK. In order to do so, in the Dirac equation (1.1.17),

we take d = 2, ε = δ = ν = 1 and take the potential in honey-comb form

V (x) = cos
(

4π√
3

e1 ·x
)
+ cos

(
4π√

3
e2 ·x

)
+ cos

(
4π√

3
e3 ·x

)
,

A1(x) = A2(x) = 0, x ∈ R2,

(2.3.4)

with

e1 = (−1,0)T , e2 = (1/2,
√

3/2)T , e3 = (1/2,−
√

3/2)T . (2.3.5)

The initial data in (1.1.18) is taken as:

φ1(0,x) = e−
x2
1+x2

2
2 , φ2(0,x) = e−

(x1−1)2+x2
2

2 , x = (x1,x2)
T ∈ R2. (2.3.6)

The problem is solved numerically on a bounded domain Ω = (−10,10)× (−10,10).

Similar to the 1D example, we obtain a numerical ‘exact’ solution by using S4c with a fine

mesh size he =
1

32 and a small time step τe = 10−4. The error for the numerical solution Φn

with mesh size h and time step τ is quantified as

eΦ(tn) = ‖Φn−Φ(tn, ·)‖l2 = h

√√√√M−1

∑
j=0

M−1

∑
l=0
|Φ(tn,x1 j,x2l)−Φn

jl|2. (2.3.7)

Similar to the 1D case, in order to compare the spatial errors, we take time step τ =

τe = 10−4 such that the temporal discretization error could be negligible. Table 2.3.3 lists

numerical errors eΦ(t = 2) for different time-splitting methods under different mesh size h.

On the other hand, in order to compare the temporal errors, we take mesh size h = he =
1

32
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h0 = 1/2 h0/2 h0/22 h0/23

S4 1.10 1.01E-1 3.83E-4 7.33E-10
S4c 1.10 1.01E-1 3.83E-4 7.33E-10

S4RK 1.10 1.01E-1 3.83E-4 7.34E-10

Table 2.3.3: Spatial errors eΦ(t = 2) of different time-splitting methods under different mesh
size h for the Dirac equation (1.1.17) in 2D.

τ0 = 1/2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

S4

Error 4.33E-1 2.57E-2 3.53E-3 2.83E-4 1.88E-5 1.20E-6 7.51E-8

Order – 4.07 2.87 3.64 3.91 3.98 3.99

CPU Time 0.20 0.26 0.45 1.04 1.63 3.37 6.54

S4c

Error 6.75E-2 3.18E-3 7.91E-5 4.70E-6 2.91E-7 1.81E-8 1.13E-9

Order – 4.41 5.33 4.07 4.01 4.00 4.00

CPU Time 0.12 0.28 0.31 0.55 1.11 2.09 4.14

S4RK

Error 8.32E-3 3.56E-4 7.42E-6 4.43E-7 2.75E-8 1.71E-9 1.07E-10

Order – 4.55 5.59 4.07 4.01 4.00 4.00

CPU Time 0.26 0.43 0.87 1.52 2.92 6.20 11.74

Table 2.3.4: Temporal errors eΦ(t = 2) of different fourth order time-splitting methods under
different time step τ for the Dirac equation (1.1.17) in 2D. Here we also list convergence rates
and computational time (CPU time in seconds) for comparison.

such that the spatial discretization error could be negligible. Table 2.3.4 lists numerical errors

eΦ(t = 2) for different time-splitting methods under different time step τ .

From Table 2.3.3&Table 2.3.4, we can draw the following conclusions: (i) All the three

methods are spectrally accurate in space and fourth-order in time. (ii) For any fixed mesh size

h and time step τ , the computational times of S4 and S4RK are approximately 1.5 times and 3

times of S4c, respectively. (iii) S4c and S4RK are quite similar in terms of numerical errors for

any fixed τ and the errors are much smaller than that of S4, especially when τ is not so small.

(iv) Again, order reduction in time is observed in S4 when τ is not small, however, there is

almost no order reduction in time for S4c and S4RK.
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Based on the efficiency and accuracy for the Dirac equation in high dimensions, in

conclusion, among the three fourth-order time-splitting methods, S4c is more accurate than S4

and it is more efficient than S4RK. Thus S4c is highly recommended for studying the dynamics

of the Dirac equation in high dimensions, especially when there is no magnetic potential.

2.3.2 Application and performance in different regimes

In this subsection, we study numerically temproal/spatial resolution of the fourth-order

compact time-splitting Fourier pseudospectral S4c method (2.2.41) for the Dirac equation in

different parameter regimes. We take d = 1 and the electromagnetic potentials as (2.3.1) in

Dirac equation (1.1.17). To quantify the numerical error, we adapt the relative errors of the

wave function Φ, the total probability density ρ and the current J as

er
Φ(tn) =

‖Φn−Φ(tn, ·)‖l2

‖Φ(tn, ·)‖l2
, er

ρ(tn) =
‖ρn−ρ(tn, ·)‖l2

‖ρ(tn, ·)‖l2
, er

J(tn) =
‖Jn−J(tn, ·)‖l2

‖J(tn, ·)‖l2
,

(2.3.8)

where ρn and Jn are obtained from the wave function Φn via

ρ(t,x) =
2

∑
j=1

ρ j(t,x) = Φ(t,x)∗Φ(t,x), x ∈ Rd, (2.3.9)

and

Jl(t,x) =
1
ε

Φ(t,x)∗σlΦ(t,x), l = 1, . . . ,d, (2.3.10)

with d = 1, respectively. Again, the numerical ‘exact’ solution is obtained by using the S4c

method with a very fine mesh h = he and a very small time step τ = τe.

• In the nonrelativistic regime

Here we take δ = ν = 1, ε ∈ (0,1] and the initial data in (1.1.18) is taken as (2.3.2).

In this parameter regime, the solution propagates waves with wavelength at O(1) and

O(ε2) in space and time, respectively. The problem is solved numerically on a bounded

domain Ω = (−32,32), i.e. a = −32 and b = 32. Similar to the second-order time-

splitting Fourier pseudospectral method [15], the S4c method converges uniformly with

respect to ε ∈ (0,1] at spectral order in space. Detailed numerical results are omitted

here for brevity. Here we only present temporal errors by taking h = he =
1

16 so that the

spatial discretization error could be negligible. Table 2.3.5 shows the temporal errors
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τ0 = 1 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 2.24E-1 5.07E-4 1.95E-6 7.63E-9 <1E-10 <1E-10
order – 4.39 4.01 4.00 – –
ε0/2 1.18 1.05E-2 3.61E-5 1.40E-7 5.67E-10 <1E-10
order – 3.41 4.09 4.00 3.97 –
ε0/22 1.46 2.07E-1 1.69E-3 6.09E-6 2.37E-8 <1E-10
order – 1.41 3.47 4.06 4.00 –
ε0/23 1.41 1.50 5.88E-2 3.84E-4 1.39E-6 5.40E-9
order – -0.04 2.33 3.63 4.06 4.00
ε0/24 1.43 1.47 6.80E-1 1.46E-2 9.33E-5 3.38E-7
order – -0.02 0.56 2.77 3.65 4.05

Table 2.3.5: Temporal errors er
Φ
(t = 6) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the nonrelativistic regime.

τ0 = 1 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 1.71E-1 3.73E-4 1.44E-6 5.62E-9 <1E-10 <1E-10
order – 4.42 4.01 4.00 – –
ε0/2 1.31 7.17E-3 2.45E-5 9.50E-8 3.94E-10 <1E-10
order – 3.76 4.10 4.01 3.96 –
ε0/22 8.19E-1 2.20E-1 8.16E-4 2.92E-6 1.13E-8 <1E-10
order – 0.95 4.04 4.06 4.00 –
ε0/23 8.75E-1 4.77E-1 5.76E-2 1.65E-4 5.89E-7 2.29E-9
order – 0.44 1.52 4.22 4.07 4.00
ε0/24 1.00 1.12 2.04E-1 1.49E-2 4.03E-5 1.43E-7
order – -0.08 1.23 1.88 4.27 4.07

Table 2.3.6: Temporal errors er
ρ(t = 6) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the nonrelativistic regime.

er
Φ
(t = 6) for the wave function under different τ and ε ∈ (0,1]. Similarly, Table 2.3.6

and Table 2.3.7 depict the temporal errors er
ρ(t = 6) and er

J(t = 6) for the probability

and current, respectively.

From Table 2.3.5-Table 2.3.7, when τ . ε2, fourth-order convergence is observed for

the S4c method in the relative error for the wave function, probability and current.

42



CHAPTER 2. A FOURTH-ORDER COMPACT TIME-SPLITTING METHOD

τ0 = 1 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 2.92E-1 6.76E-4 2.61E-6 1.02E-8 <1E-10 <1E-10
order – 4.38 4.01 4.00 – –
ε0/2 1.30 1.98E-2 6.88E-5 2.67E-7 1.06E-9 <1E-10
order – 3.02 4.09 4.00 3.99 –
ε0/22 1.29 2.98E-1 3.40E-3 1.23E-5 4.76E-8 <1E-10
order – 1.06 3.23 4.06 4.00 –
ε0/23 1.21 1.29 8.82E-2 7.85E-4 2.85E-6 1.11E-8
order – -0.05 1.94 3.41 4.05 4.00
ε0/24 1.52 1.44 1.30 2.41E-2 1.92E-4 6.98E-7
order – 0.04 0.07 2.88 3.48 4.05

Table 2.3.7: Temporal errors er
J(t = 6) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the nonrelativistic regime.

This suggests that the ε-scalability for the S4c method in the nonrelativistic regime is:

h = O(1) and τ = O(ε2). In addition, noticing Φ = O(1), ρ = O(1) and J = O(ε−1)

when 0≤ ε � 1, we can formally observe the following error bounds for 0 < ε ≤ 1,

τ . ε2 and 0≤ n≤ T
τ

‖Φn−Φ(tn, ·)‖l2 . hm0 +
τ4

ε6 , ‖ρn−ρ(tn, ·)‖l2 . hm0 +
τ4

ε6 ,

‖Jn−J(tn, ·)‖l2 .
1
ε

(
hm0 +

τ4

ε6

)
.

(2.3.11)

where m0 ≥ 2 depends on the regularity of the solution. Rigorous mathematical justifi-

cation is still on-going.

• In the semiclassical regime Here we take ε = ν = 1, δ ∈ (0,1]. The initial data in

(1.1.18) is taken as

φ1(0,x) =
1
2

e−4x2
eiS0(x)/δ

(
1+

√
1+S′0(x)

2
)
,

φ2(0,x) =
1
2

e−4x2
eiS0(x)/δ S′0(x), x ∈ R,

(2.3.12)

with

S0(x) =
1

40
(
1+ cos(2πx)

)
, x ∈ R. (2.3.13)

43



CHAPTER 2. A FOURTH-ORDER COMPACT TIME-SPLITTING METHOD

h0 = 1 h0/2 h0/22 h0/23 h0/24 h0/25 h0/26

δ0 = 1 8.25E-1 2.00E-1 9.52E-3 6.66E-6 3.78E-10 <1E-10 <1E-10
δ0/2 1.20 7.40E-1 5.31E-2 8.87E-5 3.43E-10 <1E-10 <1E-10
δ0/22 1.41 9.89E-1 5.12E-1 3.81E-3 9.24E-10 <1E-10 <1E-10
δ0/23 1.76 1.21 7.30E-1 2.76E-1 1.91E-5 4.17E-10 <1E-10
δ0/24 1.37 1.36 1.36 5.31E-1 1.54E-1 5.31E-10 <1E-10
δ0/25 2.44 1.92 1.36 1.36 4.36E-1 5.49E-2 2.90E-10

Table 2.3.8: Spatial errors er
Φ
(t = 2) of S4c under different h and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.

h0 = 1 h0/2 h0/22 h0/23 h0/24 h0/25 h0/26

δ0 = 1 5.83E-1 1.39E-1 8.27E-3 4.36E-6 4.92E-10 <1E-10 <1E-10
δ0/2 1.29 5.22E-1 3.71E-2 5.56E-5 2.79E-10 <1E-10 <1E-10
δ0/22 9.22E-1 7.44E-1 2.41E-1 1.54E-3 6.75E-10 <1E-10 <1E-10
δ0/23 1.63 9.39E-1 6.11E-1 6.33E-2 4.78E-6 8.19E-10 <1E-10
δ0/24 2.04 1.40 1.00 3.57E-1 1.97E-2 6.76E-10 <1E-10
δ0/25 5.81 3.65 1.07 1.01 1.86E-1 3.35E-3 5.67E-10

Table 2.3.9: Spatial errors er
ρ(t = 2) of S4c under different h and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.

In this parameter regime, the solution propagates waves with wavelength at O(δ )

in both space and time. The problem is solved numerically on a bounded domain

Ω = (−16,16), i.e. a =−16 and b = 16.

Table 2.3.8 shows the spatial errors er
Φ
(t = 2) for the wave function under different

h and δ ∈ (0,1] with τ = τe = 10−4 such that the temporal discretization error could

be negligible. Table 2.3.9 and Table 2.3.10 depict the spatial errors er
ρ(t = 2) and

er
J(t = 2) for the probability and current, respectively. Similarly, Table 2.3.11 shows the

temporal errors er
Φ
(t = 2) for the wave function under different τ and δ ∈ (0,1] with

h = he =
1

128 so that the spatial discretization error could be negligible. Table 2.3.12

and Table 2.3.13 depict the temporal errors er
ρ(t = 2) and er

J(t = 2) for the probability

and current, respectively.

From Table 2.3.8-Table 2.3.10, when h . δ , spectral convergence (in space) is observed
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h0 = 1 h0/2 h0/22 h0/23 h0/24 h0/25 h0/26

δ0 = 1 8.07E-1 1.67E-1 1.05E-2 5.69E-6 5.10E-10 <1E-10 <1E-10
δ0/2 1.45 6.89E-1 4.28E-2 6.46E-5 3.06E-10 <1E-10 <1E-10
δ0/22 1.94 1.05 3.52E-1 2.13E-3 7.96E-10 <1E-10 <1E-10
δ0/23 2.52 1.03 7.07E-1 1.24E-1 7.75E-6 8.16E-10 <1E-10
δ0/24 2.85 1.77 1.10 5.84E-1 4.72E-2 6.75E-10 <1E-10
δ0/25 3.88 4.06 1.11 1.07 3.81E-1 1.22E-2 5.63E-10

Table 2.3.10: Spatial errors er
J(t = 2) of S4c under different h and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.

τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

δ0 = 1 1.60E-1 1.58E-2 5.09E-4 2.08E-5 1.27E-6 7.89E-8 4.94E-9
order – 3.34 4.96 4.61 4.04 4.01 4.00
δ0/2 8.66E-1 1.48E-1 7.17E-3 3.90E-4 2.41E-5 1.50E-6 9.39E-8
order – 2.55 4.36 4.20 4.02 4.00 4.00
δ0/22 1.26 9.52E-1 1.38E-1 7.38E-3 4.50E-4 2.80E-5 1.75E-6
order – 0.40 2.78 4.23 4.03 4.01 4.00
δ0/23 1.45 1.20 9.94E-1 1.62E-1 9.11E-3 5.57E-4 3.46E-5
order – 0.27 0.27 2.62 4.15 4.03 4.01
δ0/24 1.40 1.44 1.12 9.46E-1 2.62E-1 1.50E-2 9.15E-4
order – -0.04 0.36 0.25 1.85 4.13 4.03
δ0/25 1.44 1.44 1.42 1.22 1.07 4.43E-1 2.83E-2
order – -0.01 0.03 0.22 0.19 1.27 3.97

Table 2.3.11: Temporal errors er
Φ
(t = 2) of S4c under different τ and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.

for the S4c method in the relative error for the wave function, probability and current.

Similarly, from Table 2.3.11-Table 2.3.13, when τ . δ , fourth-order convergence

(in time) is observed for the S4c method in the relative error for the wave function,

probability and current. These suggest that the δ -scalability for the S4c method in

the semiclassical regime is: h = O(δ ) and τ = O(δ ). In addition, noticing Φ = O(1),

ρ = O(1) and J = O(1) when 0≤ δ � 1, we can formally observe the following error
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τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

δ0 = 1 1.15E-1 1.23E-2 4.11E-4 1.70E-5 1.03E-6 6.40E-8 4.11E-9
order – 3.23 4.90 4.59 4.05 4.01 3.96
δ0/2 5.05E-1 9.20E-2 4.93E-3 2.36E-4 1.44E-5 8.98E-7 5.62E-8
order – 2.45 4.22 4.39 4.03 4.01 4.00
δ0/22 7.69E-1 4.22E-1 4.32E-2 2.85E-3 1.73E-4 1.08E-5 6.72E-7
order – 0.86 3.29 3.92 4.04 4.01 4.00
δ0/23 1.28 9.03E-1 5.67E-1 3.77E-2 2.03E-3 1.23E-4 7.66E-6
order – 0.51 0.67 3.91 4.21 4.04 4.01
δ0/24 8.80E-1 1.25 9.86E-1 7.53E-1 2.58E-2 1.35E-3 8.15E-5
order – -0.50 0.34 0.39 4.87 4.26 4.05
δ0/25 9.60E-1 9.90E-1 1.09 1.08 8.82E-1 2.59E-2 1.16E-3
order – -0.04 -0.14 0.02 0.29 5.09 4.48

Table 2.3.12: Temporal errors er
ρ(t = 2) of S4c under different τ and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.

τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

δ0 = 1 1.98E-1 2.21E-2 6.42E-4 2.34E-5 1.42E-6 8.84E-8 5.55E-9
order – 3.16 5.11 4.78 4.04 4.01 3.99
δ0/2 6.61E-1 1.93E-1 8.72E-3 4.34E-4 2.67E-5 1.66E-6 1.04E-7
order – 1.78 4.47 4.33 4.02 4.01 4.00
δ0/22 1.25 6.66E-1 1.46E-1 8.44E-3 5.16E-4 3.21E-5 2.00E-6
order – 0.91 2.19 4.12 4.03 4.01 4.00
δ0/23 1.57 1.19 7.29E-1 1.23E-1 7.10E-3 4.35E-4 2.71E-5
order – 0.39 0.71 2.57 4.11 4.03 4.01
δ0/24 1.04 1.47 1.15 8.24E-1 9.50E-2 5.86E-3 3.60E-4
order – -0.50 0.35 0.48 3.12 4.02 4.02
δ0/25 1.02 1.14 1.19 1.19 9.39E-1 7.34E-2 5.22E-3
order – -0.16 -0.06 0.01 0.34 3.68 3.81

Table 2.3.13: Temporal errors er
J(t = 2) of S4c under different τ and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.

bounds for 0 < δ ≤ 1, τ . δ , h . δ and 0≤ n≤ T
τ

‖Φn−Φ(tn, ·)‖l2 .
hm0

δ m0
+

τ4

δ 4 , ‖ρn−ρ(tn, ·)‖l2 .
hm0

δ m0
+

τ4

δ 4 ,

‖Jn−J(tn, ·)‖l2 .
hm0

δ m0
+

τ4

δ 4 .

(2.3.14)
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τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

ε0 = 1 1.12E-1 4.20E-3 2.18E-4 1.33E-5 8.30E-7 5.18E-8 3.24E-9
order – 4.74 4.27 4.03 4.01 4.00 4.00
ε0/2 4.72E-1 3.66E-2 1.17E-3 6.64E-5 4.09E-6 2.55E-7 1.59E-8
order – 3.69 4.97 4.14 4.02 4.01 4.00
ε0/22 1.14 2.72E-1 1.27E-2 3.64E-4 2.10E-5 1.30E-6 8.08E-8
order – 2.07 4.42 5.12 4.11 4.02 4.00
ε0/23 1.29 5.84E-1 1.60E-1 5.19E-3 1.41E-4 8.22E-6 5.07E-7
order – 1.14 1.87 4.94 5.20 4.10 4.02
ε0/24 1.40 7.31E-1 3.40E-1 9.81E-2 2.46E-3 6.16E-5 3.58E-6
order – 0.94 1.10 1.79 5.32 5.32 4.10
ε0/25 1.39 1.06 3.90E-1 2.09E-1 6.32E-2 1.27E-3 2.84E-5
order – 0.40 1.44 0.90 1.72 5.64 5.48
ε0/26 1.48 1.48 5.90E-1 2.19E-1 1.32E-1 4.21E-2 7.04E-4
order – 0.00 1.32 1.43 0.72 1.65 5.90

Table 2.3.14: Temporal errors er
Φ
(t = 2) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the simultaneously nonrelativistic and massless regime.

where m0 ≥ 2 depends on the regularity of the solution. Rigorous mathematical justifi-

cation is still on-going.

• In the simultaneously nonrelativistic and massless regime We take d = 1, δ = 1 and

ν = ε in (1.1.17) with ε ∈ (0,1]. The initial data in (1.1.18) is taken as (2.3.2). In this

parameter regime, the solution propagates waves with wavelength at O(1) and O(ε) in

space and time, respectively. The problem is solved numerically on a bounded domain

Ω = (−128,128), i.e. a = −128 and b = 128 by S4c. Similar to the nonrelativistic

regime, the S4c method converges uniformly with respect to ε ∈ (0,1] at spectral order

in space. Detailed numerical results are omitted here for brevity. Here we only present

temporal errors by taking h = he =
1

16 so that the spatial discretization error could be

negligible. Table 2.3.14 shows the temporal errors er
Φ
(t = 2) for the wave function

under different τ and ε ∈ (0,1]. Similarly, Table 2.3.15 and Table 2.3.16 depict the

temporal errors er
ρ(t = 2) and er

J(t = 2) for the probability and current, respectively.

From Table 2.3.14-2.3.16, when τ . ε , fourth-order convergence is observed for the
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τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

ε0 = 1 8.62E-2 3.48E-3 1.91E-4 1.17E-5 7.28E-7 4.54E-8 2.82E-9
order – 4.63 4.19 4.03 4.01 4.00 4.01
ε0/2 3.56E-1 2.97E-2 7.90E-4 4.56E-5 2.82E-6 1.76E-7 1.10E-8 0
order – 3.59 5.23 4.12 4.01 4.00 4.00
ε0/22 9.98E-1 2.83E-1 1.22E-2 2.54E-4 1.45E-5 8.95E-7 5.57E-8
order – 1.82 4.53 5.59 4.13 4.02 4.01
ε0/23 8.15E-1 5.58E-1 1.60E-1 4.18E-3 9.00E-5 5.29E-6 3.27E-7
order – 0.55 1.80 5.26 5.54 4.09 4.02
ε0/24 9.32E-1 7.05E-1 3.32E-1 1.02E-1 1.69E-3 3.69E-5 2.19E-6
order – 0.40 1.09 1.70 5.92 5.52 4.08
ε0/25 1.05 6.88E-1 3.28E-1 2.07E-1 6.70E-2 8.68E-4 1.63E-5
order – 0.61 1.07 0.67 1.63 6.27 5.73
ε0/26 8.39E-1 8.04E-1 4.76E-1 1.72E-1 1.27E-1 4.33E-2 5.49E-4
order – 0.06 0.76 1.47 0.44 1.55 6.30

Table 2.3.15: Temporal errors er
ρ(t = 2) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the simultaneously nonrelativistic and massless regime.

S4c method in the relative error for the wave function, probability and current. This

suggests that the ε-scalability for the S4c method in the simultaneously nonrelativistic

and massless regime is: h = O(1) and τ = O(ε). In addition, noticing Φ = O(1),

ρ = O(1) and J = O(ε−1) when 0 ≤ ε � 1, we can formally observe the following

error bounds for 0 < ε ≤ 1, τ . ε and 0≤ n≤ T
τ

‖Φn−Φ(tn, ·)‖l2 . hm0 +
τ4

ε3 , ‖ρn−ρ(tn, ·)‖l2 . hm0 +
τ4

ε3 ,

‖Jn−J(tn, ·)‖l2 .
1
ε

(
hm0 +

τ4

ε3

)
.

(2.3.15)

where m0 ≥ 2 depends on the regularity of the solution. Rigorous mathematical justifi-

cation is still on-going.

Based on the discussion in the introduction chapter and numerical comparison results

in this section, Table 2.3.17 summarizes spatial/temporal wavelengths of the Dirac
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τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

ε0 = 1 2.03E-1 7.11E-3 4.03E-4 2.47E-5 1.54E-6 9.61E-8 5.98E-9
order – 4.84 4.14 4.03 4.01 4.00 4.01
ε0/2 7.37E-1 5.58E-2 1.89E-3 1.11E-4 6.84E-6 4.26E-7 2.66E-8
order – 3.72 4.88 4.09 4.02 4.00 4.00
ε0/22 1.34 4.30E-1 1.81E-2 5.59E-4 3.31E-5 2.05E-6 1.28E-7
order – 1.64 4.57 5.01 4.08 4.02 4.00
ε0/23 1.20 7.03E-1 2.30E-1 6.14E-3 1.89E-4 1.13E-5 7.00E-7
order – 0.77 1.61 5.23 5.02 4.06 4.01
ε0/24 1.36 1.04 4.15E-1 1.31E-1 2.52E-3 7.59E-5 4.57E-6
order – 0.39 1.32 1.66 5.71 5.05 4.05
ε0/25 1.63 1.32 5.79E-1 2.47E-1 8.28E-2 1.27E-3 3.26E-5
order – 0.30 1.19 1.23 1.58 6.03 5.28
ε0/26 1.38 1.47 8.97E-1 3.04E-1 1.52E-1 5.54E-2 7.52E-4
order – -0.09 0.71 1.56 1.00 1.45 6.20

Table 2.3.16: Temporal errors er
J(t = 2) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the simultaneously nonrelativistic and massless regime.

equation under different parameter regimes and the corresponding spatial/temporal

resolution of the S4c method.

2.4 Application to the dynamics of graphene
In this section, we show the simulation of the dynamics of graphene through a 2D

numerical example applying the S4c method. In the example, we choose Ω = (−18,18)×
(−18,18), and the initial state (x = (x1,x2)

T ):

φ1(0,x) = e−
x2
1+x2

2
2 , φ2(0,x) = e−

(x1−1)2+x2
2

2 , (2.4.1)

the density of which is illustrated in Figure 2.4.1.

During the computation, the mesh size is set to be h = 1
16 , and the time step size is fixed

at τ = 0.01. There is no magnetic potential (x = (x1,x2)
T ), i.e.

A j(x)≡ 0, j = 1,2, x ∈Ω.

49



CHAPTER 2. A FOURTH-ORDER COMPACT TIME-SPLITTING METHOD

Spatial
wavelength

Temporal
wavelength

Spatial
accuracy

Temporal
accuracy

Spatial
resolution

Temporal
resolution

Standard
regime

O(1) O(1) spectral O(τ4) O(1) O(1)

Nonrelativistic
regime

O(1) O(ε2) spectral O( τ4

ε6 ) O(1) O(ε2)

Semiclassical
regime

O(δ ) O(δ ) spectral O( τ4

δ 4 ) O(δ ) O(δ )

Nonrelativistic
&massless

regime

O(1) O(ε) spectral O( τ4

ε3 ) O(1) O(ε)

Massless
regime

O(1) O(1) spectral O(τ4) O(1) O(1)

Table 2.3.17: Spatial/temporal wavelengths of the Dirac equation under different parameter
regimes and the corresponding spatial/temporal resolution of the S4c method.

Figure 2.4.1: The initial density of the example, the left figure is for ρ1(0,x), and the right
figure is for ρ2(0,x).

From t = 0 to t = 6, we consider the nonrelativistic regime of the Dirac equation, and

choose ε = 10−3. The electric potential V (x) is chosen to be the honeycomb lattice potential

(x = (x1,x2)
T ):

V (x) = cos(
4π√

3
e1 ·x)+ cos(

4π√
3

e2 ·x)+ cos(
4π√

3
e3 ·x), t ∈ [0,5], x ∈Ω, (2.4.2)

with

e1 = (−1,0)T , e2 = (1/2,
√

3/2)T , e3 = (1/2,−
√

3/2)T . (2.4.3)
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From t = 6 to t = 12, we consider the Dirac equation with ε = 1, and discard the electric

potential, which means, we set (x = (x1,x2)
T )

V (x)≡ 0, x ∈Ω. (2.4.4)

Figure 2.4.2 and Figure 2.4.3 depict the densities ρ j(t,x) = |φ j(t,x)|2 (j = 1, 2) from t = 0

to t = 12.

From the two figures, we find out that the dynamics of the density depends heavily on

ε , which stands for the regime the equation is in. When ε = 10−3, it is in the nonrelativistic

regime, and under the honeycomb lattice potential, it will generate a honeycomb-like density,

which is similar to the electron density in graphene. After that, by taking ε = 1, we set it in

the classical regime to simulate the dynamics of graphene without external electromagnetic

potentials. The figures show that the density will fluctuate in the Zitterbewegung form, as

has been demonstrated through experiments. Remarkably, here the time step size τ = 0.01 is

suitable for both two regimes, i.e., it is irrelevant to the dimensionless parameter ε .

2.5 Extension to the case of time-dependent potentials
In this section, we aim to extend the S4c introduced in this chapter earlier to the case

of time-dependent potentials V (t,x) and A1(t,x). For simplicity, we only consider the 1D

dimensionless Dirac equation (1.1.17) with the initial condition (1.1.18) (d = 1). Extension

to higher dimensions is straightforward.

2.5.1 The method

For illustration, we first consider a model equation

∂tψ(t) = H(t)ψ(t), t > 0, with ψ(t0) = ψ0, (2.5.1)

where H(t) is a time-dependent operator. Suppose the exact solution ψ(t) propagates with

the operator U(t, t0), i.e.,

ψ(t) =U(t, t0)ψ(t0), (2.5.2)

then plugging into (2.5.1), we can get the differential equation

∂tU(t, t0) = H(t)U(t, t0), t > 0, (2.5.3)
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Figure 2.4.2: Dynamics of the density ρ1(t,x) to T = 12.

with U(t0, t0) = Id the identity operator. Take4t > 0, then by Taylor expansion,

U(t0 +4t, t0) = U(t0, t0)+4t∂tU(t0, t0)+O((4t)2)

= (1+4tH(t0))+O((4t)2)

= e4tH(t0)+O((4t)2). (2.5.4)
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Figure 2.4.3: Dynamics of the density ρ2(t,x) to T = 12.

As a result, because of the fact that

U(t +4t, t) = Π
n
k=1U(t +

k
n
4t, t +

k−1
n
4t) (2.5.5)

holds for any positive integer n, we have

U(t +4t, t) = lim
n→∞

e
4t
n H(t+ k−1

n 4t)...e
4t
n H(t+4t

n )e
4t
n H(t) (2.5.6)
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On the other hand, from (2.5.3) with initial condition U(t0, t0) = Id, we have

U(t, t0) = Id +
∫ t

t0
H(s)U(s, t0)ds

= Id +
∫ t

t0
H(s1)ds1 +

∫ t

t0
H(s1)

∫ s

t0
H(s2)U(s2, t0)ds2ds1

= Id +
∞

∑
n=1

∫ t

t0

∫ s1

t0
...
∫ sn−1

t0
dsn...ds1H(s1)...H(sn) (2.5.7)

=: T (e
∫ t

t0
H(s)ds

), (2.5.8)

where T (·) is defined as the time-ordering operator, with the expression given in (2.5.7).

From the above discussion, we get

U(t +4t, t) = T (e
∫ t+4t

t H(s)ds)

= lim
n→∞

e
4t
n H(t+ k−1

n 4t)...e
4t
n H(t+4t

n )e
4t
n H(t).

Define a forward time derivative operator [45] D :=
←
∂
∂t

with

F(t)e4tDG(t) = F(t +4t)G(t), (2.5.9)

where F(·) and G(·) are any two time-dependent operators. Then we have the following

lemma.

Lemma 2.7. The following equality holds true for any time-dependent operator H(t).

T (e
∫ t+4t

t H(s)ds) = exp[4t(H(t)+D)]. (2.5.10)

Proof. We start from the right-hand-side of (2.5.10).

exp[4t(H(t)+D)] = lim
n→∞

(
e
4t
n De

4t
n H(t)

)n

= lim
n→∞

e
4t
n De

4t
n H(t)...e

4t
n De

4t
n H(t)e

4t
n De

4t
n H(t)

= lim
n→∞

e
4t
n H(t+ k−1

n 4t)...e
4t
n H(t+4t

n )e
4t
n H(t)

= T (e
∫ t+4t

t H(s)ds), (2.5.11)

where the first equality comes from the fact that ex(A+B) = limn→∞

(
e

x
n Ae

x
n B
)n

. �
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Under this lemma, for the model problem (2.5.1), suppose H(t) = T +W (t), define

T̃ = T +D , then the solution can be expressed as

ψ(t +4t) = U(t +4t, t)ψ(t) = exp[4t(T +W (t)+D)]ψ(t)

= exp[4t(T̃ +W (t))]ψ(t). (2.5.12)

We could apply the ordinary splitting methods for (2.5.12), for example, Strang splitting gives

ψ(t +4t)≈ S̃2(4t)ψ(t) := e
4t
2 T̃ e4tW (t)e

4t
2 T̃

ψ(t)

= e
4t
2 T e

4t
2 De4tW (t)e

4t
2 T e

4t
2 D

= e
4t
2 T e4tW (t+4t

2 )e
4t
2 T , (2.5.13)

where we use e
4t
2 T̃ = e

4t
2 T e

4t
2 D , as it is straightforward that [T,D ] = 0.

