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Numerical Methods and Volatility
Models for Valuing Cliquet Options
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*Equity Trading Lab, Morgan Stanley, New York, USA, **School of Computer Science, University of

Waterloo, Canada, {Centre for Advanced Studies in Finance, University of Waterloo, Canada

(Received 16 September 2004; in revised form 16 February 2006)

ABSTRACT Several numerical issues for valuing cliquet options using PDE methods are
investigated. The use of a running sum of returns formulation is compared to an average return
formulation. Methods for grid construction, interpolation of jump conditions, and application of
boundary conditions are compared. The effect of various volatility modelling assumptions on the
value of cliquet options is also studied. Numerical results are reported for jump diffusion models,
calibrated volatility surface models, and uncertain volatility models.

KEY WORDS: Cliquet options, jump diffusion, interpolation, boundary conditions, volatility
models

Introduction

Cliquet options are financial derivative contracts that provide a guaranteed
minimum annual return in exchange for capping the maximum return earned each

year over the life of the contract. Recent turmoil in financial markets has led to a

demand for products that reduce downside risk while still offering upside potential.1

For example, pension plans have been looking at attaching guarantees to their

products that are linked to equity returns. Some plans, such as those described by

Walliser (2003), limit the upside returns in order to reduce the costs associated with

providing the guarantee. These products are essentially cliquet contracts.

Wilmott (2002) illustrated that cliquet options are sensitive to the model assumed

for the underlying asset dynamics. In this paper we will explore a variety of

modelling alternatives, including:

N a (finite activity) jump diffusion model (Merton, 1976);

N a state-dependent volatility surface (i.e. a model in which a local volatility
function is calibrated to observed market prices of traded options, as described,

for example, in Coleman et al. (1999)); and

N a nonlinear uncertain volatility model (Avellaneda et al., 1995; Lyons, 1995).2
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We find that even if a time-dependent and state-dependent local volatility model is

calibrated to prices of plain vanilla options generated from a jump diffusion model

with constant parameters, there is no guarantee that the values of cliquet options

calculated using the volatility surface will be close to cliquet values obtained using

the jump diffusion model. This result is consistent with other studies, see Hirsa et al.

(2003) and Schoutens et al. (2004), which have demonstrated that a model calibrated

to vanilla options does not necessarily price exotics correctly.

However, some practitioners are aware that simply using the local volatility

surface calibrated to vanillas does not correctly capture the dynamics of the skew.

Practitioners often attempt to make up for the known deficiencies of a calibrated

local volatility surface by forcing the surface to be homogeneous of degree zero in

price and strike. In addition, the surface is often rolled forward in time. It appears

that previous studies have not taken into account these typical corrections.

Assuming that the true market process is a jump diffusion, we show that these two

common corrections can result in much less error for the price of a cliquet option (at

the initial value of the underlying asset). This provides some justification for

common industry practice. However, the error is small only when the underlying is

at the initial price. Consequently, the deltas computed using the local volatility

surface are considerably in error.

Cliquets are discretely observed path-dependent contracts. As such, they can be

conveniently valued by solving a set of one dimensional PDEs embedded in a higher-

dimensional space. These one-dimensional PDEs exchange information through no-

arbitrage jump conditions on observation dates. Wilmott (1998) has recommended

this approach as a general framework and it has successfully been used to implement

models for Parisian options (Vetzal and Forsyth, 1999), Asian options (Zvan et al.,

1999), shout options (Windcliff et al., 2001), volatility swaps and options (Windcliff

et al., 2006), and many others.

An important focus of this paper is to develop effective numerical methods for

valuing cliquet options for all of the above models. Assuming we have effective

methods for solving each one-dimensional problem, there are still difficulties in

solving the full cliquet problem. In particular, we will:

N show how the use of scaled grids for each one-dimensional problem dramatically

improves the convergence;

N investigate the effects of interpolation methods used to enforce the jump

conditions arising from the state variable updating rules;

N show how to specify the boundary conditions at large and small values of the asset

price; and

N look at the effects of using a finite computational domain on the data needed to

enforce the jump conditions.

We will also compare the performances of a formulation that utilizes a running

sum of returns with one that uses the running average of returns.

We emphasize that although the numerical techniques illustrated in this paper will

be studied in conjunction with cliquet options, many of these methods also apply to

other path-dependent options. For example, the interpolation and grid construction

techniques described in this paper can also be used to dramatically improve the
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performance of algorithms for valuing discretely observed floating strike lookback

options.

Formulation for Jump Diffusion and Uncertain Volatility Models

Let S represent the price of the underlying asset. The potential paths followed by S

can be modelled by a stochastic differential equation given by

dS

S
~ j{lkð Þdtzs dzz g{1ð Þdq ð2:1Þ

where j is the drift rate, dq is an independent Poisson process with mean arrival time

l (i.e. dq51 with probability l dt and dq50 with probability 12l dt), (g21) is an

impulse function producing a jump from S to Sg, k is the expected value of (g21), s
is the volatility (of the continuous part of the process), and dz is the increment of a

standard Gauss–Wiener process.

Let V(S, t) be the value of a European-style contract that depends on the

underlying asset value S and time t. Following standard arguments (Merton, 1976;

Wilmott, 1998; Andersen and Andreasen, 2000), the following backward partial

integro differential equation (PIDE) for the value of V(S, t) is obtained

Vt~
s C , S, tð Þ2S2

2
VSSz r{lkð ÞSVS{rVz l

ð?
0

V Sgð Þg gð Þdg{lV

� �
ð2:2Þ

where t5T2t, T is the maturity date of the contract, A5VSS, r is the risk free rate of

interest, and g(g) is the probability density function of the jump amplitude g. In this

paper, we will follow Merton (1976) and assume that g is lognormally distributed

with mean m and standard deviation c, so that k5exp(m+c2/2)21. Specifically

g gð Þ~ e
{

log gð Þ{mð Þ2

2c2

� �
ffiffiffiffiffiffi
2p
p

cg
ð2:3Þ

In Equation 2.2 we have allowed the volatility to be a function of A5VSS, as well

as the underlying asset price, S, and time, t. In an uncertain volatility model

(Avellaneda et al., 1995; Lyons, 1995), it is assumed that

sminƒsƒsmax ð2:4Þ

but is otherwise uncertain. The worst-case value for an investor with a long position

in the option is determined from the solution to Equation 2.2 with s(A) given by

s Cð Þ2~
s2

max if Cv0

s2
min if Cw0

(
ð2:5Þ

Conversely, the best case value for an investor with a long position is determined

from the solution to Equation 2.2 with s(A) given by
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s Cð Þ2~
s2

max if Cw0

s2
min if Cv0

(
ð2:6Þ

The worst-case value for an investor with a short position (a negative payoff) in the

option is given by the negative of the solution to Equations 2.2 and 2.6.

Consequently, as discussed in Forsyth and Vetzal (2001), the worst-best case long

values can be thought of as corresponding to the bid–ask prices for the option if

buyers and sellers value it assuming worst case scenarios from their own

perspectives.

Local Volatility Models

In this section, we postulate a synthetic market where the price process is a jump

diffusion with constant parameters, as in Equation 2.1. We then take the point of

view of a practitioner who attempts to fit observed vanilla option prices using a local

volatility model. We first develop some analytic results which provide some insight

into the form of the fitted local volatility model. Then, we generate two local

volatility surfaces which will be used in the subsequent numerical tests.

Overview

It is common practice to fit a local volatility model to vanilla option prices, and then

use this local volatility surface to price exotic options. In this section, we will

determine some properties of a local volatility model (no jumps) which has been

calibrated to prices in a synthetic market where the price process is a constant

volatility jump diffusion model.

Suppose that the asset in the synthetic market follows

dS

S
~ j{lkð ÞdtzsJ dzz g{1ð Þdq ð3:1Þ

where we assume that for simplicity that sJ5const., and that the jump size

distribution g(g) is independent of (S, t), and given by Equation 2.3.

