
MA5233 Homework 1
(Due date: 10:00pm, September 26, 2016 (Monday))

1. Explore truncation error and rounding error, and resolution and accuracy. We seek to
solve the following integral equation:

f(x) =
∫ 1

0

[

t+ sin(x t2)
]

dt.

(a) Write a program (in Matlab or other languages) to estimate the integral using a
composite integration method (such as composite midpoint rule, composite trapezoidal rule
and composite Simpson’s rule), with the number of intervals n = 1

∆t
as input. The program

should be well documented so that other person could easily understand it and easily sub-
stitute a different quadrature by changing a few lines of the code. (You can use standard
subroutine such as Numerical Recipes, Netlib://http.netlib.org; Matlab: type help funfun).

(b) Verify the correctness of the program by checking that it gives the right answer for
small x. We can estimate the integral for small x using a few terms of its Taylor series. This
series can be computed by integrating the Taylor series of sin(x t2) term by term. Turn in a
table showing your Taylor series approximation and the value returned by your code for a
few small values of x, say, x = 0.1, 0.2, 0.3.

(c) With x = 1, do a convergence study to verify the second order accuracy of the
composite trapezoidal rule (trapzd.f routine of Numerical Recipes, Section 4.2 or your own
code made in question (a) in other programming languages) and the fourth order accuracy
of the composite Simpson’s rule (qsimp.f routine of Numerical Recipes, Section 4.2 or your
own code in other programming languages). Turn in a table showing the results for different
step size ∆t, or a log-log plot of the error, and explain how your results demonstrate the
correct order of accuracy. Try different ways if checking accuracy such as comparing with
“correct” answer computed numerically by a very fine grid; or using the relation of

A(4∆t)−A(2∆t)

A(2∆t)− A(∆t)
.

(d) As in (c), what happens when n is very large? Find the value n0 such that the
accuracy check in (c) fails when n ≥ n0. What is the connection with the round-off error?
You will also find that accuracy check in (c) fails when n is very small. This is related to
the resolution and will be explained in (e).

(e) For large values of x, the integrand will undergo many oscillations within the limits
of the integration. Therefore, in order to achieve accuracy, the value of ∆t must decrease
in order to resolve the features of the integrand. Perform a convergence study for large x,
say x = 100, 1000, 10000, and find out how many grid points per-wave structure in the
integrand is needed in order to obtain a clean accuracy check. You shall use relative error
in the convergence study.

(f) Write a routine that uses the composite trapezoidal rule and Richardson extrapolation
to compute the integral to within a specified (absolute) error tolerance ε, e.g. ε = 10−12.
The desired error bound should be input. The output should be the estimated value of the
integral and the number of function evaluations used. You can use or modify the routine
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qtrap.f from Numerical Recipes, Section 4.2. This routine should be robust enough to quit
and report failure if it is unable to achieve the requested accuracy. Turn in a few examples
with your input and output from the routine. Try to find an example where your code
reports failure.

(g). For large x, you may find an asymptotic approximation for the intrgation using
∫ 1
0 sin(x t2) dt =

∫

∞

0 sin(x t2) dt−
∫

∞

1 sin(x t2) dt and doing integration by parts for the second

term (noting
∫

∞

0 sin(z2)dz =
√

π/8). Make a few plots showing f and its approximations
using one, two and all three terms on the right side of the above approximate formula for f
with x in the range 1 ≤ x ≤ 1000. In all cases we want to evaluate f so accurately that the
error in our f value is much less than the error of the approximate formula. Note that even
for a fixed level of accuracy, more points are needed for large x as explained in (e).

2. Consider an n× n tridiagonal matrix of the form

Tα =



















α −1 0 . . . 0
−1 α −1 . . . 0
0 −1 α . . . 0
...

...
...

. . .
...

0 0 0 . . . α



















,

where α is a real parameter.
(a) Verify that the eigenvalues of Tα are given by

λj = α− 2 cos(jθ), j = 1, 2, . . . , n,

where θ = π
n+1

and that an eigenvector associated with each eigenvalue λj is

qj = [sin(jθ), sin(2jθ), . . . , sin(njθ)]T ∈ R
n.

Under what condition on α does this matrix become positive definite?
(b) Now we take α = 2. Will the Jacobi and Gauss-Seidel iterations converge for this

matrix? For which values of ω will the SOR iteration converge?

3. The symmetric successive over-relaxation (SSOR) iteration for solving the linear
system Ax = b with A ∈ R

n×n and b ∈ R
n is

for i = 1, n

x
(m+1/2)
i = (1− ω)x

(m)
i +

ω

aii



bi −
i−1
∑

j=1

aijx
(m+1/2)
j −

n
∑

j=i+1

aijx
(m)
j



 ,

for i = n,−1, 1

x
(m+1)
i = (1− ω)x

(m+1/2)
i +

ω

aii



bi −
i−1
∑

j=1

aijx
(m+1/2)
j −

n
∑

j=i+1

aijx
(m+1)
j



 .

Prove that the iteration matrix Rω of the SSOR iteration, defined as

Rω = (D − ωŨ)−1
[

ωL̃+ (1− ω)D
]

(D − ωL̃)−1
[

ωŨ + (1− ω)D
]

,
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can be expressed as

Rω = I − ω(2− ω)(D − ωŨ)−1D(D − ωL̃)−1A.

4. What can you say about the convergence of the Jacobi iteration if A is symmetric
positive definite? Prove the convergence or create a counter-example.

5. Explore the Gauss-Seidel, SOR, steepest decent and conjugate gradient methods.
Approximate the following two dimensional (2D) Poisson equation with Dirichlet boundary
condition:

−∆u(x, y) = −∂xxu(x, y)− ∂yyu(x, y) = f(x, y), 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0, 0 ≤ y ≤ 1,

u(x, 0) = u(x, 1) = 0, 0 ≤ x ≤ 1;

by the standard second-order central finite difference scheme:

−
1

h2
[ui−1,j + ui,j−1 − 4ui,j + ui+1,j + ui,j+1] = f(xi, yj), i, j = 1, 2, . . . , N − 1,

ui,0 = ui,N = 0, i = 0, 1, 2, . . . , N,

u0,j = uN,j = 0, j = 1, 2, . . . , N − 1;

where h = 1
N

is the mesh size, xi = i h (i = 0, 1, 2, . . . , N) and yj = jh (j = 0, 1, 2, . . . , N)
are the computational grid points, and ui,j is an approximation of u(xi, yj).

(a) Write the difference scheme as a linear system Au = b (where the component of u:
ui,j, j = 1, 2, . . . , N − 1, i = 1, 2, . . . , N − 1) and show that A is positive definite (use similar
approach as in Problem 2).

(b). Sketch the steps and write a program for Gauss-Seidel, SOR with different relaxation
constant 1 < ω < 2, steepest decent and conjugate methods solving the linear system
Au = b. The program should contain two subroutines. One computes the inner product
uTv and the other multiplies a matrix by a vector (so you are able to avoiding formulating
the matrix A in your code).

(c) Choose f(x, y) = sin(5πx) sin(7πy). Take small (e.g. N = 10 or 20) and large N (e.g.
N = 100 or 500 or 1000) to summarize the rate of convergence of these three methods in
the residual.

(d) What conclusion can you get from your computations?
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