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A Semi-Explicit Approach to Canary
Swaptions in HJM One-Factor Model

MARC HENRARD

Derivatives Group, Bank for International Settlements, Centralbahnplatz 2, CH-4002 Basel, Switzerland

(Received 16 April 2004; in revised form 5 January 2005)

ABSTRACT Leveraging the explicit formula for European swaptions and coupon-bond options
in the HJM one-factor model, a semi-explicit formula for 2-Bermudan options (also called
Canary options) is developed. The European swaption formula is extended to future times. So
equipped, one is able to reduce the valuation of a 2-Bermudan swaption to a single numerical
integration at the first expiry date. In that integration the most complex part of the embedded
European swaptions valuation has been simplified to perform it only once and not for every point.
In a special but very common in practice case, a semi-explicit formula is provided. Those results
lead to a significantly faster and more precise implementation of swaption valuation. The
improvements extend even more favourably to sensitivity calculations.

KEY WORDS: Bermudan swaption, HJM one-factor model, Hull–White model, explicit
formula, numerical integration

Introduction

This article is devoted to Bermudan swaptions, more precisely to 2-Bermudan

swaptions (swaptions with two exercise dates). Those swaptions are also called

Canary swaptions as the Canary Islands are halfway between Bermuda and Europe.

We leverage the explicit formula for European swaptions and coupon-bonds in the

HJM one-factor model presented in Henrard (2003). This is done by first calculating

the value of European option at any future point of time. The value of an European

option is a random process which is function of the fundamental random processes

of the problem: the price of zero-coupon bonds. Such a formula is required as we

need to compare a swap with the remaining European swaption at the first expiry

date. We have in mind the application of the result to the Hull and White (1990) or

extended Vasicek model. Too keep the formula as explicit as possible we restrict the

form of the volatility function. We allow ourself those restrictions as long as the

standard time-dependent Hull and White model is still covered. The restriction we

impose is a separability condition on the volatility (see condition (H2) below).
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Using the explicit formula we are able to reduce the valuation of a 2-Bermudan

option to a single expectation. This is an improvement with respect to a direct or tree

approach as, even if there are two expiry dates, the numerical process is done only at

one date. Also the computation is done only at the expiry date and not at

intermediary points. In that sense our results are related to the one of Gandhi and

Hunt (1997) who also study Bermudan swaptions using numerical integration

technique. Like in the tree approach or in Jamshidian (1989) paper on swaption,

Gandhi and Hunt construction is based on the short rate. Our approach is more

direct as we consider only discount bonds.

The most time consuming part of the European swaption computation is to solve a

non-linear one-dimensional equation. We are able to reduce the computation time by

solving it once and then reusing the solution for all the other points of the integration.

Finally we propose a semi-explicit formula for cancelable swaps or options on

underlying with similar cash-flows after the second expiry date. The formula is

explicit for the valuation of the part corresponding to the exercise at the first expiry

date and still written as an expectation for the rest. The size of the interval on which

the expectation has to be computed is reduced by the probability of the exercise at

the first expiry date. In other words, for first expiry at-the-money options, the

number of points in the numerical integration is divided by (around) two.

Those results lead to several possible implementations of valuation formulas. They

all perform significantly better than a double integration and standard tree

implementation both in term of speed and precision. The precision improvement

in particular is striking when sensitivities (delta and gamma) are computed. The

sensitivities stability is of particular importance in practice as sensitivities are (partly)

hedged. If they are unstable (or worst, plainly wrong) it will generate unnecessary

transactions and costs.

The HJM one-factor model and hypothesis used are described in the next section.

Then we present some preliminary results before presenting the main results in the

fourth section and the simplified formulas in the fifth section. Numerical

implementation results are then presented.

Model and Hypothesis

The model and main hypothesis used in this paper are the same as in Henrard (2003).

We use a model for P(t, u), the price at t of the zero-coupon bond paying 1 in u.

We will describe this for all 0#t, u#T, where T is some fixed constant.

When the discount curve P(t, .) is absolutely continuous and positive, which is

something that is always the case in practice as the curve is constructed from rates

and by some kind of interpolation, there exists f(t, u) such that

P t, uð Þ~exp {

ðu

t

f t,sð Þds

� �
ð1Þ

The idea of Heath et al. (1992) was to exploit this property by modelling f as

df t, uð Þ~m t, uð Þdtzs t, uð ÞdWt

for some suitable (possibly stochastic) m and s.