If we assume the process (3.1), then the value of an option V given by (2.2) can be

written in the form

Vt~
s2

JS2

2
VSSzrSVS{rVzl

ð?
0

V Sgð Þ{V Sð Þ½ �{ g{1ð ÞSVSð Þg gð Þdg ð3:2Þ

Now, suppose the real-world process follows the jump diffusion (3.1), but a

practitioner assumes that stock prices evolve according to

dS

S
~n dtzsL S, tð Þdz ð3:3Þ

where n is the drift term and sL is the local volatility. Let W be the price of an option

obtained assuming process (3.3). W satisfies

356 H. A. Windcliff et al.
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Wt~
sL S, tð Þ2S2

2
WSSzrSWS{rW ð3:4Þ

Typically, the local volatility is determined by calibration to a set of vanilla option

prices for fixed (S, t), with varying strikes and maturities (K, T). Let V(S, t; K, T) be

the price of a vanilla call valued under process (3.1). The price can be regarded as a

function of (S, t) with (K, T) fixed or as a function of (K, T) with (S, t) fixed. Using

the latter perspective, we will let S5S*, t5t* to emphasize that we regard (S*, t*) as

fixed. Andersen and Andreasen (2000) show that the forward PIDE for a European

call option is

VT~
s2

JK2

2
VKK{rKVK

zl

ð?
0

gV S�, t�; K=g, Tð Þ{gV S�, t�; K , Tð Þz g{1ð ÞKVK½ �g gð Þdg

ð3:5Þ

The boundary conditions for Equation 3.5 are

V S�, t�; 0, Tð Þ~S�

V S�, t�; K??, Tð Þ~0

V S�, t�; K, t�ð Þ~max S�{K , 0ð Þ

ð3:6Þ

Let W(S*, t*; K, T) be the price of a European call obtained assuming process

(3.3). As shown in Dupire (1994), the forward PDE for W satisfies

WT~
sL K, Tð Þ2K2

2
WKK{rKWK ð3:7Þ

We will first consider the solution of the forward Equation 3.7 on the finite domain

Vf5[Kmin, Kmax]. We will assume as well that S* gVf. We will also consider expiry

times T bounded away from t*, i.e. T g [Tmin, Tmax], Tmin.t*. After carrying out an

analysis in the finite domain Vf6[Tmin, Tmax], we will take limits as TminRt*,

KminR0, and KmaxR?.

The calibration problem can then be stated as follows. Given V(S*, t*; K, T)

satisfying initial conditions (3.6) in 0(K(?, t*(T(Tmax, determine sL(S*, t*; K,

T) such that W5V in Vf6[Tmin, Tmax]. In other words, determine the local volatility

function such that the market prices for vanilla calls V are matched by the calibrated

prices W at a specific (S*, t*), for all strikes and maturities in Vf6[Tmin, Tmax]. Note

that we have emphasized that the solution to the calibration problem sL5sL(S*, t*;

K, T) is in general valid only for a specific (S*, t*).

For future reference, at this point we gather together some conditions on the

solutions for V, W:

Conditions 3.1 (Conditions on V). We assume the following conditions for V, the

solution to Equation 3.5 in the domain 0(K(?, t*(T(Tmax:
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N Initial conditions (T5t) and boundary conditions are given by Equation 3.6.

N s2
J > 0 in Equation 3.5.

N V has bounded and continuous derivatives of up to first order in T and second

order in K in Vf6[Tmin, Tmax] (i.e. V is C1,2).

N VKK.0 in Vf6[Tmin, Tmax].

Conditions 3.2 (Conditions on W). We assume the following conditions for W,

the solution to Equation 3.7 in the domain Vf6[Tmin, Tmax]:

N Given a solution V to Equation 3.5, initial conditions and boundary conditions

for W are

W S�, t�; K , Tminð Þ~V S�, t�; K , Tminð Þ

W S�, t�; Kmax, Tð Þ~V S�, t�; Kmax, Tð Þ

W S�, t�; Kmin, Tð Þ~V S�, t�; Kmin, Tð Þ

ð3:8Þ

N s2
L > 0 in Vf6[Tmin, Tmax].

N W has bounded and continuous derivatives of up to first order in T and second

order in K (i.e. W is C1,2).

Remark 3.1. Clearly, as TRt*, then the initial condition (3.6) implies that

VKK50 for K?S. However, for any Tmin.t*, VKK.0 in Vf6[Tmin, Tmax].

Let E5W2V and subtract Equation 3.5 from Equation 3.7 to obtain

LE~f S�, t�; K, Tð Þ

f S�, t�; K, Tð Þ~{
s2

J{s2
L

2

� �
K2VKK

{l

ð?
0

gV S�, t�; K=g, Tð Þ{gV S�, t�; K, Tð Þz g{1ð ÞKVKð Þg gð Þdg

ð3:9Þ

where

LE:ET{
s2

LK2

2
EKK{rKEK

� �
ð3:10Þ

From Equation 3.8 we have

E K , Tð Þ~0, K[LVf , T[ Tmin, Tmax½ �

E K , Tminð Þ~0, K[Vf

ð3:11Þ

Consequently, the calibration problem may be restated as: find sL(S*, t*; K, T) such

that E50 in Vf6[Tmin, Tmax].

If s2
L > 0 in Equation 3.10, then the Green’s function (Roach, 1982; Garroni and

Menaldi, 1992) of L is the solution to

358 H. A. Windcliff et al.
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LG~d K{K 0ð Þd T{T 0ð Þ

G K , Tð Þ~0, K[LVf

G K , Tminð Þ~0, K[Vf

ð3:12Þ

The solution to equation (3.9) can then be written as

E K, Tð Þ~
ð

Vf

ðT

Tmin

G K , T , K 0, T 0ð Þf S�, t�; K 0, T 0ð ÞdT 0 dK 0 ð3:13Þ

Detailed conditions for the existence of a Green’s function for non-selfadjoint

operators of the type (3.10) are given in Garroni and Menaldi (1992). Briefly, if the

PDE is non-degenerate, and has bounded coefficients, then existence of the Green’s

function can be proven. Note that since we have restricted the domain to Vf, these
conditions are satisfied. (As a point of interest, Garroni and Menaldi, 1992 also

discuss the existence of Green’s functions for PIDEs of the type (2.2). It appears to

us that the work in Garroni and Menaldi (1992) deserves to be better known.)

Lemma 3.1 (Condition on f(S*, t*; K, T)). If f(S*, t*; K, T) is a continuous

function and s2
L > 0, then E(K, T);0 in Vf6[Tmin, Tmax] if and only if f(S*, t*; K,

T);0 in Vf6[Tmin, Tmax].

Proof. If f(S*, t*; K, T)50 in Vf6[Tmin, Tmax], then from Equation 3.13 we have
immediately that E50 in Vf6[Tmin, Tmax]. Conversely if E50, then from

Equation 3.9 we have that f(S*, t*; K, T)50 in Vf6[Tmin, Tmax].

Proposition 3.1 (Existence of sL). Given a solution V to Equation 3.5 for

0(K(?, t*(T(Tmax such that conditions (3.1) hold, then there exists a unique,

positive, and bounded local volatility function sL such that the solution W of

Equation 3.7 yields the same prices (V5W) for given (S*, t*) in the domain

Vf6[Tmin, Tmax].

Proof. From condition (3.1) we have that V is C1,2 and hence f(S*, t*; K, T) is a

continuous function. Since VKK.0, a Taylor series argument shows that gV(S*, t*;

K/g, T)2gV(S*, t*; K, g)+(g21)KVK>0 (g>0), and we have that sL given by

sL S�, t�; K , Tð Þ2~s2
J

z
l
Ð?

0
gV S�, t�; K=g, Tð Þ{gV S�, t�; K , Tð Þz g{1ð ÞKVKð Þg gð Þdg

K2VKK

2

ð3:14Þ

is positive if s2
J > 0, and bounded. Thus a solution W to Equation 3.7 exists with sL

given by Equation 3.14. Hence W satisfies conditions (3.2), and E5W2V satisfies

Equation 3.9 in Vf6[Tmin, Tmax]. Equation 3.9 implies that if sL is given by

Equation 3.14 then f50 in Vf6[Tmin, Tmax], and so from Lemma 3.1, V5W in

Vf6[Tmin, Tmax]. Lemma 3.1 also shows that V2W50 if and only if f;0 in
Vf6[Tmin, Tmax], and thus sL given by Equation 3.14 is unique.
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Remark 3.2 (Homogeneity of V). As noted by Merton (1973), if the underlying

stock return distribution is independent of S, call/put option values are

homogeneous of degree one in S and K, e.g. if s2
J~const: and g(g) is independent

of S, then the solution to Equation 3.5 with initial condition V(S*, t*; K,

T5t*)5max(S*2K, 0) is such that

V rS�, t�; rK , Tð Þ~rV S�, t�; K , Tð Þ ð3:15Þ

Remark 3.3 (Bounded sL). Note that Proposition 3.1 requires that VKK.0. For

vanilla options with convex payoffs, the solution to Equation 3.5 is such that VKK.0

in Vf6[Tmin, Tmax]. Clearly, the usual call payoffs have VKK50 away from the strike

at T5t*, and for T.t*, VKKR0 as KR0, ?. For short-term options the

denominator of

l
Ð?

