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Abstract

In this paper we consider numerical simulation of incompressible viscous flow
in an infinite slip channel. Local artificial boundary conditions at an artificial
boundary are derived by the continuity of velocity and normal stress at the segment
artificial boundary. Then the original problem is reduced to a boundary value
problem on a bounded computational domain. Numerical example shows that our
artificial boundary conditions are very effective.

1. Introduction

Many boundary value problems of partial differential equations involving unbounded
domain occur in many areas of applications, e. g., fluid flow around obstacles, coupling
of structures with foundation and so on. For getting the numerical solutions of the
problems on unbounded domian, a natural approach is to cut off an unbounded part
of the domain by introducing an artificial boundary and set up an appropriate ar-
tificial boundary condition on the artiﬁcial boundary. Then the original problem is
approximated by a problem on bounded domain. _

In the last ten years, boundary value problems in an unbounded domain have been
studied by many authors. For instance, Goldstein [1], Feng [2], Han and Wu (3,4],
Hagstrom and Keller [5,6], Halpern (7], Halpern and Schatzman [8], Nataf [9], Han,
Lu and Bao [10], Han and Bao [11,12] and others have studied how to design arti-
ficial boudnary conditions for partial differential equations in an unbounded domain.
Among their results, two kinds of artificial boundary conditions are designed. One is
nonlocal artificial boundary condition, the other is local artificial boundary condition.
In engineering, they like to use the second type.

In this paper we design local artificial boundary conditions for Navier-Stokes (N-
S) equations in an infinite slip channel. Then the original problem is reduced to a
boundary value problem in a bounded domain. Moreover numerical example shows
that the artificial boundary conditions given in this paper are very effective.
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2. Navier-Stokes Equations and Oseen Equations

Let 2; be an obstruction in a channel defined by R x (0, L) and 2 = % x (0, L)\ .
Consider the following Navier-Stokes equations

(v-F)u+yp=vAu, inQ, ' (2.1)
v-u=0, inQ, (2.2)
with boundary conditions '
Bu;  Oup
Uzley=0,1 = 0, O12|zq=0,L = V(g:c—z + 92, )la:z—OL 0, —oo< iz < +o0. (2.3)
ulag, =0, (2.4)

u(m) — Uoo = (0, 0)”, when z; — oo, (2.5)

where u = (uj,u3)7 is the velocity, p is the pressure, v > 0 is the kinematic viscosity, .
T = (:1:1,:1:2) is coordinate, & > 0 is a constant and o2 is the tangential stress on the
wall. Obviously condition (2.3) is equivalent to the following condition

du
L 'wz—ﬂ L= u2|m2=o,L =1, —oo <1 < +00. (2.6)
Ozo

'Taking two constants b < ¢, such that Q; C (b,¢) x (0, L), then Q is divided into
three parts £2;, Qr and . by the artificial boundary T, = {zeR?|z,=50<z3 < L}
andl"c={:n€§22|x1=c,0§w2$L}with

={zeR?| —co<a <b, 0<uy<L}
r={zeR?|b<z <, 0<zy < LI\ O,
Re={reR?|c<a < +oo, 0 <zy < L}
When |b] and ¢ are sufficiently large, in the domain §; U €2, the velocity u is almost
constant vector ts. So the N-S equations (2.1)-(2.2) can be linearized in domain €,

(and ), namely the solution (u,p) of problem (2.1)-(2.5) approximately satisfies the
following problem

a% +Vp=vAu, inf, (2.7)
V-u=0, in{l, (2.8)
Ou

Bizg ! |:c2—0L 'Uv2|m2=0,L =0, ¢< 2z < +oo, (2.9)
u(Z) = Uoo = (0,0)T, when z; = +oo. (2.10)

In [13], the author obtained general solution of the problem (2.7)-(2.10)

ul(a:) =+ Z [ame_%(zl—c) _ L,\Tﬂm) bme)\—(m)(ml_c)] cos MTL ’
= (2.11)
o0
ua(@) = 3 [ame™ L 79 4 by, X (=) gin T (2.12)

m=]
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>, _E‘:E(m —c) mmnTy
plz) = —« Z ame” L V17 %cos , (2.13)
— L
- m=1
where \/ 2 2 2 2/ 2
_ a— /ol + viméné/L
A (m): 2,/ N m=1,2,"‘
and a1, b1, a2, by, --- are any constants.

