
FAST SWEEPING METHODS FOR STATIC HAMILTON–JACOBI
EQUATIONS∗

CHIU-YEN KAO† , STANLEY OSHER† , AND YEN-HSI TSAI‡

SIAM J. NUMER. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. 2612–2632

Abstract. We propose a new sweeping algorithm which discretizes the Legendre transform of
the numerical Hamiltonian using an explicit formula. This formula yields the numerical solution at
a grid point using only its immediate neighboring grid values and is easy to implement numerically.
The minimization that is related to the Legendre transform in our sweeping scheme can either be
solved analytically or numerically. We illustrate the efficiency and accuracy approach with several
numerical examples in two and three dimensions.

Key words. fast sweeping method, Godunov Hamiltonian, static Hamilton–Jacobi equation

AMS subject classifications. 35F30, 65N06

DOI. 10.1137/S0036142902419600

1. Introduction. The Hamilton–Jacobi equation

ψt(x, t) + H(x,∇ψ(x, t)) = 0(1.1)

arises in many applications ranging from classical mechanics to contemporary prob-
lems of optimal control. These include geometrical optics, crystal growth, etching,
computer vision, obstacle navigation, path planning, photolithography, and seismol-
ogy. In general, these nonlinear PDEs cannot be solved analytically. The solutions
usually develop singularities in their derivatives even with smooth initial conditions.
In these cases, the solutions do not satisfy the equation in the classical sense. The
weak solution that is usually sought is called the viscosity solution [10]. Numerically,
in general, one looks for a consistent and monotone scheme to construct approximate
viscosity solutions [27].

In this paper, we focus on static Hamilton–Jacobi equations of the following form:{
H(x,∇φ(x)) =R(x) for x ∈ Ω,

φ(x) = q(x) for x ∈ Γ ⊂ ∂Ω,
(1.2)

where H, q, and R > 0 are Lipschitz continuous and H is also convex and homogeneous
of degree one in ∇φ(x). A special case of this type of equation is the eikonal equation,

|∇φ| = r(x)(1.3)

with the same type of Dirichlet boundary condition as in (1.2). Many numerical meth-
ods have been developed for this problem. Rouy and Tourin [24] used an iterative
method to solve the discretized eikonal equation and proved that it converges to the
viscosity solution. The key is to use an upwind, monotone, and consistent discretiza-
tion for |∇φ|. Instead of using iterative methods, Tsitsiklis [29], later Sethian [25],

∗Received by the editors December 11, 2002; accepted for publication (in revised form) April 3,
2004; published electronically April 19, 2005. This research was supported by ONR grant N00014-
03-1-0071 and ONR MURI grant N00014-02-1-0720.

http://www.siam.org/journals/sinum/42-6/41960.html
†Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (ckao@

math.ucla.edu, sjo@math.ucla.edu).
‡Department of Mathematics and PACM, Princeton University, Princeton, NJ 08544 (ytsai@

math.princeton.edu).

2612

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2613

and Helmsen et. al. [14] proposed single-pass methods. Based on the monotonicity
of the solution along the characteristics, they combined the heap-sort data structure
with a variation of the classical Dijkstra algorithm to solve the steady state equation
|∇φ| = r(x). This became known as the fast marching method whose complexity is
O(N logN), where N is the total number of grid points in the domain. Later Sethian
and Vladimirsky [26] generalized the method of [29] to solve (1.2).

Osher [18] provided a link between time-independent and time-dependent
Hamilton–Jacobi equations. The zero level set of the viscosity solution ψ of (1.1)
with suitable initial conditions at various time t is the solution φ(x, y) = t of (1.2).
This gives an approach that one can try to solve the time-dependent equation by the
level set formulation [19] with high order approximations on the partial derivatives
[20], [15]. Falcone and Ferretti studied a class of semi-Lagrangian schemes which
can be interpreted as a discrete version of the Hopf–Lax–Oleinik representation for-
mula for first order time-dependent Hamilton–Jacobi equations. In semi-Lagrangian
schemes, ψ needs to be interpolated using its grid values, the Legendre transformation
of H needs to be obtained, and the minimum must be computed on an unbounded
set. See [11] and the references therein for more details.

Another approach to obtaining a “time-dependent” Hamilton–Jacobi equation
from a time-independent Hamilton–Jacobi equation comes by using the so-called
paraxial formulation, i.e., by assuming that there is a preferred direction in the wave
propagation. In [13], the paraxial formulation was first proposed for the eikonal equa-
tion (1.3). Later in [22], [23], a paraxial formulation was proposed for the static
general eikonal equation (1.2) in geophysical applications.

An important application for (1.2) is obtaining geodesic distance on a manifold.
Suppose that P = (x, y) is a point on a manifold M defined as the graph of a smooth
function f(x, y) and that γ are the curves connecting P and Γ ⊂ M on the manifold.
The minimizing curve of γ is called the geodesic. Let φ be the distance function such
that

φ(x, y) = min
γ⊂M

∫
γ

ds.