0
gV S�, t�; K=g, Tð Þ{gV S�, t�; K , Tð Þz g{1ð ÞKVKð Þg gð Þdg

K2VKK

2

ð3:16Þ

will tend to zero faster than the numerator (which is a non-local term) as KR0, ?.

Hence the local volatility will become unbounded as KminR0, and KmaxR?, TRt*.

This means that we cannot expect to solve the calibration problem over the entire

domain t*(T(Tmax, 0(K(?, but only over a subset of this domain.

Now, if we calibrate sL(S*, t*; K, T) to the prices of vanilla options for fixed (S*,

t*) at various values of (K, T), then we can re-label K5S, T5t to obtain sL(S*, t*; S,

t). However, we have only matched the prices at a fixed value of (S*, t*). There is no

guarantee that the calibrated sL found using Equation 3.4 will match the values of

exotic options derived from a jump diffusion model using Equation 3.2, especially

for path-dependent options such as cliquets. For related discussion, see Hirsa et al.

(2003) and Schoutens et al. (2004).

Lemma 3.2 (Homogeneity of sL). For vanilla options, denote the value of the

option as a function of (K, T) for fixed (S*, t*) by V(S*, t*; K, T). Also, denote the

local volatility function by sL(S*, t*; K, T). If

sJ rS�, t�; rK , Tð Þ~sJ S�, t�; K , Tð Þ

V rS�, t�; rK , Tð Þ~rV S�, t�; K, Tð Þ
ð3:17Þ

then sL(rS*, t*, rK, T)5sL(S*, t*, K, T).

Proof. This follows directly from substituting the conditions (3.17) into

Equation 3.14.

Remark 3.4 (Significance of Lemma 3.2). In particular, if sJ5const. in

Equation 3.2, then the local volatility function sL(S*, t*; S, t)5sL(rS*, t*; rS, t).

If S*5K, then sL(K, t*; S, t)5sL (K*, t*; K*(S/K), t) is ‘sticky delta’, i.e. a function

only of S/K for vanilla options.

360 H. A. Windcliff et al.
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Remark 3.5 (Jump size g concentrated near unity). Suppose that g(g),d(g21),

i.e. the jump size distribution is concentrated near g51, then

V K=gð Þ~V Kð Þz K

g
VK Kð Þ 1{gð Þz VKK Kð ÞK2

2

1{gð Þ2

g2
zO 1{gð Þ3

h i

^V Kð Þz K

g
VK Kð Þ 1{gð Þz VKK Kð ÞK2

2
1{gð Þ2

ð3:18Þ

so that
ð?

0

gV S�, t�; K=g, Tð Þ{gV S�, t�; K , Tð Þz g{1ð ÞKVKð Þg gð Þdg^
VKK K2

2

ð?
0

1{gð Þ2g gð Þdg ð3:19Þ

Substituting Equation 3.19 into Equation 3.14 gives

s2
L^s2

Jzl

ð?
0

1{gð Þ2g gð Þdg ð3:20Þ

This result is simply a formal statement of the well-known concept that small jumps

are indistinguishable from diffusion (Cont and Tankov, 2004). In this unusual

situation, we can expect that sL calibrated from vanilla prices can be used to value

exotics with little error (in this special case sL has no dependence on (S*, t*)).

Volatility Surface Based on the Analytic Expression

In order to provide a realistic volatility surface for our numerical tests, we will

assume that the synthetic market process is given by Equation 3.1, with the data in

Table 1. We define the current time t*50 in this and subsequent sections. For future

reference, this table also shows the constant Black–Scholes implied volatilities which

match the prices of at-the-money vanilla call options with maturities of T50.25 and

T55. The parameters in Table 1 are similar those reported by Andersen and

Andreasen (2000), which were obtained by calibration to S&P 500 index option data.

Table 1. Parameters for the jump diffusion model, with price process given in Equation 3.1.

The jump size distribution is given in Equation 2.3. Also shown is sBS, the constant volatility

that, if used in a Black–Scholes model with no jumps, reproduces the jump diffusion model

price of an at-the-money vanilla call with the specified maturity (T50.25, 5).

Parameter Value

S* 100
sJ .20
r .05
l .10
m 2.90
c .45
sBS, T50.25 .2359
sBS, T55.0 .3167

(3.19)
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We will construct a deterministic local volatility surface (with no jumps) which is

consistent with the observed market prices (from our synthetic market). We use the

expression for the local volatility surface given by Equation 3.14. The exact

analytical solution for European options under a Merton jump diffusion model

(Merton, 1976) is used to compute the prices and derivatives in Equation 3.14. The

non-trivial integral in Equation 3.14 was computed by converting the integral to a
convolution form and then using an FFT. We could also, of course, use the method

in Dupire (1994).

Even with an analytical solution, the local volatility becomes unbounded as

TRt*50 for K?S*, and for finite T, with KR0, ? (recall Remark 3.3). In

particular, the numerical computation becomes very ill-posed for T,one month, and

for K.1.5 S* and K,0.5 S* (the initial asset price S*5100). We set a maximum

value for the local volatility of 3.0, to avoid problems with unbounded values from

Equation 3.14.
We generate a dense grid of s(S, t) for S g [50, 150], and t g [1/12, 5.0] with S

spacing of 1.00 and t spacing of 1 month. Any other data needed is obtained by

linear interpolation, for values of (S, t) within the grid. For values outside the grid,

we use the nearest grid value.

This grid of s(S, t) values would have to be considered as a very good estimate of

the volatility surface which matches the synthetic market prices (in practice, we

would not have data for far out of the money options with short maturities). The

resulting local volatility surface is shown in Figure 1.
Table 2 shows the synthetic market prices of the vanilla calls, at various strikes and

times, compared with the prices obtained using the volatility surface shown in

Figure 1, computed using Equation 3.14. The fit is quite good, considering that the

actual surface which matches all the prices would become unbounded as TR0, and

for K&S* or K%S*. Recall that we limit the maximum value of s(3.0, and we have

used a constant surface for t(one month.

Volatility Surface Obtained by Calibration

Of course, in general we would not know the precise representation of the real world

process. A more realistic example of fitting a local volatility surface would be the

algorithm in Coleman et al. (1999). To summarize, this method uses a set of specified

knot locations, and then attempts to determine the best I2 fit to the data using a

spline interpolant.

Synthetic market prices were generated for vanilla puts and calls at strikes {70, 80,

90, 100, 110, 120, 130}, at monthly intervals from [0, 1.0] and yearly intervals from
[1.0, 5.0]. These prices were computed using the exact European prices under a

Merton jump diffusion model, with the data in Table 1. In order to avoid unbounded

values of the local volatility (i.e. Remark 3.3), as well as improve the fit to the data,

the maximum value of the local volatility was constrained to be s51.0.

The knot locations of the spline representation of the local volatility surface were

specified to be at S5{70, 100, 130} and at times t5{0.0, 0.5, 1.0, 3.0, 5.0}, giving a

total of 15 parameters. Since the number of knot locations for the spline is relatively

small, this has the effect of regularizing the surface, as described in Coleman et al.

(1999). The resulting volatility surface is shown in Figure 2.
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Table 3 shows the error between the prices computed using the surface in Figure 2

and the European call prices. Note that in this case, there is more error for T(1 and

K*5100 compared to the surface used in Table 2.

Cliquet Contracts

Contract Description

As noted earlier, cliquet options have become popular because these contracts

provide protection against downside risk while retaining significant upside potential.

This is achieved by offering a combination of floors and caps on returns on the

underlying asset.

Let S(ti) be the value of the underlying asset at observation time ti. There are a

total of Nobs observation times over the life of the contract. Define the return during

the period [ti21, ti] to be

Ri~
S tið Þ{S ti{1ð Þ

S ti{1ð Þ ð4:1Þ

The payoff of a cliquet is

Payoff~Notional|max Fg, min Cg,
XNobs

i~1

max Fl , min Cl , Rif gf g
" # ! !

ð4:2Þ

where Cl, Fl are local caps and floors placed on the individual returns, and Cg, Fg are

a global cap and floor respectively.

Figure 1. This volatility surface was obtained by using Equation 3.14 with the exact analytical
solution for a European option under a Merton jump diffusion (parameters are given in
Table 1). The plot is truncated at a maximum value of s51.0. The actual surface used had a

maximum value of s53.0.
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Note that a modification to Equation 4.2 is

Payoff~Notional|max Fg, R̂zmin 0,
XNobs

i~1

max Fl , min 0, Rif gf g
" # ! !

ð4:3Þ

where R̂ is a specified nominal return. If Fl,0, then Equation 4.3 is the payoff of a
reverse cliquet. Such contracts give the holder a higher nominal return R̂ in exchange

for bearing some downside market risk.

