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A Numerical Method to Price Defaultable
Bonds Based on the Madan and Unal
Credit Risk Model

LUCA VINCENZO BALLESTRA & GRAZIELLA PACELLI

Dipartimento di Scienze Sociali ‘D. Serrani’, Università Politecnica delle Marche, 60121 Ancona, Italy

(Received 28 June 2007; in revised form 5 December 2007)

ABSTRACT We propose a numerical method to price corporate bonds based on the model of
default risk developed by Madan and Unal. Using a perturbation approach, we derive two semi-
explicit formulae that allow us to approximate the survival probability of the firm issuing the
bond very efficiently. More precisely, we consider both the first- and second-order power series
expansions of the survival probability in powers of the model parameter c. The zero-order
coefficient of the series is evaluated using an exact analytical formula. The first- and second-
order coefficients of the series are computed using an approximation algorithm based on the
Laplace transform. Extensive simulation is carried out on several test cases where the parameters
of the model of Madan and Unal are chosen from Grundke and Riedel, and bonds with different
maturities are considered. The numerical experiments performed reveal that the numerical
method proposed in this paper is accurate and computationally efficient.

KEY WORDS: Credit risk, defaultable bonds, asymptotic expansion

1. Introduction

One of the first and most popular models for pricing defaultable bonds was

developed by Madan and Unal (1998). This model is considered particularly

interesting since it incorporates the most attractive features of both the reduced-form

models and the structural models of credit risk. In fact, Madan and Unal (1998)

relate the probability of default to the value of the equity of the firm issuing the

bond. This is typical of the structural models, where the default event is linked to

firm-specific variables (see, for instance, Black and Cox, 1976; Longstaff and

Schwartz, 1995; Andersen and Sundaresan, 1996; Leland and Toft, 1996; Briys and

de Varenne, 1997; Zhou, 2001; Hsu et al., 2004; Leland, 2004, and Fouque et al.,

2006). Moreover, Madan and Unal (1998) model default as a random event that

can occur unexpectedly at every time. Such an approach allows us to obtain high
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short-term spreads, and is peculiar to the reduced-form models (Duffee, 1999; Duffie

and Singleton, 1999; Elliott et al., 2000; Jarrow and Stuart, 1995; Lando, 1999). For

these reasons the model of Madan and Unal (1998) is considered a middle-way

approach between the reduced-form models and the structural models of default risk

(for a detailed description of different models of default risk, see, for example, Duffie

and Singleton, 2003).

Let V(t, T) denote the price at time t of a defaultable zero-coupon bond with

face value 1 maturing at time T, T>t. Using the model of Madan and Unal (1998),

V(t, T) is evaluated as follows:

V t, Tð Þ~Q t, Tð Þ Y t, Tð Þz 1{Y t, Tð Þð ÞRð Þ, ð1Þ

where Q(t, T) is the price at time t of a Treasury (riskless) zero-coupon bond with

face value 1 maturing at time T, Y(t, T) is the probability that the firm issuing the

bond survives up to time T given no default at time t, and R is the expected payoff in

the case of default:

R~

ð1

0

yq yð Þdy, ð2Þ

and q(y) is the probability density function of the bond recovery value. Madan and

Unal (1998) model q(y) as the probability density function of a Beta distribution.

Let us consider the ‘relativized’ equity value of the firm:

s tð Þ~ e tð Þ
B tð Þ , ð3Þ

where e(t) is the firm’s equity value and B(t) is the money market account (Hull,

2003). Madan and Unal (1998) model s(t) as the stochastic process

ds tð Þ~ss tð ÞdW tð Þ, ð4Þ

where s is a volatility parameter and W(t) is a standard Wiener process under the

risk-neutral measure (Hull, 2003). Note that the ‘relativized’ equity value is modeled

as a stochastic process with constant volatility, which is very common practice in

mathematical finance.

Let w(t) denote the so-called instantaneous intensity of default, that is w(t)dt is the

probability that default occurs in the time interval [t, t+dt]. Madan and Unal model

w(t) as a function of s(t); in particular, they assume

w tð Þ~ c

log s tð Þð Þ{log dð Þð Þ2
, ð5Þ

where c and d are positive constants. This choice is justified by Madan and Unal

(1998). Here we only observe that, according to (5), the probability of default is

measured by the distance of s(t) from the critical value d. In particular, when s(t)

reaches the threshold level d, the intensity w(t) becomes infinite, and default occurs

with certainty.

As shown by Madan and Unal (1998), Y(t, T) is a function of the time to maturity

T2t and s(t). Then we set

18 L. V. Ballestra and G. Pacelli
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Y t, Tð Þ~P x tð Þ, tð Þ, ð6Þ

where

x tð Þ~log s tð Þð Þ{log dð Þ, ð7Þ

and t5T2t. It is shown by Madan and Unal (1998) that the function P(x, t) must

satisfy the following partial differential equation:

LP x, tð Þ
Lt

{
s2

2

L2P x, tð Þ
Lx2

z
s2

2

LP x, tð Þ
Lx

z
cP x, tð Þ

x2
~0, ð8Þ

with boundary conditions

P 0, tð Þ~0, lim
x?z?

P x, tð Þ~1, ð9Þ

and initial conditions

P x, 0ð Þ~1: ð10Þ

Madan and Unal (1998) solved the partial differential problem (8)–(10) using certain

changes of variables that reduce Equation (8) to a first-order ordinary differential

equation. This ordinary differential equation can easily be approximated numerically

using a finite difference scheme. However, as pointed out by Grundke and Riedel

(2004), the approach of Madan and Unal lacks mathematical rigor, since, in one of

the changes of variables used to transform the partial differential Equation (8), a

differential term has been neglected. In particular, Grundke and Riedel (2004) show

that the solutions of (8)–(10) computed using a finite difference scheme are

significantly different from those obtained using the approach of Madan and Unal.

