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1. Description of the Problem

We analyze the 3D Gross-Pitaevskii equation (GPE), which is a nonlinear
Schrodinger equation with confining potential. More precisely we focus on the case
when the potential is quadratic and strongly anisotropic. Thus, we consider the
following problem:

||

ity = —%A«/J + (T + —) W + 81,
¥(0,z,2) = Yr(x,z), z€R? zeR,

where the parameter £, which determines the strength of the anisotropy, tends to
zero. Note that 1/£2 is the harmonic oscillator frequency in z-direction. Further-
more, we impose the normalization condition:

[ il asdz =1, (1.1)

at time £ = 0, which is then maintained by the equation.

As will be shown below, by expanding the solution with respect to the eigen-
states of the Hamiltonian in the strongly confined direction, the formal asymptotic
analysis yields in the limit (of “infinite” confinement in z-direction) a denumerable
system of NLS equations.

In particular, when the initial data belongs to the eigenspace of the ground state
of the dominating Hamiltonian, it can then be proven rigorously that there is only
one limiting equation, whose solution remains concentrated on the ground state. 3

The stationary case is treated in Ref. 7. There, the limit of the three-dlmensmnal
ground state energy is carried out (for z € R? and z € R).

In the present paper we are interested in the numerical approximation of the
limiting equations. For this porpose, we truncate the expansion at a finite index NV
considering only a finite number of limiting equations, whose well-posedness will
be proven in Sec. 2. The subsequent section presents the numerical procedure for
solving the limiting system for different N = 1,2,3 and 4. Accordingly, a multistep
time splitting scheme, second order in time and of spectral accurancy in space, is
introduced. Finally, the numerical simulations are presented in Sec. 4.

At first we perform the rescaling z — ¢z. In order to keep the wave function
normalized in L2(R3) we have to rescale 9 — e~1/2y. As we want to balance the
nonlinearity with the terms of order 1 we choose § = O(g), thus we consider weak
nonlinearities. After the rescaling we obtain

e = HY o+ o + 9,

Pt = 0,2, 2) =Pz, 2), reR? zeR, (1.2)
where HL = —1A,+ %‘i and H = —30,.+ % are harmonic oscillator Hamiltonians

in z and z directions, respectively.



On the Gross—Pitaeuskii Equation with Strongly Anisotropic Confinement 769

We introduce the fast time scale 7 = t/¢?, characteristics for oscillations in the
z-direction, and make the two scale ansatz ¢ = 9¥(t, 7, 2, 2} leading to

Wiy = HYG+ S H+ 9%, (13)
If we let ¢ — 0, we formally obtain the equation
iv, = HUT, (1.4)
which can be solved explicitly in terms of the spectral decomposition:
U= quke""“"'rwk(z). (1.5)
k>0

Here (wi(z))k>0 are eigenfunctions, normalized in L(R), of the self-adjoint, non-
negative operator H, defined on L?(R) with the domain

X = {ue H'(R); zu € L R)}.

The eigenvalue problem

Huwy = prwy,
can be solved explicitly with
1 1\
pr=Fk+3, wi(z) = (21)—1/2 (;) H(z), k=0,1,...

denoting the eigenvalues and eigenfunctions respectively.® Here Hy(z) are the stan-
dard Hermite polynomials. By modulation, we let ¢ depend on the slow variables
(f,z). This motivates the expansion of the solution 1 of (1.2) with respect to the
eigenstates of H:
V(@ 2) = ) e MR g mhun(2), (1.6)
k>0
where ¢§(t,z) = [; ¢¥°(x, z,t)wi(z) dz are the Fourier coefficients. Substitute the
expansion (1.6) into (1.2), multiply the equation by wxe®**/¢” and integrate with
respect to z, we obtain;
005 = HY g5+ Y quamne Untiim /S gegege k0 (1)
t,mnz0
where Yiimn = [g wie{2)wi(2)wm{2)wn(2) dz. Note that all coefficients in the sum,