Similarly, we can apply the fourth-order compact splitting to (2.5.12), and get the expres-

sion

ψ(t +4t)≈ S̃4c(4t)ψ(t) := e
4t
6 W (t)e

4t
2 T̃ e

24t
3 W (t)e

4t
2 T̃ e

4t
6 W (t)

ψ(t) (2.5.14)

= e
4t
6 W (t+4t)e

4t
2 T e

24t
3 Ŵ (t+4t

2 )e
4t
2 T e

4t
6 W (t)

ψ(t),

where

Ŵ (t) = W (t)+
1

48
(4t)2[W (t), [T̃ ,W (t)]]

= W (t)+
1

48
(4t)2[W (t), [T,W (t)]]+

1
48

(4t)2[W (t), [D ,W (t)]]. (2.5.15)

Through simple computation, we have

[W (t), [D ,W (t)]] = [W (t), [DW (t)−W (t)D ]] = [W (t), [DW (t)− (W ′(t)+DW (t))]]

= [W (t),−W ′(t)] = 0, (2.5.16)

As a result,

Ŵ (t) =W (t)+
1
48

(4t)2[W (t), [T,W (t)]]. (2.5.17)

Now we can move on to (1.1.17). For simplicity, we only consider the 1D case. Extension

to 2D and (1.1.7) for d = 1,2,3 is straightforward. Actually, it is similar to the case with

time-independent electromagnetic potentials. Define

T =−1
ε

σ1∂x−
iν

δε2 σ2σ3, W (t) =− i
δ
(V (t,x)I2−A1(t,x)σ1) , (2.5.18)
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then we could derive

[W (t), [T,W (t)]] =− 4iν
δ 3ε2 A2

1(t,x)σ3. (2.5.19)

As a result, the semi-discretized fourth-order compact time-splitting method (S4c) could be

defined as:

Φ
n+1(x) = e

1
6 τW (tn+1)e

1
2 τT e

2
3 τŴ (tn+τ/2)e

1
2 τT e

1
6 τW (tn)Φn(x), n = 0,1, ..., (2.5.20)

where Ŵ (t) is defined above. Here Φn(x) is the semi-discretized approximation of Φ(t,x) at

t = tn := nτ , with τ the time step size. The initial value Φ0(x) := Φ0(x) is given.

2.5.2 Numerical results

This sections give the results of applying S4c for the Dirac equation with time-dependent

electromagnetic potentials in the nonrelativistic regime and the semiclassical regime. In the

numerical examples, the time-dependent potentials are taken as

V (t,x) =
1− tx

1+ t2x2 , A1(t,x) =
(tx+1)2

1+ t2x2 , t > 0, x ∈ R. (2.5.21)

And the initial condition is set to be

φ1(0,x) = e−x2/2, φ2(0,x) = e−(x−1)2/2, x ∈ R, (2.5.22)

The relative error is quantified as

er
Φ(tn) =

‖Φn−Φ(tn, ·)‖l2

‖Φ(tn, ·)‖l2
. (2.5.23)

In computation, the problem is solved on a bounded domain Ω with periodic boundary condi-

tions.

I. In the nonrelativistic regime

Take δ = ν = 1. During the computation, the domain is set to be Ω = (−32,32). To

obtain the ‘exact’ solution, fine mesh size he = 1/16 and time step size τe = 10−5 are used.

Results are shown in Table 2.5.1.

From the table, it is clearly observed that when τ . ε2, there is fourth-order convergence

for the S4c method. This suggests that the ε-scalability for the S4c method in the nonrelativistic
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er
Φ
(t = 6) τ0 = 1 τ0/22 τ0/24 τ0/26 τ0/28 τ0/210

ε0 = 1 1.79E-1 1.67E-3 1.50E-6 7.02E-9 <1E-10 <1E-10
order – 3.37 5.06 3.87 – –
ε0/2 9.81E-1 2.12E-2 3.01E-5 1.06E-7 5.12E-10 <1E-10
order – 2.77 4.73 4.08 3.84 –
ε0/22 1.61 1.87E-1 1.87E-3 4.72E-6 1.83E-8 <1E-10
order – 1.55 3.33 4.31 4.00 –
ε0/23 1.37 1.55 4.49E-2 3.00E-4 1.08E-6 4.21E-9
order – -0.09 2.55 3.61 4.06 4.00
ε0/24 1.42 1.62 5.39E-1 1.10E-2 7.25E-5 2.63E-7
order – -0.10 0.80 2.81 3.62 4.05

Table 2.5.1: Temporal errors er
Φ
(t = 6) of S4c under different τ and ε for the Dirac equation

(1.1.17) in 1D in the nonrelativistic regime.

regime is: h = O(1) and τ = O(ε2), which is the same as the case with time-independent

potentials.

II. In the semiclassical regime

Take ε = ν = 1. During the computation, the domain is set to be Ω = (−16,16). To

obtain the ‘exact’ solution, fine mesh size he = 1/16 and time step size τe = 10−4 are used.

Results are shown in Table 2.5.2.

From the table, when τ . δ , fourth-order convergence in time is observed for the S4c

method, which suggests that the δ -scalability for the S4c method in the semiclassical regime

is: h = O(δ ) and τ = O(δ ). The result is also the same as the case with time-independent

potentials.
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er
Φ
(t = 2) τ0 = 1 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

δ0 = 1 1.38E-1 1.24E-2 3.43E-4 1.48E-5 9.10E-7 5.66E-8 3.54E-9
order – 3.48 5.17 4.53 4.03 4.01 4.00
δ0/2 8.81E-1 1.06E-1 4.60E-3 2.71E-4 1.69E-5 1.05E-6 6.57E-8
order – 3.06 4.52 4.08 4.01 4.00 4.00
δ0/22 1.41E 9.90E-1 8.55E-2 4.79E-3 2.94E-4 1.83E-5 1.14E-6
order – 0.52 3.53 4.16 4.03 4.01 4.00
δ0/23 1.44 1.49 9.43E-1 1.03E-1 5.72E-3 3.49E-4 2.16E-5
order – -0.05 0.66 3.20 4.17 4.04 4.01
δ0/24 1.49 1.38 1.43 1.09 2.01E-1 1.26E-2 1.52E-3
order – 0.11 -0.05 0.39 2.44 4.00 3.05
δ0/25 1.39 1.44 1.43 1.47 1.34 2.31E-1 1.09E-2
order – -0.04 0.01 -0.04 0.13 2.54 4.40

Table 2.5.2: Temporal errors er
Φ
(t = 2) of S4c under different τ and δ for the Dirac equation

(1.1.17) in 1D in the semiclassical regime.
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Chapter 3

Super-Resolution of Time-splitting Meth-
ods for the Dirac Equation

In this chapter, a superior property called super-resolution of time-splitting methods for

the Dirac equation without magnetic potential in the nonrelativisitic regime is exhibited and

studied rigorously. This advantageous property makes the time-splitting methods perform

much better in this case, as the time step size no longer needs to be dependent on the small

parameter ε .

3.1 Introduction
Time-splitting methods have been utilized to study the dynamics of the Dirac equation,

and it is found to be efficient in the nonrelativistic regime [15]. In fact, when dealing with

oscillatory problems, the splitting methods usually perform much better than traditional

numerical methods [21, 76]. For instance, in order to obtain “correct” observables of the

Schrödinger equation in the semiclassical regime, the time-splitting spectral method requires

much weaker constraints on time step size and mesh size than the finite difference meth-

ods [21]. Similar properties have been observed for the nonlinear Schrödinger equation

(NLSE)/Gross-Pitaevskii equation (GPE) in the semiclassical regime [3] and the Enrenfest

dynamics [57]. However, in general, splitting methods still suffer from the mesh size/time

step constraints related to the high frequencies in the aforementioned problems, i.e. they need

to obey the resolution constraint determined by the Shannon’s sampling theorem [104] – in

order to resolve a wave one needs to use a few grid points per wavelength. For Dirac equation
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in the nonrelativistic regime, from the analysis in [15], the error bound for second order Strang

splitting TSFP (S2) depends on the small parameter ε as τ2/ε4, which corresponds to such

constraints.

In this chapter, we report a surprising finding that the splitting methods are uniformly

accurate (w.r.t. the rapid oscillations), when applied to the Dirac equation in the nonrelativistic

regime in the absence of external magnetic field. This fact reveals that there is no mesh

size/time step restriction for splitting methods in this situation, e.g. the splitting methods have

super-resolution, which is highly nontrivial. Specifically, through our extensive numerical

experiments, we find out that if the magnetic potentials A j ≡ 0 for j = 1, . . . ,d in (1.1.7) with

δ = ν = 1, the errors of TSFP are then independent of ε and uniform w.r.t. ε , i.e., S2 for

Dirac equation (1.1.7) with δ = ν = 1 without magnetic potentials A j has super-resolution

w.r.t. ε . In such case, (1.1.7) reduces to (d = 1,2,3, δ = ν = 1)

i∂tΨ(t,x) =

(
− i

ε

d

∑
j=1

α j∂ j +
1
ε2 β +V (t,x)I4

)
Ψ(t,x), x ∈ Rd, t > 0, (3.1.1)

with the initial value given in (1.1.8). In lower dimensions (d = 1,2), the four component

Dirac equation (3.1.1) can be reduced to the following two-component form for Φ(t,x) =

(φ1(t,x),φ2(t,x))T ∈ C2 (d = 1,2) [15]:

i∂tΦ(t,x) =

(
− i

ε

d

∑
j=1

σ j∂ j +
1
ε2 σ3 +V (t,x)I2

)
Φ(t,x), x ∈ Rd, t > 0, (3.1.2)

with initial value

Φ(t = 0,x) = Φ0(x), x ∈ Rd. (3.1.3)

The two-component form (3.1.2) is widely used in lower dimensions d = 1,2 due to its

simplicity compared to the four component form (3.1.1).

Our extensive numerical studies and theoretical analysis show that for first-order, second-

order, and even higher order time-splitting Fourier pseudospectral methods, there are always

uniform error bounds w.r.t. ε ∈ (0,1]. In other words, the splitting methods can capture the

solutions accurately even if the time step size τ is much larger than the sampled wavelength

at O(ε2), i.e. they exhibit super-resolution in the sense of breaking the resolution constraint

under the Shannon’s sampling theorem [104]. This super-resolution property of the splitting
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methods makes them more efficient and reliable for solving the Dirac equation without

magnetic potentials in the nonrelativisitc regime, compared to other numerical approaches in

the literature. In the sequel, we will study rigorously the super-resolution phenomenon for

first-order (S1) and second-order (S2) time-splitting methods, and present numerical results to

validate the conclusions.

3.2 Semi-discretization
In this section, we recall the first- and second-order time-splitting methods applied to

the Dirac equation. For simplicity of presentation, we only carry out the splitting methods

and corresponding analysis for (3.1.2) in 1D (d = 1). Generalization to (3.1.1) and/or higher

dimensions is straightforward and results remain valid without modifications.

Denote the Hermitian operator

T ε =−iεσ1∂x +σ3, x ∈ R, (3.2.1)

then the Dirac equation (3.1.2) in 1D can be written as

i∂tΦ(t,x) =
1
ε2 T ε

Φ(t,x)+V (t,x)Φ(t,x), x ∈ R, (3.2.2)

with initial value

Φ(0,x) = Φ0(x), x ∈ R. (3.2.3)

Choose τ > 0 to be the time step size and tn = nτ for n = 0,1, ... as the time steps. Denote

Φn(x) as the numerical approximation of Φ(tn,x), where Φ(t,x) is the exact solution to (3.2.2)

with (3.2.3), then the semi-discretization of the first- and second-order time-splitting methods

can be expressed as follows.

First-order splitting (Lie-Trotter splitting). The discrete-in-time first-order splitting

(S1) is written as [123]

Φ
n+1(x) = e−

iτ
ε2 T ε

e−i
∫ tn+1

tn V (s,x)ds
Φ

n(x), x ∈ R, (3.2.4)

with Φ0(x) = Φ0(x).
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Second-order splitting (Strang splitting). The discrete-in-time second-order splitting

(S2) is written as [113]

Φ
n+1(x) = e−

iτ
2ε2 T ε

e−i
∫ tn+1

tn V (s,x)dse−
iτ

2ε2 T ε

Φ
n(x), x ∈ R. (3.2.5)

with Φ0(x) = Φ0(x).

3.3 Uniform error bounds
For any T > 0, we consider smooth enough solutions, i.e. we assume the electric potential

satisfies

(A) V (t,x) ∈W m,∞([0,T ];L∞(R))∩L∞([0,T ];W 2m+m∗,∞(R)),

with m ∈ N∗, m∗ ∈ {0,1}. In addition, we assume the exact solution Φ(t,x) satisfies

(B) Φ(t,x)∈L∞([0,T ],(H2m+m∗(R))2), m∈N∗, m∗ ∈{0,1}.

We remark here that if the initial value Φ0(x) ∈ (H2m+m∗(R))2, then condition (B) is implied

by condition (A).

For the numerical approximation Φn(x) obtained from S1 (3.2.4) or S2 (3.2.5), we intro-

duce the error function

en(x) = Φ(tn,x)−Φ
n(x), 0≤ n≤ T

τ
, (3.3.1)

then the following error estimates hold.

Theorem 3.1. Let Φn(x) be the numerical approximation obtained from S1 (3.2.4), then under

the assumptions (A) and (B) with m = 1 and m∗ = 0, we have the following error estimates

‖en(x)‖L2 . τ + ε, ‖en(x)‖L2 . τ + τ/ε, 0≤ n≤ T
τ
. (3.3.2)

As a result, there is a uniform error bound for S1

‖en(x)‖L2 . τ + max
0<ε≤1

min{ε,τ/ε} .
√

τ, 0≤ n≤ T
τ
. (3.3.3)
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Theorem 3.2. Let Φn(x) be the numerical approximation obtained from S2 (3.2.5), then under

the assumptions (A) and (B) with m = 2 and m∗ = 0, we have the following error estimates

‖en(x)‖L2 . τ
2 + ε, ‖en(x)‖L2 . τ

2 + τ
2/ε

3, 0≤ n≤ T
τ
. (3.3.4)

As a result, there is a uniform error bound for S2

‖en(x)‖L2 . τ
2 + max

0<ε≤1
min{ε,τ2/ε

3} .
√

τ, 0≤ n≤ T
τ
. (3.3.5)

Remark 3.1. The error bounds in Theorem 3.1 can be expressed as

‖en(x)‖L2 ≤ (C1 +C2T )‖Φ(t,x)‖L∞([0,T ];(H2)2)

(
τ + max

0<ε≤1
min{ε,τ/ε}

)
, 0≤ n≤ T

τ
,

and the error estimates in Theorem 3.2 can be restated as

‖en(x)‖L2 ≤ (C3 +C4T )‖Φ(t,x)‖L∞([0,T ];(H4)2)

(
τ

2 + max
0<ε≤1

min{ε,τ2/ε
3}
)
, 0≤ n≤ T

τ
,

where C j, j = 1,2,3,4 are constants depending only on V (t,x).

This remark could be easily derived by examining the proofs of Theorem 3.1 and Theo-

rem 3.2, and the details will be skipped. We notice that the constants before the error bounds

have linear relations with T , instead of usual exponential ones.

We also remark that higher order time-splitting methods also share the super-resolution

property, but for simplicity, we only focus on S1 and S2 here.

In the following, we derive the proof for Theorem 3.1 and Theorem 3.2, i.e. the uniform

error bounds for the splitting methods S1 and S2. As T ε is diagonalizable in the phase space

(Fourier domain), it can be decomposed as [14, 15, 29]

T ε =
√

Id− ε2∆ Π
ε
+−

√
Id− ε2∆ Π

ε
−, (3.3.6)

where ∆ = ∂xx is the Laplace operator in 1D and Id is the identity operator. Πε
+ and Πε

− are

projectors defined as

Π
ε
+ =

1
2

[
I2 +

(
Id− ε

2
∆
)−1/2

T ε

]
, Π

ε
− =

1
2

[
I2−

(
Id− ε

2
∆
)−1/2

T ε

]
. (3.3.7)
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It is straightforward to see that Πε
+ +Πε

− = I2, and Πε
+Πε
− = Πε

−Πε
+ = 0, (Πε

±)
2 = Πε

±.

Furthermore, through Taylor expansion, we have [29]

Π
ε
+ = Π

0
++ εR1 = Π

0
+− i

ε

2
σ1∂x + ε

2R2, Π
0
+ = diag(1,0), (3.3.8)

Π
ε
− = Π

0
−− εR1 = Π

0
−+ i

ε

2
σ1∂x− ε

2R2, Π
0
− = diag(0,1), (3.3.9)

where R1 : (Hm(R))2→ (Hm−1(R))2 for m≥ 1, m∈N∗, and R2 : (Hm(R))2→ (Hm−2(R))2

for m≥ 2, m ∈ N∗ are uniformly bounded operators with respect to ε .

To help capture the features of solutions, denote

Dε =
1
ε2 (

√
Id− ε2∆− Id) =−(

√
Id− ε2∆+ Id)−1

∆, (3.3.10)

which is a uniformly bounded operator with respect to ε from (Hm(R))2 to (Hm−2(R))2 for

m≥ 2, then we have the decomposition for the unitary evolution operator e
it
ε2 T ε

as

e
it
ε2 T ε

= e
it
ε2 (
√

Id−ε2∆ Πε
+−
√

Id−ε2∆ Πε
−) = eit/ε2

eitDε

Π
ε
++ e−it/ε2

e−itDε

Π
ε
−. (3.3.11)

For the ease of the proof, we first introduce the following two lemmas for the Lie-Trotter

splitting S1 (3.2.4) and the Strang splitting S2 (3.2.5), respectively. For simplicity, we denote

V (t) :=V (t,x), and Φ(t) := Φ(t,x) in short.

Lemma 3.1. Let Φn(x) be the numerical approximation obtained from the Lie-Trotter splitting

S1 (3.2.4), then under the assumptions (A) and (B) with m = 1 and m∗ = 0, we have

en+1(x) = e−
iτ
ε2 T ε

e−i
∫ tn+1

tn V (s,x)dsen(x)+η
n
1 (x)+η

n
2 (x), 0≤ n≤ T

τ
−1, (3.3.12)

with ‖ηn
1 (x)‖L2 . τ2, ηn

2 (x) =−ie−
iτ
ε2 T ε (∫

τ

0 f n
2 (s)ds− τ f n

2 (0)
)
, where

f n
2 (s) =ei2s/ε2

eisDε

Π
ε
+

(
V (tn)Πε

−eisDε

Φ(tn)
)

+ e−i2s/ε2
e−isDε

Π
ε
−

(
V (tn)Πε

+e−isDε

Φ(tn)
)
. (3.3.13)

Proof. From the definition of en(x), noticing the Lie-Trotter splitting formula (3.2.4), we

have

en+1(x) = e−
iτ
ε2 T ε

e−i
∫ tn+1

tn V (s,x)dsen(x)+η
n(x), 0≤ n≤ T

τ
−1, x ∈ R, (3.3.14)

64



CHAPTER 3. SUPER-RESOLUTION OF TIME-SPLITTING METHODS FOR THE
DIRAC EQUATION

where ηn(x) is the local truncation error defined as

η
n(x) = Φ(tn+1,x)− e−

iτ
ε2 T ε

e−i
∫ tn+1

tn V (s,x)ds
Φ(tn,x), x ∈ R. (3.3.15)

Noticing (3.2.2), applying Duhamel’s principle, we derive

Φ(tn+1,x) = e−
iτ
ε2 T ε

Φ(tn,x)− i
∫

τ

0
e−

i(τ−s)
ε2 T ε

V (tn + s,x)Φ(tn + s,x)ds, (3.3.16)

while Taylor expansion gives

e−
iτ
ε2 T ε

e−i
∫ tn+1

tn V (s,x)ds
Φ(tn,x)

= e−
iτ
ε2 T ε

(
1− i

∫ tn+1

tn
V (s,x)ds+O(τ2)

)
Φ(tn,x). (3.3.17)

Combining (3.3.16), (3.3.17) and (3.3.15), we get

η
n(x) =τie−

iτ
ε2 T ε

V (tn,x)Φ(tn,x)− i
∫

τ

0
e−

i(τ−s)
ε2 T ε

(
V (tn,x)e

− is
ε2 T ε

Φ(tn,x)
)

ds

+
2

∑
j=1

Rn
j(x), (3.3.18)

where

Rn
1(x) = e−

iτ
ε2 T ε

(λ n
1 (x)+λ

n
2 (x))Φ(tn,x),

Rn
2(x) =−i

∫
τ

0
e−

i(τ−s)
ε2 T ε

(V (tn)λ n
4 (s,x)+λ

n
3 (s,x)Φ(tn + s,x)) ds,

with

λ
n
1 (x) = e−i

∫ tn+1
tn V (s,x)ds−

(
1− i

∫ tn+1

tn
V (s,x)ds

)
, (3.3.19)

λ
n
2 (x) =−i

∫ tn+1

tn
V (u,x)du+ iτV (tn,x), (3.3.20)

λ
n
3 (s,x) =V (tn + s,x)−V (tn,x), 0≤ s≤ τ, (3.3.21)

λ
n
4 (s,x) =−i

∫ s

0
e−

i(s−w)
ε2 T ε

(V (tn +w,x)Φ(tn +w,x)) dw, 0≤ s≤ τ. (3.3.22)

It is easy to see that for 0≤ n≤ T
τ
−1,

‖λ n
1 (x)‖L∞ . τ

2‖V (t,x)‖2
L∞(L∞), ‖λ n

2 (x)‖L∞ . τ
2‖∂tV (t,x)‖L∞(L∞),

‖λ n
3 (s,x)‖L∞([0,τ];L∞) . τ‖∂tV (t,x)‖L∞(L∞),

‖λ n
4 (s,x)‖L∞([0,τ];(L2)2) . τ‖V (t,x)‖L∞(L∞)‖Φ(t,x)‖L∞((L2)2),
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As a consequence, we obtain the following bounds for 0≤ n≤ T
τ
−1,

‖Rn
1(x)‖L2 . (‖λ n

1 (x)‖L∞ +‖λ n
2 (x)‖L∞)‖Φ(tn)‖L2 . τ

2, (3.3.23)

‖Rn
2(x)‖L2 . τ

(
‖V (tn)‖L∞‖λ n

4 (s,x)‖L∞([0,τ];(L2)2)

+‖λ n
3 (s,x)‖L∞([0,τ];L∞)‖Φ‖L∞((L2)2)

)
. τ

2. (3.3.24)

Recalling ηn
2 (x) given in Lemma 3.1, we introduce for 0≤ s≤ τ

f n(s) := f n(s,x) = e
is
ε2 T ε

(
V (tn,x)e

− is
ε2 T ε

Φ(tn,x)
)
= f n

1 (s)+ f n
2 (s), (3.3.25)

with f n
2 given in (3.3.13) and f n

1 from the decomposition (3.3.11) as

f n
1 (s) = eisDε

Π
ε
+

(
V (tn)e−isDε

Π
ε
+Φ(tn)

)
+ e−isDε

Π
ε
−

(
V (tn)eisDε

Π
ε
−Φ(tn)

)
,

and then ηn(x) (3.3.18) can be written as

η
n(x) =− ie−

iτ
ε2 T ε

(∫
τ

0
( f n

1 (s)+ f n
2 (s))ds− τ( f n

1 (0)+ f n
2 (0))

)
+Rn

1(x)+Rn
2(x). (3.3.26)

Now, it is easy to verify that ηn(x) = ηn
1 (x)+ηn

2 (x) with ηn
2 (x) given in Lemma 3.1 if we let

η
n
1 (x) =−ie−

iτ
ε2 T ε

(∫
τ

0
f n
1 (s)ds− τ f n

1 (0)
)
+Rn

1(x)+Rn
2(x). (3.3.27)

Noticing that ∥∥∥∥e−
iτ
ε2 T ε

(∫
τ

0
f n
1 (s)ds− τ f n

1 (0)
)∥∥∥∥

L2

. τ
2‖∂s f n

1 (·)‖L∞([0,τ];(L2)2) . τ
2‖V (tn)‖W 2,∞‖Φ(tn)‖H2,

recalling the regularity assumptions (A) and (B), combining (3.3.23) and (3.3.24) , we can

get

‖ηn
1 (x)‖L2 ≤ ‖Rn

1(x)‖L2 +‖Rn
2(x)‖L2 +

∥∥∥∥e−
iτ
ε2 T ε

(∫
τ

0
f n
1 (s)ds− τ f n

1 (0)
)∥∥∥∥

L2

. τ
2,

which completes the proof of Lemma 3.1. �
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Lemma 3.2. Let Φn(x) be the numerical approximation obtained from the Strang splitting

S2 (3.2.5), then under the assumptions (A) and (B) with m = 2 and m∗ = 0, we have for

0≤ n≤ T
τ
−1,

en+1(x) = e−
iτ

2ε2 T ε

e−i
∫ tn+1

tn V (s,x)dse−
iτ

2ε2 T ε

en(x)+η
n
1 (x)+η

n
2 (x)+η

n
3 (x), (3.3.28)

with

‖ηn
1 (x)‖L2 . τ

3, η
n
2 (x) =−ie−

iτ
ε2 T ε

(∫
τ

0
f n
2 (s)ds− τ f n

2 (τ/2)
)
, (3.3.29)

η
n
3 (x) =−e−

iτ
ε2 T ε

(∫
τ

0

∫ s

0

4

∑
j=2

gn
j(s,w)dwds− τ2

2

4

∑
j=2

gn
j(τ/2,τ/2)

)
, (3.3.30)

where

f n
2 (s) =e

i2s
ε2 eisDε

Π
ε
+(V (tn + s)eisDε

Π
ε
−Φ(tn))

+ e
−i2s
ε2 e−isDε

Π
ε
−(V (tn + s)e−isDε

Π
ε
+Φ(tn)), (3.3.31)

gn
2(s,w) =ei2w/ε2

eisDε

Π
ε
+

(
V (tn)e−i(s−w)Dε

Π
ε
+

(
V (tn)eiwDε

Π
ε
−Φ(tn)

))
+ e−i2w/ε2

e−isDε

Π
ε
−

(
V (tn)ei(s−w)Dε

Π
ε
−

(
V (tn)e−iwDε

Π
ε
+Φ(tn)

))
, (3.3.32)

gn
3(s,w) =e

i2(s−w)
ε2 eisDε

Π
ε
+

(
V (tn)ei(s−w)Dε

Π
ε
−

(
V (tn)e−iwDε

Π
ε
+Φ(tn)

))
+ e−

i2(s−w)
ε2 e−isDε

Π
ε
−

(
V (tn)e−i(s−w)Dε

Π
ε
+

(
V (tn)eiwDε

Π
ε
−Φ(tn)

))
, (3.3.33)

gn
4(s,w) =ei2s/ε2

eisDε

Π
ε
+

(
V (tn)ei(s−w)Dε

Π
ε
−

(
V (tn)eiwDε

Π
ε
−Φ(tn)

))
+ e−i2s/ε2

e−isDε

Π
ε
−

(
V (tn)e−i(s−w)Dε

Π
ε
+

(
V (tn)e−iwDε

Π
ε
+Φ(tn)

))
. (3.3.34)

Proof. From the definition of en(x), noticing the Strang splitting formula (3.2.5), we have

en+1(x) = e−
iτ

2ε2 T ε

e−i
∫ tn+1

tn V (s,x)dse−
iτ

2ε2 T ε

en(x)+η
n(x), x ∈ R, (3.3.35)

where ηn(x) is the local truncation error defined as

η
n(x) = Φ(tn+1,x)− e−

iτ
2ε2 T ε

e−i
∫ tn+1

tn V (s,x)dse−
iτ

2ε2 T ε

Φ(tn,x), x ∈ R. (3.3.36)
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Similar to the S1 case, repeatedly using Duhamel’s principle and Taylor expansion, we can

obtain

Φ(tn+1)

= e−
iτ
ε2 T ε

Φ(tn)− i
∫

τ

0
e−

i(τ−s)
ε2 T ε

(
V (tn + s)e−

is
ε2 T ε

Φ(tn)
)

ds

−
∫

τ

0

∫ s

0
e−

i(τ−s)
ε2 T ε

(
V (tn,x)e

− i(s−w)
ε2 T ε

(V (tn +w)Φ(tn +w))
)

dwds, (3.3.37)

e−i
∫ tn+1

tn V (s)dse−
iτ

2ε2 T ε

Φ(tn)

= e−
iτ

2ε2 T ε

(
1− i

∫
τ

0
V (tn + s)ds− 1

2

(∫
τ

0
V (tn + s)ds

)2
)

e−
iτ

2ε2 T ε

Φ(tn)

+ e−
iτ

2ε2 T ε (
O(τ3)

)
e−

iτ
2ε2 T ε

Φ(tn). (3.3.38)

Denoting

f n(s) = e
is
ε2 T ε

(
V (tn + s,x)e−

is
ε2 T ε

Φ(tn,x)
)
, (3.3.39)

for 0≤ s≤ τ , and

gn(s,w) = e
is
ε2 T ε

(
V (tn,x)e

− i(s−w)
ε2 T ε

(
V (tn,x)e

− iw
ε2 T ε

Φ(tn,x)
))

, (3.3.40)

for 0≤ s,w≤ τ , in view of (3.3.37) and (3.3.38), ηn(x) (3.3.36) can be written as

η
n(x) =− e−

iτ
ε2 T ε

[
i
∫

τ

0
f n(s)ds− iτ f n

(
τ

2

)
+
∫

τ

0

∫ s

0
gn(s,w)dwds

− τ2

2
gn
(

τ

2
,
τ

2

)]
+

2

∑
j=1

Rn
j(x), (3.3.41)

where

Rn
1(x) =−e−

iτ
2ε2 T ε

(λ n
1 (x)+λ

n
2 (x))e

− iτ
2ε2 T ε

Φ(tn,x),

Rn
2(x)

=−
∫

τ

0

∫ s

0
e−

i(τ−s)
ε2 T ε

(
V (tn + s,x)e−

i(s−w)
ε2 T ε

(V (tn +w,x)λ n
3 (w,x))

)
dwds,
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with

λ
n
1 (x) =−i

(∫
τ

0
V (tn + s,x)ds− τV (tn +

τ

2
,x)
)
− 1

2

(∫
τ

0
V (tn + s,x)ds

)2

+
1
2

τ
2V 2(tn,x),

λ
n
2 (x) = e−i

∫
τ

0 V (tn+s,x)ds−1+ i
∫

τ

0
V (tn + s,x)ds+

1
2

(∫
τ

0
V (tn + s,x)ds

)2

,

λ
n
3 (w,x) =−i

∫ w

0
e−

i(w−u)
ε2 T ε

(V (tn +u,x)Φ(tn +u,x)) du.

It is easy to check that ‖λ n
2 (x)‖L∞ . τ3‖V (t,x)‖3

L∞(L∞) and

‖λ n
1 (x)‖L∞ . τ

3‖∂ttV (t,x)‖L∞(L∞)+ τ
3‖∂tV (t,x)‖L∞(L∞)‖V (t,x)‖L∞(L∞),

‖λ n
3 (w,x)‖L∞([0,τ];(L2)2) . τ‖V (t,x)‖L∞(L∞)‖Φ‖L∞((L2)2),

which immediately implies that

‖Rn
1(x)‖L2 . (‖λ n

1 (x)‖L∞ +‖λ n
2 (x)‖L∞)‖Φ(tn)‖L2 . τ

3, (3.3.42)

‖Rn
2(x)‖L2 . τ

2‖V (t,x)‖2
L∞(L∞)‖λ

n
3 (w,x)‖L∞([0,τ];L2) . τ

3. (3.3.43)

In view of (3.3.11), recalling the definitions of f n
2 (s) and gn

j(s,w) ( j = 2,3,4) given in

Lemma 3.2, we introduce f n
1 (s) and gn

1(s,w) such that

f n(s) = f n
1 (s)+ f n

2 (s), gn(s,w) =
4

∑
j=1

gn
j(s,w) (3.3.44)

where

f n
1 (s) = eisDε

Π
ε
+

(
V (tn + s)e−isDε

Π
ε
+Φ(tn)

)
+ e−isDε

Π
ε
−

(
V (tn + s)eisDε

Π
ε
−Φ(tn)

)
,

gn
1(s,w) = eisDε

Π
ε
+

(
V (tn)e−i(s−w)Dε

Π
ε
+

(
V (tn)e−iwDε

Π
ε
+Φ(tn)

))
+ e−isDε

Π
ε
−

(
V (tn)ei(s−w)Dε

Π
ε
−

(
V (tn)eiwDε

Π
ε
−Φ(tn)

))
.

