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Abstract

We consider the linearized incompressible Navier-Stokes {Oseen) equations in
a flat channel. A sequence of approximations to the exact boundary condition
at an artificial boundary is derived. Then the original problem is reduced to a
boundary value problem in a bounded domain, which is well-posed. A finite element
approximation on the bounded domain is given, furthermore the error estimate of
the finite element approximation is obtained. Numerical example shows that our
artificial boundary conditions are very effective.
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1. Introduction

Many problems arising in fluid mechanics are given in an unbounded domain, such as
fluid flow around obstacles. When computing the numerical solutions of these problems,
one often introduces artificial boundaries and sets up artificial boundary conditions on
them. Then the original problem is reduced to a problem in a bounded computational
domain. In order to limit the computational cost these boundaries must be not too
far from the domain of interest. Therefore, the artificial boundary conditions must be
good approximate to the “exact” boundary conditions (i.e. such that the solution of
the problem in the bounded domain is equal to the solution of the original problem).
Thus the accuracy of the artificial boundary conditions and the computational cost are
closely related. It has often been studied during the last ten years to design artificial
boundary conditions with high accuracy on a given artificial boundary for solving partial
differential equations on an unbounded domain. For example, Goldstein®l, Fengl4l,
Han and Wul'%!%], Hagstrom and Keller!®:?), Halpernl®l, Halpern and Schatzmanl®,
Natafl'”l, Han, Lu and Baol*3], Han and Baol!'12, Baol!l and others have studied how
to design the artificial boundary conditions for solving partial differential equations in
an unbounded domain.

* Received July 3, 1995,
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In this paper we consider the linearized incompressible Navier-Stokes equations in a
slip flat channel. It is an approximate problem of two-dimensional steady incompressible
viscous folw around obstacles. We derived a solution which can be written in the form
of Fourier series in the unbounded domain by the method of separation of variables.
Then the exact and a series of approximate artificial boundary conditions are derived by
the continuity of velocity and the normal stress at the artificial boundary. Therefore
the original problem is reduced to a series of problems in a bounded computational
domain. Particularly, a finite element approximation on the bounded domain is given,
and the error estimate of the finite element approximation is obtained. Numerical
example shows the effectiveness of the artificial boundary condition.

2. Oseen Equations and their Solution

Let £2; be an obstruction in a channel defined by R x (0, L) and Q = R x (0, L)\ Q.
Consider the following Oseen equations:

ag—; +Vp=vAu, (2.1)
V.-u=0, inQ, (2.2)
with boundary conditions
Ou;  Ou
u2|zy=0,L = 0, 12|z3=0,0 = V(a—m: a—mj) oy =0 To0 <1 < H00, (2.3)
ulani = 0, (2.4)
u(z) = Yoo = (2,0)”, when x; — Foo; (2.5)

where u = (uy,u2)? is the velocity, p is the pressure, v > 0 is the kinematic viscosity,
T = (.’171,2’22)T is coordinate, a > 0 is a constant and o2 is the tangential stress on the
wall. Obviously condition (2.3) is equivalent to the following condition:

Buy
3:1?2

Taking two constants b < d, such that €; C (b,d) x (0, L), then © is divided into
three parts {2, Q7 and 4 by the artificial boundaries I'y and I'y with

xo=0,L -

I'y={z €R? z =b, 0< 22 <L},
Ig={zeR?z =d, 0<z: <L},
Qp={z €ER? —oco<x; <b 0< 2y <L},
Qr={zeR¥b<z <d, 0<zy<L}\,
Qg ={zr cR? d <z <+oo, 0 <zp < L}

We now consider the Oseen equations on the unbounded domain Qg:

Ou 5 ) :
aa—wl +Vp=vAu, iny, | (2.7)
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V-u=0, infy, (2.8)
311.1
59:—2|22=0,L = Upl|g,—0,r =0, d <1 < +oo, (2.9)
u(z) = Uoo, when z; — 400, (2.10)
u|1"d = u(d: 332), 0<z <L (211)
From (2.7)-(2.8), we have
8
A(VA - aa—ml)ug =0. (2.12)

Equation (2.12) with boundary condition (2.9) can be solved by the method of separa-
tion of variables. We obtain

— S (a0 4 b, A (M@0 g T2
uz(z) Z=[a,me L + b,.e ]sm 7 (2.13)

where

a — v/a? + 4vimin2 /L2
2v '
Substituting (2.13) into (2.8) and (2.7) respectively, we obtain

A~(m) = m=1,23,---

oo
_ Mgy _ T b, et~ (mtz1—d) mura
ui1(z) = a +mz_—_1 [ame L Th=(m) mé oS (2.14).
o
p(z) = —a Z ame™ T @19 CQS m?;ﬂ:z, (2.15)

m=1

where we assume
lim p(x) = pe = 0.

a1 —+oo

Then (2.13)-(2.15) satisfy (2.7)—(2.10) for any constants ay, b;, az, bg, - - - Therefore
we derived a general solution of Oseen equations in the unbounded domain Q4.