for which ptr, + gy — pm — p is different from 0, tend to zero weakly. Thus, in the
limit £ to 0 we obtain formally:

k —
e = H G+ ) Vimnk$i®mon, k>0, (1.8)

l,m,n

where me,ﬂ_ denotes the sum over all I, m,n > 0 such that p, + 4 — pm — px = 0,
and ¢, denotes the (weak) limit of ¢, as £ tends to zero.
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Equations (1.8) are a denumerable system of two-dimensional GPEs, strongly
coupled through the cubic nonlinearities. We want to investigate the properties of
this coupling. For every fixed k, all triples of the form ({,m,n) = (1,1, k) appear in
E‘zm’n, leading to the contribution 3~ yukx|#:|? to the potential in the ¢x-equation.
However, by the special form of the eigenvalues of the harmonic oscillator, other
coupling terms may also occur, since the condition pn + j2 — pim — fk = 0 reduces
to n+ 1 —m — k = 0. For example, in the ¢p-equation, the term Yor2143¢2 is not of
potential type.

If not all states wi appear in the spectral decomposition of the initial datum
Wy, which states will appear in the solution for positive time t? The question can
be answered in terms of the following definition.

Definition 1.1. The index set I C {0,1,2,...} is called closed, iff (I, m, n) € I3
and k = +7n —m > 0 imply k € I. The closure I of I is the smallest closed index
set containing I.

Now the answer to the above question is: Define I = {k > 0: ¢x(z,t = 0) # 0}.
Then, for all ¢ > 0, ¢x(x,t) =0 for k ¢ I.
It remains to characterize the closed index sets.

Lemma 1.1. A nonempty indez set I is closed iff it has the form I = {p + jg:
4 > 0} with either0<p<gqorg=0.

Proof. The “if® is obvious. For the proof of “only if”, assume that I is closed,
card(I) > 1, and that kg = p < k1 = p+ q are the two smallest elements of I.
If p > g would hold, then ko + ko — k1 = p — ¢ € I. However, ko + ko — k1 < ko
contradicting the assumption that kg is the smallest element of I. This proves p < g.

Now we shall prove by induction that I has the form stated in the lemma.
Assume k; = p+ 7, 0 £ j < n, are the n 4 1 smallest elements of I. Then
p+ (n+ 1)g = ke + k1 — ko € I. If there were a ko1 € T with ky, < kpy1 <
p + (n + l)g, then kp + kn — kn1 € Tand kno1 < kn + kn — kny1 < kn, Lo,
there were an element of I between kn—1 and k,, contradicting our aséumption
that ko,...,kn are the n 4 1 smallest elements. O

Closed index sets either have one element or infinitely many. In some cases they
can be easily related to symmetries of the wave function. In Ref. 3, the case of
I = {0} is considered, i.e. initially only the ground state is charged. According to
the observation mentioned above in this special case the system (1.8) will consist of
only one equation for ¢, the modulation of the ground state. In fact, ¢p is proven
to be the approximation of the solution ¢ of (1.2) on every bounded time interval ®
Moreover, ¢o satisfies (1.8) with & = 0. Other examples are the sets of even and
odd integers, corresponding to wave functions which are, respectively, even and odd
in terms of the variable z.
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It is a well-known fact that (1.2) conserves mass

f P2 do dz,
R’3

and energy
1
7 [ (0P 4120 ) dadzt [ (VP b oy + ) dodz. (1)

Mass conservation carries over to the limiting system (1.8) in the obvious way. If
we multiply (1.8) by ¢, integrate by parts, take the imaginary part and sum over
all k, we obtain

d 2
— dr =0,
dt‘;[mw

The energy contains two terms of different orders of magnitude. We shall show that
limiting versions of both terms are conserved in the limit.