2 M. Henrard
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Here we use a similar model, but we restrict ourself to non-stochastic coefficients.

The exact hypothesis on the volatility term s is described by (H2). We don’t need all

the technical refinement used in their paper or similar one, like the one described in

Hunt and Kennedy (2000) in the chapter on dynamical term structure model. So

instead of describing the conditions that lead to such a model, we assume that the

conclusions of such a model are true. By this we mean we have a model, that we call a

HJM one-factor model, with the following properties.

Let A~ s, uð Þ [R2 : u [ 0, T½ � and s [ 0, u½ �
� �

. We work in a filtered probability

space (V, F , Preal, F tð Þ). The filtration F t is the (augmented) filtration of a one-

dimensional standard Brownian motion (Wreal)0#t#T.

H1 There exists s : [0, T]2 R R+ measurable and bounded1 with s50 on

[0, T]2\A such that for some process (rs)0#t#T, Nt~exp
Ð t

0
r sð Þds

� �
forms,

with some measure N, a numeraire pair2 (with Brownian motion Wt),

df t, uð Þ~s t,uð Þ
ðu

t

s t, sð Þds dt{s t, uð ÞdWt

dPN t, uð Þ~PN t, uð Þ
ðu

t

s t, sð Þds dWt

and r(t)5f(t, t).

The notation PN(t, s) designates the numeraire rebased value of P, i.e.

PN t, sð Þ~N{1
t P t, sð Þ. To simplify the writing in the rest of the paper, we use the

notation

n t, uð Þ~
ðu

t

s t, sð Þds

Note that n is increasing in u, measurable and bounded.

To be able to use the explicit formula for the valuation of the European swaptions,

we will also use the following hypothesis.

H2 The function s satisfies s(t, u)5g(t)h(u) for some positive function g and h.

Note that this condition is essentially equivalent to the condition (H2) of Henrard

(2003) but written on s instead of on n. The condition on n was n(s, t2)2n(s, t1)5f(t1, t2)g(s).

Example. The Ho and Lee (1986) volatility model and the Hull and White (1990)

volatility model satisfy the condition (H2). For Ho and Lee one has n(s, t)5s(t2s)

and s(s, t)5s; for Hull and White one has n(s, t)5(12exp(2a(t2s)))s/a and s(s,

t)5s exp(2a(t2s)). The volatility time-dependent versions of the models also satisfy

the conditions.

Preliminary Results

We want to price some option in this model. For this we recall the generic pricing

theorem (for example Theorem 7.33–7.34 in Hunt and Kennedy, 2000).

A Semi-Explicit Approach to Canary Swaptions 3
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Theorem 1. Let VT be some FT�measurable random variable. If VT is attainable,

then the time-t value of the derivative is given by V N
t ~V N

0 z
Ð t

0
ws dPN

s where wt is the

strategy and

Vt~NtE
N VT N{1

T

��F t

� 	
:

We now state two technical lemmas that generalize the lemmas presented in

Henrard (2003). Similar formulas can be found in Brody and Hughston (2004) in a

different framework.