In this work we propose a perturbation approach to derive two approximate

formulae that allow us to compute the solution of the partial differential problem

(8)–(10) very efficiently. Let n denote a positive integer. We consider the asymptotic

expansion of the solution of (8)–(10) in powers of the model parameter c with the

base point in c50:

P x, tð Þ~
Xn

j~0

c jPj x, tð Þzo cnð Þ, c?0: ð11Þ

Note that, in this work, we are not concerned with studying the well-posedness of

problem (8)–(10). On the contrary, we simply assume that problem (8)–(10) has a

unique solution for which the power series representation (11) holds true at least in

the case n52.

We approximate P(x, t) using both the power series expansion (11) truncated at

first order and the power series expansion (11) truncated at second order. The zero-

order coefficient of the series is evaluated using an exact analytical formula. The

first- and second-order coefficients are computed using a fast and accurate numerical

algorithm based on the Laplace transform. More precisely, the Laplace transform of

P1(x, t) performed with respect to the variable t is evaluated using an exact

analytical formula that contains the so-called exponential integral function.

Moreover, the Laplace transform of P2(x, t) performed with respect to the

Numerical Method to Price Defaultable Bonds 19
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variable t is accurately approximated using only elementary functions and a

limited number of exponential integral functions. Finally, the Laplace trans-

forms obtained are inverted numerically using an ad hoc technique based on

contour integration.

An extensive numerical simulation was carried out on several test cases where the

parameters of the model were chosen as per Grundke and Riedel (2004) and Madan

and Unal (1998), and bonds with different maturities were considered. The

numerical experiments performed reveal that the numerical method is very accurate.

In fact, when the first-order power series expansion is used, the relative error

obtained is always smaller than 1.061022, is often of order 1023 or 1024, and is

sometimes of order 1025 or 1026. When the second-order power series expansion is

used, the relative error obtained is always smaller than 9.861024, is often of order

1025, and is even of order 1026 or 1027.

The numerical method presented in this paper is also computationally fast. In fact,

the computer time necessary for the simulation is 0.028 s when the power series

expansion (11) is truncated at first order, and varies from 0.24 s to 0.45 s when the

power series expansion (11) is truncated at second order. Note that these execution

times are obtained when the simulation is carried out on a computer with a Pentium

4 processor, 1700 MHz, 256 MB RAM, and the software programs are written using

Matlab.

We remark that the numerical method presented in this paper is well suited for

parallel computing, since the algorithm used to invert the Laplace transforms of

P1(x, t) and P2(x, t) is fully parallelizable.

We point out that our numerical method can also be used to forecast the

parameters of the model of Madan and Unal. For instance, following an approach

similar to that used by Madan and Unal (1998) (we recall that the method used

by Madan and Unal, 1998, to solve problem (8)–(10) is not mathematically

correct), the semi-explicit formulae derived in this paper can be applied to

determine the model parameters s, c and d by maximum likelihood fitting to the

observed data. In addition, our formulae can be used to obtain the implied model

parameters.

The paper is organized as follows. In the next section we describe the numerical

method used to compute the solution of problem (8)–(10) (some mathematical

details concerning the numerical method are given in Appendix A). In Section 3 we

present and discuss the results obtained using the numerical algorithm developed in

Section 2. Finally, conclusions are drawn in Section 4.

2. The Numerical Method

In this section we present the numerical method used to compute the solution of

problem (8)–(10). For the sake of clarity, this section is divided into two subsections.

In Subsection 2.1 we write down the differential problems that must be solved in

order to obtain the coefficients of the power series expansion (11) and determine

suitable expressions for the Laplace transforms of P0(x, t), P1(x, t) and P2(x, t)

performed with respect to the variable t. In Subsection 2.2 we show how to

numerically invert the Laplace transforms obtained.

20 L. V. Ballestra and G. Pacelli
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2.1 The Power Series Expansion Approach and the Laplace Transforms

Substituting the power series expansion (11) into Equations (8)–(10), and equating to

zero the terms of the same order, we obtain for the zero-order terms:

LP0 x, tð Þ
Lt

{
s2

2

L2P0 x, tð Þ
Lx2

z
s2

2

LP0 x, tð Þ
Lx

~0, ð12Þ

P0 0, tð Þ~0, lim
x?z?

P0 x, tð Þ~1, ð13Þ

P0 x,0ð Þ~1, ð14Þ

and for the higher-order terms:

LPj x, tð Þ
Lt

{
s2

2

L2Pj x, tð Þ
Lx2

z
s2

2

LPj x, tð Þ
Lx

~{
Pj{1 x, tð Þ

x2
,

j~1, 2, . . . , n,

ð15Þ

Pj 0, tð Þ~0, lim
x?z?

P x, tð Þ~0, j~1, 2, . . . , n, ð16Þ

Pj x, 0ð Þ~0, j~1, 2, . . . , n: ð17Þ

We note that the higher-order terms Pj(x, t), j51, 2, …, n, account for the presence

of a non-zero default intensity in Equations (8)–(10).

The zero-order coefficient P0(x, t) can be obtained in closed form. In fact,

Equation (12) with boundary conditions (13) and initial condition (14) constitutes a

well-known parabolic problem with fixed barrier, the solution of which is given by

(Black and Cox, 1976; Rich, 1994)

P0 x, tð Þ~N l1ð Þ{exN l2ð Þ, ð18Þ

where

l1~
{s2tz2x

2
ffiffiffiffiffiffiffi
s2t
p , ð19Þ

l2~
{s2t{2x

2
ffiffiffiffiffiffiffi
s2t
p , ð20Þ

N uð Þ~ 1

2p

ðu

{?
e{y2=2 dy: ð21Þ

In order to evaluate higher-order coefficients in the power series expansion (11), let

us consider the Laplace transform of the function Pj(x, t) performed with respect to

the variable t, j50, 1, …, n:

Numerical Method to Price Defaultable Bonds 21
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Fj x, vð Þ~
ðz?

