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Summary

Mathematical models have been applied to various biological problems for a long

history, including the studies of populations, DNA sequences, pattern formations and

protein structures. This thesis aims to study two areas in computational biology,

namely the collective motion and polymer statistics.

The first part of the thesis focuses on collective motion. Collective motion, or

flocking behaviour studies the common coordinated behaviour which is observed in

many scenarios. For example, animal society like schools of fish, herds of sheep,

swarm of locusts, and even a collection of micro-organisms like bacteria or sperms

perform collective motion. While individual may only react to their neighbours,

the overall structure obtained can be complex. It is therefore interesting to find

suitable particle interaction rules. Models have been proposed in both microscopic

and macroscopic levels.

In this thesis, we begin with a review of microscopic models for particles. Dif-

ferent interaction rules and models have been proposed to match different senarios

with different complexity. We try to understand the link between micro models and

macro models. Two approches are used. The first one is a bottom-up approach.

We focus on the Vicsek model with repulsion. Starting for a mean-field descrip-

tion, we build a fluid limit or continuum limit to the system. The result is a set

v
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of non-conservative hydrodynamic equations. Numerical schemes are proposed and

the results for microscopic and macroscopic models are compared to validate the

derivation. The second one is a top-down approach. Starting from the fluid model,

we review particle methods for fluid simulation. We try to discretize the active fluid

model to particle level and yield an interaction rule knowing the global structure.

Furthermore, the simulation for a large system is achieved with the help of GPU

acceleration.

For micro-organisms living in fluid, volume exclusion effect and hydrodynamic

forces are important for the collective motion pattern formation. We simulate a

large system of rigid self-propelling rods. Extensive numerical simulations are per-

formed in rectangular, circular or annulus domains with different boundary con-

ditions, leading to different patterns. We then review some methods to simulate

particles in viscous fluids and try to understand the flow field generated by micro

swimmers.

The second part of the thesis deals with polymer statistics. Polymers are chains

made up with repeating units. For example, polymers include DNA, collagens, actin

filaments, microtubules and motor proteins such as kinesin. We will review some

models used in polymer theory. The most popular model for semi-flexible polymer is

the worm like chain model. Despite its simplicity, it can model soft chains as well as

rigid rods. An understanding of the statistics of the worm like chain is the basics for

applications. After reviewing the existing polymer models, we use a path integral

approach to map the problem to a quantum rotor on a unit sphere to get the 3d

end to end distribution of the worm like chain. With the distrubution at hand, we

can get the force extension relationship and free energies of the chains with different

conformations.
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Chapter 1

Introduction

1.1 Problems

1.1.1 Collective motion

Collective motion is a very common behaviour in nature. Many biological sys-

tems with different scales show the coherent motion of large number of individuals.

For example,a school of fish [21], a flock of birds [82]. The scale can be as large as

kilometers (herds of beasts) and can be as small as micrometers (bacteria) [112].

In particular, we are interested in the collective motion of spermatozoa. Under

a phase contrast microscope, for a drop of undiluted semen sample, we can observe

that millions of spermatozoa move together forming whirlpools and circular waves.

The collective phenomenon is termed massal motility. It is believed that the massal

motility is the only parameter which has a good correlation with male fertility,

but not the individual motility of a single spermatozoa. An understanding of the

collective motion can help us predict the semen fertility.

The study of collective behaviour has a long history and different approaches has

been taken. Different parameters describing the system can be extracted, including

density, polarity, packing fraction and so on. Experiments are carried out to iden-

tify the collective motions. These include non-living systems(for example, shaken

1
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(a) A herd of sheep (b) A flock of birds

(c) A school of fish (d) A colony of bacteria

Figure 1.1: A gallery of images related to collective motion

metallic rods, simple robots, etc) [110], macromolecules, bacteria colonies, cells [30],

insects, fish, birds, mammals and even human. The data collection techniques are

not discussed in details here.

In the mathematical point of view, different models are proposed, that range

from single particles to those with complex geometries, and from microscopic level to

macroscopic level. The most simple form is the microscopic description of particles,

which are termed self-propelled particles (SPP). The individual is described by its

position, velocity and orientation, and the main feature of collective motion is that

the individual behaviour is dominated by the influence of others. Exact rules for the

motion of each individual are defined, possibly with a noise term, which would then

yield a stochastic process. These rules are termed ”collision rules”, which describe



1.1 Problems 3

how individual would react to their neighbours. Based on the numerous observations

for different systems, the following hypotheses can be made about collective motion:

the tendency to adopt the motion of the neighbours is the main reason for collective

motion, and there is a possible universal class of patterns since similar observations

can appear in very different origins.

Based on the observations, different collision rules are proposed. The first widely-

known flocking simulation was published by Reynolds in 1987, who just want to

visualize birds like flying objects, or ”boids”. Collision rules include alignment and

avoidance. After that, a statistical physics type of approach to collective motion,

or the Vicsek model was introduced in 1995 by Vicsek. A random perturbation

of the direction is included in their system. A lot of research has been done by

varying some parameters or initial settings. The simulations exhibit a rich variety

of collective behaviours.

More sophisticated models consider individual agents not only as particles, but

with specific shape and volume. The shape selected depends on the objects to be

modelled. To study the collective motion of micro-swimmers, since many bacteria

and sperms have elongated body, usually we consider them as polymers and use

hard rod or linked beads to model them. The most simple model is the active

self-propelled particles in the paper of Baskaran and Marchetti. The particles are

basically asymmetric rigid dumbbells, where two spheres are connected with a in-

finitely rigid rod. Peruani simulated self propelled hard rods with a purely physical

mechanism. It is shown that the steric interaction due to volume exclusion leads to

the formation of moving clusters. Experiments with granular particles, i.e. artificial

self-propelled rods, have been performed to confirm that such a physical mechanism

is indeed enough to produce a variety of collective motion pattern.

Furthermore, for micro-organisms swimming in a fluid medium, the hydrody-

namics effect is often enough to generate a collective motion pattern, e.g., clusters,

vortices. Many works have been done to study the fluid mechanics. One of the first

general method for computing the hydrodynamic interactions among an suspension
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of particles was presented by Brady in 1988. Their method is actually the basis of

the Stokesian dynamics, a technique to study the velocity field for a particle system

in Stoke flow. Another approach, the so called slender-body theory was used by

Saintillan and Shelley to study the dynamics of self-propelled slender rods. Several

other different factors can be included in the bacteria model, including chemotaxis,

polarity and adhesion. It is still an open problem to get a realistic simple model to

capture the behaviour of micro-swimmers.

1.1.2 Polymer statistics

A polymer is a chain made of many repeating units, they are created by polymer-

ization of many small molecules, which is termed monomers. Examples of polymers

include the synthetic plastics such as polystyrene, as well as natural biopolymers

such as DNA and proteins. Due to the free rotations between the single bonds in

a polymer molecule, a single polymer molecule can have an enormous number of

different configurations, which are referred as polymer configurations. The difficulty

of a complete description of a single polymer configuration arises from the huge

number of degree of freedoms, and we can see that the description of a single poly-

mer molecule is already a many body problem. However in real life experiments,

we cannot identify and measure a single polymer in molecular level, and we can

only consider some average over many different configurations. Thus we will study

polymer properties by means of statistic mechanics.

The study of polymer solution science started with the celebrated book by Flory

in 1953, where the concept of the excluded-volume effect was accepted. After that,

the study focused on flexible polymers within the Flory framework, which consists

the concept of Gaussian chain. If the chain length is decreased, then the stiffness

of the polymer becomes an important factor even for ordinary flexible chain poly-

mers as well as stiff or semi-flexible macromolecules such as DNA and the α-helical

polypeptides. In atomic level, the stiffness result in the hindrances to internal ro-

tations within the chain and other structural constraints. However, the details are
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usually unnecessary to consider and cannot be treated easily. Therefore continuous

models were proposed. The first of them is the worm like chain model proposed by

Kratky and Porod in 1949 [73]. Other modifications such as the helical worm like

chain were also developed later. Although the worm like chain model cannot mimic

exactly the dimensional behaviour of a real chain, it offers a rather good approxi-

mation for polymers with a wide range of stiffness, and it acts as a fundamental tool

to predict the physical behaviour of many biopolymers. Examples include polymer

liquid crystals [125], polyelectrolytes [50], protein networks and DNA molecules.

One of the key descriptor of the worm like chain statistics is the end to end

distribution function. For the Gaussian chain, the end to end distribution is well

known. However, it is not a trivial task to find the end to end distribution for a

worm like chain. Several studies have addressed the problem in different limits. In

the flexible limit, the chain tends to a Gaussian chain, and the behaviour of finite

rigidity captures the first moments [36]. In the rigid rod limits, the chain statistics

are obtained using a path integral formulation with a fixed end orientation [129].

Another approach for the rigid rod limit is evaluating the partition function by

summing over fluctuations about a nearly straight chain.

Beside the studies for the chain statistics, the exact end to end distribution is

only obtained in the last decade. Several different works tried different approaches.

One approach is a numerical study by direct diagolization of the truncated scatter-

ing matrix [108]. A result for the end to end distribution in three dimensions in

Fourier-Laplace space (Fourier-transformed end position and Laplace transformed

chain length) was obtained using algebraic techniques [117]. Another approach used

diagrammatic methods and got the chain statistics in Fourier-Laplace space in the

form of infinite continued fractions [113]. For the latter method, the statistical

behaviour in real space still requires an inversion from Fourier-Laplace space.
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1.2 Scope and outline of the thesis

As shown in the previous sections, a large number of models have been proposed

to study the collective motion of animal societies. However, a model which can suc-

cessfully describe the behaviour of spermatozoon is still missing. Most existing mi-

croscopic models will produce aggregation of particles and the formation of colonies,

while a suspension of sperms is a rather homogeneous solution. In chapter 2, we

try to understand the relationship between the individual motion and global fluid

like motion they can produce. Two approaches are used. The first is a bottom-up

approach. We will start with the Vicsek model and add repulsion between individ-

uals. Its hydrodynamic limit is derived to understand the global structure of the

motion. The second approach make use of the particle methods for fluids. Knowing

the suspension behaves as an self-propelling active fluid, we can get a microscopic

model out of it. Different particle methods will be discussed. Numerical simulations

will be carried out to justify the derivation.

In chapter 3, we will move to more sophisticated models for a better description

of the collective motion. By making use of GPU acceleration, we can model the

sperms as self propelling rods and take account of the volume exclusion effect. We

will study how the shape of the rods and different boundary conditions can affect

the motion of the system. For more precise descriptions, we will also include the

hydrodynamic forces and try to understand the fluid particle interactions.

Chapter 4 then studies a single polymer statistics. We will review some famous

existing polymer models and then focus on the worm like chain model. Numerical

methods are proposed to get the 3d end to end distributions with different end con-

formations. The results suggest the possibility of a surprising accurate flyfish-like

control in which tilting one end of a semiflexible polymer enables positioning of the

other diffusing end to a remote location within an error of 1nm. With the exact

statistics at hand, we can easily get the free energy and force-extension relationships.

A new force-extension formula that is valid for polymer with different rigidity is ob-

tained. The formula provides a convenient tool to estimate direction and magnitude
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of intra-chain force, which are critical in site selective dissociation in nanomotors.

Finally the main results will be summarized in chapter 5. We will also address

some interesting topics for future works.