Lemma 1. Let 0#t#u#v. In a HJM one-factor model, the price of the zero coupon

bond can be written has,

P u, vð Þ~ P t, vð Þ
P t, uð Þ exp {

1

2

ðu

t

n2 s, vð Þ{n2 s, uð Þ
� �

dsz

ðu

t

n s, vð Þ{n s, uð Þð ÞdWs

� �

Proof. By definition of the forward rate and its equation,

P u, vð Þ~exp {

ðv

u

f u, tð Þdt

� �

~exp {

ðv

u

f t, tð Þz
ðu

t

n s, tð ÞD2n s, tð Þds{

ðu

t

D2n s, tð ÞdWs


 �
dt

� �

Then using again the definition of forward rates and the Fubini theorem on

inversion of iterated integrals, we have

P u, vð Þ~ P t, vð Þ
P t, uð Þ exp {

ðu

t

ðv

u

n s, tð ÞD2n s, tð Þdt dsz

ðu

t

ðv

u

D2n s, tð Þdt dWs

� �

~
P t, vð Þ
P t, uð Þ exp {

1

2

ðu

t

n2 s, vð Þ{n2 s, uð Þ
� �

dsz

ðu

t

n s, vð Þ{n s, uð ÞdWs

� �

Lemma 2. In the HJM one-factor model, we have

NuN{1
v ~exp {

ðv

u

rs ds

� �
~P u, vð Þexp

ðv

u

n s, vð ÞdWs{
1

2

ðv

u

n2 s, vð Þds

� �

Proof. By definition of r,

rt~f t, tð Þ~f t, tð Þz
ðt

t

df s, tð Þds

~f t, tð Þz
ðt

t

n s, tð ÞD2n s, tð Þdsz

ðt

t

D2n s, tð ÞdWs

4 M. Henrard
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Then using Fubini, we haveðv

u

r tð Þdt~

ðv

u

f t, tð Þdtz

ðv

u

ðv

s

n s, tð ÞD2n s, tð Þdt ds{

ðv

u

ðv

s

D2n s, tð Þdt dWs

~

ðv

u

f t, tð Þdtz
1

2

ðv

u

n2 s, vð Þdsz

ðv

u

n s, vð ÞdWs

We give the pricing formula for swaptions for a future time. This is essentially the

Theorem 3.1 of Henrard (2003) but written for any future time t§0. Jamshidian

(1989) also provides an exact solution for European swaption at time 0. His

approach requires to solve a non-linear equation with respect to the instantaneous

short rate r. Even if it is also based on the one-factor model, its approach is less

explicit and as such more difficult to implement.

We represent swaps by their cash-flow equivalent representation. A swap receiving

coupon Rdi at time ti and starting at t0 is equivalent (in the pricing sense) to the set of

cash-flows c0521 at t0 (initial nominal), ci5Rdi at ti (1#i#n21) and cn5Rdn+1

(nominal and coupon at maturity).

Theorem 2. Suppose we work in the HJM one-factor model with a volatility term

of the form (H2). Let h#t0,...,tn, c0,0 and ci§0 (1#i#n). The price of a European

receiver swaption, with expiry h on a swap with cash-flows ci and cash-flow dates ti is
given at time t by the F t�measurable random variable

Xn

i~0

ciP t, tið ÞN kzaið Þ

where k is the F t�measurable random variable defined as the (unique) solution of

Xn

i~0

ciP t, tið Þexp {
1

2
ai

2 {aik

� �
~0 ð2Þ

and

ai
2 ~

ðh

t

n s, tið Þ{n s, hð Þð Þ2 ds

The price of the payer swaption is

{
Xn

i~0

ciP t, tið ÞN {k{aið Þ

Proof. Let m(s, h) 5 n(s, h) if s § t and 0 if s , t. We define W #
t ~Wt{

Ð t

0
m s, hð Þds. By

Girsanov’s theorem (Lamberton and Lapeyre, 1997, Section 4.2.2, p. 72), the process
W# is a standard Brownian motion with respect to the probability P# of density

Lh~exp

ðh

0

m s, hð ÞdWs{
1

2

ðh

0

m2 s, hð Þds

� �

A Semi-Explicit Approach to Canary Swaptions 5
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Using Lemma 1 and rewriting n2(s, ti)2n2(s, h) as (n(s, ti)2n(s, h))2+2n(s, h)(n(s, ti)

2n(s, h)), we have

P h, tið Þ~ P t, tið Þ
P t, hð Þ exp {

1

2
a2

i {aiX

� �

where {aiX~
Ð h

t
n s, tið Þ{n s, hð ÞdW #

s and X is a standard normally distributed with

respect to P#. The hypothesis (H2) is used here to prove that the random variable X

is the same for all i.

Using Lemma 2, we have NtN
{1
h ~P t, hð ÞLh. By the generic pricing Theorem 1,

the price of the option is

Vt~E# max
Xn

i~0

ciP t, tið Þexp {
1

2
a2

i {aiX

� �
, 0

 !�����F t

" #
:

Note that P(t, ti) is F t�measurable and X is independent of F t. Using a property of

the conditional expectation (Lamberton and Lapeyre, 1997, Proposition A.2.5,

p. 166), we can do this computation in two parts.