3. The Exact Boundary Condition and its Approximations at the
Artificial Boundary I'y;

We now consider the following problem:

a,—&-l +Vp=vhu, inQ\Q, (3.1)
82?1

V.u=0, inQ\Q, (3.2)

3‘1&1

"6":;; iy = u2|x2=0,L = 0, b S T < +00, (33)

u|an‘ == 0, (3.4)

ulp, = Yoo, (3.5)

u(z) & o, when z; = +o0. (3.6)
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Let e(u) = (eij{u))2x2 and o(u,p) = (0;(u, p))2x2 denote the rate of strain and stress
tensors respectively. We have that

’ 1/0u; Ou,; L.
ei;(u) = E(amj + 3:1:1)’ ij=1,2 (3.7)
and
Oij (u,p) = —p6,-_.,- + 21/6.,'_,'(11,), 2,7 =1,2, (3.8)

where d;; is the Kronecker Delta whose properties are

1, i=j3
bij = { R
0, ©#3j.
Furthermore let o, = (04,,04,)7 denote the normal stress on the artificial boundary
T4, then

Su
Ony = 011N + 01202 = 011 = —p+ 21/3—.?:I|Fd, (3.9}
Ou Su
Ong = 02111 + 22Ny = 091 = V(EZ:_;- + éx—f) lPd, (3.10)

where n = (n1,n3)T = (1,0)7 is the outward normal vector on I'.
we now use the transmission conditions
u(d_)mZ) = u(d+3$2): (3'11)
on(d™,22) = op(d¥, zp) ) (3.12)

to obtain the exact boundary condition and its approximations at the artificial bound-
ary I'y. Substituting (2.13)-(2.15) into (3.9)—(3.10), we get

Op, = i [(a, - zygm)am - 2vzurbm] cos mzm, (3.13)
m=1 ’
oo 2.2
oms =0 3 [~ Tt (V) + Y] sn TR (3
m=1

From (2.13)-(2.14) and (3.13)-(3.14), a computation shows:

o0 — L _— L
Op, = Z [2V( mx + LA™ (m)) j(; u1(d, z2) cos mzm dzs
m=1 - )

L2

_ 2vmm(mm + LA™ (m)) 1t mny mmney

3—(m) A ug(d, z2) sin

= Tl (u) 3
(3.15)

d.’cg] coS

> [=2v(mn + LA~ (m L mmTy
Ony = Zl[ ( I ( ))[0 u1(d, x3) cos T 2d.’.t:2
m=
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2v(— LA~ L
+ p(—mm ;; (m) f uz(d, z2) sin m;mda:gJ sin mzazg = To(u)
o (3.16)
and’ ,
=, a (L mmzy mr 2mn
’ullpd -—a+mz=lcm [;'/(; On, (d,.’rg) cos T dzy + T(z'-f- m
a L . mnT mrTe
- m) f Ony(d, z2) sin deg] cos 2= Si(ey),
0 (3.17)
0 2mmw | _ m2q? L mnzy
uz|r, -mz_:_l Cm[(—L'“ + A7 (m) + m) fo On, (d, z2) cos 792
L
+2 fo g (d, z2) sin T2 d:cz] sin ™92 = 6. (5), (3.18)
there 0
$
C = N m = 1, 2, LI
" (aL - 2vmn) (a + %’iﬁfzﬁ‘}) — Wmia
Let

Ty (u) ) (.‘5’1 (o) )
T(u) = . S(on) = .
W=(r0) se=(Gien
Therefore we obtain the exact boundary condition (3.15)—(3.16) or (3.17)—(3.18) at the

artificial boundary I'y. Then the problem (3.1)~(3.6) can be reduced to the following
two problems in a bounded domain p: o

Problem (I)

5 ,
ai + Vp = VA’U,, in QT, (3_19)
3.’.!71

V U= 0, in QT, (3_20)

Ouy
Bzzlwa=0,L Ulaymor =0 <2 < d, (3.21)
Uloq, =0, (3.22)
ulp, = oo, (3.23)
On = T(’U;). (3‘24)

Problem (I7)

a.gﬂ + Vp=vAu, inQp, (3.25)
6:121 |
Veu=0, inQp, (3.26)

Ouy
Elxzzﬂ,L, = 'u‘2|:1;2=0,L = 0; b S I ..<_. d, (3.27)
ulan, =0, (3.28)

tlp, = oo, (3.29)
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ulr, = S(ow), (3.30)

[1" p(d, z2)dz2 = 0. (3.31)

Fortunately we can prove the following theorem.