Since we are solving the PIDE (2.2) backwards in time from the maturity date to

the valuation date, we need to maintain additional state variables as one would in a

Table 2. Comparison of vanilla call synthetic market prices (jump diffusion model) and the

volatility surface model computed using Equation 3.14. Input parameters for the jump

diffusion model are given in Table 1. The local volatility surface is shown in Figure 1. The

computed prices are accurate to the number of digits shown.

Expiry time

K590 K5100 K5110

Vol. Surf. Synthetic Vol. Surf. Synthetic Vol. Surf. Synthetic

1/12 10.67 10.80 2.77 2.75 0.20 0.18
1/6 11.64 11.71 4.14 4.15 0.79 0.77
1/4 12.56 12.62 5.30 5.32 1.50 1.49
1/2 15.18 15.18 8.26 8.27 3.77 3.77
1 19.69 19.59 13.09 13.07 8.12 8.12
2 26.83 26.72 20.85 20.78 15.78 15.74
3 32.67 32.53 27.18 27.07 22.33 22.23
4 37.64 37.47 32.59 32.43 28.01 27.87
5 41.99 41.79 37.31 37.12 33.03 32.84

Figure 2. This volatility surface was obtained by using a least squares fit (Coleman et al., 1999) to
the exact European call and put prices (under a Merton jump diffusion). The Merton model

parameters are given in Table 1. The actual surface used had a maximum value of s51.0.
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dynamic programming context. There are two obvious approaches that we now

discuss and compare.

Formulation

Running sum formulation. In this case, we introduce two new state variables: P,

corresponding to the asset price at the previous observation, and Z which is defined

below. The value of the option is then given by V5V(S, t; P, Z). Assume that

tk,t,tk+1. Let

Z tkvtvtkz1ð Þ~
Xk

i~1

max Fl , min Cl , Rið Þð Þ ð4:4Þ

where Z(t,t1);0. Consequently, the payoff (4.2) at t5T becomes

Payoff~Notional|max Fg, min Cg, Z
� 	� 	

ð4:5Þ

Similarly, let P(tk,t,tk+1)5S(tk) denote the value of the asset at the most recent

observation. If t{k , tzk are the times the instant before and after the kth observation,

then, following Wilmott (1998), no-arbitrage considerations lead to the following

jump conditions:

R~
S{P{

P{

R�~max Fl , min Cl , Rð Þð Þ

Zz~Z{zR�

Pz~S

V S, t{; P{, Z{ð Þ~V S, tz; Pz, Zzð Þ

ð4:6Þ

where Pz~P tzk
� 	

, P{~P t{k
� 	

, Zz~Z tzk
� 	

, and Z{~Z t{k
� 	

.

Table 3. Comparison of vanilla call synthetic market prices (jump diffusion model) and the

calibrated volatility surface model (using a low order spline fit (Coleman et al., 1999)). Input

parameters for the jump diffusion model are given in Table 1. The calibrated local volatility

surface is shown in Figure 2. The computed prices are accurate to the number of digits shown.

Expiry time

K590 K5100 K5110

Vol. Surf. Synthetic Vol. Surf. Synthetic Vol. Surf. Synthetic

1/12 10.81 10.80 3.01 2.75 0.21 0.18
1/6 11.91 11.71 4.43 4.15 0.82 0.77
1/4 12.92 12.62 5.60 5.32 1.55 1.49
1/2 15.49 15.18 8.45 8.27 3.78 3.77
1 19.69 19.59 13.11 13.07 8.04 8.12
2 26.82 26.72 20.89 20.78 15.81 15.74
3 32.64 32.53 27.21 27.07 22.34 22.23
4 37.57 37.47 32.57 32.43 27.96 27.87
5 41.91 41.79 37.28 37.12 32.94 32.84
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Average formulation. It was demonstrated by Zvan et al. (1999) that the use of the

arithmetic average for the additional state variable was superior to a running sum

formulation in terms of numerical performance for Asian options. Consequently, we

will also investigate an alternative formulation which uses average (capped and

floored) returns. Again the value of the option is given by V5V(S, t; P, Z) where P is

the previous asset price as defined in the running sum context. However, in this case

the state variable Z is defined as

Zavg tkvtvtkz1ð Þ~ 1

k

Xk

i~1

max Fl , min Cl , Rið Þð Þ ð4:7Þ

where Zavg(t,t1);0. In this case payoff (4.2) becomes

Payoff~Notional|max Fg, min Cg, Nobs|Zavg

� 	� 	
ð4:8Þ

When using the average formulation the jump conditions are given by

R~
S{P{

P{

R�~max Fl , min Cl , Rð Þð Þ

Zz
avg~Z{

avgz
R�{Z{

avg

� �

k

Pz~S

V S, t{; P{, Z{
avg

� �
~V S, tz; Pz, Zz

avg

� �

ð4:9Þ

An advantage of the average formulation is that the possible range of values

of Z5Zavg is limited to min(0, Fl)(Z(Cl, independent of Nobs. In the case of

the running sum formulation, the Z values are bounded by min(0,

Nobs6Fl)(Z(Nobs6Cl, so that the grid is dependent on the number of

observations. Notice that we are interested in the solution V(S*, t50; P5S*,

Z50), where S* is the current value of the underlying asset. As we solve backwards

in time, the solution for some of the large Z values cannot affect the solution at

V(S*, t50; P5S*, Z50) in the running sum formulation. Consequently, some of the

nodes in the Z-direction are wasted unless the grid is dynamically reconstructed after

each observation.

Numerical Solution

Discretization

Note that the PIDE (2.2) is independent of the new state variables (P, Z).

Consequently, we can discretize the state variables as

P1, . . . , Pj, . . . , Pjmax


 �
and Z1, . . . , Zk, . . . , Zkmax
f g

For each discrete value of (Pj, Zk), we can solve the one dimensional PIDE (2.2) at
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times between the observation dates. To move the solution across an observation

date, we use the jump conditions (4.6) or (4.9). Notice that the jump conditions (4.6)

and (4.9) are undefined if P50. Therefore, it is important to discretize P so that

P1.0. Note that for geometric Brownian motion with lognormally distributed

jumps, a stock price of S50 is unattainable in finite time.

For fixed (Pj, Zk), each one-dimensional PDE (2.2) is a function of (S, t) only. Our

numerical experiments utilize Crank–Nicolson timestepping with the modification

suggested by Rannacher (1984). Other details of the discretization can be found in

Pooley et al. (2003). In particular, we employ the iterative method described in that

paper for the nonlinear uncertain volatility models. In situations where a jump

diffusion model was used, the discrete algebraic equations are solved using a fixed

point iteration combined with an FFT evaluation of the integral term in the PIDE

(2.2). This is described in detail in d’Halluin et al. (2005, 2004). The tolerances for all

iterative methods (within each timestep) were set to guarantee that the error in the

solution of the discretized equations did not affect the first six significant digits of the

solution.

Similarity Reduction

As discussed by Forsyth et al. (2002), it is generally necessary to carry out an

interpolation operation to approximate the jump conditions at observation dates.

Denote the possible dependence of s on P in Equation 2.2 by s5s(S, t; P) (dropping

possible dependence on A). This interpolation can be avoided if we assume that

s S, t; Pð Þ~s rS, t; rPð Þ ð5:1Þ

If Equation 5.1 holds, the payoff is given by either (4.5) or (4.8), and the jump

conditions are given by either (4.6) or (4.9), then from Equation 2.2 we have that V is

homogeneous of degree zero in (S, P):

V S, t; P, Zð Þ~V rS, t; rP, Zð Þ ð5:2Þ

Setting r5P*/P gives

V S, t; P, Zð Þ~V
S

P
|P�, t; P�, Z

� �
ð5:3Þ

which implies that we need only solve for one reference value P5P*. This effectively

reduces the dimensionality of the problem from three to two. As long as the node

S5P* is in the S grid, no interpolation is required (in the S direction) to satisfy the

jump conditions (4.6) or (4.9). In the following, we will refer to assumption (5.1),

which then implies Equation 5.3, as the similarity reduction.

The assumption (5.1) seems somewhat peculiar, but has a modelling rationale

which we will discuss in a later section.

Mesh Construction

With regard to the mesh for the Z variable, there are no particularly noteworthy

issues. We simply use a uniformly spaced grid. However, some issues arise in the
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construction of the P grid (for cases where no similarity reduction is avilable).