Let’s fix P(t, ti)5Pi. Like in the proof for t50, we have S ciPi exp { 1
2

a2
i {aiy

� �
> 0

if and only if y,k where k is the unique solution ofS ciPi exp { 1
2

a2
i {aiy

� �
~0.

So we have Vt5w(P) where w pð Þ~S cipiN kzaið Þ. Or more explicitly

Vt~
X

ciP t, tið ÞN kzaið Þ

where P(t, ti) and k are F t�measurable and k is implicitly defined by the equation (2)

2-Bermudan swaption

We are now in a position to state and prove the main theoretical result of this article

concerning 2-Bermudan swaptions.

Theorem 3. Let h1,h2, ti,j (i51, 2, j50, …, ni) be such that

hiƒti, 0 < ti, 1 < � � � < ti, ni
and ci,j (i51, 2, j50, …, ni) be such that ci,0,0 and

ci,j§0 (j.0). In the HJM one-factor model, when the volatility term has the form

(H2), the price of a 2-Bermudan receiver swaption with expiries hi and underlying

swaps with cash-flow ci,j and cash-flow dates ti,j is given by

V0~E max
Xn1

j~0

c1, jP 0, t1, j

� �
exp {

1

2
a2

1, j 0, h1ð Þ{a1, j 0, h1ð ÞX
� �  

Xn2

j~0

c2, jP 0, t2, j

� �
exp {

1

2
a2

2, j 0, h1ð Þ{a2, j 0, h1ð ÞX
� �

N k Xð Þza2, j h1, h2ð Þ
� ���

ð3Þ

where k(X) is the unique solution of

Xn2

j~0

c2, jP 0, t2, j

� �
exp {

1

2
a2

2, j 0, h2ð Þ{a2, j 0, h1ð ÞX{a2, j h1, h2ð Þk
� �

~0 ð4Þ

6 M. Henrard
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X is a standard normally distributed random variable with respect to E and

a2
i, j u, vð Þ~

ðv

u

n s, ti, j

� �
{n s, vð Þ

� �2
ds

The price of the payer swaption is

V0~E max {
Xn1

j~0

c1, jP 0, t1, j

� �
exp {

1

2
a2

1, j 0, h1ð Þ{a1, j 0, h1ð ÞX
� �  

,

{
Xn2

j~0

c2, jP 0, t2, j

� �
exp {

1

2
a2

2, j 0, h1ð Þ{a2, j 0, h1ð ÞX
� �

N {k Xð Þ{a2, j h1, h2ð Þ
� ���

ð5Þ

Proof. In h1 the price of the swaption is given by the maximum of the price of the

first swap and the price of the European swaption on the second swap.

We define W #
t ~Wt{

Ð t

0
n s, h1ð Þds. By Girsanov theorem, the process W# is a

standard Brownian motion with respect to the probability P# of density

Lh1
~exp

ðh1

0

n s, h1ð ÞdWs{
1

2

ðh1

0

n2 s, h1ð Þds

� �

Using Lemma 1, we have

P h, ti, j

� �
~

P 0, ti, j

� �
P 0, h1ð Þ exp {

1

2
a2

i, j 0, h1ð Þ{ai, j 0, h1ð ÞX
� �

ð6Þ

where {ai, j 0, h1ð ÞX~
Ð h1

0
n s, ti, j

� �
{n s, h1ð ÞdW #

s and X is a random variable with

standard normal distribution with respect to P#. As in Theorem 2, we use the

hypothesis (H2) to prove that the random variable X is the same for all i and j.

By Lemma 2, N{1
h1

~P 0, h1ð ÞLh1
and so using the generic pricing Theorem 1 and

the swaption pricing Theorem 2, we then have the Equation (3) where k is the

solution of

Xn2

j~0

P h1, t2, j

� �
exp {

1

2
a2

2, j h1, h2ð Þ{a2, j h1, h2ð Þk
� �

~0

By using the Equation (6) we obtain the described result for the value of k.