Chapter 2

Models and Methods for Collective Motion

of Particles

In this chapter, we study the collective motion of particles where each individual

is represented by a point and the shape of the object is not considered. We will firstly

review the existing models in the literature. Then we will focus on selected models

and study them on both microscopic level and macroscopic level. Then accurate

and efficient numerical methods are proposed for the models for comparison.

2.1 Existing models

By our knowledge, Vicsek is the first in understanding collective motion [122]. He

showed order-disorder phase transitions can be achieved using a simple model, which

is the discrete Vicsek model. The discrete Vicsek model considers N point particles

xni ∈ R3 at discrete times tn. Each particle has orientation ωn
i which belongs to the

unit sphere S2 = {ω, |ω|2 = 1} and velocity vni ∈ R3. The system is updated in the

following manner.

vn+1
i = v0ω̄

n
i + perturbation, (2.1.1)

xn+1
i = xni + vn+1

i . (2.1.2)

8
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Here ω̄n
i represents an average orientation of the neighbour particles near particle

i, and v0 is the self-propulsion speed. Such particles are termed “self propulsion

particles”(SPP). Note that the interaction is short ranged. It is interesting that in

the limit v0 goes to 0, the model becomes analogous to a classical Ising model in

the study of ferromagnet. One key finding of this model is that, as the number of

particles increase, there is a sharp phase transition from a disordered state to an

aligned state [63], and this observation is confirmed using locusts [17]. Even without

an common quadratic Lyapunov function, the system is proved to be stable [68].

Although the Vicsek model is not a very realistic model, it can be easily modified and

is applied in many areas due to its simplicity, examples include school of fish [49],

robotic swarms [7] and even human trails [57]. Variations for the Vicsek model

include changing symmetry, adding local cohesion and considering fluid [23].

Another model which received great attention is proposed by Cucker and Smale

[32]. Instead of interaction with the neighbours, each individual adjusts its velocity

as a weighted average of the whole population as follow:

vn+1
i − vni
δt

=
λ

N

N
∑

i=1

aij(v
n
j − vni ).

Here aij indicate the weight of how particle j will affect particle i. In [32], it is

defined as

aij =
1

(1 + ||xi − xj ||2)β
.

for some β > 0.

Denote

Γ(x) =
1

2

∑

i 6=j

||xi − xj ||2 and Λ(v) =
1

2

∑

i 6=j

||vi − vj ||2.

The main result in [32] is that when β < 1
2
, the flock will converge to a constant

velocity unconditionally, where the initial configuration is not important. However

when β ≥ 1
2
, the initial velocity and position have to satisfy certain compatible

conditions for collective behaviour. Another simple proof based on the explicit con-

struction of a Lyapunov functional can be found in [55]. A remarkable application
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is that a spacecraft control law is designed based on the Cucker Smale model [99].

Similar as the Vicsek model, the Cucker Smale model can be easily modified. For ex-

ample, [111] studies the emergent behavior under hierarchical leadership. [34] further

considered some random interactions.

Both Vicsek model and Cucker Smale model are “Individual Based Model(IBM)”

where the individual behaviour is studied based on the interaction with other in-

dividuals. Despite their success in modelling various fields, it becomes computa-

tional expensive and time consuming without parallel computing. Many works has

been done to understand the models in macroscopic level. The statistic version of

the models are also call kinetic models. Kinetic model of the Vicsek model can

be found in [15, 16] while kinetic model of the Cucker Smale model can be found

in [20]. It is interesting to see that the kinetic Cucker Smale model actually con-

verge to the kinetic Vicsek model [18]. With an assumption of weak anisotropy of

the velocity distribution function, a hydrodynamic model of the Vicsek model is de-

rived [10,11]. [103] offered another try to get a fluid model directly from the Vicsek

model. The first work which derives a fluid limit via the mean-field kinetic version

can be found in [41]. They make use of the concept called the generalized collision

invariant(GCI). Further works can be found in [38–40].

To build more realistic models, many models proposed in the biological literature

focus on three interaction rules between individuals. Basically they are repulsion,

alignment and attraction. When animals get too close, they will avoid each other.

When they are at intermediate distances they will try to align with each other.

Lastly when they will attract those who are very far away. These models are known

as three zone models [5,29,67]. Different elements can be added into the three-zone

models depending on the species of the animals. For example, the position of the

eyes of a bird is much different from those of a locust. And cone of visibility can

be taken into account for the interaction. Closed-neighbor interaction, noise and

other factors can also be considered. Other works include simulations considering

the speed change when joining or leaving a group [54], avoiding predators [121] or
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Figure 2.1: Three zone model

clustering when a predator approaches [124]. With different parameters, different

zoology patterns are classified rather than a simple flocking behaviour, including

rotating single and double mills, rings and clumps [33].

2.2 Modified Vicsek model

To understand the behaviour of a collection of sperm cells. The most simple

model considered would be the Vicsek model. In [41], the hydrodynamic limit for

the Vicsek model is proposed. We will name this system as the Self-Organized

Hydrodynamic (SOH) model. To be precise, SOH model reads:

∂tρ+ c1v0∇x · (ρΩ) = 0, (2.2.1)

ρ∂tΩ + c2v0ρ(Ω · ∇x)Ω + v0dPΩ⊥∇xρ = γPΩ⊥∆x(ρΩ), (2.2.2)

|Ω| = 1. (2.2.3)

Note that (2.2.1) describes the conservation of mass, (2.2.2) controls the orientation

which is the mean of neighbouring particles, and finally, (2.2.3) is a constraint term.

If (2.2.3) is satisfied initially, it will be automatically satisfied for all times due to

the projection operator PΩ⊥ . Note that this system is similar as the Navier-Stokes

system in the sense that both contains a non-linear hyperbolic part followed by

a diffusion term. The difference is that the momentum is not conserved in the
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SOH model. Another important difference is that the convection velocities for the

density and the orientation, v0c1 and v0c2 are different while they are the same for

the Navier-Stokes system. As a consequence, the propagation of sound waves is

anisotropic for this type of fluids [120].

Although the Vicsek model results in a fluid type system, it does not take con-

sideration of the volume exclusion effect and there could be a formation of very high

particle concentration. For a suspension of sperm cells, each is an elongated body

and the repulsion between each individual is important resulting in a rather homo-

geneous suspension. Therefore a more reasonable model would be adding repulsion

to the Vicsek model.

2.2.1 Microscopic model and the mean field limit

In the microscopic level, the model is stated as below.

dxi
dt

= vi, (2.2.4)

dvi
dt

= µ1(v0ωi − vi) +
µ2

N

∑

j

Fij , (2.2.5)

dωi = Pω⊥

i
(νω̄idt+

√
2DdBt + αvidt). (2.2.6)

Here (2.2.4) simply describes the spatial motion of particle i with velocity vi. (2.2.5)

describes the force. The first term is a self propulsion force where each particle tends

to move towards its orientation ωi with a fixed speed v0, and the second term is a

repulsive force where Fij represents the pairwise interaction between particles i and

j. It can be written as Fij = −∇xφ(xi − xj). The support of the smooth potential

φ is a ball with radius r. µ is the mobility coefficient and N is the total number

of particles. Finally (2.2.6) describes the time evolution of the orientation. Here

Pω⊥

i
= Id−ωi ⊗ωi is the projection operator onto the orthogonal plane of ωi. Here

Id is the identity matrix and ⊗ represents the tensor product of two vectors. This

projection operator ensures that ωi is always a unit vector.

The mean orientation ω̄i is the mean orientation around particle i and is defined
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as

ω̄i =
Ji
|Ji|

, Ji =
∑

j

K(|xi − xj |)ωj. (2.2.7)

It is constructed in a way such that it is the normalization of the “total orientation”

Ji, which sums up all the orientation vectors ωj within the observation kernel K,

which is the indicator function of a ball centred at origin and with radius R.

The second term describes a white noise with intensity
√
2D. Note that the noise

here is against collective motion thus competes with the first term. In 2-dimensional

space, the orientations belong to the unit circle S1 and one can write ω = eiθ. In the

original version, a uniform noise in a small interval of angles [−a, a] can be added to

θ. In [122], it is shown that there exists a threshold value a∗. For a < a∗, a coherent

dynamic structure is achieved while for a > a∗, the system becomes disordered at

all times.

The last term models the relaxation of the particle orientation towards the di-

rection of the particle velocity vi with rate α.

For a suspension of micro-swimmers in a fluid with very small Reynolds number,

we will consider the velocity in the overdamped regime. In (2.2.5), we consider the

case when µ1 goes to infinity and divide both sides by µ1, and let µ = µ2

µ1
. The

system can be rewritten as

dxi
dt

= vi, (2.2.8)

vi = v0ωi +
µ

N

∑

j

Fij, (2.2.9)

dωi = Pω⊥

i
(νω̄idt+

√
2DdBt + αvidt). (2.2.10)

We now consider the mean-field kinetic equation which describes the time evolution

of the particle system in the large N limit. The unknown is a distribution function

which depends on the position x ∈ Rn, orientation ω ∈ Sn−1, as well as time t.

Note that in the overdamped regime, the velocity can be readily computed once the

orientation is determined. We consider the case without the Gaussian noise first.
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Introduce the so-called empirical distribution fN(x, ω, t) defined by:

fN(x, ω, t) =
1

N

N
∑

i

δ(x− xi(t))δ(ω, ωi(t)). (2.2.11)

Note that δ(ω, ωi(t)) 6= δ(ω − ωi(t)) because the sphere S2 is not left invariant by

subtraction. We can show that

∂tf +∇x · (vff) + ν∇ω · (Pω⊥ω̄ff) + α∇ω · (Pω⊥vff) = 0. (2.2.12)

Proof. Define 〈ψ〉f(t) to be 〈f, ψ〉 where ψ(x, ω) is a smooth test function. Therefore

〈ψ〉f(t) = 1
N
ψ(xi(t), ωi(t)),

d

dt
〈ψ〉f = 〈∂f

∂t
, ψ〉

=
1

N

N
∑

i=1

(∇xψ
dxi
dt

+∇ωψ
dωi

dt
)

=
1

N

N
∑

i=1

(∇xψ · vi +∇ωψ · Pω⊥

i
(νω̄i + αvi))

= 〈f, vf · ∇xψ + Pω⊥(νω̄f + αv) · ∇ωψ〉

= −〈∇x · (vff) +∇ω · (Pω⊥(νω̄ff + αvff)), ψ〉.

(2.2.13)

Together with the noise, we will admit that the evolution of f will be governed

by the following system:

∂tf +∇x · (vff) + ν∇ω · (Pω⊥ω̄ff) + α∇ω · (Pω⊥vff)−D∆ωf = 0, (2.2.14)

vf (x, ω, t) = v0ω − µ

∫

Sn−1×Rn

∇xφ(x− y)fdydω, (2.2.15)

ω̄f =
Jf(x, t)

|Jf(x, t)|
, (2.2.16)

Jf(x, t) =

∫

Sn−1×Rn

K(|x− y|)ωfdydω. (2.2.17)

Here ∆ω denotes the Laplace-Belltrami operator on the sphere:

∆ωf =
1

sin θ
∂θ(sin θ∂φf) +

1

sin2 θ
∂φφf.
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Equation (2.2.14) is a Fokker-Planck type equation. With the noise added, the

rigorous convergence of the particle system to the above Fokker-Planck equation is

still an open problem. We recall that, the derivation of the kinetic equation for the

Vicsek model without repulsion has been done in [41] in a slightly modified context.

This system is the kinetic counterpart to the system (2.2.8) to (2.2.10). The

second term in (2.2.14) describes particle transport with velocity vf . The third

term describes the alignment interaction. The fourth term describes the relaxation

force towards the velocity. And finally the last term describes the diffusion due to

the Brownian noise in the orientation space.

