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ABSTRACT Reducing the number of factors in a model by reducing the rank of a correlation
matrix is a problem that often arises in finance, for instance in pricing interest rate derivatives
with Libor market models. A simple iterative algorithm for correlation rank reduction is
introduced, the eigenvalue zeroing by iteration, EZI, algorithm. Its convergence is investigated
and extension presented with particular optimality properties. The performance of EZI is
compared with those of other common methods. Different data sets are considered including
empirical data from the interest rate market, different possible market cases and criteria, and a
calibration case. The EZI algorithm is extremely fast even in computationally complex
situations, and achieves a very high level of precision. From these results, the EZI algorithm for
financial application has superior performance to the main methods in current use.

KEY WORDS: Correlation matrix, rank reduction, market models

Introduction

The value of financial derivatives often depends on more than one underlying market

variable. Hence models for pricing and hedging can involve many state variables,

each modelled as a stochastic process. When explicit solutions for derivatives prices

are not available, numerical methods are used, for instance Monte Carlo simulation.

Numerical methods become computationally burdensome when a high number of

independent stochastic driving factors are used. For instance in market models for

the term structure of interest rates there may be as many state variables as relevant

forward Libor rates, perhaps more than thirty or forty. Hence the serious problem
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arises of reducing the number of independent factors to a number small enough for

the numerical method to cope with.

When the interdependency among the instantaneous stochastic shocks driving the

different variables is Gaussian, with some correlation matrix r, then reducing the

number of independent stochastic factors is equivalent to reducing the rank of the

correlation matrix. This is the case for Libor Market Models.

The problem of reducing the rank of an exogenous correlation matrix in financial

modelling is the focus of this work. Rebonato and Jäckel (2000) investigate a related

problem, discussing the use of an eigenvalue zeroing method (EZN) and a method

based on an angles parameterization (OAP). Brigo (2002) extended their work,

specifically examining the same problem as this paper. Zhang and Wu (2003) use

Lagrange multiplier techniques, and Grubisic and Pietersz (2003) use geometric

optimization.

We introduce an iterative algorithm for correlation rank reduction called

eigenvalue zeroing by iteration (EZI). This algorithm is intuitive and simple to

implement. Empirical results demonstrate the superiority in application of our

algorithm over the two alternative methods commonly used in finance. It is much

more accurate than EZN, achieving an accuracy comparable to the high precision

OAP method in a fraction of the time. This allows one to increase remarkably

computational speed in relevant financial applications, such as the calibration of

multi-factor models.

In the second section the role of correlation in multi-dimensional financial models

is discussed. In the third section we formally state the correlation rank reduction

problem, present some properties of correlation matrixes, and describe two existing

methods for solving the correlation rank reduction problem. In the fourth section we

introduce and describe the EZI algorithm. We analyse convergence and discuss the

optimality issue, relating the algorithm to alternating projections and introducing an

extension with particular optimality properties. In the fifth section we give empirical

results for EZI on various data sets including financial data from the interest rate

market, making a precise comparison of its performance with the two methods

common in finance. In the sixth section the methods are applied to a case of

calibration of a Libor Market Model, showing how they affect computational

efficiency and the quality of results. The final section concludes.

Correlation in Multivariate Financial Models

We present below a common use of correlation rank reduction in finance, with

reference to multidimensional models as used in pricing applications or in risk

management. In particular we consider, as the main example, a Libor Market Model

for pricing interest rate derivatives. Consider a multivariate model involving M state

variables Fk(t), k51, 2, … M, where the vector F(t)5(F1(t), … FM(t))9 has the

dynamics

dF tð Þ~Y F , tð ÞdtzCiU tð ÞdY tð Þ, i~1, 2 ð1Þ

where, for r(M, Y(t) is a standard r-dimensional uncorrelated Wiener process under
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a measure Q, Y(F, t) is an M61 vector, U(t) is an M6r matrix function of time only,

and C i is an M6M diagonal matrix with C15IM, the identity matrix, and

C25diag(F(t)).

When i51 the diffusion part is modelled as an arithmetic Brownian Motion with

time-varying diffusion coefficient. When i52 the diffusion part is modelled as a

geometric Brownian motion with time-varying covariance term U(t).

If F(t) is a vector of discretely-compound forward rates and i52, then for a

suitable Y(F, t) we have a Libor Market Model.

In (1) U(t) represents the covariance structure, describing explicitly the functional

relationship between individual shocks. If (1) is used as a starting point to simulate F,

the number r of independent stochastic factors heavily affects the computational

burden, so that r is often chosen to be much smaller than M, the number of state

variables.

Parameters in the functional form for U(t) can be found by calibration, minimizing

some loss function representing the distance between model and market prices.

However, in practice the most liquid products, such as caps and swaptions in the

interest rate market, may bear imprecise or little, if any, information about an

implied correlation matrix r. This leads to calibrated correlations often irregular,

unreliable and not significant. Therefore often in the market volatility and

correlation components are separated. Correlation may be computed exogenously,

for instance estimated via econometric analysis of historical market data as in

Rebonato (2002), and volatilities are instead the main parameters used to calibrate to

current market prices.

In this context one can represent the model dynamics as

dF tð Þ~Y F , tð ÞdtzCiS tð ÞdZ tð Þ, i~1, 2 ð2Þ

where Z(t) is a standard M-dimensional Wiener process under Q with instantaneous

correlation matrix r, and S(t)5diag{si(t)}i51, …, M is a matrix of volatilities.

For (1) and (2) to be equivalent one needs

U tð ÞU tð Þ’~S tð ÞrS tð Þ ð3Þ

which implies rank(r)5r, the desired number of independent stochastic factors.

In general an exogenously given correlation matrix r is a full M-rank matrix. We

need to replace r with a matrix r̂r approximating r such that rank r̂rð Þ~r.

If the model being considered is a Libor Market Model, the correlation r
represents the instantaneous forward rates correlation. M is the number of forward

rates required by the financial products being priced and hedged, while r is the

number of factors that the trader wishes to use in the numerical implementation of

the model. r is usually much lower than M, since a low r enhances the speed of

computation. Also empirical testing shows that a lower factor model can efficiently

account for the prices of most derivatives. The matrix r can typically be obtained via

an econometric analysis of fixed income time series, while S(t) is fixed to match

market prices of reference products, usually caps or swaptions.