Suppose that we use an S grid with Sg~ S1, . . . , Si, . . . , Simax
f g and a P grid,

Pg~ P1, . . . , Pj, . . . , Pjmax


 �
, with Pg~Sg (i.e. a Cartesian product S6P grid, with

the same node spacing in the S and P directions). In this case, no interpolation in the

S or P directions is required during the application of the state variable updating rule

Pz~S ð5:4Þ

A illustration of a set of grids constructed in this fashion is shown in Figure 3. We

refer to this grid as a repeated grid in the following. We emphasize that a major

advantage of a repeated grid, for pricing cliquet options, is that no interpolation

error is introduced in the (S, P) plane at each observation date.

In Windcliff et al. (2001), it is shown that this type of grid results in poor

convergence for shout options. Normally, we choose a fine node spacing near the

initial asset price S5S*, since this is the region of most interest. However, since the

nodes P5S for all values of S are required during the application of the jump

condition (5.4), these values may have poor accuracy in areas where the S node

spacing is large. It is therefore desirable to have a fine node spacing in the S direction

for all nodes near the diagonal of the (S, P) grid.

Suppose we have a prototype S grid constructed with a fine node spacing near

S5S*. Denote this set of nodes by Sg~ S1, . . . , Si, . . . , Simax
f g. We also assume that

the grid has been constructed so that the point S* is contained in the discretization.

In other words, there is an index i* such that Si*5S* and Si�[Sg. Let

Sj
g~ S

j
1 . . . :, S

j
i , . . . , S

j
imax

n o
represent the S nodes corresponding to the discrete

value Pj. The following algorithm is used to construct Sj
g, with Pj[Sg:

Figure 3. Repeated grid, constructed using the same asset price S grid for each discrete setting
of the variable P (the asset price at the preceding observation time).
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Scaled Grid Construction

Set Pj~Sj; j~1, . . . , imax; Sj[Sg

Set jmax~imax

For j~1, . . . , jmax

S
j
i~SiPj

�
S� i~1, . . . , imax

EndFor

ð5:5Þ

Since there is an i* such that Si*5S*, S
j
i�~Pj . In other words, for each line of

constant Pj, there is a node on the diagonal S
j
i~Pj, as depicted in Figure 4.

Interpolation

If Sj
g is constructed using Algorithm (5.5), then interpolation is required to satisfy the

state variable updating rule (5.4). An obvious method is to linearly interpolate along

the S axis and then along the P axis, which we refer to as xy interpolation in the
following. If we omit the dependence of V on the variables Z and t for brevity, then

xy interpolation is defined as

V S, Pð Þ~V S Plowð Þz
V S Phigh

� 	
{VS Plowð Þ

Phigh{Plow

P{Plowð Þ

V S Pð Þ~V Slow, Pð Þz
V Shigh, P
� 	

{V Slow, Pð Þ
Shigh{Slow

S{Slowð Þ

SlowƒSƒShigh

PlowƒPƒPhigh

ð5:6Þ

Figure 4. Scaled grid, constructed using algorithm (5.5).
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In Windcliff et al. (2001) it is argued that diagonal interpolation (along the

diagonal of the grid shown in Figure 4) is more suited to capturing the non-smooth

payoff of a shout option. Diagonal interpolation is defined as

V S, P~Sð Þ~V S~Plow, Plowð Þz
V Phigh, Phigh

� 	
{V Plow, Plowð Þ

Phigh{Plow

S{Plowð Þ

PlowƒSƒPhigh

ð5:7Þ

Unlike xy interpolation, this method is exact if a similarity reduction is valid. These

two approaches (xy and diagonal) are illustrated in Figure 5.

Boundary Conditions

As previously discussed, away from observation dates, we need to solve a set of one

dimensional PIDEs of the form (2.2) for each discrete value of (P, Z). Consequently,

boundary conditions must be specified. Normally, a finite computational domain

[Smin, Smax] is specified for a one-dimensional Black–Scholes equation. Usually, Smax

is selected to be a large value, and the boundary condition VSS50 is specified at

S5Smax as suggested by a variety of authors, including Tavella and Randall (2000)

and Wilmott (1998). The reason for this is that many contracts (including cliquets)

are asymptotically linear as SR?. For a discussion of the stability issues

surrounding this boundary condition, see Windcliff et al. (2004). In the following,

we will specify VSS50 at S5Smax.

Since the PDE degenerates to an ODE at S50, which is easily implemented

numerically, usually Smin50. However, as noted in Section 5.1, the return

Ri5(S(ti)2S(ti21))/S(ti21) becomes undefined when S(ti21)5P50. Since the jump

conditions require that P+5S, having a node at S50 causes difficulty. Consequently,

we should view the solution to the cliquet valuation problem as being embedded in

the computational domain Smin((S, P)(Smax, with Smin.0, and Smax,?. We seek

the solution in the limit as SminR0 and SmaxR?. From the nature of the cliquet

payoff, it is reasonable to impose the boundary condition VSS50 at S5Smin as well.

Under normal market parameters, setting VSS50 at the lower boundary results in a

Figure 5. Different interpolation strategies.
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first-order hyperbolic equation with outgoing characteristic, which contrasts with the

more delicate situation studied in Windcliff et al. (2004) at S5Smax. In our numerical

tests, we will select a value of Smin on a coarse grid, and then reduce Smin as the grid

is refined, so as to ensure the correct limiting behaviour.

Effect of Finite Computational Domain on the Jump Conditions

If the scaled one-dimensional grids are constructed as shown in Figure 4, then there

will be situations where S
j
i > Pjmax

or S
j
ivPjmin

. In these cases, our computational

domain does not have sufficient data to allow interpolation of the state variable

updating rule P+5S. If this happens, we assume that this data can be approximated

by assuming that the similarity reduction (5.3) is locally valid. From Equation 5.3,

this means that

V S
j
i , t; P~S

j
i , Z

� �
^V Pjmax

, t; Pjmax
, Z

� 	
; S

j
iwPjmax

^V Pjmin
, t; Pjmin

, Z
� 	

; S
j
ivPjmin

ð5:8Þ

We will refer to (5.8) as a similarity extrapolant. In situations where there is a

similarity reduction, this extrapolation scheme is exact. Using a local volatility

surface would invalidate the use of the similarity reduction. However, typically the

volatility function is assumed to be constant outside of some range of asset values

near the current asset price. Consider the boundary for large asset values. Since the

state variable updating rules only query values of S near S~Pjmax
, the effect of far-

field errors introduced by the approximation of constant volatility can be made

arbitrarily small, as demonstrated by Kangro and Nicolaides (2000).

Properties of the Discrete Equations

Suppose we solve a full three-dimensional cliquet problem, with variables (S, P, Z).

Consider the special case where a similarity reduction (Section 5.2) is valid. In this

case, it seems natural to require that our grid construction/discretization method is

discretely homogeneous of degree zero in (S, P), and that there should be no

interpolation error incurred in the (S, P) plane after applying the jump conditions. A

grid construction/discretization method satisfying these properties should also be

useful when solving problems where a similarity reduction is not valid.

Let

Un
ijk~U S

j
i , Pj, Zk, tn

� �
ð5:9Þ

be the discrete solution to the cliquet pricing problem. Note that we have allowed the

grid Sj
g to depend on Pj. Let Un

jk be the vector of discrete solution values for grid Sj
g,

i.e.

Un
jk

� �
i
~Un

ijk ð5:10Þ
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Since Equation (2.2) contains no derivatives w.r.t. (P, Z), then, given Un
ij , we can

solve for Unz1
ij for each (jk) independently. If a fully implicit (h51) or Crank–

Nicolson (h51/2) timestepping method is used, and Equation 2.2 is discretized as in

d’Halluin et al. (2005, 2004), then we have that

IzhMj

� 	
Unz1

jk ~ I{ 1{hð ÞMj

� 	
Un

jk ð5:11Þ

where Mj~M S
j
i

n o
, Pj

� �
is the matrix form of the discretization operator (for a

given grid Sj
g). Note that since Equation 2.2 is independent of Z, then Mj has no k

dependence.

We first gather some conditions which are required for a similarity reduction

(Section 5.2) to be valid.

Conditions 5.1 (Conditions for a similarity reduction). The following conditions

are required in order to use the similarity reduction method described in Section 5.2.

N The payoff of the cliquet is homogeneous of degree zero in (S, P), i.e. for any

scalar r.0

V rS, rP, Z, t~0ð Þ~V S, P, Z, t~0ð Þ ð5:12Þ

N The discrete form of the PIDE operator (2.2) is homogeneous of degree zero in (S,

P), i.e. for any scalar r.0

M rS
j
i

n o
, rPj

� �
~M S

j
i

n o
, Pj

� �
ð5:13Þ

N The jump conditions are given as in (4.6) and (4.9).