Remark. The same approach is also valid for one-payer-one-receiver swaptions,

choice swaption (at first expiry the holder has the choice between a payer and a

receiver swaption, possibly with different expiry dates) or any combination of swaps

and swaptions. For choice swaption where the choice is between different swaps (or set

of cash-flows), as indicated in Henrard (2003), an explicit formula can be obtained.

Simplified Formulas

This result can be written in a form easier to compute.

A Semi-Explicit Approach to Canary Swaptions 7
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Theorem 4. Under the conditions of Theorem 3, if the volatility structure

satisfies (H2), then the value of the 2-Bermudan receiver swaption is

given by the same formula (3) (payer given by (5)) but with

k Xð Þ~ L{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G h2ð Þ{G h1ð Þ

p
X

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G h1ð Þ{G 0ð Þ

p
where L is the unique solution

of

Xn2

j~0

c2, jP 0, t2, j

� �
exp {

1

2
a2

2, j 0, h2ð Þ{H t2, j

� �
L

� �
~0, ð7Þ

G tð Þ~
Ð t

0
g2 sð Þds and H tð Þ~

Ð t

0
h sð Þds (with g and h described in (H2)).

Proof. Using condition (H2) we can write

a2
i, j u, vð Þ~ H ti, j

� �
{H vð Þ

� �2
G vð Þ{G uð Þð Þ

As g and h are positive, G and H are increasing and all the factors in the previous

formula are positive. If we inject that description in (4) and simplify some factors, we

have as equation for k

Xn2

j~0

c2, jP 0, t2, j

� �
exp {

1

2
a2

2, j 0, h2ð Þ{H t2, j

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G h1ð Þ{G 0ð Þ

p
Xz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G h2ð Þ{G h1ð Þ

p
k

� �� �
~0

If we denote by L the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G h1ð Þ{G 0ð Þ

p
Xz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G h2ð Þ{G h1ð Þ

p
k, which is

independent of j, we have the result.

In the case where the underlying swaps have the same cash-flows after the

settlement of the second swap, the formula can be simplified further. The

simplification consists in the analytical solution of the expected value of the first

swap in case of exercise in h1. This is applicable in particular for cancellable swaps

and bonds with embedded 2-Bermudan options.

Theorem 5. Let 0,k, h1#t0,t1,...tk21,h2#tk,...,tn, cj.0, (j51, …, n), c0,0 and

dk,0. We consider two receiver swaps which are represented by the cash-flows (c0,

c1, …, cn) on dates (t0, …, tn) and by the cash-flows (dk, dk+1, …, dn)5(dk, ck+1, …, cn)

on dates (tk, …, tn).

In the HJM one-factor model, when the volatility term has the form (H2), the

price of a 2-Bermudan receiver swaption with expiries hi and underlying swap

described above is given by

V0~
Xn

j~0

cjP 0, tj

� �
N mzaj 0, h1ð Þ
� �

zE 11 X§mð Þmax
Xn

j~0

cjP 0, tj

� �
exp {

1

2
a2

j 0, h1ð Þ{aj 0, h1ð ÞX
� �  

Xn

j~k

djP 0, tj

� �
exp {

1

2
a2

j 0, h1ð Þ{aj 0, h1ð ÞX
� �

N k Xð Þzaj h1, h2ð Þ
� ���
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where m is the smallest solution of

Xn

j~0

cjP 0, tj

� �
exp {

1

2
a2

j 0, h1ð Þ{aj 0, h1ð Þm
� �

{
Xn

j~k

cjP 0, tj

� �
exp {

1

2
a2

j 0, h1ð Þ{aj 0, h1ð Þm
� �

N k mð Þzaj h1, h2ð Þ
� �

~0

and k is the function defined by (4).

The price of the 2-Bermudan payer swaption is

V0~{
Xn

j~0

cjP 0, tj

� �
N {m{aj 0, h1ð Þ
� �

zE 11 Xƒmð Þmax {
Xn

j~0

cjP 0, tj

� �
exp {

1

2
a2

j 0, h1ð Þ{aj 0, h1ð ÞX
� �  

{
Xn

j~k

djP 0, tj

� �
exp {

1

2
a2

j 0, h1ð Þ{aj 0, h1ð ÞX
� �

N {k Xð Þ{aj h1, h2ð Þ
� �!!