Having introduced the correlation rank reduction problem in financial modelling,

we present some facts about correlation matrixes and describe two common existing

solution methods.
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Correlation Rank Reduction

Define the following sets

S~ Y[¡M|M Y~Y 0j
� �

P~ Y[¡M|M x0Yx§0, x[¡M
��� �

D~ Y[¡M|M yij~0, i=j
��� �

U~ Y[¡M|M yiiƒ1, i~1, . . . , Mj
� �

Ux~ Y[¡M|M yii~x, i~1, . . . , Mj
� �

S is the set of M6M symmetric matrixes, P the set of M6M positive semidefinite

matrixes, D the set of diagonal matrixes, and U1 the set of M6M matrixes with unit

diagonal. S and U0 are vector subspaces and P is a cone. Ux is an affine space. S, P,

and U1 are closed and convex.

A correlation matrix r is characterized by three properties: (1) symmetry; (2)

positive semidefiniteness; (3) unit diagonal. These three properties imply, via

Cauchy–Schwartz inequality, also the following property: (4) normalized entries,

namely |rij|(1. Thus the set C of M6M correlation matrixes is

C~S\P\U1

which is closed and convex.

We define Br to be the set of all M6M matrixes of rank r

Br~ Y[¡M|M rank Yð Þ~rj
� �

and Kr to be the set of all M6M matrixes of rank less than or equal to r

Kr~ Y[¡M|M rank Yð Þƒrj
� �

Kr is not convex. However, it is always closed, unlike Br.

The problem of correlation rank reduction can be formally stated as follows.

Given a correlation matrix r g C, the problem is to find a matrix r̂r[C\Kr such that

r̂r~ arg min
Y[C\Kr

Y{rk kf g ð4Þ

where :k k is some chosen metric.

Notice that the problem of correlation rank reduction in financial practice often

aims at minimizing over C>Br rather than C>Kr. However, if Y is constrained to

belong to C>Br the problem may have no solution. We discuss this issue in a later

section.

Following Rebonato and Jäckel (2000) and Brigo (2002) we consider first the

metric

SE~ A{Bk k2
~
XM

i, j~1

Aij{Bij

�� ��2 ð5Þ
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induced by the Frobenius norm, used extensively in approximation and financial

literature. Later we consider also robustness of the results when using different

metrics.

In a market application context there are additional issues to consider in solving

(4).

First, in practical applications accuracy must be traded off against computation

time. In particular, in financial applications computational efficiency is extremely

important, while accuracy is often not crucial since the correlation matrix to be

approximated is a parametric form or an historical estimation, not obtained only

from current prices. The broad structure of the correlation matrix is often the

important aspect. In fact, the volatility matrix S(t) is used to match current market

prices, rather than the correlation matrix.

Secondly, in numerical methods for finance one exploits r̂r~JJ 0, and the

characteristics of J can affect computation, for instance in calibration (an example

is given later).

We briefly present some results that will be used later in our discussion of

correlation rank reduction methods.

The angles parameterization of a correlation matrix. (Rebonato and Jäckel, 2000).

A parametric form for A g C>Kr of rank r is

A~BB0

where B5{bi, k}i51, …, M, k51, …, r is an M6r matrix whose ith row is given by

bi, 1~cos hi, 1

bi, k~sin hi, 1 . . . sin hi, k{1 cos hi, k, 1vkvr

bi, r~sin hi, 1 . . . sin hi, r{1

ð6Þ

Set h5{hi, k}i51, …, M, k51, …, r. We write A(h) for the angles parameterization of A.

Spectral decomposition of a correlation matrix. r g C is symmetric positive

semidefinite so it admits M linearly independent eigenvectors forming an

orthonormal basis with corresponding eigenvalues l1>l2>…>lM>0. Let

D5diag{li}i51, …, M and form the eigenvectors into a matrix X so that

rX~XD

and r5XDX215XDX9. We can write D5LL9, where L5L9 is diagonal and Lii~
ffiffiffiffi
li

p
,

leading to

r~XLL0X 0~ XLð Þ XLð Þ’ ð7Þ

We have the following theorem for symmetric matrixes.

Theorem 1. (Optimal rank reduction) Let A g S>Kk be of rank k>r and let l1,

l2, …, lk with |l1|>|l2|>…>|lk|, be its non-zero eigenvalues. Consider the
spectral decomposition A5XDX9 where D5diag(l1, …, lk, 0, …, 0). Then for any
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matrix B g Kr

B{Ak k2
~
XM

i, j~1

Bij{Aij

� �2
§l2

rz1z � � �zl2
k

and equality is attained when

B~X eDDX 0, with eDD~diag l1, . . . , lr, 0, . . . , 0ð Þ

(See Harville, 1999).

Rank Reduction Methods

Descriptions of two techniques for correlation rank reduction are given by Brigo

(2002) and Rebonato and Jäckel (2000).1 We now present these techniques.

Eigenvalue zeroing with normalization (EZN). EZN is based on the spectral

decomposition (7) of a symmetric positive semidefinite matrix, r5(XL) (XL)9. Let eLL
be the matrix obtained by setting to zero the M2r last entries of L, corresponding to

the smallest M2r eigenvalues of r. Set Lr5S>P>U>Kr and define

f1 : C?Lr ð8Þ

f1 : r.err~ X eLL
� �

X eLL
� �’

ð9Þ

f1(r) is symmetric and its eigenvalues are non-negative so it is positive semidefinite,

but the diagonal values err of are not necessarily equal to 1. Since

rii~
XM

j~1

X 2
ij lj~1, i~1, . . . , M

setting to zero the M2r smallest eigenvalues implies

0ƒerrii~
Xr

j~1

X 2
ij ljƒ1, i~1, . . . , M

so from the Cauchy–Schwartz inequality we have property 4, but property 3, namely

unit diagonal, can be lost.

Brigo (2002) and Rebonato and Jäckel (2000) propose a rescaling. Set B~X eLL and

write Bi for the ith row2 of B. Set r̂r~ r̂rij

� �
i, j~1, ..., M

to be

r̂rij~
errijffiffiffiffiffiffiffiffiffiffi
erriierrjj

q ~
BB0ð Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BB0ð Þii BB0ð Þjj
q ~

Biffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bi Bið Þ’

q

0

B@

1

CA
Bj

� �’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bj Bj

� �’
q

0

B@

1

CA ð10Þ

This defines a map S:T : S\P\Kr?C. SerrT~r̂r is the EZN r-rank correlation

matrix. <?> is well defined only if errii > 0 for all i.

EZN appears to be a method commonly used by practitioners. As we will see later,
it is very fast but also inaccurate.

314 M. Morini and N. Webber
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Optimization of the angles parameterization (OAP). The OAP method exploits the

angles parameterization of a correlation matrix. The problem (4) is reduced to the

unconstrained optimization

r̂r~ arg min
h

r{A hð Þk k

where A(h) is the angles parameterization of A. The result r̂r of this optimization is

the OAP reduced rank correlation matrix.

