MA5233 Homework 2

(Due date: 10:00pm, October 24, 2016 (Monday))

1. Consider the iteration: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$ for solving the linear system $A \mathbf{x}=\mathbf{b}$, where \mathbf{d}_{k} is a vector called the direction of search, and α_{k} is a scalar. It is assumed throughout that \mathbf{d}_{k} is a nonzero vector. Consider a method which determine \mathbf{x}_{k+1} so that the residual $\left\|\mathbf{r}_{k+1}\right\|_{2}$ with $\mathbf{r}_{k+1}=\mathbf{b}-A \mathbf{x}_{k+1}$ is the smallest possible.
(a) Determine α_{k} so that $\left\|\mathbf{r}_{k+1}\right\|_{2}$ is minimal.
(b) Show that the residual vector \mathbf{r}_{k+1} obtained in this manner is orthogonal to $A \mathbf{d}_{k}$.
(c) Show that the residual vectors satisfy the relation

$$
\left\|\mathbf{r}_{k+1}\right\|_{2}=\left\|\mathbf{r}_{k}\right\|_{2} \sin \left(\theta_{k}\right),
$$

where the angle $\theta_{k} \in[0, \pi]$ is defined by

$$
\cos \left(\theta_{k}\right)=\frac{\left(\mathbf{r}_{k}, A \mathbf{d}_{k}\right)}{\left\|\mathbf{r}_{k}\right\|_{2}\left\|A \mathbf{d}_{k}\right\|_{2}} .
$$

(d) Assume that at each step k, we have $\left(\mathbf{r}_{k}, A \mathbf{d}_{k}\right) \neq 0$. Will the method always converge?
(e) Now assume that A is positive definite and select at each step $\mathbf{d}_{k} \equiv \mathbf{r}_{k}$. Prove that the method will converge for any initial guess \mathbf{x}_{0}.
2. Show how the GMRES method converge by going through (by hand or by Matlab) a few number of iterations of this method for the linear system $A \mathbf{x}=\mathbf{b}$ when

$$
A=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

and $\mathbf{x}_{0}=\mathbf{0}$.
3. Given the linear system

$$
\begin{aligned}
& 4 x_{1}-x_{2}+x_{3}=8, \\
& 2 x_{1}+5 x_{2}+2 x_{3}=3, \\
& x_{1}+2 x_{2}+4 x_{3}=11, \\
& 4 x_{1}+x_{2}+2 x_{3}=9, \\
& 2 x_{1}+4 x_{2}-x_{3}=-5, \\
& x_{1}+x_{2}-3 x_{3}=-9 .
\end{aligned}
$$

(a) Find the least square solution of the above problem by the normal equation (NE) method.
(b) Find the least square solution of the above problem by the singular-value-decomposion (SVD) method.
4. Consider different numerical methods for computing \sqrt{a} with $a>0$.
(a) Construct the Newton's method based on the nonlinear equation $f(x)=x^{2}-a=0$. Prove that, for $k=1,2, \ldots, x_{k} \geq \sqrt{a}$ and the sequence x_{1}, x_{2}, \ldots is decreasing. Find

$$
\lim _{k \rightarrow \infty} \frac{\left|\sqrt{a}-x_{k+1}\right|}{\left|\sqrt{a}-x_{k}\right|^{2}}, \quad \lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x_{k}\right|}{\left|x_{k}-x_{k-1}\right|^{2}} .
$$

What is the order of convergence of this method?
(b) Construct the Newton's method based on the nonlinear equation $f(x)=1-\frac{a}{x^{2}}=0$. Find

$$
\lim _{k \rightarrow \infty} \frac{\left|\sqrt{a}-x_{k+1}\right|}{\left|\sqrt{a}-x_{k}\right|^{2}}, \quad \lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x_{k}\right|}{\left|x_{k}-x_{k-1}\right|^{2}} .
$$

What is the order of convergence of this method?
(c) Show that the iterative method

$$
x_{k+1}=\frac{x_{k}\left(x_{k}^{2}+3 a\right)}{3 x_{k}^{2}+a}, \quad k=0,1,2, \ldots ; \quad x_{0}>0
$$

is a third-order method for computing \sqrt{a} by finding

$$
\lim _{k \rightarrow \infty} \frac{\left|\sqrt{a}-x_{k+1}\right|}{\left|\sqrt{a}-x_{k}\right|^{3}} .
$$

(d) Write codes to implement the above three methods. Apply them to compute numerically $\sqrt{115}$ and $\sqrt{0.111}$ with different initial data $x_{0}>0$. Compare the convergence rates and the choices of different initial data for different numerical methods. What conclusion can you obtain?