Proof. By the implicit function theorem applied to Equation (4), k is continuous (as

a function of X). Let Qj~cjP 0, tj

� �
exp { 1

2
a2

j 0, h1ð Þ
� �

. Note that Q0,0 and Qj.0

(j51, …, n). The difference between the value of the first swap and the swaption can

be written as

exp {a0Xð Þ Q0z
Xk{1

j~1

Qjexp a0{aj

� �
X

� �
z
Xn

j~k

Qj 1{
dj

cj

N k Xð Þzaj

� �� �
exp a0{aj

� �
X

� � !

As a02aj,0, (see Henrard (2003) for a proof of it) all the coefficient in the

exponentials are negative. Moreover as dj5cj for j.k, dk,0 and 0,N,1, all the

factors of the exponential are positive. The only negative term is Q0.

Using all those elements, the term within the parenthesis tends to +‘ as X tends to

2‘ and converges to Q0,0 when X tends to +‘.

By continuity at least one point exists for which the difference is 0. Also as it

converges to +‘ in 2‘, the set of zeros is bounded from below. This proves that the

set of solutions, which is closed, has a finite minimum.

Remark. It is not clear if it is possible to have an equation for m with several

solutions. If the solution is unique, the price formula can be simplified further by

removing the first term of the max.

Remark. For the result validity, the existence of m is sufficient. Imposing the cash-

flows to be the same after the second expiry is one way to achieve this but there are a

lot of other cases for which this is true. But it is not obvious which one would be of

practical relevance.

A Semi-Explicit Approach to Canary Swaptions 9
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Numerical Implementation

Expected values are usually computed through a numerical integration. The

expected value we have to compute is the one of a random variable written as the

function of a standard normal random variable. It means that we know quite well

the weight of the distribution underlying our expected value. We can use points for

the numerical integration with equal weight with respect to the underlying normal

distribution. By using equally weighted points we concentrate the computation

where they have a greater importance and so increase the precision for a given

number of points in the numerical integration.

All the models used in the section have been implemented using the same language

(Matlab3) and the computation time was measured at the same moment running all

of them in a loop, without operator intervention.

European Swaption Speed

In this section we briefly study the pricing speed of several Hull–White model

implementation for European swaptions. It may seem strange to study the European

swaption computation speed in a paper on Bermudan swaptions. But a 2-Bermudan

option is equal to an expected value involving European swaption or composed

European options. So when you compute the external expectation you have the

choice of computing the internal one independently. In this section we show that the

explicit method on which this paper relies is more efficient when a good precision is

required.

Even if we show this it does not mean that it necessarily has to be used for

Bermudan options. Efficient use of the second step computations can lead to

significant time saving. The recombining property of the Hull–white tree is one of

them. Most of the points of the second expiry date are used to compute several

points at the first date.

But this section will show that there is no hope to use a method for the first expiry

independently (without efficient use of previous computations) of the method used

for the second expiry without using the explicit approach for the second step.

For this we use a numerical integration technique with equi-probable points (not

equi-distant). The Hull–White trinomial tree implementation is a standard one (as

described in Brigo and Mercurio (2001) with long-term discount factors recovered

from the one-step one described in Hull (2000, Section 21.9)). The explicit solution is

the one described in Henrard (2003).

Figure 1 represents the computation time for n510, 20, 50, 100, 200 and 500 steps

for the Hull–White tree and numerical integration (for the numerical integration we

also added n51000, 2000 and 5000) and the constant time for the explicit solution.

By step we mean the Hull–White tree equivalent. In a Hull–White trinomial tree, for

n steps there are (approximatively) 2n+1 final points. To have a correct comparison

we also use 2n+1 points in the numerical integration procedure.

As it can be seen from the graph, the tree approach is a lot slower when a lot of

points are used (50 or above). The numerical integration is faster up-to 200 steps, but

slower for more points. For the option used, one need more than 200 steps to have a

price that is within 0.1% of the correct one.

10 M. Henrard
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At this stage there is no clear evidence of the speed superiority of the explicit

solution to the numerical integration when high precision is not required. But as the

next section evidences, an intelligent use of intermediary computations, as described

in Theorem 4 will prove that method largely superior.