0

Pj x, tð Þe{vt dt, j~0, 1, . . . , n, ð22Þ

where v [C and x>0.

Taking the Laplace transform of (12)–(17) with respect to the variable t we obtain,

for the zero-order term, the differential equation

L2F0 x, vð Þ
Lx2

{
LF0 x, vð Þ

Lx
{

2v

s2
F0 x, vð Þ~{

2

s2
, ð23Þ

with boundary conditions

F0 0, vð Þ~0, lim
x?z?

F0 x, vð Þ~ 1

v
, ð24Þ

and, for the higher-order terms, the differential equation

L2Fj x, vð Þ
Lx2

{
LFj x, vð Þ

Lx
{

2v

s2
Fj x, vð Þ~ 2Fj{1 x, vð Þ

s2x2
,

j~1, 2, . . . , n,

ð25Þ

with boundary conditions

Fj 0, vð Þ~0, lim
x?z?

Fj x, vð Þ~0, j~1, 2, . . . , n: ð26Þ

We approximate P(x, t) using both the power series expansion (11) truncated at first

order and the power series expansion (11) truncated at second order. That is, we

compute P(x, t) using both the first-order approximation

P̂1 x, tð Þ~P0 x, tð ÞzcP1 x, tð Þ, ð27Þ

and the second-order approximation

P̂2 x, tð Þ~P0 x, tð ÞzcP1 x, tð Þzc2P2 x, tð Þ: ð28Þ

In Equations (27) and (28), P0(x, t) is evaluated according to relations (18)–(21),

whereas P1(x, t) and P2(x, t) are obtained from the Laplace transforms F1(x, v) and

F2(x, v) using the numerical method described in Subsection 2.2.

Now we show how to evaluate F1(x, v) and F2(x, v). Associated with the

differential Equations (23) and (25) is the algebraic characteristic equation

l2{l{
2v

s2
~0, ð29Þ

the roots of which are

l1 vð Þ~ 1

2
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
z

2v

s2

r
, l2 vð Þ~ 1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
z

2v

s2

r
: ð30Þ

The solution of the ordinary differential problem (23) and (24) is readily obtained:

F0 x, vð Þ~ 1

v
1{el1x
� �

: ð31Þ

22 L. V. Ballestra and G. Pacelli
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From Equations (25) and (26) we obtain

F1 x, vð Þ~ 2

s2 l1{l2ð Þ G1 x, vð Þ{G2 x, vð Þð Þel1xzG2 x, vð Þel2x
� �

, ð32Þ

where

G1 x, vð Þ~
ðx

0

F0 u, vð Þ e
{l1u{e{l2u

u2
du, ð33Þ

G2, v xð Þ~
ðz?

x

F0 u, vð Þ e
{l2u

u2
du: ð34Þ

Substituting (31) into (33) and (34) we obtain

G1 x, vð Þ~ 1

v

ðx

0

e{l1u{e{l2u{1ze l1{l2ð Þu

u2
du, ð35Þ

G2 x, vð Þ~ 1

v

ðz?

x

e{l2u{e l1{l2ð Þu

u2
du: ð36Þ

Note that the improper integral G1(x, v) is well defined. The integrals G1(x, v) and

G2(x, v) can be evaluated using an explicit formula. In fact, we have (Abramowitz

and Stegun, 1972)
ð

elx

x2
dx~lEi lxð Þ{ elx

x
zK , K [C, l [C\ 0f g, ð37Þ

where Ei denotes the so-called exponential integral function, defined as

Ei zð Þ~czlog zð Þz
Xz?

j~1

zj

jj!
, z [C\ 0f g, ð38Þ

where c is the Euler–Mascheroni constant. In this paper we adopt the following

extension of the logarithm function from the real positive semi-axis to the complex

plane:

log zð Þ~
log zj jzarg zð Þi, z [C\ 0f g, arg zð Þƒp,

log zj jzarg zð Þi{2pi, z [C\ 0f g, arg zð Þwp:

�
ð39Þ

It is important to observe that the exponential integral function (38) can be evaluated

very quickly with essentially no error using standard numerical algorithms (Amos,

1980). One of these algorithms is given in Appendix A (see relations (A9)–(A13)).

Using relation (37) to evaluate G1(x, v) and G2(x, v), we can rewrite formula (32)

as

F1 x, vð Þ~ 2

s2v l1{l2ð Þ n1{l1Ei {l1xð Þð Þel1x
�

z l2Ei {l2xð Þz l1{l2ð ÞEi l1{l2ð Þxð Þ{n2ð Þel2x
�
,

ð40Þ

where

Numerical Method to Price Defaultable Bonds 23
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n1~ l1{l2ð Þh l1{l2ð Þzl2h {l2ð Þ{ l1{l2ð Þlog l1{l2ð Þ

zl1 log {l1ð Þ{l2 log {l2ð Þ,
ð41Þ

n2~ l1{l2ð Þh l1{l2ð Þzl2h {l2ð Þ, ð42Þ

h lð Þ~
p, l [C, = lð Þw0,

{p, l [C, = lð Þƒ0,

�
ð43Þ

and =(l) denotes the imaginary part of l.

Note that in order to evaluate the improper integral (36) we have used the relation

lim
x?z?

Ei lxð Þ~h lð Þ, l [C\ 0f g, < lð Þƒ0, ð44Þ

the validity of which can easily be checked using formula (A10) reported in Appendix

A.

Now we must compute the Laplace transform F2(x, v). From Equations (25) and

(26) we have

F2 x, vð Þ~ 2

s2 l1{l2ð Þ H1 x, vð Þ{H2 xð Þð Þel1xzH2 xð Þel2x
� �

, ð45Þ

where

H1 xð Þ~
ðx

0

F1 u, vð Þ e
{l1u{e{l2u

u2
du, ð46Þ

H2 xð Þ~
ðz?

x

F1 u, vð Þ e
{l2u

u2
du: ð47Þ

It can easily be shown using relations (38) and (40) that the improper integral (46) is

well defined, despite its integrand containing the function 1/u2, which tends to +‘ as

uR0.