Theorem 1. Problem (I) is equivalent to Problem (II).

Proof. Let (u,p) be a solution of problem (I), then (u,p) satisfy (3.25)—(3.29).
Multiplying (3.15) and (3.16) by cos 2722, sin %2 (m = 1,2, ") respectlvely and
integrating on I'y, we obtain

ul'l"d =cp+ Sl(aﬂ), 7-"2|I"d = 52(0'1;),
where ¢g is a constant.
0= V-uda:=f u-nds=—f ad$2+[ uy (d, z2)dzg
ﬂT aQr Fz, Ty
= —alt|+ [ feo+ S(on)lder = [Tel(en — o)
) d

where [T's| is the length of the segment I'y. Then ¢p = a and

frd p(d, z2)dzs = — Ld [“P(da$2) - 2Va—u~2-(d,a:2)]da:2
=— /;‘d [ —p(d,z2) + 2u (d xg)]da:g /;d Op, dT2
- fr Ty (u)dwz = 0

Thus (u,p) is a solution of problem (IT).

On the other hand, let (u,p) be a solution of problem (II). Then (u,p) satisfy
(3.19)—(3.23). Multiplying (3.17) and (3.18) by cos 3% and sin 72 (m = 1,2, )
respectively and integrating on I'y, we obtain

On, =Co+ Tl(u)r Ony = T2(u)'r
where ¢g is a constant.
0 =f [—P(d, T3) — 2V%(d, xz)]d&‘z = f [—p(d, z2) + Zv%(d, r2)dzo
r'y Ozo Ty dz1

=f Op, d22 =[ [co + T1(u))dz2 =f codzs = co|Tql.
F Pd Fd

Thus ¢g = 0. Hence (u, p) is a solution of problem (7). The proof is completed.
Let

T (u) =

N roy(— LXx~(m
Z[ (‘m‘ff; (m))

mmie
uy(d, z3) cos dza
0 L

m=1
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B 2um‘rr(;7; j‘( :3— (m)) f* ua(d, ) sin 2 dmz] cos mzmz . (3.32)
m=1
| 2w(=mn ;LA‘ (m)) fo ¥ wal(d, z) sin ™2 dmz] sin 2, (3.33)
N
™= (7 )

Then we get a sequence of approximate boundary conditions at the artificial Boundary
Ta.

on=TV(w), N=012,--- (3.34)
" Hence the original problem (3.1)—(3.6) is reduced to the following problem on the
bounded domain §27 approximately for N =0,1,2,---

a,-é.1 + Vp =vhwu, inr, (3.35)
6:!?1

V.u=0, inQp, (3.36)
buy = ug —0, b<m <d (3.37)

Oxq iza=0,L = U2lea=0,L = =51 =% )
alog, = 0, (3.38)
tlp, = Uoos (3.39)
on = TN (u). (3.40)

In the following section we shall show that the boundary value problems (3.19)-(3.24)
~and (3.35)—(83.40) are well-posed.

4. The solutions of the problems (3.19)-(3.24) and (3.35)—(3.40)

Let H™(Q7) and H*(T4) denote the usual Sobolev spaces on the domain Qr and
the boundary [y, with integer m and real number s. Furthermore let

ry ={:r:e]R2| o =0, b<x Sd}U{m€R2| zo=L, b<z <d},
Fi -——‘aﬂi,
v ={'"' € Hl(ﬂT) X HI(QT)I ulrbUPi =0, U2II‘1 = 0}

with norm [|ull} =lluilli, 0, + lluzll} 20,5

W =L*(Qr) with norm |gliw = |lallz2(ar);
M={ue HY(QT) x HY(Qr)| ulr, =0, u|r, = teos ug|r, = 0}.