Tree and Numerical Integration Speed

We now come back to our main subject, 2-Bermudan swaptions, and compare the

speed of different implementations. On one hand we use the same classical Hull–

White tree implementation and on the other hand for the numerical integration we

use three different implementations: the brute implementation using directly

Theorem 3, the fast implementation described in Theorem 4 with equiprobable

points and the semi-analytical implementation of Theorem 5. The brute implementa-

tion recomputes the full price (and in particular the k) of the European swaption at

each point of the numerical integration. The two others compute only once the L of

Theorem 4 and use it to deduce the k for each point. We could have used also a

double numerical integration. But as the explicit method as a speed of the same order

of magnitude (or faster) and the brute explicit method will be proved a lot slower

than the recombining approach, the extra comparison would not bring more

information.

Figure 1. Computation time for European swaptions with the semi-explicit method, the
numerical integral method and Hull–White tree

A Semi-Explicit Approach to Canary Swaptions 11
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The examples are all on a 1y65y and 1.5y64.5y receiver swaption. The strike is

close to the at-the-money rate of the first option. The yield curve used is the one of 28

October 20044. We measure the speed for n510, 20, 50, 100, 200 and 500 steps. For

the semi-explicit and numerical integration we do it also for n51000, 2000 and 5000.

As in the previous section for n steps there are 2n+1 points at first date in the tree and
we use the same number of points in the numerical integration. The tree is extended

up to the second expiry date while the numerical integration stops at the first date.

The same number of steps is used for each of the two periods. So what we call a n

step computation means 2n total steps and 4n+15 final points in the tree and 2n+1

points in the numerical integration. For the semi-explicit approach only the points

corresponding to the non-explicit part are computed. So for an option with a

50% probability of exercise at the first date, only one half of the points are

computed.

The results are graphically represented in Figure 2. The graph is on a log-log scale.

So lines represent exponent laws. A regression of the log-steps with the log-speed

gives a slope (exponent) of 2.1 for the tree and 1.0 for the brute force. This is what

was expected from the number of computations. For the other methods the numbers

are 0.6 and 0.5. There the situation is more complex as a large part of the

computation (L and m) is done before starting the points computation and is
independent of the number of points.

Figure 2. Computation time for 2-Bermudan swaptions with brute, fast and semi-explicit
methods, and Hull–White trinomial tree
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It can be seen that using 5000 points with one of the efficient numerical integration

approaches take still less time than for 100 points in the tree or brute approaches.

Without discussing the convergence, it is clear that the proposed approaches are

significantly more efficient than the tree of brute approaches.

Also the semi-explicit approach is faster for large number of points than the full

numerical integration. Even if an extra equation is solved to find m, the number of

points is reduced in proportion of the probability of exercise at the first date.

Convergence of the Results

We compare the convergence of the results for several implementations. We still use

the tree implementation but now for the numerical integration we use two versions of

Theorem 4, one with equi-distant and one with equi-probable points, and the semi-

explicit implementation of Theorem 5.

The results for n510, 20, 50, 100, 200 and 500 steps for the tree and also n51000,

2000 and 5000 for the integration approaches are given in Figure 3.

The graph clearly indicates that the semi-explicit is the best approach in terms of

convergence. This can be explained by the way a Bermudan swaption behaves. The

most valuable part is the first option. This part is valued explicitly and so is as precise

as the double precision of the computer. The rest, which is small, is computed in the

integral and converges to its true value. The second best is the implementation with

equally probable points. This is also not surprising as the computations are

concentrated on the more relevant points. Finally come the equally spaced point and

the trinomial tree approaches. The tree has also equally spaced points at each step, it

is therefore not surprising that they perform in a similar way.

The poor convergence/time ratio of the tree is not surprising as the number of grid

points increases as n2 while the precision, measured by the distance between final

points, is in
ffiffiffi
n
p

.

Figure 3. Convergence of the results for 2-Bermudan swaptions with brute, fast and semi-
explicit methods, and Hull–White trinomial tree
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Delta and Gamma

The results on price convergence can be extended even more successfully to delta and
in an unrivalled way to Gamma.

The tree approaches are notoriously unstable for greeks computations and gamma

numbers are dominated by numerical noises (see Henrard (2004) for some

computation examples in the case of European swaptions).