Looking at formulae (32) and (45) we note that F1(x, v) and F2(x, v) have a

similar functional form. However, contrary to what happens for the integrals (35)

and (36), the integrals (46) and (47) cannot be evaluated using an exact analytical

formula. Nevertheless, they can be accurately approximated using only elementary

functions and a limited number of exponential integral functions. The numerical

method used to evaluate the integrals (46) and (47) is shown in Appendix A.

2.2 Numerical Inversion of the Laplace Transforms

The Laplace transforms F1(x, v) and F2(x, v) cannot be inverted using an exact

analytical formula. Therefore, we obtain P1(x, t) and P2(x, t) by numerical

approximation of the Bromwich integrals:

Pj x, vð Þ~ 1

2pi

ðajzi?

aj{i?
Fj x, vð Þevt dv, j~1, 2, ð48Þ

24 L. V. Ballestra and G. Pacelli
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where aj gR is such that all the singularities of Fj(x, v) lie in the open half-plane

{v|R(v),aj}, j51, 2.

It can easily be checked that both F1(x, v) and F2(x, v) are symmetric with respect

to the real axis and analytic in the whole complex plan except the origin and the

semi-axis {v|R(v),2s2/8, =(v)50}. Using these facts we can rewrite formula (48)

as follows:

Pj x, tð Þ~ 1

pi

ðajzi?

aj

Fj x, vð Þevt dv, aj [Rz, j~1, 2: ð49Þ

For large values of x, the quantities el1x and el2x appearing in (40) and (45),

considered as functions in the variable v, are rapidly oscillating functions when v

varies along the half-line [aj, aj+i‘). As a consequence, for large values of x, it is very

difficult to approximate the integrals (49) accurately. Then, using an approach

similar to that proposed by Talbot (1979), we change the contour integration in (49)

as follows:

Pj x, tð Þ~ 1

pi

ðajzibj

aj

Fj x, vð Þevt dvz
1

pi

ð{?zibj

ajzibj

Fj x, vð Þevt dv,

aj, bj [Rz, j~1, 2:

ð50Þ

By Cauchy’s theorem, such a contour deformation is possible since in the v plane

all the singularities of Fj(x, v) lie on the real negative semi-axis, and |Fj(x, v)evt|R0

as |v|R‘, j51, 2. Replacing (49) with (50) gives the following advantages: since in

(50) the imaginary part of v does not go to infinity, the oscillations of the functions

el1x and el2x are limited. Moreover, in the second integral appearing in (49) the factor

evt decays rapidly as R(v)R2‘ and therefore it behaves as a favourable damping

term to the oscillations of Fj(x, v), j51, 2. In the numerical experiments reported in

this paper we chose aj50.0001 and bj50.1, j51, 2.

The integrals appearing in (50) are evaluated by numerical approximation. First,

the infinite integration domain of the second integral of (50) is replaced by a

bounded interval, so that formula (50) is rewritten as follows:

Pj x, tð Þ% 1

pi
Pj1 x, tð Þz 1

pi
Pj2 x, tð Þ, j~1, 2, ð51Þ

where

Pj1 x, tð Þ~
ðajzibj

aj

Fj x, vð Þevt dv, aj, bj, a? [Rz, j~1, 2, ð52Þ

Pj2 x, tð Þ~
ð{a?zibj

ajzibj

Fj x, vð Þevt dv, aj , bj, a? [Rz, j~1, 2: ð53Þ

In the numerical experiments presented in this paper we use a‘510/t. This choice is

sufficient to obtain a very accurate approximation of the integral (49).
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Finally, we compute the integrals (52) and (53) using a numerical quadrature

formula. In order to obtain accurate results we use Gauss–Legendre integration

(Evans, 1993). Let Mjk denote the number of Gauss–Legendre integration nodes

used to evaluate the integral Pjk(x, t), j51, 2, k51, 2. In our numerical experience we

have found that a very satisfactory level of accuracy can be obtained using M1155,

M12525, M2153 and M22516.

A theoretical study of the error due to the numerical method described in Section 2

appears to be a very difficult task due to the different kinds of approximations

involved (the power series expansion (11), the numerical evaluation of the integrals

(46) and (47), and the numerical inversion of the Laplace transforms Fj(x, v), j51, 2.

Moreover, the analysis of the error of the power-series expansion (11) is complicated

by the fact that, to the best of our knowledge, a theoretical investigation of the well-

posedness (existence, uniqueness and regularity) of the solution of the model of

Madan and Unal is not available in the literature. Hence, the accuracy of the method

proposed is tested by numerical simulation. This is done in the next section.

3. Numerical Results

The numerical simulation was carried out using a computer with a Pentium 4

processor, 1700 MHz, 256 MB RAM. The software programs were written using

Matlab. The computation of the exponential integral function was performed using

formula (A13).

In the first test case (Test Case 1) the parameters s and c are chosen as follows:

s50.36633 year21/2 and c50.003419 year21. These values were estimated by Madan

and Unal (1998) from historical series of defaultable bond prices. As far as the time

to maturity t is concerned, we consider three different test cases: t53 months (Test

Case 1.a), t51 year (Test Case 1.b) and t510 years (Test Case 1.c).

For each test case we computed P̂1 x, tð Þ and P̂2 x, tð Þ corresponding to different

values of x. In particular, we chose values of x such that the survival probability

P(x, t) belongs to the interval [0.1,0.999]. This interval contains the survival

probabilities implied by the spreads of defaultable bonds that are normally observed

in financial markets (Byström and Kwon Oh, 2005; Chan-Lau, 2006).