The OAP method is much more accurate than EZN, as will be shown in empirical

tests. However, it relies on a complex optimization which can be very slow, in

particular when M and r are large.

The Eigenvalue Zeroing by Iteration Algorithm, EZI

The OAP method requires the use of general optimization techniques to solve

problem (4). The only specific structure it imposes is the use of angles

parameterization. On the other hand, EZN has a strong theoretical justification,

based on Theorem 1; setting to zero the M2r smallest eigenvalues is always the

optimal procedure to reduce the rank of a symmetric matrix.3 Since correlation

matrices are symmetric, it induces the map f1 for reducing the rank of a correlation

matrix r. err~f1 rð Þ is the optimal matrix satisfying properties 1, 2 and 4 but err is not

guaranteed to be in C.

The second step (10) in the EZN algorithm modifies err to obtain unit diagonal, but

the resulting matrix is no longer optimal.

It is easy to see that when A g S>P with aii(1, i51, …, M, then for any

B g S>P with bii51, i51, …, M, the quantity B{Ak k2 is minimized when B5A+H

where

H~diag 1{a11, 1{a22, . . . , 1{aMMð Þ

Hence we can define a map

f2 : S\P\U?C

f2 : err.r~errzdiag 1{err11, . . . , 1{errMMð Þ

We also denote by f2 the induced map f2:Lr5S>P>U>KrRC. f2 yields the

correlation matrix r closest to err, but there is now no guarantee that f2 errð Þ[Kr.

This suggests the possibility of iterating the two maps f1 and f2. Successive

application of the map g~f10f2: CRC may give an improvement in accuracy

compared to EZN while, unlike OAP, exploiting the efficiency of the eigenvalues

zeroing procedure.

We formally state the algorithm. We start from an M6M correlation matrix r
with eigenvalues l1, l2, …, lM, whose rank is to be reduced to r.

Algorithm 2. Eigenvalue zeroing by iteration (EZI)

1. Set the iteration number s51, rs5r and as50.

2. Reduce the rank: Set errs~f1 rsð Þ and as~ rs{errsk k

Reduce the Rank of a Correlation Matrix 315

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
1
2
:
4
6
 
1
 
O
c
t
o
b
e
r
 
2
0
0
9



3. If a stopping condition is true, stop. Return r̂r~SerrsT where SerrsT is defined

by (10).

4. Recover a unit diagonal: Set rsz1~f2 errsð Þ. Set s5s+1 and go to step (2).

There are two stopping conditions.

1. For a tolerance level e1, stop when errs{SerrsTk kve1.

2. Stop when |as2as21|,e2.

In the first case SerrsT is surely a viable correlation of the required rank, and it is not

distinguishable from errs to the tolerance e1.

In the second case the algorithm can proceed no further, and convergence to

r̂r[C\Kr has not been achieved.

We now investigate convergence of the algorithm and identify structures in rs that

can prevent the algorithm from converging to a rank-reduced correlation matrix.

Convergence

We analyse the convergence of the sequence as~ rs{errsk k. We use s-superscripts to

denote matrices at the sth iteration, so that rs5XsDsXs9 for instance.

Let D
s
~diag 0, . . . , 0, ls

rz1, . . . ls
M

� �
[D and define

Zs~X sD
s
X s’~

XM

j~rz1

ls
j X sð Þj X sð Þj ’~rs{errs

Ds~diag 1{errs
ii

� �
~diag

XM

j~rz1

ls
j X s

ij

� �2

( )

~diag Zs
ii

� �
~rsz1{errs

By Theorem 1, rsz1{errsz1
		 		ƒ rsz1{errs

		 		, so Zsz1
		 		ƒ Dsk k and

0ƒ Zsz1
		 		ƒ Dsk kƒ Zsk k ð11Þ

so the sequence as~ rs{errsk k~ Zsk k converges uniformly to a>0.

If Zsz1
		 		~ Zsk k for some s then Dsk k~ Zsk k so Zs5Ds is diagonal and

Ztk k~ Zsk k for all t>s. Conversely if Zs5Ds is diagonal for some s then Ztk k~ Zsk k
for all t>s.

Since aƒ Dsk kƒ Zsk k we have Zsk k2
{ Dsk k2

~ Zs{Dsk k2?0, that is, the non-

diagonal elements of Zs go to zero. Since Ds
ii§0 for all i we conclude DsRD‘ g D

and ZsRD‘ g D also. Note that as+1,as if and only if Zs D.

Since rs+12rs5Ds2Zs we have rsz1{rs
		 		?0, achieving the limit if Zs5Ds for

some s. Similarly, errsz1{errs~Ds{Zsz1 and errsz1{errs
		 		?0.

We also have rsz1{errs
		 		~ Dsk kƒ Zsk k~ rs{errsk k and

Zs{Dsk k2
z Zsz1
		 		2

~ Zsk k2
{ Dsk k2

z Zsz1
		 		2

:

If asR0 then there exists r?~Serr?T[C\Kr such that rsRr‘. The EZI algorithm

converges to a matrix r‘, which is a correlation matrix of the required rank r.

316 M. Morini and N. Webber
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If Zsk k~0 for some s we have convergence to zero so SerrsT~errs~rs~r? and the

algorithm has converged to a correlation matrix of the desired rank. If 0?Zs g D for

some s then a~ Zsk k and the algorithm stops. If 0=Zs D is never diagonal then we

have seen that Zs converges to a diagonal matrix D‘ and stopping rule 2 will apply.

EZI can allow a remarkable improvement in accuracy compared to EZN (as we

see in the empirical tests of the fifth section). This is true even if as 0. EZI returns

SerrsT for some s>1. EZN returns Serr1T. Since rs{errsk kƒ rs{1{errs{1
		 		 EZI returns a

matrix rescaled from one at least as close to a correlation matrix as that returned by

EZN.

Eigenvector Structure

Suppose that for some s, 0?Zs g D so that a~ Zsk k=0. We investigate implications

for the structure of eigenvectors of Xs and of rs.

Since

Zs~X sD
s
X s’~X sD

s
X sð Þ{1 ð12Þ

the matrixes Zs and D
s

are similar and have the same set of eigenvalues. Thus if

0?Zs g D then Zs and D
s

have the same elements, possibly in a different order.

Furthermore (12) implies

Zs X sð Þi~D
s

ii X sð Þi, i~1, . . . , M ð13Þ

where (Xs)i is the ith column of Xs.