Denote

ζ
n
1 (x) =−ie−

iτ
ε2 T ε

(∫
τ

0
f n
1 (s)ds− τ f n

1 (τ/2)
)
,

ζ
n
2 (x) =−e−

iτ
ε2 T ε

(∫
τ

0

∫ s

0
gn

1(s,w)dwds− τ2

2
gn

1(τ/2,τ/2)
)
,
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then it is easy to show that for J = [0,τ]2,

‖ζ n
1 (x)‖L2 . τ

3‖∂ss f1(s)‖L∞([0,τ];(L2)2) . τ
3, (3.3.45)

‖ζ n
2 (x)‖L2 . τ

3(‖∂sg1(s,w)‖L∞(J;(L2)2)+‖∂wg1(s,w)‖L2(J;(L2)2)) . τ
3, (3.3.46)

by noticing that V ∈ L∞(W 2m,∞) and Φ(t,x) ∈ L∞((H2m)2) with m = 2 as well as the fact

that Dε : (H l)2→ (H l−2)2 (l ≥ 2) is uniformly bounded w.r.t. ε . Recalling (3.3.39), (3.3.40),

(3.3.41), (3.3.44) and ηn
j ( j = 2,3) (3.3.29)-(3.3.30) given in Lemma 3.2 , we have

η
n(x) = η

n
1 (x)+η

n
2 (x)+η

n
3 (x), (3.3.47)

where ηn
2 (x) and ηn

3 (x) are given in Lemma 3.2, and

η
n
1 (x) = Rn

1(x)+Rn
2(x)+ζ

n
1 (x)+ζ

n
2 (x).

Combining (3.3.42), (3.3.43), (3.3.45) and (3.3.46), we can get

‖ηn
1 (x)‖L2 ≤ ‖Rn

1(x)‖L2 +‖Rn
2(x)‖L2 +‖ζ n

1 (x)‖L2 +‖ζ n
2 (x)‖L2 . τ

3, (3.3.48)

which completes the proof. �

Utilizing these lemmas, we now proceed to prove Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1

Proof. From Lemma 3.1, it is straightforward that

‖en+1(x)‖L2 ≤ ‖en(x)‖L2 +‖ηn
1 (x)‖L2 +‖ηn

2 (x)‖L2, 0≤ n≤ T
τ
−1, (3.3.49)

with e0(x) = 0, ‖ηn
1 (x)‖L2 . τ2 and ηn

2 (x) =−ie−iτT ε/ε2 (∫ τ

0 f n
2 (s)ds− τ f n

2 (0)
)
, where f n

2 (s)

is defined in (3.3.13).

To analyze f n
2 (s), using (3.3.8) and (3.3.9), we expand Πε

+V (tn)Πε
− and Πε

−V (tn)Πε
+ to

get

Π
ε
+V (tn)Πε

− =− εΠ
0
+V (tn)R1 + εR1V (tn)Πε

−,

Π
ε
−V (tn)Πε

+ =εΠ
0
−V (tn)R1− εR1V (tn)Πε

+.
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As R1 : (Hm)2→ (Hm−1)2 is uniformly bounded with respect to ε ∈ (0,1], we have∥∥∥Π
ε
+

(
V (tn)Πε

−eisDε

Φ(tn)
)∥∥∥

L2
. ε‖V (tn)‖W 1,∞‖Φ(tn)‖H1, (3.3.50)∥∥∥Π

ε
−

(
V (tn)Πε

+eisDε

Φ(tn)
)∥∥∥

L2
. ε‖V (tn)‖W 1,∞‖Φ(tn)‖H1. (3.3.51)

Noticing the assumptions (A) and (B) with m = 1 and m∗ = 0, we obtain from (3.3.13)

(0≤ s≤ τ)

‖ f n
2 (s)‖L∞([0,τ];(L2)2) . ε, ‖∂s( f n

2 )(·)‖L∞([0,τ];(L2)2) . ε/ε
2 = 1/ε. (3.3.52)

As a result, from the first inequality, we get∥∥∥∥∫ τ

0
f n
2 (s)ds− τ f n

2 (0)
∥∥∥∥

L2
. τε. (3.3.53)

On the other hand, noticing Taylor expansion and the second inequality in (3.3.52), we have∥∥∥∥∫ τ

0
f n
2 (s)ds− τ f n

2 (0)
∥∥∥∥

L2
≤ τ2

2
‖∂s f n

2 (·)‖L∞([0,τ];(L2)2) . τ
2/ε. (3.3.54)

Combining (3.3.53) and (3.3.54), we arrive at

‖ηn
2 (x)‖L2 .min{τε,τ2/ε}. (3.3.55)

Then from (3.3.49) and e0 = 0, we get

‖en+1(x)‖L2 ≤‖e0(x)‖L2 +
n

∑
k=0
‖ηk

1(x)‖L2 +
n

∑
k=0
‖ηk

2(x)‖L2

.nτ
2 +nmin{τε,τ2/ε} . τ +min{ε,τ/ε}, 0≤ n≤ T

τ
−1,

which gives the desired results. �

Proof of Theorem 3.2

Proof. From Lemma 3.2, it is easy to get that

‖en+1(x)‖L2 ≤ ‖en(x)‖L2 +‖ηn
1 (x)‖L2 +‖ηn

2 (x)‖L2 +‖ηn
3 (x)‖L2, (3.3.56)
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with e0(x) = 0 and ‖ηn
1 (x)‖L2 . τ3.

Through similar computations in the S1 case, under the hypothesis of Theorem 3.2, we can

show that for 0≤ s,w,≤ τ ,

‖ f n
2 (s)‖L2 . ε, ‖∂s f n

2 (s)‖L2 . ε/ε
2 = 1/ε, ‖∂ss f n

2 (s)‖L2 . 1/ε
3;

‖gn
j(s,w)‖L2 . ε, ‖∂sgn

j(s,w)‖L2 . 1/ε, ‖∂wgn
j(s,w)‖L2 . 1/ε, j = 2,3,4.

As a result, for j = 2,3,4, we have∥∥∥∥∫ τ

0
f n
2 (s)ds− τ f n

2 (
τ

2
)

∥∥∥∥
L2
. τε,

∥∥∥∥∫ τ

0

∫ s

0
gn

j(s,w)dwds− τ2

2
gn

j(
τ

2
,
τ

2
)

∥∥∥∥
L2
. τ

2
ε.

On the other hand, for j = 2,3,4,Taylor expansion will lead to∥∥∥∥∫ τ

0
f n
2 (s)ds− τ f n

2 (
τ

2
)

∥∥∥∥
L2
.

τ3

ε3 ,

∥∥∥∥∫ τ

0

∫ s

0
gn

j(s,w)dwds− τ2

2
gn

j(
τ

2
,
τ

2
)

∥∥∥∥
L2
.

τ3

ε
.

The two estimates above together with (3.3.29) and (3.3.30) imply

‖ηn
2 (x)‖L2 +‖ηn

3 (x)‖L2 .min{τε,τ3/ε
3}. (3.3.57)

Recalling (3.3.56), we can get

‖en+1(x)‖L2 ≤‖e0(x)‖L2 +
n

∑
k=0
‖ηk

1(x)‖L2 +
n

∑
k=0
‖ηk

2(x)‖L2 +
n

∑
k=0
‖ηk

3(x)‖L2

.nτ
3 +nmin{τε,τ3/ε

3} . τ
2 +min{ε,τ2/ε

3}, 0≤ n≤ T
τ
−1,

which gives the desired result. �

3.4 Improved uniform error bounds for non-resonant time
steps

In the Dirac equation (3.1.2) or (3.1.1), the leading term is 1
ε2 σ3Φ or 1

ε2 βΨ, which

suggests that the solution propagates almost periodically in time with periods 2kπε2 (k ∈ N∗,
which are the periods of e−iσ3/ε2

and e−iβ/ε2
). From numerical results, we find out that the

errors perform much better than the error bounds in Theorem 3.1& Theorem 3.2, when 2τ
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Figure 3.4.1: Illustration of non-resonant time steps Aκ(ε) with κ = 0.15 for (a) ε = 1 and
(b) ε = 0.5.

is away from the leading temporal oscillation periods 2kπε2. In fact, for given 0 < κ ≤ 1,

define

Aκ(ε) :=
∞⋃

k=0

[
ε

2kπ + ε
2 arcsinκ,ε2(k+1)π− ε

2 arcsinκ
]
, 0 < ε ≤ 1, (3.4.1)

and the errors of S1 and S2 can be improved compared to the previous section when τ ∈Aκ(ε).

To illustrate Aκ(ε), we show in Figure 3.4.1 for ε = 1 and ε = 0.5 with fixed κ = 0.15.

For τ ∈Aκ(ε), we can derive improved uniform error bounds for S1 and S2 as shown in

Theorem 3.3 and Theorem 3.4.

Theorem 3.3. Let Φn(x) be the numerical approximation obtained from S1 (3.2.4). If the

time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε), under the

assumptions (A) and (B) with m = 1 and m∗ = 1, we have an improved uniform error bound

‖en(x)‖L2 .κ τ, 0≤ n≤ T
τ
. (3.4.2)

Proof. We divide the proof into three steps.

Step 1 (Explicit representation of the error). From Lemma 3.1, we have

en+1(x) = e−
iτ
ε2 T ε

e−i
∫ tn+1

tn V (s)dsen(x)+η
n
1 (x)+η

n
2 (x), 0≤ n≤ T

τ
−1, (3.4.3)

with ‖ηn
1 (x)‖L2 . τ2, e0 = 0 and

η
n
2 (x) =−ie−iτT ε/ε2

(∫
τ

0
f n
2 (s)ds− τ f n

2 (0)
)
. (3.4.4)
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where

f n
2 (s) =ei2s/ε2

eisDε

Π
ε
+

(
V (tn)Πε

−eisDε

Φ(tn)
)

+ e−i2s/ε2
e−isDε

Π
ε
−

(
V (tn)Πε

+e−isDε

Φ(tn)
)
.

Denote the numerical solution propagator Sn,τ := e−
iτ
ε2 T ε

e−i
∫ tn+1

tn V (s,x)ds for n ≥ 0, then

∀Φ̃ ∈ C2, for m≥ 1,∥∥∥Sn,τΦ̃

∥∥∥
L2

=
∥∥∥Φ̃

∥∥∥
L2
,
∥∥∥Sn,τΦ̃

∥∥∥
Hm
≤ eCτ‖V (t,x)‖L∞([0,T ];Wm,∞)‖Φ̃‖Hm , (3.4.5)

with some generic constant C > 0 and

en+1(x) = Sn,τen(x)+(ηn
1 (x)+η

n
2 (x))

= Sn,τ(Sn−1,τen−1(x))+Sn,τ
(
η

n−1
1 (x)+η

n−1
2 (x)

)
+(ηn

1 (x)+η
n
2 (x))

= ...

= Sn,τSn−1,τ ...S0,τe0(x)+
n

∑
k=0

Sn,τ ...Sk+2,τSk+1,τ

(
η

k
1(x)+η

k
2(x)

)
, (3.4.6)

where for k = n, we take Sn,τ ...Sk+2,τSk+1,τ = Id. Since Sn,τ preserves the L2 norm, noticing

‖ηk
1(x)‖L2 . τ2, k = 0,1, ...,n, we have∥∥∥∥∥ n

∑
k=0

Sn,τ ...Sk+1,τη
k
1(x)

∥∥∥∥∥
L2

.
n

∑
k=0

τ
2 . τ,

which leads to

‖en+1(x)‖L2 . τ +

∥∥∥∥∥ n

∑
k=0

Sn,τ ...Sk+1,τη
k
2(x)

∥∥∥∥∥
L2

. (3.4.7)

The improved estimates rely on the refined analysis of the terms involving ηk
2 in (3.4.7). To

this aim, we introduce the following approximation of ηk
2 to focus on the most relevant terms,

η̃
k
2(x) =

∫
τ

0
f̃ k
2 (s)ds− τ f̃ k

2 (0), k = 0,1, ...,n, (3.4.8)

with

f̃ k
2 (s) =−iei(2s−τ)/ε2

Π
ε
+

(
V (tk)Πε

−Φ(tk)
)
− iei(τ−2s)/ε2

Π
ε
−
(
V (tk)Πε

+Φ(tk)
)
, (3.4.9)
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then it is easy to verify that (using Taylor expansion eiτDε

= Id +O(τDε))

‖ηk
2(x)− η̃

k
2(x)‖L2 . τ

2‖V (tk)‖H2‖Φ(tk)‖H2 . τ
2. (3.4.10)

As a result, from (3.4.7), we have

‖en+1(x)‖L2 .τ +

∥∥∥∥∥ n

∑
k=0

Sn,τ ...Sk+1,τ(η
k
2(x)− η̃

k
2(x))

∥∥∥∥∥
L2

+

∥∥∥∥∥ n

∑
k=0

Sn,τ ...Sk+1,τ η̃
k
2(x)

∥∥∥∥∥
L2

≤τ +
n

∑
k=0
‖ηk

2(x)− η̃
k
2(x)‖L2 +

∥∥∥∥∥ n

∑
k=0

Sn,τ ...Sk+1,τ η̃
k
2(x)

∥∥∥∥∥
L2

.τ +

∥∥∥∥∥ n

∑
k=0

Sn,τ ...Sk+1,τ η̃
k
2(x)

∥∥∥∥∥
L2

.

Step 2 (Representation of the error using the exact solution flow). Denote Se(t; tk) (k =

0,1, ...,n) to be the exact solution operator of the Dirac equation, acting on some Φ̃(x) =

(φ̃1(x), φ̃2(x))T ∈ C2 so that Se(t; tk)Φ̃(x) is the exact solution Ψ(t,x) at time t ofi∂tΨ(t,x) =
T ε

ε2 Ψ(t,x)+V (t,x)Ψ(t,x),

Ψ(tk,x) = Φ̃(x).
(3.4.11)

and the following properties hold true for t ≥ tk , m≥ 1 and some generic constant C > 0∥∥∥Se(t; tk)Φ̃
∥∥∥

L2
=
∥∥∥Φ̃

∥∥∥
L2
,
∥∥∥Se(t; tk)Φ̃

∥∥∥
Hm
≤ eC(t−tk)‖V (t,x)‖L∞([0,T ];Wm,∞)‖Φ̃‖Hm. (3.4.12)

It is convenient to write η̃k
2(x) (3.4.8) as

η̃
k
2(x) =p+(τ)Πε

+

(
V (tk)Πε

−Φ(tk)
)
+ p−(τ)Πε

−
(
V (tk)Πε

+Φ(tk)
)
, (3.4.13)

with p±(τ)=−ie∓iτ/ε2
(∫

τ

0 e±i2s/ε2
ds− τ

)
and by the inequality

∣∣∣∫ τ

0 ei2s/ε2
ds− τ

∣∣∣+∣∣∣∫ τ

0 e−i2s/ε2
ds− τ

∣∣∣≤
4τ and similar computations in (3.3.50)-(3.3.51), it follows that

‖η̃k
2‖H2 . τε‖V (tk)‖W 3,∞‖Φ(tk)‖H3 . ετ. (3.4.14)

Recalling the error bounds in Theorem 3.1 and Remark 3.1, we have

‖(Sn,τ ...Sk+1,τ −Se(tn+1; tk+1))η̃
k
2(x)‖L2 .

(
τ +

τ

ε

)
‖η̃k

2‖H2

.
(

τ +
τ

ε

)
ετ . τ

2, (3.4.15)
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and

‖en+1(x)‖L2 . τ +
n

∑
k=0

∥∥∥(Sn,τ ...Sk+1,τ −Se(tn+1; tk+1))η̃
k
2(x)

∥∥∥
L2

+

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
2(x)

∥∥∥∥∥
L2

. τ +

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
2(x)

∥∥∥∥∥
L2

. (3.4.16)

Noticing (3.4.13), we have

Se(tn+1; tk+1)η̃
k
2(x) = p+(τ)Se(tn+1; tk+1)Π

ε
+V (tk)Πε

−Se(tk; t0)Φ(0)

+ p−(τ)Se(tn+1; tk+1)Π
ε
−V (tk)Πε

+Se(tk; t0)Φ(0), (3.4.17)

and it remains to estimate Se part in (3.4.16).

Step 3 (Improved error bounds for non-resonant time steps). From [14], we know that the

exact solution of Dirac equation is structured as follows

Se(tn; tk)Φ̃(x) = e−i(tn−tk)/ε2
Ψ+(t,x)+ ei(tn−tk)/ε2

Ψ−(t,x)+Rn
kΦ̃(x), (3.4.18)

where Rn
k : (L2)2→ (L2)2 is the residue operator and ‖Rn

kΦ̃(x)‖L2 . ε2‖Φ̃(x)‖H2 (0≤ k ≤ n),

and i∂tΨ±(t,x) =±Dε
Ψ±(t,x)+Π

ε
±(V (t)Ψ±(t,x)),

Ψ±(tk,x) = Π
ε
±Φ̃(x).

(3.4.19)

Denote S+e (t; tk)Φ̃(x) = Ψ+(t,x), S−e (t; tk)Φ̃(x) = Ψ−(t,x) to be the solution propagator of

the above equation for Ψ+(t,x), Ψ−(t,x), respectively, and S±e share the same properties in

76



CHAPTER 3. SUPER-RESOLUTION OF TIME-SPLITTING METHODS FOR THE
DIRAC EQUATION

(3.4.12). Plugging (3.4.18) into (3.4.17), we derive

n

∑
k=0

Se(tn+1; tk+1)η̃
k
2(x)

=
n

∑
k=0

∑
σ=±

(
e−i

tn+1−tk+1
ε2 S+e (tn+1; tk+1)+ ei

tn+1−tk+1
ε2 S−e (tn+1; tk+1)+Rn+1

k+1

)
Π

ε
σV (tk)Πε

σ∗

(
e−i tk−t0

ε2 S+e (tk; t0)+ ei tk−t0
ε2 S−e (tk; t0)+Rk

0

)
Φ(0)pσ (τ)

=
n

∑
k=0

∑
σ=±

e−iσ
tn+1−tk+1

ε2 Sσ
e (tn+1; tk+1)Π

ε
σV (tk)Πε

σ∗e
iσ tk−t0

ε2 Sσ∗
e (tk; t0)Φ(0)pσ (τ)︸                                                                                                  ︷︷                                                                                                  ︸

In
1 (x)

+
n

∑
k=0

∑
σ=±

(
Rn+1

k+1Π
ε
σV (tk)Πε

σ∗Φ(tk)+Se(tn+1; tk+1)Π
ε
σV (tk)Πε

σ∗R
k
0Φ(0)

)
pσ (τ)︸                                                                                                     ︷︷                                                                                                     ︸

In
2 (x)

=In
1 (x)+ In

2 (x),

where σ∗ =+ if σ =− and σ∗ =− if σ =+. As |p±(τ)|=
∣∣∣∫ τ

0 e±2is/ε2
ds− τ

∣∣∣ . τ2/ε2 by

Taylor expansion, we have

‖In
2 (x)‖L2 .

τ2

ε2

n

∑
k=0

(
ε

2‖V (tk)‖W 2,∞‖Φ(tk)‖H2 + ε
2‖V (tk)‖L∞‖Φ(t0)‖H2

)
. τ

2.

We can rewrite In
1 (x) as

In
1 (x) =

n

∑
k=0

∑
σ=±

e−iσ
tn+1−2tk−τ

ε2 Sσ
e (tn+1; tk+1)Π

ε
σV (tk)Πε

σ∗S
σ∗
e (tk; t0)Φ(0)pσ (τ),

=p+(τ)
n

∑
k=0

(θk−θk−1)S+e (tn+1; tk+1)Π
ε
+V (tk)Πε

−S−e (tk; t0)Φ(0)

+ p−(τ)
n

∑
k=0

(θk−θk−1)S−e (tn+1; tk+1)Π
ε
−V (tk)Πε

+S+e (tk; t0)Φ(0)

=γ
n
1 (x)+ γ

n
2 (x),
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where θ̄ is the complex conjugate of θ and for 0≤ k ≤ n,

θk =
k

∑
l=0

e−i(tn+1−2tl−τ)/ε2
=

e−inτ/ε2− e−i(n−2k−2)τ/ε2

1− e2iτ/ε2 , θ−1 = 0, (3.4.20)

γ
n
1 (x) = p+(τ)

n

∑
k=0

(θk−θk−1)S+e (tn+1; tk+1)Π
ε
+V (tk)Πε

−S−e (tk; t0)Φ(0), (3.4.21)

γ
n
2 (x) = p−(τ)

n

∑
k=0

(θk−θk−1)S−e (tn+1; tk+1)Π
ε
−V (tk)Πε

+S+e (tk; t0)Φ(0). (3.4.22)

It is easy to check that if τ ∈Aκ(ε), it satisfies |1− e2iτ/ε2 |= 2|sin(τ/ε2)| ≥ 2κ > 0, then

we have

|θk| ≤
1
κ
, k = 0,1, ...,n.

As a result, noticing |p±(τ)| ≤ 2τ , we can get

‖γn
1 (x)‖L2

≤ 2τ

∥∥∥∥n−1

∑
k=0

θk
[
S+e (tn+1; tk+1)Π

ε
+V (tk)Πε

−S−e (tk; t0)−S+e (tn+1; tk+2)Π
ε
+V (tk+1)

Π
ε
−S−e (tk+1; t0)

]
Φ(0)

∥∥∥∥
L2
+ τ‖θnS+e (tn+1; tn+1)Π

ε
+V (tn)Πε

−S−e (tn; t0)Φ(0)‖L2

. τ

n−1

∑
k=0

τ/κ + τ/κ .κ τ,

where we have used the triangle inequality and properties of the solution flows S±e to deduce

that (omitted for brevity as they are standard)∥∥∥∥[S+e (tn+1; tk+1)Π
ε
+V (tk)Πε

−S−e (tk; t0)−S+e (tn+1; tk+2)Π
ε
+V (tk+1)Π

ε
−S−e (tk+1; t0)

]
Φ(0)

∥∥∥∥
L2

≤
∥∥S+e (tn+1; tk+1)Π

ε
+

(
(V (tk)−V (tk+1))Π

ε
−S−e (tk; t0)

)
Φ(0)

∥∥
L2

+
∥∥S+e (tn+1; tk+1)Π

ε
+

(
V (tk+1)Π

ε
−(S

−
e (tk; t0)−S−e (tk+1; t0))

)
Φ(0)

∥∥
L2

+
∥∥(S+e (tn+1; tk+1)−S+e (tn+1; tk+2)

)
Π

ε
+V (tk+1)Π

ε
−S−e (tk+1; t0)Φ(0)

∥∥
L2

. τ ‖∂tV‖L∞(L∞) ‖Φ(0)‖L2 + τ
∥∥∂tS−e (t; t0)Φ(0)

∥∥
L∞([0,T ];(L2)2)

+ τ
∥∥∂t
(
S+e (tn+1; t)Πε

+V (tk+1)Π
ε
−S−e (tk+1; t0)Φ(0)

)∥∥
L∞([tk+1,tn+1];(L2)2)

. τ + τ ‖Φ(0)‖H2 + τ‖V (tk+1)‖W 2,∞‖Φ(0)‖H2 . τ.

Similarly, we could get ‖γn
2 (x)‖L2 .κ τ and hence ‖In

1 (x)‖L2 .κ τ . In summary, we have

‖en+1(x)‖L2 . τ +‖In
1 (x)‖L2 +‖In

2 (x)‖L2 .κ τ,
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which gives the desired results. �

Theorem 3.4. Let Φn(x) be the numerical approximation obtained from S2 (3.2.5). If the

time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε), under the

assumptions (A) and (B) with m = 2 and m∗ = 1, we assume an extra regulariry V (t,x) ∈
W 1,∞([0,T ];H3(R)) and then the following two error estimates hold

‖en(x)‖L2 .κ τ
2 + τε, ‖en(x)‖L2 .κ τ

2 + τ
2/ε, 0≤ n≤ T

τ
. (3.4.23)

As a result, there is an improved uniform error bound for S2

‖en(x)‖L2 .κ τ
2 + max

0<ε≤1
min{τε,τ2/ε} .κ τ

3/2, 0≤ n≤ T
τ
. (3.4.24)

Proof. We divide the proof into two steps.

Step 1 (Representation of the error using the exact solution flow). From Lemma 3.2, we

have for 0≤ n≤ T
τ
−1,

en+1(x) = e−
iτ

2ε2 T ε

e−i
∫ tn+1

tn V (s,x)dse−
iτ

2ε2 T ε

en(x)+η
n
1 (x)+η

n
2 (x)+η

n
3 (x), (3.4.25)

with ηn
j ( j = 1,2,3) stated in Lemma 3.2 as

‖ηn
1 (x)‖L2 . τ

3, η
n
2 (x) =−ie−

iτ
ε2 T ε

(∫
τ

0
f n
2 (s)ds− τ f n

2 (τ/2)
)
, (3.4.26)

η
n
3 (x) =−e−

iτ
ε2 T ε

(∫
τ

0

∫ s

0

4

∑
j=2

gn
j(s,w)dwds− τ2

2

4

∑
j=2

gn
j(τ/2,τ/2)

)
, (3.4.27)

where f n
2 and gn

j ( j = 2,3,4) are given in (3.3.31)-(3.3.34).

Denote the second order splitting integrator Sn,τ = e−
iτ

2ε2 T ε

e−i
∫ tn+1

tn V (s)dse−
iτ

2ε2 T ε

for n≥ 0,

and Se(t; tk) to be the exact solution flow (3.4.11) for the Dirac equation (3.2.2), then Sn,τ

enjoys the similar properties as those in the first order Lie-Trotter splitting case (3.4.5) and

we can get

en+1(x) =Se(tn+1; tn)en(x)+η
n
1 (x)+η

n
2 (x)+η

n
3 (x)+(Sn,τ −Se(tn+1; tn))en(x)

=...

=Se(tn+1; t0)e0(x)+
n

∑
k=0

Se(tn+1; tk+1)(η
k
1(x)+η

k
2(x)+η

k
3(x))

+
n

∑
k=0

Se(tn+1; tk+1)(Sk,τ −Se(tk+1; tk))ek(x). (3.4.28)
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By Duhamel’s principle, it is straightforward to compute(
Sk,τ −Se(tk+1; tk)

)
Φ̃(x) = e−

iτ
2ε2 T ε

(e−i
∫ tk+1

tk
V (s,x)ds−1)e−

iτ
2ε2 T ε

− i
∫

τ

0
e−

i(τ−s)T ε

ε2 V (tk + s,x)Se(tk + s; tk)Φ̃(x)ds. (3.4.29)

Recalling ‖e−i
∫ tk+1

tk
V (s,x)ds − 1‖L∞ ≤ τ‖V (t,x)‖L∞([tk,tk+1];L∞) and the properties of Se(t; tk)

(3.4.12), we obtain from (3.4.29)∥∥(Sk,τ −Se(tk+1; tk)
)

Φ̃(x)
∥∥

L2

≤ τ‖V (t,x)‖L∞([tk,tk+1];L∞)‖Φ̃‖L2 + τ‖V (t,x)‖L∞([tk,tk+1];L∞)‖Φ̃‖L2 . τ‖Φ̃‖L2 ,

and

‖Se(tn+1; tk+1)(Sk,τ −Se(tk+1; tk))ek(x)‖L2 . τ‖ek(x)‖L2, k = 0, ...,n. (3.4.30)

Noticing ‖e0(x)‖L2 = 0, combining (3.4.30) and (3.4.28), recalling ‖ηn
1 (x)‖L2 . τ3, we can

control

‖en+1(x)‖L2

≤
n

∑
k=0
‖Se(tn+1; tk+1)(Sk,τ −Se(tk+1; tk))ek‖L2 +

3

∑
j=1

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η
k
j (x)

∥∥∥∥∥
L2

. τ
2 +

n

∑
k=0

τ‖ek(x)‖L2 +
3

∑
j=2

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η
k
j (x)

∥∥∥∥∥
L2

. (3.4.31)

Similar to the Lie-Trotter splitting S1, the key to establish the improved error bounds for

non-resonant τ is to derive refined estimates for the terms involving ηk
j ( j = 2,3) in (3.4.31).

To this purpose, we introduce the approximations η̃k
l (x) of ηk

l (x) (l = 2,3, k = 0,1, . . . ,n) as

η̃
k
2(x) =

∫
τ

0
f̃ k
2 (s)ds− τ f̃ k

2 (
τ

2
), η̃

k
3(x) =

∫
τ

0

∫ s

0

4

∑
j=2

g̃k
j(s,w)dwds− τ2

2

4

∑
j=2

g̃k
j(

τ

2
,
τ

2
),

(3.4.32)

where we expand V (tk + s,x) =V (tk,x)+ s∂tV (tk,x)+O(s2) and eisDε

= Id + isDε +O(s2)

up to the linear term in f k
2 (s) (3.3.31) and the zeroth order term in gk

j(s,w) ( j = 2,3,4)
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(3.3.32)-(3.3.34), respectively,

f̃ k
2 (s) = e

i(2s−τ)

ε2
(
(s− τ)Dε

Π
ε
+(V (tk)Πε

−Φ(tk))+ sΠ
ε
+(V (tk)Dε

Π
ε
−Φ(tk))

)
− e

i(τ−2s)
ε2
(
(s− τ)Dε

Π
ε
−(V (tk)Πε

+Φ(tk))+ sΠ
ε
−(V (tk)Dε

Π
ε
+Φ(tk))

)
− ise

i(2s−τ)

ε2 Π
ε
+(∂tV (tk)Πε

−Φ(tk))− ise
i(τ−2s)

ε2 Π
ε
−(∂tV (tk)Πε

+Φ(tk))

− ie
i(2s−τ)

ε2 Π
ε
+(V (tk)Πε

−Φ(tk))− ie
i(τ−2s)

ε2 Π
ε
−(V (tk)Πε

+Φ(tk)),

g̃k
2(s,w) =−ie

i(2w−τ)

ε2 Π
ε
+

(
V (tk)Πε

+

(
V (tk)Πε

−Φ(tk)
))

− ie
i(τ−2w)

ε2 Π
ε
−
(
V (tk)Πε

−
(
V (tk)Πε

+Φ(tk)
))

,

g̃k
3(s,w) =−ie

i(2(s−w)−τ)

ε2 Π
ε
+

(
V (tk)Πε

−
(
V (tk)Πε

+Φ(tk)
))

− ie
i(τ−2(s−w))

ε2 Π
ε
−
(
V (tk)Πε

+

(
V (tk)Πε

−Φ(tk)
))

,

g̃k
4(s,w) =−ie

i(2s−τ)

ε2 Π
ε
+

(
V (tk)Πε

−
(
V (tk)Πε

−Φ(tk)
))

− ie
i(τ−2s)

ε2 Π
ε
−
(
V (tk)Πε

+

(
V (tk)Πε

+Φ(tk)
))

.

Using Taylor expansion in f k
2 (s) (3.3.31) and gk

j(s,w) ( j = 2,3,4) (3.3.32)-(3.3.34) as well

as properties of Dε , it is not difficult to check that

‖ηk
2(x)− η̃

k
2(x)‖L2

. τ
3
(
‖V (t,x)‖W 2,∞([0,T ];L∞)‖Φ(tk)‖L2 +‖∂tV (t,x)‖W 1,∞([0,T ];H2)‖‖Φ(tk)‖H2

+‖V (t,x)‖L∞([0,T ];H4)‖Φ(tk)‖H4

)
. τ

3,

‖ηk
3(x)− η̃

k
3(x)‖L2 . τ

3‖V (tn,x)‖2
W 2,∞‖Φ(tk)‖H2 . τ

3,

which would yield for k ≤ n≤ T
τ
−1,∥∥∥Se(tn+1; tk+1)η

k
2(x)−Se(tn+1; tk+1)η̃

k
2(x)

∥∥∥
L2
. ‖ηk

2(x)− η̃
k
2(x)‖L2 . τ

3, (3.4.33)∥∥∥Se(tn+1; tk+1)η
n
3 (x)−Se(tn+1; tk+1)η̃

k
3(x)

∥∥∥
L2
. ‖ηk

3(x)− η̃
k
3(x)‖L2 . τ

3. (3.4.34)
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Plugging the above inequalities (3.4.33)-(3.4.34) into (3.4.31), we derive

‖en+1(x)‖L2 . τ
2 +

n

∑
k=0

τ
3 +

3

∑
j=2

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
j (x)

∥∥∥∥∥
L2

+
n

∑
k=0

τ‖ek(x)‖L2

. τ
2 +

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
2(x)

∥∥∥∥∥
L2

+

∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
3(x)

∥∥∥∥∥
L2

+
n

∑
k=0

τ‖ek(x)‖L2 . (3.4.35)

Step 2 (Improved estimates for non-resonant time steps). It remains to show the estimates

on the terms related to η̃k
2 and η̃k

3 . The arguments will be similar to those in the proof of the

Lie-Trotter splitting case Theorem 3.3, so we only sketch the proof below. Taking η̃k
2 for

example, we write

η̃
k
2(s) = η̃

k
2+(s)+ η̃

k
2−(s), η̃

k
2±(x) =

∫
τ

0
f̃ k
2±(s)ds−τ f̃ k

2±(τ/2), k = 0,1, ...,n, (3.4.36)

with

f̃ k
2±(s) =e±i(2s−τ)/ε2 (

±(s− τ)Dε
Π

ε
±(V (tk)Πε

∓Φ(tk))± sΠ
ε
±(V (tk)Dε

Π
ε
∓Φ(tk))

)
− ise±i(2s−τ)/ε2

Π
ε
±(∂tV (tk)Πε

∓Φ(tk))− ie±i(2s−τ)/ε2
Π

ε
±(V (tk)Πε

∓Φ(tk))

and f̃ k
2 (s) = f̃ n

2+(s)+ f̃ n
2−(s).