Then the boundary value problem (3.19)-(3.24) is equivalent to the following variational
problem:

Find (u,p) € M x W, such that
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A(u,v) + Ao(u,v) + As(u,v) + Bv,p) =0, VYoeV, (4.1)
B(u,q) =0, VgeW; (4.2)
where
A(u,v) —2V[T1§1 £ij(u) - gi5(v)dx = 2Vf e(u) : e(v)dz,

(7
Ao(u,v) =a o va—:qdm,

Ai(u,v) = —jP On - vd2y = -—f T(u) - vdzg
d

Z[2u(m7r LA~ (m)) f wr(d, 22) cos mnEy

m=1

2vma(mn + LA~ (m))
L3X—(m)
+ 2v(mm + LA~ (m))

L
dxo [ vi(d, z2) cos m;a:g dzs
0

dxo

L
m T,
Ua (d, 922) sin T2 da:z f " (d, :!32) cOos maTs
0 0

2
d:L‘z

iy
u1(d, z2) cos ke

L
o . MAT
dmzfo va(d, zg) sin

L
’u,2(d, .172) sin M7 d:L‘z f (2] (d, :L‘z) sin mnzs dﬂ:z] N
0 L 0
B(u,q) = —/ gV - udz.

[t
Furthermore let
A (u,v) = — -/; TN (u) - vdzs

d

N v _ - L
L z [2 (mn L;Ez\ (m?)fu w1(d, 52) cos mTLy

2
dzo

L ™
dxy / v1(d, z3) cos i
0

2vmm(mm + LA™ (m))
L3)—(m)
2v(mm + LA~ (m))
+ iz
2v(mmr — LA~ (m))
12
Then the problem (3.35)—(3.40) is equivalent to the following variational problem:

22 1z,

L
. m
uz(d, z2) sin Ukz. dzs f vi(d, z2) cos T
0 0

m
u1(d, z2) cos il 2 dzs

L
T2 . M
dzs /(; va(d, z3) sin

. L ‘
+ Ua (d, :1’:2) sin T2 da':z / Ug (d, (82) sin T2 dﬂ:g] .
0 : 0

Find (un,pn) € M x W, such that
A(un,v) + Ao(un, v} + AY (uy,v) + B(v,py) =0, YweV, (4.3)
B(un,q) =0, VYgeW. (4.4)

From Kérn’s inequality!'®l, we know
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Lemma 1. The bilinear form A(u,v) is symmetric, bounded and coercive on V XV,
namely there are two positive constants ap and By such that
|A(u,v)} < aollzfly - vllv, Yu,v €V,
A(u,u) 2 Bollullfy, VueV.
Lemma 2. The bilinear form B(u,q) is bounded on V x W and satisfies the

Babuika-Brezzi (B — B) condition® | namely there are positive constants a; and p,
such that

|B(x,q)| < aallullv - llgllw, YueV, geW,

Blu,
sup 2D 5 gl Vaew.
ueV\{0} fullv

Lemma 3. The bilinear forms Ao(u,v) + Ai(u,v) and Ap(u,v} + AN (u,v) are
bounded on V x V, i. e. there is a constant az > 0, such that

| Ao(u,v) + Ay (u,v)| < azllullv - lvllv, VYu,v €YV, (4.5)
|Ao(u,v) + AY (v, )| < aollully - [lllv, Yu,veV, (4.6)

Furthermore
Ag(u,u) + A(u,u) 20, Vu€evV,
Ao(u,u) +A{V(u,u) >0, YueV, N=0,1,2,---.
Proof. For any u,v € V, we know that u;|r, and v;|r, belong to H%(I‘d), uz|r, and
1

va|r, belong to HZ (I'y), Suppose

ML 2 rL mma
u(d, zg) = —-I— Z @m €08 — 2 G = E/ uy(d, x2) cos T 2d:cz,

. mnz
ua(d, z2) = Z by, sin i 2, bm Lf ua(d, a:g)sm dﬂ:g,
a mre
n{d,z2) = — + Z &y, COS T 2 —f v1(d, z2) cos d.‘L'g,
'Uz(d, :1:2) = z Bm sin m;m2, ~m Lf ’Uz(d :172) Slll d:l?z
m=1

Then by the trace theorem, there is a constant a3 > 0, such that

m=1l m=1

) 00
\J Y mial, +b2) < asllullv, J Y m(@k +82) < asllvitv.