First we multiply Eq. (1.8} by 8:¢, take the real part, integrate with respect
to z, and sum over all k. We introduce the abbreviation

DR IP I
k>01,m,n

i.e. the sum over all £,{,7n,n > 0 such that y; + tin — tm — pg = 0. Taking into
account the computation (exchanging m and k)

2m2*7nmlk¢l¢n¢m(¢k)t = mz*’}’nmlkﬁblﬁbn[(d’m)tﬁﬁk + ém (¢k)t]

= %‘mz*'Ynmlk [¢I¢n(¢m¢k)t + (¢I¢n)t¢m¢k]
1 * ——
= EWZ Frmik (DrdnPm i)ty (1.10)
we obtain
d 2 2 k -
0= —f Z (lV(ﬁkl + |$¢ki + R Z 7nm|‘.k¢l¢’n¢m¢k) dx.
dt Jra k>0 Lmn

Since, by exchanging (m, k} and (I, n),
* —_— 1 * _—
2 YomisibnFmbk = 53 Yomik [$1nBrr + dmbiFida]
= Z Vnmlkm(¢l¢n¢m¢k)s
we deduce that > v,mikd10nPmdr is real. Therefore the quantity

E1=szz

k>0

(fvmﬁbklz + fx‘;bklz + Z k7nmlk¢t¢n¢m¢k) dzx. (1'11)

i,mn



772 W. Beo et al.

is real and conserved by (1.8). It is clear that the first two terms in E, are positive.
In order to see the positivity of the exchange term in the energy we take a function
(3¢(t, z) with the expansion:

Bo(t,z) = 3 Bre e wy(2)
k>0
and compute
0= j e ) dz = Y Ve~ Bt =i 0 BB
R klmmn>0

= Z* 'Ynmlkﬁlﬁnﬁmﬁk-

This shows the non-negativity of Ej, which is a limiting version of the second
(O(1)-) term in the energy (1.9). The first term in (1.9) formally converges to

Ez=[ > pldel da.
R? 150

For proving conservation of E», we multiply Eq. (1.8) by Lk®k, integrate with
respect to «, take the imaginary part and sum over all £ > 0. Then we obtain, by
appropriately exchanging indices:

d
7 o b

k>0
k —_— —_—
=% Zf Ik l:Hl(ﬁk + Z 71mnk¢l¢m¢n:| dx dx
k>0 /R Lmn

= S/RZ Z*’thnkukéwmfﬁzﬁﬁn dzx = %%]Rz Z*'Ylmuk (it + tim ) PrPm PrPn dz
1 * o
=79 Lz > Vimnk [(1r + )Pk Gmrdn + (i + 1) Brndrdm ] dz

1 * _—
= Z%j;p > Yomnk{pk + pim — i1 — pin) PiBmrdhn dz = 0.

2. Global Existence for Finite Subsystems

The first step in the numerical approximation of (1.8) is to cutoff the denumerable
system at some finite index N. Define ® := (¢x(f, )<y, Where ¢ satisfies:

iOepr, = H dx + fu(@), (2.1)
¢x(0, ) = ¢y (z), (2.2)

with £ < N and
fe(®) = Z ’Ylmnk‘.f’lqé_m.d’n- {(2.3)

Mn At~ Hon — 25 =0
ni,m=
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The method used to show uniqueness and global existence of the finite system
works analogously to the proof for the well-posedness of the NLS in the subcritical
case.>®%% For the sake of completeness, we present a brief sketch here.

Definition 2.1. Denote by (L?}" the following space:
(LN = {‘I’ = (Pr)k<n: ¢x € LP(R?) Yk < N; ﬂaﬁcllfﬁk”m(m) < Oo}a (2.4)

equipped with the maximum norm |®|(zsyv = maxe<n ||dr| L#(r?)- Define by

L= {w = Wedesn: 3 Ielfn@ny + D llloelFagey < oo}- (2.5)

k<N k<N

First one has to show by a contraction argument uniqueness and existence of the
Cauchy problem on a small time interval I CR; |I| < T in

X(I) :=C(I,(LYN).