Then φ is the solution of√(
1 + f2

y

f2
x + f2

y + 1

)
φ2
x +

(
1 + f2

x

f2
x + f2

y + 1

)
φ2
y − 2

fxfy
f2
x + f2

y + 1
φxφy = 1, φ|Γ = 0.(1.4)

This equation can be easily generalized to higher dimensions. For example, in three
dimensions we again write down the formula for M as the graph of a smooth function
f(x, y, z). The distance function φ then satisfies√

aφ2
x + bφ2

y + cφ2
z − 2dφxφy − 2eφyφz − 2fφzφx = 1, φ|Γ = 0,(1.5)

where

a =
1 + f2

y + f2
z

1 + f2
x + f2

y + f2
z

, b =
1 + f2

x + f2
z

1 + f2
x + f2

y + f2
z

, c =
1 + f2

x + f2
y

1 + f2
x + f2

y + f2
z

,

d =
fxfy

1 + f2
x + f2

y + f2
z

, e =
fyfz

1 + f2
x + f2

y + f2
z

, f =
fzfx

1 + f2
x + f2

y + f2
z

.

2614 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

We will apply our new algorithm to compute the geodesic distance later. There are
other approaches that are designed to compute geodesic distances on manifolds. Kim-
mel and Sethian [16] extended the fast marching method to triangulated manifolds
and provided an algorithm for computing the geodesic distances, thereby extracting
shortest paths on triangulated manifolds. Barth [2] used the discontinuous Galerkin
method to find the distance on graphs of functions that are represented by spline
functions. In [7], the authors embeded the manifold as the zero level set of a Lips-
chitz continuous function and solved the corresponding eikonal equation (1.4) in the
embedding space. In [17], the authors based their work on the theory of geodesics
on Riemannian manifolds with boundaries and adapted the standard fast marching
method to compute weighted distance functions and geodesics on implicit surfaces
efficiently. Tsai et. al. [28] used a fast Gauss–Seidel-type iteration method and a
monotone upwind Godunov flux for the numerical Hamiltonian.

We propose a new interpretation of the monotone upwind Godunov flux for the
numerical Hamiltonian to solve (1.2). The complexity of our method appears to be
O(N). We illustrate the approach with several numerical examples in two and three
dimensions.

2. A new numerical scheme for convex Hamiltonians. Our new numerical
algorithm for static Hamilton–Jacobi equations is composed of a sweeping process and
an update formula. The sweeping process we use here is a version of Gauss–Seidel
iteration. It is motivated originally by Boué and Dupuis [3], who first suggested that
the complexity of this approach for the eikonal case is O(N). In [31], the fast sweeping
algorithm was first formulated in PDE framework for the eikonal equation and was
used to compute the distance function. In the sweeping process, we sweep through
the grids with alternating directions in order to follow the characteristics and use the
most recent values as we update the solution. This means that we overwrite an old
value with its new value as soon as we obtain the latter. In one dimension, we sweep
through the grids from left to right followed by right to left because the characteristics
have only two possible directions. In two dimensions, the characteristics may have
an infinite number of possible directions. We use four sweeping directions so that a
specific sweeping direction covers a group of characteristics at the same time. We
denote these four sweeping directions as one iteration. In n dimensions, we will use
2n alternating directions per iteration. We stop our iterations when the L1 norm of
the difference of two successive iteration results is less than the given tolerance, which
is O(h), where h is the grid size.

The new update formula we derive here comes from using the Legendre trans-
formation. The Legendre transformation can be applied to the Wulff problem [21],
which is usedto determine the equilibrium shape of crystalline materials. We give the
definitions in the following.

Definition 2.1. Let γ : Sd−1 → R+ be a continuous function defined on a
curved space Sd−1.

1. The first Legendre transformation of γ is

γ∗(ν) = min
θ·ν>0, |θ|=1

[
γ(θ)

(θ · ν)

]
.

2. The second Legendre transformation of γ is

γ∗(ν) = max
θ·ν>0, |θ|=1

[γ(θ)(θ · ν)].

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2615

The first and second Legendre transformations are dual to each other in a certain
sense, i.e., (γ∗)

∗ = γ if γ is convex and (γ∗)∗ = γ if γ is polar-convex. See, e.g., [21].
We can extend γ to the whole space Rd by defining

γ̃(x) = |x|γ
(

x

|x|

)
,

where the extension γ̃ is homogeneous to degree 1 and x ∈ Rd.
The convex Hamiltonian using the Bellman formula or the Legendre transforma-

tion is

H(∇φ(x)) = max
θ

[(∇φ · θ)w(θ)], θ ∈ Sd−1,

where

w(θ) = min
ν·θ>0, |ν|=1

[
H(ν)

(ν · θ)

]
and ν =

∇φ(x)

|∇φ(x)| .(2.1)