A computation shows that

5 [v(mér — L\ ()i, vin(m + LA™ ()b

A1(wv) = 7 2LA"(m)
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v(imr + LA~ (m))apb,  v(imn — LA~ (m))bpb,y,
+ ; + ) |

Since 0 < —LA™(m) < mm, Ym €N, and lim :'m

———— = 1, we know that there is
m—+oo —J, —(m)

a constant ¢; > 0, such that

o0
|41 (w, v)] <e1 z M(|amém| + [bmbm| + |ambm| + [ombml)

m=1
o 00 .
Seny| 2 mlad +82) - | 3 m(aZ, +12) < callully - oy,
m=1 m=1
where ¢z = ¢; - of. Thus the inequality (4.5) holds. Furthermore
Uy T 2 | 32y, (M7 + LA~ (m))? ]
M) =5 3 [(mvr LN (m))(ad, +83) + ey,
v & N LA-(m))*’] -
> —
27 mzz:l [mer 2LA"(m) + I3 -(m) (ag, +b2)
] GL 2 2
= Z mmy — T)( m+bm)
m=]1
> Efj L( Z4p2)>— f u(d, z2) - u(d, z3)dz
= 2m=12 [+ ey m/ = T, y &2 g L2 2
Therefore
8
Ag(u,u) + Ay (uw,u) > af - —udm - E,f u-udze =0, YueV.
Qr 3$1 2 | .

Similarly for Ag(u,v) + A (u,v), we obtain

[ Ao(u, v) + AL (u, )l < calfully - vllv, Vu,veV,
Ao(u,u) + AV (w,u) >0, VueV
Furthermore if u is a solution of the problem (4.1)-(4.2) and u|r s € H3(Ty) x HX(T).

Then u1|r, € {w € H?(0, L), ’g—‘;’|z=g,L = 0} and uy|r, € {w € H*(0, L), w|.=0, = 0}.
Thus we have that ' ‘

pos :
Z mi(aZ, +82) < oallufl2,r,,
m=1

where 4 is a constant. Hence

'IAl(u,v) - A{V(H:U)I =

S [¥(mr — LA (m))amim | vma(mr 4+ LA~ (m)bmim
2 [ 2 2LA~(m)

m=N+1
v(mr + LA~ (m))amby,  v(mr — LA (m))bpby,
+ 2 + 2




The Approximations of the Exact Boundary Condition at an Artificial Boundary for... 249

SQJ > m(az,,,+bz,..)-\j > ma+ )

m=N+1 m=N-+1

S(N“:ﬁ\ i m4(a,2n+b$n)-d i m(a2, + b2,)

m=N+1 m=N+1
<2 f: m4(a2, + b2,) - ||v|ls
T (N + 132N m o g T

m=N+1

where ¢z is a constant. Let

do = max{wx},
el

Tg={z€R?| z1=4dp, 0<z, < L}.

Assume that

ag >\ mmaLy 2fL ML
do, 72) = =2 == d :
1 (dp, T2) 5 +mz=:1amcos 7 o m=7 A u1(do, @2) cos 7 dxg
oo _ L
ua(d,72) = 3 Brnsin "0 2, B = 2 | vatdo, 2 sin T2

m=1

By the equalities (2.13)—(2.14), we obtain

o1 A~ (m)(d—do) () o B (d—do)) 2
@ == () + mom {[mﬂ'e + L}\ (m)e™'T Jam
+ male™ Fld-do) _ e)\_(m)(d—do)]f,m},
1 mr _
- - - —B2(d—dg) _ A~ (m)(d-dp)15
b LA~ (m) + m'fr{L/\ (m)le™ % € |am _

+ e~ F(d~d0) L,\—(m)e*‘(m)(d—dﬂ)]ﬁm},
Thus there exist constants cg > 0 and Ay = O(N) as N — 400, such that
a2, + b2, < cge WD) (g2 L B2) Vm > N +1.

Therefore

oo
Ar(u,v) — AN (u,v)] < ° (a2, + %) - lloll
|A1(u,v) 1 (u v)| v+ 1)3/2eAN(“_dﬁ)\}m§+lm (@ ) ||U||%,I‘d
c .

ollyr, V> do,

where ¢ is a constant. Hence we obtain the following estimate:
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Lemma 4. If u is o solution of the problem (4.1)-(4.2) and u|r, € H3(Ty) x

H?(Tg,), then the following estimate holds:
c

(N + )PP
where ¢ is a constant independent of N, u, v, p.