3. Local Artificial Boundary Conditions at [,

Let e(u) = (&;;(u)) and o(u,p) = (03;(u,p)) denote the rate of strain and stress
tensors respectively. We have

Ou;  Ouy ..
5:1("') 2( z; + axi)a 1, j =12, (3'1)
and .
oij(u, p) = —pbi; + 2veii(u), 4,5 =1,2, (3.2)
where 6;; is the Kronecker Delta whose properties-are:
’ 1, i=j,
0i; = .,
: 0, i#].
0y = (Ony,0n, )7 denote the normal stress on the artificial boundary T'¢, then
Bu
On, = M1011 + N2012 = 011 = ( -p+ 2V—1) Ires (3.3)
A 6u1 3u2 :
Ony = 1021 + N0 = 021 = V( Fr + 7 e )|I‘c, (3.4)

where n = (ny,n2)T = (1,0)7 is the outward normal vector on L.
We now use the transmission conditions

u(c™,z3) = ulct, za), - (3.5)
on{c™,x2) = o (ct, z3), ' (3.6) -

to obtain the local artificial boundary conditions at the artificial boundary I'.. Let
- x1 = c¢in (2.11)-(2.12), we obtain

B > __mm MTTy
u(z)|r, =+ mz=:1 [am TA—(m) bm] cos ——, (3.7
= . Ty
ug(z)|r, = mzzl[am + by,] sin 7 (3.8)
Substituting (3.7)—(3.8) into (3.3)—(3.4), we have
) ,
Z [ (a _ um1r) 2vmr bm] cos mvra;g (3.9)

m=1
[+

_.umZ: [_g_"_’;ﬁam+(,\ (m)+L2A m )) m]

m“’—z (3.10)
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From the form of equalities (3.7)-(3.10), we assume oy, and oy,; have the following
form:

o 1 Dy (e, 23) — @) 8 lyy(e, z2)
P )=o)y g, P ez gy
g | 922~ da3n ! }
, [ P uy(c,22) —a) . 8 Dyy(c, z,)
Oz = [en PR =y ). (3.12)
2

Inserting (3.7)—(3.8) into (3.11)-(3.12), we obtain

_Z [( )" lcn Z (am LA ( )b )(%{)2(13—1)

n==1

(071, 3 (a8 () IJ cos 22

= i [ﬂm i (Cn + ——dn)(_l)n—l(%)z(n—l)

m=1 n=1

+bmni=o:l( I dn LA‘m’E" ) )(_l)n—l(%i)z(n_l)] COST—%-:P?—
_ i [(a 2um1r) B %‘?‘E’r_bm] cos m}l:acz,

m=1
wmE [ B o i ()

(1), Z (@4 ) (25) 1’] sin 7122

o5 - e

Ma

n=1

3
'I_l_

o (et ) ()|

2

1
_ i [_ 2V21Wam +y(/\_(m) + %) ]Sin E%:E?-

[ (o ) cr () < 2
g,?;(%d" LA( yon en) (=1 l(mw)z(nml) ——zzﬂ, m=1,2,.(3.13)
'g(fn—¥en)( et (%)2@ 1)=_2ng’

| g(L32T;)en+fn)( ) () = (a (m)+ﬁ’3;%),

T me12,




/

Local Artificial Boundary Conditions for the Incompressible Viscous Flow in a Slip Channel

339

(3.14)

We can derive ¢,, dn, en, fa (R =1,2,-.-) from equalities (3.13)—(3.14). Then we
obtain a local artificial boundary condition (3.11)-(3.12) at the artificial boundary I',

for the problem (2.1)-(2.5).

In the following, we consider the approximations of the local artificial boundary

condition (3.11)-(3.12). Assume that

_ 3 (v POV le, ) — @) | 8 1u2(c,wz)] v
Z [C“ 3$2(n—1) n T gpin—l =0

_ i [yl o) | v Do m))
n=1 B3 " Ba:g("_l) ™

A computation shows that

5 ) (B <o

n=1

XN: (EJN m -N) (—1)™1 (m)ﬂn 1 _ _2umm m=1,2,---

L™ Ia(m™ L

.n=1

and

’

i( N m'fr,,N)( —1)n1 (m)ﬂn 1)__.21/21?1',

3
—

2.2

22 mi

n=1

1l m=12---,N

The equalities (3.17)-(3.18) are equivalent to the following

Z( l)n— (mﬂ)2(n l)cN V(LA—(m)_mﬂ) m—1,2,°-',N,

n=1 " . L ’
mmy 2(n— 1) vmT
n—1( "7 g e = o N
S ) Y= Dy ™= b2,

n=1

\ _
Z( 1)~ 1(?) = Den u+—-—-——”L;?§m), m=1,2--,N,
™m

n_1/{MT 2(n—1)~ _ (LA~ (m) — mm) _
-1} (T) = 17 , m=12... N.