Note that 3 is continuously embedded in (L*)V. Since the time interval of existence
of a local solution with initial data in ¥ depends only on the ¥-norm, one can show
global existence if one finds an a priori estimate for the $-norm of the solution.
Notice that the energy is positive. This fact allows then to recover directly estimates
for the Z-norm. In order to prove the conservation laws at a nonformal level one has
to introduce a regularization, which can be removed subsequently by a standard
limiting argument. Hereafter we sketch the existence result.

Theorem 2.1, Let @' € 5. Then the IVP (2.1), (2.2) has a unique solution ® in
X(R). Furthermore ® € Cy(R, T} and satisfies the following equalities:

E\[®7) = BA[®(8)], |9 |(zayw = |B(t)|(rayw, (2.6)
with

By [®()] :=% |vq>(t)|?L,)N + [z] B(E)gayn + /R ] > Fe(®(t,2)) it @) de|.

k<N

For the proof we proceed as in Ref. 8. The following lemmas and the derived
conservation laws provide the tools needed in the proof.

Lemma 2.1. The map ® — £(®), where £(®) = (fi(®))r<n, i continuous from
(LYY to (LY*)N and satisfies the estimate:

£(2) — £(T)|(arayy < C|® — &)zayn (1®[fpayw + [T[Eayn ), (2.7)

where C' is a generic constant and may depend on N.
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Proof. We easily obtain:
|61 @mbn — Yi¥omtn|
< |$1Bmtn — G1bmdn| + [Vibmbn — Yidmepn| + [0iBmbn — Y1PmPn|
= |¢1 — %1|[@mn| + |bm ~ Pmlitrdnl + |dn — Pl [Pmil
< 2 [0~ 9ul(dml® + 9n) + [ém = Giml (011 + [60)
+ o0 — nl([oml* + 191%)]
such that the nonlinesrity can be estimated by:
I fi(®) = fie(T)| gasa
<C Y wme{ide— Gullea(@mlFe +lidnlEe)

fntp = — =0
nd.m<

+lm ~ Yl za (el Fa + @l Fe) + Ndn — Yl s (leomllZa + 1|¢z||i4)]-

Summing up over all k£ < N, making use of the symmetry of the indices in the sum
over (y + fin = Hi + fim, We obtain:

37 1£6(®@) = Fe(@)llpare

k<N

<C Z Yimnk || Px — Ykl L

Mot — o — =0
n,l,m<

x (IellFa + llmlFs + NenliZa + 19elTe + lmlZa + 1¥nlie)

1/2
<C (Z llbw — 'ﬁbk”%‘!) x 1>, > Vimnk

k<N k<N | prtpm—ptim—pr=0
nlmiN

24 1/2

x (l13e + llgmliEs + onllFe + I9ulZe + lmlTa + 1¥lZe)

' 1/2
<cC (Z 1 — wkn%«) (Z(nqbzni« + ||¢z||%4))

k<N I<N
<Cl® - ‘I‘l(Ld)N(l@l%Ld)N + |‘I’|%L4)N)- a

Corresponding to (2.1) we write the integral equation:
() = U)o -+ [Fi(0,2)®) (1), (2.8)
with (U(t))scr being the group of isometries generated by —iH~* and

ta
[Fi(t1,82)@] (£) =3 | U(t — 7)fi(®(7))dr.

1
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Lemma 2.2. The map (t1,t2,®) — F(t1,2)® is a continuous map from I x I x
X(I) to X(I). Moreover I satisfies:

|F'(t1,82)® - F(t1,t2) 0|2y < Cltr — ta] /28 — Uy (|‘I’|i’(1) + ['I’Et'(r)) .

