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ABSTRACT We study the classical single factor term structure equation for models that predict
non-negative interest rates. For these models we develop a fast and accurate finite difference method
(FD) using the appropriate boundary conditions at zero.

KEY WORDS: Term structure equation, degenerate parabolic equations, stochastic representation,
finite difference method

1. Introduction

When determining option prices using the Black–Scholes equation with finite difference

methods (FDs), boundary conditions need to be imposed both for vanishing asset values

and for large asset values. In the case of one underlying asset, the appropriate value at
zero for European options is simply the discounted value of the pay-off function at that

point. This is the case since the boundary is absorbing corresponding to the underlying

asset going bankrupt. The question of appropriate boundary values for several under-

lying assets is investigated by Janson and Tysk (2006). One should perhaps note that, for

several models, for instance geometric Brownian motion, the stock process reaches the

boundary with probability zero and the boundary conditions are thus redundant to

specify from a mathematical point of view. However, using FDs, boundary conditions

are needed, being mathematically redundant or not. Let us note that the conditions
discussed above are valid for models predicting positive asset values as well as those that

allow bankruptcy with positive probability.

The present note deals with FDs for the classical term structure equation in single

factor models. Using this equation, bond prices and bond option prices can be

determined. We consider models that predict non-negative interest rates. In most

interest rate models the boundary is not absorbing since the short rate typically

would not stay zero if the value zero is reached. Moreover, the diffusion coefficient
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tends to zero and the drift is non-negative at the boundary for models predicting non-

negative rates. Consequently, it is not clear what boundary conditions should be

specified for the term structure equation. Modelling the short rate X(t) directly

under the pricing measure as

dX ðtÞ ¼ �ðX ðtÞ; tÞdtþ �ðXðtÞ; tÞdW ;

the bond option price u corresponding to a pay-off function g is given, using risk-

neutral valuation, by

uðx; tÞ ¼ Ex;t½e�
R T

t
XðsÞds

gðXðTÞÞ�:

As indicated above, we assume that �ð0; �Þ ¼ 0 and �ð0; �Þ � 0. For the precise condi-

tions on � and �, see Ekström and Tysk (2008). One important example is the

Cox–Ingersoll–Ross (CIR) model, for which �ðx; tÞ ¼ aðb� xÞ and �ðx; tÞ ¼ c
ffiffiffi
x
p

,

where a, b and c are positive constants. We note that if the pay-off g ; 1, then bond

prices are obtained. The function u satisfies the term structure equation

utðx; tÞ þ
1

2
�2ðx; tÞuxxðx; tÞ þ �ðx; tÞuxðx; tÞ ¼ xuðx; tÞ; (1)

with terminal condition u(x,T) ¼ g(x). The term structure equation holds at all inter-

ior points ðx; tÞ 2 ð0;1Þ · ½0;TÞ. Oleinik and Radkevic (1973) discuss in detail the

issue of when boundary conditions are needed at x ¼ 0. No boundary condition is

needed if the so-called Fichera function, which in a one-dimensional time-

homogeneous setting is �ðxÞ � 1
2
ð@�2=@xÞðxÞ, satisfies

lim
x&0

�ðxÞ � 1

2

@�2

@x
ðxÞ

� �
� 0:

In the example of the CIR model, this condition reduces to ab� 1
2

c2 � 0. This is of

course consistent with the usual Feller condition that states that zero is not attainable
for the process X. However, to use FDs it is necessary to know the behaviour of the

solution close to the boundary, even though a boundary condition might be redundant

from a mathematical perspective.

Only recently has the question of appropriate boundary behaviour for Equation (1)

been treated mathematically. The main result of Ekström and Tysk (2008) states that

the bond option price u is the unique classical solution to the term structure equation

satisfying the boundary condition

utð0; tÞ þ �ð0; tÞuxð0; tÞ ¼ 0: (2)

Observe that this boundary condition is obtained by formally plugging x ¼ 0 into the

equation. Alternatively, to obtain an intuitive explanation of Equation (2), assume

that u is sufficiently regular and use Ito’s formula to compute

dðuðXðtÞ; tÞÞ ¼ ut þ �ux þ
1

2
�2uxx

� �
ðX ðtÞ; tÞ dtþ ð�uxÞðXðtÞ; tÞ dW :
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Standard arbitrage theory says that the local rate of return should equal the short rate

X. At the boundary we therefore obtain Equation (2) since � vanishes there.

Remark 1. It is perhaps misleading to always refer to Equation (2) as a boundary

condition. When the boundary is not attainable for the stochastic process X, Equation (2)

should perhaps rather be referred to as the boundary behaviour of u. For simplicity,
however, we will refer to Equation (2) as a boundary condition.