n==1

N -1
Z(L2/\ ( )n +fN)( l)n— (%)2( ) (A ( )+M)’

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Obviously, equalities (3.19)—(3.22) have a unique solution. Thus the equalities (3.17)

and (3.18) have a unique solution.
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For N = 1,2,3, we have the following approximate local artificial boundary condi-
" tions

N=1

vm ] dua(c, z2)

- I , (3.23)

orlu = iv)\h(l) — %] (ui(e,we) — ) + [— v s

+ VL/\_(I)] 3u1;i;w2) + [”)‘_(1) = 1%]“2(6, x2), ' | (3.24)
,N =2
. A—(1)  wA-(2) 2w

on =[5 - 5 - S mle ) - )

+ [uLz)\_(l) B vLiA=(2) + ?_{’.] 8?u; (¢, z2)
3?2 3n? Inl Brpy?
dvn 2um | Bug(c, z2) 2vL
s 3IA-(1) | 3L)r(2)] B2s [377)\—(2) I (1)]

il

83“2(61 3:2)
3 ?
02303 95)
2 =[u N wLi~(1) VL)\"(2)] du(c, z2) + [VL:")\‘(I) 3 UL3)\—(2)] 8uy (c, T2)
3r 3
wA(1) vAT(2) 2vum
+ [ 3 -3 ]uz(c, z2)
+ [VL2)\_(1) vLiA~ (2) ]32u2(c ,Tg)
3n2 32 311' dxy?
N=3
3vAT(1)  3wAT(2) wvAT(3) 3un
2 5 o A GO
+ r13vL2A—(1) 3 2vL2A~(2) + vL2A=(3) + 5VL] 8% (c, 23)
L 24n? 32 8n? 127 Gzy?
+ rvLAA—(1) B vILAN(2) N vIAX~(3) " vL? ] (e, z2)
L 2474 1574 4074 6073

8z

(5.26)

3
a3, =|

32124
- v 6um 3umw Oua(c, x2)
YT Ti) 10L)r(3)] oz
2
13vL 4vL 3vL 18%ug(c, 23)
247 2—(1) + 3cA—(2) 81r/\—(3)] dxg3
- vI3 w3 3vL® 3uz(c, z2)
24732 (1) + 15m3A—(2) 407r3)\—(3)] Bzy®
3vLA— (1 3vLA—(2 vLA=(3)10ui(c, x2
oty =l + 2?r( - 101:-( L+ 307r( )] <’§a:2 :
[13uL3A“(1) _vDAA(2) N vI3X- (3)]63u1(c,m2)
2472 373 2473 dzq3
vL3A—(1) _ vL5A=(2) + vLAA~ (3)] &uy(c, z2)
24x5 . 30x5 12075 dxzy”

_|_F_

+[- (3.27)
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3vA~(1) 3wA=(2) vA(3) 3vnm

+[73 5 a0 5L mes)
[13uL2)\—(1) 202\ (2) L vL?X~(3) 4 5uL] 8uy(c, z2)

24n2 32 82 12! fzy?

vLAA—(1 vLAN-(2 vIAA(3 L3 18%s(c,

+[ 4( )_ 4( ) 4( )+ v 3] 2( 3 2)‘ (3.28)

247 157 407 607 Oxa

In a similar way, we can design approximate local artificial boundary conditions at
the artificial boundary I

Therefore the problem (2.1)-(2.5) can be approximated by the following problem
for different N.

(u- Vu+vp=vAu, inQr, (3.29)
v u=0, inQf, (3.30)
uy = ug| =0, b<az; <e (3.31)
Bz lmy=0,r, 2m=OL T U= E1 6 '
ulaq, =0, (3.32)
u|r, = Ueo, (3.33)
N
— [T} _ Jﬂl)

o, = = , on I, 3.34

" (Jng ) (0'1{:; ( )

where 68 = ah, =0.