Let 5{1, 2, …, M} and define

aZ~ j[ Zs
jj~0

���
n o

ð14Þ

aD~ i[ D
s

ii~0
���

n o
ð15Þ

to be the set of all indices for Zs and D
s

corresponding to null diagonal elements. aZ

and aD have the same number of elements. Write aZ~ \aZ and aD~ \aD for the

set of indices not in aZ or aD respectively.

From (13),

Zs X sð Þi~ 0, i[aD

D
s

ii X sð Þi, Ds

ii > 0, i aD

(

This implies the following complementarity conditions:

1aD ið Þ1aZ jð Þz1
aD

ið Þ1aZ jð Þ

 �

X s
ij~0 ð16Þ

where 1A(i) is the indicator function for i belonging to the set A. We conclude that

when 0?Zs g D, the columns (Xs)i are divided in two sets: those with index in aD

have zeros in every position not in aZ, while those with indexes not in aD have zeros

in every position in aZ.
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The structure of rs. We analyse now the structure of rs when 0?Zs g D. Recall that

rs
i, j~ X s

ffiffiffiffiffi
Ds
p� �

i
X s

ffiffiffiffiffi
Ds
p� �’

j

and the rows (and its columns) of Xs form an orthonormal set. From (16)

1aZ ið Þ1aZ jð Þz1aZ ið Þ1aZ jð Þ

 �

rs
ij~0

Furthermore, when i, j[aZ,

rs
ij~

XM

k~1

ls
kX s

ikX s
jk~

X

k aD

ls
kX s

ikX s
jk~Zs

ij

So when Zs g D, if i?j and one of i or j is in aZ, then rs
ij~0. We have

rs
i ~ rsð Þi
� �’

~ei, i[aZ ð17Þ

where ei5(0, …, 0, 1, 0, …, 0) with the 1 in the ith position.

Definition 3. For an M6M correlation matrix r g C, if there exists w=H(M

such that i g H)ri5ei, then we say that r has block elementary structure for indices

i g H, and for each index i g H, r has an uncorrelated factor.

We have shown that Zs diagonal and non-null always implies a block elementary

structure with uncorrelated factors for all i[aZ. We now determine conditions for an

uncorrelated factor to have index in aZ.

Given a matrix A with block elementary structure, there exists a permutation

matrix Q such that QAQ9 is block-diagonal. QAQ9 is the Gantmacher Normal Form

(GNF) of matrix A (De Giuli and Magnani, 1998).

The spectral properties of a matrix are invariant when moving to its GNF, since

QAQ9 is similar to A. l is an eigenvalue of A if and only if l is an eigenvalue of one of

the diagonal blocks in the GNF of A. If rs has block elementary structure the

diagonal block represented by a diagonal value rs
ii associated with an uncorrelated

factor has a unit eigenvalue. Consequently for 0?Zs g D if i[aZ then the associated

eigenvector l51 is one of the M2r smallest eigenvalues.

Definition 4. When there exist uncorrelated factors in a block elementary

structure that belong to the set of M2r smallest eigenvalues we call this a relevant

block elementary structure (RBE structure) and call these uncorrelated factors

relevant uncorrelated factors.4

We have shown that

0=Zs[D[rs has REB structure ð18Þ

A stronger statement is possible. Suppose rs has x relevant uncorrelated factors.

When 0=Zs[D, x~ aZ
�� ��. From the definition of aZ, these are the only non-zero

eigenvalues in the set of the M2r smallest eigenvalues. Therefore
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rank rsð Þ~rzx

with r eigenvalues >1.

Definition 5. When a correlation matrix with x relevant uncorrelated factors has

rank r+x, we say that it has fixed RBE (FRBE) structure.

So

0=Zs[D[rs has FRBE structure ð19Þ

It follows from the discussion below that matrixes with FRBE structure are fixed

points of the EZI algorithm. When x50, a matrix with FRBE structure is already in

C>Kr.

RBE structure and convergence. We have seen that if rs{errsk k?a~ Zsk k for some s

then rs has RBE structure for some s. We now investigate the converse.

Suppose rs has RBE structure with x5|H| relevant uncorrelated factors for indices

i[H( . Let Q be the permutation matrix moving rows with indices in H to the first

x positions. Then QrsQ95QXsDsXs9Q9 is block diagonal,

QrsQ0~
I 0

0 rs
SE

� 

where rs
SE is (M2x)6(M2x). Set to zero the M2r smallest eigenvalues. These

include the unit eigenvalues in the top left block. We find again a block diagonal

matrix, where the top left block is null,

QerrsQ0~QX seDDsX s’Q0~
0 0

0 errs
SE

� 

where errs
SE is (M2x)6(M2x). Then Q0QX seDDsX s’Q0Q~X seDDsX s’~errs has

errs
i ~ errsð Þi
� �’

~0, i[H

Correct the diagonal to recovery a correlation matrix rs+1. Then

rsz1
i ~ rsz1

� �i
� �’

~ei, i[H

Since in EZI the r biggest eigenvalues never decrease in size,5 if a unit eigenvalue

belongs to the set of the M2r smallest eigenvalues at iteration s, then it belongs to

this set for any t>s so rs and errs will always differ by 1s in the ith diagonal values,

i g H. Hence

rs{errsk k§x 0 as s??

and we conclude

Proposition 6. If rs has RBE structure then asRa.0.
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This implies that if the initial matrix r has RBE structure, the EZI algorithm does

not ultimately converge to a correlation matrix of rank r. Instead, stopping rule 2

will apply at some point.

We have identified a set of correlation matrixes r for which the EZI algorithm will

not converge to a rank-r correlation matrix. Even so, EZI will always improve on the

initial correlation matrix r, unless r already has FRBE structure.

An extreme case is when r5I, the identity matrix. In this case there is no

correlation at all among the underlying variables. Here the problem of reducing

model dimension via reducing the rank of the correlation matrix is not determined.

Note that if r has RBE structure, then the map <?> (10) is undefined for err (since

some denominators would be zero). Thus neither in EZN nor in EZI can it be used.

If asRa?0 and a= Zsk k for any s, we know that Zs converges to a diagonal matrix

D‘. The analysis above goes through ‘module e’.

When a matrix r has RBE structure, a different approach can be considered.

Assume rii is a diagonal block in the GNF affected by rank reduction. Blocks like

this, together with adjacent null blocks, can be cut out from r. The other eigenvalues

of such a matrix are not affected by this operation and the matrix consisting of the

remaining blocks is still a correlation matrix. Its rank can be reduced and then the rii

block can be re-inserted in the resulting matrix. The re-insertion will increase the

rank, but no other eigenvalues will be altered.