Theorem 2. The variational problem (4.1)—(4.2) has a unigue solution (u,p) €
M x W and the problem (4.3)-(4.4) has a unigue solution (un,pn) € M x W for
N =0,1,2,--- Furthermore we have the following error estimate if ulr, € H 2(Cyg,) x
H*(Tg,):

| At (u, v) — AY (w,0)| <

lellers, -lelly r,» Y > do, Yo €V, (47)

C
lu—unllv +llp — pllw < V1 )32 ) lzll2,r,, - (4.8)

Proof. By Lemma 1 and 4, we know that A(u,v)+ Ag(u, v) + A;(u,v) and A(u,v}+
Ag(u,v) + AY (u,v) are two bounded and coercive bilinear forms on ¥V x V. By Lemma
2, we know that B(u,q) is a bounded bilinear form on V x W, and satisfies the B-B
condition. From the Brezzi Theorem [2], we obtain that the problem (4.1)—(4.2) has
a unique solution (u,p) € M x W and the problem (4.3)-(4.4) has a unique solution
(un,pN)EM x W.

Let e, = v — un, €, = p — pn, then (e, ep) satisfy

A(ey,v) + Ag(ew,v) + AV (e, v) + Blv,e,) = AV (u,v) — A1(u,v), Vv €V, (4.9)
B(e,,q) =0, Vge W. (4.10)
Taking v = e, in (4.9) and ¢ = e, in (4.10), we obtain
Bollewlly <Alew, eu) < Alew, €u) + Aolew, €u) + AT (eu, €u)

c
=A{v(usEU) — A1y, el) < (N + 1)3/23AN(d—d0) ”u”2,rd0 ) “eﬂ”%,I‘d

[
S (N + 1)3/26AN(d_dﬂ) ”unzsr‘do ' ”eu”V,

where ¢ is a constant, which has different meaning in different place. Thus

&
”eu" Sﬁo(N + 1)3/26)‘”('1_“"0) "u"ZFdo'

B(v,ep) =AY (u,v) — A1 (u,v) — Aley, v) — Ao(ey,v) — AV (eq,)

[+
: [(N T D 2k, + (@0 + az)neunv] Mellv.
Then

1 B(v,ep)

ellw =|llp — prllw < 5 sup

ool =1 <3 veni{o} Ilvllv

1 ¢
=5 [(N T 1)) llell2,rg, + (0 + az)”euﬂv]

¢
=< (N + 1)3/2¢n (d—do) ||‘-‘v“2,r‘d0 s

where ¢ = ﬁ[l + EOET“Z] Then the inequality (4.8) follows immediately.
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5. The Finite Element Approximation of the Problem (4.3)-(4.4)

Let 75 be a regular partition of the domain Q7 and suppose V;, and W}, are finite
element subspaces of V' and W. Particularly, we also assume they are the optimal
choice. Then V}, and W}, should satisfy the following conditions!!?)

a). The errors inf |[u = v|lv and inf ||p — ¢|lw have the same order in b, i. e.

vEV), qeEW,

there is a constant «, such that
. _ < m 3 - < ah™ . .
Jof lu—vllv < eh™ulmirzar,  inf lIp—gllw < ah™|plmaar (5.1)

b). There exists a constant 3 independent of k, such that

B(v,q)
veVar{o} llvllv

> Bllgllw, Vg€ Wh. (5.2)

Let M, be a subset of M, which satisfies Vi, = {up — vy| Yup, vi € M)}, Consider the
finite element approximation of the problem (4.3)-(4.4):

Find (u%,pl%) € My x Wi, such that
A(u’ﬁ,,‘v) + Ao(u'}v,v) + A{V(u’ﬁ,'v) + B{v,p%) =0, Yo eV, (5.3)
B(u},q) =0, Vg€ W, (5.4)

Theorem 3. The problem (5.3)—(5.4) has a unique solution (u%,pl) € My, x W),.

The proof of this theorem is similiar to the proof of theorem 2. It is omitted here.

Theorem 4. Let (u,p) be the solution of the problem (4.1)-(4.2} and (ufy,p%) be
the solution of the problem (5.3)—(5.4). Suppose u € H™t(Qp) x H™(Qr), ulr,, €
H%(Dy,) x HY(T'g,), p € H™(Qp). Then we have the following error estimate:

e — whllv + lp — PR llw <ch™[[ulmir,z,00 + 1Phmz00]

c
N T 1 RoNE lluliz,ry, (5.5)

where c, € independent of h, u, p, N.
Proof. Let e} = u — ul, e;,‘ = p ~ ply. Then from the equalities (4.1)-{4.2) and
(5.3)—(5.4), (&, ph) satisf is '
A(es, v) + Ao(eg, v) + A (e, v) + B(v, )
=AY (u,v) — A1(u,v), Vo € Vi, (5.6)
B(ey,q) =0, Vq&W,. (5.7)