In order to test the accuracy of the results obtained, a very accurate estimation of

the exact survival probability P(x, t), denoted Pe(x, t), is computed by numerical

approximation. In particular, Equations (8)–(10) are discretized by applying the

Crank–Nicholson finite difference scheme, and a very large number of collocation

nodes (100,000) is used in both the x and the t directions.

The results obtained are reported in Tables 1–3. In these tables, RelErrj denotes

the relative error of the numerical approximation P̂j x, tð Þ, evaluated as follows:

RelErrj~
P̂j x, tð Þ{Pe x, tð Þ
�� ��

Pe x, tð Þ , j~1, 2, ð54Þ

and CPUTimej denotes the computer time necessary to obtain P̂j x, tð Þ, j~1, 2.

Looking at Tables 1–3, we can see that P̂1 x, tð Þ is a rather good approximation of

P(x, t). In fact, in all the test cases considered, RelErr1 varies from 4.861025 to
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1.061022. Moreover, the computer time necessary to obtain P̂1 x, tð Þ is very short

(0.028 s).

We also note that P̂2 x, tð Þ is a very accurate approximation of P(x, t), since

RelErr2 varies from 7.061025 to 9.861024. Moreover, the computer time necessary

to obtain P̂1 x, tð Þ is rather short; in fact, CPUTime2 varies from 0.24 s to 0.48 s.

It is worth noting that the largest relative errors of the approximations

P̂1 x, tð Þ and P̂2 x, tð Þ are obtained in Test Case 1.b when x50.1

(RelErr151.061022, RelErr259.861024). However, in this test case, Pe(x, t) is

rather small (Pe(x, t)50.160694), so the bond considered has a high probability of

default. Pricing near-default bonds very accurately is not usually a matter of concern

for financial researchers and practitioners.

Note that, in Test Case 1.b, when x51 we obtain RelErr154.861025 and

RelErr258.261025, that is P̂1 x, tð Þ is a more accurate approximation of P1(x, t)

than P̂2 x, tð Þ. This has a clear explanation: in Test Case 1.b, when x51, the error due

to the numerical approximation of the integrals appearing in (50) is larger than the

error due to the truncation of the series (27). In other words, P̂2 x, tð Þ can become

Table 1. Test Case 1.a (t51 month).

x50.1 x50.3 x50.5

Pe(x, t) 0.361536 0.866920 0.986830
RelErr1 5.861023 1.561023 1.461023

RelErr2 1.261024 7.961024 8.561024

CPUTime1 (s) 0.028 0.028 0.028
CPUTiem2 (s) 0.24 0.29 0.44

Table 2. Test Case 1.b (t51 year).

x50.1 x50.3 x51.0

Pe(x, t) 0.160694 0.499647 0.984339
RelErr1 1.061022 3.161023 4.861025

RelErr2 9.861024 2.661024 8.261025

CPUTime1 (s) 0.028 0.028 0.028
CPUTime2 (s) 0.25 0.28 0.44

Table 3. Test Case 1.c (t510 years).

x50.6 x51.0 x55.0

Pe(x, t) 0.210626 0.388445 0.998201
RelErr1 6.461023 3.561023 1.561024

RelErr2 7.161024 3.761024 7.061025

CPUTime1 (s) 0.028 0.028 0.028
CPUTime2 (s) 0.27 0.29 0.48
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more accurate than P̂1 x, tð Þ only if the numerical approximation of the integrals

appearing in (50) is performed more accurately. In fact, let us try to evaluate these

integrals using a larger number of quadrature nodes: we set M11510, M12532,

M2156 and M22532. We obtain RelErr157.061025 and RelErr255.261026, that is

P̂2 x, tð Þ is still a more accurate approximation of P(x, t) than P̂1 x, tð Þ. In this new

experiment we obtain CPUTime150.047 s and CPUTime250.89 s, that is the

computer times necessary to obtain P̂1 x, tð Þ and P̂2 x, tð Þ are about two times longer

than those required in the previous simulation. Note, however, that the level of

accuracy of the approximation P̂2 x, tð Þ obtained in the new experiment is

considerably higher than the level of accuracy that is usually required in everyday

business practice.

In the following test case (Test Case 2) we chose s50.5199 year21/2 and c50.0017

year21. These parameters were used by Grundke and Riedel (2004) and are the

average values of those estimated by Madan and Unal (1998). The results obtained

are reported in Tables 4–6.

In Tables 4–6 we note that both P̂1 x, tð Þ and P̂2 x, tð Þ are very accurate

approximations of P(x, t). In fact, in Test Case 2, RelErr1 varies from 5.961026

to 8.761024, and RelErr2 varies from 6.761027 to 1.361024.

The computer times necessary to calculate P̂1 x, tð Þ and P̂2 x, tð Þ are rather short. In

fact, CPUTime1 is always 0.028 s, and CPUTime2 varies from 0.24 s to 0.45 s.

4. Conclusions

We have proposed a numerical method of pricing defaultable bonds using the

model of default risk developed by Madan and Unal (1998). In particular, the

survival probability P(x, t) of the firm issuing the bond is approximated using both a

Table 4. Test Case 2.a (t51 month).

x50.1 x50.3 x50.5

Pe(x, t) 0.259738 0.707014 0.927519
RelErr1 5.661024 2.061024 1.761024

RelErr2 6.161025 8.161025 1.361024

CPUTime1 (s) 0.028 0.028 0.028
CPUTime2 (s) 0.25 0.29 0.34

Table 5. Test Case 2.b (t51 year).

x50.1 x50.3 x51.0

Pe(x, t) 0.109931 0.346882 0.909232
RelErr1 8.761024 3.461024 4.461025

RelErr2 4.961025 2.761025 1.961025

CPUTime1 (s) 0.028 0.028 0.028
CPUTime2 (s) 0.24 0.27 0.34
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first- and a second-order power series expansion in the parameter c that measures the

default intensity.