We define the numerical Hamiltonian as follows:

Ĥ(Di
−φ;Dj

+φ) = max
θ

{(∑
k

Dk
∓φ · θ±k

)
w(θ)

}
,

where Di
−φ (Dj

+φ) are the backward (forward) difference in i (j) direction, θ+ =
max(θ, 0), and θ− = min(θ, 0). This numerical Hamiltonian is monotone and consis-
tent. It also turns out to be Godunov’s numerical Hamiltonian. In order to describe
this clearly without loss of generality, we discuss the two-dimensional case here,

H(φx, φy) = max
θ

(φx cos θ + φy sin θ)w(θ),

where

w(θ) = min
−π

2 ≤ν−θ≤π
2

H(cos ν, sin ν)

cos(ν − θ)
.

The new numerical Hamiltonian is

Ĥ(Dx
−φ,D

x
+φ;Dy

−φ,D
y
+φ) = max

θ
{((cos θ)±Dx

∓φ + (sin θ)±Dy
∓φ)w(θ)}.

We say a function H(x1, x2, . . . , xn) is nondecreasing in xj by writing H(x1, x2, . . . ,
xj−1, ↑, xj+1, . . . , xn) and nonincreasing by writing H(x1, x2, . . . , xj−1, ↓, xj+1, . . . , xn).

Lemma 2.2. Ĥ is monotone; i.e., Ĥ(↑, ↓, ↑, ↓).
Proof. Since w > 0, this conclusion is straightforward.
Lemma 2.3. Ĥ is consistent; i.e., Ĥ(p, p; q, q) = H(p, q).
Proof. This is a simple manipulation of the following definitions:

Ĥ(p−, p+; q−, q+) := max
θ

{((cos θ)±p∓ + (sin θ)±q∓)w(θ)},

Ĥ(p, p; q, q) = max
θ

{((cos θ)±p + (sin θ)±q)w(θ)}

= max
θ

{(p cos θ + q sin θ)w(θ)}

=: H(p, q).

2616 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

By solving the Riemann problem for Hamilton–Jacobi equations (a generaliza-
tion of Godunov’s procedure), Bardi and Osher [1] proved the following result for
Godunov’s scheme:

HG(p−, p+; q−, q+) = extp∈I[p−,p+] extq∈I[q−,q+] H(p, q),(2.2)

where

extp∈I[a,b] = min
p∈[a,b]

if a ≤ b,

extp∈I[a,b] = max
p∈[b,a]

if a > b,

HG(Dx
−φij , D

x
+φij ;D

y
−φij , D

y
+φij) = HG(p−, p+; q−, q+),

and I[a, b] denotes the closed interval bounded by a and b.
Proposition 2.4. Ĥ is Godunov’s numerical Hamiltonian; i.e., Ĥ = HG.
Proof. We first assume p− < p+ and q− < q+,

HG(p−, p+; q−, q+) := min
p−≤p≤p+

min
q−≤q≤q+

H(p, q)

= min
p−≤p≤p+

min
q−≤q≤q+

{
max

θ
{(p cos θ + q sin θ)w(θ)}

}
= max

θ

{
min

p−≤p≤p+

min
q−≤q≤q+

(p cos θ + q sin θ)w(θ)

}
= max

θ
{((cos θ)±p∓ + (sin θ)±q∓)w(θ)}

=: Ĥ(p−, p+; q−, q+).

The proof for the other 3 cases is equally straightforward.
Now we use our new numerical Hamiltonian to solve (1.2). In order to write our

scheme in an explicit form, we prove the following property first.

Lemma 2.5. maxθ(af(θ) − g(θ)) = 0 with f(θ) > 0 ⇐⇒ a = minθ
g(θ)
f(θ) .

Proof.

max
θ

(af(θ) − g(θ)) = max
θ

f(θ)

(
a− g(θ)

f(θ)

)
= 0.

Since f(θ) > 0, we have maxθ(a− g(θ)
f(θ)) = 0, which implies a = minθ

g(θ)
f(θ) .

Apply this property to

Ĥ(Dx
−φ,D

x
+φ;Dy

+φ,D
y
−φ) = R(x, y).

Let φ0 = φi,j , φW = φi−1,j , φE = φi+1,j , φS = φi,j−1, and φN = φi,j+1. Breaking
down the expressions, we have

max
θ,φW,E,S,N

{{
(cos θ)+(φO − φW)
−(cos θ)−(φO − φE)

}
+

{
(sin θ)+(φO − φS)
−(sin θ)−(φO − φN)

}}
w(θ) − hR(xi, yj) = 0,

max
θ,φW,E,S,N

φO((cos θ)+ − (cos θ)− + (sin θ)+ − (sin θ)−)w(θ)

+

{
−(cos θ)+φW

(cos θ)−φE

}
+

{
−(sin θ)+φS

(sin θ)−φN

}
w(θ) = hR(xi, yj).