Then we have that

Polluly = uo = vll}y SA(ufy — uo — v, uly ~ o — v) < Ay — uo — v, uly ~ uo - v)
+ Ao(uly —up — v,uly —up —v) + AV (W — ug — v, uly — up — v)
=A(u — up — v,uy — up — v) + Ag(u — up — v, 4% — ug — v)



252 ‘ W.Z. BAO

+ AN (u — ug — v,uly —up —v) — A(el, ufy —uo —v)
~ Ao(eh, uly — uo — v) — AY (e, uly — w0 — v)
=A{u — ug — v,uly — up — v) + Ag(u — uo —v,uly - ug —v)
+ AN (4 — up —v,ufy — o —v) + Ay (u,uly — uo —v)
— AN (u,uly —ug —v) + B(uly —uo —v,p—1q)

<(ao + 0a)l|lu — g — v|lv - [lufy —vo — vllv
[+
T N T e

+arllp— gllw - luly —uo ~ o], Yo €Vh VgeWs,

sllullzrg, - luk — 2o - vllv

where ug € M, Vi = {v, € Va| B(vh,q) = B(—u0,9), Vg € W}, Thus

1 :
lluy — wo —vllv SﬁTO[(ao + ag)llu — uo —vllv

c
+ (N + 1)3/26’\N(d_d") ”u”'h’.r'do + alllp - q"W]'

leb v <llu = uo — vllv + llv +uo — wiliv

1 C
< [(ﬁu + ap + o2)||u — uo — vllv + (N + 1)) fslla,rg,
+ aillp - Q||W] Yo eV, g€ W

Hence

oy + ag

h . ay .
€ < +1) inf |Ju —up~v|lv+— inf ||p-—
el <( ) inf e —uo=vllv + 7 inf llp ~ allw

c
* o+ Do) 12T

m .c
<ch [|u|m+1,2,ﬂr + |P]m,2,ﬂq-] + ﬁO(N n 1)3/26)\N(d—d0) ”'”‘“2,1".10

In order to estimate the error ||p — p|lw, we consider
B('U:p?\’l - q) =B(v,p - Q) - B(‘U, eg)
=B('U,p - Q) + A(eﬁ"u) + Ao(eﬁ,v)'+ A{v(eﬁ»v) + Al(uvv) - A{v(u’ 'U)
<ay|lvllv - llp — gllw + (@0 + aa)llezllv - livlly

[ ]
+ (N + 1)3/2eAn{d—do) lellzry, - lvllv-
Then

1 B(v, p% _
il sup ("-’,’PN q)

letlw <llp ~ allw + llg = phllw < llp — gllw +
Brvevivioy  lvllv

1 h C
<llp —gllw + E [alllp — gllw + (a0 + az)llexilv + (N + 1)3/23)\1\'(‘*—'10) ||u||2|FdD]
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Qg + o2

B

lle h||v +

<(1+3)le —dliw + sllullaras Ya € Wh.

C
Bi(N + 1)3/en (@

Thus

o+ o
ﬁl ” 'u."v + ﬂ (N+1)3/2 AN(d'—d()) ” "2 rdD

h oLy
<[(1l4 — f —
lekiw <(1+ ﬂl)q’e"’»v,. llp — gllw +

SChm[|u|m+1,2,ﬂT + |p|m,2,ﬂ'r] + ﬂl(N T 1)3/2331\'(&—‘10) ”u"2,f‘40'
Then the inequality (5.5) is proved.

6. Numerical Implementation and Example

For the sake of simplicity, let 75 be a rectangle partition of Qr, with Qr = Uke, K,
where K is a rectangle.

For each rectangle K € 7, connected the mid-points of the opposite sides of K,
then each rectangle K is divided into four smaller rectangles. Let 7; denote this
new partition. Therefore let V;, = {v € V| v|g is a bilinear polynomial, VK € T}
W, = {p € W| p|x is constant, VK € Tp}, My = {v € M| vk is a bilinear polynomial,
VK € T;}. Then Vj, and W, satisfy the B-B condition and the following approximate
PTOPeftY[w] infyev, |lu—vllv < chlulzg,ap and infeew, lip—dllw < chlpliz.p- We use
this finite element approximation to solve the following example.

Example The effect of the artificial boundary conditions for Oseen equations.
Suppose that the unbounded domain @ = {zr € R?| b < #; < +o0, 0 < 23 < L}.

Let
> (@-y _ T A= (m)(21=8) | e TAT2
= —mE Tr1— R —(m 21—
o0
ug(z) = Z [ame—%(m—b) + b (m)(a:l-b)} sin m‘JT:L‘2’
lm=1 L
P(fC) a E Ame T T

where

I e e Al (m)1 = (-1)™]
™ [mr 4+ LA-(m)m2x2" " [mw + LA~ (m)]m3x3’

=1,2..