Proof. As a consequence of Lemma 2.1 we have for any ® € X(I) continuity of the
function 7+ f(®(7)). Furthermore we can use information on the operator U(t),
which is actually a bounded operator from L*/3 to L4, for ¢ different from zero, such
that for © € C(I, (L*/3)") the map 7 +— U{t—7)6(r) (where we apply the operator
componentwise) is continuous from I\ {¢} to (L*)¥. Finally the combination of the
two maps provides the desired continuity result and we estimate:

[[F(£1,22)® — F(t1, t2) ¥}(t)|zayw
< I Felts, t2)® — Fi(t, 2)W](2)] s

k<N
to
< 3 [T 10 - D@ ~ S ¥ lzedr
k<N vt
t2
< 3 [l = U S@) — FCE )l sl
k<N Th
= [l =717 3 1)) — el
t1 k<N
_ < I — 22| fe(®) — (Wl zassyms.-
The statement is then a consequence of Lemma 2.1. 0

3. Numerical Approximation

In this section we describe the method used to numerically solve the asymptotic
approximation (1.8) of the GPE with strongly anisotropic potential. We have
already seen in the first part of this work that in the limit ¢ to zero (“infinite”
confinement in 2-direction) we formally obtain a system of GPEs. To treat the sys-
tem numerically we truncate the expansion at a finite index N and consider only a
finite number of limiting equations (2.1), with 0 < & < N. Moreover, we consider
here a spatial dimension reduction from 2D to 1D, for which the theory developed
in the previous sections applies just as for the presented case of reduction from 3D
to 2D. In other words, we consider the following rescaled GPE:

e = H 9+ 3 Ho + [9]*¢,

¥(0,2,2) =9'(z,2), z,z€R (3.1)

In order to solve the GPE (3.1) (for benchmark tests), we use the time-splitting -
spectral method (TSSP).2
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For N = 1, we have only one equation in the limiting system:
0o = H" o + yoooo|bo|> o,

3.2
#0,2) = 6(@), zER, (32)
where
Yeimn = L Wk (2)wi{2)wm (#)wn(2) dz,

(1, wi) is the k-eigenpair satisfying

1

5(—32,, + 22w (2) = Hrwp(2),
with wy normalized to 1 in L?(R).

For N = 2, we have the following limiting coupled system:
100 = Hl g + (o000 ldo|? + 2v0011 ¢4 %) do, (3.3)

iy = HL ¢y + (270011) 02 + Y lg1[?) ¢1.

It is obvious that for both cases, N = 12 and N = 2! respectively, we can use
(the Strang-splitting version of) TSSP for discretizing the system in a straightfor-
ward way, since both equations are of NLS-type such that the moduli of the wave
functions ¢y and ¢ are conserved in the potential-splitting step.

On the other hand, if we consider N = 3 we have:

idebo = H' o + (yo000|dol* + 2v0011]¢h1[? + 270022(¢212) B0 + Yo11267 @2,

01 = H 1 + (2y0011[¢|® + Y1111]611% + 2711220021261 + 2v01120061 02,

i0ips = H ¢ + (2y0022100]% + 27112218117 + Ya222(621%) b2 + Yor128002.

For t € [tn,tp4.1] we discretize this system of three equations by splitting it in
three subsystems which we are going to solve in five steps:

Step 1. For the time step of length At/2 we solve:
. z?

WOypo = (7

22
2
2

. . I
iy = (—2" + 2v0022|¢0]* + 2y1192)¢1 | + 72222|¢2|2) Pa.

Since for this time step each ODE leaves |¢al, [#1] and |@2| invariant in time, we
can integrate each equation (separately) exactly in time, given initial data at t.

+ o000 l¢0|* + 270011 |61 ) + 270022|¢2|2) do,

i = ( + 2v0011 )0l + Ya111(d1 |2 + 2’}’1122]9’52[2) $1,

Step 2. For the time step of length At/2 we solve:
. 1
iy = —§A¢¢o,

. 1
iy = —§Am¢1a

. 1
10ipp = — EAzfﬁm



On the Gross-Pitaevskit Equation with Strongly Anisotropic Confinement 777

by using the Fourier pseudospectral discretization in space and then integrating the
ordinary differential system (ODEs) in phase space exactly in time.