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2617

Thus

φO = min
θ

⎧⎪⎪⎨⎪⎪⎩
{

(cos θ)+φW

−(cos θ)−φE
+

(sin θ)+φS

−(sin θ)−φN

}
w(θ) + hR(xi, yj)

(| cos θ| + | sin θ|)w(θ)

⎫⎪⎪⎬⎪⎪⎭
(2.3)

= min
θ

K(θ).

We can also derive the three-dimensional numerical Hamiltonian and the update for-
mula in the same way. Let φ0 = φi,j.k, φW = φi−1,j,k, φE = φi+1,j,k, φS = φi,j−1,k,
φN = φi,j+1,k, φD = φi,j,k−1, and φU = φi,j,k+1. We have

Ĥ(Dx
−φ,D

x
+φ;Dy

−φ,D
y
+φ;Dz

−φ,D
z
+φ)

= max
θ1,θ2

{((sin θ1 cos θ2)
±Dx

∓φ + (sin θ1 sin θ2)
±Dy

∓φ + (cos θ1)
±Dz

∓φ)w(θ1, θ2)},

φO = min
θ1,θ2

⎧⎪⎪⎨⎪⎪⎩
{

(sin θ1 cos θ2)
+φW

−(sin θ1 cos θ2)
−φE

+
(sin θ1 sin θ2)

+φS

−(sin θ1 sin θ2)
−φN

+
(cos θ1)

+φD

−(cos θ1)
−φU

}
w + hR

(| sin θ1 cos θ2| + | sin θ1 cos θ2| + | cos θ1|)w

⎫⎪⎪⎬⎪⎪⎭ .

(2.4)

Sometimes it is possible to obtain explicit expression for w from (2.1), but in gen-
eral, one has to use numerical approximations by the fast Legendre transform devel-
oped by Brenier [4] and Corrias [9]. The minimization in the update formulas (2.3)
and (2.4) can be achieved either analytically or numerically. For a Hamiltonian of
quadratic form in the gradient, we solve the minimization analytically in the next
section. For other cases, we find the minimizer by using some well-developed numer-
ical optimization techniques, e.g., L-BFGS-B [5], [32] and trust region methods that
employ quadratic interpolation [12], [8].

3. Analytically solving a class of Hamilton–Jacobi equations. The quad-
ratic form Hamiltonian√

a(x, y)φ2
x + b(x, y)φ2

y − 2c(x, y)φxφy = R(x, y)(3.1)

is of special interest because computing geodesic distances on a manifold leads to this
type of equation. Here we show that the minimization of (2.3) can be solved explicitly.
Using the Legendre transformation, we have (after some simple calculations)

H(cos ν, sin ν) =
√

a cos2 ν + b sin2 ν − 2c sin ν cos ν

and

w(θ) =

√
ab− c2

a sin2 θ + b cos2 θ + 2c cos θ sin θ
.

Finding the minimum of (2.3) when 0 < θ < π/2 first, dK
dθ = 0 leads to

(−φW + φS)w2 − hR[(cos θ + sin θ)w
′
+ (− sin θ + cos θ)w] = 0.(3.2)

2618 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

Thus

−φW + φS

hR
=

−a sin θ + b cos θ + c(sin θ − cos θ)√
(ab− c2)(a sin2 θ + b cos2 θ + 2c sin θ cos θ)

= T (θ)(3.3)

and

T ′(θ) = −
√
ab− c2(cos θ + sin θ)

(a sin2 θ + b cos2 θ + 2c sin θ cos θ)3/2
< 0.

The solvability condition for θ1 is

c− a√
a(ab− c2)

<
−φW + φS

hR
<

b− c√
b(ab− c2)

.(3.4)

If (3.4) is satisfied, we will have a unique solution for 0 < θ < π/2 because of the
monotonicity of T . Let m = (−φW + φS)/hR. We have

θ= tan−1

(
−cm2(ab− c2)− (a− c)(b− c)±m(ab− c2)

√
(a+ b− 2c)−m2(ab− c2)

am2(ab− c2)− (a− c)2

)
if both m and the denominator are not zero. Here we have two choices for θ because
we square both sides while we do the calculation. We need to plug in (3.3) and pick
up the right one. Also

θ = tan−1

(
b− a

c− a

)
if the denominator is zero, and

θ = tan−1

(
c− b

c− a

)
if m = 0. Using similar arguments, we can write down solvability conditions and
explicit formulas for θ in other ranges. This can be summarized in the following
algorithm.

Algorithm (Quadratic Hamilton–Jacobi solver using the Bellman

formula). We assume that φ(i, j) is given in a small neighborhood of Γ. We initialize
the unknown φ by setting φ(i, j) to ∞1 and mask (i, j) = unknown.