Recalling the structure of the exact solution to the Dirac equation in (3.4.18), we have for

0≤ k ≤ n

Se(tn; tk)Φ̃(x) = e−i(tn−tk)/ε2
S+e (tn; tk)Φ̃(x)+ ei(tn−tk)/ε2

S−e (tn; tk)Φ̃(x)+Rn
kΦ̃(x),

where the propagators S±e and the residue operator Rn
k : (L2)2→ (L2)2 are defined in (3.4.18).

Therefore, we can get

n

∑
k=0

Se(tn+1; tk+1)η̃
k
2+(x) =

4

∑
j=1

Ĩn
j (x),
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with

Ĩn
1 (x) = p̃1(τ)

n

∑
k=0

e−
i(tn+1−2tk−τ)

ε2 S+e (tn+1; tk+1)Π
ε
+V (tk)Πε

−S−e (tk; t0)Φ(0),

Ĩn
2 (x) = p̃1(τ)

n

∑
k=0

(Rn+1
k+1Π

ε
+V (tk)Πε

−Φ(tk)+Se(tn+1; tk+1)Π
ε
+V (tk)Πε

−Rk
0Φ(0)),

Ĩn
3 (x) =

n

∑
k=0

e−
i(tn+1−2tk−τ)

ε2 S+e (tn+1; tk+1)

(
p̃2(τ)D

ε
Π

ε
+V (tk)

+ p̃3(τ)Π
ε
+V (tk)Dε − ip̃3(τ)Π

ε
+∂tV (tk)

)
Π

ε
−S−e (tk; t0)Φ(0),

Ĩn
4 (x) =

n

∑
k=0

(
Rn+1

k+1

(
p̃2(τ)D

ε
Π

ε
+V (tk)+ p̃3(τ)

(
Π

ε
+V (tk)Dε − iΠε

+∂tV (tk)
))

Π
ε
−Φ(tk)

+Se(tn+1; tk+1)
(

p̃2(τ)D
ε
Π

ε
+V (tk)+ p̃3(τ)

(
Π

ε
+V (tk)Dε − iΠε

+∂tV (tk)
))

Π
ε
−Rk

0Φ(0)
)
,

where

p̃1(τ) =−i
(∫

τ

0
ei(2s−τ)/ε2

ds− τ

)
, p̃2(τ) =

(∫
τ

0
(s− τ)ei(2s−τ)/ε2

ds+
τ2

2

)
,

p̃3(τ) =

(∫
τ

0
sei(2s−τ)/ε2

ds− τ2

2

)
.

The residue terms Ĩn
2 and Ĩn

4 will be estimated first. Using the properties of Rn
k and Se, noticing

(3.3.50)-(3.3.51), we have

‖Rn+1
k+1Π

ε
+V (tk)Πε

−Φ(tk)+Se(tn+1; tk+1)Π
ε
+V (tk)Πε

−Rk
0Φ(0)‖L2

. ε
3‖V (tk)‖W 3,∞ (‖Φ(tk)‖H3 +‖Φ(0)‖H3) ,

‖Rn+1
k+1D

ε
Π

ε
+V (tk)Πε

−Φ(tk)‖L2 +‖Rn+1
k+1(Π

ε
+V (tk)Dε − iΠε

+∂tV (tk))Πε
−Φ(tk)‖L2

. ε
3‖V (t,x)‖W 1,∞([0,T ];W 5,∞)‖Φ(tk)‖H5 ,

‖Se(tn+1; tk+1)D
ε
Π

ε
+V (tk)Πε

−Rk
0Φ(0)‖L2 . ε

3‖V (t,x)‖W 1,∞([0,T ];W 3,∞)‖Φ(0)‖H5,

‖Se(tn+1; tk+1)(Π
ε
+V (tk)Dε − iΠε

+∂tV (tk))Πε
−Rk

0Φ(0)‖L2

. ε
3‖V (t,x)‖W 1,∞([0,T ];W 3,∞)‖Φ(0)‖H5,

which will lead to the following conclusions in view of the fact that |p̃1(τ)|= |
∫

τ

0 ei(2s−τ)/ε2
ds−

τ| . min{τ2/ε2,τ3/ε4} and |p̃2(τ)|, |p̃3(τ)| . min{τ2/ε2,τ3/ε4} (Taylor expansion up to
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the linear or the quadratic term),

‖Ĩn
2 (x)‖L2 .min{τε,τ2/ε}, ‖Ĩn

4 (x)‖L2 .min{τε,τ2/ε}. (3.4.37)

Now, we proceed to treat Ĩn
1 and Ĩn

3 . For Ĩn
1 (x), it is similar to (3.4.21) which has been analyzed

in the S1 case. Using the same idea (details omitted for brevity here), and the fact that

|p̃1(τ)| =
∣∣∣∫ τ

0 ei(2s−τ)/ε2
ds− τ

∣∣∣ . min{τ,τ2/ε2} as well as Πε
±V (tk)Πε

∓ = O(ε), under the

regularity assumptions, we can get for τ ∈Aκ(ε),

‖Ĩn
1 (x)‖L2 .min{τ,τ2/ε

2}(
n−1

∑
k=0

τε/κ + ε/κ) .κ min{τε,τ2/ε}. (3.4.38)

Similarly, noticing |p̃2(τ)|, |p̃3(τ)| ≤ τ2, we can get

‖Ĩn
3 (x)‖L2 . τ

2(
n−1

∑
k=0

τε/κ + ε/κ) .κ τ
2
ε. (3.4.39)

Combing the estimates for Ĩn
j ( j = 1,2,3,4), we have∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
2+(x)

∥∥∥∥∥
L2

≤
4

∑
j=1
‖Ĩn

j (x)‖L2 .κ min{τε,τ2/ε}. (3.4.40)

For ∑
n
k=0 Se(tn+1; tk+1)η̃

k
2−(x), we can have the same results as∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
2−(x)

∥∥∥∥∥
L2

.κ min{τε,τ2/ε}, (3.4.41)

which yield the following results in view of (3.4.40) and (3.4.36)∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
2(x)

∥∥∥∥∥
L2

.κ min{τε,τ2/ε}. (3.4.42)

The same technique works for Se(tn+1; tk+1)η̃
k
3(x) and we can get∥∥∥∥∥ n

∑
k=0

Se(tn+1; tk+1)η̃
k
3(x)

∥∥∥∥∥
L2

.κ min{τε,τ2/ε}. (3.4.43)

Plugging these results into (3.4.35), we have

‖en+1(x)‖L2 .κ τ
2 +

n

∑
k=0

τ‖ek(x)‖L2 +min{τε,τ2/ε}. (3.4.44)
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Gronwall’s inequality then implies for τ satisfying τ ∈Aκ(ε),

‖en+1(x)‖L2 .κ τ
2 +min{τε,τ2/ε}, 0≤ n≤ T

τ
−1. (3.4.45)

This completes the proof for Theorem 3.4. �

Remark 3.2. In Theorem 3.3 and Theorem 3.4, the constants in the error estimates depend

on κ and the proof suggests that the constants are bounded from above by T
τ

C and 2
κ

C with

some common factor C independent of κ and τ . The optimality of the uniform error bounds

in Theorem 3.3 and Theorem 3.4 will be verified by numerical examples later.

3.5 Numerical results
In this section, we report two numerical examples to verify our theorems. For spatial

discretization, we use the Fourier pseudospectral method.

In both examples, we choose the electric potential in (3.2.2) as

V (t,x) =
1− x
1+ x2 , x ∈ R, t ≥ 0, (3.5.1)

and the initial data in (3.2.3) as

φ1(0,x) = e−
x2
2 , φ2(0,x) = e−

(x−1)2
2 , x ∈ R. (3.5.2)

In the numerical simulations, as a common practice, we truncate the whole space onto a

sufficiently large bounded domain Ω = (a,b), and assume periodic boundary conditions. The

mesh size is chosen as h :=4x = b−a
M with M being an even positive integer. The grid points

can be denoted as x j := a+ jh, for j = 0,1, ...,M.

To show the numerical results, we introduce the discrete l2 errors of the numerical solution.

Let Φn = (Φn
0,Φ

n
1, ...,Φ

n
M−1,Φ

n
M)T be the numerical solution obtained by a numerical method

with time step τ and ε as well as a very fine mesh size h at time t = tn, and Φ(t,x) be the

exact solution, then the discrete l2 error is quantified as

eε,τ(tn) = ‖Φn−Φ(tn, ·)‖l2 =

√√√√h
M−1

∑
j=0
|Φ(tn,x j)−Φn

j |2, (3.5.3)
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and e(tn) should be close to the L2 errors in Theorem 3.1, Theorem 3.2, Theorem 3.3 &

Theorem 3.4 for fine spatial mesh sizes h.

Example 1 We first test the uniform error bounds for the splitting methods. In this example,

we choose resonant time step size, that is, for small enough chosen ε , there is a positive k0,

such that τ = k0επ .

The bounded computational domain is set as Ω = (−32,32). Because we mainly care

about the temporal errors to verify super-resolution, during the computation, the spatial mesh

size is always set to be h = 1
16 so that the spatial error is negligible. As there is no exact

solution available, for comparison, we use a numerical ‘exact’ solution generated by the S2

method with a very fine time step size τe = 2π×10−6.

Table 3.5.1 & Table 3.5.2 show the numerical errors eε,τ(t = 2π) with different ε and

time step size τ for S1 and S2, respectively.

In Table 3.5.1 & Table 3.5.2, the last two rows show the largest error of each column for

fixed τ . They both give 1/2 order of convergence, which coincides well with Theorem 3.1

& Theorem 3.2. More specifically, in Table 3.5.1, we can see when τ & ε (below the

lower bolded line), there is first order convergence, which agrees with the error bound

‖Φ(tn,x)−Φn(x)‖L2 . τ + ε . When τ . ε2 (above the upper bolded line), we observe first

order convergence, which matches the other error bound ‖Φ(tn,x)−Φn(x)‖L2 . τ + τ/ε .

Similarly, in Table 3.5.2, the second order convergence can be clearly observed when τ . ε2

(above the upper bolded line) or when τ &
√

ε (below the lower bolded line), which fits

well with the two error bounds ‖Φ(tn,x)−Φn(x)‖L2 . τ2+τ2/ε3 and ‖Φ(tn,x)−Φn(x)‖L2 .

τ2 + ε .

Through the results of this example, we successfully validate the uniform error bounds for

the splitting methods in Theorem 3.1 & Theorem 3.2.

Example 2 In this example, we test the improved uniform error bounds for non-resonant time

step size. Here we choose τ ∈Aκ(ε) for some given ε and 0 < κ ≤ 1.

The bounded computational domain is set as Ω = (−16,16). The numerical ‘exact’

solution is computed by S2 with a very small time step τe = 8×10−6. Spatial mesh size is
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Table 3.5.1: Discrete l2 temporal errors eε,τ(t = 2π) for the wave function with resonant time
step size, S1 method.

eε,τ(t = 2π) τ0 = π/4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45

ε0 = 1 4.84E-1 1.27E-1 3.20E-2 8.03E-3 2.01E-3 5.02E-4
order – 0.97 0.99 1.00 1.00 1.00
ε0/2 6.79E-1 1.21E-1 3.10E-2 7.78E-3 1.95E-3 4.87E-4
order – 1.24 0.98 1.00 1.00 1.00
ε0/22 5.78E-1 2.71E-1 3.07E-2 7.76E-3 1.95E-3 4.87E-4
order – 0.55 1.57 0.99 1.00 1.00
ε0/23 5.33E-1 1.85E-1 1.21E-1 7.75E-3 1.95E-3 4.87E-4
order – 0.76 0.30 1.98 1.00 1.00
ε0/24 5.13E-1 1.48E-1 7.02E-2 5.76E-2 1.95E-3 4.88E-4
order – 0.90 0.54 0.14 2.44 1.00
ε0/25 5.04E-1 1.34E-1 4.70E-2 3.07E-2 2.82E-2 4.88E-4
order – 0.96 0.75 0.31 0.06 2.93
ε0/27 4.98E-1 1.25E-1 3.37E-2 1.18E-2 7.68E-3 7.05E-3
order – 1.00 0.95 0.76 0.31 0.06
ε0/29 4.97E-1 1.24E-1 3.17E-2 8.46E-3 2.95E-3 1.92E-3
order – 1.00 0.98 0.95 0.76 0.31

ε0/211 4.96E-1 1.23E-1 3.13E-2 7.94E-3 2.12E-3 7.37E-4
order – 1.00 0.99 0.99 0.95 0.76

max
0<ε≤1

eε,τ(t = 2π) 6.79E-1 2.71E-1 1.21E-1 5.76E-2 2.82E-2 1.39E-2

order – 0.66 0.58 0.54 0.52 0.51

fixed as h = 1/16 for all the numerical simulations.

Table 3.5.3 & Table 3.5.4 show the numerical errors eε,τ(t = 4) with different ε and time

step size τ for S1 and S2, respectively.

In Table 3.5.3, we could see that overall, for fixed time step size τ , the error eε,τ(t = 4)

does not change with different ε . This verifies the uniform first order convergence in time

for S1 with non-resonant time step size, as stated in Theorem 3.3. In Table 3.5.4, the last two

rows show the largest error of each column for fixed τ , which gives 3/2 order of convergence,

and it is consistent with Theorem 3.4. More specifically, in Table 3.5.4, we can observe

the second order convergence when τ & ε (below the lower bolded line) or when τ . ε2

(above the upper bolded line). The lower bolded diagonal line agrees with the error bound

87



CHAPTER 3. SUPER-RESOLUTION OF TIME-SPLITTING METHODS FOR THE
DIRAC EQUATION

Table 3.5.2: Discrete l2 temporal errors eε,τ(t = 2π) for the wave function with resonant time
step size, S2 method.

eε,τ(t = 2π) τ0 = π/4 τ0/42 τ0/43 τ0/44 τ0/45 τ0/46

ε0 = 1 8.08E-2 4.44E-3 2.76E-4 1.73E-5 1.08E-6 6.74E-8
order – 2.09 2.00 2.00 2.00 2.00
ε0/2 4.13E-1 9.66E-3 5.73E-4 3.57E-5 2.23E-6 1.39E-7
order – 2.71 2.04 2.00 2.00 2.00
ε0/22 2.63E-1 2.15E-1 1.21E-3 7.22E-5 4.50E-6 2.81E-7
order – 0.15 3.74 2.03 2.00 2.00
ε0/23 2.08E-1 1.10E-1 1.10E-1 1.51E-4 9.05E-6 5.64E-7
order – 0.46 0.00 4.75 2.03 2.00
ε0/24 1.92E-1 5.56E-2 5.51E-2 5.51E-2 1.89E-5 1.13E-6
order – 0.89 0.01 0.00 5.76 2.03
ε0/25 1.88E-1 2.85E-2 2.76E-2 2.76E-2 2.76E-2 2.36E-6
order – 1.36 0.02 0.00 0.00 6.76
ε0/26 1.87E-1 1.55E-2 1.38E-2 1.38E-2 1.38E-2 1.38E-2
order – 1.79 0.08 0.00 0.00 0.00
ε0/27 1.87E-1 9.86E-3 6.92E-3 6.90E-3 6.90E-3 6.90E-3
order – 2.12 0.26 0.00 0.00 0.00

ε0/211 1.87E-1 6.97E-3 5.93E-4 4.32E-4 4.31E-4 4.31E-4
order – 2.37 1.78 0.23 0.00 0.00

ε0/215 1.87E-1 6.95E-3 4.03E-4 3.75E-5 2.71E-5 2.70E-5
order – 2.37 2.05 1.71 0.23 0.00

max
0<ε≤1

eε,τ(t = 2π) 4.13E-1 2.15E-1 1.10E-1 5.51E-2 2.76E-2 1.38E-2

order – 0.47 0.49 0.50 0.50 0.50

‖Φ(tn,x)−Φn(x)‖L2 . τ2 + τε , and the upper bolded diagonal line matches the other error

bound ‖Φ(tn,x)−Φn(x)‖L2 . τ2 + τ2/ε .

Through the results of this example, we successfully validate the improved uniform error

bounds for the splitting methods in Theorem 3.3 and Theorem 3.4, with non-resonant time

step size.
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Table 3.5.3: Discrete l2 temporal errors eε,τ(t = 4) for the wave function with non-resonant
time step size, S1 method.

eε,τ(t = 4) τ0 = 1/2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

ε0 = 1 3.51E-1 1.78E-1 8.96E-2 4.50E-2 2.25E-2 1.13E-2 5.64E-3
order – 0.98 0.99 0.99 1.00 1.00 1.00
ε0/2 3.52E-1 1.65E-1 8.34E-2 4.20E-2 2.11E-2 1.05E-2 5.28E-3
order – 1.10 0.98 0.99 1.00 1.00 1.00
ε0/22 3.25E-1 1.64E-1 8.04E-2 4.07E-2 2.05E-2 1.03E-2 5.15E-3
order – 0.99 1.03 0.98 0.99 1.00 1.00
ε0/23 3.24E-1 1.69E-1 8.10E-2 4.13E-2 2.02E-2 1.02E-2 5.13E-3
order – 0.94 1.06 0.97 1.03 0.99 0.99
ε0/24 3.12E-1 1.61E-1 8.24E-2 4.22E-2 2.05E-2 1.03E-2 5.10E-3
order – 0.95 0.97 0.97 1.04 0.99 1.02
ε0/25 3.25E-1 1.61E-1 8.10E-2 4.10E-2 2.07E-2 1.04E-2 5.13E-3
order – 1.02 0.99 0.98 0.99 0.98 1.02
ε0/26 3.19E-1 1.63E-1 8.43E-2 4.09E-2 2.05E-2 1.03E-2 5.16E-3
order – 0.97 0.95 1.04 1.00 0.99 0.99
ε0/27 3.18E-1 1.60E-1 8.10E-2 4.06E-2 2.05E-2 1.03E-2 5.13E-3
order – 0.99 0.99 0.99 0.99 0.99 1.00

max
0<ε≤1

eε,τ 3.52E-1 1.78E-1 8.96E-2 4.50E-2 2.25E-2 1.13E-2 5.64E-3

order – 0.98 0.99 0.99 1.00 1.00 1.00

3.6 Extension to full-discretization
Theorem 3.1 to Theorem 3.4 in the above sections only deal with semi-discretization. In

this section, we extend these error estimates to full-discretization.

Consider (3.2.2) with the initial condition (3.2.3) on a bounded domain Ω = [a,b] with

periodic boundary conditions. Choose mesh size h = b−a
M with M being an even positive

integer, time step size τ := κt > 0 and denote the grid points and time steps as:

x j := a+ jh, j = 0,1, . . . ,M; tn := nτ, n = 0,1,2, . . . .

Denote XM = {U = (U0,U1, ...,UM)T | U j ∈ C2, j = 0,1, . . . ,M, U0 = UM} and we always

use U−1 =UM−1 and UM+1 =U1 if they are involved.
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Table 3.5.4: Discrete l2 temporal errors eε,τ(t = 4) for the wave function with non-resonant
time step size, S2 method.

eε,τ(t = 4) τ0 = 1/2 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45

ε0 = 1/2 1.69E-1 3.85E-3 2.36E-4 1.47E-5 9.20E-7 5.75E-8
order – 2.73 2.01 2.00 2.00 2.00
ε0/2 9.79E-2 1.16E-2 4.61E-4 2.83E-5 1.77E-6 1.10E-7
order – 1.54 2.33 2.01 2.00 2.00
ε0/22 6.76E-2 3.93E-3 1.32E-3 5.76E-5 3.54E-6 2.21E-7
order – 2.05 0.78 2.26 2.01 2.00
ε0/23 7.86E-2 4.49E-3 2.63E-4 1.72E-4 7.59E-6 4.67E-7
order – 2.06 2.05 0.31 2.25 2.01
ε0/24 7.55E-2 5.04E-3 5.33E-4 2.64E-5 2.14E-5 9.43E-7
order – 1.95 1.62 2.17 0.15 2.25
ε0/25 7.01E-2 1.94E-2 2.38E-4 6.50E-5 3.02E-6 2.61E-6
order – 0.93 3.18 0.94 2.22 0.10
ε0/27 6.84E-2 2.67E-3 2.77E-4 2.31E-4 2.76E-6 1.04E-6
order – 2.34 1.64 0.13 3.19 0.70
ε0/29 6.84E-2 2.67E-3 1.65E-4 1.03E-5 2.08E-6 2.10E-6
order – 2.34 2.01 2.00 1.15 -0.00

ε0/211 6.84E-2 2.67E-3 1.66E-4 1.03E-5 6.53E-7 4.53E-8
order – 2.34 2.00 2.00 1.99 1.92

ε0/213 6.84E-2 2.67E-3 1.64E-4 1.04E-5 7.51E-7 1.51E-7
order – 2.34 2.01 1.99 1.89 1.16

max
0<ε≤1

eε,τ(t = 4) 1.69E-1 1.94E-2 4.11E-3 2.31E-4 2.14E-5 2.61E-6

order – 1.56 1.12 2.08 1.72 1.52

Denote

YM = ZM×ZM, ZM = span
{

φl(x) = eiµl(x−a), l =−M
2
, . . . ,

M
2
−1
}
,

where µl =
2lπ
b−a with l = −M

2 , ...,
M
2 − 1. Let [Cp(Ω)]2 be the function space consisting of

all periodic vector function U(x) : Ω = [a,b]→ C2. For any U(x) ∈ [Cp(Ω)]2 and U ∈ XM,

define PM : [L2(Ω)]2→ YM as the standard projection operator [109], IM : [Cp(Ω)]2→ YM

and IM : XM→ YM as the standard interpolation operator [109], i.e. for a≤ x≤ b

(PMU)(x) =
M/2−1

∑
l=−M/2

Ûl eiµl(x−a), (IMU)(x) =
M/2−1

∑
l=−M/2

Ũl eiµl(x−a), (3.6.1)
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with

Ûl =
1

b−a

∫ b

a
U(x)e−iµl(x−a) dx, Ũl =

1
M

M−1

∑
j=0

U j e−2i jlπ/M, (3.6.2)

where U j =U(x j) when U is a function.

We first consider the Lie-Trotter splitting S1. Denote Φ[n](x) to be the semi-discretized

numerical solution from S1 (3.2.4), and Φn to be the full-discretized numerical solution with

Fourier spectral discretization in space, i.e. we have for n = 0,1, ..., T
τ
−1

Φ
[n+1](x) = e−i

∫ tn+1
tn V (s,x)dse−

iτ
ε2 T ε

Φ
[n](x), x ∈ [a,b], (3.6.3)

with

Φ
[0](x) = Φ(0,x), x ∈ [a,b], (3.6.4)

and

Φ
n+1
j = e−i

∫ tn+1
tn V (s,x j)ds(e− iτ

ε2 T ε

IM(Φn)
)
(x j), j = 0,1, ...,M−1, (3.6.5)

with

Φ
0
j = Φ(0,x j), j = 0,1, ...M−1. (3.6.6)

Moreover, we introduce the full-discretized error

en
f (x) := PM(Φ(tn,x))− IM(Φn), (3.6.7)

then the uniform and improved uniform error bounds for S1 in Theorem 3.1 and Theorem 3.3

can be extended to full-discretization as follows

Theorem 3.5. (i) Under the assumptions (A) and (B) with 2m+m∗≥ 2, we have the following

full-discretized error estimate for S1

‖en
f (x)‖L2 .

√
τ +h2m+m∗, 0≤ n≤ T

τ
. (3.6.8)

(ii) If the time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε),

then under the assumptions (A) and (B) with 2m+m∗ ≥ 3, we have an improved uniform

error bound for S1

‖en
f (x)‖L2 .κ τ +h2m+m∗ , 0≤ n≤ T

τ
. (3.6.9)
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Proof. (i) It is obvious that

‖en
f (x)‖L2 ≤ ‖PM(Φ(tn,x))−Φ(tn,x)‖L2 +‖Φ(tn,x)−Φ

[n](x)‖L2

+‖Φ[n](x)− IM(Φ[n])(x)‖L2 +‖IM(Φ[n])(x)− IM(Φn)‖L2 . (3.6.10)

From the regularity conditions, we have

‖PM(Φ(tn,x))−Φ(tn,x)‖L2 . h2m+m∗, ‖Φ[n](x)− IM(Φ[n])(x)‖L2 . h2m+m∗. (3.6.11)

Moreover, Theorem 3.1 suggests

‖Φ(tn,x)−Φ
[n](x)‖L2 .

√
τ. (3.6.12)

As a result, we only need to focus on the term ‖IM(Φ[n])(x)− IM(Φn)‖L2 .

Notice that

‖Φ[n](x)− IM(Φ[n])(x)‖L2 . h2m+m∗, (3.6.13)

then from (3.6.3), we have

Φ
[n+1](x) = e−i

∫ tn+1
tn V (t,x)dte−

iτ
ε2 T ε

IM(Φ[n])(x)+O(h2m+m∗). (3.6.14)

Subtracting from (3.6.5), and taking interpolation, we get

IM(Φ[n+1])(x)−IM(Φn+1)= IM

(
e−i

∫ tn+1
tn V (t,x)dte−

iτ
ε2 T ε(

IM(Φ[n])(x)−IM(Φn)
))

+O(h2m+m∗).

As IM(Φ[0])(x)− IM(Φ0) = 0, through recursion, we have

‖IM(Φ[n+1])(x)− IM(Φn+1)‖L2 . h2m+m∗. (3.6.15)

Plugging into (3.6.10), taking into account (3.6.11) and (3.6.12), we finally get

‖en
f (x)‖L2 .

√
τ +h2m+m∗, (3.6.16)

which completes the proof.

(ii) The proof for non-resonant time step is similar to the proof for (i). The details are

omitted here for brevity. �
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Next we consider the Strang splitting S2. Similarly, denote Φ[n](x) to be the semi-

discretized numerical solution from S2 (3.2.5), and Φn to be the full-discretized numerical

solution with Fourier spectral discretization in space, i.e. we have for n = 0,1, ..., T
τ
−1

Φ
[n+1](x) = e−

iτ
2ε2 T ε

e−i
∫ tn+1

tn V (s,x)dse−
iτ

2ε2 T ε

Φ
[n](x), x ∈ [a,b], (3.6.17)

with

Φ
[0](x) = Φ(0,x), x ∈ [a,b], (3.6.18)

and

Φ
n+1
j = e−

iτ
2ε2 T ε

IM
(
e−i

∫ tn+1
tn V (s,x)dse−

iτ
2ε2 T ε

IM(Φn)
)
(x j), j = 0,1, ...,M−1, (3.6.19)

with

Φ
0
j = Φ(0,x j), j = 0,1, ...M−1. (3.6.20)

The full-discretized error is still defined as (3.6.7), and then the uniform and improved uniform

error bounds for S2 in Theorem 3.2 and Theorem 3.4 can be extended to full-discretization as

follows

Theorem 3.6. (i) Under the assumptions (A) and (B) with 2m+m∗≥ 4, we have the following

full-discretized error estimate for S2

‖en
f (x)‖L2 .

√
τ +h2m+m∗, 0≤ n≤ T

τ
. (3.6.21)

(ii) If the time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε),

under the assumptions (A) and (B) with 2m+m∗ ≥ 5, with an extra regularity V (t,x) ∈
W 1,∞([0,T ];H3(R)) and then the following improved uniform error estimate for S2 holds

‖en
f (x)‖L2 .κ τ

3/2 +h2m+m∗, 0≤ n≤ T
τ
. (3.6.22)

Proof. The proof for Theorem 3.6 is similar to the proof for Theorem 3.5. We have the same

inequality (3.6.10) and (3.6.11). The right hand side of (3.6.12) should still be
√

τ for all

time step sizes, and would become τ3/2 for non-resonant time step sizes. The main task

remains analyzing ‖IM(Φ[n])(x)− IM(Φn)‖L2 .

Noticing the fact that

‖Φ[n](x)− IM(Φ[n])(x)‖L2 . h2m+m∗, (3.6.23)
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and furthermore

‖IM

(
e−i

∫ tn+1
tn V (s,x)dse−

iτ
2ε2 T ε

IM(Φ[n])
)
(x)− e−i

∫ tn+1
tn V (s,x)dse−

iτ
2ε2 T ε

Φ
[n](x)‖L2 . h2m+m∗ ,

we have

IM(Φ[n+1])(x)− IM(Φn+1) =IM

(
e−

iτ
2ε2 T ε

IM

(
e−i

∫ tn+1
tn V (s,x)dse−

iτ
2ε2 T ε(

IM(Φ[n])(x)− IM(Φn)
)))

+O(h2m+m∗)

from (3.6.17) and (3.6.19). As IM(Φ[0])(x)− IM(Φ0) = 0, through recursion, we have

‖IM(Φ[n+1])(x)− IM(Φn+1)‖L2 . h2m+m∗. (3.6.24)

As a result, plugging into (3.6.10), we can get

‖en
f (x)‖L2 .

√
τ +h2m+m∗, (3.6.25)

for all time step sizes and

‖en
f (x)‖L2 .κ τ

3/2 +h2m+m∗, (3.6.26)

for non-resonant time step sizes, which completes the proof. �
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Chapter 4

Uniform Error Bounds of Time-Splitting
Methods for Nonlinear Dirac Equation

This chapter extends the super-resolution of time-splitting methods discussed in the

previous chapter to the nonlinear Dirac equation. We still consider the equation in the absence

of external magnetic potential in the nonrelativistic regime. Our numerical studies show

similar results to the linear case, but the proofs are established in a different way because of

the nonlinearity [18].

4.1 Introduction
In this chapter, we consider the splitting methods applied to the nonlinear Dirac equation

[42, 50, 51, 58, 59, 60, 61, 64, 67, 73, 74, 78, 102] in the nonrelativistic regime in the

absence of magnetic potential. In one or two dimension (1D or 2D), the equation with

time-independent electric potential can be represented in the two-component form with wave

function Φ := Φ(t,x) = (φ1(t,x),φ2(t,x))T ∈ C2 by taking A j ≡ 0 ( j = 1, ...,d) in (1.3.9) as:

i∂tΦ=

(
− i

ε

d

∑
j=1

σ j∂ j +
1
ε2 σ3

)
Φ+V (x)Φ+F(Φ)Φ, x∈Rd, d = 1,2, t > 0, (4.1.1)

where the initial value is given as

Φ(t = 0,x) = Φ0(x), x ∈ Rd, d = 1,2. (4.1.2)

and the nonlinearity F(Φ) is chosen to be (λ1, λ2 ∈ R)

F(Φ) = λ1(Φ
∗
σ3Φ)σ3 +λ2|Φ|2I2. (4.1.3)
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Though the TSFP method (also called S2) has a τ2/ε4 dependence on the small parameter

ε [16], under the specific case where there is a lack of magnetic potential, as in (4.1.1), we

find out through our recent extensive numerical experiments that the errors of S2 will be

independent of ε and uniform w.r.t. ε . In other words, S2 for NLDE (4.1.1) in the absence of

magnetic potentials displays super-resolution w.r.t ε .

The super-resolution property for the time-splitting methods makes them superior in

solving the NLDE in the absence of magnetic potentials in the nonrelativistic regime as they

are more efficient and reliable compared to other numerical methods in the literature. In this

chapter, the super-resolution for first-order (S1) and second-order (S2) time-splitting methods

will be rigorously analyzed, and numerical results will be presented to validate the conclusions.

We remark that similar results have been analyzed for the linear Dirac equation [17], where

the linearity enables us to explicitly track the error exactly and make estimation at the target

time step without the use of Gronwall type arguments. However, in the nonlinear case, it is

impossible to follow the error propagation exactly and estimations have to be done at each

time step. As a result, Gronwall arguments will be involved together with the mathematical

induction to control the nonlinearity. In particular, instead of the previously adopted Lie

calculus approach [92], Taylor expansion and Duhamel principle are employed to study the

local error of the splitting methods, which can identify how temporal oscillations propagate

numerically.

4.2 Semi-discretization
For simplicity of analysis, here we only consider (4.1.1) in 1D (d = 1). Extension to

(4.1.1) in 2D and/or the four-component form with d = 1,2,3 is straightforward.

Denote the free Dirac Hermitian operator

T ε =−iεσ1∂x +σ3, x ∈ R, (4.2.1)

then the NLDE (4.1.1) in 1D can be written as

i∂tΦ(t,x) =
1
ε2 T ε

Φ(t,x)+V (x)Φ(t,x)+F(Φ(t,x))Φ(t,x), x ∈ R, (4.2.2)

with nonlinearity (4.1.3) and the initial condition (4.1.2).
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Choose τ > 0 as the time step size and tn = nτ for n = 0,1, ... as the time steps. Denote

Φn(x) to be the numerical approximation of Φ(tn,x), where Φ(t,x) is the exact solution to

(4.2.2) with (4.1.3) and (4.1.2), then through applying the discrete-in-time first-order splitting

(Lie-Trotter splitting) [123], S1 can be represented as:

Φ
n+1(x) = e−

iτ
ε2 T ε

e−iτ[V (x)+F(Φn(x))]
Φ

n(x), x ∈ R, (4.2.3)

with Φ0(x) = Φ0(x). For simplicity, we also write Φn+1(x) := SLie
n,τ (Φ

n), where SLie
n,τ denotes

the numerical propagator of Lie-Trotter splitting.