In the next section we show how EZI relates to the theory of alternating

projections and to approximation algorithms in the literature, and present an

extension of the EZI algorithm with OAP optimality properties.

EZI and Alternating Projections

Kr is always closed, unlike Br. In the previous section we mentioned the fact that the

correlation rank reduction problem in financial practice is often ill-posed, by

requiring a minimization over C>Br rather than over C>Kr. See Chu, Funderlich

and Plemmons (2003) for a discussion of similar issues in a general context. In

the financial literature usually C>Kr is considered, as in (4). An advantage of the

algorithm EZI is that it can automatically solve also the problem with the

minimization over C>Br when this is possible.

The EZI algorithm can be formulated as an alternating projections scheme.

Suppose H is a Hilbert space and suppose Tk(H, k~1, . . . , K are subsets of H. A

map Pk:HRTk is an orthogonal projection if P2
k~Pk and <a2Pk(h), h2Pk(h)>50

for all a g Tk, h g H. The point Pk(h) g Tk is the point in Tk closest to h g H. Let

T~
TK

k~1 Tk and suppose T?w, and let PT be the orthogonal projection onto T.

Von Neumann (1950) showed that if the Tk are closed subspaces of H then for

h g H

lim
n??

PKPK{1 . . .P1ð Þn hð Þ{PT hð Þk k~0 ð20Þ

so that the limit of alternating projections onto each Tk converges to the projection

onto T. The same results applies when the Tk are affine sets6 rather than subspaces.

This theory has been extended to sets Tk which are closed and convex. For closed

and convex sets the optimal algorithm involves a correction to the projections. It
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reduces to the Von Neumann case when the Tk are closed subspaces or affine sets.

See Boyle and Dykstra (1985).

Maps in EZI are orthogonal projections. f1 is an orthogonal projection into

Lr5S>P>U>Kr and f2 is an orthogonal projection into C so EZI consists of

alternating projections.7 In addition the projection f1 into Lr coincides both with

projection into Kr and into Br.

However we have seen that the correlation rank reduction problem presents some

anomalies, so that the precise result (20) on optimality does not extend to this case.

In the following we first investigate the magnitude of such anomalies, and then we

present an algorithm for exploiting EZI efficiency together with the optimality

properties of different methods. In order to investigate the magnitude of the

anomalies in the sets relevant to correlation rank reduction, we see now some results

for matrixes in Lr.

For Y g¡M6M write li(Y) for its ith largest eigenvalue.

Theorem 7. (See Schott, 1996) Let A g S and B g P. Then for i51, …, M, we

have

li AzBð Þ§li Að Þ:

When both A, B g S>D then li(A+B)>max (li(A), li(B))>0.

EZI starts from r. The rank reduction step does not affect the r highest

eigenvalues, and Theorem 7 can be applied to the map f2, so for any rank reduced

matrix errs~f1 rsð Þ generated by EZI we have li errsð Þ§li rð Þ, i~1, . . . , r.

Define the set Lr
r as

Lr
r ~ Y[Lrjli Yð Þ§ 1

2
li rð Þ, i~1, . . . , r

� �

(The reason for the factor 1
2

will become clear shortly.) Then f1 is the projection

Pr
r : C?Lr

r giving the closest matrix in Lr
r to matrixes in C.

We can investigate the distance of Lr
r from convexity. Suppose A, B[Lr

r . From

Theorem 7, for all 0(a(1, i51, …, r,

li aAz 1{að ÞBð Þ§max ali Að Þ, 1{að Þli Bð Þð Þ

§max ali rð Þ, 1{að Þli rð Þð Þ

§

1

2
li rð Þ

Since for any Y g Lr,U we have
PM

i~1 li Yð Þ~tr Yð ÞƒM, it follows that for

0(a(1,

XM

i~1

li aAz 1{að ÞBð ÞƒM

XM

i~rz1

li aAz 1{að ÞBð ÞƒM{
Xr

i~1

li aAz 1{að ÞBð ÞƒM{
Xr

i~1

1

2
li rð Þ
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We define the distance of a matrix X from Lr
r as X , Lr

r

		 		~ min
Y[L

r
r

X{Yk k2. Since the

minimum is achieved for a matrix Y which is also the minimum in Kr,

aAz 1{að ÞB, Lr
r

		 		ƒ M{
Xr

i~1

1

2
li rð Þ

 !2

This bound is related to the anomaly of the rank reduction problem in the setting of

alternating projections, namely to the distance from convexity of the set Lr
r . It

depends on the spectral properties of the initial matrix r, on M and on r. The bound

is larger when the eigenvalues of r are of similar magnitude and when M2r is high.

It is narrower when (1) some eigenvalues dominate the others; or when (2) M2r is

smaller.

The first case occurs when the correlation matrix has a pronounced factor

structure, as is the situation for many financial examples, such as term structure

data. The next section shows that the EZI algorithm performs very well, in terms of

both accuracy and speed, on this kind of financial matrix. This is particularly

noticeable when the second case also applies, namely when M2r is smaller.

Remark. The above analysis suggests that it may be relevant to incorporate the

projection correction given by Dykstra (1983) and Boyle and Dykstra (1985) for

closed and convex sets. But a natural implementation of this correction into the EZI

algorithm fails since it may lead to diagonal values greater than unity for errs and f2

may not project onto C. These problems were confirmed by empirical tests.

The structure of the EZI algorithm and the anomalies of the sets involved closely

recall the composite property mapping algorithm of Cadzow (1988), and the

extension for Toeplitz structures of Chu, Funderlich and Plemmons (2003). These

alternating projection algorithms for non-convex sets have been successfully applied

in signal and image enhancement, speech encoding and filter design. We will see, in

our tests in the next section, that also in finance they allow a remarkable advantage

in efficiency compared to traditional methods.

Although empirical testing shows that the accuracy of these methods is very high,

one may desire to recover some optimality properties typical of general optimisation

methods, for example of OAP which involves the use of a general optimisation

method. A similar issue is considered in Chu, Funderlich and Plemmons (2003).

They use an alternating projection algorithm in order to render a general

optimization method, with desired properties, more tractable and efficient in

dimension reduction problems.

In our context a natural implementation is the algorithm below, that in the

following we call the EZI+ algorithm.

Algorithm 8.

1. With r15r, apply the EZI algorithm until a stopping condition, such as

f1 rsð Þ{Sf1 rsð ÞTk kve1, is true

2. Set h05A21 (<f1(rs)>)
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3. Starting from h0, solve

r̂r~ arg min
h

r{A hð Þk k

The solution r̂r satisfies the optimality properties typical of OAP, however the

algorithm exploits the high efficiency and accuracy of EZI. We will see in the

next section that this algorithm allows us to replicate OAP results with noticeable

improvement in efficiency, although not with the same speed as EZI alone.