2.2.2 Scaling

In order to highlight the role of each terms, we firstly write the system in dimen-

sionless form. Introduce the dimensionless variables:

f̃ =
f

f0
, x̃ =

x

x0
, t̃ =

t

t0
, φ̃ =

φ

φ0

.

Choose

x0 = v0t0, f0 =
1

xn0
, φ0 =

v0x0
µ

,

together with the dimensionless parameters

ν̃ = t0ν α̃ = x0α, D̃ = t0D.

Then in the new set of variables (x̃, t̃), dropping all the tildes for simplicity, (2.2.15)

becomes

vf (x, ω, t) = ω −
∫

Sn−1×Rn

∇xφ(x− y)fdydω.

while f, ω̄f , Jf are still given by (2.2.14,2.2.16,2.2.17). Note that the radius of the

interacting kernels φ and K is also scaled by x0.

We now define the regime we are interested in. We assume that the ranges R

and r of the interaction kernels K and φ are both small but with R much larger

than r. Also we assume that the diffusion coefficient D and the relaxation rate to
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the mean orientation ν are large and of the same orders of magnitude, while the

relaxation to the velocity α stays of order 1.

More specifically, we assume the existence of a small parameter ǫ and assume

the following scaling:

D =
1

ǫ
d̂, ν =

1

ǫ
, K(|x− y|) = K̂(|x− y√

ǫ
|), φ(x− y) =

1

ǫn
φ̂(
x− y

ǫ
).

We can see that the D and ν are of order 1
ǫ
while the kernels K and φ have radius

with order
√
ǫ and ǫ respectively. Again dropping all the hats for simplicity, in this

new set of variables, the system for the distribution function f ǫ (The superscript ǫ

shows that f is dependent on ǫ) can be written as:

ǫ(∂tf
ǫ +∇x · (vǫf ǫ) +∇ω · (αPω⊥vǫf ǫ)) = −∇ω · (Pω⊥ω̄ǫf ǫ) + d∆ωf

ǫ,

(2.2.18)

vǫ = ω −∇x

∫

Sn−1×Rn

1

ǫn
φ(
x− y

ǫ
)f ǫdydω, (2.2.19)

ω̄ǫ =
J ǫ(x, t)

|J ǫ(x, t)| , (2.2.20)

J ǫ =

∫

Sn−1×Rn

K(|x− y√
ǫ

|)ωf ǫdydω. (2.2.21)

Now making use of Taylor expansion, we can get rid of the kernels φ and K in our

system, and expand vǫ, J ǫ in orders of ǫ.

We firstly rewrite the velocity v, using y = x+ ǫz,

vǫ(x, ω, t) = ω −∇x

∫

Sn−1×Rn

1

ǫn
φ(
x− y

ǫ
)f ǫ(y, ω, t)dydω

= ω −∇x

∫

Sn−1×Rn

φ(z)[f ǫ(x, ω, t) + ǫz · ∇xf
ǫ(x, ω, t) +O(ǫ2)]dzdω

= ω −
∫

Rn

φ(z)dz · ∇x

∫

Sn−1

f ǫ(x, ω, t)dω +O(ǫ2)

= ω − Φ · ∇xρ
ǫ(x, t) +O(ǫ2).

(2.2.22)

with Φ =
∫

Rn φ(z)dz, ρǫ(x, t) =
∫

Sn−1 f
ǫ(x, ω, t)dω.
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Similarly, using y = x+
√
ǫz, we see that

J ǫ =

∫

Sn−1×Rn

K(
|x− y|√

ǫ
)ωf ǫ(y, ω, t)dydω

=

∫

Sn−1×Rn

K(|z|)ωf ǫ(x+
√
ǫz, ω, t)

√
ǫ
n
dzdω

=
√
ǫ
n
∫

Sn−1×Rn

K(|z|)ω[f ǫ(x, ω, t) +
√
ǫz · ∇xf

ǫ(x, ω, t)

+
ǫ

2
zTHǫ

f(x, ω, t)z +O(ǫ2)]dzdω

=
√
ǫ
n
(A+ ǫB +O(ǫ2)).

(2.2.23)

Here

A =

∫

Rn

K(|z|)dz
∫

Sn−1

ωf ǫ(x, ω, t)dω = k0j(x, t), (2.2.24)

k0 =

∫

Rn

K(|z|)dz, j(x, t) =

∫

Sn−1

ωf ǫ(x, ω, t)dω. (2.2.25)

B =
1

2

∫

Sn−1×Rn

K(|z|)ωzTHǫ
f(x, ω, t)zdzdω

= k1

∫

Sn−1

ω∆f ǫ(x, ω, t)dω.

(2.2.26)

k1 =
1

2n

∫

Rn

K(|z|)|z|2dz. (2.2.27)

Finally using the identity

A+ ǫB

|A+ ǫB| = Ω + ǫPΩ⊥

B

|A| +O(ǫ2), Ω =
A

|A| . (2.2.28)

We can get

ω̄ǫ =
j(x, t)

|j(x, t)| + ǫPΩ⊥

k1
∫

ω∆f ǫdω

|k0j(x, t)|
. (2.2.29)

We collect all the results and define the local density ρ, local current density j and

local average orientation Ω, neglecting the superscript ǫ:

ρ(x, t) =

∫

Sn−1

f(x, ω, t)dω, (2.2.30)

j(x, t) =

∫

Sn−1

f(x, ω, t)ωdω, (2.2.31)

Ω(x, t) =
j(x, t)

|j(x, t)| . (2.2.32)
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Together with the following terms

G(x, t) = PΩ⊥

k1∆j(x, t)

|k0j(x, t)|
, (2.2.33)

Q(f) = −∇ω · (Pω⊥Ωf) + d∆ωf
ǫ. (2.2.34)

Here Q(f) is called the collision operator. Dropping all the O(ǫ2) terms, the system

can be written as below:

ǫ(∂tf +∇x · (vf) +∇ω · (αPω⊥vf) +∇ω · (Pω⊥G(x, t)f)) = Q(f), (2.2.35)

v = ω − Φ · ∇xρ(x, t). (2.2.36)

2.2.3 Hydrodynamic limit

The purpose of this section is to consider the hydrodynamic limit for the system

(2.2.35,2.2.36) as ǫ goes to 0, where the local density, the local current and local

average orientation are defined by (2.2.30) to (2.2.32). Firstly we introduce the

von Mises-Fisher (VMF) probability distribution MΩ(ω) of ω ∈ Sn−1 where Ω is a

parameter.

MΩ(ω) = Cexp(
ω · Ω
d

). (2.2.37)

This is a distribution where the peak is centered at Ω. While d measures the

intensity of noise, we can see that if d goes to 0, MΩ converge to δΩ which means a

perfect alignment, and if d goes to infinity, MΩ converges to a uniform distribution

representing a totally disordered state. Here C is a normalizing constant to ensure

that
∫

MΩ(ω)dω = 1, clearly,

C =
1

∫

exp(ω·Ω
d
)dω

. (2.2.38)

An important parameter would be the flux of the VMF distribution, which is
∫

MΩ(ω)ωdω. By simple symmetry properties, we can see that the flux is aligned

with Ω, or
∫

MΩωdω = c1Ω, c1(d) =

∫

MΩ(ω)(ω · Ω)dω. (2.2.39)
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Theorem 2.2.1. Let f ǫ be the solution of (2.2.73) and assume that

f ǫ → f as ǫ → 0. (2.2.40)

Then there exists ρ(x, t) and Ω(x, t) such that

f(x, ω, t) = ρ(x, t)MΩ(ω). (2.2.41)

Furthermore, the functions ρ(x, t) and Ω(x, t) satisfy the following equations:

∂tρ+∇x · (ρU) = 0, (2.2.42)

ρ(∂tΩ + (V · ∇x)Ω) + PΩ⊥∇x(p(ρ)) = γPΩ⊥∆(ρΩ). (2.2.43)

With

U = C1Ω− Φ∇xρ, (2.2.44)

V = C2Ω− Φ∇xρ, (2.2.45)

p(ρ) = dρ+ αΦ((n− 1)d+ C2)
ρ2

2
, (2.2.46)

γ =
k1
k0

((n− 1)d+ C2). (2.2.47)

The coefficient C1(d) and C2(d) are defined in the proof.

To prove the theorem, we will take three steps. The first step is to determine the

equilibrium state. The second step is to compute the generalized collision invariant.

The final step is to get the hydrodynamic limit.

step1: determination of the equilibrium state:

The aim is to cancel the right hand side of (2.2.35) and thus the equilibrium

state is the elements in the null space of Q. Note that Q is an operator on f defined

in (2.2.34). To do this, we will study the property of Q first.

With MΩ defined, we have the following lemma:

Lemma 2.2.1. The operator Q can be written as

Q(f) = d∇ω · [MΩ∇ω(
f

MΩ
)]. (2.2.48)
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and we have

H(f) =

∫

Q(f)
f

MΩ
dω = −d

∫

MΩ|∇ω(
f

MΩ
)|2dω ≤ 0. (2.2.49)

Proof. In 3D, we choose a reference frame Ω = e3, thus

ω =











sin θ cosφ

sin θ sin φ

cos θ











, eθ =











cos θ cos φ

cos θ sinφ

− sin θ











, eφ =











− sin φ

cosφ

0











, (2.2.50)

and we have the following identities for scalar f and vector ~A = Aθeθ + Aφeφ:

∇ωf = fθeθ +
1

sin θ
fφeφ, ∇ω · ~A =

1

sin θ
∂θ(Aθ sin θ) +

1

sin θ
∂φAφ. (2.2.51)

Therefore MΩ(ω) = Cexp( cos θ
d
) and

∇ω(lnMΩ) = ∇ω[lnCexp(
cos θ

d
)]

=
1

d
∇ω(cos θ)

= −1

d
sin θeθ

=
1

d
Pω⊥Ω,

(2.2.52)

and we deduce that

d∇ω · [MΩ∇ω(
f

MΩ

)] = d∇ω · [∇ωf − f∇ω(lnMΩ)]

= d∆ωf − d∇ω · (f · 1
d
Pω⊥Ω)

= Q(f).

(2.2.53)

The case in 2D is similar. And the second part of the lemma follows directly from

the first part as well as Stoke’s theorem.

Now we can define the set of equilibria of Q to be

E = {f ∈ H1(Sn−1)|f ≥ 0 and Q(f) = 0}. (2.2.54)

With the previous lemma, we can see that if Q(f) = 0, then H(f) = 0. Note

that H(f) is the integral of a non-negative quantity and the only possibility is that
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∇ω(
f

MΩ
) is identically 0, which means that f = ρMΩ for some conveniently constant

ρ.

Finally, we can state the lemma:

Lemma 2.2.2. The set of equilibria of Q such that Q(f) = 0 forms a three-

dimensional manifold E and is given by

E = {ρMΩ(ω)|ρ ∈ R+,Ω ∈ S
2}. (2.2.55)

Using the fact that
∫

MΩdω is normalized, we see that ρ is the total local density.

Also Ω is the direction of the flux of ρMΩ(ω).

ρ =

∫

ρMΩ(ω)dω, (2.2.56)

Ω =
j[ρMΩ]

|j[ρMΩ)]
, j(ρMΩ) =

∫

ρMΩ(ω)ωdω. (2.2.57)

The lemma can be interpreted as follows: For the equilibrium solution of f , the

dependence on position x and orientation ω can be decoupled. The distribution f

is the product of the local density ρ and the Von-Mises Fisher distribution in the

orientation space.