We begin by setting φ(0) = φ.
Do the following steps while |φ(n+1) − φ(n)| > δ: (δ > 0 is the given tolerance

which is O(h)).
Sweeping Process: A compact way of writing these sweeping iterations in

C/C++ is
for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for(j=(s2<0?ny:0);(s2<0?j>=0:j<=ny);j+=s2)

update φi,j

Update Formula: For each grid point (i, j) visited in the sweeping iteration, if
mask (i, j) = unknown, do the following:

For (sx, sy) = (±1,±1)

1Notice that we only need to use a large value in actual implementation.

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2619

1. Check the solvability condition

m =
sxsy(φ

(n)(i, j − sy) − φ(n)(i− sx, j))

hR
,

check
c− a√

a(ab− c2)
< m <

b− c√
b(ab− c2)

when sxsy > 0,

check
−(b + c)√
b(ab− c2)

< m <
a + c√

a(ab− c2)
when sxsy < 0.

2. If the condition is satisfied,

θ = tan−1

(
−cm2(ab− c2) − (asx − csy)(bsy − csx)

am2(ab− c2) − (asx − csy)2

± m(ab− c2)
√

(a + b− 2csxsy) −m2(ab− c2)

am2(ab− c2) − (asx − csy)2

)
+ (1 − sx)

π

2

if both m and the denominator are not zero. Plug in the test function

T (θ) =
(−asx + csy) sin θ + (bsy − csx) cos θ√

(ab− c2)(a sin2 θ + b cos2 θ + 2c sin θ cos θ)

and pick up the right one which equals m, not −m. Also

θ = tan−1

(
b− a

c− asxsy

)
+ (1 − sx)

π

2

if the denominator is zero, and

θ = tan−1

(
csx − bsy
csy − asx

)
+ (1 − sx)

π

2

if m = 0.
3. Add

φtmp =
(sxφ(i− sx, j) cos θ + syφ(i, j − sy) sin θ)w(θ) + hR

(| cos θ| + | sin θ|)w(θ)

to the list phi candidate.

4. Add K(0), K(π2), K(π), K(3π
2) to the list phi candidate.

5. Let φmin be the minimum element of phi candidate.
6. Update

φ(n+1)(i, j) = min(φ(n)(i, j), φmin).

4. Numerical minimization. For a more general sweeping algorithm, we use
numerical optimization to calculate φ0. There are many minimization methods that
are readily available to us. Some methods need only evaluations of the function while
others also require evaluations of the derivative of the function. For our multidi-
mensional cases, we use the L-BFGS-B method [5], [32], [6] because the cost of the
iteration is low and the storage requirements of the algorithm are modest. L-BFGS-
B is a limited memory quasi-Newton method for a large-scale bound-constrained

2620 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

problem. The minimizer θ̃ of (2.3) and the minimizer (θ̃1, θ̃2) of (2.4) at a grid point
is constructed to be within a given tolerance through iterations, and the number of
iterations depends on the initial condition and the tolerance. In our algorithm, we use
the minimizer obtained in the previous sweep as our initial guess. In the first sweep,
we use the minimizers of the upwind neighboring grid pronts as initial conditions for
the quasi-Newton method. This implies that the initial conditions that we end up us-
ing are, in most cases, close enough to the minimizers. In practice, with the tolerance
of 10−6, we observed that, in average, only four to five iterations are needed. There is
an alternative approach of discretizing θ and then searching for the minimum in the
corresponding discretized space. Take the two-dimensional case, for example,

φO = min
θ

K(θ) = K(θ̃) ∼ min
θj

k(θj),(4.1)

where θj = j� θ/2π. Used in a straightforward manner, this kind of approach would
require that the grid size �θ is comparable to the given tolerance. In the following,
we briefly describe how the L-BFGS-B method works.

Consider finding a minimum by Newton’s method to search for a zero of the
gradient of the function f(θ) : Rn → R. The iteration formula is given by

θK+1 = θk −A−1 · ∇f(θ),

where A is the Hessian matrix of f . The BFGS method is a quasi-Newton method
because it doesn’t use the actual Hessian matrix of f , but it constructs a sequence
of Hk to approximate A−1. The iteration formula for unconstrained optimization is
given by

θk+1 = θk − λkHkgk, k = 0, 1, 2, . . . ,

where λk is a step size, gk is the gradient of f at θk, and Hk is updated at every
iteration by the following formula:

Hk+1 = (V k)THkV k + ρksk(sk)T ,(4.2)

where

ρk = 1/(yk)T sk, V k = I − ρkyk(sk)T ,

and

sk = θk+1 − θk, yk = gk+1 − gk.