Step 3. For the time step of length At we solve:

0o = Yor1267d2, _
01 = 2v0112¢0¢261, (34)
iG¢d2 = Yor1207%o-
Here we discuss in detail how we implement the discretization of (3.4). We can
rewrite this system as:

0 o 0
1P = Y0112A(®)®, where A(®) := [ ¢athr 0 dogn (3.5)
0 di1da O
and @ = (¢, ¢1, $2)T. Integrate (3.5) over the time interval [tns tnt1], approximate
the integral by the trapezoidal quadrature, we get
@(tn+l) — e—i-'mlu f::+1 A(@(‘r))d’r . e—i")’onz%[A(@(tn))+A(@(tn+1))]

e e P12 RE[A(P™)+ARM)] . g H1011288B(87)

where ®” := ®(t,) and &) is an approximation of ®(t,,1) and can be computed
from the ODEs (3.5) by any explicit method. Here we use the Forward Euler method
to compute it as:

BN = " — i Aty 2 A(B™) D™,

1 0 b2 0
B(®") = S[A(®") + A@M)]:= [ b1z 0 s |,
2 .
0 b3 O
where b1z = 1(¢76% + ¢{” @), bas = L(gpdt + 5P 6M). Since A is Hermitian,
i.e. AT = A, thus B is also Hermitian. Therefore, we can find explicitly a unitary
matrix P with P~! = PT and a real diagonal matrix A such that
B =PAP™! = PAPT,
where _
0 0 0 1 Vb bz —biy
A=+/|big|2+ |Bas]?, A=|0 A 0], P=— 0 A .
Vb12|? + |bes| W

0 0 - ~V2b1a byz —boy
Thus we can compute one-step approximation of the ODEs (3.5) as
q)n+1 — Pe—i’fouzAtApT‘Dn-

Remark 3.1. Since B is Hermitian and thus A is a real diagonal matrix, it is then
obvious that we have total mass conservation, i.e.

"(pn+1"2 - (@n-}-l)T(I)n-i-l — (@n)TPei'ml12AtAPTPe—i'yougAtAPT¢,n
= (@")Te" =||"|%
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Step 4. For the time step of length At/2 we solve again:

. i
Zatfﬁo = —EAmﬁf’o,

1

101 = *EAacfﬁl,

1
i0ppg = _§Am¢2-

Step 5. For the time step of length At/2 we solve again:

2

) z

B0 = { — + ~Yooooldo|® + 270011|¢1|* + 2v0022¢2|* ) o,
2

) z?
101 = (? + 2v0011|¢0|* + Y1111l + 2’71122|¢2|2) &1,

. z?
G2 = (?
For N = 4 we can use the analogous type of discretization as in the case of
N = 3. Writing the system for N = 4 explicitly we immediately realize that the
matrix A is Hermitian.
We remark that the presented time splitting-spectral technique for ¥ = 1,2,3,4
is second order in time and of spectral accuracy in space.

+ 2v0022|¢0|? + 2v1122|61 |2 + 72222|¢'2i2) P2.

4. Numerical Examples

Example 4.1. For N = 1, i.e. in the case of one limiting equation, we choose as
initial condition for (3.1)

P! (2, 2) = wol2)¢g (), (4.1)
and solve the IVP on [-8, 8] x[—a., a.] with periodic boundary conditions. Secondly,
we solve (3.2) with initial condition

v
w00 =dh@) = (1) =, (4.2)

on [—8, 8] with periodic boundary conditions.

N, denotes the number of grid points in z-direction, N, denotes the number
of grid points in z-direction and At the time step. The numerical values for the
experiment setup can be seen in Table 1.

Table 1. Values for the parameters used in numerical experiments.

€ Az N2 Ng At
0.8 6 128 256 103
0.4 3 128 256 103
0.2 1.5 256 512 10—
0.1 0.8 256 512 10—¢

0.05 0.4 256 512 10—5
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0015
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oty
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AAAAAAAAAAA.A‘AA_@_ _._g_ .n__ _9_9__9_ A&_’AAAA&AAAAAA‘
1 2 3 4 5
t

Fig. 1. o§(t) with € = 0.8,0.4,0.2, 0.1 and 0.05 (in the order of decreasing peaks).