Remark 5.1 (Homogeneity property of the discrete operator). Property (5.13)

holds if either s5const. in Equation 2.2, or s satisfies condition (5.1); and, in

addition, boundary conditions VSS50 are imposed at S5Smin, Smax, and the

discretization method in d’Halluin et al. (2005, 2004) is used.

We also gather some conditions on the grid construction, discretization and jump

condition enforcement that we wish to impose.

Conditions 5.2 (Grid construction/discretization properties). We assume that the

grid is constructed with the following conditions

N The mesh is constructed using the scaled grids as described in Algorithm 5.5.

N Diagonal interpolation (5.7) is used where required to enforce the jump

conditions. The similarity extrapolant (5.8) is used if missing data is required.

N The boundary condition VSS50 is imposed for each grid at S~S
j
min, S~Sj

max.

We can now state an interesting property of grid construction and discretization

methods which satisfy Conditions 5.2.
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Property 5.1 (Grid construction/discretization property). Provided that the

similarity reduction conditions 5.1 are satisfied, and the grid is constructed

satisfying Conditions 5.2 then

Un
ijk~Un

ij�k; Vi, j, k, n ð5:14Þ

where j* denotes the index such that Pj*5S*. Equation 5.14 then implies that

U rS
j
i , rPj , Zk, tn

� �
~U S

j
i , Pj, Zk, tn

� �

r~
Pl

Pj

ð5:15Þ

which can be interpreted as a discrete homogeneity property. In addition, there is no

interpolation error introduced in the (S, P) planes upon applying jump conditions

(4.6) or (4.9).

Proof. Suppose that the scaled grid for S
j
i is constructed as in Algorithm 5.5.

Since the payoff is homogeneous of degree zero in (S, P) (condition (5.12)), then at

timestep n50, we have

U0
ijk~U S

j
i , Pj , Zk, t~0

� �

~U
Pj

S�
Si,

PjS
�

S�
, Zk, t~0

� �

~U Si, S�, Zk, t~0ð Þ

~U0
ij�k

ð5:16Þ

Suppose that at timestep n, we have that

Un
ijk~Un

ij�k ð5:17Þ

From condition (5.13) we have that

Mj~M
Pj

S�
Si


 �
,

PjS
�

S�

� �

~M Sif g, S�ð Þ

~Mj�

ð5:18Þ

It then follows from Equation 5.11, using Equations 5.17 and (5.18) that

Unz1
jk ~ IzhMj

� 	{1
I{ 1{hð ÞMj

� 	
Un

jk

~ IzhMj�
� 	{1

I{ I{hð ÞMj�
� 	

Un
j�k

~Unz1
j�k

ð5:19Þ

Consequently, since U0
jk~U0

j�k, then Un
jk~Un

j�k for all steps between applications of

the jump conditions.
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Let Unz1
jk

� �{

~ Unz1
j�k

� �{

be the discrete solution the instant before application of

the jump conditions (going backwards in time), and Unz1
jk

� �z

be the solution the

instant after application of the jump conditions (backwards in time). If the jump

conditions (4.6) or (4.9) are specified, and if diagonal interpolation (5.7) is used,

along with the similarity extrapolant (5.8), then it is easy to see that

Unz1
jk

� �z

~ Unz1
j�k

� �z

ð5:20Þ

hence properties (5.14) and (5.15) hold after application of the jump conditions.

Note that the jump conditions (4.6) or (4.9) require evaluation of (noting

Equation (5.15))

U S
j
i , S

j
i , Z, tnz1

� �{

~U S�, S�, Z, tnz1
� 	{ ð5:21Þ

hence from Equation (5.7), there is no interpolation error in the (S, P) plane with

diagonal interpolation.

Remark 5.2 (Significance of Property 5.1). If the Conditions 5.1 for a similarity

reduction are rigorously satisfied, and the grid is constructed satisfying conditions

5.2, then the solution vector is discretely homogeneous of degree zero in (S, P), as in

Equation 5.15. Furthermore, application of the jump conditions does not generate

any interpolation error in the (S, P) plane. In this case, we need only solve for a

single value of P5S* in each (S, P) plane, i.e. there is no need to solve a full three-

dimensional problem. However, in cases where the similarity reduction is not valid,

we expect that a grid satisfying Conditions 5.2 will still be desirable. For example, if

s5s(S, t), then in general a similarity reduction cannot be used. However, any

interpolation error introduced by the diagonal interpolant (on the grid satisfying

Conditions 5.2) will be a result of deviations from a constant volatility, which we

expect to be small in regions where the local volatility function is smooth.

Numerical Tests: Methods

Comparison of Running Sum and Average Formulations

As a first test we compare the convergence of the running sum and average

formulations as the grid size is refined and number of timesteps is increased. Details

of the contract used in these tests are provided in Table 4. Note that the contract is

the same as that studied in Wilmott (2002). For these tests we use a constant

volatility model without jumps. Input parameters are presented Table 5.

The results of the convergence tests are shown in Table 6. Since sJ5const., we can

use the similarity reduction to reduce this to a two-dimensional PDE. A series of

tests was carried out where at each refinement level new nodes were inserted between

each pair of nodes in the coarser grid, a new node was added between 0 and Smin

from the previous grid, and the timestep size was reduced by a factor of two.

Contrary to the results found by Zvan et al. (1999) for Asian options, the running

sum formulation seems to be converging faster than the average formulation. In all

subsequent tests, we will use the running sum formulation.
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Note that we use second-order methods to discretize each one-dimensional PIDE

as described in d’Halluin et al. (2005, 2004). The jump conditions are also imposed

using linear interpolation in the Z direction, which would also have quadratic error

for smooth solutions (assuming a finite number of observations). However,

application of the jump conditions (4.9) results in a non-smoothness of the solution

in the Z direction, due to the local caps and floors. This non-smoothness can be

expected to cause the convergence rate to be somewhat erratic. We can see in Table 6

that the ratio of changes departs somewhat from the ideal asymptotic value of four

which would be observed for exact quadratic convergence.

Effect of Grid and Interpolation

Using the local volatility surface shown in Figure 1, obtained using Equation 3.14,

and the contract outlined in Table 4, a series of convergence tests was carried out.

These are shown in Table 7. In this case no similarity reduction is possible since the

volatility surface is a general function of S and t and does not satisfy Equation (5.1).

As before, a series of refined grids was constructed where on each refinement the

timestep size was halved, new nodes were inserted between each coarse grid node,

and a new node was inserted in the S grid in (0, Smin).

The results in Table 7 indicate that using a Cartesian product grid (Repeated Grid)

that uses the same node spacing in the (S, P) directions results in very poor

convergence even though there is no interpolation error in the (S, P) directions when

applying the jump conditions. Clearly, the use of the scaled grid/discretization

method satisfying Conditions 5.2 is very effective. Hence, we will use these methods

in the following.

Table 4. Cliquet contract details.

Parameter Value

Observation times 1.0, 2.0, 3.0, 4.0, 5.0
T 5.0
Notional 1.0
Cl 0.08
Fl 0.0
Cg ?
Fg 0.16

Table 5. Parameters for the constant volatility case without jumps.

Parameter Value

S* 100
sJ 0.20
r 0.03
l 0.0
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Effect of Boundary at S5Smax

Table 8 shows the effect of choosing different values of Smax. The results were

obtained using the volatility surface in Figure 1, with grids/discretization satisfying

Conditions 5.2. The initial coarse grid with 35635613 nodes used Sj
max~18|Pj.

The initial grid with 31631613 nodes used Sj
max~4|Pj. As we can see, there is no

effect on the solution (to six figures) of imposing the boundary condition VSS50 at

Table 6. Value of a cliquet option using the running sum and average formulations. Contract

details are provided in Table 4. Parameters are given in Table 5. Nodes refers to the number of

nodes in the S and Z directions respectively. A similarity reduction is used, so no grid is needed

in the P direction. At each refinement level, new nodes are inserted between each pair of grid

nodes on the coarser grid, a new node is added between S50 and the first coarser grid node,

and the timestep size is halved. Change refers to the change in numerical value from one level

of refinement to the next. Ratio refers to the ratio of changes between successive refinements.

An asymptotic ratio of four indicates quadratic convergence.

Nodes Timesteps Value Change Ratio

Running sum formulation

31613 40 0.174467312
62625 80 0.174230223 .00023709
124649 160 0.174099404 .00013082 1.8
248697 320 0.174066778 .00003262 4.0
4966193 640 0.174060717 .00000606 5.4

Average formulation

31613 40 0.174807390
62625 80 0.174368430 .00043896
124649 160 0.174207223 .00016121 2.7
248697 320 0.174110595 .00009663 1.7
4966193 640 0.174089486 .00002111 4.6

Table 7. Value of a cliquet option with a volatility surface (Figure 1 and Equation (3.14)).