The limited memory BFGS method only stores the m most recent pairs {si, yi}k−1
i=k−m

to update Hk. Suppose that the current iteration is θk and the initial limited memory
matrix Hk

(0) (usually a diagonal matrix) is updated by {si, yi}k−1
i=k−m. From (4.2) we

have

Hk = ((V k−1)T · · · (V k−m)T)Hk
(0)(V

k−m · · ·V k−1)

+ ρk−m((V k−1)T · · · (V k−m+1)T)sk−m(sk−m)T (V k−m+1 · · ·V k−1)
(4.3)

+ ρk−m+1((V k−1)T · · · (V k−m+2)T)sk−m+1(sk−m+1)T (V k−m+2 · · ·V k−1)

+ · · · + ρk−1sk−1(sk−1)T .

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2621

For bound constrained problems, the direct Hessian approximation Bk = (Hk)−1 is
used. The detail derivation and efficient algorithm for computing Hk and Bk are
found in [6]. This Bk is used to define a quadratic model of f at θk,

Qk(θ) = f(θk) + (gk)T (θ − θk) +
1

2
(θ − θk)TBk(θ − θk).

In order to find the minimizer of Qk subject to the bound constrained, the gradient
projection method is first used to determine a set of active bounds. Suppose we have
Θ = {θ | li ≤ θi ≤ ui, i = 1, . . . , n}; the ith coordinate of the projection of vector θ
is given by

P (θ, l, u)i =

⎧⎨⎩
li if θi ≤ li,
ui if θi ≥ ui,
θi otherwise.

We can then find the generalized Cauchy point that is the first local minimizer
θc of

Qk
L(t) = Qk(P (θk − tgk, l, u)).

Use θc to identify a set of active variables and then find the minimizer θ
k+1

of the
quadratic model with respect to the free variables. Perform a line search

θk+1 = θk + αk
(
θ
k+1 − θk

)
,(4.4)

where αk is the step size, to find θk+1 that satisfies the sufficient decrease condition

f(θk+1) ≤ f(θk) + 10−4(gk)T
(
θ
k+1 − θk

)
.

For more details, please refer to [5]. In our calculation, we choose m = 5 and the
stopping criterion is then

‖P (θk − gk, l, u) − θk‖∞ < 10−6.

5. Examples. We implement our new numerical scheme in the following ex-
amples. We choose δ = 10−15 for two dimensional cases and δ = 10−12 for three
dimensional cases for simplicity. Ideally the δ should be chosen as a small constant
times the grid size. We test an anisotropic case with constant coefficients a, b, and
c in Figures 1 and 2 to show a very degenerate case with varied coefficients and a
box-shape boundary condition. The equation is√

0.375φ2
x + 0.25φ2

y − 0.58φxφy = (2.1 − cos(4π2xy))/4.

Thus a = 0.375, b = 0.25, c = 0.29, and R(x, y) = (2.1 − cos(4π2xy))/4. Notice that
in this case, ab = 0.0938 is barely greater than c2 = 0.0841 and R is highly oscillatory.
That is why it needs more iterations. In general, we usually need more iterations when
the characteristics are very curvy. Figures 3 and 4 show the geodesic distances on
manifolds. In Figure 3, there are two boundary points. The contour plot has kinks on
the equal distance places. In Figure 4, the boundary point is in the center and on the

2622 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 1. A sweeping result after 2 sweeping iterations on a 50 × 50 grid. The boundary is a
single point in the center. a = 1.0, b = 1.0, c = 0.9, and R = 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 2. a = 0.375, b = 0.25, c = 0.29, and R(x, y) = (2.1 − cos(4π2xy))/4.0 on a 100 × 100
grid. Convergence is reached after 45 sweeping iterations.

top of the mountain-shaped manifold. The contour plot shows the geodesic distance to
the boundary point. Figure 5 is an example of the first arrival travel times to seismic
imaging. The computational domain suggests material layering under a sinusoidal
profile with layer shapes C(x) = 0.1225 sin(4πx). Suppose the domain is split into
four parts by yi(x) = 0.1225 sin(4πx) + pi where i = 1, 2, 3, and pi = (−0.25, 0, 0.25).
In each layer, the anisotropic speed at (x, y) is given by an ellipse with the long axis
(of length 2F2) tangential to the curve C(x) and the short axis (of length 2F1) normal

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2623

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 3. This is an example of the distance on a half sphere. The sweeping algorithm was applied
to the graph of f(x, y) =

√
1.0 − (x2 + y2) with φ(−0.56,−0.35) = φ(0.35, 0.35) = 0 as a boundary

condition on a 200 × 200 grid. The convergence was reached after 3 sweeping iterations.

to the curve. F1 and F2 are constants in each layer. This leads to

F2

√
((1 + n2)φ2

x + (1 + m2)φ2
y − 2mnφxφy)/(1 + m2 + n2) = 1,

where

(m,n) =

√
(F2/F1)2 − 1√
1 +

(
dC(x)
dx

)2

(
dC(x)

dx
,−1

)
.