Step2: Generalized Collision Invariants (GCI)

We will begin this section by defining the term Collision Invariant(CI).

Definition 2.2.3. A collosion invariant (CI) is a function ψ(ω) such that for all

the function f with sufficient regularities. We have

∫

Q(f)ψdω = 0. (2.2.58)

With (2.2.48), this means that

∫

∇ω · [MΩ∇ω(
f

MΩ
)]ψdω = 0, (2.2.59)
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so we have ∀f ,
∫

∇ω · [MΩ∇ω(
f

MΩ
)]ψdω = −

∫

MΩ∇ω(
f

MΩ
)∇ωψ

=

∫

f

MΩ

∇ω · (MΩ∇ωψ)dω

= 0.

(2.2.60)

We are looking for function ψ such that (2.2.60) holds. Clearly the set of con-

stants are collision invariant. Physically, this corresponds to the conservation of

mass during particle interactions. Note that for our system, the momentum is not

conserved, and we cannot hope for more physical conservations. The set of con-

stants is not large enough for us to derive the evolution of ρ and Ω. To overcome

this problem, we introduce collision invariant in a weaker sense, which is the so

called generalized collision invariant. The concept is firstly introduce in [41]

Now fix a particular Ω and Ω[f ] be the average local orientation for a given

distribution f . The generalized collision invariant(GCI) is defined to be function ψ

such that
∫

f

MΩ

∇ω · (MΩ∇ωψ)dω = 0, ∀f such that Ω[f ] = Ω. (2.2.61)

Remember that Ω is the normalization of j[f ], therefore saying Ω[f ] = Ω is the same

as saying that j[f ] is aligned with Ω. Or we can stated that

0 = Ω× j[f ] =

∫

f(Ω× ω)dω =

∫

f

MΩ
(sin θMΩ)dω. (2.2.62)

Viewing this as a linear constraint and introducing the Lagrange multiplier β of this

constraint. Let β be a vector which is perpendicular to Ω, the problem of finding

the generalized collision invariant can be restated as below: Given Ω ∈ S2, find all

ψ such that there exist β⊥Ω, and
∫

f

MΩ
{∇ω · (MΩ∇ωψ)− β · (Ω× ω)MΩ}dω = 0. (2.2.63)

Now (2.2.63) holds for all f without any constraint, and therefore we can get the

following equation for ψ:

∇ω · (MΩ∇ωψ) = β · (Ω× ω)MΩ. (2.2.64)



2.2 Modified Vicsek model 23

Now we again use the reference frame where Ω = e3

ω =











sin θ cosφ

sin θ sin φ

cos θ











, β =











β1

β2

0











, Ω× ω =











− sin φ sin θ

cosφ sin θ

0











. (2.2.65)

The problem of finding ψ is obviously linear and we can see that ψ1 and ψ2 can

be solved separately, with the right hand side of (2.2.64) being − sin φ sin θMΩ and

cosφ sin θMΩ respectively.

With the right hand side fixed, we firstly prove the uniqueness of the generalized

collision invariant. And we have the following lemma:

Lemma 2.2.4. Let χ ∈ L2(S2) such that
∫

χdω = 0, then

∇ω · (MΩ∇ωψ) = χ, (2.2.66)

has a unique weak solution in the quotient of the space H1(S2) by the space spanned

by the constant functions, endowed with the quotient norm.

The proof of the lemma is based on applying the Lax-Milgram theorem to the

variational form of (2.2.66) which is

∫

MΩ∇ωψ · ∇ωφdω =

∫

χφdω, (2.2.67)

for a test function φ.

Therefore for χ = − sinφ sin θMΩ and χ = cosφ sin θMΩ, we are able to solve for

ψ1 and ψ2 uniquely up to factor of a constant. If we impose the condition
∫

ψkdω = 0

for k = 1, 2, we can single out the unique solutions.

If we can find ψ1 and ψ2, together with the set of constants, we can state that

the set of collision invariant forms a three dimensional space which is spanned by

{1, ψ1, ψ2}.
Actually we can find the form of ψ1 and ψ2 explicitly. ψ1 = −g(cos θ) sinφ and

ψ2 = g(cos θ) cosφ where the dependence on θ and φ is separated. Making use of the
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differential operators in spherical coordinate, we see that the function g(µ) satisfies

the differential equation below:

−(1− µ2)∂µ[(1− µ2)gµMΩ] + gMΩ = −(1− µ2)
3

2MΩ. (2.2.68)

Since the operator on the left hand side degenerates at the boundary µ = ±1, there

is no need to specify a boundary condition for the differential equation.

Again using the Lax-Milgram theorem, to prove that problem (2.2.68) has a

unique solution in the space V defined by

V = {g|(1− µ2)−1/2g ∈ L2(1, 1), (1− µ2)1/2∂µg ∈ L2(1, 1)}. (2.2.69)

Furthermore, the Maximum Principle shows that g is non-positive.

For the convenience of the next step, we introduce h(µ) = (1−µ2)−1/2. In terms

of θ, it is h(cos θ) = g(cos θ)/ sin(θ). Using the spherical reference frame, we can

compute (Ω× ω)h(Ω · ω) = ψ1e1 + ψ2e2.

Here we call ~ψ the vector form of the generalized collision invariant associated

with orientation Ω.

The above computation of the collision invariant assumes the dimension n = 3.

For 2D case, the idea is similar. Using a reference frame Ω = (1, 0) and ω =

(cos θ, sin θ), from the relation (2.2.64), now we get only one generalized collision

invariant ψ with the corresponding χ = sin θMΩ, i.e.

∇ω · (MΩ∇ωψ) = sin θMΩ. (2.2.70)

This ψ can be explicitly written as ψ = g(cos θ) and g(µ) satisfies

∂µ((1− µ2)1/2gµMΩ) =MΩ. (2.2.71)

In this case, we can introduce h(cos θ) = g(cos θ)/ sin(θ) and reach our conclusion

(Ω× ω)h(Ω · ω) = ψ.

In summary, we found the generalized collision invariant in the form of

ψ = constants or ψ = (Ω× ω)h(Ω · ω) which guarantees that
∫

Q(f)ψdω = 0, ∀f such that Ω[f ] = Ω. (2.2.72)

making use of this, we can move to the next step of getting the hydrodynamic limit.
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step3: Hydrodynamic limit

Finally we go back to our system (2.2.73,2.2.74),

ǫ(∂tf +∇x · (vf) +∇ω · (αPω⊥vf) +∇ω · (Pω⊥G(x, t)f)) = Q(f), (2.2.73)

v = ω − Φ · ∇xρ(x, t), (2.2.74)

G = PΩ⊥

k1∆xj(x, t)

k0j(x, t)
. (2.2.75)

and we consider the limit when ǫ goes to 0. Clearly this implies that Q(f) equals

to 0. Thanks to our lemma (2.2.1), this implies that f(x, ω, t) has the form of

ρ(x, t)MΩ(ω). What remains is to find the evolution equation for ρ as well as ω.

Note that now the operatorQ acts on ω alone, which does not specify the dependence

of f on (x, t), consequently, ρ and Ω are functions of x, t.

To find the dependence, we can make use of the generalized collision invariant

and integrate (2.2.73) together with ψ. This helps us to cancel the right hand side

by the definition of the generalized collision invariant. What we can get is, for a

collision invariant ψ

∫

[∂tf +∇x · (vf) +∇ω · (αPω⊥vf) +∇ω · (Pω⊥G(x, t)f)]ψdω = 0. (2.2.76)

For our numerical comparisons, we will deal with the 2D case. Since the collision

invariants is spanned by {1, g(cos θ)}, we firstly consider the constant collision in-

variant. By integrating with 1 with respect to ω, the right hand side is 0 while

the third and fourth terms in the left hand side also becomes 0 since they are the

divergence form. We get

∫

(∂tf +∇x · (vf))dω = 0. (2.2.77)

In another word, with (2.2.55) this is

∂tρ+∇x · (vρMΩdω) = 0, (2.2.78)

v = ω − Φ∇xρ. (2.2.79)



2.2 Modified Vicsek model 26

substituting the expression of v, we get the first equation governing the evolution of

ρ, which is

∂tρ+ c1∇x · (ρΩ)− Φ∆(
ρ2

2
) = 0, (2.2.80)

where c1 is defined in (2.2.117). Now we consider collision invariants other than the

constant. Note that ψ = (Ω× ω)h(Ω · ω) thus (2.2.76) can be written as

Ω×
∫

[∂tf +∇x · (vf)+∇ω · (αPω⊥vf)+∇ω · (Pω⊥G(x, t)f)]ωhdω = 0. (2.2.81)

We can write it in the form Ω×X=0, with

X :=

∫

[∂tf +∇x · (vf) +∇ω · (αPω⊥vf) +∇ω · (Pω⊥G(x, t)f)]ωhdω

= X1 +X2 +X3 +X4.

(2.2.82)

consisting of four terms. This means that PΩ⊥X = 0 and we compute each term

PΩ⊥Xk(k = 1, 2, 3, 4) successively and let the sum be 0. Then we can get the

evolution equation we want.

Elementary differential geometry gives the derivative of MΩ with respect to Ω

acting on a tangent vector dΩ as follows:

∂M

∂Ω
(dΩ) =

1

d
(ω · dΩ)MΩ. (2.2.83)

And we can deduce the following identities:

∂t(ρMΩ) =MΩ(∂tρ+
1

d
ρ(ω · ∂tΩ)), (2.2.84)

(ω · ∇x)(ρMΩ) =MΩ((ω · ∇x)ρ+
1

d
ρω · ((ω · ∇x)Ω)). (2.2.85)

In the following computations, we will use a moving reference polar frame Ω =

(1, 0) and ω = (cos θ, sin θ) in 2D case. The computation in 3D is similar with a

spherical reference frame e3. An easy computation shows that

∫

ω ⊗ ωdω =

2π
∫

0

cos2 θdθPΩ +

2π
∫

0

sin2 θdθPΩ⊥. (2.2.86)
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Firstly we consider X1,

X1 =

∫

∂t(ρMΩ)ωhdω

=

∫

ρtMΩωhdω +

∫

1

d
ρMΩ(ω · ∂tΩ)ωhdω

= X11 +X12.

(2.2.87)

Here due to symmetry X11 is along Ω, clearly PΩ⊥X11 = 0, and

X12 =
ρ

d

∫

(ω ⊗ ω)∂tΩMΩhdω. (2.2.88)

Therefore

PΩ⊥X1 = PΩ⊥X12 =
ρ

d

2π
∫

0

sin2 θhMΩdθ∂tΩ = cρ∂tΩ, (2.2.89)

where

c =
1

d

2π
∫

0

sin2 θhMΩdθ. (2.2.90)

Next we consider X2

X2 =

∫

∇x · (vρMΩ)ωhdω

=

∫

∇x · (ωρMΩ)ωhdω −
∫

∇x · (Φ∇xρ · ρMΩ)ωhdω

= X21 +X22 +X23 +X24.