Similarly, applying the discrete-in-time second-order splitting (Strang splitting, S2) to

(4.2.2), we have the numerical method as [113]

Φ
n+1(x) = e−

iτ
2ε2 T ε

e
−iτ
[
V (x)+F

(
e
− iτ

2ε2 T ε

Φn(x)
)]

e−
iτ

2ε2 T ε

Φ
n(x). (4.2.4)

with Φ0(x) = Φ0(x). We write the numerical propagator for S2 as Φn+1(x) := SStr
n,τ(Φ

n).

4.3 Uniform error bounds
For any 0 < T < T ∗, where T ∗ denotes the maximal existence time of the solution for

(4.1.1) with (4.1.2), we are going to consider smooth enough solutions, i.e. we assume the

electric potential satisfies

(C) V (x)∈W 2m+m∗,∞(R), m∈N∗, m∗= 0,1.

In addition, we assume the exact solution Φ(t,x) satisfies

(D) Φ(t,x)∈L∞([0,T ];(H2m+m∗(R))2), m∈N∗, m∗= 0,1.

For the numerical approximation Φn(x) obtained from S1 (4.2.3), we introduce the error

function

en(x) = Φ(tn,x)−Φ
n(x), 0≤ n≤ T

τ
, (4.3.1)

then the following uniform error bound can be established.
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Theorem 4.1. Let Φn(x) be the numerical approximation obtained from S1 (4.2.3), then

under assumptions (C) and (D) with m = m∗ = 1, there exists 0 < τ0 ≤ 1 independent of ε

such that the following two error estimates hold for 0 < τ < τ0

‖en(x)‖H1 . τ + ε, ‖en(x)‖H1 . τ + τ/ε, 0≤ n≤ T
τ
. (4.3.2)

Consequently, there is a uniform error bound for S1 when 0 < τ < τ0

‖en(x)‖H1 . τ + max
0<ε≤1

min{ε,τ/ε} .
√

τ, 0≤ n≤ T
τ
. (4.3.3)

For simplicity of the presentation, in the proof for this theorem and other theorems

later for NLDE, we will take V (x) ≡ 0. Extension to the case where V (x) , 0 or time-

dependent is straightforward [17]. Compared to the linear case [17], the nonlinear term is

much more complicated to analyze. A key issue of the error analysis for NLDE is to control

the nonlinear term of numerical solution Φn, and for which we require the following stability

lemma [92].

Lemma 4.1. Suppose V (tn,x)∈W 1,∞(R), and Φ(x),Ψ(x)∈ (H1(R))2 satisfy ‖Φ‖H1,‖Ψ‖H1 ≤
M, we have

‖SLie
n,τ (Φ)−SLie

n,τ (Ψ)‖H1 ≤ ec1τ‖Φ−Ψ‖H1, (4.3.4)

where c1 depends on M and ‖V (x)‖W 1,∞ .

Proof. The proof is quite similar to the nonlinear Schrödinger equation case in [92] and we

omit it here for brevity. �

Under the assumption (D) (m≥ 1), for ε ∈ (0,1], we denote M1 > 0 as

M1 = sup
ε∈(0,1]

‖Φ(t,x)‖L∞([0,T ];(H1(R))2). (4.3.5)

Based on (4.3.5) and Lemma 4.1, one can control the the nonlinear term once the hypothesis

of the lemma is fulfilled. Making use of the fact that S1 is explicit, together with the uniform

error estimates in Theorem 4.1, we can use mathematical induction to complete the proof.

The following properties of T ε will be frequently used in the analysis. T ε is diagonaliz-

able in the phase space (Fourier domain) and can be decomposed as

T ε =
√

Id− ε2∆Π
ε
+−

√
Id− ε2∆Π

ε
−, (4.3.6)
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where ∆ = ∂xx is the Laplace operator in 1D, Id is the identity operator, and Πε
+, Πε

− are

projectors defined as

Π
ε
+ =

1
2

[
Id +(Id− ε

2
∆)−1/2T ε

]
, Π

ε
− =

1
2

[
Id− (Id− ε

2
∆)−1/2T ε

]
. (4.3.7)

It is straightforward to verify that Πε
++Πε

− = Id, Πε
+Πε
− = Πε

−Πε
+ = 0, (Π±)2 = Π±, and

through Taylor expansion, we have [29]

Π
ε
± = Π

0
±± εR1 = Π

0
±+∓i

ε

2
σ1∂x± ε

2R2, Π
0
+ = diag(1,0), Π

0
− = diag(0,1) (4.3.8)

with R1 : (Hm(R))2 → (Hm−1(R))2 for m ≥ 1, R2 : (Hm(R))2 → (Hm−2(R))2 for m ≥ 2

being uniformly bounded operators w.r.t. ε .

In order to characterize the oscillatory features of the solution, denote

Dε =
1
ε2 (

√
Id− ε2∆− Id) =−(

√
Id− ε2∆+ Id)−1

∆, (4.3.9)

which is a uniformly bounded operator w.r.t ε from (Hm(R))2→ (Hm−2(R))2 for m≥ 2, then

the evolution operator e
it
ε2 T ε

can be expressed as

e
it
ε2 T ε

= e
it
ε2 (
√

Id−ε2∆Πε
+−
√

Id−ε2∆Πε
−) = e

it
ε2 eitDε

Π
ε
++ e−

it
ε2 e−itDε

Π
ε
−. (4.3.10)

For simplicity, here we use Φ(t) := Φ(t,x), Φn := Φn(x) in short.

Now we are ready to introduce the following lemma for proving Theorem 4.1.

Lemma 4.2. Let Φn(x) ( 0≤ n≤ T
τ
−1) be obtained from S1 (4.2.3) satisfying ‖Φn(x)‖H1 ≤

M1 +1, under the assumptions of Theorem 4.1, we have

en+1(x) = e−
iτ
ε2 T ε

e−iτF(Φn)en(x)+η
n
1 (x)+ e−

iτ
ε2 T ε

η
n
2 (x), (4.3.11)

with ‖ηn
1 (x)‖H1 ≤ c1τ2 + c2τ‖en(x)‖H1 , ηn

2 (x) =
∫

τ

0 f n
2 (s)ds− τ f n

2 (0), where c1 depends on

M1, λ1, λ2 and ‖Φ(t,x)‖L∞([0,T ];(H3)2); c2 depends on M1, λ1, and λ2;

f n
2 (s) =− ie

−4is
ε2 Π

ε
−
(
gn

1(x)Π
ε
+Φ(tn)

)
− ie

4is
ε2 Π

ε
+

(
gn

1(x)Π
ε
−Φ(tn)

)
− ie

−i2s
ε2
[
Π

ε
+

(
gn

1(x)Π
ε
+Φ(tn)

)
+Π

ε
−
(
gn

2(x)Π
ε
+Φ(tn)+gn

1(x)Π
ε
−Φ(tn)

)]
− ie

2is
ε2
[
Π

ε
−
(
gn

1(x)Π
ε
−Φ(tn)

)
+Π

ε
+

(
gn

2(x)Π
ε
−Φ(tn)+gn

1(x)Π
ε
+Φ(tn)

)]
, (4.3.12)
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where gn
j(x) = g j(Φ+(tn),Φ−(tn)) with Φ±(tn) = Πε

±Φ(tn) and

g1(Φ+(tn),Φ−(tn)) = λ1 ((Φ−(tn))∗σ3Φ+(tn))σ3 +λ2 ((Φ−(tn))∗Φ+(tn)) I2, (4.3.13)

g2(Φ+(tn),Φ−(tn)) = ∑
σ=±

[
λ1((Φσ (tn))∗σ3Φσ (tn))σ3 +λ2|Φσ (tn)|2I2

]
(4.3.14)

Proof. Through the definition of en(x) (4.3.1), noticing the formula (4.2.3), we have

en+1(x) = e−
iτ
ε2 T ε

e−iτF(Φn)en(x)+η
n(x), 0≤ n≤ T

τ
−1, x ∈ R, (4.3.15)

where ηn(x) is the “local truncation error" (notice that this is not the usual local truncation

error, compared with Φ(tn+1,x)−SLie
n,τ Φ(tn,x)),

η
n(x) = Φ(tn+1,x)− e−

iτ
ε2 T ε

e−iτF(Φn)
Φ(tn,x), x ∈ R. (4.3.16)

By Duhamel’s principle, the solution Φ(t,x) to (4.2.2) satisfies

Φ(tn + s,x) = e−
is
ε2 T ε

Φ(tn,x)− i
∫ s

0
e−

i(s−w)
ε2 T ε

F(Φ(tn +w,x))Φ(tn +w,x)dw, 0≤ s≤ τ,

(4.3.17)

which implies that ‖Φ(tn+s,x)−e−
is
ε2 T ε

Φ(tn,x)‖H1 . τ (s∈ [0,τ]). Setting s = τ in (4.3.17),

we have from (4.3.16),

η
n(x) = e−

iτ
ε2 T ε

(∫
τ

0
f n(s)ds− τ f n(0)

)
+Rn

1(x)+Rn
2(x), (4.3.18)

where

f n(s) =−ie
is
ε2 T ε

(
F(e−

is
ε2 T ε

Φ(tn))e
− is

ε2 T ε

Φ(tn,x)
)
, Rn

1(x) = e−
iτ
ε2 T ε

(Λn
1(x)+Λ

n
2(x))

(4.3.19)

Rn
2(x) =−i

∫
τ

0
e−

i(τ−s)
ε2 T ε

[
F(Φ(tn + s))Φ(tn + s)−F(Φ(e−

is
ε2 T ε

Φ(tn)))e
− is

ε2 T ε

Φ(tn)
]

ds,

(4.3.20)

with

Λ
n
1(x) =−

(
e−iτF(Φn)− (I2− iτF(Φn))

)
Φ(tn), Λ

n
2(x) = (iτ (F(Φn)−F(Φ(tn))))Φ(tn).

(4.3.21)
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Noticing (4.3.17), the assumption that ‖Φn‖H1 ≤M1+1, and the fact that e−isT ε/ε2
preserves

Hk norm, it is not difficult to find

‖Rn
2(x)‖H1 . (M1 +1)2

∫
τ

0
‖Φ(tn + s,x)− e−

is
ε2 T ε

Φ(tn,x)‖H1 ds . τ
2 (4.3.22)

On the other hand, using Taylor expansion in Λn
1(x) and the local H1 Lipschitz property of F,

we get

‖Rn
1(x)‖H1 . τ

2‖Φn‖2
H1‖Φ(tn)‖H1 + τ(M1 +1)2‖Φn−Φ(tn)‖H1 . τ

2 + τ‖en(x)‖H1.

(4.3.23)

It remains to estimate the f n(s) part. Using the decomposition (4.3.10) and the Taylor

exapnsion eiτDε

= Id + O(τDε), we have e
−isT ε

ε2 Φ(tn) = e
−is
ε2 Φ+(tn) + e

is
ε2 Φ−(tn) + O(τ)

(Φ±(tn) = Πε
±Φ(tn)),

f n(s) =−i ∑
σ=±

e
σ is
ε2 Π

ε
σ

{
F
(

e
−is
ε2 Φ+(tn)+ e

is
ε2 Φ−(tn)

) (
e
−is
ε2 Φ+(tn)+ e

is
ε2 Φ−(tn)

)}
+ f n

1 (s),

(4.3.24)

where for s ∈ [0,τ],

‖ f n
1 (s)‖H1 . τ‖Φ(tn)‖3

H3 . τ. (4.3.25)

Since F is of polynomial type, by direct computation, we can further simplify (4.3.24) to get

f n(s) = f n
1 (s)+ f n

2 (s)+ f̃ n(s), 0≤ s≤ τ, (4.3.26)

where f n
2 (s) is given in (4.3.12) and f̃ n(s) is independent of s as

f̃ n(s)≡−i
[
Π

ε
+

(
gn

2(x)Π
ε
+Φ(tn)+gn

1(x)Π
ε
−Φ(tn)

)
+Π

ε
−
(
gn

2(x)Π
ε
−Φ(tn)+gn

1(x)Π
ε
+Φ(tn)

)]
(4.3.27)

with gn
1,2 defined in (4.3.13)-(4.3.14).

Now, it is easy to verify that ηn(x) = ηn
1 (x)+ηn

2 (x) with ηn
2 (x) given in Lemma 4.2 by

choosing

η
n
1 (x) = e−

iτ
ε2 T ε

(∫
τ

0
( f n

1 (s)+ f̃ n(s))ds− τ( f n
1 (0)+ f̃ n(0))

)
+Rn

1(x)+Rn
2(x) (4.3.28)

Noticing that f̃ n(s) is independent of s and ‖ f n
1 (s)‖H1 . τ , combining (4.3.22) and (4.3.23),

we can get

‖ηn
1 (x)‖H1 ≤

2

∑
j=1
‖Rn

j(x)‖H1 +

∥∥∥∥∫ τ

0
f n
1 (s)ds− τ f n

1 (0)
∥∥∥∥

H1
. τ‖en(x)‖H1 + τ

2,

which completes the proof of Lemma 4.2. �
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Now, we proceed to prove Theorem 4.1.

Proof. We will prove by induction that the estimates (4.3.2)-(4.3.3) hold for all time steps

n≤ T
τ

together with

‖Φn‖H1 ≤M1 +1. (4.3.29)

Since initially Φ0 = Φ0(x), n = 0 case is obvious. Assume (4.3.2)-(4.3.3) and (4.3.29) hold

true for all 0≤ n≤ m≤ T
τ
−1, then we are going to prove the case n = m+1.

From Lemma 4.2, we have

en+1(x) = e−
iτ
ε2 T ε

e−iτF(Φn)en(x)+η
n
1 (x)+ e−

iτ
ε2 T ε

η
n
2 (x), 0≤ n≤ m, (4.3.30)

with ‖ηn
1 (x)‖H1 . τ2 + τ‖en(x)‖H1 , e0 = 0 and ηn

2 (x) given in Lemma 4.2.

Denote Ln = e−
iτ
ε2 T ε

(
e−iτF(Φn)− I2

)
(0≤ n≤ m≤ T

τ
−1), and it is straightforward to

calculate

‖LnΨ(x)‖H1 ≤CM1τ‖Ψ‖H1, ∀Ψ ∈ (H1(R))2, (4.3.31)

with CM1 only depending on M1. Thus we can obtain from (4.3.30) that for 0≤ n≤ m,

en+1(x) = e−
iτ
ε2 T ε

en(x)+η
n
1 (x)+ e−

iτ
ε2 T ε

η
n
2 (x)+Lnen(x)

= e−
2iτ
ε2 T ε

en−1(x)+ e−
iτ
ε2 T ε

(
η

n−1
1 (x)+ e−

iτ
ε2 T ε

η
n−1
2 (x)+Ln−1en−1

)
+
(

η
n
1 (x)+ e−

iτ
ε2 T ε

η
n
2 (x)+Lnen

)
= ...

= e−i(n+1)τT ε/ε2
e0(x)+

n

∑
k=0

e−
i(n−k)τ

ε2 T ε
(

η
k
1(x)+ e−

iτ
ε2 T ε

η
k
2(x)+Lkek(x)

)
.

(4.3.32)

Since ‖ηk
1(x)‖H1 . τ2 +τ‖en(x)‖H1 , k = 0,1, ...,n, and e−is/ε2T ε

(s ∈ R) preserves H1 norm,

we have from (4.3.31)∥∥∥∥∥ n

∑
k=0

e−
i(n−k)τ

ε2 T ε
(

η
k
1(x)+Lkek

)∥∥∥∥∥
H1

.
n

∑
k=0

τ
2 +

n

∑
k=0

τ‖ek(x)‖H1

. τ + τ

n

∑
k=0
‖ek(x)‖H1, (4.3.33)
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which leads to

‖en+1(x)‖H1 . τ + τ

n

∑
k=0
‖ek(x)‖H1 +

∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

η
k
2(x)

∥∥∥∥∥
H1

, n≤ m. (4.3.34)

To analyze ηn
2 (x) =

∫
τ

0 f n
2 (s)ds− τ f n

2 (0), using (4.3.8), we can find f n
2 (s) = O(ε), e.g.

(Πε
+Φ(tn))∗σ3(Π

ε
−Φ(tn)) =− ε(Πε

+Φ(tn))∗σ3(R1Φ(tn))+ ε(R1Φ(tn))∗σ3(Π
ε
−Φ(tn)),

and the other terms in f n
2 (s) can be estimated similarly. As R1 : (Hm)2 → (Hm−1)2 is

uniformly bounded with respect to ε ∈ (0,1], we have (with detailed computations omitted)

‖ f n
2 (·)‖L∞([0,τ];(H1)2) . ε‖Φ(tn)‖3

H2 . ε. (4.3.35)

Noticing the assumptions of Theorem 4.1, we obtain from (4.3.12)

‖ f n
2 (·)‖L∞([0,τ];(H1)2) . ε, ‖∂s( f n

2 )(·)‖L∞([0,τ];(H1)2) . ε/ε
2 = 1/ε, (4.3.36)

which leads to ∥∥∥∥∫ τ

0
f n
2 (s)ds− τ f n

2 (0)
∥∥∥∥

H1
. τε. (4.3.37)

On the other hand, using Taylor expansion and the second inequality in (4.3.36), we have∥∥∥∥∫ τ

0
f n
2 (s)ds− τ f n

2 (0)
∥∥∥∥

H1
≤ τ2

2
‖∂s f n

2 (·)‖L∞([0,τ];(H1)2) . τ
2/ε. (4.3.38)

Combining (4.3.37) and (4.3.38), we arrive at

‖ηn
2 (x)‖H1 .min{τε,τ2/ε}. (4.3.39)

Then from (4.3.34), we get for n≤ m

‖en+1(x)‖H1 .nτ
2 +nmin{τε,τ2/ε}+ τ

n

∑
k=0
‖en(x)‖H1. (4.3.40)

Using discrete Gronwall’s inequality, we have

‖en+1(x)‖H1 . τ +min{ε,τ/ε}, n≤ m, (4.3.41)

which shows that (4.3.2)-(4.3.3) hold for n = m+1. It can be checked that all the constants

appearing in the estimates depend only on M1,λ1,λ2,T and ‖Φ(t,x)‖L∞([0,T ];(H3)2), and

‖Φm+1‖H1 ≤ ‖Φ(tm+1)‖H1 +‖em+1‖H1 ≤M1 +C
√

τ (4.3.42)
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for some C =C(M1,λ1,λ2,T,‖Φ(t,x)‖L∞([0,T ];(H3)2)). Choosing τ ≤ 1
C2 will justify (4.3.29)

at n =m+1, which finishes the induction process, and the proof for Theorem 4.1 is completed.

�

Remark 4.1. In Theorem 4.1 and the other results in this chapter for the 1D case, we prove

the H1 error bounds for en(x) due to the fact that H1(R) is an algebra, and the corresponding

estimates should be in H2 norm for 2D and 3D cases with of course higher regularity

assumptions.

For the numerical approximation Φn(x) obtained from S2 (4.2.4), we introduce the error

function as in (4.3.1), and the following uniform error bounds hold.

Theorem 4.2. Let Φn(x) be the numerical approximation obtained from S2 (4.2.4), then

under the assumptions (C) and (D) with m = 2, m∗ = 1, there exists 0 < τ0 ≤ 1 independent

of ε such that the following error estimates hold for 0 < τ < τ0,

‖en(x)‖H1 . τ
2 + ε, ‖en(x)‖H1 . τ

2 + τ
2/ε

3, 0≤ n≤ T
τ
. (4.3.43)

As a result, there is a uniform error bound for S2 for τ > 0 small enough

‖en(x)‖H1 . τ
2 + max

0<ε≤1
min{ε,τ2/ε

3} .
√

τ, 0≤ n≤ T
τ
. (4.3.44)

Proof. As the proof of the theorem is not difficult to establish through combining the tech-

niques used in proving Theorem 4.1 and the ideas in the proof of the uniform error bounds for

S2 in the linear case [17], we only give the outline of the proof here. For simplicity, we denote

Φ(t) := Φ(t,x), Φn := Φn(x) in short. Similar to the S1 case, the H1 bound of the numerical

solution Φn is needed and can be done by using mathematical induction. For simplicity, we

will assume the H1 bound of Φn as in (4.3.29).

Step 1. Use Taylor expansion and Duhamel’s principle repeatedly to represent the ‘local

truncation error’ ηn(x) = Φ(tn+1)− e−
iτ

2ε2 T ε

e−iτF(e
− iτ

2ε2 T ε

Φn)e−
iτ

2ε2 T ε

Φ(tn) [16, 92] as

η
n(x)= e−

iτ
ε2 T ε

[∫
τ

0
( f n(s)+hn(s))ds− τ f n

(
τ

2

)
−
∫

τ

0

∫ s

0
gn(s,w)dwds+

τ2

2
gn
(

τ

2
,
τ

2

)]
+Rn(x),
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where ‖Rn(x)‖H1 . τ3+τ‖en(x)‖H1 , f n(s) is the same as that in Lie splitting S1 case (4.3.19)

and

hn(s) =−ie
is
ε2 T ε

[(
F(Φ(tn + s))−F

(
e−

is
ε2 T ε

Φ(tn)
))

e−
is
ε2 T ε

Φ(tn)
]
, 0≤ s≤ τ,

(4.3.45)

gn(s,w) = e
is
ε2 T ε

(
F(e−

is
ε2 T ε

Φ(tn))e
− i(s−w)

ε2 T ε
(

F(e−
is
ε2 T ε

Φ(tn))e
− iw

ε2 T ε

Φ(tn)
))

, 0≤ s,w≤ τ.

(4.3.46)

Step 2. For hn(s), using Duhamel’s principle to get

Φ(tn + s) =e−
is
ε2 T ε

Φ(tn)− ie−
is
ε2 T ε

∫ s

0
f n(w)dw+O(s2) (4.3.47)

=φ
n(s)− isF(φ n(s))φ n(s)− f̂ n(s)+O(s2),

where φ n(s) = e−
is
ε2 T ε

Φ(tn), f̂ n(s) = ie−
is
ε2 T ε ∫ s

0 ( f n(w)− f n(s))dw, and we could find

F(Φ(tn + s))−F
(

e−
is
ε2 T ε

Φ(tn)
)
=−2λ1Re

(
(φ n(s))∗σ3 f̂ n(s)

)
σ3−2λ2Re

(
(φ n(s))∗ f̂ n(s)

)
I2 +O(s2).

Recalling f̂ n(s) =O(s) and (4.3.24), we get f n(s)− f n(w) = f n
2 (s)− f n

2 (w)+O(s) with f n
2 (s)

given in (4.3.12). Finally, under the assumption of Theorem 4.2, expanding e−
isT ε

ε2 Φ(tn) =

e−
is
ε2 Φ+(tn)+ e

is
ε2 Φ−(tn)+O(s) (Φ±(tn) = Πε

±Φ(tn)), we can write the hn(s) term as∫
τ

0
hn(s)ds = ζ

n
1 (x)+κ

n
1 (x), ‖κn

1 (x)‖H1 . τ
3, (4.3.48)

with ζ n
1 (x) as the simplification of

2i
∫

τ

0
e

is
ε2 T ε [(

λ1Re
(
(φ n(s))∗σ3 f̂ n(s)

)
σ3 +λ2Re

(
(φ n(s))∗ f̂ n(s)

)
I2
)

φ
n(s)
]

ds (4.3.49)

by taking e−
isT ε

ε2 ≈ e−
is
ε2 Π++ e

is
ε2 Π−, and it can be proved that ‖ζ n

1 (x)‖H1 .min{τ2ε, τ3

ε
}.

Similarly, gn(s,w) can be written as

gn(s,w) = G n
1 (s,w)+G n

2 (s,w)+G n
3 (s,w), (4.3.50)

where ‖G n
3 (s,w)‖H1 . τ , the oscillatory term (in time) G n

1 (s,w) simplifies gn(s,w) by using

e−
isT ε

ε2 ≈ e−
is
ε2 Π++e

is
ε2 Π− and removing the non-oscillatory terms as in (4.3.27), G n

2 (s,w) =
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G n
2 (0,0) is the non-oscillatory term (s,w independent) similar to (4.3.27), ‖G n

1 (s,w)‖H1 . ε .

We can prove ‖∂sG n
1 (s,w)‖H1 . 1/ε , ‖∂wG n

1 (s,w)‖H1 . 1/ε .

Lastly, f n(s) can be decomposed as

f n(s) = F n
1 (s)+F n

2 (s)+F n
3 (s), (4.3.51)

where ‖F n
3 (s)‖H1 . τ2, the oscillatory term (in time) F n

1 (s) simplifies f n(s) by using

e−
isT ε

ε2 = e−
is
ε2 (I2− isDε)Π++ e

is
ε2 (I2 + isDε)Π−+O(s2) and removing the non-oscillatory

terms as in (4.3.27), F n
2 (s) = F n

2 (0) is the non-oscillatory term (s independent) similar to

(4.3.27). We can prove ‖F n
1 (s)‖H1 . ε , ‖∂sF n

1 (s)‖H1 . 1/ε , ‖∂ssF n
1 (s)‖H1 . 1/ε3.

Denote

ζ
n
2 (x) =

(∫
τ

0
F n

1 (s)ds− τF n
1 (τ/2)

)
, ζ

n
3 (x) =

(∫
τ

0

∫ s

0
G n

1 (s,w)dwds− τ2

2
G n

1 (τ/2,τ/2)
)
,

(4.3.52)

and we have

η
n(x) = e−

iτ
ε2 T ε

[ζ n
1 (x)+ζ

n
2 (x)−ζ

n
3 (x)]+κ

n(x). (4.3.53)

where

κ
n(x) = Rn(x) + e−

iτ
ε2 T ε

(
κ

n
1 (x)+

∫
τ

0
F n

3 (s)ds− τF n
3

(
τ

2

)
−
∫

τ

0

∫ s

0
G n

3 (s,w)dwds

+
τ2

2
G n

3

(
τ

2
,
τ

2

))
, (4.3.54)

and ‖κn(x)‖H1 . τ3 + τ‖en(x)‖H1 .

Following the idea in S1 case (4.3.32), we have the error equation for S2 with 0≤ n≤ T
τ
−1

en+1(x) = e−
iτ
ε2 T ε

en(x)+ζ
n
1 (x)+ζ

n
2 (x)−ζ

n
3 (x)+κ

n(x)+ L̃n(en(x)), (4.3.55)

where L̃n(en(x))= e−
iτ

2ε2 T ε

e
−iτF

(
e
− iτ

2ε2 T ε

Φn
)
− I2

e−
iτ

2ε2 T ε

, and ‖L̃nen(x)‖H1 ≤ ecM1τ‖en(x)‖H1

(cM1 depends on M1) . For 0≤ n≤ T
τ
−1, we would have

‖en+1(x)‖H1 . τ
2 + τ

n

∑
k=0
‖ek(x)‖H1 + ∑

j=1,2,3

∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

ζ
k
j (x)

∥∥∥∥∥
H1

. (4.3.56)
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Under the hypothesis of Theorem 4.2, we have

‖F n
1 (s)‖H1 . ε, ‖∂sF

n
1 (s)‖H1 . ε/ε

2 = 1/ε, ‖∂ssF
n
1 (s)‖H1 . 1/ε

3, 0≤ s≤ τ;

‖G n
1 (s,w)‖H1 . ε, ‖∂sG

n
1 (s,w)‖H1 . 1/ε, ‖∂wG n

1 (s,w)‖H1 . 1/ε, 0≤ s,w≤ τ.

which together with (4.3.52) gives ‖ζ n
2 (x)‖H1 .min{ετ,τ3/ε3} and ‖ζ n

3 (x)‖H1 .min{ετ2,τ3/ε}.
Since ‖ζ n

1 (x)‖H1 .min{τ2ε, τ3

ε
}, we derive from (4.3.56) that

‖en+1(x)‖H1 .τ
2 + τ

n

∑
k=0
‖ek(x)‖H1 +nmin{ετ

2,τ3/ε}+

∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

ζ
k
2 (x)

∥∥∥∥∥
H1

(4.3.57)

.τ
2 +nmin{ετ,τ3/ε

3}+ τ

n

∑
k=0
‖ek(x)‖H1, 0≤ n≤ T

τ
−1.

The discrete Gronwall’s inequality will give the desired results in Theorem 4.2 with the help

of mathematical induction. �

4.4 Improved uniform error bounds for non-resonant time
steps

The leading term in NLDE (4.2.2) is 1
ε2 σ3Φ, suggesting that the solution behaves almost

periodically in time with periods 2kπε2 (k ∈ N∗, the periods of e−iσ3/ε2
). From numerical

results, we observe that S1 behave much better than the results in Theorem 4.1 when 4τ is not

close to the leading temporal oscillation periods 2kπε2. In fact, for given 0 < κ ≤ 1, define

Aκ(ε) :=
∞⋃

k=0

[
0.5ε

2kπ +0.5ε
2 arcsinκ,0.5ε

2(k+1)π−0.5ε
2 arcsinκ

]
, 0 < ε ≤ 1,

(4.4.1)

then when τ ∈ Aκ(ε), i.e., when non-resonant time step sizes are chosen, the errors of S1

can be improved. To illustrate Aκ(ε) (compared to the linear case [17], the resonant steps

A c
κ (ε) for fixed ε double due to the cubic nonlinearity), we show in Figure 4.4.1 for ε = 1

and ε = 0.5 with fixed κ = 0.15.

For τ ∈Aκ(ε), we can derive improved uniform error bounds for S1 as follows.
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Figure 4.4.1: Illustration of the non-resonant time step Aκ(ε) with κ = 0.15 for (a) ε = 1 and
(b) ε = 0.5.

Theorem 4.3. Let Φn(x) be the numerical approximation obtained from S1 (4.2.3). If the

time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε), then under

the assumptions (C) and (D) with m = m∗ = 1, we have an improved uniform error bound

for small enough τ > 0

‖en(x)‖H1 .κ τ, 0≤ n≤ T
τ
. (4.4.2)

Proof. First of all, the assumptions of Theorem 4.1 are satisfied in Theorem 4.3, so we can

directly use the results of Theorem 4.1. In particular, the numerical solution Φn are bounded

in H1 as ‖Φn‖H1 ≤M1 +1 (4.3.29) and Lemma 4.2 for local truncation error holds.

We start from (4.3.34). The improved estimates rely on the cancellation phenomenon for

the ηk
2 term in (4.3.34). From Lemma 4.2, (4.3.12), (4.3.13) and (4.3.14), we can write ηk

2(x)

with Φ±(s) := Πε
±Φ(s,x) as

η
k
2(x) :=p1(τ)R4,−(Φ+(tk),Φ−(tk))− p1(τ)R4,+(Φ+(tk),Φ−(tk)) (4.4.3)

+ p2(τ)R2,−(Φ+(tk),Φ−(tk))− p2(τ)R2,+(Φ+(tk),Φ−(tk)),

where R j,±(Φ+,Φ−) ( j = 2,4,Φ+,Φ− : R→ C2) are as follows

R4,−(Φ+,Φ−) = Π
ε
− (g1(Φ+,Φ−)Φ+) , R4,+(Φ+,Φ−) = Π

ε
−

(
g1(Φ+,Φ−)Φ−

)
,

R2,−(Φ+,Φ−) = Π
ε
+ (g1(Φ+,Φ−)Φ+)+Π

ε
− (g2(Φ+,Φ−)Φ++g1(Φ+,Φ−)Φ−) ,

R2,+(Φ+,Φ−) = Π
ε
+

(
g1(Φ+,Φ−)Φ+

)
+Π

ε
−

(
g2(Φ+,Φ−)Φ++g1(Φ+,Φ−)Φ−

)
,

(4.4.4)

with g1,g2 given in (4.3.13)-(4.3.14) (Lemma 4.2), and

p1(τ) =−i
(∫

τ

0
e−

4si
ε2 ds− τ

)
, p2(τ) =−i

(∫
τ

0
e−

2si
ε2 ds− τ

)
. (4.4.5)
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It is obvious that |p1(τ)|, |p2(τ)| ≤ 2τ and (4.3.34) implies that

‖en+1(x)‖H1 .τ ∑
σ=±, j=2,4

∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

R j,σ (Φ+(tk),Φ−(tk))

∥∥∥∥∥
H1

+ τ + τ

n

∑
k=0
‖ek(x)‖H1. (4.4.6)

To proceed, we introduce Φ̃±(t) as

Φ̃±(t) := Φ̃±(t,x) = e±
it
ε2 Φ±(t,x) = e±

it
ε2 Π

ε
±Φ(t,x), 0≤ t ≤ T. (4.4.7)

Since Φ(t,x) solves NLDE (4.1.1) (or (4.2.2)), noticing the properties of T ε as in (4.3.6) and

(4.3.9) and the L2 orthogonal projections Πε
±, it is straightforward to compute that

i∂tΦ̃±(t) = Dε
Φ̃±(t)+Π±

(
e∓

it
ε2 F(Φ(t))Φ(t)

)
, (4.4.8)

and the assumptions of Theorem 4.1 would yield

‖Φ̃±(·)‖L∞([0,T ];(H3)2) . 1, ‖∂tΦ̃±(·)‖L∞([0,T ];(H1)2) . 1. (4.4.9)

Now, we can deal with the terms involving R j,± ( j = 2,4) in (4.4.4).

For R4,−. By direct computation, we get R4,−(Φ+(tk),Φ−(tk))= e−
3itk
ε2 R4,−(Φ̃+(tk),Φ̃−(tk)).