From the results, we know that the algorithm is stable even with discontinuous coef-
ficients. Figures 6 and 7 are the solutions for three-dimensional eikonal equation with
one and two point boundary conditions. Figures 8 and 9 are the more general cases for

2624 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

0

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 4. The distance contour from (0, 0) on the graph of f(x, y) = cos(2πx) cos(2πy). The
convergence was obtained after 12 iterations on a 100 × 100 grid.

three dimensions. Figure 8 has a boundary point φ(0, 0, 0) = 0 and Figure 9 has a cu-
bic boundary condition with sides of length one. The governing equation we solved is√

aφ2
x + bφ2

y + cφ2
z − 2dφxφy − 2eφyφz − 2fφzφx = 1,

where

a =
1 + f2

y + f2
z

1 + f2
x + f2

y + f2
z

, b =
1 + f2

x + f2
z

1 + f2
x + f2

y + f2
z

, c =
1 + f2

x + f2
y

1 + f2
x + f2

y + f2
z

,

d =
fxfy

1 + f2
x + f2

y + f2
z

, e =
fyfz

1 + f2
x + f2

y + f2
z

, f =
fzfx

1 + f2
x + f2

y + f2
z

,

and f(x, y, z) = cos(2πx) cos(2πy) cos(2πz), and the corresponding

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2625

−0.5 0 0.5
−0.5

0

0.5

(0.8/0.2)

(0.8/0.2)

(0.8/0.2)

(0.8/0.2)

−0.5 0 0.5
−0.5

0

0.5

(3/3)

(3/3)

(1/1)
(1/1)

−0.5 0 0.5
−0.5

0

0.5

(3/1)

(3/1)

(1/1)
(1/1)

−0.5 0 0.5
−0.5

0

0.5

(0.8/0/2)
(3/1)

(1/1)
(0.8/0.2)

Fig. 5. This is an example of first arrival travel times in seismic imaging [26]. The (F2, F1)
pair for each layer is given in the above figures. The convergence was obtained after 5, 4, 16, and 16
iterations on a 200 × 200 grid.

w(θ1, θ2) =

√
1

1 + (fx sin θ1 cos θ2 + fy sin θ1 sin θ2 + fz cos θ1)2
.

This seems to be the first successful rapid computation in three dimensions for such
problems. In [30], it was proved that the results from the fast sweeping method for the
eikonal equation with R(x) = 1 need only one iteration, which is exactly 2n Gauss–
Seidel alternating sweepings for the problem in Rn, to reach a solution with global
error O(h log(1/h)). We provide the numerical evidence by testing our methods on an
eikonal equation with R(x) = 1 on two and three dimensions. The results are given
in Tables 1 and 2. For anisotropic cases, we found out that the number of iterations
depend on the anisotropy of the Hamiltonian, but it is always reasonable and appears
to be independent of the grid size.

6. Conclusion. In this paper, we have presented a new numerical method for
Hamilton–Jacobi equations written in the form of Bellman’s formula. We proved that
the numerical Hamiltonian we proposed is monotone and consistent and is in fact
also the Godunov Hamiltonian. We implemented this new scheme and showed some
results in two- and three-dimensional cases.

2626 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

Fig. 6. This is the one-iteration result of the 3D eikonal equation with the boundary (0, 0) in
the center of the graph. The corresponding contours are 0.25, 0.5, 0.75, 1.0, and 1.25.

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2627

Fig. 7. This is the one-iteration result of the 3D eikonal equation with two boundary points
(−0.5,−0.5) and (0.5, 0.5). The corresponding contours are 0.25, 0.5, 0.75, 1, 1.25, and 1.5.

2628 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

Fig. 8. This is a 3D example with f(x, y, z) = cos(2πx) cos(2πy) cos(2πz), the corresponding
w = (1 + (�f · θ)2)−1/2, and a boundary point at the center. The convergence was obtained after
10 iterations on a 100 × 100 × 100 grid. The contours shown here are 1.2, 1.5, 1.8, 2.2, and 2.5.

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2629

Fig. 9. This is a 3D example with f(x, y, z) = cos(2πx) cos(2πy) cos(2πz), the corresponding
w = (1 + (�f · θ)2)−1/2, and the cubic boundary condition. The convergence was obtained after 9
iterations on a 100 × 100 × 100 grid. The contours shown here are 0.2, 0.4, 0.6, 0.8, and 1.0.

2630 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

Table 1

The errors of a 2D eikonal case.

2D eikonal equation dx = 2/50 2/100 2/200

L1 error 0.102158 0.060888 0.0358203
L∞ error 0.0437414 0.0262969 0.0154506

2/400 2/800 2/1600 1/3200

0.0207759 0.0118848 0.0067128 0.00374894
0.00890583 0.00505242 0.00282877 0.00156648

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

hlog(1/h)

er
ro

r

L
1
 error

L∞ error

Table 2

The errors of a 3D eikonal case.