(2.2.91)

with

X21 :=

∫

(ω · ∇xρ)MΩωhdω, (2.2.92)

X22 :=

∫

ρ

d
ω · (ω · ∇x)ΩMΩωhdω, (2.2.93)

X23 := −Φ

∫

∆(
ρ2

2
)MΩωhdω, (2.2.94)

X24 := −Φ

∫

1

d
MΩω · (∇x(

ρ2

2
· ∇x))Ωωhdω. (2.2.95)
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We can compute

PΩ⊥X21 =

∫

((ω ⊗ ω)∇xρ)hMΩdω

=

2π
∫

0

sin2 θhMΩdθPΩ⊥(∇xρ),

(2.2.96)

PΩ⊥X22 =
ρ

d

2π
∫

0

sin2 θ cos θhMΩdθ(Ω · ∇x)Ω, (2.2.97)

PΩ⊥X23 = 0, (2.2.98)

PΩ⊥X24 = −Φ

d

2π
∫

0

sin2 θhMΩdθ(∇x(
ρ2

2
) · ∇x)Ω. (2.2.99)

Combining the above four terms, we get

PΩ⊥X2 = c3PΩ⊥(∇xρ) + c4ρ(Ω · ∇x)Ω + c5(∇x(
ρ2

2
) · ∇x)Ω, (2.2.100)

with

c3 =

2π
∫

0

sin2 θhMΩdθ, (2.2.101)

c4 =
1

d

2π
∫

0

sin2 θ cos θhMΩdθ, (2.2.102)

c5 = −Φ

d

2π
∫

0

sin2 θhMΩdθ. (2.2.103)

The next term is X3 which is

X3 =

∫

∇ω · (αPω⊥vρMΩ)ωhdω

=

∫

∇ω · (αPω⊥(ω − Φ∇xρ)ρMΩ)ωdω

= −αΦ
∫

−(ω ⊗ ω)(∇x(
ρ2

2
))MΩhdω

= −αΦ
∫

∇ω · (Pω⊥(∇x(
ρ2

2
))MΩ)ωhdω − αΦ

∫

(ω ⊗~b)(∇x(
ρ2

2
))
1

d
MΩhdω

= X31 +X32.
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(2.2.104)

Here ~b = (sin2 θ,− sin θ cos θ). We find that

PΩ⊥X31 = αΦ

2π
∫

0

sin2 θMΩhdθPΩ⊥(∇x(
ρ2

2
)), (2.2.105)

PΩ⊥X32 =
αΦ

d

2π
∫

0

sin2 θ cos θMΩhdθPΩ⊥(∇x(
ρ2

2
)). (2.2.106)

Combining these two terms, we have

PΩ⊥X3 = c6PΩ⊥(∇x
ρ2

2
), (2.2.107)

with

c6 = αΦ

2π
∫

0

(sin2 θ +
1

d
sin2 θ cos θ)hMΩdθ. (2.2.108)

Finally the last term is X4 and

X4 =

∫

∇ω · (Pω⊥GρMΩ)ωhdω

=

∫

−(ω ⊗ ω)GρMΩhdω +

∫

(ω ⊗~b)GMΩ
1

d
hdω

= X41 +X42.

(2.2.109)

We find that

PΩ⊥X41 = −
2π
∫

0

sin2 θMΩhPΩ⊥(ρG), (2.2.110)

PΩ⊥X42 = −
2π
∫

0

sin2 θ cos θMΩh(
1

d
)PΩ⊥(ρG). (2.2.111)

We can further compute

PΩ⊥X4 = c7PΩ⊥∆(ρΩ). (2.2.112)

where

c7 = −k1
k0

2π
∫

0

(sin2 θ + sin2 θ cos θ(
1

d
)hMΩ)dθ. (2.2.113)
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We can do the same computation in 3D and define

〈g〉MΩ
:=

∫

Sn−1

MΩ(ω)gdω. (2.2.114)

where n is dimension.

Collecting all the terms we have, we get the complete system of equations

∂tρ+ c1∇x · (ρΩ) + c2∆(
ρ2

2
) = 0, (2.2.115)

cρ∂tΩ + c3PΩ⊥(∇xρ) + c4ρ(Ω · ∇x)Ω + c5(∇x(
ρ2

2
) · ∇x)Ω

+ c6PΩ⊥(∇x(
ρ2

2
)) + c7PΩ⊥(∆(ρΩ)) = 0.

(2.2.116)

With the coefficients

c1 =

∫

Sn−1

MΩ(ω · Ω)dω, (2.2.117)

c2 = −Φ, (2.2.118)

c =
1

d(n− 1)
〈sin2 θh〉MΩ

, (2.2.119)

c3 =
1

n− 1
〈sin2 θh〉MΩ

, (2.2.120)

c4 =
1

d(n− 1)
〈sin2 θ cos θh〉MΩ

, (2.2.121)

c5 = − Φ

d(n− 1)
〈sin2 θh〉MΩ

, (2.2.122)

c6 = αΦ(〈sin2 θh〉MΩ
+

1

d(n− 1)
〈sin2 θ cos θh〉MΩ

), (2.2.123)

c7 = −k1
k0

(〈sin2 θh〉MΩ
+

1

d(n− 1)
〈sin2 θ cos θh〉MΩ

). (2.2.124)

This can be rewritten in the form

∂tρ+∇x · (ρU) = 0, (2.2.125)

ρ(∂tΩ + (V · ∇x)Ω) + PΩ⊥∇x(p(ρ)) = γPΩ⊥∆(ρΩ). (2.2.126)
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With

U = C1Ω− Φ∇xρ, (2.2.127)

V = C2Ω− Φ∇xρ, (2.2.128)

p(ρ) =
c3
c
ρ+

c6
c

ρ2

2
= dρ+ αΦ((n− 1)d+ C2)

ρ2

2
, (2.2.129)

γ = −c7
c

=
k1
k0

((n− 1)d+ C2). (2.2.130)

where C1 = c1 and C2 =
c4
c
.

This ends our proof of the Theorem 2.2.1.

2.3 Particle model generated from Navier-Stokes

system

2.3.1 Macroscopic model

In the previous section we added repulsion to the Vicsek model and successfully

derived a fluid system. The momentum is not conserved since the alignment is

achieved by measuring the average of the neighbours. In contrast to the Navier-

Stokes equation, the lack of conservation of momentum is a consequence of the

absence of Galilean invariance.

To find better individual based models, we consider the global fluid structure and

try to derive a microscopic model from it. There has been a history of numerical

studies on fluid where the fluid is replaced by a set of particles. Mathematically,

these particles are just interpolation points where the properties of the fluid can be

calculated. Physically, the particles can be treated as material particles just like any

particle system. Clearly this is an analogue of our microscopic model. We will start

with a macroscopic model and try to apply particle discretization on it.

The collective motion can be understood by constructing the Navier-Stokes equa-

tion with a proper self propelling force. The Vicsek family models display true-long-

range order even in two dimensions. How this happens was shown by Toner and
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Tu [119], [120], using continuum field-theoretic approach.

For an incompressible assumption, the flow field v(x, t) is divergence free, i.e.

∇ · v = 0, it is postulated that the dynamics of v is governed by a generalized

d-dimensional Navier-Stokes equation of the form

(∂t + v · ∇)v = −∇p− (α + β|v|2)v +∇ · E. (2.3.1)

The second term in (2.3.1) is a typical local driving terms found in Toner-Tu

model. For stability reasons, it is required that β > 0 and for α > 0, the fluid will

reach an equilibrium state with v = 0, for α < 0, the fluid will reach a polar ordering

state with characteristic speed v0 =
√

|α|/β.
And the strain tensor E should have the following form:

Eij = Γ0(∂ivj + ∂jvi)− Γ2∆(∂ivj + ∂jvi) + Sqij , (2.3.2)

with qij = vivj − δij
d
|v|2.

Note that (2.3.2) reduces to the usual rate of strain tensor if S = 0 = Γ2, the

additional S term in (2.3.2) is from the theories of active nematics. With the strain

tensor E and defining λ0 = 1− S, λ1 = S/d, (2.3.1) becomes

(∂t + λ0v · ∇)v = −∇p + λ1∇v2 − (α + β|v|2)v + Γ0∆v − Γ2∆
2v. (2.3.3)

In this model, the two Γ terms describe the high order derivatives in the Swift-

Hohenberg theory [115] and they cause the formation of quasi chaotic pattern. Since

our focus is the collective motion of the micro-organism where they perform motion

in a regular pattern within a confined domain, we will drop the two terms for

simplicity.

Note also it is impossible to get an individual based model which satisfies the

divergence free condition. We will model our suspension as a weakly compressible

fluid, and the modified model reads

ρ(
∂v

∂t
+ v · ∇v) = −∇p+ ρν∇2v + ρF, (2.3.4)
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with

p = p0ρ, (2.3.5)

F = λ(v2∞ − |v|2)v, (2.3.6)

v∞ = max{v0(1−
ρc + ρ0
ρ+ ρ0

), 0}. (2.3.7)

Here ρ is introduced as the density, p is then pressure which depends on ρ, and

F is the modified self propelling force.

Instead of having a characteristic velocity
√

|α|/β, it is found experimentally

that the characteristic velocity v∞ is dependent on ρ. It is interesting that no net

collective motion can be observed when ρ is sufficiently small, or ρ < ρc, where ρc

is the critical density. Other than this, it is found that v∞ is an increasing function

of ρ. We assume that as ρ→ ∞, v∞ → v0. Thus we get the expression in (2.3.7).

2.3.2 Scaling

We will firstly introduce the following dimensionless variables:

x̃ =
x

xs
, ṽ =

v

vs
, ṽ0 =

v0
vs
, t̃ =

t

xs/vs
,

ρ̃ =
ρ

ρs
, ρ̃c =

ρc
ρs
, ρ̃0 =

ρ0
ρs
,

p̃ =
p

v2sρs
, p̃0 =

p0
v2s
, ν̃ =

ν

xsvs
, λ̃ = xsvsλ, F̃ =

xsF

v2s
.

Here xs = 1100µm is the typical size of an experimental domain. vs = 237µm/s is

the typical velocity of an undiluted suspension. ρs = 2.96× 10−3/µm3 is the typical

particle density. With this new set of variables, we can rewrite our system as

Dv

Dt
= −∇p

ρ
+ ν∇2v + F. (2.3.8)

With Dv
Dt

= ∂v
∂t

+ v · ∇v being the material derivatives. We will use this Lagrangian

descriptions of continuum matter to get our individual based model.
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2.3.3 Particle method for fluid and microscopic model

Fluid mechanism has two philosophies of fluid flow, namely Lagrangian and Eu-

lerian. In the Eulerian concept, the observer stays at a fixed position and all the

flow quantities are functions of time and space. The Eulerian methods have been

well studied for more than fifty years and are widely applied in many flow simula-

tion areas. Standard methods include the finite volume method (FVM), the finite

difference method (FDM) and the finite element method (FEM). In the Lagrangian

description, the fluid can be viewed as individual particles which can move freely

inside the domain, and they carry all the fluid’s information. There is a fundamen-

tal similarity between the Lagrangian methods with the molecular dynamics [64]

which helps us understand the physical process in the atomic level. Note that

the individual based model also has a Lagrangian description and the Lagrangian

methods for fluid give us exactly an individual model which will produce the global

structure that we want. Existing particle methods for fluids include the vortex

method [27], the finite point or finite pointset method (FPM) [118], the radial basis

function method(RBFM) [70, 71], the finite volume particle method (FVPM) [95]

and smoothed particle hydrodynamics(SPH). The advantage of Lanrangian methods

is that they dont suffer from mesh distortion problems and can deal with complex

domain. Also the mass and other quantities that carried by each particle are auto-

matically conserved.

We will borrow the idea from the SPH method, which was invented to solve

astrophysical problem in 1977 by Gingold [51] and Lucy [81]. The formulation of

SPH is usually divided into two key steps. The first step is the integral representation

or kernel representation which approximates the field variables. The second step is

particle approximation which sums up the values for all the nearest neighbours.