The recent book by Duffy (2006) has a section entitled ‘The thorny issue of

boundary conditions’, treating the term structure equation. Also, other references in

this area, such as d’Halluin et al. (2001), deal with this question. In these references,

boundary conditions are only specified for certain models and for parameter values

when the boundary is reached with positive probability, and the general case is

avoided. In Example 1.1 of Heston et al. (2007), the authors encounter several solu-

tions to the pricing partial differential equation (PDE) when not considering the
boundary behaviour, and they discuss these solutions as different possible prices.

Our point of view is that only the solution that satisfies appropriate boundary condi-

tions represents the price as given by the risk-neutral expected value.

In the present note we develop a fast and accurate FD using Equation (2). The

advantage of FDs compared with Monte Carlo methods for Equation (1) is the

accuracy and the efficiency for low-dimensional problems (see, e.g. Lötstedt et al.,

2007). Our method requires no tailoring for the specific model in question, but is

instead valid for all models that predict non-negative rates. We quote from Duffy
(2006, p. 280): ‘Much of the literature is very Spartan in the author’s opinion when it

comes to defining boundary conditions, and their assembly into the discrete system of

equations.’ This note is one step towards filling this gap.

The paper is organized as follows. The term structure Equation (1) with the bound-

ary condition Equation (2) is discretized by a FD of second-order accuracy in

Section 2. The FD is applied to the CIR model (Brigo and Mercurio, 2001; Cox

et al., 1985) and a model with a diffusion proportional to x3/4 in Section 3. Finally,

some conclusions are drawn.

2. Numerical Method

The term structure Equation (1) is solved by a FD on the grid xn ¼ nh, n ¼ 0; . . . ;N.

The upper boundary of the computational domain is xmax and the step size h is xmax=N .
The constant time step is �t ¼ T=M between the discrete time points tm ¼ m�t,

m ¼ 0; . . . ;M. The numerical solution at ðxn; t
mÞ is denoted by um

n and the spatial

derivatives there are approximated by

ux �
1

2
h�1ðum

nþ1 � um
n�1Þ; uxx � h�2ðum

nþ1 � 2um
n þ um

n�1Þ: (3)

At the lower boundary, x0 ¼ 0,

ux � �h�1 3

2
um

0 � 2um
1 þ

1

2
um

2

� �
(4)
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in Equation (2) and at xN ¼ xmax,

ux � h�1 3

2
um

N � 2um
N�1 þ

1

2
um

N�2

� �
;

uxx � h�2ð2um
N � 5um

N�1 þ 4um
N�2 � um

N�3Þ: (5)

In this way, only values of the solution between x0 and xN appear in the approxima-

tions. The second formula of Equation (5) is a linear extrapolation of the difference
approximations of uxx at xN - 1 and xN - 2. All approximations are second-order

accurate.

Let um denote the solution vector at tm with the components um
n. The time derivative

is approximated in the same manner as the space derivative in Equation (4). Then the

complete integration scheme backward in time for Equation (1) is

3

2
I ��tA

� �
um�1 ¼ 2um � 1

2
umþ1; m ¼M � 1;M � 2; . . . ; 1; (6)

where the constant matrix A represents the space discretizations in Equations (3), (4)

and (5). The implicit time integration method is the backward differentiation formula

of order two (BDF2). The first step is taken with a first-order method, the Euler
backward method or BDF1 of order one,

ðI ��tAÞuM�1 ¼ uM ; uM
n ¼ gðxnÞ: (7)

Both methods are stable if all eigenvalues �(A) of A satisfy <�ðAÞ � 0 (Hairer et al.,

1993). The error in the solution after the first time step is ofOð�t2Þ and the truncation
error is of order two in both time and space at all points (m, n) with m , M. The

matrices in Equations (6) and (7) are almost tridiagonal and the systems of equations

are both solved easily in a number of operations proportional to N. If � and � are time-

independent, then A is constant and a LU-factorization is first computed for the

system matrices in Equations (6) and (7) (Dahlquist and Björck, 1974, Ch. 5.4). This

factorization is then used in every time step with a cost of about 5N operations to

obtain um–1.

3. Numerical Results

We solve Equation (1) using the scheme in Section 2 for two different models: the CIR

model (Brigo and Mercurio, 2001; Cox et al., 1985) and a model with �, x3=4. An

exact solution is known for the CIR equation and the convergence properties of our

method can then be investigated. The second model is chosen to demonstrate the

flexibility of the FD in a case without an analytical solution.