The zero-order coefficient of the series is obtained using an exact analytical

formula. Moreover, the first- and second-order coefficients of the series are

approximated very efficiently using a numerical method based on the Laplace
transform.

An extensive numerical simulation was performed on several test cases where the
parameters of the model were chosen as per Grundke and Riedel (2004) and Madan

and Unal (1998), and bonds with different maturities were considered. These

experiments reveal that the numerical method is accurate. In fact, when the first-

order power series expansion is used, the relative error obtained is always smaller

than 1.061022, is often of order 1023 or 1024, and is even of order 1025 or 1026.

When the second-order power series expansion is used, the relative error obtained is

always smaller than 9.861024, is often of order 1024 or 1025, and is even of order

1026 or 1027.

The numerical method proposed in this paper is computationally very fast. In fact,

using the first-order power series approximation the survival probability can be
evaluated in 0.028 s on a modest personal computer. Moreover, when the second-

order power series approximation is used the computer times vary from 0.24 s to

0.45 s. Note that the numerical experiments are performed using Matlab, and the

vectorial capabilities of this programming environment have not been exploited at

all. The computer times necessary for the simulation could be significantly reduced if

the software programs were rewritten using a compiled programming language, such

as, for instance, FORTRAN, C or C++. In this regard, note also that our numerical

method is well suited for parallel computing, since the algorithm used to evaluate the
integrals appearing in (50) is fully parallelizable.

In addition, we observe that the survival probability P2(x, t) is evaluated using the

semi-explicit formulae (27) and (28). Therefore, the numerical method proposed in

this paper has the advantage that the sensitivity of defaultable bond prices to the

variables x and t, or to the model parameters s, c and d, can be computed by direct

differentiation using formulae (27) and (28).

In addition, we remark that the numerical method presented in this paper can also

be used to forecast the parameters of the model of Madan and Unal. For instance,

the model parameters s, c and d can be estimated following the approach used by

Madan and Unal (1998). That is, the parameters s, c and d can be determined by

maximum likelihood fitting of the approximate formulae (27) and (28) to realized
survival probabilities (obtained from historical bond prices using relation (1)).

Table 6. Test Case 2.c (t510 years).

x50.6 x51.0 x55.0

Pe(x, t) 0.106825 0.204120 0.976987
RelErr1 6.061024 3.861024 5.961026

RelErr2 3.261026 5.061026 6.761027

CPUTime1 (s) 0.028 0.028 0.028
CPUTime2 (s) 0.25 0.27 0.45
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In addition, formulae (27) and (28) can be applied directly to obtain implied model

parameters.

References

Abramowitz, M. and Stegun, A. (1972) Handbook of Mathematical Functions (New York: Dover).

Amos, D. E. (1980) Computation of exponential integrals. ACM Transactions on Mathematical Software,

6(3), pp. 365–377.

Andersen, R. W. and Sundaresan, S. (1996) Design and valuation of debt contracts. Review of Financial

Studies, 9(1), pp. 37–68.

Artzner, P. and Delbaen, F. (1995) Default risk insurance and incomplete markets. Mathematical Finance,

5(3), pp. 187–195.

Black, F. and Cox, J. C. (1976) Valuing corporate securities: some effects of bond indenture provisions.

Journal of Finance, 31(2), pp. 351–367.

Briys, E. and de Varenne, F. (1997) Valuing risky fixed rate debt: an extension. Journal of Financial and

Quantitative Analysis, 32(2), pp. 230–248.

Byström, H. and Kwon Oh, K. (2005) Default probabilities according to the bond market. Corporate

Finance Review, 9(5), pp. 15–26.

Chan-Lau, J. A. (2006) Market-based estimation of default probabilities and its application to financial

market surveillance, Working Paper, International Monetary Fund (IFM), available at http://

www.imf.org/external/pubs/ft/wp/2006/wp06104.pdf (accessed May 2007).

Duffee, G. R. (1999) Estimating the price of default risk. Review of Financial Studies, 12(1), pp. 1997–2026.

Duffie, D. and Singleton, K. (1999) Modeling term structures of defaultable bonds. Review of Financial

Studies, 12(4), pp. 687–720.

Duffie, D. and Singleton, K. (2003) Credit Risk: Pricing, Measurement, and Management (Princeton, NJ:

Princeton University Press).

Elliott, R. J., Jeanblanc, M. and Yor, M. (2000) On models of default risk. Mathematical Finance, 10(2),

pp. 179–196.

Evans, G. (1993) Practical Numerical Integration (Chichester: Wiley).

Fouque, J-P., Sircar, R. and Sølna, K. (2006) Stochastic volatility effects on defaultable bonds. Applied

Mathematical Finance, 13(3), pp. 215–244.

Grundke, P. and Riedel, K. O. (2004) Pricing the risks of default: a note on Madan and Unal. Review of

Derivatives Research, 7(2), pp. 169–173.

Hull, J. C. (2003) Options, Futures & Other Derivatives (Upper Saddle River, NJ: Prentice Hall).

Hsu, J. C., Saa-Requejo, J. and Santa-Clara, P. (2004) Bond pricing with default risk, Working Paper,

UCLA Anderson School of Management, available at http://papers.ssrn.com/sol3/papers.cfm?

abstract_id5611401 (accessed May 2007).

Jarrow, R. A. and Stuart, M. T. (1995) Pricing derivatives on financial securities subject to credit risk.

Journal of Finance, 50(1), pp. 53–85.

Lando, D. (1999) On Cox processes and credit risky securities. Review of Derivatives Research, 2(2), pp.

99–120.

Leland, H. E. (2004) Predictions of default probabilities in structural models of debt. Journal of Investment

Management, 2, available at www.haas.berkeley.edu/faculty/pdf/LelandPaperJOIM-4.pdf (accessed

May 2007).

Leland, H. E. and Toft, K. B. (1996) Optimal capital structure, endogenous bankruptcy, and the term

structure of credit spreads. Journal of Finance, 51(3), pp. 987–1019.