Now we show the basic idea of SPH. For a variable A, in SPH formulation, it

can be written as a convolution product of the variable A with the Dirac δ function.

A(r) =

∫

A(r′)δ(r − r′)dr′. (2.3.9)
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Now if we replace the delta function δ(r − r′) by some smoothing functions, then

we can get the integral representation of a function A:

A(r) ≈
∫

A(r′)W (r − r′, h)dr′ = 〈A(r)〉. (2.3.10)

Here the kernel approximation operator is marked by the angle braket <>. The

kernel function should be chosen with the following three properties: Firstly, W

should have the normalization condition

∫

W (r − r′)dr′ = 1. (2.3.11)

Secondly, it needs to satisfy the Dirac function property when the smoothing

length h goes to 0, that is

lim
h→0

W (r − r′, h) = δ(r − r′). (2.3.12)

The last condition is the compact condition which requires that

W (r − r′) = 0 if |r − r′| > h. (2.3.13)

This means that the kernel has a compact support with radius h such that the

integration over the whole domain reduces to the domain of the kernel. In this way,

the individual model we obtained will have only local interaction.

Furthermore, we would like to make W an even function, i.e. W (r − r′) =

W (r′−r). This requirement thatW is an even function ensures an h2 order accuracy

for the kernel approximation. The error of the integral representation can be roughly

estimated using the Taylor expansion

< A(r) > =

∫

[A(r) + A′(r)(r − r′) +O(r′ − r)2]W (r − r′, h)dr′

= A(r)

∫

W (r − r′, h)dr′ + A′(r)

∫

(r′ − r)W (r − r′, h)dr′ +O(h2).

(2.3.14)

The second term is an integral of an odd function which vanishes and we have the

estimate.
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With this integral representation, the gradient and divergence operator can be

written in a straightforward manner, i.e

〈∇A(r)〉 =
∫

A(r′)∇W (r − r′)dr′, (2.3.15)

〈∇ · A(r)〉 =
∫

A(r′) · ∇W (r − r′)dr′. (2.3.16)

Once we have the kernel representation, the second key step is the particle ap-

proximation. In this step, the continuous integral is discretized to be the summation

of the particle quantities within the domain. The infinitesimal volume dr′ can be

changed to a finite volume ∆Vi which is related to the mass of a particle i by the

following relationship:

mi = ∆Viρi, (2.3.17)

where ρi is the local density near particle j.

Therefore we can get

A(r) =

∫

A(r′)W (r − r′, h)dr′

=
∑

j

A(rj)W (r − rj , h)∆Vj

=
∑

j

A(rj)W (r − rj , h)
1

ρj
(ρj∆Vj)

=
∑

j

mj

ρj
A(xj)W (r − rj, h).

(2.3.18)

This gives us the particle summation formula for a quantity A at any position

r. In particular, the local density ρ can be obtained by

ρi = ρ(ri) =
∑

j

mjW (ri − rj , h). (2.3.19)

Also the derivatives are given in the form

∇A(r) =
∑

j

mj
Aj

ρj
∇W (r − rj, h), (2.3.20)

∆A(r) =
∑

j

mj
Aj

ρj
∆W (r − rj , h). (2.3.21)
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There are some problems about this direct discretization for the derivative, in

the sense that these equations do not satisfy certain physical principals such as

symmetry of force and conservation of momentum. Therefore they are not suitable

for our macroscopic model (2.3.8), so we discuss some modifications.

One of the modifications for the gradient operator can be found in [89]. Con-

sider a function f , we know ∇(ρf) = ρ∇f + f∇ρ, which can be rewritten as

ρ∇f = ∇(ρf)− f∇ρ. Applying the SPH discretization, we can have the following

expression:

ρi∇fi =
∑

i

mi(fj − fi)∇W (ri − rj, h). (2.3.22)

To deal with the −∇p
ρ

term in (2.3.8), keep in mind that this represents the

repulsive force in the microscopic model. Therefore, we seek for a symmetric form

of interaction. The most simple repulsive force takes the form

∇f =
∑

j

mj
fi + fj
2ρj

∇W (ri − rj, h). (2.3.23)

This is a direct average for the force interacting between particles i and j. For a

better construction, we will make use of the identity

∇(
f

ρ
) =

ρ∇f − f∇ρ
ρ2

, (2.3.24)

which can be written as

∇f
ρ

= ∇(
f

ρ
) +

f∇ρ
ρ2

. (2.3.25)

Let f be our pressure p, and apply the SPH discretization. We can obtain our

formula for the repulsive force in the microscopic level, which is

(−∇p
ρ

)i = −
∑

j

mj(
pi
ρ2i

+
pj
ρ2j

)∇W (ri − rj, h). (2.3.26)

We can see that in this way, particle i and particle j interaction with each other

with a repulsive force which follows Newton’s second law.
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Next we shall deal with the viscosity term ∇2v. Viscosity is a phenomenon

from friction, and would reduce the velocity difference and kinetic energy among

the particles in fluid. This is the term which would give us the alignment interac-

tion. While the standard discretization (2.3.21) does not capture this feature, we

can consider the following modifications: One possible discretization considers the

following identity:

∇2(ρf) = f(∇2ρ) + ρ(∇2f) + 2∇f∇ρ. (2.3.27)

i.e.

ρ(∇2f) = ∇2(ρf)− f(∇2ρ)− 2∇f · ∇ρ. (2.3.28)

An direct discretization for the above term leads to

∇2fi =
1

ρi

∑

j

mj(fj − fi)(∇2W (ri − rj, h)−
2

ρi
∇W (ri − rj, h) · ∇ρi). (2.3.29)

Although this is a difference form, it is not suitable for an individual model due to

the complex terms at the right hand side.

Artificial viscosity has also been introduced in literature. By simple argument

about its form and relationship to the gas viscosity, in [74], a typical form of artificial

viscosity is given the form

Πij =







−αc̄ijµij+βµ2
ij

ρ̄ij
, if (vi − vj) · (ri − rj) ≤ 0,

0, otherwise.
(2.3.30)

where

µij =
h(vi − vj) · (ri − rj)

|ri − rj |2 + ǫh2
(2.3.31)

is an estimate for the velocity divergence. The notation c̄ij =
1
2
(ci + cj) is used for

scalars. This viscosity works well except that this give rise to large entropy when in

a pure shear flow. A modification is the Balsara viscosity which reads

µij =
h(vi − vj) · (ri − rj)

|ri − rj |2 + ǫh2
fi + fj

2
, (2.3.32)
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where

fi =
|∇ · v|i

|∇ · v|i + |∇ × v|i + ǫci/h
. (2.3.33)

And finally, for our purpose, there is a natural way to symmetrize the viscosity

term by writing

∇2vi = ∇2vi − vi∇21, (2.3.34)

where the second term is 0 and can be added for free. In this way, we apply the

SPH descritization and we can obtain

∇2vi =
∑

j

mj
vj − vi
ρj

∇2W (ri − rj, h). (2.3.35)

We can see that this is in the form aij(vj − vi) where aij is a constant depending on

the density of particles i and j as well as the distance between them. This is very

similar to the Cucker Smale model where the alignment is achieved by applying a

force in the form of the velocity difference.

Next we shall discuss about the choice of the kernel W . Other than the three

key properties, we also enforce the non-negativity and decay condition. We require

W (r− r′) > 0 for any r′ within the support domain. Although it is not mathemat-

ically essential for convergence, it is important to ensure a physically meaningful

representation of a quantity. The smoothing function value should also be mono-

tonically decreasing as the distance away from the particle increase, indicating that

a nearer neighbour should have a larger influence on a particle. Any function having

all the above properties can be employed as a smoothing kernel function.

In Lucy’s original paper [81], a bell-shaped function is used.

W (r − r′, h) = W (R, h) = αd







(1 + 3R)(1− R)3 if R ≤ 1

0 if R > 1
., (2.3.36)

where α is a normalizing constant, which is 5/4h, 5/πh2 and 105/16πh3 in one,

two and three dimensions respectively. Here R = |r−r′|
h

.
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In Gingold and Monaghan’s original paper [51], Gaussian kernel is used.

W (R, h) = αde
−R2

. (2.3.37)

With αd = 1/π1/2h, 1/πh2, 1/π3/2h3 respectively. Although it is not really com-

pact, piratically it approaches zero numerically very fast. It is also very stable and

accurate for disordered particles.

The most commonly used kernel function is the cubic B-spline function, used

in [88],

W (R, h) = αd



















2
3
− R2 + 1

2
R3, if 0 ≤ R < 1,

1
6
(2− R)3, if 1 ≤ R < 2,

0, if R ≥ 2.

(2.3.38)

Other choices of the kernels are available for simulating different problems. For

our individual based model, the kernels are designed in the form

W (R, h) =
1

Chd







f(R), if 0 ≤ R < 1,

0, if R ≥ 1.
(2.3.39)

Direct computation gives

∇W (r − r′, h) =
r − r′

Chd+2







R−1f ′(R), if 0 ≤ R < 1,

0, if R ≥ 1.
(2.3.40)

and

∇2W (R, h) =
1

Chd+2







f ′′(R) + (d− 1)R−1f ′(R), if 0 ≤ R < 1,

0, if R ≥ 1.
(2.3.41)

Here the normalization constant C can be computed as C =
1
∫

0

2πRf(R)dR in

2D and C =
∫ 1

0
4πR2f(R)dR in 3D.

For the computation of density, any smooth kernels would suffice. We adapt the

choice in [93], and choose a degree 6 polynomial fpoly6(R) = (1− R2)3. We can get

C = π/4 and 64π/315 respectively in 2D and 3D.
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For the computation of pressure, however, the usual kernels would not work.

The reason is that the repulsive force vanishes as particles get very close to each

other, since the gradient of the kernel approaches zero at the center. Therefore, a

reasonable choice of the kernel would have a spiky shape which has a large gradient

near zero and the gradient should vanish for R = 1. This would describe the correct

repulsive interaction among individuals. [43] describes a kernel to fit our purpose.

We will choose fspicky(R) = (1 − R)3 for the computation of the repulsive force,

which yields C = π/10 in 2D and C = π/15 in 3D.

Finally, for the viscosity term, remembering this is the alignment term which is

similar as the Cucker-Smale model except for a density term. We would require the

weight function ∇2W to be positive everywhere for an alignment effect. Also ∇2W

should be decreasing as R increase representing a greater interaction as particles

becomes nearer. Therefore, a simple choice of ∇2W is 1
Chd+2 (1− R) for 0 ≤ R < 1.