Let

�ðxÞ ¼ aðb� xÞ; a ¼ 0:55; b ¼ 0:035; �ðxÞ ¼ 0:39
ffiffiffi
x
p

(8)

in Equation (1) with similar parameters as in the CIR model of d’Halluin et al. (2001)

and let g(x) ¼ 1. The end points in space and time are xmax ¼ 0:1 and T ¼ 1. The
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analytical solution v at grid and time points vm
n ¼ vðxn; t

mÞ were found by Brigo and

Mercurio (2001, p. 58).

Remark 1. The analytical solution given by Brigo and Mercurio (2001) is only

specified for parameter values such that the Fichera function is strictly positive at

x ¼ 0, and the parameter specification Equation (8) does not fulfil this condition.
However, the same formula is also correct in the case when the Fichera function is

negative at x ¼ 0. To see this, it suffices to check that the correct boundary condition

Equation (2) is satisfied.

The difference dm between um and vm at all time points is measured in the norm

defined by

kdk2 ¼
XM
m¼ 0

XN

n¼ 0

h�tjum
n � vm

n j
2:

In Figure 1, the second-order convergence rate is confirmed with our choice of T and

xmax. For long integration times, the solution error has its maximum at x ¼ xmax, t ¼ 0.

The eigenvalues of A are all real except for two and all have a negative real part for

N ¼ 10, 20, 40 and 80, implying a stable integration in Equation (6) in those cases. The

minimum and maximum modulus of j�ðAÞj are found in Table 1. The minimal value is

1 1.2 1.4 1.6 1.8 2
−6.5

−6

−5.5

−5

−4.5

−4

log(N)

lo
g(

er
ro

r)

Figure 1. The difference log10 kdk between the exact solution and the solution computed with the
FD in Section 2 versus log10N for the same number time steps M and space steps N.

Table 1. The minimum and maximum modulus of the eigenvalues of A.

N 10 20 40 80

minj�ðAÞj 0.0294 0.0294 0.0294 0.0294
maxj�ðAÞj 0.0186 · 104 0.0926 · 104 0.4152 · 104 1.7711 · 104
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associated with an eigenvector which is almost constant in n. This is the mode with the
slowest decay. With an explicit method the time step is restricted by

�t,
1

max j�ðAÞj

for a stable integration. From the table, it follows that with N ¼ 80 we have an upper

bound on an explicit time step �t , 0:56 · 10�4. With the implicit method in Section 2

�t ¼ 1=M ¼ 0:0125, about 200 times longer. The work per time step for the implicit
method is less than two times the work for the simplest explicit method and the error in

the solution is dominated by the spatial error in both cases.

The term structure equation is solved with g(x) ¼ 1 and the same drift term as in

Equation (8), but with �ðxÞ ¼ 0:39x3=4. Only a minor change in the code is necessary.

The solution is displayed in Figure 2.

4. Conclusions

We implement a general boundary condition at x ¼ 0 for the term structure equa-

tion and propose a finite difference method based on this boundary condition. In

this way, we partly resolve ‘The thorny issue of boundary conditions’, which as

mentioned before is the title of Section 25.6 treating the term structure equation in

Duffy (2006). The numerical method is implicit in time and second-order accurate.

The flexibility of a finite difference method makes it easy to change the drift and

diffusion terms in the model.
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Dahlquist, G. and Björck, Å. (1974) Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall).

d’Halluin, Y., Forsyth, P. A., Vetzal, K. R. and Labahn, G. (2001) A numerical PDE approach for pricing

callable bonds. Applied Mathematical Finance, 8(1), pp. 49–77.

Duffy, D. J. (2006) Finite Difference Methods in Financial Engineering (Chichester: Wiley).

Ekström, E. and Tysk, J. (2008) Existence and uniqueness theory for the term structure equation. Preprint.

Hairer, E., Nørsett, S. P. and Wanner, G. (1993) Solving Ordinary Differential Equations, Nonstiff Problems,

2nd ed (Berlin: Springer).

Heston, S., Loewenstein, M. and Willard, G. (2007) Options and bubbles. Review of Financial Studies, 20(2),

pp. 359–390.

Janson, S. and Tysk, J. (2006) Feynman–Kac formulas for Black–Scholes-type operators. Bulletin of the

London Mathematical Society, 38(2), pp. 269–282.

Lötstedt, P., Persson, J., von Sydow, L. and Tysk, J. (2007) Space–time adaptive finite difference method for

European multi-asset options. Computer & Mathematics with Applications, 53(8), pp. 1159–1180.

Oleinik, O. A. and Radkevic, E. V. (1973) Second Order Equations with Non-Negative Characteristic Form

(New York: Plenum Press).

Boundary Values and Finite Difference Methods 259

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
1
2
:
2
9
 
1
 
O
c
t
o
b
e
r
 
2
0
0
9