Longstaff, F. A. and Schwartz, E. S. (1995) A simple approach to valuing risky fixed and floating rate

debt. Journal of Finance, 50(3), pp. 789–819.

Madan, D. and Unal, H. (1998) Pricing the risk of default. Review of Derivatives Research, 2(2), pp.

121–160.

Merton, R. C. (1974) On the pricing of corporate debt: the risk structure of interest rates. Journal of

Finance, 29(2), pp. 449–470.

Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I. (1986) Integrals and Series, Vol. 1 (New York:

Gordon and Breach).

30 L. V. Ballestra and G. Pacelli

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
1
2
:
3
2
 
1
 
O
c
t
o
b
e
r
 
2
0
0
9



Rich, D. R. (1994) The mathematical foundations of barrier option pricing theory. Advances in Futures

and Options Research, 7, pp. 267–311.

Talbot, A. (1979) The accurate numerical inversion of Laplace transforms. Journal of the Institute of

Mathematics and its Applications, 23(1), pp. 97–120.

Zhou, C. S. (2001) The term structure of credit spreads with jump risk. Journal of Banking and Finance,

25(11), pp. 2015–2040.

Appendix A

We describe the numerical method used to compute the integrals (46) and (47). This

algorithm exploits the special functional form of the integrand functions of (46) and

(47), and the fact that the exponential integral function can be approximated with

essentially no error using few elementary functions. As a result, the integrals (46) and

(47) are computed with excellent accuracy (relative error of order 1028 or less) using

only a limited number of elementary functions and exponential integral functions.

Hence, from the computational standpoint, the quadrature scheme proposed is more

efficient than methods based on standard interpolation (e.g. Lagrange and Gaussian

interpolation), which require a significantly large number of integrand function

evaluations in order to give very accurate results.

We note that the integrals (46) and (47) are evaluated using the same algorithm,

since both the integrand function in (46) and the integrand function in (47) have the

same functional form. We consider here only the integral (47).

Substituting (40) into (47) we obtain

H2 xð Þ~ 2

s2v l1{l2ð Þ H21 xð ÞzH22 xð ÞzH23 xð ÞzH24 xð Þð Þ, ðA1Þ

where

H21 xð Þ~{

ðz?

x

n2

u2
du, ðA2Þ

H22 xð Þ~
ðz?

x

n1
e l1{l2ð Þu

u2
du, ðA3Þ

H23 xð Þ~
ðz?

x

l2Ei {l2uð Þz l1{l2ð ÞEi l1{l2ð Þuð Þ
u2

du, ðA4Þ

H24 xð Þ~
ðz?

x

{
l1Ei {l1uð Þe l1{l2ð Þu

u2
du: ðA5Þ

The integral (A2) is an elementary integral and is readily obtained. The integral (A3)

can be evaluated analytically using formula (37). Therefore, H22(x) can be evaluated

using the exponential integral function. The integral (A4) can be evaluated

analytically using the relation (Abramowitz and Stegun, 1972)

ð
Ei lxð Þ

x2
~lEi lxð Þ{ Ei lxð Þzelx

x
zK , K [C, l [C\ 0f g: ðA6Þ
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Therefore, H23(x) can be obtained using the exponential integral function. Finally, let

us consider the integral (A5). This integral cannot be evaluated using an explicit

formula. However, it can be approximated very efficiently. Using the change of

variable z52l1u, let us rewrite (A5) as

H24 xð Þ~l2
1

ð{l1?

{l1x

Ei zð Þemz

z2
dz, ðA7Þ

where

m~
l2

l1
{1: ðA8Þ

Approximation of Ei(z)

We want to approximate the exponential integral function Ei(z) in (A7) using

elementary functions. Let M denote a positive integer; we consider the power series

expansion (38) truncated at the the Mth term:

EiM zð Þ~czlog zð Þz
XM
j~1

zj

jj!
, z [C\ 0f g: ðA9Þ

When |z| is large the truncated series (A9) converges very slowly to Ei(z) as MR‘

(Amos, 1980). In this case, however, Ei(z) can be efficiently approximated as follows.

Let L denote a positive integer; we consider the continued fraction expansion
(Abramowitz and Stegun, 1972)

EiL zð Þ~{ez 1

{zz

1

1z

1

{zz

2

1z

2

{zz

3

1z

3

{zz
� � � L

1z

L

{z

� 	
zh zð Þ: ðA10Þ

The summation appearing in (A10) inside the parentheses can be understood as

follows: each term must be added to the denominator of the preceding term; that is,

the summation is equal to 1/2z when L51, to

1

{zz 1

1z
1

{z

when L52, to

1

{zz 1

1z
1

{zz
2

1z
2

{z

when L53, etc.

It can be shown that, as LR‘, EiL zð Þ converges to the exponential integral
function Ei zð ÞVz [C\ 0f g. Moreover, when |z| is large, say |z|&1, the continued
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fraction expansion (A10) is a very accurate approximation of Ei(z) also for small

values of L. Moreover, the highest rates of convergence of EiL zð Þ to Ei(z) as LR‘

are achieved when R(z),0. Therefore, let us define

C1~ z [C, < zð Þ§0, zj jƒ30, z=0f g| z [C, < zð Þv0, zj jƒ12f g, ðA11Þ

C2~ z [C, < zð Þ§0, zj jw30f g| z [C, < zð Þv0, zj jw12f g: ðA12Þ

In (7) we approximate Ei(z) as

Ei zð Þ%
Ei100 zð Þ, z [C1,

Ei4 zð Þ, z [C2:

�
ðA13Þ

The accuracy of the approximation (A13) can be tested by numerical simulation. We

have found that, when z [C\ 0f g, Ei(z) is computed using (A13) with a relative error

smaller than 1.061026. Moreover, when |z|(5, z?0, the relative error of the

approximation (A13) is always smaller than 1.0610212.