In this way, we can find that in 2D,

fvis(R) = −R
3

9
+
R2

4
− lnR

6
− 5

36
, (2.3.42)

with C = π/40. And in 3D, f(R) has a slightly different format with

fvis(R) = −R
3

12
+
R2

6
+

1

12R
− 1

6
(2.3.43)

Collecting the results, and considering dimension d = 2, we can write out the

results explicitly as follows, considering only 0 ≤ R < 1 for simplicity:

Wpoly6(r, h) =
4

πh8
(h2 − |r|2)3, (2.3.44)

∇Wpoly6(r, h) = −24r

πh8
(h2 − |r|2)2, (2.3.45)

Wspiky(r, h) =
10

πh8
(h− |r|)3, (2.3.46)

∇Wspiky(r, h) = − 30

πh4
(1− R)2

R
r, (2.3.47)

Wvis(r, h) =
40

πh2
(−R

3

9
+
R2

4
− lnR

6
− 5

36
), (2.3.48)

∇2Wvis(r, h) =
40

πh4
(1−R). (2.3.49)
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Put everything into our macroscopic model (2.3.8), and assuming a constant

mass for all the particles m, we derive our individual based model as:

dxi
dt

= vi, (2.3.50)

dvi
dt

=
∑

j

Frij +
∑

j

Faij + Fpi, (2.3.51)

Frij =
30m

πh4
(
pi
ρ2i

+
pj
ρ2j

)
(1−R)2

R
(xi − xj), (2.3.52)

Faij =
40mν

πh2
vj − vi
ρj

, (2.3.53)

Fpi = λ(v2∞ − |v|2)v. (2.3.54)

Together with

ρi =
∑

j

4m

πh2
(1− R2)3, pi = p0ρi, v∞ = max{v0(1−

ρc + ρ0
ρ+ ρ0

), 0}. (2.3.55)

This is an individual based model. Each particle will conduct self propulsion due

to the force Fp. The limiting velocity is chosen such that below a critical density

ρc, the velocity is 0. If the dnesity is above ρc, the limiting velocity is an increasing

function of ρ which approaches v0 as ρ goes to infinity. The particles also interact

with their neighbours. The term Fr is a force responsible for the repulsion among

individuals, which is analogue to the pressure in the fluid. Fa is an alignment force,

where particles try to adapt their velocity with their neighbours, and this give rise to

the viscosity in the fluid. Due to its derivation, we can predict the global behaviour

which would follow the Navier-Stokes equation. In similar manners, we can derive

other microscopic models as long as the we have a global description. The difference

between this model with classical individual based model is that a local density is

introduced. Although its highly unlikely each particle can compute its local density

in reality, it helps to produce a more homogeneous global structure.
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2.4 Numerical methods

2.4.1 GPU parallelization

Similarly as the Molecular Dynamics (MD), the individual based models sim-

ulate a large number of particles at atomic level. The computational time is too

long to bear if each individual is computed sequentially. In recent years, the compu-

tation speed of graphics processing unit(GPU) has increased rapidly. The modern

GPU is not only a graphic engine but also a highly parallel programmable pro-

cessor [128].The use of GPU in non-graphic applications is termed general-purpose

computing on the GPU (GPGPU). Compared to modern CPUs which usually con-

tain two or four cores, modern graphic card can contain as many as 480 cores, and

each works in parallel. This parallelism enables us to calculate large data sets in

real time. In the computation of this thesis, a NVIDIA GeForce gtx 560 ti is used,

with 384 cores.

The traditional GPGPU development is based on graphics function library, ex-

amples include OpenGL and Direct 3D, thus only professional users who are familiar

with graphics API can access the power of the GPU computing. The only way to

make use of the GPUs abilities was to carefully cast the algorithm and data struc-

tures to be represented as individual pixels being written to an image via fragment

shaders, which makes programming very cumbersome. Furthermore, each thread of

execution can only write a single output value to a single memory location.

To meet the demand of GPGPU for common users, CUDA (Compute Unified De-

vice Architecture) technology is developed. Users no longer need to map programs

into graphic API and use shader languages. CUDA brings C-like development envi-

ronment and use a C-compiler so that users who are not familar with the graphics

knowledge can do GPU computing [77]. Now CUDA can run on all current NVIDIA

GPUs, including the HPC-oriented Tesla product line. Such nature of these GPUs

makes them a compelling platform for accelerating high-performance computing.
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CUDA has been applied in various research fields, examples include image process-

ing [134], finite difference [84] and molecular dynamics [4].

Now we will discuss about the structure of a GPU. A GPU is a set of multipro-

cessors, and each has its own stream processors and shared memories. The stream

processors are capable of executing integer and single precision floating point calcu-

lation. Additional cores are also available for double-precision. In CUDA, parallel

kernel programs are performed on parallel threads. All the threads will execute

the same sequential program, with different input data. Each thread has its own

variables (registers) and processor state.

Threads are then grouped into thread blocks. Note that threads within the same

block can communicate. There are two mechanisms by which they can communicate.

First is a barrier mechanism which is thread synchronization. Once it is called, any

thread in the block would be delayed until all other threads in the block reach the

synchronization point. Second, each block has a shared memory that exists on the

multiprocessor. Any thread in the block can access this shared memory area without

communication with the global memory. Note that all the blocks and thread have

their unique ID number.

2.4.2 Numerical methods for microscopic modified Vicsek

model

In this part, we describe the numerical schemes used to solve the individual based

model(2.2.4,2.2.5,2.2.6) with CUDA.

dxi
dt

= vi, (2.4.1)

dvi
dt

= µ1(v0ωi − vi) +
µ2

N

∑

j

Fij , (2.4.2)

dωi = Pω⊥

i
(νω̄idt+

√
2DdBt + αvidt). (2.4.3)

(2.4.4)

For each particle i, the position x0i , orientation ω
0
i are initialized in CPU. And
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the initial velocity is given as v0i = v0ωi. The grid cells for neighbour searching are

also initialized and stored in CPU. The data stored in CPU memory is then copied

to GPU memory. And the positions are allocated in an OpenGL vertex array object

(VBO) so that direct rendering of the particles are available. Whenever we need

to retrieve data, we can copy the data back into CPU memory. Numerically each

block handles one cell and each tread handles one particle. The interaction with a

particle is computed from all the particles in its own cell and the neighbouring cells

Integration

The domain can be a rectangle, a circle or an annulus in 2D or 3D.

The particles i = 1..N are initialized with their positions, velocities and orienta-

tions stored in arrays in the CPU memory.

To update the orientation, we firstly consider the case without the random noise.

Note that Pω⊥

i
(wi) = 0 that (2.2.6) can be written as

dωi = Pω⊥

i
(νdt(ω̄i +

α

ν
vi − ωi)), (2.4.5)

where the last term is added for free. This can be discretized as

ωn+1
i − ωn

i = (Id− ω
n+ 1

2

i ⊗ ω
n+ 1

2

i )(νdt(ω̄i
n +

α

ν
vni − ωn

i )). (2.4.6)

Here

ω
n+ 1

2

i =
ωn
i + ωn+1

i

|ωn
i + ωn+1

i | . (2.4.7)

Without knowing ωn+1, this still can be done using geometry. See the figure below.

We write

ωn+1
i − ωn

i = PΓ⊥ani . (2.4.8)

Here Γ is the plane orthogonal to the ω
n+ 1

2

i Let point B be the center of the circle

with diameter joined by the two points ωn
i and ωn

i + ani , the intersection points

between this circle and the unit circle will give us ωn
i and ωn+1

i respectively.
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Figure 2.2: Technical Circle

In 2D, denoting the angle of the vector ωn
i by θni , this geometry implies that

θn+1
i = θni + 2 ̂(ωn

i , B). (2.4.9)

To take account of the noise, we simply add a random variable

θn+1
i = θni + 2 ̂(ωn

i , B) +
√
2Ddtǫ, (2.4.10)

where ǫ is drawn from a unit normal distribution. Finally ωn+1
i is defined by the

angle θn+1
i .

In 3D, similarly, we can compute the center of the technical sphere B in a similar

manner. Writing B = (xB, yB, zB). we determine the standard Euler angles.

φB = arctan(
yB
xB

), θB = arccos(zB). (2.4.11)

Denoting the angle of the vector ωn
i by θni , φ

n
i , we get

θn+1
i = 2θB − θi, φn+1

i = 2φB − φi. (2.4.12)

To add a white noise, we firstly apply a rotation operation R which will rotate θn+1
i

to the z axis. In general, to apply a rotation about u = (ux, uy, uz) by an angle of
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θ, the rotation matrix takes the following form:

R =











cos θ + u2x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uyux(1− cos θ) + uz sin θ cos θ + u2y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ cos θ + u2z(1− cos θ)











.

(2.4.13)

Applying a rotation −φn
i around the z-axis followed by a rotation θni around the

y-axis yields the desired rotation matrix:

R =











cos θ cos φ cos θ sin φ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ











. (2.4.14)

The noise can be added on φ in the same pattern as in 2D where as a random angle

for θ is drawn from a uniform distribution in [0, 2π]. And finally ωn+1
i is obtained

by an inverse rotation.

The force
∑

j

F n
ij can be computed exactly by summing up all the interaction

forces near particle i, the computation of local interactions requires spatial subdivi-

sion which would be discussed later.

Once we have ωn+1
i and

∑

j

F n
ij , the velocity and the position can be updated

using Euler method:

vn+1
i − vni
dt

= µ1(v0ω
n+1
i − vni ) +

µ2

N

∑

j

F n
ij , (2.4.15)

xn+1
i − xni
dt

= vn+1
i . (2.4.16)

Neighbour Search Algorithm

To compute the interaction, a particle would interact with all the particles within

the radius. Checking the distance with all the other particles requires O(N2) oper-

ations. To avoid the unnecessary distance computations, we combine the advantage

of Verlet table [114] and cell linked list [132] to accelerate the neighbour list con-

struction.
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The idea of Verlet table algorithm is that, for each particle in the system, a table

is constructed and maintained which stores all its neighbours. In this way, the total

CPU time is scaled from O(N2) to O(N ·Nneighbours) where Nneighbour is the average

number of neighbours in the Verlet table and is independent of N . The table is

initialized and then updated periodically for every few time steps.

Figure 2.3: Illustration of Verlet table algorithm

While the physical cutoff interaction radius is denoted by rcut, the neighbours

considered in the Verlet Table has a larger radius where a skin layer rs is considered.

For each particle i, particle j is considered as a neighbour in the Verlet table if

rij < rcut + rs. The skin rs is chosen such that rs > vmaxdT . Here vmax is maximum

velocity of a particle and dT is the time interval to update the Verlet table. In this

way, a particle cannot penetrate the skin layer during one update interval. Verlet

table is efficient when number of particles is small and the motion is slow. Else dT

needs to be reduced or rs needs to be increased, both results dramatic increase in

computation time. Another drawback is the construction of the Verlet neighbour

table still requires a computation of O(N2).

For a large particle system, for a true O(N) scheme, we use the cell linked list

algorithm. The domain is partitioned into Nx ×Ny ×Nz cells which are cubes with

edge length r = rcut + rs. Note that we used uniform grid in this case. In this way,

each individual will only interact with others in neighbouring cells.

Each cell has a unique index. Firstly, the grid position of each particles is
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Figure 2.4: Illustration of cell linked list algorithm

computed. In a 3D domain with a corner at the origin, the grid position {p1, p2, p3},
is defined as:{⌊x1

r
⌋, ⌊x2

r
⌋, ⌊x3

r
⌋} and the cell index corresponding to this particle is

pzNxny + pyNx + px. In this way two arrays are created in global memory, one is

the particle index and the other is the corresponding cell index for each particle.

To get a fast access to the neighbours of individual, we can sort the particle index

using the cell index as key. Since the cell indexes are integers, a quick radix sort is

applied, which sorts data by grouping keys by the individual digits which share the

same significant position and value. The processing of the keys begins at the least

significant digit (i.e., the rightmost digit), and proceeds to the most significant digit

(i.e., the leftmost digit), therefore it is also named least significant digit (LSD) radix

sort. Note that an LSD radix sort operates in O(nk) time, where n is the number

of keys, and k is the average key length.

In this way, we can record the starting particle index and the ending particle

index in each cell. When looking for the neighbours, we will only need to find the

neighbouring cell index and consider the particles inside.