Then (u,p) is the unique solution of the following boundary value problem:

3
aa—u+Vp—vAu, in, V-xu=0, in§,
1
811,1
a |:z:z—0 L= u2‘m2=0,L = 0) b S 1 < o0,

ui|r, = a, u2|pb =x9(L — z3), ©— U, When z — Fo0.
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Wetake Iy = {z € R?| 2y =d, 0 < 25 < L} and then consider the finite element
approximation of the above problem in the bounded domain Q7 = {z| b < z; < d,
0<zz <L} Wealsotake b=0,d=1,L=1,v=1and a=1.0.

Three meshes were used in computation. Figure 1 shows the partition 7}, for mesh
A. Mesh B was generated by divided each rectangle in mesh A into four small rectangles.
And mesh C was similarly generated from mesh B. Bilinear finite element approximation
to u and constant finite element approximation to p were used in computation. Table
1 shows the maximum errors u — u',‘gr and p— p’,{, over the mesh points when N = 5. We
can see from the table that the convergence is fast and the rate is higher than linear.
Tables 2-4 show the maximum errors of u — u% and p — pf; for mesh A, B and C when
N =0,1,3,5. As we can see from the tables, the artificial boundary conditions are
very effective and N = 1 is good enough for mesh A, B and C, this because the meshes
are too coarse and the error we used is maximum error in the domain.

1

Table 1. Maximum error when N =5
mesh A B C
max |us — u1%y| | 3.849E—2 | 1.6456—2 | 5.855E—3
max |uz — u2fy| | 2.600E—2 | 8.446E~3 | 2.323E—3

max |p — pfy| 3.074E-2 | 1.419E—2 | 5.847E-3 0.5
Table 2. Maximum error for mesh A
N 0 1 3 5
max [u1 — u1y|[3.273E—2(3.847TE—2[3.847TE—2 [ 3.849E—2
max |uz — uzk||2.242E—2 | 2.594E~2 ) 2.594E~2 | 2.600E-2| 0, 0.5 1
max |p — pfy| |1.459E—1|3.235E—2|3.235E—2|3.074E—2
Fig. 1 Mesh A
h . h
[ = wiwl x 100 (at Ty, mesh B) MI— x 100 (at Ty, mesh B)
[ee1] 22|
3.0¢ 80

70

2.5F L
[ 60

50

2.0

15 40
30H ;

1.0E.- H
20f

0.5f

0 0.2 0.4 0.6 0.8 1.0 0

Fig. 2 Fig. 3

Table 3 Maximum error for mesh B
N 0 1 3 5
max Ju; —urpy| | 3.140E-2 | 1.645E—2 | 1.645E—2 | 1.645E—2
max Juz — ualy| | 1.9056E—2 | 8.446E—3 | 8.446E~3 | 8.446E—3
max |p — piy| | 2.384E—1 | 1.419E—2 | 1.419E—2 | 1.419E—2
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Table 4. Maximum error for mesh C
N 0 1 3 5
max |u — u1?v| 3.450E—2 | 5.855E—3 | 5.855E—3 | 5.855E—3
max |ug — uzf’vl 1.965E—2 | 2.323E-3 | 2.323E-3 | 2.323E-3
max [p—pfy| | 3.000E—1 | 5.848E—3 | 5.848E—3 | 5.847E—3

uy — ul — oyl
Ll_mﬂ x 100 (at T4, mesh C) Eﬁ_lﬁz_ﬂ x 100 (at T's, mesh C)
2
3.5 80
_N 0 [
3.0 V=1 T0F
! - N = 3 —_— N =0
95f 60 F e N =1
50 E e N = 3
2.0 i
40
15F
30
1.0F sol
0.5 w0} .
0 02 04 06 08 1.0
Fig. 4 Fig. 5

Figures 2-5 show the relative error of u at outflow boundary 'y for meshes B and
C. Then the effect of N is shown for meshes B and C. As shown in the Figures, N = 3
gives good approximation and therefore in computations very few terms in the bilinear
form AY (u,v) are needed in order to get good accuracy.

The example shows that the artificial boundary condition presented in this paper is
very effective. Furthermore this approach can be applied to problems of two dimensional
incompressible viscous flow around obstacles.

Acknowledgement I wish to thank my faculty adviser, Prof. H. Han, for many
helpful discussions on this subject.
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