In view of (4.3.10) and (4.4.4), we have for 0≤ k ≤ n≤ T
τ
−1,

e−
i(n−k+1)τ

ε2 T ε

R4,−(Φ+(tk),Φ−(tk)) = e
i(n+1−4k)τ

ε2 ei(tn+1−tk)Dε

R4,−(Φ̃+(tk),Φ̃−(tk)). (4.4.10)

Denoting

A(t) := A(t,x) = e−itDε

R j,σ (Φ̃+(t),Φ̃−(t)), 0≤ t ≤ T, (4.4.11)

and noticing that ∂tA(t) = −ie−itDε

DεR j,σ (Φ̃+(t),Φ̃−(t))+ e−itDε

∂tR j,σ (Φ̃+(t),Φ̃−(t)),

we can derive from (4.4.9) and the fact that Dε : (Hm)2→ (Hm−2)2 is uniformly bounded

w.r.t ε ,

‖A(tk)−A(tk−1)‖H1 .τ

[
‖R j,σ (Φ̃+(tk),Φ̃−(tk))‖H3 +‖∂tR j,σ (Φ̃+(t),Φ̃−(t))‖L∞([0,T ];(H1)2)

]
.τ, 1≤ k ≤ T

τ
. (4.4.12)
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Using (4.4.12), (4.4.10), ‖A(t)‖L∞([0,T ];(H1)2) . 1, the property that eitDε

preserves H1 norm,

summation by parts formula and triangle inequality, we have∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

R4,−(Φ+(tk),Φ−(tk))

∥∥∥∥∥
H1

=

∥∥∥∥∥ n

∑
k=0

e−
i4kτ

ε2 A(tk)

∥∥∥∥∥
H1

(4.4.13)

≤

∥∥∥∥∥n−1

∑
k=0

θk(A(tk)−A(tk+1)

∥∥∥∥∥
H1

+‖θnA(tn)‖H1 . τ

∣∣∣∣∣n−1

∑
k=0

θk

∣∣∣∣∣+1

with

θk =
k

∑
j=0

e−
i4 jτ
ε2 =

1− e−
i4(k+1)τ

ε2

1− e−
i4τ

ε2
, k ≥ 0, θ−1 = 0. (4.4.14)

For τ ∈Aκ(ε) (4.4.1), we have |1− e−
i4τ

ε2 |= |2sin(2τ/ε2)| ≥ 2κ and |θk| ≤ 2
2κ

= 1/κ , and

(4.4.13) leads to ∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

R4,−(Φ+(tk),Φ−(tk))

∥∥∥∥∥
H1

.
nτ +1

κ
.

1
κ
. (4.4.15)

For R2,−. Similar to the case R4,− (slightly different), it is straightforward to show that

e−
i(n−k+1)τ

ε2 T ε

R2,−(Φ+(tk),Φ−(tk)) = e
i(n+1−2k)τ

ε2
[
e−itn+1D

ε

B(tk)+ eitn+1D
ε

C(tk)
]
, (4.4.16)

where

B(t) =eitDε

Π
ε
+

(
g1(Φ̃+(t),Φ̃−(t))Φ̃+(t)

)
, (4.4.17)

C(t) =e−itDε

Π
ε
−

(
g2(Φ̃+(t),Φ̃−(t))Φ̃+(t)+g1(Φ̃+(t),Φ̃−(t))Φ−(t)

)
. (4.4.18)

B(t) and C(t) satisfies the same estimates as A(t) (4.4.12). Therefore, similar procedure will

give∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

R2,−(Φ+(tk),Φ−(tk))

∥∥∥∥∥
H1

≤

∥∥∥∥∥ n

∑
k=0

e−
i2kτ

ε2 B(tk)

∥∥∥∥∥
H1

+

∥∥∥∥∥ n

∑
k=0

e−
i2kτ

ε2 C(tk)

∥∥∥∥∥
H1

. τ

∣∣∣∣∣n−1

∑
k=0

θ̃
k

∣∣∣∣∣+1, (4.4.19)

with θ̃k = ∑
k
j=0 e−

i2 jτ
ε2 = 1−e

− i2(k+1)τ
ε2

1−e
−i2τ

ε2
, k ≥ 0, θ̃−1 = 0. For τ ∈ Aκ(ε) (4.4.1), we know

|1− e
−i2τ

ε2 |= |2sin(τ/ε2)| ≥ |4sin(2τ/ε2)| ≥ 4κ and |θ̃k| ≤ 2
4κ

= 2/κ , which shows∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

R2,−(Φ+(tk),Φ−(tk))

∥∥∥∥∥
H1

. τ

∣∣∣∣∣n−1

∑
k=0

θ̃
k

∣∣∣∣∣+1 .
1
κ
. (4.4.20)
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For R4,+ and R2,+. It is easy to see that the R4,+ and R2,+ terms in (4.4.6) can be

bounded exactly the same as the R4,− and R2,− terms, respectively.

Finally, combining (4.4.6), (4.4.15), (4.4.20) and above observations, we have for τ ∈
Aκ(ε),

‖en+1(x)‖H1 .
τ

κ
+ τ

n

∑
k=0
‖ek(x)‖H1, 0≤ n≤ T

τ
−1, (4.4.21)

and discrete Gronwall inequality will yield ‖en+1(x)‖H1 . τ

κ
(0≤ n≤ T

τ
−1) for small enough

τ ∈Aκ(ε). The proof is complete. �

Similar to the S1 case, for non-resonant time steps, i.e., τ ∈Aκ(ε), we can derive improved

uniform error bounds for S2 as shown in the following theorem.

Theorem 4.4. Let Φn(x) be the numerical approximation obtained from S2 (4.2.4). If the

time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε), then under

the assumptions (C) and (D) with m = 2, m∗ = 1, the following two error estimates hold for

small enough τ > 0

‖en(x)‖H1 .κ τ
2 + τε, ‖en(x)‖H1 .κ τ

2 + τ
2/ε, 0≤ n≤ T

τ
. (4.4.22)

As a result, there is an improved uniform error bound for S2 when τ > 0 is small enough

‖en(x)‖H1 .κ τ
2 + max

0<ε≤1
min{τε,τ2/ε} .κ τ

3/2, 0≤ n≤ T
τ
. (4.4.23)

Proof. As the proof is extended from the techniques used for S1 and the proof for improved

uniform error bounds for S2 in the linear case [17], here we just show the outline of the proof

for brevity.

We start from (4.3.57). Following the strategy in the S1 case, the key idea is to extract

the leading terms from Φ(t,x) as (4.4.7) for estimating ζ n
2 (x), and the computations are

more or less the same. Recalling (4.3.52) , noticing F n
1 (s) is similar to f n

2 (s) (3.3.13) and

‖ζ n
2 (x)‖H1 . min{ετ,τ2/ε}, following the computations in the proof of Theorem 4.3, we

would get for 0≤ n≤ T
τ
−1 and τ ∈ Aκ(ε),∥∥∥∥∥ n

∑
k=0

e−
i(n−k+1)τ

ε2 T ε

ζ
k
2 (x)

∥∥∥∥∥
H1

.
n

∑
k=0

1
κ

τ min{ετ,τ2/ε} . 1
κ

min{ετ,τ2/ε}, (4.4.24)

and the conclusions of Theorem 4.4 hold by applying discrete Gronwall inequality to (4.3.57).

�
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4.5 Numerical results
To verify our error bounds in Theorem 4.1 to Theorem 4.4, we show two numerical

examples here. In the examples, we always use Fourier pseudospectral method for spatial

discretization.

As a common practice when applying the Fourier pseudospectral method, in our numerical

simulations, we truncate the whole space onto a sufficiently large bounded domain Ω = (a,b),

and assume periodic boundary conditions. The mesh size is chosen as h :=4x = b−a
M with

M being an even positive integer. Then the grid points can be denoted as x j := a+ jh, for

j = 0,1, ...,M.

In this example and the examples later, we always choose the electric potential V (x)≡ 0.

For the nonlinearity (4.1.3), we take λ1 = 1, λ2 = 0, i.e.

F(Φ) = (Φ∗σ3Φ)σ3, (4.5.1)

and the initial data Φ0 = (φ1,φ2) in (5.1.15) is given as

φ1(0,x) = e−
x2
2 , φ2(0,x) = e−

(x−1)2
2 , x ∈ R. (4.5.2)

As only the temporal errors are concerned in this paper, during the computation, the

spatial mesh size is always set to be h = 1
16 so that the spatial errors are negligible.

We first take resonant time steps, that is, for small enough chosen ε , there is a positive k0,

such that τ = k0επ , to check the error bounds in Theorem 4.1 and Theorem 4.2. The bounded

computational domain is taken as Ω = (−32,32). Because of the lack of available exact

solution, for comparison, we use a numerical ‘exact’ solution generated by the second-order

time-splitting method (S2), which will be introduced later, with a very fine time step size

τe = 2π×10−6.

To display the numerical results, we introduce the discrete H1 errors of the numerical so-

lution. Let Φn = (Φn
0,Φ

n
1, ...,Φ

n
M−1,Φ

n
M)T be the numerical solution obtained by a numerical

method with given ε , time step size τ as well as the fine mesh size h at time t = tn, and Φ(t,x)

be the exact solution, then the discrete H1 error is defined as

eε,τ(tn) = ‖Φn−Φ(tn, ·)‖H1 =

√√√√h
M−1

∑
j=0
|Φ(tn,x j)−Φn

j |2 +h
M−1

∑
j=0
|Φ′(tn,x j)− (Φ′)n

j |2,

(4.5.3)
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where

(Φ′)n
j = i

M/2−1

∑
l=−M/2

µlΦ̂
n
l eiµl(x j−a), j = 0,1, ...,M−1, (4.5.4)

with µl , Φ̂n
l ∈ C

2 defined as

µl =
2lπ

b−a
, Φ̂

n
l =

1
M

M−1

∑
j=0

Φ
n
je
−iµl(x j−a), l =−M

2
, ...,

M
2
−1, (4.5.5)

and Φ′(tn,x j) is defined similarly. Then eε,τ(tn) should be close to the H1 errors in Theo-

rem 4.1 for fine spatial mesh sizes h.

Table 4.5.1 and Table 4.5.2 show the numerical temporal errors eε,τ(t = 2π) with different

ε and time step size τ for S1 and S2 respectively, up to the time t = 2π .

The last two rows of Table 4.5.1 show the largest error of each column for fixed τ .

The errors exhibit 1/2 order convergence, which coincides well with Theorem 4.1. More

specifically, we can observe when τ & ε (below the lower bolded line), there is first order

convergence, which agrees with the error bound ‖Φ(tn,x)−Φn(x)‖H1 . τ + ε . When τ . ε2

(above the upper bolded line), there is also first order convergence, which matches the other

error bound ‖Φ(tn,x)−Φn(x)‖H1 . τ + τ/ε .

In Table 4.5.2, the last two rows show the largest error of each column for fixed τ . We

could clearly observe that there is 1/2 order convergence, which agrees well with Theorem 4.2.

More specifically, in Table 4.5.2, we can see when τ &
√

ε (below the lower bolded line), there

is second order convergence, which coincides with the error bound ‖Φ(tn,x)−Φn(x)‖H1 .

τ2+ε ; when τ . ε2 (above the upper bolded line), we also observe second order convergence,

which matches the other error bound ‖Φ(tn,x)−Φn(x)‖H1 . τ2 + τ2/ε3.

The results from the example successfully validate the uniform error bounds for S1 and S2

in Theorem 4.1 and Theorem 4.2.

Moreover, to support the improved uniform error bound in Theorem 4.3 and Theorem 4.4,

we further test the errors using non-resonant time steps here, i.e., we choose τ ∈Aκ(ε) for

some given ε and fixed 0 < κ ≤ 1. In this case, the bounded computational domain is set as

Ω = (−16,16).
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Table 4.5.1: Discrete H1 temporal errors eε,τ(t = 2π) for the wave function with resonant
time step size, S1 method.

eε,τ(t = 2π) τ0 = π/4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45

ε0 = 1 4.18 7.09E-1 1.69E-1 4.17E-2 1.04E-2 2.59E-3
order – 1.28 1.04 1.01 1.00 1.00
ε0/2 2.54 6.37E-1 1.44E-1 3.55E-2 8.84E-3 2.21E-3
order – 1.00 1.07 1.01 1.00 1.00
ε0/22 2.25 1.15 1.47E-1 3.53E-2 8.73E-3 2.18E-3
order – 0.49 1.48 1.03 1.01 1.00
ε0/23 2.29 6.69E-1 6.56E-1 3.62E-2 8.84E-3 2.20E-3
order – 0.89 0.01 2.09 1.02 1.00
ε0/24 2.32 5.33E-1 3.24E-1 3.49E-1 8.98E-3 2.22E-3
order – 1.06 0.36 -0.05 2.64 1.01
ε0/25 2.34 5.29E-1 1.76E-1 1.70E-1 1.79E-1 2.24E-3
order – 1.07 0.79 0.03 -0.04 3.16
ε0/27 2.35 5.57E-1 1.30E-1 4.46E-2 4.28E-2 4.49E-2
order – 1.04 1.05 0.77 0.03 -0.03
ε0/29 2.35 5.68E-1 1.38E-1 3.26E-2 1.12E-2 1.07E-2
order – 1.02 1.02 1.04 0.77 0.03

ε0/211 2.35 5.71E-1 1.41E-1 3.45E-2 8.14E-3 2.80E-3
order – 1.02 1.01 1.02 1.04 0.77

ε0/213 2.35 5.72E-1 1.42E-1 3.53E-2 8.64E-3 2.04E-3
order – 1.02 1.00 1.00 1.02 1.04

max
0<ε≤1

eε,τ(t = 2π) 4.18 1.15 6.56E-1 3.49E-1 1.79E-1 9.07E-2

order – 0.93 0.40 0.45 0.48 0.49

And for comparison, the numerical ‘exact’ solution is computed by the second-order

time-splitting method (S2) with a very small time step size τe = 8×10−6. Spatial mesh size

is fixed as h = 1/16 for all the numerical simulations.

Table 4.5.3 and Table 4.5.4 respectively show the numerical errors eε,τ(t = 4) with

different ε and time step size τ for S1 and S2 up to the time t = 4.

From Table 4.5.3, we could see that overall, for fixed time step size τ , i.e., for each column,

the error eε,τ(t = 4) does not change much with different ε . This verifies the temporal uniform

first order convergence for S1 with non-resonant time step size, as stated in Theorem 4.3.

The last two rows in Table 4.5.4 show the largest error of each column for fixed τ , which
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Table 4.5.2: Discrete H1 temporal errors eε,τ(t = 2π) for the wave function of the NLDE
(4.2.2) with resonant time step size, S2 method.

eε,τ(t = 2π) τ0 = π/4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45

ε0 = 1 4.51 8.81E-2 5.31E-3 3.31E-4 2.07E-5 1.29E-6
order – 2.84 2.03 2.00 2.00 2.00
ε0/2 3.81 1.57E-1 4.70E-3 2.90E-4 1.81E-5 1.13E-6
order – 2.30 2.53 2.01 2.00 2.00
ε0/22 1.78 1.56 7.98E-3 4.41E-4 2.73E-5 1.71E-6
order – 0.09 3.81 2.09 2.00 2.00
ε0/23 1.35 7.18E-1 7.74E-1 8.98E-4 5.14E-5 3.20E-6
order – 0.46 -0.05 4.88 2.06 2.00
ε0/24 1.26 3.69E-1 3.65E-1 3.80E-1 1.11E-4 6.41E-6
order – 0.88 0.01 -0.03 5.87 2.05
ε0/25 1.25 1.93E-1 1.83E-1 1.83E-1 1.87E-1 1.39E-5
order – 1.35 0.04 0.00 -0.01 6.86
ε0/29 1.25 5.24E-2 1.20E-2 1.15E-2 1.15E-2 1.15E-2
order – 2.29 1.06 0.03 0.00 0.00

ε0/213 1.25 5.01E-2 2.66E-3 7.53E-4 7.18E-4 7.17E-4
order – 2.32 2.12 0.91 0.03 0.00

ε0/217 1.25 5.00E-2 2.47E-3 1.80E-4 7.96E-5 7.78E-5
order – 2.32 2.17 1.89 0.59 0.02

max
0<ε≤1

eε,τ(t = 2π) 4.51 1.56 7.74E-1 3.80E-1 1.87E-1 9.26E-2

order – 0.76 0.51 0.51 0.51 0.51

gives 3/2 order of convergence, and it is consistent with Theorem 4.4. More specifically,

in Table 4.5.4, we can observe the second order convergence when τ & ε (below the lower

bolded line) or when τ . ε2 (above the upper bolded line), agreeing with the error bound

‖Φ(tn,x)−Φn(x)‖H1 . τ2 + τε and the other error bound ‖Φ(tn,x)−Φn(x)‖H1 . τ2 + τ2/ε ,

respectively.

The results from the example successfully validate the improved uniform error bounds for

S1 and S2 in Theorem 4.3 and Theorem 4.4.
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Table 4.5.3: Discrete H1 temporal errors eε,τ(t = 4) for the wave function with non-resonant
time step size, S1 method.

eε,τ(t = 4) τ0 = 1/2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25 τ0/26

ε0 = 1 2.25 9.50E-1 4.55E-1 2.23E-1 1.10E-1 5.47E-2 2.73E-2
order – 1.25 1.06 1.03 1.02 1.01 1.00
ε0/2 3.32 1.03 3.81E-1 1.85E-1 9.14E-2 4.54E-2 2.27E-2
order – 1.69 1.43 1.04 1.02 1.01 1.00
ε0/22 2.08 7.67E-1 5.35E-1 1.90E-1 9.17E-2 4.51E-2 2.24E-2
order – 1.44 0.52 1.49 1.05 1.02 1.01
ε0/23 1.50 6.42E-1 3.99E-1 1.72E-1 1.01E-1 4.67E-2 2.29E-2
order – 1.23 0.69 1.22 0.76 1.12 1.03
ε0/24 1.56 7.49E-1 3.50E-1 1.68E-1 9.25E-2 4.39E-2 2.40E-2
order – 1.06 1.10 1.06 0.86 1.08 0.87
ε0/25 1.48 7.51E-1 3.99E-1 1.80E-1 8.75E-2 4.20E-2 2.29E-2
order – 0.97 0.91 1.15 1.04 1.06 0.88
ε0/26 1.50 7.12E-1 3.46E-1 1.81E-1 9.17E-2 4.49E-2 2.21E-2
order – 1.08 1.04 0.94 0.98 1.03 1.02
ε0/27 1.52 7.43E-1 3.76E-1 1.99E-1 1.16E-1 4.53E-2 2.28E-2
order – 1.04 0.98 0.92 0.78 1.36 0.99

max
0<ε≤1

eε,τ(t = 4) 3.32 1.03 5.35E-1 2.23E-1 1.16E-1 5.47E-2 2.73E-2

order – 1.69 0.95 1.26 0.94 1.08 1.00

4.6 Extension to full-discretization
Similar to the case of the Dirac equation, the error estimates in Theorem 4.1 to Theorem 4.4

can be extended to full-discretization.

For this purpose, consider (4.2.2) with the initial condition (4.1.2) on a bounded domain

Ω = [a,b] with periodic boundary conditions. Choose mesh size h = b−a
M with M being an

even positive integer, time step τ > 0, denote the grid points x j, j = 0,1, . . . ,M and time

steps tn, n = 0,1,2, . . . as before. Moreover, XM, YM, ZM, [Cp(Ω)]2, the projection and the

interpolation operator are all defined to be the same as in the linear case.

We first consider the Lie-Trotter splitting S1. Denote Φ[n](x) to be the semi-discretized

numerical solution from S1 (4.2.3), and Φn to be the full-discretized numerical solution with
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Table 4.5.4: Discrete H1 temporal errors eε,τ(t = 4) for the wave function with non-resonant
time step size, S2 method.

eε,τ(t = 4) τ0 = 1/4 τ0/4 τ0/42 τ0/43 τ0/44 τ0/45

ε0 = 1 1.62E-1 9.55E-3 5.95E-4 3.72E-5 2.32E-6 1.45E-7
order – 2.04 2.00 2.00 2.00 2.00
ε0/2 6.31E-1 7.67E-3 4.71E-4 2.94E-5 1.84E-6 1.15E-7
order – 3.18 2.01 2.00 2.00 2.00
ε0/22 4.33E-1 1.49E-2 7.16E-4 4.43E-5 2.77E-6 1.73E-7
order – 2.43 2.19 2.01 2.00 2.00
ε0/23 3.88E-1 4.33E-2 1.52E-3 8.20E-5 5.08E-6 3.17E-7
order – 1.58 2.42 2.11 2.01 2.00
ε0/24 2.02E-1 4.29E-2 5.97E-3 1.86E-4 1.02E-5 6.34E-7
order – 1.12 1.42 2.50 2.09 2.01
ε0/26 1.36E-1 6.15E-3 1.10E-3 8.67E-4 1.00E-4 2.99E-6
order – 2.23 1.24 0.17 1.56 2.53
ε0/28 9.73E-2 7.82E-3 6.80E-3 6.59E-5 1.70E-5 1.40E-5
order – 1.82 0.10 3.34 0.98 0.14

ε0/210 9.65E-2 4.18E-3 2.73E-4 3.18E-5 2.56E-5 1.03E-6
order – 2.27 1.97 1.55 0.15 2.32

ε0/212 9.69E-2 4.00E-3 2.93E-4 1.64E-5 2.05E-6 4.31E-7
order – 2.30 1.89 2.08 1.50 1.12

max
0<ε≤1

eε,τ(t = 4) 6.31E-1 5.88E-2 6.80E-3 8.67E-4 1.11E-4 1.40E-5

order – 1.71 1.56 1.49 1.49 1.49

Fourier spectral discretization in space, i.e. we have for n = 0,1, ..., T
τ
−1

Φ
<1>(x) = e−iτ[V (x)+F(Φ[n](x))]Φ[n](x),

Φ
[n+1](x) = e−

iτ
ε2 T ε

Φ
<1>(x), x ∈ [a,b],

(4.6.1)

with

Φ
[0](x) = Φ(0,x), x ∈ [a,b], (4.6.2)

and
Φ

(1)
j = e−iτ[V (x j)+F(Φn

j))]Φn
j ,

Φ
n+1
j = e−

iτ
ε2 T ε

IM(Φ(1))(x j) j = 0,1, ...,M−1,
(4.6.3)

with

Φ
0
j = Φ(0,x j), j = 0,1, ...M−1. (4.6.4)
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Moreover, the full-discretized error introduced in (3.6.7) is used. Then the uniform and

improved uniform error bounds for S1 in Theorem 4.1 and Theorem 4.3 can be extended to

full-discretization as follows

Theorem 4.5. (i) Under the assumptions (C) and (D) with 2m+m∗≥ 3, we have the following

full-discretized error estimate for S1

‖en
f (x)‖H1 .

√
τ +h2m+m∗−1, 0≤ n≤ T

τ
. (4.6.5)

(ii) If the time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε),

then under the assumptions (C) and (D) with 2m+m∗ ≥ 3, we have an improved uniform

error bound for S1

‖en
f (x)‖H1 .κ τ +h2m+m∗−1, 0≤ n≤ T

τ
. (4.6.6)

Proof. (i) Similar to the proof in the linear case, it is obvious that

‖en
f (x)‖H1 ≤ ‖PM(Φ(tn,x))−Φ(tn,x)‖H1 +‖Φ(tn,x)−Φ

[n](x)‖H1

+‖Φ[n](x)−PM(Φ[n])(x)‖H1 +‖PM(Φ[n])(x)− IM(Φn)‖H1. (4.6.7)

From the regularity conditions, we have

‖PM(Φ(tn,x))−Φ(tn,x)‖H1 . h2m+m∗−1,

‖Φ[n](x)−PM(Φ[n])(x)‖H1 . h2m+m∗−1.
(4.6.8)

Moreover, Theorem 4.1 suggests

‖Φ(tn,x)−Φ
[n](x)‖H1 .

√
τ. (4.6.9)

As a result, we only need to focus on the term ‖PM(Φ[n])(x)− IM(Φn)‖H1 .

Define the difference to be

en
t (x) = PM(Φ[n])(x)− IM(Φn)(x), 0≤ n≤ T/τ, (4.6.10)

then the result can be proved by mathematical induction.

It is easy to check that when n = 0, we have ‖e0
t (x)‖H1 . h2m+m∗−1, so the error estimate

holds.
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Assume that for 0≤ n≤m≤ T
τ
−1, the error estimate (4.6.5) holds. Then take n = m+1,

we have for Φ[m+1] and Φm+1

PM(Φ<1>) = PM(e−iτ[V+F(Φ[m](x))]Φ[m]), PM(Φ[m+1]) = e−
iτ
ε2 T ε

PM(Φ<1>),

IM(Φ(1)) = IM(e−iτ[V (x j)+F(Φn
j))](Φm)), IM(Φm+1) = e−

iτ
ε2 T ε

IM(Φ(1)).

As e−
iτ
ε2 T ε

preserves H1 norm, we get

‖em+1
t (·)‖H1 = ‖PM(Φ<1>)− IM(Φ(1))‖H1 .

On the other hand, we have

PM(Φ<1>)− IM(Φ(1))

= PM(e−iτ[V+F(Φ[m](x))]Φ[m])− IM(e−iτ[V (x j)+τF(Φn
j))](Φm)), (4.6.11)

which together with Φ<1> ∈ H2m+m∗
p implies

‖PM(Φ<1>)− IM(Φ(1))‖H1 . h2m+m∗−1 +‖W (x)‖H1, (4.6.12)

where

W (x) := IM(e−iτ[V+F(Φ[m](x))]Φ[m])− IM(e−iτ[V (x j)+F(Φn
j))](Φm).

As shown in [11, 13, 19], W (x) can be estimated through finite difference approximation as

‖W (x)‖H1 . τ

(∥∥∥Φ
m
j −Φ

[m](x j)
∥∥∥

l2
+
∥∥∥κ

+
x (Φm

j −Φ
[m](x j))

∥∥∥
l2

)
. τ
(
‖em

t (·)‖H1 +h2m+m∗−1) ,
where κ+

x Φ j =
Φ j+1−Φ j

h is the forward finite difference operator. The key point is that

‖∂x(IMΨ j)‖L2 ∼ ‖κ+
x Ψ j‖l2 . Thus, we have

‖em+1
t (·)‖H1 . τ

(
‖em

t (·)‖Hs +h2m+m∗−1) . (4.6.13)

Indeed, it is true for all n≤ m,

‖en+1
t (·)‖H1 . τ

(
‖en

t (·)‖Hs +h2m+m∗−1) . (4.6.14)

Using discrete Gronwal inequality, we get

‖en+1
t (·)‖H1 . h2m+m∗−1, n≤ m≤ T

τ
−1. (4.6.15)
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Thus (4.6.5) holds true for n = m+1 by using the discrete Sobolev inequality with sufficiently

small h and τ , together with (4.6.8) and (4.6.9). This completes the induction and the proof.

(ii) The proof for non-resonant time step is similar to the proof for (i). The details are

omitted here for brevity. �

Next we consider the Strang splitting S2. Similarly, denote Φ[n](x) to be the semi-

discretized numerical solution from S2 (4.2.4), and Φn to be the full-discretized numerical

solution with Fourier spectral discretization in space, i.e. we have for n = 0,1, ..., T
τ
−1

Φ
<1>(x) = e−

iτ
2ε2 T ε

(Φ[n])(x),

Φ
<2>(x) = e−iτ[V (x)+F(Φ<1>(x))]Φ<1>(x), j = 0,1, ...,M−1,

Φ
[n+1](x) = e−

iτ
2ε2 T ε

Φ
<2>(x),

(4.6.16)

with

Φ
[0](x) = Φ(0,x), x ∈ [a,b], (4.6.17)

and
Φ

(1)
j = e−

iτ
2ε2 T ε

IM(Φn)(x j),

Φ
(2)
j = e−iτ

[
V (x j)+F

(
Φ
(1)
j

)]
Φ

(1)
j , j = 0,1, ...,M−1,

Φ
n+1
j = e−

iτ
2ε2 T ε

IM(Φ(2))(x j),

(4.6.18)

with

Φ
0
j = Φ(0,x j), j = 0,1, ...M−1. (4.6.19)

The full-discretized error is still defined as (3.6.7), and then the uniform and improved uniform

error bounds for S2 in Theorem 4.2 and Theorem 4.4 can be extended to full-discretization as

follows

Theorem 4.6. (i) Under the assumptions (C) and (D) with 2m+m∗≥ 5, we have the following

full-discretized error estimate for S2

‖en
f (x)‖H1 .

√
τ +h2m+m∗−1, 0≤ n≤ T

τ
. (4.6.20)

(ii) If the time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1, such that τ ∈Aκ(ε),

under the assumptions (C) and (D) with 2m+m∗ ≥ 5, then the following improved uniform

error estimate for S2 holds

‖en
f (x)‖H1 .κ τ

3/2 +h2m+m∗−1, 0≤ n≤ T
τ
. (4.6.21)
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Proof. (i) The process of the proof is similar to the S1 case in Theorem 4.5. The inequality

(4.6.7), together with the estimates (4.6.8) and (4.6.9) still hold. As a result, we only need to

focus on the term ‖PM(Φ[n])(x)− IM(Φn)‖H1 .

With the definition for en
t (x) in (4.6.10), the result can be proved by mathematical induc-

tion.

It is easy to check that when n = 0, we have ‖e0
t (x)‖H1 . h2m+m∗−1, so the error estimate

holds.

Assume that for 0≤ n≤m≤ T
τ
−1, the error estimate (4.6.20) holds. Then take n=m+1,

we have for Φ[m+1] and Φm+1

PM(Φ<1>) = e−
iτ

2ε2 T ε

PM(Φ[m]), PM(Φ[m+1]) = e−
iτ

2ε2 T ε

PM(Φ<2>),

PM(Φ<2>) = PM(e−iτ[V (x)+F(Φ<1>(x))]Φ<1>),

IM(Φ(1)) = e−
iτ

2ε2 T ε

IM(Φm), IM(Φm+1) = e−
iτ

2ε2 T ε

IM(Φ(2)),

IM(Φ(2)) = IM(e−iτ[V+F(Φ(1))]Φ(1)).

As e−
iτ

2ε2 T ε

preserves H1 norm, we get

‖em
t (·)‖H1 = ‖PM(Φ<1>− IM(Φ(1)))‖H1, ‖em+1

t (·)‖H1 = ‖PM(Φ<2>)− IM(Φ(2))‖H1 .

On the other hand, we have

PM(Φ<2>)− IM(Φ(2))

= PM(e−iτ[V (x)+F(Φ<1>(x))]Φ<1>)− IM(e−iτ[V+F(Φ(1))]Φ(1)), (4.6.22)

which together with Φ<2> ∈ H2m+m∗
p implies

‖IM(Φ(2))−PM(Φ<2>)‖H1 . h2m+m∗−1 +‖W (x)‖H1 , (4.6.23)

where

W (x) := IM(e−iτ[V+F(Φ(1))]Φ(1))− IM(e−iτ[V (x)+F(Φ<1>(x))]Φ<1>).

Similar to the S1 case, W (x) can be estimated through finite difference approximation as

‖W (x)‖H1 . τ

(∥∥∥Φ
(1)
j −Φ

<1>(x j)
∥∥∥

l2
+
∥∥∥κ

+
x (Φ

(1)
j −Φ

<1>(x j))
∥∥∥

l2

)
. τ
(
‖em

t (·)‖H1 +h2m+m∗−1) .
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Thus, we have

‖em+1
t (·)‖H1 . τ

(
‖em

t (·)‖Hs +h2m+m∗−1) . (4.6.24)

Indeed, it is true for all n≤ m,

‖en+1
t (·)‖H1 . τ

(
‖en

t (·)‖Hs +h2m+m∗−1) . (4.6.25)

Using discrete Gronwal inequality, we get

‖en+1
t (·)‖H1 . h2m+m∗−1, n≤ m≤ T

τ
−1. (4.6.26)

Thus (4.6.20) holds true for n = m+1 and use the discrete Sobolev inequality with sufficiently

small h and τ , together with (4.6.8) and (4.6.9). This completes the induction and the proof.

(ii) The proof for non-resonant time step is similar to the proof for (i). The details are

omitted here for brevity. �

4.7 Extension to fourth-order splitting methods
From our numerical experiments, we observe that super-resolution does not only hold for

first-order (S1) and second-order (S2) time-splitting methods. Indeed, higher order splitting

methods also have this property. As an illustration, here we apply two fourth-order time-

splitting methods for the Dirac and nonlinear Dirac equation respectively, to show that

super-resolution also takes place for higher order splitting methods.

4.7.1 The methods

As has been extensively studied in Chapter 2, in the linear case (1.1.17), where there is no

magnetic potential, and the electric potential is time-independent, i.e., A(t,x)≡ 0, and V (x)

does not depend on time t, the fourth-order compact time-splitting method (S4c) is superior in

accuracy and efficiency among fourth-order methods. The discrete-in-time S4c method can be

represented as:

Φ
n+1(x) = e−

iτ
6 V (x)e−

iτ
2ε2 T ε

e−
2iτ
3 V̂ (x)e−

iτ
2ε2 T ε

e−
iτ
6 V (x)

Φ
n(x), (4.7.1)

with the initial value Φ0(x) = Φ0(x), where

V̂ (x) :=V (x)− τ2

48ε2 [V (x), [T ε ,V (x)]] , (4.7.2)
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with [A,B] := AB−BA the commutator. According to Chapter 2, the double commutator

[V (x), [T ε ,V (x)]≡ 0, so that V̂ (x)≡V (x), and S4c can be simplified to

Φ
n+1(x) = e−

iτ
6 V (x)e−

iτ
2ε2 T ε

e−
2iτ
3 V (x)e−

iτ
2ε2 T ε

e−
iτ
6 V (x)

Φ
n(x), Φ

0(x) = Φ0(x). (4.7.3)

On the other hand, as S4c can not be easily extended to the nonlinear case, for (4.2.2), we use

the fourth-order partitioned Runge-Kutta splitting method (S4RK) [27, 30, 69], which is also a

highly accurate fourth-order splitting method, as an alternative here.