Numerical Results on Financial Data

We give numerical results to compare the performance of EZI with that of EZN and

OAP. Four test matrixes are used including parametric forms and market

correlations. Our test matrixes represent features commonly found in money market

applications, for instance. We describe the test matrixes and then present numerical

results.

Example: r1. This matrix is used by Rebonato and Jäckel (2000) in a risk

management example:

r1~

1 0:9 0:7

0:9 1 0:4

0:7 0:4 1

0

B@

1

CA

r1 is not a correlation matrix,8 since it has a negative eigenvalue. However the

negative eigenvalue is also the smallest one in absolute value, so setting it to zero one

simultaneously recovers a viable correlation matrix and reduces the rank. Hence

EZI, OAP and EZN can be applied as usual.

Example: r2. The test matrix is a full rank 10610 matrix r25{r2, ij}i, j51, …, 10

with parametric form

r2, ij~0:5z 1{0:5ð Þexp {0:05 i{jj jð Þ ð21Þ

This form was introduced for forward Libor rates in Rebonato (1999). Brigo (2002)

uses r2 to give comparisons between EZN and OAP. Eigenvalues of r2 are given in

Table 1 which also shows the cumulative percentage variation accounted for by the

leading eigenvalues.

Example: r3. This 10610 matrix r35{r3, ij}i, j51, …, 10 is given by the modified

parametric form

r3, ij~exp { i{jj jð Þ ð22Þ

also used by Brigo (2002). As |i2j| increases there is a sharp decrease in correlations.

Eigenvalues of r3 are given in Table 1.

Reduce the Rank of a Correlation Matrix 323

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
1
2
:
4
6
 
1
 
O
c
t
o
b
e
r
 
2
0
0
9



Example: r4. The final test matrix r4 is a 19619 correlation matrix for annual

discretely compounded forward rates, given in Table 2. The matrix is estimated from

market quoted Euro data during the period from 1 February 2001 to 1 February

2002. The eigenvalues of r4 are given in Table 1. Reducing the rank of matrixes such

as these is an essential step in calibrating Libor Market Models of interest rates. For

example, r4 is the correlation matrix used in the calibration to market swaption data

of 1 February 2002, shown in the following section.

Table 1. Eigenvalues for test matrices

Example r2 Example r3 Example r4

Eig. %Cum. Eig. %Cum. Eig. %Cum. Eig. %Cum.

1 9.271 92.7 2.04 20.4 11.7 61.6 11 0.20 96.2
2 0.421 96.9 1.74 37.8 2.15 72.9 12 0.17 97.1
3 0.127 98.2 1.39 51.7 1.18 79.1 13 0.16 97.9
4 0.059 98.8 1.10 62.7 0.72 82.9 14 0.15 98.7
5 0.036 99.1 0.88 71.5 0.64 86.2 15 0.09 99.2
6 0.025 99.4 0.72 78.8 0.43 88.5 16 0.06 99.5
7 0.019 99.6 0.62 84.9 0.39 90.5 17 0.05 99.7
8 0.016 99.7 0.54 90.3 0.34 92.3 18 0.03 99.9
9 0.014 99.9 0.50 95.3 0.28 93.8 19 0.02 100
10 0.013 100 0.47 100 0.25 95.1

Table 2. Market forward rate correlation matrix
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Comparison of Results

The EZN, OAP and EZI methods were implemented in Matlab and run on a 1

Ghz Pentium III PC. First we aim at assessing the performance of each algorithm

in terms of accuracy, with slight restraints on computational effort. EZN is not

an iterative algorithm thus no stopping criteria need to be specified. As for EZI,

stopping condition 1 is used, with tolerance level taken to be e151029. Since

results with this implementation appear satisfactory both in terms of accuracy

and computational effort, we keep this implementation also in the succeeding

comparison.

OAP is implemented via the Matlab fminsearch algorithm, as in Brigo (2002). We

maintain Matlab default termination tolerances (1024 on both the objective function

value and the argument), and default maximum number of iterations (2006number

of variables). The maximum level of function evaluations allowed is set to 107.

In our tests, these criteria allow OAP to exploit fully its potential in terms of

accuracy, with very long computational times, confirming indications in previous

literature. OAP appears to be very accurate. According to error (5), it achieves the

same accuracy as EZI does with the above e1, and often it is even slightly more

accurate. However, this requires computational times which are much longer than

those of EZI. This happens in particular for the realistic correlation matrix r4. For

example, at rank 8 more than 10 minutes are required by OAP to achieve 0.5972,

while EZI achieves 0.6128 in 0.28 seconds. At rank 12, 0.0983 is reached by OAP in

2203 seconds, while EZI achieves 0.1008 in 0.27 seconds. At rank 14, 0.0216 is

achieved by both methods, but OAP takes 2523 seconds, compared with 0.24

seconds for EZI.

In order to make comparison of the methods as clear as possible, we modify the

OAP criteria to make OAP achieve in all tests an error at least as low as EZI, to an

accuracy of 4 dp as above, but in the shortest time possible. This was obtained by

using as stopping criterion a termination tolerance of 1028 on the objective function

value and 1021 on the argument, with Matlab default bound on iterations and 108

bound on function evaluations to avoid cases of explosion of computational time. A

tolerance level of higher order brings about some errors for OAP which are higher

than errors for EZI. Thus these results give maximum efficiency possible for OAP

without becoming less precise than EZI to 4 dp.

Table 3 gives results for r1, r2 and r3, Table 4 for r4. For each test matrix results

are shown for reducing the rank down to a target rank r. For each method the sum

of square errors (5) is shown and the time taken in seconds (in round brackets). The

number of iterations used by EZI is given in square brackets.

Compare first the accuracy of the standard methods OAP and EZN. For the very

simple matrix r1 EZN performs almost as well as OAP. But as matrixes become

more realistic, and r increases, EZN performs progressively worse than OAP. For r4

EZN is much less accurate than OAP, usually achieving an error twice as great as the

error achieved by OAP.

EZI accuracy is very close to that of OAP. In the examples in Table 3 it is often

within 0.1% of OAP. For the more realistic case of r4 given in Table 4 its error is

always within a few percent of that of OAP, often much closer, and they go to

coincide as r increases.
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Note the computation times. EZN is always very fast, and EZI is of comparable

speed. By contrast, even after optimizing computational times, OAP is considerably

slower than either EZN or EZI. Already for the example r3 it takes almost one

hundred times longer at rank 4 than EZI to achieve only slightly greater accuracy.