Contract details are provided in Table 4. Nodes refers to the number of nodes in the S, P, and

Z directions respectively. Scaled grids refers to the S-grid construction method (5.5), shown in

Figure 4, and satisfying Conditions 5.2. Diagonal interpolation refers to interpolation method

(5.7), shown in Figure 5(b), whereas xy interpolation refers to the interpolation method (5.6),

shown in Figure 5(a). Repeated grid refers to a Cartesian product grid with the same node

spacing in the S and P directions (Figure 3).

Nodes Timesteps

Scaled grids
(diagonal

interpolation)
Scaled grids

(xy interpolation) Repeated grid

35635613 40 0.167847 0.169728 0.148230
70670625 80 0.167229 0.167837 0.159672
1406140649 160 0.167046 0.167211 0.164720
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these values of Smax. Note that this is because we use both scaled grids (as shown in

Figure 4), and the similarity extrapolant (5.8) where necessary to impose jump

conditions. In the following, we use Sj
max~18|Pj .

Numerical Tests: Modelling Assumptions

Volatility Surface Based on Analytic Expression

There is increasing evidence that jump processes provide reasonable explanations of

volatility smiles and skews. If the real stock price process is a jump diffusion, then

the common approach of fitting a volatility surface to vanilla option prices can, as

we will demonstrate, result in a significant error when pricing exotic options such as

cliquet contracts. However, as we shall see, it is standard practice in industry to use

various methods to correct for these deficiencies. These corrections do appear to

reduce the pricing errors dramatically, but only near S5S*, the initial asset price.

We assume that the synthetic market dynamics are given by the parameters in

Table 1 and the contract details are contained in Table 4. We use the local volatility

surface constructed using Equation (3.14), as described in Section 3.2. The surface is

shown in Figure 1.

The resulting value of a cliquet option is given in Table 9. At each refinement level,

new nodes are inserted between each two coarse grid nodes, and the timestep is

halved. As we increase the refinement level, the solution will converge to the correct

value. The column ‘Vol. Surf.’ of this table provides corresponding results if we value

this same option without using a jump diffusion model but instead using a volatility

surface which was fit to our synthetic vanilla market data (arising from a jump

model). Note that these values are quite different from the correct values, at least in

our synthetic market. This is also illustrated in Figure 6.

Figure 6 compares the true synthetic market price (t*50) compared with the local

volatility approach. This figure shows the value of V(S, P5S*, Z50, t50). Note that

the minimum value of this contract, independent of the underlying model and initial

asset price, is about 0.1246, so that the error, relative to this minimum value, is quite

large near the current price S*5100.

However, practitioners are well aware of the problems with using a calibrated

local volatility surface to price exotics. If we calibrate a local volatility surface at

Table 8. Value of a cliquet option with a volatility surface (Figure 1 and Equation (3.14)).

Contract details are provided in Table 4. Nodes refers to the number of nodes in the S, P, and

Z directions respectively. Scaled grids refers to the S-grid construction method (5.5), shown in

Figure 4. Diagonal interpolation refers to interpolation method (5.7), shown in Figure 5(b).

The base grid 35635613 used Sj
max~18|Pj . The reduced base grid 31631613 used

Sj
max~4|Pj.

Nodes Timesteps Scaled Grids Nodes Timesteps Scaled Grids

35635613 40 .167847 31631613 40 .167847
70670625 80 .167229 62662625 40 .167229
1406140649 160 .167046 1246124625 160 .167046
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t5t* with S*5P, and subsequently assume that Equation (5.1) holds, then a

modelling decision has been made to assume that the volatility surface is a function

of S/P. We can think of this as assuming that the observed volatility skew will always

be ‘centred’ in some sense around the current asset level. This can be justified on the

basis of Lemma 3.2 in Section 3. If we calibrate a local volatility model (assuming

process (3.3)) to prices generated where the process actually follows (3.1), then in the

case of sJ5const., Lemma 3.2 states

Table 9. Value of a cliquet option under jump diffusion with constant volatility (parameters

are given in Table 1) and various other volatility models. The volatility surface is computed

using the method described in Section 3.2, using Equation (3.14), and shown in Figure 1.

Contract details are provided in Table 4. Volatility surface shown in Figure 1, computed using

Equation (3.14). Vol. surf. refers to a volatility surface model with no jumps. Vol. surf. sim.

red. refers to the assumption of Equation (5.1), and no jumps. Vol. surf. sim. red. Rebased t

refers to assumption (7.5), and no jumps. Const. vol. models have no jumps (values of s are

provided in Table 1). At each refinement level, new nodes are inserted between each coarse

grid node, and the timestep is halved.

Refinement
level

Jump
diffusion

const. vol.
Vol. surf.

(Fig. 1)
Vol. surf.
sim. red.

Vol. surf.
sim. red.

Rebased t
Const. vol.
s50.2359

Const. Vol.
s50.3167

0 0.177303 0.167847 0.170017 0.178142 0.163874 0.160253
1 0.177515 0.167229 0.169491 0.177942 0.163415 0.159533
2 0.177540 0.167046 0.169358 0.177909 0.163259 0.159339

Figure 6. Cliquet option value. Comparison of jump diffusion model with constant volatility
(parameters are given in Table 1) with a volatility surface (Figure 1). The surface is computed

using the method described in Section 3.2.
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sL rS�, t�; rS, tð Þ~sL S�, t�; S, tð Þ ð7:1Þ

where sL is the local volatility, determined by calibration as described in Section 3. If

we let S*5P in Equation (7.1), then

sL rP, t�; rS, tð Þ~sL P, t�; S, tð Þ

~sL S�, t�;
S

P
|S�, t

� � ð7:2Þ

Therefore, if s(S, t; P)5sL(P, t*; S, t), then Equation (5.1) holds.

Another common assumption made by practitioners is to rebase the time for the

evaluation of the volatility surface in order to fix the forward starting volatility skew

dynamics. To explain, if we calibrate the surface initially at time t*, then we will

typically observe a heavy skew in the implied volatilities of short dated options

maturing near t*. For longer dated options, expiring at ti&t*, the volatility surface is

much flatter. When hedging cliquet positions, we may want to take static positions in

market traded options at observation dates in order to reduce model risk. If we re-

calibrate the volatility surface at time ti, usually we will find that the new surface now

has a heavy skew for options maturing close to ti, which are now short dated options.

If tk21(t(tk, where tk are observation dates, then it can be postulated that

s S, t; Pð Þ~sL P, tk{1; S, t{tk{1ð Þ ð7:3Þ

In our case since sJ5const., then

sL P, tk{1; S, t{tk{1ð Þ~sL P, t�; S, t{tk{1ð Þ ð7:4Þ

Combining assumptions (5.1), (7.1), and (7.4) together gives

s S, t; Pð Þ~s rS, t; rPð Þ

~sL rP, t�; rS, t{tk{1ð Þ

~sL S�, t�;
S

P
|S�, t{tk{1

� � ð7:5Þ

where sL is the volatility surface calibrated to prices at tk21, and we have assumed

that the calibration is carried out at stock price S*5P at time tk21. Again, these

modelling assumptions are often used by practitioners to mitigate the skew of the

volatility surface and its flattening out, as one looks farther ahead in time.

Values for the cliquet option under assumption (7.1) or (7.5) are also given in

Table 9 (columns headed ‘Vol. surf. sim. red.’ and ‘Vol. surf. sim. red. Rebased t’). In

the latter case, the agreement between the volatility surface and the true synthetic

market price is excellent. Note that either of the assumptions (7.1) or (7.5) allow us

to use the similarity reduction method described in Section 5.2.

Finally, we also value this cliquet contract using constant volatility models (no

jumps). The resulting values are poor approximations (see Table 9). The volatility

values are obtained by calibration to a single at-the-money call (priced in our

synthetic jump diffusion market) at two different maturities.
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Although Table 9 suggests that the common practitioner adjustments to

compensate for the deficiencies of a calibrated local volatility surface perform very

well, this is a bit misleading. Figure 7 gives a plot of a comparison of the synthetic

market price, and the prices which result from the local volatility with the additional

assumptions (7.1) and (7.5). We can see that, under the similarity reduction, rebased

time approximation (assumption (7.5)), the price agreement is only good near S5S*,

and deviates substantially as we move away from S*5100.