4. Numerical Implementation and Example

In this section we use finite element method to solve the problem (3.29)(3.34). Let
H™(Qr) denote the usual sobolev space on the domain Qr with integer m. Furthermore
letTh ={z € R |z =0,b<z < c}U{z eR| 2y =L, b<zy <}, T; =
%, V. = {u € H(Qr) x H'(Qr) | u|r,ur; = 0, u2lr, = 0} with norm ||u|? =
lutllszor + [wallizee, W = L*(Qr) with vorm llglw = gl zzagy and M = {u €
HI(QT) X HI(QT) I u’lI‘i = 0, u'[‘b = Uco, u2|1"2 = 0}

For the sake of simplicity, Let II; be a rectangle partition of Qp, with Qr =
Ugken, K, where K is a rectangle.

For each rectangle K € II;, connect the mid-points of the opposite sides of K )
then each rectangle K is divided into four smaller rectangles. Let II; denote this
new partition. Let V4 = {v € V | v|k is a bilinear polynomial, VK € O}, Wp={p e
W | plx is constant, VK € II, }, M), = {v € M | v|g is a bilinear polynomial, VK € II; }.
Then V;, and W}, satisfy the Babuska-Brezzi (B-B) condition [14] and the following
approximation property [14] vien‘ﬁh lu~vilv < Chluls2,0,, qierégh llp —gllv < Chlp|12,04-

We use this finite element method to solve the following example.

Example. Consider the fluid flow in a horizontal channel with a rectangle cylinder
obstacle. :

The obstacle ©; is defined by the domain

2L 3L
@ ={zeR?|08 <z <12 T <z <L
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Then the bounded computational domain Q2 is given by
QT={:BE§R‘2[IJ<3:1 <e¢ O0<z, < L}\ .

We take b = 0, ¢ = 28, L =10, a =10 The nonlinear term (v )uis linearized
by Newton method. At every iterative step, we use the finite element method to solve
a linear problem. Two meshes are used in computation. The partition II; for mesh A
is the same as that used jp [13, p57]. Mesh B is generated by divided each rectangle
in mesh A into four equal smaller rectangles. Let (u%,, %) denote the solution, which
is under the mesh I, of the problem (3.29)-(3.33) and the exact artificial boundary
condition at T', derived in [13]. Tables 1-6 show the maximum errors of ul — uf and

ph ~ pf for mesh A and B with different kinematic viscosity v.

Hlllltllll
LET O PN O A )
IUJIIJJ‘I!
Hib et e 14y
Hurita1 4
LLRL N N B B R
HM 100y

Hlllilllil

lllllllllll

l.l“l.llllll

Fig. 1. Velocity field (Re =20)
Tabie 1. » = 0.05, Mesh A

7.8807E-3
3.0410E-3

Table 3. » = 0.01, Mesh A

A [jor — uiy] | max [pk, —ph ]
m 2.6642E-2 8.8190E-3
[ N=T | 6260083 |__L0IES | 50011k |

Table 4, v = 0.05, Mesh B
max [uy, — uly|

Table 5. » = 0.02, Mesh B
max juf, — Uiyl max |ug,

6.3328E-3
6.2051E-4

errons |
I A
!

mmm max Jpf, — pf,
mm—

2.9904E-4
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Furthermore Figure 1 shows the velocity field for mesh B with v = .05, Figures
2-3 show the velocity for mesh B with = 0.05. Figures 4-6 show the errors ub — uly
and pgo — pf'v at outflow boundary I, for mesh B with v = 0.01.

The example shows that the local artificial boundary conditions presented in this
baper are very effective,

0.03

. 0.008] o)
2 -g 0.02
£ =
g 5
5 0.004
[~ 0.0 ¥ 001
- R
——r 2 {
4; 0 ‘t:l? .':.
] <8 0
4 0 N\ 9
_ —~0.01 L . :
0.004 S 53 Y 33 ) o5 0 0.1 0.2 0.3 0.4 0.5
M ¥
Fig. 4 Re = 100,c = 2.8 Fig. 5 Re = 100,c = 2.8

..... N =

o _ —N=1
5 —0.002

=

= —0.004

3
B

T —0.006
<3
~0.008; 0.4 0.5
¥
Fig. 6. Re = 100,c = 23
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