We take the 2-Bermudan swaption of the previous section and compute its yield

curve delta and gamma. By this we mean that we try to assess the first- and second-

order price change coming from a parallel movement of one basis point of all market

rates that compose the curve.

We compute those numbers for the initial yield curve but also for other yield

curves resulting from shifts by half a basis point increment up to 100 basis points

away from the current curve. The similar experience for European swaptions done in

Henrard (2004) indicates that there is very little hope to obtain a correct result

through the tree approach. We show the results for 2-Bermudan swaptions in
Figures 4, 5 and 6. Those results are obtained with 200 steps (with the meaning of

step described above)6.

The price seems acceptable for all the methods if one doesn’t look from too close.

When one goes to the first order sensitivity, the delta, the results are bad for the tree

method but there is still some hope to improve it by increasing the number of steps.

In the case of the gamma, the tree numbers are meaningless. Curing the problem

would require more points in the tree than is possible for the memory of the

computer. The two numerical integration approaches give acceptable results. They

exhibit small oscillations, but still acceptable ones.

One of the tree problems is that even if a lot of points are used, the extreme ones

are almost useless. In the example we study the value (as defined by the Q function in

Brigo and Mercurio, 2001) of the 200 first points and 200 last points at the second

expiry date have an average value of 4610295. This is to be compared with an
average of 0.0095 for the 101 central points. The central points of the tree are the

only ones that bring value.

Figure 4. Price of 2-Bermudan swaption with numerical integration, semi-explicit methods,
and Hull–White trinomial tree
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Figure 5. Delta of 2-Bermudan swaption with numerical integration, semi-explicit methods,
and Hull–White trinomial tree

Figure 6. Gamma of 2-Bermudan swaption with numerical integration, semi-explicit methods,
and Hull–White trinomial tree
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With 200 steps (401 points), the numerical integration gamma still lacks precision.

But thanks to the speed efficiency we can increase the number of points without

problems. Figure 7 gives the gamma profile for 401, 801 and 1601 points.

At initial scale only one line is visible. This is why we increase the scale with the

number of points. The increased number of points gives results that for all practical

purposes are smooth and precise enough. This is done with a computation time

below the one for 50 steps in the trinomial tree approach!!!

Extension to General Bermudan Swaption

This approach will not work directly in practice for n-Bermudan swaption (n§3) as

n21 iterated integrations would be required for a total of points of the order of pn21

where a Hull–White tree has a number of final points in pn (total of the order of

(pn)2).

Nevertheless some extra analytical manipulation and selection of the points for the
integration can bring the number of computation for an integration-like formula to

Figure 7. Gamma of 2-Bermudan swaption with numerical integration and semi-explicit
methods
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pn2. Part of the semi-explicit result can also be extended. This will be developed in a

forthcoming article (in preparation). This approach is related to the one of Gandhi

and Hunt (1997) who also suggest a recombining and numerical integration

implementation.

Conclusions

Both in terms of speed and convergence the semi-explicit approach proposed in

Theorem 5 performs better than more simple methods described in this paper. The

improvements, both in terms of speed and precision, are even more impressive with

respect to a standard Hull–White trinomial tree. The scope of the improvement is

currently limited to 2-Bermudan swaptions but part of the method can be extended

efficiently to more general swaptions.
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Notes

1 Bounded is too strong for the proof we use, some L1 and L2 conditions are enough, but as all the

examples we present are bounded, we use this condition for simplicity.
2 See Hunt and Kennedy (2000) for the definition of a numeraire pair. Note that here we require that the

bonds of all maturities are martingales for the numeraire pair (N, N).
3 Matlab code available from the author.
4 There is nothing special about that date, except it is my sister’s birthday!
5 As the second step is shorter (6m), the distance between points is also smaller and more than 4n+1 final

points are used.
6 It took around four hours on my computer to run the (non-optimized) code to compute 36401 yield

curves and the prices for the 4 implementations using 200 steps precisions. As can be inferred from

Figure 2, most of the time was devoted to the tree computations.
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ISBN 2-7298-4782-0.

18 M. Henrard

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
1
2
:
4
8
 
1
 
O
c
t
o
b
e
r
 
2
0
0
9