In Fig. 1, we plot the L? norm of the approximation error as function of time,
with final time £ = 5, i.e.

a1 () = 19(, .t} = dols Dhwo (e 0= || p2gay, (4.3)

for different, €.
From Fig. 1, we can see that when ¢ decreases by haif to ¢ /2, the error decreases
by half too, and the oscillation frequency of the error increases four times.

Example 4.2. For N =2, i.e. in the case of two equations (3.3), we choose initial

data as
ya
¢o(0,z) = P (x) = (_\:/l_ﬁ) (%) 22,

¢1(07E) = (b{(x) = \/qubéa

and solve the coupled system of GPEs on the z-interval [—8, 8] subject to periodic
boundary conditions. The initial condition for (3.1) is taken as:

'10!(37, z) = wg(z)qbé(:c) +wy (Z)(ﬁ{(ﬂ?),

with ¢ and ¢{ as in (4.4). As before we solve the 2D GPE [8, 8] x [—a,, a,] subject
to periodic boun(iary conditions. Furthermore we consider the same experimental
setup as before (see detail in Table 1) and plot in Fig. 2 the following quantity for
different values of &:

(4.4)

1
o3(t) = H«p(., ot} = 3 il wpl e mwtlet (4.5)
k=0

L”(IRE).

Example 4.3. For N = 3, we proceed analogously for the coupled system (3.4) of
three GPEs. We choose initial conditions as

¢0(0,7) = i (z) = (%) (%)1/4 o2,



780 W. Bao et al.
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Fig. 2. o5(t) with € = 0.8,0.4,0.2,0.1 and 0.05 (in the order of decreasing peaks).

¢1(0,z) = ¢{(x) = vV2aef, (4.6)
$2(0,5) = ¢(x) = %(432 ~2)4i,

and solve on the z-interval [—8, 8] subject to periodic boundary conditions. Then
we choose initial datum for (3.1) as:

(@, 2) = wo(2)e) (z) + wi(2)L (x) + wal2)pl (), (4.7)

with ¢f,¢{ and ¢4 as in (4), and solve as before on [--8,8] x [—a;,a;] subject to
periodic boundary conditions. Analogously to N = 1,2 we depict in Fig. 3 the error:

2
k=0

L!(JR2)‘

From Figs. 1-3, we can draw the following conclusions: (i) When N = 1, the
approximation error clearly “tends to 0” as ¢ “tends to zero” (cf. Fig. 1). (ii) When
N = 2,3, the approximation error decreases when ¢ decreases and is not too small.
When ¢ is small, it stabilizes at some nonzero values although ¢ is still decreasing

0.05

' 0.045
0.04
0.035 |
0.03
0.025 |
0.02 ¢
0.015 |
0.01
0.005 |
0

oi(t)

Fig. 3. o3(t) with £ = 0.8,0.4,0.2,0.1 and 0.05 (in the order of decreasing peaks).
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(a)

{b)

0.8

06

ait)

0.4

0.2

(c)

(d)

Fig. 4. Surface plots (left column) of the position density |¢%(z,t = 5}|% and the approximation
errors of(t) (upper), o5(¢) (middle), o§(t) (lower} (right column) for different &: (a) & = 0.8;
(b)e=04;{c)e =02 (d) e =0.1.
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{cf. Figs. 2 and 3). This is due to the fact that no other Fourier terms are generated
for N = 1, while all Fourier terms (with indices k& > 0} appear instantaneously for
N=23

Example 4.4, Finally, we compare for fixed values of ¢ the functions ai(t), a5(t)
and o§(¢), where 9(¢) is solved with initial data (4.7). Figure 4 shows these functions
and a reference GPE-solutjon [%(t = 5)|? computed with the intial datum (4.7) for
different ¢.
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