This problem can be seen more clearly by plotting the option delta. Figure 8 shows

the option delta for the case of the jump diffusion model and the volatility surface

model constructed using Equation (3.14), and shown in Figure 1. We use the

similarity reduction and rebased time assumption (7.5). Even though the values for

the cliquet option are comparable close to S*5100 (see Figure 7), the deltas are

significantly different.3

Volatility Surface Obtained by Calibration

In Table 10, we show the cliquet prices computed using the surface in Figure 2. We

remind the reader that this surface was computed using the method in Section 3.3,

which calibrates to vanilla prices using a least squares fit to a spline representation of

the surface (Coleman et al., 1999).

Once again we see that the fitted local volatility surface cliquet prices are

considerably in error, compared to the exact synthetic market price. However, the

use of the rebased time and forced homogenization of the volatility surface (as in

Equation (7.5)) considerably reduces the error. The error is, naturally, not as small as

is obtained using the expression (3.14), as shown in Table 9.

Figure 7. Cliquet option value. Comparison of the jump diffusion model with constant
volatility (parameters are given in Table 1) and the volatility surface approximation. Left
panel: volatility surface with a similarity reduction (Equations (7.1)). Right panel: volatility
surface with a similarity reduction, rebased time (Equations (7.1) and (7.5)). The volatility

surface is computed using the method described in Section 3.2, using Equation (3.14). The
surface is shown in Figure 1.
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Figure 9 verifies that the use of the calibrated local volatility model (Figure 2), with

the additional assumptions (7.1) and (7.5), yields good agreement with the synthetic

market price near S5S*, but poor agreement elsewhere.

Uncertain Volatility

As pointed out by Wilmott (2002), valuing cliquets with extreme values of constant

volatility does not really capture the risk of mis-specification of volatility. Wilmott
suggests using an uncertain volatility model to quantify the effect of volatility risk.

Table 11 provides the best-worst case prices of a cliquet option in an uncertain

volatility model, where smin and smax are taken from Table 1. Table 11 reveals a large

spread between the two cases.

Figure 10(a) shows the jump diffusion price and the best-worst case uncertain

volatility prices. Surprisingly, the uncertain volatility best case value is quite close to

the jump diffusion value, but we suspect that this is will not be true in general. Note

that the best case price is not always above the jump diffusion price. This is because

the best case price is guaranteed to be above the constant volatility price only for

pure diffusion models. This is illustrated in Figure 10(b).

Reverse Cliquet Example

As a final example, we consider a reverse cliquet, with the payoff given by
Equation (4.3). The contract details are given in Table 12.

Figure 8. Cliquet option delta. Comparison of jump diffusion model with constant volatility
(parameters are given in Table 1) with a calibrated volatility surface with a similarity reduction
(Equations (7.1) and (7.5)). The volatility surface is computed with the method described in

Section 3.2, and using Equation (3.14). The surface is shown in Figure 1.
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Figure 11 compares the jump diffusion results for the reverse cliquet, and the

volatility surfaces shown in Figure 1 and Figure 2, with the similarity reduction and

rebased time modifications (7.5). As with the regular cliquet, there is good agreement

between the synthetic market price and the local volatility model, as long as S,S*.

However, there are significant differences in the shape of the two curves. This

indicates that the deltas computed with the volatility surface will be quite different

from the deltas computed with the jump diffusion model.

Table 10. Value of a cliquet option under jump diffusion with constant volatility (parameters

are given in Table 1) and various other volatility models. The volatility surface was computed

using a spline fit to the European prices (Coleman et al., 1999), as described in Section 3.3. The

surface is shown in Figure 2. Contract details are provided in Table 4. Vol. surf. refers to a

volatility surface model with no jumps. Vol. surf. sim. red. refers to the assumption of

Equation (5.1), and no jumps. Vol. surf. sim. red. rebased t refers to assumption (7.5), and no

jumps. Const. vol. models have no jumps (values of s are provided in Table 1). At each

refinement level, new nodes are inserted between each coarse grid node, and the timestep is

halved. Compare with Table 9.

Refinement
level

Jump diffusion
const. vol.

Vol. surf.
(Fig. 2) Vol. surf. sim. red.

Vol. surf. sim. red.
rebased t

0 0.177303 0.169180 0.172563 0.181226
1 0.177515 0.168433 0.171966 0.180802
2 0.177540 0.168193 0.171866 0.180569

Figure 9. Cliquet option value. Comparison of jump diffusion model with constant volatility
(parameters are given in Table 1). The volatility surface is computed using the spline fit
procedure described in Coleman et al. (1999). Left panel: pure volatility surface. Right panel:
volatility surface with a similarity reduction, rebased time (Equations (7.1) and (7.5)).
Compare with Figure 7. Note that the local volatility in this case was obtained using the

method in Section 3.3, and the surface is given in Figure 2.
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Conclusions

Recent turmoil in financial markets has heightened investor awareness of the effect

of volatility on portfolios. Cliquet options have become popular insurance against

market volatility for large pension plans as well as retail investors. It is therefore of

interest to have effective techniques for valuing and hedging these instruments.

The discretely observed cliquet valuation problem reduces to solving a set of one-

dimensional PDEs embedded in a two- or three-dimensional space. These one-

dimensional problems exchange information through jump conditions at each

sampling date. With respect to numerical issues, our main results are:

N Unlike the case for discretely observed Asian options, the running sum

formulation seems superior to the running average return formulation.

N The type of grid used and interpolation method employed for enforcement of the

jump conditions at observation dates has a very large impact on the convergence

of the solution. In particular, we recommend using a special scaling method for

Table 11. Value of a cliquet option using an uncertain volatility model (no jumps) with

r50.05, smin50.2359, and smax50.3167. Contract details are provided in Table 4. At each

refinement level, new nodes are inserted between each coarse grid node, and the timestep is

halved.

Refinement level Worst case long Best case long

0 0.150548 0.175657
1 0.149929 0.175183
2 0.149745 0.175049

Figure 10. Uncertain volatility examples.
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constructing each one-dimensional grid, coupled with diagonal interpolation, and

an extrapolation method for determining missing data at the extremes of the grid.

From a practical point of view, we also observe that cliquet options are sensitive to

the volatility model assumed. If constant volatilities are used, the value of the cliquet

option is insensitive to an extreme range of volatilities. On the other hand, if an

uncertain volatility model is used, there is a large spread between best and worst case

values.

Recently, jump diffusion models have been touted as better models of market

dynamics than the commonly used volatility surface model. If we assume a synthetic

market which is driven by a jump diffusion process, and then calibrate a volatility

surface model (no jumps) to vanilla option prices generated in the synthetic market,

there is a large discrepancy between the value obtained for a cliquet option using the

Table 12. Reverse cliquet contract details.

Parameter Value

S* 100
Observation times 1.0, 2.0, 3.0, 4.0, 5.0
T 5.0
Notional 1

R̂ 0.50

Fl 20.15
Fg 0.10

Figure 11. Reverse cliquet option value (S*5100, t50). Comparison of jump diffusion model
with constant volatility (parameters are given in Table 1), with a volatility surface, similarity
reduction model, rebased time, as in Equation (7.5). Contract details are provided in Table 12.
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calibrated volatility surface compared to the true value found using the jump

diffusion model.

The limitations of volatility surfaces for modelling forward start type options are

well known. Practitioners attempt to correct for these problems by

N forcing the local volatility function to homogeneous of degree zero in current

price and price at last reset; and

N rolling the local volatility surface forward, i.e. using only the small time part of

the surface, to avoid the flattening of the skew.

If the usual local volatility is modified by these two corrections, the price of the

cliquet at the initial asset price is in very close agreement with the synthetic market

price. However, if we move away from the initial asset price, the agreement

deteriorates. The deltas from the corrected local volatility approach are quite

different from the synthetic market deltas.

This result suggests that use of calibrated volatility surface models for cliquet

options should be viewed with suspicion. If the corrected local volatility function is

used, the prices are reasonably accurate, but only at a single point. An uncertain

volatility model, as suggested in Wilmott (2002), which generates a large spread

between best and worst cases, at least signals to the hedger the real volatility risk

involved in writing these options.

Notes

This work was supported by the Natural Sciences and Engineering Research Council of Canada, RBC

Financial Group, and a subcontract with Cornell University, Theory & Simulation Science & Engineering

Center, under contract 39221 from TG Information Network Co. Ltd.
1 See Selling pessimism, The Economist, 8 March 2003, for related discussion.
2 Note that this was suggested by Wilmott (2002), who observed that the volatility risk for cliquet options

is typically underestimated.
3 Note that in the context of a jump diffusion model, the hedging portfolio should include additional

options to minimize the jump risk (Andersen and Andreasen, 2000).
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