For the empirical example r4 it takes more than eight minutes for r510, more than

2000 times longer than EZI with the same accuracy. In some cases it is even more

time consuming. Computation time for OAP tends to increases as r increases, in

particular up to r512, whereas for EZI the number of iterations, and hence the

computation time, decreases.

Different metrics. In the tests above, consistent with Rebonato and Jäckel (2000)

and Brigo (2002), we used the sum of square errors (5) as a reference metric. One

may be interested in seeing how the methods perform when also other criteria, less

common, but possibly at times relevant, are considered. Therefore we compare

performances under the following three financially reasonable criteria.

SE%~
X

i, j

aij{bij

aij

� 2

; AE~
X

i, j

aij{bij

�� ��; AE%~
X

i, j

aij{bij

�� ��

aij

�� ��

Table 4. Comparison of rank reduction methods

Comparison of methods for the empirical matrix: errors and times

r: 2 4 6 8 10 12 14 16 18

EZN: 27.04
(0.03)

9.00
(0.04)

3.67
(0.04)

1.51
(0.03)

0.56
(0.03)

0.24
(0.03)

0.046
(0.03)

0.011
(0.03)

0.0007
(0.03)

OAP: 19.11
(9)

4.54
(51)

1.51
(160)

0.60
(433)

0.23
(505)

0.098
(1318)

0.022
(583)

0.006
(846)

0.0004
(504)

EZI: 19.59
(1.1)

4.84
(0.59)

1.57
(0.34)

0.61
(0.23)

0.23
(0.18)

0.101
(0.16)

0.022
(0.13)

0.006
(0.09)

0.0004
(0.06)

[100] [59] [34] [23] [19] [17] [13] [12] [8]

Table 3. Comparison of rank reduction methods

Comparison of methods: errors and times

Matrix: r1 r2 r3

Target
rank, r: 2 2 4 7 4 7

EZN: 1.004e-4 (0.02) 0.1134 (0.02) 0.0163 (0.05) 2.32e-3 (0.02) 6.14 (0.07) 1.20 (0.06)
OAP: 0.947e-4 (0.08) 0.0764 (0.34) 0.0069 (3.1) 0.919e-3 (15.2) 5.95 (12.7) 1.12 (27.6)
EZI: 0.946e-4 (0.02) 0.0765 (0.29) 0.0070 (0.08) 0.918e-3 (0.05) 5.96 (0.14) 1.13 (0.10)

[8] [50] [19] [8] [23] [10]
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Notice, in particular, that percentage criteria SE% and AE% can be particularly

relevant in this context. In fact, due to the differences in magnitude of the correlation

entries, the relative importance of the discrepancies can be more informative than

their absolute value, although at times relative errors can be very high. In Table 5 we

present results for EZI and OAP.9

We see that again errors are very close, apart from some pathological cases for

percentage errors. These further tests confirm that the two methods have similar

accuracy.

High dimension matrixes. These tests on high dimension matrixes are of particular

relevance for financial application. Often a 6-month tenor, rather than a 1-year

tenor, is needed for forward rates, usually for consistency with the typical tenor

structure underlying caplets in the Euro market. To cover the same 20-year period as

the matrix r4, a trader must consider 39 semiannual forward rates, and a 39639

correlation matrix. Such a number of variables, or even higher, is common with

interest rate derivatives. Obviously, in this case it is even more important that the

dimension of the model gets reduced for efficient implementation, so correlation

rank reduction is particularly relevant. We test correlation rank reduction when the

correlation matrix is given by functional forms (21) and (22), but with M set to 39. In

particular we consider reduction to rank 7, a number of factors more tractable but

still retaining flexibility.

For the (21) matrix, with the same implementation details as before, both methods

reach SE50.271. OAP takes 1348 seconds, but EZI takes only 2.3 seconds.

For (22) matrix OAP gives an error SE5119.78 in 1671 seconds, while EZI gives

an error SE5115.06 in 2.1 seconds.

This confirms that in relevant and realistic tests EZI is very efficient, beside being

highly accurate. In fact OAP, in order to reach (almost) the same accuracy as EZI,

takes hundreds of times longer than EZI.

Previous tests have shown that both OAP and EZI have a clear advantage in

accuracy over the most commonly used method EZN. Considering a range of

different errors and different matrixes, the levels of accuracy allowed by these two

methods appear similar. However EZI reaches such accuracy in a much shorter time.

We conclude that, for most financial applications, where rapid computation is

Table 5. Comparison of methods: errors with different metrics

Matrix: r2 r3 r4

Target rank, r: 2 7 4 7 4 8 12 16

OAP SE% 0.089 0.001 671e4 802e3 13.70 1.80 0.34 0.027
AE 2.20 0.229 18.70 8.14 32.03 10.34 4.36 0.946
AE% 2.42 0.243 6010 2491 56.90 17.81 7.93 1.819

EZI SE% 0.089 0.001 495e4 353e3 13.05 1.81 0.35 0.027
AE 2.24 0.226 18.42 8.02 31.90 10.37 4.49 0.909
AE% 2.38 0.240 5241 1855 53.84 17.77 8.13 1.745
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relevant, EZI may be the method of choice. An example of such application is shown

in the following section.

EZI+. We now test EZI+ of Algorithm 8 on r4. EZI+ has the same optimality

properties as OAP but exploits the efficiency of EZI. Our target is to recover the

same level of accuracy achieved by OAP, as shown in the empirical results of Table 4.

Table 6 compares computation times for OAP (taken from Table 4) with those for

EZI+ to achieve the same level of accuracy.

Apart from the rank 2 case, which was already quite fast, in all other cases

computational times are cut at least by a half compared to OAP, and often much

more. The most burdensome case, rank 12, is reduced to about a third of the OAP

time, while many of the others are reduced to about a fifth.

OAP is expensive to run. EZI+ speeds up the general OAP optimization by using

alternating projections and is much faster than OAP. However, for a very slight

difference from the error achieved by EZI, the general optimization step in EZI+
requires a computational time which is often hundreds of times longer than EZI

alone.

In spite of the general optimization step, EZI+ is noticeably more efficient than

OAP, with the same accuracy. Consequently we recommend the use of EZI+ as in

Algorithm 8 when the optimality properties of optimization methods such as OAP

are required, while we suggest that for most financial applications EZI of Algorithm

2 remains preferable.

LMM Calibration

One important application of rank reduction methods in finance is the calibration of

multi-factor models, such as the Libor Market Model for interest rate derivatives.