We can rewrite Ei4 zð Þ as follows:

Ei4 zð Þ~ z4{19z3z102z2{154zz24

z5{20z4z120z3{240z2z120z
ezzh zð Þ: ðA14Þ

Let z1, z2, …, z5 denote the roots of the polynomial appearing in the denominator of

(A14). Clearly, one of these roots, say z1, is equal to zero. Moreover, it can be shown

that z2, z3, z4 and z5 are real numbers. Therefore, Ei4 zð Þ can be rewritten as

Ei4 zð Þ~ez w1

z
z
X5

j~2

wj

z{zj

 !
zh zð Þ: ðA15Þ

It can easily be shown that w1524/120. Numerical approximations of zj and wj

accurate to the tenth significative digit have been obtained using Matlab, j52, 3, 4, 5.

These values are reported in Table A1.

Evaluation of H24(x)

For the sake of brevity we show how to compute the integral (A7) only in the case

where 2l1x gC1. If 2l1x gC1 the two functional laws appearing in (A13) are both

used to approximate Ei(z) inside the integral (A7). If 2l1x gC2, only the second of

relations (A13) is used to approximate Ei(z) in (A7). Then the case 2l1x gC2 does
not differ substantially from the case 2l1x gC1, and is left to the reader.

Table A1. Numerical approximations of zj and wj.

z150 w1524/120
z250.7432919279 w250.6012046901
z352.571635007 w350.1857323340
z455.731178751 w450.01294284962
z5510.95389431 w550.0001201261988
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The integral (A7) can be rewritten as

H24 xð Þ~l2
1 I1 xð ÞzI2ð Þ, ðA16Þ

where

I1 xð Þ~
ð{l1x̄

{l1x

Ei zð Þemz

z2
dz, ðA17Þ

I2~

ð{l1?

{l1x̄

Ei zð Þemz

z2
dz, ðA18Þ

and x̄530/|l1|. Substituting Ei(z) in (A17) with the approximate formula (A13) we

obtain

I1 xð Þ%I11 xð ÞzI12 xð ÞzI13 xð ÞzI14 xð Þ, ðA19Þ

where

I11 xð Þ~
ð{l1x̄

{l1x

cemz

z2
dz, ðA20Þ

I12 xð Þ~
ð{l1x̄

{l1x

log zð Þemz

z2
dz, ðA21Þ

I13 xð Þ~
ð{l1x̄

{l1x

emz

z
dz, ðA22Þ

I14 xð Þ~
X99

j~1

ð{l1x̄

{l1x

zj{1emz

jz1ð Þ jz1ð Þ! dz: ðA23Þ

The integral (A20) can be evaluated analytically using relation (37). Therefore, I11(x)

can be conveniently expressed in terms of exponential integral functions.

The integral (A21) cannot be evaluated using an exact analytical formula;

nevertheless, it can be approximated efficiently as follows. Let S denote a positive

integer, we substitute the function emz in (A21) by its Taylor series truncated at the

Sth order. We obtain

I12 xð Þ%
ð{l1x̄

{l1x

log zð Þ
z2

dzzm

ð{l1x̄

{l1x

log zð Þ
z

dz

z
XS{1

j~1

mjz1

ð{l1x̄

{l1x

log zð Þzj{1

jz1ð Þ! dz:

ðA24Þ

All the integrals appearing in (A24) are elementary integrals and can be expressed in

terms of elementary functions using well-known integration formulae (Abramowitz

and Stegun, 1972).
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By numerical experiments we found that the choice S560 is always sufficient to

evaluate I12(x) with 10 exact significative digits.

The integral (A22) can be evaluated analytically using the following relation

(Abramowitz and Stegun, 1972):

I13 xð Þ~
ð

emx

x
dx~Ei mxð ÞzK , K [C, m [C\ 0f g: ðA25Þ

Therefore, I13(x) can be expressed conveniently in terms of exponential integral

functions.

Finally, we note that I14(x) is a finite sum of elementary integrals. These integrals

can be evaluated using integration formulae that contain only elementary functions

(Abramowitz and Stegun, 1972).

Now let us describe how to compute I2(x). Substituting Ei(z) in (A18) with the

approximate formula (A13) we obtain

I2%I21zI22zI23, ðA26Þ

where

I21~w1

ð{l1?

{l1x̄

e mz1ð Þz

z3
dz, ðA27Þ

I22~
X5

j~2

wj

ð{l1?

{l1x̄

e mz1ð Þz

z2 z{zj

� � dz, ðA28Þ

I23~

ð{l1?

{l1x

h zð Þ e
mz

z2
dz: ðA29Þ

The integral (A27) can be calculated analytically using the following relation

(Abramowitz and Stegun, 1972):

ð
e mz1ð Þx

x3
dx~

1

2
mz1ð Þ2Ei mz1ð Þxð Þ{ e mz1ð Þx mxzxz1ð Þ

2x2
zK ,

K [C, m [C\ {1f g:
ðA30Þ

Therefore, I21 can be evaluated explicitly using a few exponential integral functions.

The integral (A28) is the sum of four integrals that can be evaluated using the

following relation (Abramowitz and Stegun, 1972):

ð
e mz1ð Þx

x2 x{að Þ dx~Kz
e mz1ð Þx

ax

z
{ az1zamð ÞEi mz1ð Þxð ÞzeazamEi mz1ð Þ x{að Þð Þ

a2
,

a [C\ 0f g, K [C, m [C\ {1f g:

ðA31Þ

Hence, I22 can be expressed conveniently in terms of exponential integral functions.
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Finally, we note that, according to definition (43), the term h(z) inside the integral

(A29) is actually a constant. Thus, formula (37) can be applied and I23 can be

evaluated using exponential integral functions.

Remark A1. According to the numerical method described above the integrals

(46) and (47) are computed using only a finite sum of elementary functions and a
small number of exponential integral functions.
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