Denote the nonlinear propagator eiτWn(x) as

eiτWn(x)
Ψ(x) := eiτV (x)+iτF(Ψ(x))

Ψ(x), (4.7.4)

then the discrete-in-time S4RK method can be represented as:

Φ
n+1(x) =e−

ia1τ

ε2 T ε

e−ib1Wn(x)e−
ia2τ

ε2 T ε

e−ib2Wn(x)e−
ia3τ

ε2 T ε

e−ib3Wn(x)e−
ia4τ

ε2 T ε

e−ib3Wn(x)e−
ia3τ

ε2 T ε

e−ib2Wn(x)e−
ia2τ

ε2 T ε

e−ib1Wn(x)e−
ia1τ

ε2 T ε

Φ
n(x), (4.7.5)

with the initial value Φ0(x) = Φ0(x), and the constants

a1 = 0.0792036964311957, a2 = 0.353172906049774, (4.7.6)

a3 =−0.0420650803577195, a4 = 1−2(a1 +a2 +a3), (4.7.7)

b1 = 0.209515106613362, b2 =−0.143851773179818, b3 =
1
2
− (b1 +b2). (4.7.8)

From our numerical experiments, we find out that both methods present super-resolution

in time, and the error bounds can be inferred as

Theorem 4.7. Let Φn(x) be the numerical approximation obtained from S4c (4.7.3) for (3.2.2)

or S4RK (4.7.5) for (4.2.2), then under the assumptions (A) and (B) with m = 4 for the Dirac

equation, or (C) and (D) with m = 4, m∗ = 1 for the NLDE, we have the following error

estimates for small enough time step size τ > 0 (s = 0 for the Dirac equation, and s = 1 for

the NLDE)

‖en(x)‖Hs . τ
4 + ε, ‖en(x)‖Hs . τ

4 + τ
4/ε

7, 0≤ n≤ T
τ
. (4.7.9)

As a result, there is a uniform error bound for τ > 0 small enough

‖en(x)‖Hs . τ
4 + max

0<ε≤1
min{ε,τ4/ε

7} .
√

τ, 0≤ n≤ T
τ
. (4.7.10)
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Furthermore, for non-resonant time-steps, similar to S1 and S2, we have improved uniform

error bounds for the fourth-order splitting methods.

Theorem 4.8. Let Φn(x) be the numerical approximation obtained from S4c (4.7.3) for (3.2.2)

or S4RK (4.7.5) for (4.2.2). If the time step size τ is non-resonant, i.e. there exists 0 < κ ≤ 1,

such that τ ∈ Aκ(ε), then under the assumptions (A) and (B) with m = 4 for the Dirac

equation, or (C) and (D) with m = 4, m∗ = 1 for the NLDE, then following two error

estimates hold for small enough τ > 0 (s = 0 for the Dirac equation, and s = 1 for the NLDE)

‖en(x)‖Hs .κ τ
4 + τε, ‖en(x)‖Hs .κ τ

4 + τ
4/ε

5, 0≤ n≤ T
τ
. (4.7.11)

As a result, there is an improved uniform error bound when τ > 0 is small enough

‖en(x)‖Hs .κ τ
4 + max

0<ε≤1
min{τε,τ4/ε

5} .κ τ
3/2, 0≤ n≤ T

τ
. (4.7.12)

Proof of the theorems can be extended from the proof for S1 and S2, and is omitted here

for brevity.

4.7.2 Numerical results

In this subsection, numerical results are exhibited to validate the uniform error bounds in

Theorem 4.7 and Theorem 4.8.

In all the examples, we still choose the nonlinearity and the initial values as (4.5.1)

and (4.5.2), respectively. For the linear case, we take the electric potential in (3.2.2) to be

time-independent as

V (x) =
1− x
1+ x2 , x ∈Ω, (4.7.13)

while for the nonliear case, we always take V (x)≡ 0.

We first look at the case for resonant time steps. The bounded computational domain is

taken as Ω = (−32,32), the spatial mesh size is always set to be h = 1
16 so that the spatial

errors are negligible. The numerical ‘exact’ solution is generated by S2 with a very fine time

step size τe = 2π×10−6.

The discrete l2 (for the Dirac equation) or H1 (for the NLDE) error eε,τ(tn) used to show

the results is defined in (3.5.3) or (4.5.3) respectively. It should be close to the errors in

Theorem 4.7.
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Table 4.7.1 and Table 4.7.2 show the numerical temporal errors eε,τ(t = 4π) for the

fourth-order methods with different ε and time step size τ , up to time t = 4π , in linear and

nonlinear cases respectively.

Table 4.7.1: Discrete l2 temporal errors eε,τ(t = 4π) for the wave function of the Dirac
equation (3.2.2) with resonant time step size, S4c method.

eε,τ(t = 4π) τ0 = π/4 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 1.29E-1 1.11E-3 5.98E-5 3.64E-6 2.26E-7 1.42E-8
order – 6.86 4.22 4.04 4.01 3.99

ε0/21/2 5.60E-1 1.17E-2 2.38E-4 1.39E-5 8.56E-7 5.34E-8
order – 5.58 5.62 4.09 4.02 4.00
ε0/2 8.00E-1 1.66E-1 1.16E-3 5.94E-5 3.57E-6 2.21E-7
order – 2.27 7.15 4.29 4.06 4.01

ε0/23/2 1.04 3.33E-1 2.21E-2 3.26E-4 4.38E-5 1.11E-6
order – 1.65 3.91 6.08 2.90 5.30
ε0/22 9.09E-1 6.41E-1 2.08E-1 3.64E-3 9.07E-4 3.39E-5
order – 0.50 1.62 5.84 2.00 4.74
ε0/26 1.06 2.26E-1 4.74E-2 3.70E-2 3.66E-2 3.65E-2
order – 2.22 2.25 0.36 0.01 0.00

ε0/210 1.06 2.16E-1 2.29E-2 3.60E-3 2.67E-3 2.44E-3
order – 2.29 3.24 2.67 0.43 0.13

ε0/214 1.06 2.16E-1 2.27E-2 2.51E-3 1.26E-3 8.00E-4
order – 2.29 3.25 3.18 0.99 0.65

ε0/218 1.06 2.16E-1 2.28E-2 2.58E-3 1.31E-3 8.48E-4
order – 2.29 3.25 3.14 0.98 0.63

max
0<ε≤1

eε,τ(t = 4π) 1.07 6.41E-1 4.39E-1 3.04E-1 2.12E-1 1.49E-1

order – 0.74 0.55 0.53 0.52 0.51

In Table 4.7.1 and Table 4.7.2, we take the last two rows to show the maximum discrete

l2 and H1 error respectively of each column for fixed τ , and their convergence order as

before. We could clearly observe that there is a 1/2 order uniform convergence in both cases.

Moreover, although the lower bold lines as in the previous examples are hard to examine in the

table, the upper bold lines are evident, i.e. when τ . ε2 (above the upper bold lines), there is

always fourth order convergence. We infer that on the other side, when τ & 4√
ε , there should
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Table 4.7.2: Discrete H1 temporal errors eε,τ(t = 4π) for the wave function of the NLDE
(4.2.2) with resonant time step size, S4RK method.

eε,τ(t = 4π) τ0 = π/8 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1/23/2 1.89E-1 2.06E-2 2.45E-4 7.28E-6 4.27E-7 2.60E-8
order – 3.19 6.40 5.07 4.09 4.03

ε0/21/2 4.42E-1 8.42E-2 4.91E-3 3.54E-5 1.72E-6 1.02E-7
order – 2.39 4.10 7.12 4.36 4.08
ε0/2 1.05 2.57E-1 5.40E-2 2.35E-3 8.95E-6 4.60E-7
order – 2.04 2.25 4.52 8.04 4.28

ε0/23/2 5.65E-1 7.37E-1 1.74E-1 3.55E-2 1.17E-3 2.49E-6
order – -0.38 2.08 2.29 4.92 8.88
ε0/22 1.79E-1 3.30E-1 5.20E-1 1.19E-1 2.40E-2 5.85E-4
order – -0.88 -0.66 2.13 2.31 5.36
ε0/24 1.23E-1 1.74E-1 1.83E-1 1.94E-1 3.52E-2 8.33E-2
order – -0.50 -0.07 -0.08 2.46 -1.24
ε0/28 1.82E-2 4.76E-3 8.85E-4 7.19E-3 6.95E-3 1.25E-3
order – 1.93 2.43 -3.02 0.05 2.47

ε0/212 1.53E-2 1.59E-3 9.75E-5 1.55E-4 7.57E-5 5.79E-4
order – 3.27 4.03 -0.67 1.03 -2.94

ε0/216 1.53E-2 1.59E-3 3.50E-4 3.60E-4 3.49E-4 3.56E-4
order – 3.27 2.18 -0.04 0.05 -0.03

max
0<ε≤1

eε,τ(t = 4π) 1.05 7.37E-1 5.20E-1 3.66E-1 2.57E-1 1.80E-1

order – 0.52 0.50 0.51 0.51 0.51

also be fourth order convergence. However, as it may require the ε to be extremely small in

order to observe this relation, we do not validate it here. These two diagonal lines indicate the

two error bounds τ4 + ε , and τ4 + τ4/ε7 in this case, which corresponds to Theorem 4.7.

To justify the improved uniform error bounds in Theorem 4.8, we further test the errors

using non-resonant time step sizes, i.e., we choose τ ∈ Aκ(ε) for some given ε and fixed

0 < κ ≤ 1. The bounded computational domain is set as Ω = (−16,16).

For comparison, the numerical ‘exact’ solution is computed by the second-order time-

splitting method (S2) with a very small time step size τe = 8× 10−6. Spatial mesh size is

fixed as h = 1/16 for all the numerical simulations.
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The discrete l2 or H1 error eε,τ(tn) used to show the results is defined in (3.5.3) or (4.5.3)

respectively. It should be close to the errors in Theorem 4.8.

Tables 4.7.3 and 4.7.4 show the numerical temporal errors eε,τ(t = 4) with different ε and

time step size τ for S4c and S4RK respectively, up to time t = 4.

Table 4.7.3: Discrete l2 temporal errors eε,τ(t = 4) for the wave function of the Dirac equation
(3.2.2) with non-resonant time step size, S4c method.

eε,τ(t = 4) τ0 = 1/2 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1 5.40E-3 1.70E-4 1.02E-5 6.28E-7 3.92E-8 2.50E-9
order – 4.99 4.07 4.02 4.00 3.97

ε0/21/2 6.52E-2 6.79E-4 3.78E-5 2.31E-6 1.43E-7 8.99E-9
order – 6.59 4.17 4.04 4.01 4.00
ε0/2 4.20E-1 5.47E-3 1.62E-4 9.47E-6 5.83E-7 3.64E-8
order – 6.26 5.08 4.09 4.02 4.00

ε0/23/2 4.73E-1 1.34E-1 8.70E-4 4.45E-5 2.67E-6 1.65E-7
order – 1.82 7.26 4.29 4.06 4.01
ε0/22 3.14E-1 1.07E-1 2.15E-2 2.48E-4 1.35E-5 8.18E-7
order – 1.55 2.32 6.43 4.20 4.05
ε0/25 3.46E-1 6.51E-2 1.49E-2 3.13E-3 2.95E-3 1.12E-3
order – 2.41 2.13 2.25 0.09 1.40
ε0/28 3.39E-1 5.23E-2 4.64E-3 2.37E-3 2.35E-3 2.35E-3
order – 2.70 3.50 0.97 0.01 0.00

ε0/211 3.40E-1 5.22E-2 4.13E-3 4.56E-4 1.69E-4 7.92E-5
order – 2.70 3.66 3.18 1.43 1.09

ε0/214 3.40E-1 5.22E-2 4.06E-3 4.79E-4 1.71E-4 7.80E-5
order – 2.70 3.68 3.08 1.48 1.14

ε0/217 3.40E-1 5.22E-2 4.07E-3 4.90E-4 1.79E-4 8.47E-5
order – 2.70 3.68 3.05 1.45 1.08

max
0<ε≤1

eε,τ(t = 4) 4.73E-1 1.34E-1 5.00E-2 3.00E-2 1.11E-2 3.70E-3

order – 1.82 1.42 0.74 1.44 1.58

The last two rows of Table 4.7.3 and Table 4.7.4 show the maximum values of each

column and the corresponding convergence rate. From them, we could clearly observe ap-

proximately 3/2 order uniform convergence for S4c to Dirac equation (3.2.2) and S4RK to

NLDE (4.2.2) under non-resonant time step sizes. Meanwhile, when τ . ε2 (above the upper
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Table 4.7.4: Discrete H1 temporal errors eε,τ(t = 4) for the wave function of the NLDE
(4.2.2) with non-resonant time step size, S4RK method.

eε,τ(t = 4) τ0 = 1/4 τ0/2 τ0/22 τ0/23 τ0/24 τ0/25

ε0 = 1/4 1.23E-1 1.32E-2 1.52E-4 4.44E-6 2.55E-7 1.56E-8
order – 3.23 6.43 5.10 4.12 4.04

ε0/21/2 3.65E-1 1.61E-2 1.00E-3 3.13E-5 1.18E-6 6.89E-8
order – 4.50 4.01 5.00 4.73 4.10
ε0/2 1.63E-1 6.54E-2 3.70E-3 1.79E-4 7.29E-6 3.39E-7
order – 1.32 4.14 4.37 4.62 4.43

ε0/23/2 1.21E-1 5.45E-2 4.47E-3 1.32E-3 5.52E-5 2.16E-6
order – 1.15 3.61 1.76 4.58 4.68
ε0/22 3.92E-2 3.13E-2 1.63E-2 6.50E-4 4.66E-4 1.78E-5
order – 0.32 0.94 4.65 0.48 4.71
ε0/25 3.87E-2 8.31E-2 3.50E-3 7.28E-4 4.95E-4 2.23E-4
order – -1.10 4.57 2.26 0.56 1.15
ε0/28 4.10E-3 1.06E-3 5.13E-4 1.64E-4 5.96E-5 3.20E-5
order – 1.95 1.05 1.64 1.46 0.90

ε0/211 3.42E-3 5.01E-4 6.78E-6 2.76E-5 2.36E-5 4.50E-6
order – 2.77 6.21 -2.03 0.23 2.39

ε0/214 3.40E-3 1.49E-4 1.34E-5 1.22E-5 1.29E-5 1.25E-5
order – 4.51 3.47 0.13 -0.08 0.05

max
0<ε≤1

eε,τ(t = 4) 3.65E-1 1.07E-1 1.95E-2 5.82E-3 2.28E-3 8.66E-4

order – 1.77 2.45 1.74 1.35 1.40

bold lines), there is always fourth order convergence. The lower bold lines as in the case of

S1 and S2 are not observable here, but we believe when τ & 3√
ε , there will also be fourth

order convergence. These two diagonal lines bring about the two error bounds τ4 + τε , and

τ4 + τ4/ε5, as Theorem 4.8 indicates.

Through these results, we find out that for the fourth-order splitting methods S4c and S4RK

to Dirac and nonlinear Dirac equations respectively, we still have uniform convergence in

time, and the error bounds can be improved under non-resonant time steps, which is a similar

property to S1 and S2.
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Chapter 5

Finite Difference Time Domain (FDTD) Meth-
ods for the Dirac Equation in the Semi-
classical Regime

In this chapter, we study the dynamics of the Dirac equation in the semiclassical regime,

i.e., we take ε = ν = 1 in (1.1.17) for d = 1,2, or in (1.1.7) for d = 1,2,3.

Here we focus on the study of finite difference time domain (FDTD) methods, which have

been extensively studied for linear and nonlinear Schrödinger equation [10, 15], Klein-Gordon

equation [20, 36], and Gross-Pitaevskii equation [12] previously. We implement different

FDTD methods, and find out relation of the error bounds to the mesh size h, time step size τ ,

as well as the small parameter δ . The performance of different methods is compared through

numerical examples.

5.1 The FDTD methods
For simplicity, here we consider the two-component form (1.1.17), which could be

expressed as (d = 1,2)

iδ∂tΦ =

(
−iδ

d

∑
j=1

σ j∂ j +σ3

)
Φ+

(
V (t,x)I2−

d

∑
j=1

A j(t,x)σ j

)
Φ, x ∈ Rd, (5.1.1)

with proper initial condition Φ(0,x) = Φ0(x) for x ∈ Rd .

In this section, we apply four commonly used FDTD methods to the Dirac equation in the

semiclassical regime (5.1.1) and analyze their stabilitiy conditions. To make the notations
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simple, we only show the numerical methods and related analysis in 1D. Generalization to 2D

and the four-component expression (1.1.7) is straightforward and results remain valid without

modifications. Similar to most works in the literatures for the analysis and computation of

the Dirac equation (cf. [14, 15, 16, 17, 27] and references therein), in practical computation,

we truncate the whole space problem onto a large enough interval Ω = (a,b) such that the

truncation error is negligible, and assert periodic boundary conditions. In 1D, the Dirac

equation (5.1.1) with periodic boundary conditions collapses to

iδ∂tΦ = (−iδσ1∂x +σ3)Φ+(V (t,x)I2−A1(t,x)σ1)Φ, x ∈Ω, t > 0, (5.1.2)

Φ(t,a) = Φ(t,b), ∂xΦ(t,a) = ∂xΦ(t,b), t ≥ 0; Φ(0,x) = Φ0(x), x ∈Ω, (5.1.3)

where Φ := Φ(t,x), Φ0(a) = Φ0(b) and Φ′0(a) = Φ′0(b).

5.1.1 The methods

Choose mesh size h :=4x = b−a
M with M being an even positive integer, time step size

τ :=4t > 0 and represent the grid points and time steps as:

x j := a+ jh, j = 0,1, ...,M; tn := nτ, n = 0,1,2, ... (5.1.4)

Denote XM = {U = (U0,U1, ...,UM)T |U j ∈ C2, j = 0,1, ...,M,U0 = UM}, and take U−1 =

UM−1, UM+1 = U1 if they are involved. For any U ∈ XM, its Fourier representation can be

expressed as

U j =
M/2−1

∑
l=−M/2

Ũleiµl(x j−a) =
M/2−1

∑
l=−M/2

Ũle2i jlπ/M, j = 0,1, ...,M, (5.1.5)

where µl and Ũl ∈ C2 are defined as

µl =
2lπ

b−a
, Ũl =

1
M

M−1

∑
j=0

U je−2i jlπ/M, l =−M
2
, ...,

M
2
−1. (5.1.6)

In XM, the standard l2-norm is given as

‖U‖2
l2 = h

M−1

∑
j=0
|U j|2, U ∈ XM. (5.1.7)
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Let Φn
j be the numerical approximation of Φ(tn,x j), V n

j =V (tn,x j), V n+1/2
j =V (tn+τ/2,x j),

An
1, j = A1(tn,x j) and An+1/2

1, j = A1(tn + τ/2,x j) for 0 ≤ j ≤ M, and n ≥ 0. Denote Φn =

(Φn
0,Φ

n
1, ...,Φ

n
M)T ∈ XM as the solution vector at t = tn. Introduce the finite difference dis-

cretization operators for j = 0,1, ...,M and n≥ 0 as:

δ
+
t Φ

n
j =

Φ
n+1
j −Φn

j

τ
, δtΦ

n
j =

Φ
n+1
j −Φ

n−1
j

2τ
, δxΦ

n
j =

Φn
j+1−Φn

j−1

2h
, (5.1.8)

and also

Φ
n+ 1

2
j =

Φ
n+1
j +Φn

j

2
, (5.1.9)

we could establish the FDTD methods.

Here we consider four frequently used FDTD methods to discretize the Dirac equation

(5.1.2) for j = 0,1, ...,M−1.

I. Leap-frog finite difference (LFFD) method, for n≥ 1,

iδtΦ
n
j =−iσ1δxΦ

n
j +

1
δ

(
σ3 +V n

j I2−An
1, jσ1

)
Φ

n
j . (5.1.10)

II. Semi-implicit finite difference (SIFD1) method, for n≥ 1,

iδtΦ
n
j =−iσ1δxΦ

n
j +

1
δ

(
σ3 +V n

j I2−An
1, jσ1

)Φ
n+1
j +Φ

n−1
j

2
. (5.1.11)

III. Another semi-implicit finite difference (SIFD2) method, for n≥ 1,

iδtΦ
n
j =

(
−iσ1δx +

1
δ

σ3

)
Φ

n+1
j +Φ

n−1
j

2
+

1
δ

(
V n

j I2−An
1, jσ1

)
Φ

n
j . (5.1.12)

IV. Crank-Nicolson finite difference (CNFD) method, for n≥ 0,

iδ+
t Φ

n
j =−iσ1δxΦ

n+ 1
2

j +
1
δ

(
σ3 +V

n+ 1
2

j I2−A
n+ 1

2
1, j σ1

)
Φ

n+ 1
2

j . (5.1.13)

The initial and boundary conditions (5.1.3) for these FDTD methods are discretized as:

Φ
n+1
M = Φ

n+1
0 , Φ

n+1
−1 = Φ

n+1
M−1, n≥ 0; Φ

0
j = Φ0(x j), j = 0,1, ...,M. (5.1.14)

Besides, by applying Taylor expansion and noticing the equation (5.1.2), we can design

the first step for the LFFD (5.1.10), SIFD1 (5.1.11) and SIFD2 (5.1.12) methods as ( j =

0,1, ...,M)

Φ
1
j = Φ0(x j)− τσ1Φ

′
0(x j)− isin

(
τ

δ

)(
σ3 +V 0

j I2−A0
1, jσ1

)
Φ0(x j). (5.1.15)
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In the above, we adopt 1
τ

sin
(

τ

δ

)
instead of 1

δ
such that (5.1.15) is second order in terms of

τ for any fixed 0 < δ ≤ 1 and ‖Φ1‖∞ := max0≤ j≤M |Φ1
j | . 1 for 0 < δ ≤ 1. We remark here

that it can be simply replaced by 1 when δ = 1.

The above four methods are all time-symmetric, i.e. they are unchanged under τ ↔−τ

and n+ 1↔ n− 1 for the LFFD, SIFD1 and SIFD2 methods or n+ 1↔ n for the CNFD

method, and their memory costs are all O(M). The LFFD method (5.1.10) is explict and its

computational cost per step is O(M). Actually, it might be the simplest and most efficient

method for the Dirac equation when δ = 1. The SIFD1 method (5.1.11) is implicit, however,

at each time step for n≥ 1, the corresponding linear system is decoupled and can be solved

explicitly as

Φ
n+1
j =

[(
i− τ

δ
V n

j

)
I2−

τ

δ

(
σ3−An

1, jσ1
)]−1

Hn
j , j = 0,1, ...,M−1, (5.1.16)

with Hn
j = −2iτσ1δxΦn

j +
[(

i+ τ

δ
V n

j

)
I2 +

τ

δ

(
σ3−An

1, jσ1

)]
Φ

n−1
j , and thus its computa-

tional cost per step is also O(M).

The SIFD2 method (5.1.12) is implicit, but at each time step for n≥ 1, the corresponding

linear system can be decoupled in the phase (Fourier) space and thus it can be solved explicitly

in phase space as

(Φ̃n+1)l =

(
iI2−

τ sin(µlh)
h

σ1−
τ

δ
σ3

)−1

Ln
l , l =−M

2
, ...,

M
2
−1, (5.1.17)

where

Ln
l =

(
iI2 +

τ sin(µlh)
h

σ1 +
τ

δ
σ3

)
(Φ̃n−1)l +

2τ

δ
(G̃nΦn)l, (5.1.18)

and Gn = (Gn
0,G

n
1, ...G

n
M)T ∈ XM with Gn

j = V n
j I2−An

1, jσ1 for j = 0,1, ...,M, and thus its

computational cost per step is O(M lnM). The CNFD method (5.1.13) is implicit and at each

time step for n≥ 0, the corresponding linear system is coupled so that it needs to be solved

through either a direct solver or an iterative solver. As a result, its computational cost per step

depends heavily on the solver, and it is usually much larger than O(M), especially in 2D and

3D. From the analysis on the computational cost per time step here, the LFFD method is the

most efficient among the four methods and the CNFD is the most expensive one.

5.1.2 Mass and energy conservation

For the CNFD method (5.1.13), we have the following conservative properties.
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Lemma 5.1. The CNFD method (5.1.13) conserves the mass in the discretized level, i.e., for

n≥ 0,

‖Φn‖2
l2 := h

M−1

∑
j=0
|Φn

j |2 ≡ h
M−1

∑
j=0
|Φ0

j |2 = ‖Φ0‖2
l2 = h

M−1

∑
j=0
|Φ0(x j)|2. (5.1.19)

Furthermore, if V (t,x) =V (x) and A1(t,x) = A1(x) are time-independent, the CNFD method

(5.1.13) conserves the energy as well, that is

En
h :=h

M−1

∑
j=0

[
−iδ (Φn

j)
∗
σ1δxΦ

n
j +(Φn

j)
∗
σ3Φ

n
j +Vj|Φn

j |2−A1, j(Φ
n
j)
∗
σ1Φ

n
j
]

≡E0
h , n≥ 0, (5.1.20)

where Vj =V (x j) and A1, j = A1(x j) for j = 0,1, ...,M.

Proof. (i) We first prove the mass conservation (5.1.19). Multiply both sides of (5.1.13) from

left by hτ(Φ
n+ 1

2
j )∗ and take the imaginary part, we have for j = 0,1, ...,M−1

h|Φn+1
j |

2 = h|Φn
j |2−

τh
2

[
(Φ

n+ 1
2

j )∗σ1δxΦ
n+ 1

2
j +(Φ

n+ 1
2

j )T
σ1δxΦ

n+ 1
2

j

]
. (5.1.21)

Summing up (5.1.21) for j = 0,1, ...,M−1 and noticing the expression of Pauli matrices, we

get

‖Φn+1‖2
l2 =‖Φn‖2

l2−
τh
2

M−1

∑
j=0

[
(Φ

n+ 1
2

j )∗σ1δxΦ
n+ 1

2
j +(Φ

n+ 1
2

j )T
σ1δxΦ

n+ 1
2

j

]

=‖Φn‖2
l2−

τ

4

M−1

∑
j=0

[
(Φ

n+ 1
2

j )∗σ1Φ
n+ 1

2
j+1 +(Φ

n+ 1
2

j )T
σ1Φ

n+ 1
2

j+1

− (Φ
n+ 1

2
j+1 )

∗
σ1Φ

n+ 1
2

j − (Φ
n+ 1

2
j+1 )

T
σ1Φ

n+ 1
2

j

]
=‖Φn‖2

l2, n≥ 0, (5.1.22)

which immediately implies (5.1.19) by induction.

(ii) We further move on to prove the energy conservation (5.1.20). Multiply both sides of

(5.1.13) from left by 2h(Φn+1
j −Φn

j)
∗ and take the real part, we have

0 =−hRe
[
i(Φn+1

j −Φ
n
j)
∗
δx(Φ

n
j +Φ

n+1
j )

]
+

h
δ

[
(Φn+1

j )∗σ3Φ
n+1
j − (Φn

j)
∗
σ3Φ

n
j

]
+

hVj

δ
(|Φn+1

j |
2−|Φn

j |2)−
hA1, j

δ

[
(Φn+1

j )∗σ1Φ
n+1
j − (Φn

j)
∗
σ1Φ

n
j

]
. (5.1.23)
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Summing up (5.1.23) for j = 0,1, ...,M−1, and noticing the summation by parts formula,

we have

h
M−1

∑
j=0

Re
[
i(Φn+1

j −Φ
n
j)
∗
δx(Φ

n
j +Φ

n+1
j )

]
= ih

M−1

∑
j=0

(Φn+1
j )∗σ1δxΦ

n+1
j − ih

M−1

∑
j=0

(Φn
j)
∗
σ1δxΦ

n
j , (5.1.24)

and

−ih
M−1

∑
j=0

(Φn+1
j )∗σ1δxΦ

n+1
j + ih

M−1

∑
j=0

(Φn
j)
∗
σ1δxΦ

n
j +

hVj

δ

M−1

∑
j=0

(|Φn+1
j |

2−|Φn
j |2)

−
hA1, j

δ

M−1

∑
j=0

[
(Φn+1

j )∗σ1Φ
n+1
j − (Φn

j)
∗
σ1Φ

n
j

]
+

h
δ

M−1

∑
j=0

[
(Φn+1

j )∗σ3Φ
n+1
j − (Φn

j)
∗
σ3Φ

n
j

]
= 0, (5.1.25)

which directly implies (5.1.20). �

5.1.3 Linear stability conditions

In order to carry out the linear stability analysis for the FDTD methods via the von

Neumann method [110], we assume in the Dirac equation (5.1.2) that A1(t,x) ≡ A0
1 and

V (t,x)≡V 0 with A0
1 and V 0 being two real constants. Then we have the following results for

the FDTD methods:

Lemma 5.2. (i) The LFFD method (5.1.10) is stable under the stability condition

0 < τ ≤ δh

|V 0|h+
√

h2 +(δ +h|A0
1|)2

, h > 0, 0 < δ ≤ 1. (5.1.26)

(ii) The SIFD1 method (5.1.11) is stable under the stability condition

0 < τ ≤ h, h > 0, 0 < δ ≤ 1. (5.1.27)

(iii) The SIFD2 method (5.1.12) is stable under the stability condition

τ ≤ δ

|V 0|+ |A0
1|
, h > 0, 0 < δ ≤ 1. (5.1.28)
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(iv) The CNFD method (5.1.13) is unconditionally stable, i.e. it is stable for any τ , h > 0 and

0 < δ ≤ 1.

Proof. (i)Plugging

Φ
n
j =

M/2−1

∑
l=−M/2

ξ
n
l (Φ̃

0)leiµl(x j−a) =
M/2−1

∑
l=−M/2

ξ
n
l (Φ̃

0)le2i jlπ/M, 0≤ j ≤M, (5.1.29)

with ξl ∈ C and (Φ̃0)l being the amplification factor and the Fourier coefficient at n = 0 of

the l-th mode in the phase space, respectively, into (5.1.10), using the orthogonality of the

Fourier series, we obtain for l =−M
2 , ...,

M
2 −1,∣∣∣∣(ξ 2

l −1)I2 +2iτξl

[
1
δ
(σ3 +V 0I2−A0

1σ1)+
sin(µlh)

h
σ1

]∣∣∣∣= 0. (5.1.30)

Substituting the Pauli matrices (1.1.3) into (5.1.30), we get that the amplification factor ξl

satisfies

ξ
2
l +2iτθlξl−1 = 0, l =−M

2
, ...,

M
2
−1, (5.1.31)

where

θl =−
V 0

δ
± 1

δh

√
h2 +(δ sin(µlh)−hA0

1)
2, l =−M

2
, ...,

M
2
−1. (5.1.32)

Then the stability condition for the LFFD method (5.1.10) becomes

|ξl| ≤ 1⇔ |τθl| ≤ 1, l =−M
2
, ...,

M
2
−1, (5.1.33)

which gives the condition (5.1.41).

(ii) As the implicit part is automatically stable, we only need to focus on the explicit

part iδtΦ
n
j = −iσ1δxΦn

j . Similar to (i), plugging (5.1.29) into this part, we have for l =

−M
2 , ...,

M
2 −1,

ξ
2
l ±

2iτ sin(µlh)
h

ξl−1 = 0. (5.1.34)

So the stability requires
∣∣ τ

h sin(µlh)
∣∣≤ 1, which suggests 0 < τ ≤ h.

(iii) Similar to (ii), we just need to concentrate on iδtΦ
n
j =

1
δ
(V 0

j I2−A0
1, jσ1)Φ

n
j . Plugging

(5.1.29) into it, we have

ξ
2
l +

2iτ
δ

(V 0±A0
1)−1 = 0, l =−M

2
, ...,

M
2
−1, (5.1.35)
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which gives ∣∣∣ τ
δ
(V 0±A0

1)
∣∣∣≤ 1. (5.1.36)

As a result, we could get the corresponding stability condition.