When an exogenous correlation matrix is given, for instance via econometric

analysis, one must ensure that the correlation is reduced to a rank tractable for

subsequent pricing, so rank reduction is an important part of the calibration

procedure. This is underlined for instance by Rebonato (2002). Since one starts from

a correlation matrix not obtained solely from current prices of tradable assets,

extreme closeness to such econometric correlation is not the main goal. Because very

frequent recalibration is now a well-established standard, computational speed is

instead a crucial issue.

In the following we compare the performances of EZI and OAP as parts of a Libor

Market Model calibration procedure. We also assess, since it is relevant from a

financial point of view, how the use of a particular rank reduction method can affect

the results.

Table 6. Computational times for Algorithm 8

r: 2 4 6 8 10 12 14 16 18

OAP: (9) (51) (160) (433) (505) (1318) (583) (846) (504)
EZI+: (8) (18) (72) (116) (92) (431) (111) (102) (148)
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The calibration methodology we apply is based on the swaption volatility formula

of Rebonato (1998). We follow Rebonato (2002), section 10.5, which shows for a set

of co-terminal swaptions that, thanks to this swaption volatility formula, calibration

can be performed by simple matrix manipulation. We consider in particular the case

of a general piecewise constant parameterization of volatility, as in Brigo and

Mercurio (2001, 2002) and Brigo et al. (2005). In this case the matrix relationships

allow calibrating to various sets of co-terminal swaptions via an efficient cascade

algorithm inverting the formula of Rebonato (1998).10

As part of the calibration, an exogenous correlation matrix r must be reduced to a

rank r correlation matrix r̂r~JJ 0. The calibrated volatility and the matrix J can then

be used, for instance, in pricing exotic products with r independent stochastic

factors. Both OAP and EZI methods can be readily used in this context. OAP

returns a matrix r̂r~BB0 where B is given by (6). As for EZI output correlation

matrix SerrsT, it is easily decomposed as SerrsT~JJ 0. With notation as in (10), set

Ji~
Bs

iffiffiffiffiffiffiffiffiffiffiffiffi
Bs

i
Bs

ið Þ
’

q where Bs~X s
ffiffiffiffiffiffi
eDDs

p
. Then

SerrsTij~
Bs

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bs

i Bs
i

� �’
q

0

B@

1

CA
Bs

j

� �’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bs
j Bs

j

� �’
r

0

BB@

1

CCA~JiJ
0
j

Rebonato (2002) in section 9.1.2 gives a number of relevant calibration cases. The

third case regards calibration to swaptions with an exogenous forward rate

correlation matrix. We calibrate a model for 19 forward rates to a 10610 swaption

matrix of 1 February 2002. The forward rate estimated correlation matrix consistent

with this trading day is r4. We test calibration of models of all ranks from 19 to 2.

Both with OAP and EZI exact recovery of market prices is achieved, so calibration

error is zero in both cases. Looking at the parameters obtained, both methods

usually give calibrations that are robust and significant, but when OAP is used the

rank 4 calibration encounters numerical problems, returning a few negative

parameters. This typically happens when reduced rank correlation matrixes are less

smooth and regular. When EZI was used no numerical problems were found with

any rank of the estimated correlation matrix.

We now give some examples of computational times for the whole calibration

procedure. For calibrating with two factors, with EZI the procedure takes about 5

seconds, with OAP about 13 seconds. When the number of factors increases, the

efficiency of EZI relative to the other method is more pronounced. With four factors

we have almost 1 minute for OAP versus 5 seconds with EZI, with six factors almost

3 minutes for OAP while EZI reduces to about 4.5 seconds. For higher rank,

computational time is dominated by the rank reduction step: calibrating with OAP

the computational time increases at about the same rate as seen in the above tables,

for example increasing to over 1300 seconds at rank 12, while with EZI calibration

time is stable around 4 seconds.

Computational times reflect the differential already seen in the rank reduction

tests. Hence OAP can be even more remarkably inefficient in the corresponding cap

calibration, the type of calibration considered in Chapter 9 of Rebonato (2002). In
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fact, in this case calibration can be based on semi-annual forward rates and on large

correlation matrixes such as the 39639 matrix considered earlier.

OAP appears the most burdensome step when it is used in a calibration routine.

With EZI the entire calibration procedure is very fast.

Conclusions

In this paper we introduce an iterative algorithm, EZI, for correlation matrix rank

reduction. The algorithm is intuitive and simple to implement.

We provide an analysis of conditions affecting its convergence to a viable
correlation matrix of desired rank. We describe the relationship of EZI with

alternating projection theory, and with similar algorithms in signal enhancement. We

also present an extension of EZI, called EZI+, with the optimality properties of

particular optimization methods, such as the common alternative method OAP.

We present empirical tests using different matrixes, both parametric and

historically estimated on forward rate market data. We compare EZI with the two

methods commonly used in finance, the fast but inaccurate EZN method and the

slow but accurate OAP method. Results show that EZI is much more accurate than
EZN, comparable in accuracy to OAP, and can be more accurate than OAP if a

range of relevant error metrics is considered. However the speed of EZI is

comparable to EZN, making it much faster than OAP, particularly when the

required rank is large. OAP is even more time consuming on large matrixes typical in

interest rate applications, taking hundreds of times longer than EZI in order to

approach the accuracy of EZI. We also test the EZI+ algorithm. It returns the same

results as OAP in a fraction of the time.

The high computational efficiency of EZI can be crucial in relevant financial

applications such as the calibration of the Libor Market Model. Using EZI,
swaption calibration yields regular results in a remarkably shorter time than with

OAP.

The EZI algorithm appears to provide a good balance of accuracy and speed, and

is recommended for financial applications.
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Notes

1 Rebonato and Jäckel investigate a problem related to ours, that of finding some correlation matrix close

to a general matrix.
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2 Given a matrix A, we write Ai for its ith row and Aj for its jth column.
3 With respect to the metric :k k defined in (5).
4 When lr5lr+151 there is no unique choice of eigenvalue to set to zero. However, the algorithm always

chooses the same eigenvalue to set to zero.
5 See the following subsection.
6 Here, an affine set is defined to be a translation of a subspace.
7 We thank Igor Grubisic for recently signalling an application of alternating projections to correlation

rank reduction in his master thesis ‘Interest rate theory. BGM model’, Leiden University, 2002.
8 Rebonato and Jäckel’s goal is to recover a viable correlation matrix starting from r1.
9 We no longer consider the grossly inaccurate EZN method.
10 In particular we use the version described in Brigo and Morini (2004), including endogenous

interpolation to recover values of missing data. This algorithm avoids or reduces numerical difficulties

that might otherwise occur, such as negative volatility parameters.
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