3D eikonal equation dx = 2/50 2/64 2/100

L1 error 0.399696 0.330305 0.233834
L∞ error 0.0761747 0.0635267 0.0454065

2/128 2/200 2/256 2/300

0.192961 0.135946 0.111793 0.0985156
0.0375639 0.0264938 0.0217706 0.0191687

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

hlog(1/h)

er
ro

r

L∞ error

L
1
 error

FAST SWEEPING METHODS FOR STATIC H–J EQUATIONS 2631

REFERENCES

[1] M. Bardi and S.Osher, The nonconvex multidimentional Riemann problem for Hamilton-
Jacobi equations, SIAM J. Math. Anal., 22 (1991), pp. 344–351.

[2] T. J. Barth, On the Marchability of Interior Stabilized Discontinuous Galerkin Approxima-
tions of the Eikonal and Related Pdes with Non-Divergence Structure, NASA Technical
Report, NAS-01-010, NASA Ames Research Center, Moffett Field, CA, 2001.

[3] M. Boué and P. Dupuis, Markov chain approximations for deterministic control problems
with affine dynamics and quadratic cost in the control, SIAM J. Numer. Anal., 36 (1999),
pp. 667–695.

[4] Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discretes,
C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), pp. 587–589.

[5] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound con-
strained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190–1208.

[6] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representation of quasi-Newton matrices and
their use in limited memory methods, Math. Programming, 63 (1994), pp. 129–156.

[7] L.-T. Cheng, P. Burchard, B. Merriman, and S. Osher, Motion of curves constrained on
surfaces using a level-set approach, J. Comput. Phys., 175 (2002), pp. 604–644.

[8] T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization
subject to bounds, SIAM J. Optim., 6 (1996), pp. 418–445.

[9] L. Corrias, Fast Legendre-Fenchel transform and applications to Hamilton-Jacobi equations
and conservation laws, SIAM J. Numer. Anal., 33 (1996), pp. 1534–1558.

[10] M. G. Crandall and P. L. Lions, Two approximations of solutions of Hamilton-Jacobi equa-
tions, Math. Comp., 43 (1984), pp. 1–19.

[11] M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations,
discrete representation formulae and Godunov methods, J. Comput. Phys., 175 (2002),
pp. 559–575.

[12] A. Friedlander, J. M. Martinez, and S. A. Santos, A new trust region algorithm for bound
constrained minimization, Appl. Math. Optim, 30 (1994), pp. 235–266.

[13] S. Gray and W. May, Kirchhoff migration using eikonal equation traveltimes, Geophysics, 59
(1994), pp. 810–817.

[14] J. Helmsen, E. Puckett, P. Colella, and M. Dorr, Two new methods for simulating
photolithography development in 3d, in SPIE 2726, 1996, pp. 253–261.

[15] G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J.
Sci. Comput., 21 (2000), pp. 2126–2143.

[16] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci.
USA, 95 (1998), pp. 8431–8435.

[17] F. Memoli and G. Sapiro, Fast computation of weighted distance functions and geodesics on
implicit hyper-surfaces, J. Comput. Phys., 173 (2001), pp. 730–764.

[18] S. Osher, A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi
equations, SIAM J. Math. Anal., 24 (1993), pp. 1145–1152.

[19] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.

[20] S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi
equations, SIAM J. Numer. Anal., 28 (1991), pp. 907–922.

[21] D. Peng, S. Osher, B. Merriman, and H.-K. Zhao, The geometry of Wulff crystal shapes and
its relations with Riemann problems, in Nonlinear Partial Differential Equations (Evanston,
IL, 1998), AMS., Providence, RI, 1999, pp. 251–303.

[22] J. Qian and W. W. Symes, Paraxial eikonal solvers for anisotropic quasi-p travel times, J.
Comput. Phys., 174 (2001), pp. 256–278.

[23] J. Qian and W. W. Symes, Finite-difference quasi-p traveltimes for anisotropic media, Geo-
physics, 67 (2002), pp. 147–155.

[24] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J.
Numer. Anal., 29 (1992), pp. 867–884.

[25] J. A. Sethian, Fast marching level set methods for three dimensional photolithography devel-
opment, in SPIE 2726, 1996, pp. 261–272.

[26] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi
equations, Proc. Natl. Acad. Sci. USA, 98 (2001) pp. 11069–11074.

[27] P. E. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equa-
tions, J. Differential Equations, 59 (1985), pp. 1–43.

[28] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping methods for a class
of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673–694.

2632 CHIU-YEN KAO, STANLEY OSHER, AND YEN-HSI TSAI

[29] J. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat.
Control, 40 (1995), pp. 1528–1538.

[30] H.-K. Zhao, Fast sweeping method for eikonal equations I, Distance function, www.math.
uci.edu/˜zhao, 2002.

[31] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and non-parametric shape
reconstruction from unorganized points using variational level set method, Computer Vision
and Image Understanding, 80 (2000), pp. 295–314.

[32] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization, ACM Trans. Math. Software, 23 (1997), pp. 550–560.