(iv) Similar to (i), plugging (5.1.29) into (5.1.13), we obtain for l =−M
2 , ...,

M
2 −1,∣∣∣∣(ξl−1)I2 +

iτ
2
(ξl +1)

(
sin(µlh)

h
σ1 +

1
δ
(σ3 +V 0I2−A0

1σ1)

)∣∣∣∣= 0. (5.1.37)

Take

θl =−V 0± 1
h

√
h2 +(δ sin(µlh)−hA0

1)
2, l =−M

2
, ...,

M
2
−1, (5.1.38)

then we could solve out

ξl =
2δ + iτθl

2δ − iτθl
, l =−M

2
, ...,

M
2
−1, (5.1.39)

which indicates |ξl|= 1 for l =−M
2 , ...,

M
2 −1, so the method is unconditionally stable. �

Remark 5.1. For the case where the electromagnetic potentials are not constants, take

Vmax := max
(t,x)∈ΩT

|V (t,x)|, A1,max := max
(t,x)∈ΩT

|A1(t,x)|, (5.1.40)

then the stability condition for LFFD becomes

0 < τ ≤ δh

Vmaxh+
√

h2 +(δ +hA1,max)2
, h > 0, 0 < δ ≤ 1, (5.1.41)

and the stability condition for SIFD2 becomes

τ ≤ δ

Vmax +A1,max
, h > 0, 0 < δ ≤ 1, (5.1.42)

while the stability condition for SIFD1 and CNFD remain unchanged.

5.2 Error estimates
Let 0 < T < T ∗ with T ∗ being the maximal existence time of the solution, and denote

ΩT = [0,T ]×Ω. To get proper error estimates, we need to assume that the exact solution of

(5.1.2) satisfies

Φ ∈C3([0,T ];(L∞(Ω))2)∩C2([0,T ];(W 1,∞
p (Ω))2)

∩C1([0,T ];(W 2,∞
p (Ω))2)∩C([0,T ];(W 3,∞

p (Ω))2),
(5.2.1)
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and

(E)
∥∥∥∥ ∂ r+s

∂ tr∂xs Φ

∥∥∥∥
L∞([0,T ];(L∞(Ω))2)

.
1

δ r+s , 0≤ r≤ 3, 0≤ r+s≤ 3, 0< δ ≤ 1,

where W m,∞
p (Ω) = {u|u∈W m,∞(Ω), ∂ l

xu(a) = ∂ l
xu(b), l = 0, ...,m−1} for m≥ 1 and here the

boundary values are understood in the trace sense. In the subsequent discussion, we will omit

Ω when referring to the space norm taken on Ω. In addition, we assume the electromagnetic

potentials V ∈C(ΩT ) and A1 ∈C(ΩT ) and denote

(F) Vmax := max
(t,x)∈ΩT

|V (t,x)|, A1,max := max
(t,x)∈ΩT

|A1(t,x)|,

then we could come up with the following error estimates.

5.2.1 The main results

Define the grid error function en = (en
0,e

n
1, ...,e

n
M)T ∈ XM as:

en
j := Φ(tn,x j)−Φ

n
j , j = 0,1, ...,M, n≥ 0, (5.2.2)

with Φn
j being the numerical approximations obtained from the FDTD methods, then we

could prove the following error estimates the under respective stability conditions for each

method.

Theorem 5.1. Under the assumptions (E) and (F), there exist constants h0 > 0 and τ0 > 0

sufficiently small and independent of δ , such that for any 0 < δ ≤ 1, when 0 < h ≤ h0,

0 < τ ≤ τ0 and under the stability condition (5.1.41), we have the following error estimate

for the LFFD method (5.1.10) with (5.1.14) and (5.1.15)

‖en‖l2 .
τ2

δ 3 +
h2

δ 3 , 0≤ n≤ T
τ
. (5.2.3)

Theorem 5.2. Under the assumptions (E) and (F), there exist constants h0 > 0 and τ0 > 0

sufficiently small and independent of δ , such that for any 0 < δ ≤ 1, when 0 < h ≤ h0,

0 < τ ≤ τ0 and under the stability condition(5.1.27), we have the following error estimate for

the SIFD1 method (5.1.11) with (5.1.14) and (5.1.15)

‖en‖l2 .
τ2

δ 3 +
h2

δ 3 , 0≤ n≤ T
τ
. (5.2.4)
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Theorem 5.3. Under the assumptions (E) and (F), there exist constants h0 > 0 and τ0 > 0

sufficiently small and independent of δ , such that for any 0 < δ ≤ 1, when 0 < h ≤ h0,

0 < τ ≤ τ0 and under the stability condition (5.1.42), we have the following error estimate

for the SIFD2 method (5.1.12) with (5.1.14) and (5.1.15)

‖en‖l2 .
τ2

δ 3 +
h2

δ 3 , 0≤ n≤ T
τ
. (5.2.5)

Theorem 5.4. Under the assumptions (E) and (F), there exist constants h0 > 0 and τ0 > 0

sufficiently small and independent of δ , such that for any 0 < δ ≤ 1, when 0 < h≤ h0 and

0 < τ ≤ τ0, we have the following error estimate for the CNFD method (5.1.13) with (5.1.14)

and (5.1.15)

‖en‖l2 .
τ2

δ 3 +
h2

δ 3 , 0≤ n≤ T
τ
. (5.2.6)

Based on Theorem 5.1 to Theorem 5.4, the four FDTD methods studied here share the

same temporal/spatial resolution capacity in the semiclassical regime. In fact, given an

accuracy bound κ > 0, the δ -scalability of the four FDTD methods is:

τ = O(
√

δ 3κ) = O(δ 3/2), h = O(
√

δ 3κ) = O(δ 3/2), 0 < δ � 1. (5.2.7)

Moreover, for observables like the total probability density and the current density, we

can derive error estimates as follows.

Corollary 5.1. Under the assumptions (E) and (F), with the initial and boundary conditions

(5.1.14), (5.1.15) and respective stability conditions for LFFD, SIFD1, SIFD2, and CNFD,

there exist constants h0 > 0 and τ0 > 0 sufficiently small and independent of δ , such that for

any 0 < δ ≤ 1, when 0 < h ≤ h0 and 0 < τ ≤ τ0, the following error estimate on the total

probability density holds for the FDTD methods (5.1.10)-(5.1.13)

‖ρn−ρ(tn, ·)‖l2 .
τ2

δ 3 +
h2

δ 3 , 0≤ n≤ T
τ
, (5.2.8)

where ρn is obtained from the wave function Φn through (2.3.9) with d = 1.

Corollary 5.2. Under the assumptions (E) and (F), with the initial and boundary conditions

(5.1.14), (5.1.15) and respective stability conditions for LFFD, SIFD1, SIFD2, and CNFD,

there exist constants h0 > 0 and τ0 > 0 sufficiently small and independent of δ , such that for
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any 0 < δ ≤ 1, when 0 < h≤ h0 and 0 < τ ≤ τ0, the following error estimate on the current

density holds for the FDTD methods (5.1.10)-(5.1.13)

‖Jn−J(tn, ·)‖l2 .
τ2

δ 3 +
h2

δ 3 , 0≤ n≤ T
τ
, (5.2.9)

where Jn is obtained from the wave function Φn through (2.3.10) with d = 1.

5.2.2 Proof for Theorem 5.1 to Theorem 5.4

In this section, we will prove Theorem 5.1 to Theorem 5.4.

Proof for Theorem 5.1 for the LFFD method

Define the local truncation error ξ̃ n = (ξ̃ n
0 , ξ̃

n
1 , ..., ξ̃

n
M)T ∈ XM of the LFFD method (5.1.10)

with (5.1.14) and (5.1.15) as follows, for 0≤ j ≤M−1 and n≥ 1,

ξ̃
n
j := iδtΦ(tn,x j)+ iσ1δxΦ(tn,x j)−

1
δ

(
σ3 +V n

j I2−An
1, jσ1

)
Φ(tn,x j), (5.2.10)

ξ̃
0
j := iδ+

t Φ0(x j)+ iσ1δxΦ0(x j)−
1
δ

(
σ3 +V 0

j I2−A0
1, jσ1

)
Φ0(x j). (5.2.11)

Applying the Taylor expansion in (5.2.10) and (5.2.11), we obtain for j = 0,1, ...,M−1 and

n≥ 1,

ξ̃
0
j =

i
2

τ∂ttΦ(τ ′,x j)+
i
6

h2
σ1∂xxxΦ

′
0(x j), (5.2.12)

ξ̃
n
j =

i
6

τ
2
∂tttΦ(t ′n,x j)+

i
6

h2
σ1∂xxxΦ(tn,x′j), (5.2.13)

where 0< τ ′< τ , tn−1 < t ′n < tn+1 and x j−1 < x′j < x j+1. Noticing (5.1.2) and the assumptions

(E) and (F), we have

|ξ̃ 0
j | .

τ

δ 2 +
h2

δ 3 , |ξ̃ n
j | .

τ2

δ 3 +
h2

δ 3 , j = 0,1, ...,M−1, n≥ 1, (5.2.14)

which immediately implies for n≥ 1

‖ξ̃ n‖l∞ = max
0≤ j≤M−1

|ξ̃ n
j | .

τ2

δ 3 +
h2

δ 3 , ‖ξ̃ n‖l2 . ‖ξ̃ n‖l∞ .
τ2

δ 3 +
h2

δ 3 . (5.2.15)

Subtracting (5.1.10) from (5.2.10), noticing (5.2.2), we get for 0≤ j ≤M−1 and n≥ 1,

iδten
j =−iσ1δxen

j +
1
δ

(
σ3 +V n

j I2−An
1, jσ1

)
en

j + ξ̃
n
j , (5.2.16)
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where the boundary and initial conditions are given as

en
0 = en

M, en
−1 = en

M−1, n≥ 0, e0
j = 0, j = 0,1, ...,M. (5.2.17)

For the first step, we have i
τ
e1

j = ξ̃ 0
j for j = 0,1, ...,M, so

‖e1‖l2 = τ‖ξ̃ 0
j ‖l2 .

τ2

δ 2 +
τh2

δ 3 .
τ2

δ 3 +
h2

δ 3 . (5.2.18)

Furthermore, multiply 2τh
(

en+1
j + en−1

j

)∗
from left on both sides to (5.2.16), then sum up

from j = 0 to j = M−1, and take the imaginary part, we have

E n+1−E n = 2τhIm

[
M−1

∑
j=0

(
en+1

j + en−1
j

)∗
ξ̃

n
j

]
, (5.2.19)

where E n for n = 0,1, ... is denoted as

E n+1 =‖en+1‖2
l2 +‖en‖2

l2 +
τ

h
Re

(
h

M−1

∑
j=0

(en+1
j )∗σ1(en

j+1− en
j−1)

)

− 2τ

δ
Im

(
h

M−1

∑
j=0

(en+1
j )∗

(
σ3 +V n

j I2−An
1, jσ1

)
en

j

)
. (5.2.20)

Consequently, we have

E n+1−E n .τh
M−1

∑
j=0

(
|en+1

j |+ |e
n−1
j |
)
|ξ̃ n

j | . τ
(
‖en‖2

l2 +‖en−1‖2
l2

)
+ τ‖ξ̃ n‖2

l2

.τ(E n+1 +E n)+ τ

(
τ2

δ 3 +
h2

δ 3

)2

, (5.2.21)

by noticing (5.2.15). Summing the above inequality for n = 1,2, ...,m−1, we get

E m−E 1 . τ

m

∑
k=1

E k +mτ

(
h2

δ 3 +
τ2

δ 3

)2

, 1≤ m≤ T
τ
. (5.2.22)

Under the stability condition (5.1.41) τ ≤ δτ1h
|V 0|h+

√
h2+(δ+h|A0

1|)2
, if we take τ1 =

1
4 , we could

derive τ

h ≤
1
4 , and τ

δ
(1+ |V 0|+ |A0

1|)≤
1
4 , which gives

1
2
(
‖en+1‖2

l2 +‖en‖2
l2

)
≤ E n+1 ≤ 3

2
(
‖en+1‖2

l2 +‖en‖2
l2

)
, n≥ 0, (5.2.23)
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by using Cauchy inequality. Then from (5.2.18), we have

E 1 .

(
h2

δ 3 +
τ2

δ 3

)2

. (5.2.24)

So if we take τ0 sufficiently small, the under the discrete Gronwall’s inequality for (5.2.22), it

can be obtained that

E m .

(
h2

δ 3 +
τ2

δ 3

)2

, 1≤ m≤ T
τ
, (5.2.25)

which immediately implies the error bound (5.2.3) in view of (5.2.23). �

The ideas of proof for Theorem 5.2 to Theorem 5.4 are similar to the proof for Theo-

rem 5.1, so for brevity, here we only show an outline of the proof.

The outline of proof for Theorem 5.2 for the SIFD1 method

The local truncation error for the first step is the same as (5.2.12), and by using Taylor

expansion, we also have for n≥ 1

ξ̃
n
j =

iτ2

6
∂tttΦ(t ′n,x j)+

ih2

6
σ1∂xxxΦ(tn,x′j)−

τ2

2δ

(
σ3 +V n

j I2−An
1, jσ1

)
∂ttΦ(t ′′n ,x j),

where tn−1 < t ′n, t
′′
n < tn+1, x j−1 < x′j < x j+1. Noticing (5.1.2) and the assumptions (E) and

(F), we can have for n≥ 1

‖ξ̃ n‖l∞ = max
0≤ j≤M−1

|ξ̃ n
j | .

τ2

δ 3 +
h2

δ 3 , ‖ξ̃ n‖l2 . ‖ξ̃ n‖l∞ .
τ2

δ 3 +
h2

δ 3 . (5.2.26)

Noticing (5.2.2), we get for the error function with 0≤ j ≤M−1 and n≥ 1,

iδten
j =−iσ1δxen

j +
1

2δ

(
σ3 +V n

j I2−An
1, jσ1

)
(en+1

j + en−1
j )+ ξ̃

n
j , (5.2.27)

where the boundary and initial conditions are taken as before, and for the first step, we still

have

‖e1‖l2 = τ‖ξ̃ 0
j ‖l2 .

τ2

δ 2 +
τh2

δ 3 .
τ2

δ 3 +
h2

δ 3 . (5.2.28)

Denote

E n+1 =‖en+1‖2
l2 +‖en‖2

l2 +
τ

h
Re

(
h

M−1

∑
j=0

(en+1
j )∗σ1(en

j+1− en
j−1)

)
, (5.2.29)

141



CHAPTER 5. FINITE DIFFERENCE TIME DOMAIN (FDTD) METHODS FOR THE
DIRAC EQUATION IN THE SEMICLASSICAL REGIME

for n≥ 0, multiply 2τh
(

en+1
j + en−1

j

)∗
from left on both sides to (5.2.27), then sum up from

j = 0 to j = M−1, and take the imaginary part, we have

E n+1−E n = 2τhIm

[
M−1

∑
j=0

(
en+1

j + en−1
j

)∗
ξ̃

n
j

]

. τ(E n+1 +E n)+ τ

(
τ2

δ 3 +
h2

δ 3

)2

, (5.2.30)

by noticing (5.2.26). Under the stability condition (5.1.27), if we take τ

h ≤
1
2 , we could derive

1
2
(
‖en+1‖2

l2 +‖en‖2
l2

)
≤ E n+1 ≤ 3

2
(
‖en+1‖2

l2 +‖en‖2
l2

)
, n≥ 0, (5.2.31)

by using Cauchy inequality as before. Then following the same process as in the proof for

Theorem 5.1, it can be obtained that for sufficiently small τ0

E m .

(
h2

δ 3 +
τ2

δ 3

)2

, 1≤ m≤ T
τ
, (5.2.32)

which immediately implies the error bound (5.2.4) in view of (5.2.23). �

The outline of proof for Theorem 5.3 for the SIFD2 method

The local truncation error for the first step is the same as (5.2.12), and by using Taylor

expansion, we also have for n≥ 1

ξ̃
n
j =

iτ2

6
∂tttΦ(t ′n,x j)+

iτ2

2
σ1∂xttΦ(t ′′n ,x j)+

ih2

12
σ1∂xxxΦ(tn+1,x′j)

+
ih2

12
σ1∂xxxΦ(tn−1,x′′j )+

τ2

2δ
σ3∂ttΦ(t ′′′n ,x j), (5.2.33)

where tn−1 < t ′n, t
′′
n , t
′′′
n < tn+1, x j−1 < x′j,x

′′
j < x j+1. Noticing (5.1.2) and the assumptions (E)

and (F), we can have for n≥ 1

‖ξ̃ n‖l∞ = max
0≤ j≤M−1

|ξ̃ n
j | .

τ2

δ 3 +
h2

δ 3 , ‖ξ̃ n‖l2 . ‖ξ̃ n‖l∞ .
τ2

δ 3 +
h2

δ 3 . (5.2.34)

Noticing (5.2.2), we get for the error function with 0≤ j ≤M−1 and n≥ 1,

iδten
j = − i

2
σ1δx

(
en+1

j + en−1
j

)
+

1
2δ

σ3

(
en+1

j + en−1
j

)
+

1
δ

(
V n

j I2−An
1, jσ1

)
en

j + ξ̃
n
j , (5.2.35)
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where the boundary and initial conditions are taken as before, and for the first step, we still

have

‖e1‖l2 = τ‖ξ̃ 0
j ‖l2 .

τ2

δ 2 +
τh2

δ 3 .
τ2

δ 3 +
h2

δ 3 . (5.2.36)

Denote

E n+1 =‖en+1‖2
l2 +‖en‖2

l2 +
τh
2

Re
(
(en+1

j )∗σ1δxen+1
j +(en

j)
∗
σ1δxen

j

)
− 2τ

δ
Im

(
h

M−1

∑
j=0

(en+1
j )∗

(
V n

j I2−An
1, jσ1

)
en

j

)
, n≥ 0, (5.2.37)

multiply 2τh
(

en+1
j + en−1

j

)∗
from left on both sides to (5.2.35), then sum up from j = 0 to

j = M−1, and take the imaginary part, we have

E n+1−E n = 2τhIm

[
M−1

∑
j=0

(
en+1

j + en−1
j

)∗
ξ̃

n
j

]

. τ(E n+1 +E n)+ τ

(
τ2

δ 3 +
h2

δ 3

)2

, (5.2.38)

by noticing (5.2.34). Under the stability condition (5.1.42), if we take τ

h ≤
1
2 , and τ

δ
(|V 0|+

|A0
1|)≤

1
4 , we could derive

1
2
(
‖en+1‖2

l2 +‖en‖2
l2

)
≤ E n+1 ≤ 3

2
(
‖en+1‖2

l2 +‖en‖2
l2

)
, n≥ 0, (5.2.39)

by using Cauchy inequality as before. Then following the same process as in the proof for

Theorem 5.1, it can be obtained that for sufficiently small τ0

E m .

(
h2

δ 3 +
τ2

δ 3

)2

, 1≤ m≤ T
τ
, (5.2.40)

which immediately implies the error bound (5.2.5) in view of (5.2.23). �

The outline of proof for Theorem 5.4 for the CNFD method

By using Taylor expansion, we can get the local truncation error for n≥ 0

ξ̃
n
j =

iτ2

6
∂tttΦ(t ′n,x j)+

ih2

12
σ1∂xxxΦ(tn,x′j)+

ih2

12
σ1∂xxxΦ(tn+1,x′′j )

+
iτ2

4
∂xttΦ(t ′′n ,x j)−

τ2

4δ

(
σ3 +V

n+ 1
2

j I2−A
n+ 1

2
1, j σ1

)
∂ttΦ(t ′′′n ,x j), (5.2.41)
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where tn−1 < t ′n, t
′′
n , t
′′′
n < tn+1, x j−1 < x′j,x

′′
j < x j+1. Noticing (5.1.2) and the assumptions (E)

and (F), we can have for n≥ 1

‖ξ̃ n‖l∞ = max
0≤ j≤M−1

|ξ̃ n
j | .

τ2

δ 3 +
h2

δ 3 , ‖ξ̃ n‖l2 . ‖ξ̃ n‖l∞ .
τ2

δ 3 +
h2

δ 3 . (5.2.42)

Noticing (5.2.2), we get for the error function with 0≤ j ≤M−1 and n≥ 0,

iδ+
t en

j =−iσ1δxen+1/2
j +

1
δ

(
σ3 +V n+1/2

j I2−An+1/2
1, j σ1

)
en+1/2

j + ξ̃
n
j , (5.2.43)

where the boundary and initial conditions are taken as before.

Multiply τh
(

en+1
j + en

j

)∗
from left on both sides to (5.2.43), then sum up from j = 0 to

j = M−1, and take the imaginary part, we have

‖en+1‖2
l2−‖en‖2

l2 = τhIm

[
M−1

∑
j=0

(
en+1

j + en
j

)∗
ξ̃

n
j

]

. τ(‖en+1‖2
l2 +‖en‖2

l2)+ τ

(
τ2

δ 3 +
h2

δ 3

)2

, (5.2.44)

by noticing (5.2.42). Then summing up from n = 0 to n = m−1, by applying the discrete

Gronwall’s inequality, for sufficiently small τ0, we could obtain

‖em‖2
l2 .

(
h2

δ 3 +
τ2

δ 3

)2

, 1≤ m≤ T
τ
, (5.2.45)

which is the error bound (5.2.6) in view of (5.2.23). �

5.3 Numerical results
In this section, we study numerically the spatial and temporal resolution of the FDTD

methods for the Dirac equation in the semiclassical regime, where the solution propagates

waves with wavelength at O(δ ) in both space and time. In the example, we take d = 1, and

the electromagnetic potentials to be

V (t,x) =
1− x
1+ x2 , A1(t,x) =

(x+1)2

1+ x2 , x ∈ R. (5.3.1)
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To quantify the numerical errors, we use the following representations of relative errors of the

wave function Φ, the total probability density ρ and the current density J

er
Φ(tn) =

‖Φn−Φ(tn, ·)‖l2

‖Φ(tn, ·)‖l2
, er

ρ(tn) =
‖ρn−ρ(tn, ·)‖l2

‖ρ(tn, ·)‖l2
,

er
J(tn) =

‖Jn−J(tn, ·)‖l2

‖J(tn, ·)‖l2
,

(5.3.2)

where ρn and Jn can be computed from the numerical solution of the wave function at the nth

time step Φn via (2.3.9) and (2.3.10) with d = 1, respectively.

For the initial condition, here we take

φ1(0,x) =
1
2

e−4x2
eiS0(x)/δ

(
1+

√
1+S′0(x)

2
)
,

φ2(0,x) =
1
2

e−4x2
eiS0(x)/δ S′0(x), x ∈ R,

(5.3.3)

for δ ∈ (0,1], with

S0(x) =
1

40
(
1+ cos(2πx)

)
, x ∈ R. (5.3.4)

As previously stated, the problem is solved numerically on a bounded domain Ω = (−16,16),

i.e. with a =−16 and b = 16. Moreover, because the exact solution is not known, here we

use the fourth-order compact time-splitting (S4c) Fourier pseudospectral method put forward

in Chapter 2 with a very fine mesh size h = he = 1/4096 and a very small time step size

τ = τe = 10−4 to get the numerical ‘exact’ solution for comparison.

In Table 5.3.1 to Table 5.3.4, relative spatial and temporal errors of the wave function

er
Φ
(t = 2) using the four finite difference methods LFFD (5.1.10), SIFD1 (5.1.11), SIFD2

(5.1.12), and CNFD (5.1.13) are presented respectively. Here for simplicity and considering

the stability conditions, we let the mesh size h and time step size τ decrease simultaneously.

From these tables, we can observe second order convergence in space and time for all the

four methods LFFD, SIFD1, SIFD2, and CNFD with any δ ∈ (0,1] (cf. each row in Table 5.3.1

to Table 5.3.4). The δ -resolution of these methods are all h = O(δ 3/2) and τ = O(δ 3/2),

which is verified through the upper triangles of each table above the bold diagonal line. This

corresponds well with our error estimates in Theorem 5.1 to Theorem 5.4. Moreover, the

numerical solutions from LFFD and SIFD2 are unstable with small δ and relative large τ ,

because in stability conditions (5.1.41) and (5.1.42), the restrictions on τ become more strict
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Table 5.3.1: Discrete l2 relative spatial and temporal errors for the wave function er
Φ
(t = 2)

using the LFFD method.

er
Φ
(t = 2)

τ0 = 0.1
h0 = 1/8

τ0/4
h0/4

τ0/42

h0/42
τ0/43

h0/43
τ0/44

h0/44

δ0 = 1 2.83E-1 1.13E-2 7.17E-4 4.49E-5 2.81E-6
order – 2.32 1.99 2.00 2.00

δ0/42/3 Unstable 5.43E-2 3.28E-3 2.05E-4 1.28E-5
order – – 2.02 2.00 2.00

δ0/44/3 Unstable Unstable 1.79E-2 1.11E-3 6.92E-5
order – – – 2.01 2.00
δ0/42 Unstable Unstable Unstable 1.05E-2 6.57E-4
order – – – – 2.00

δ0/48/3 Unstable Unstable Unstable 1.38E-1 8.48E-3
order – – – – 2.01

Table 5.3.2: Discrete l2 relative spatial and temporal errors for the wave function er
Φ
(t = 2)

using the SIFD1 method.

er
Φ
(t = 2)

τ0 = 0.1
h0 = 1/8

τ0/4
h0/4

τ0/42

h0/42
τ0/43

h0/43
τ0/44

h0/44

δ0 = 1 1.85E-1 1.04E-2 6.41E-4 4.01E-5 2.50E-6
order – 2.08 2.01 2.00 2.00

δ0/42/3 9.16E-1 6.66E-2 4.12E-3 2.57E-4 1.61E-5
order – 1.89 2.01 2.00 2.00

δ0/44/3 1.70 8.17E-1 5.54E-2 3.47E-3 2.17E-4
order – 0.53 1.94 2.00 2.00
δ0/42 1.69 1.11 8.19E-1 5.49E-2 3.43E-3
order – 0.30 0.22 1.95 2.00

δ0/48/3 1.44 1.58 1.40 8.26E-1 5.51E-2
order – -0.07 0.09 0.38 1.95
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Table 5.3.3: Discrete l2 relative spatial and temporal errors for the wave function er
Φ
(t = 2)

using the SIFD2 method.

er
Φ
(t = 2)

τ0 = 0.1
h0 = 1/8

τ0/4
h0/4

τ0/42

h0/42
τ0/43

h0/43
τ0/44

h0/44

δ0 = 1 3.82E-1 3.95E-2 2.55E-3 1.60E-4 9.98E-6
order – 1.64 1.98 2.00 2.00

δ0/42/3 7.72E-1 1.21E-1 8.01E-3 5.01E-4 3.13E-5
order – 1.33 1.96 2.00 2.00

δ0/44/3 Unstable 4.72E-1 4.21E-2 2.66E-3 1.66E-4
order – – 1.74 1.99 2.00
δ0/42 Unstable 1.24 3.14E-1 2.09E-2 1.31E-3
order – – 0.99 1.95 2.00

δ0/48/3 Unstable Unstable 1.11 2.68E-1 1.69E-2
order – – – 1.02 1.99

Table 5.3.4: Discrete l2 relative spatial and temporal errors for the wave function er
Φ
(t = 2)

using the CNFD method.

er
Φ
(t = 2)

τ0 = 0.1
h0 = 1/8

τ0/4
h0/4

τ0/42

h0/42
τ0/43

h0/43
τ0/44

h0/44

δ0 = 1 2.82E-1 2.41E-2 1.52E-3 9.53E-5 5.96E-6
order – 1.77 1.99 2.00 2.00

δ0/42/3 6.77E-1 8.08E-2 5.12E-3 3.20E-4 2.00E-5
order – 1.53 1.99 2.00 2.00

δ0/44/3 1.18 4.20E-1 3.09E-2 1.93E-3 1.21E-4
order – 0.74 1.88 2.00 2.00
δ0/42 1.14 9.62E-1 3.20E-1 2.06E-2 1.29E-3
order – 0.12 0.79 1.98 2.00

δ0/48/3 1.08 1.14 9.10E-1 3.03E-1 1.92E-2
order – -0.03 0.16 0.79 1.99

with smaller δ . Comparatively, SIFD1 and CNFD do not suffer from the stability problem,

in that CNFD is unconditionally stable, and the stability condition for SIFD1 only requires

that 0 < τ ≤ h (5.1.27), which is always satisfied in our computation (cf. each column in

Table 5.3.1 to Table 5.3.4).
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We also test the relative spatial and temporal errors of the total probability er
ρ(t = 2) and

of the current density er
J(t = 2) using the four methods. As the results for these methods are

similar, we only show the errors obtained by using the CNFD method as follows.

Table 5.3.5: Discrete l2 relative spatial and temporal errors for the total probability er
ρ(t = 2)

using the CNFD method.

er
ρ(t = 2)

τ0 = 0.1
h0 = 1/8

τ0/4
h0/4

τ0/42

h0/42
τ0/43

h0/43
τ0/44

h0/44

δ0 = 1 3.87E-1 3.07E-2 2.04E-3 1.28E-4 8.02E-6
order – 1.83 1.96 2.00 2.00

δ0/42/3 8.18E-1 8.54E-2 5.54E-3 3.46E-4 2.16E-5
order – 1.63 1.97 2.00 2.00

δ0/44/3 1.34 2.80E-1 1.81E-2 1.13E-3 7.06E-5
order – 1.13 1.98 2.00 2.00
δ0/42 1.42 1.24 1.33E-1 8.27E-3 5.17E-4
order – 0.10 1.61 2.00 2.00

δ0/48/3 1.23 1.38 1.21 9.91E-2 6.18E-3
order – -0.08 0.09 1.81 2.00

Table 5.3.6: Discrete l2 relative spatial and temporal errors for the current density er
J(t = 2)

using the CNFD method.

er
J(t = 2)

τ0 = 0.1
h0 = 1/8

τ0/4
h0/4

τ0/42

h0/42
τ0/43

h0/43
τ0/44

h0/44

δ0 = 1 4.48E-1 3.67E-2 2.42E-3 1.52E-4 9.48E-6
order – 1.80 1.96 2.00 2.00

δ0/42/3 9.90E-1 1.07E-1 6.93E-3 4.33E-4 2.71E-5
order – 1.61 1.97 2.00 2.00

δ0/44/3 1.29 3.60E-1 2.47E-2 1.54E-3 9.64E-5
order – 0.92 1.93 2.00 2.00
δ0/42 1.22 1.22 1.52E-1 9.56E-3 5.98E-4
order – 0.00 1.50 1.99 2.00

δ0/48/3 1.16 1.25 1.21 1.05E-1 6.54E-3
order – -0.06 0.02 1.77 2.00
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Table 5.3.5 and Table 5.3.6 respectively display the relative errors for the total probability

and the current density. We can observe that the results in both cases have similar patterns

with the relative errors for the wave function using the CNFD method (cf. Table 5.3.4).

More specifically, there is always second order convergence in space and time for δ ∈ (0,1]

(cf. each row in Table 5.3.5 and Table 5.3.6); and the δ -scalability for both total probabil-

ity and current density is h = O(δ 3/2) and τ = O(δ 3/2) (cf. the upper triangles above the

bold diagonal lines), which coincides with the Corollaries 5.1 and 5.2. As mentioned before,

the other three finite difference methods LFFD, SIFD1 and SIFD2 will generate similar results.

From the numerical results presented in this section, we successfully justify our error

estimates for wave function using the finite difference methods in Theorem 5.1 to Theorem 5.4,

as well as the error estimates for total probability and current density in Corollaries 5.1 and

5.2 for Dirac equation in the semiclassical regime.
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Chapter 6

Conclusion and future work

This thesis focuses on multiscale methods and corresponding analysis for the Dirac and

nonlinear Dirac equation. Different regimes of the equations are taken into consideration,

and we study time-splitting as well as finite difference methods in solving the dynamics. The

main work in the thesis is summarized as follows.

1. Propose a new fourth-order compact time-splitting method for the Dirac equa-

tion.

To improve the performance of fourth-order splitting methods, S4c is designed and applied

to the Dirac equation. It reduces the computational cost by introducing a double commutator

between two operators, and because there is no backward sub-step, the accuracy of S4c is

also better than other fourth-order methods. The method still performs much better in higher

dimensions if there is no external magnetic potential. The spatial and temporal resolution of

S4c for different regimes are studied as well.

2. Study super-resolution of the time-splitting methods.

In the absence of magnetic potential, there is super-resolution for time-splitting methods

in solving the Dirac and nonlinear Dirac equation. S1 and S2 are examined thoroughly in

the thesis. The uniform error bounds could be improved when the time steps are taken to be

non-resonant. For each case, rigorous proof is carried out, and numerical results are presented

to validate the error estimates.

3. Examine the finite difference methods for the Dirac equation in the semiclassical
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regime.

Four frequently used finite difference finite domain (FDTD) methods are applied to the

Dirac equation in the semiclassical regime, and their stability conditions, as well as error

estimates are examined in detail. It is found out that all the FDTD methods share the same

spatial and temporal resolution. The comparison among them shows that LFFD is most

efficient with the most strict stability condition, while CNFD is unconditionally stable, but

could be very time-consuming.

Some future work is listed below:

• Apply the exponential wave integrator Fourier pseudospectral (EWI-FP) method, and

the time-splitting Fourier pseudospectral method (TSFP) to the Dirac/nonlinear Dirac

equation in the semiclassical regime, and study their error bounds. Moreover, it is

challenging to put forward a uniform accurate method in this regime.

• Propose suitable numerical methods, including the finite difference, EWI and time-

splitting methods to solve equations related to the Dirac equation, such as the Weyl and

the Majorana equation. Different regimes of these equations could also be considered.

• Study the Dirac/nonlinear Dirac equation for many-body systems, which may bring

about more insight into physical systems.

• Find out the possible application of our research in physics, such as in graphene

and other 2D materials. The link could likely be found from the relation of the

Dirac/nonlinear Dirac equation to the lattice/nonlinear lattice Schrödinger equation [59,

61].
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