Boundary Conditions

We firstly consider the domains in 2D. Four types of domains are considered:

rectangle domain with periodic boundary conditions in both directions, or periodic

boundary conditions in x direction and repulsive boundary conditions in y direction,
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circle domain and annulus domain. For a rectangle domain [0, Lx] × [0, Ly] with

periodic boundary condition, we use the grid method and divide the domain into

Nx × Ny cells. A layer of ghost cells with ghost particles are created around the

domain. For example, for a cell labelled by (k, 1) which is at the bottom of the

domain, we create a corresponding ghost cell labelled by (k,Ny + 1) which is above

the domain. For each particle i in cell k, 1, with position Xi = (Xi(1), Xi(2)), we

shall create a corresponding particle in cell k,Ny+1, with position Xi(1), Xi(2)+Ly.

The velocity and orientation of the corresponding particle remains the same. In the

same manner, we create ghost cells for all the cells near the boundary. Finally,

the interactions are computed with all the real particles together with the ghost

particles.

For a rectangle domain [0, Lx] × [0, Ly] with periodic boundary conditions in

x direction and repulsive boundary in the y direction, ghost cells are created for

cells labelled by 1, k and Nx, k in the same way as the above case. We consider a

particle near the bottom boundary, with position Xi = (Xi(1), Xi(2)). If Xi(2) <

Rb, the threshold interaction radius near the boundary, we apply an upward force

(0, Fb(R)), where R = Xi(2) is the distance between the particle and the boundary

and Fb(R) = −2F1

Rb
(R) + 2F1 for R < Rb and F1 being a constant, which has the

same form as the interaction force among particles. Particles near the top boundary

is treated with the same manner.

For a circle domain centred at the origin with radius L, when a particle is near

the boundary atXi, a repulsive force is applied in the direction −Xi, which is normal

to the wall, with magnitude Fb(R) where R = L− |Xi| is the distance between the

particle and the wall. The annulus domain is treated in the same way except the

repulsive force is along the direction Xi for particles near the inner boundary.

For 3D domains considered, repulsive forces are added along the z direction which

is normal to the horizontal wall. If a particle is near a corner in the 3D domain,

the horizontal repulsive force and the vertical repulsive force are both considered

and the resultant force is the sum of them. The boundary force together with the
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particle particle interaction completely determines the motion in the microscopic

level.

2.4.3 Numerical methods for the macroscopic model

Relaxation Model

In this section we develop numerical approximation for the system (2.2.42-2.2.47).

The difficulty of solving the system is that the system is not conservative, due to the

geometry constraint |Ω| = 1. Weak solutions of non-conservative systems are not

unique because jump relations across discontinuities are not uniquely defined. To

develop the numerical scheme, we will firstly see that the system can be seen as the

relaxation limit of a hyperbolic system. More precisely, we introduce the following

relaxation model, in dimension n = 2:

∂tρ
η +∇x · (ρηUη) = 0, (2.4.17)

∂t(ρ
ηΩη) +∇x · (ρηV η ⊗ Ωη) +∇xp(ρ

η)− γ∆(ρηΩη) =
ρη

η
(1− |Ωη|2)Ωη,

(2.4.18)

where

Uη = C1Ω
η − Φ∇xρ

η, (2.4.19)

V η = C2Ω
η − Φ∇xρ

η, (2.4.20)

p(ρη) = dρη + αΦ(d+ C2)
(ρη)2

2
, (2.4.21)

γ =
k1
k0

(d+ C2). (2.4.22)

We can prove that as η goes to zero, the relaxation model will converge to

our macroscopic model (2.2.42,2.2.43). To see this we will start with our system

(2.2.115,2.2.116). Here the second equation is divided by c and c4 to c7 are the

corresponding new coefficients, and the corresponding relaxation model reads:

∂tρ
η + c1∇x · (ρηΩη) + c2∆(

ρη2

2
) = 0, (2.4.23)
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∂t(ρ
ηΩη) + c3∇ρη + c4∇ · (ρηΩη ⊗ Ωη) + c5∇ · (∇(

ρη2

2
⊗ Ωη))

+ c6∇(
ρη2

2
) + c7∆(ρηΩη) =

ρη

η
(1− |Ωη|2)Ωη.

(2.4.24)

To proof the convergence of the above relaxation model, we define

Rη = ρη(1− |Ωη|2)Ωη. (2.4.25)

By assumption, the left-hand side of equation (2.4.24) is bounded independently of

η, therefore multiplying (2.4.24) by η and taking he limit η → 0 yields Rη → 0. This

implies that |Ωη|2 = 1 (except where ρηΩη = 0 which one assumes to be a negligible

set).

By definition of Rη, we know that Rη is aligned with Ωη, we have Rη × Ωη = 0,

thus (2.4.24) leads to:

(∂t(ρ
ηΩη) + c3∇ρη + c4∇ · (ρηΩη ⊗ Ωη) + c5∇ · (∇(

ρη2

2
⊗ Ωη))

+ c6∇(
ρη2

2
) + c7∆(ρηΩη))× Ωη = 0.

(2.4.26)

Basically this implies that the projection of the sum of all the terms onto Ωη yields

0. In another word, assuming ρη and Ωη will converge to ρ0 and Ω0 respectively, as

η → 0

(Id− Ω0 ⊗ Ω0)(∂t(ρ
0Ω0) + c3∇ρ0 + c4∇ · (ρ0Ω0 ⊗ Ω0)

+ c5∇ · (∇(
ρ0

2

2
⊗ Ω0)) + c6∇(

ρ0
2

2
) + c7∆(ρ0Ω0)) = 0.

(2.4.27)

We can compute the projection of each term and we find that

(Id− Ω0 ⊗ Ω0)(ρ0Ω0) = ρ0∂tΩ
0, (2.4.28)

(Id− Ω0 ⊗ Ω0)(∇ · (ρ0Ω0 ⊗ Ω0)) = ρ0(Ω0 · ∇)Ω0, (2.4.29)

(Id− Ω0 ⊗ Ω0)(∇ · (∇(
ρ0

2

2
⊗ Ω0))) = (∇(

ρ0
2

2
) · ∇)Ω0. (2.4.30)

Inserting the above expressions into (2.4.27) will yield (2.4.24). And this system

can be rewritten as (2.4.18)
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Time splitting scheme

With this relaxation model, we get rid of the constraint |Ω| = 1 and develop a

time splitting scheme. The system (2.4.31,2.4.18) can be split into two parts. The

conservative part reads

∂tρ
η +∇x · (ρηUη) = 0, (2.4.31)

∂t(ρ
ηΩη) +∇x · (ρηV η ⊗ Ωη) +∇xp(ρ

η)− γ∆(ρηΩη) = 0. (2.4.32)

And the non-conservative part or relaxation part reads

∂tρ
η = 0, (2.4.33)

∂t(ρ
ηΩη) =

ρη

η
(1− |Ωη|2)Ωη. (2.4.34)

Note that (2.4.34) can be reduced to

∂tΩ =
1

η
(1− |Ω|2)Ω. (2.4.35)

In terms of Ω2, it becomes

1

2
∂t|Ω|2 =

1

η
(1− |Ω|2)|Ω|2. (2.4.36)

(2.4.36) is an ODE for |Ω2| and can be solved explicitly: |Ω|2 = (1+C0e
−2/ηt)−1

with C0 = ( 1
|Ω0|2 − 1). Numerically, taking the limit η → 0, the relaxation part

(2.4.34) yields a mere normalization:

Ωn+1 =
Ωn

|Ωn| . (2.4.37)

To solve the conservative part, we will drop all the η for simplicity and will let

Ω = (Ω1,Ω2), U = (U1, U2), V = (V1, V2), the conservative part becomes

ρt + (ρU1)x + (ρU2)y = 0, (2.4.38)

∂t(ρΩ1) + (ρV1Ω1)x + (ρV2Ω1)y + px − γ((ρΩ1)xx + (ρΩ1)yy) = 0, (2.4.39)

∂t(ρΩ2) + (ρV1Ω2)x + (ρV2Ω2)y + py − γ((ρΩ2)xx + (ρΩ2)yy) = 0. (2.4.40)
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We let u = ρΩ1 and v = ρΩ2, and use the coefficients in (2.2.115,2.2.116), the

system can be written in the following form:

Qt + (F (Q,Qx))x + (G(Q,Qy))y = 0. (2.4.41)

Here Q = (ρ, u, v)

F (Q,Qx) =











c1u+ c2ρρx

c3ρ+ c4
u2

ρ
+ c5ρxu+ c6

ρ2

2
+ c7ux

c4
uv
ρ
+ c5ρxv + c7vx











, (2.4.42)

and

G(Q,Qy) =











c1v + c2ρρy

c4
uv
ρ
+ c5ρyu+ c7uy

c3ρ+ c4
v2

ρ
+ c5ρyv + c6

ρ2

2
+ c7vy











. (2.4.43)

We will consider the following numerical scheme: Let the domain be a 2D rect-

angle [(0, Lx) × (0, Ly)], with ∆x = Lx

nx
and ∆y = Ly

ny
, the quantity we are in-

terested is Qn
i,j , which is the approximation of Q at time tn = n∆t and position

xi = i∆x, yj = j∆y, with i = 0, 1...nx + 1 and j = 0, 1...ny + 1.

The local Lax-Friedrich scheme can be written as

Qn+1
i,j −Qn

i,j

∆t
+
F n
i+ 1

2
,j
− F n

i− 1

2
,j

∆x
+
Gn

i,j+ 1

2

−Gn
i,j− 1

2

∆y
= 0. (2.4.44)

Here the flux F is given as

F n
i+ 1

2
,j
=
F (Qn

i,j, Qx
n
i,j) + F (Qn

i+1,j, Qx
n
i+1,j)

2
− 1

2
|A(Qn

i+ 1

2
,j
, Qx

n
i+ 1

2
,j)|(Qi+1,j−Qi,j).

(2.4.45)

With

Qx
n
i,j =

Qn
i+1,j −Qn

i,j

∆x
, Qn

i+ 1

2
,j
=
Qn

i,j +Qn
i+1,j

2
, Qx

n
i+ 1

2
,j =

Qx
n
i,j +Qx

n
i+1,j

2
.
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(2.4.46)

In (2.4.45), A(Q,Qx) is the Jacobian matrix and can be write out explicitly as

A(Q,Qx) =
∂F (Q,Qx)

∂Q

=











c2ρx c1 0

c3 − c4u2

ρ2
+ c6ρ

2c4u
ρ

+ c5ρx 0

− c4uv
ρ2

c4v
ρ

c4u
ρ

+ c5ρx











=











a b 0

c d 0

e f g











.

(2.4.47)

If the matrix can be diagonalized as A = PΛP−1, then |A| is defined as P |Λ|P−1

where |Λ| is a diagonal matrix with diagonal entries the absolute values of the

eigenvalues of A. In our case the eigenvalues λ can be calculated explicitly easily as

λ1 = g, λ2,3 =
1

2
(a + d±

√

(a+ d)2 − 4(ad− bc)). (2.4.48)

We will use a scheme which is a simple approximation of A, which does not require

the information of the spectral decomposition of A. To be precise, we will use a

polynomial of a matrices P
i+ 1

2
m with degree m to approximate |A(Qi+ 1

2
,j, Qxi+ 1

2
,j)|.

The idea of the polynomial scheme aims to find pm(x) such that |Λ| can be

approximated by pm(Λ). Due to the diagonalization, we have

|A| = P |Λ|P−1 ≈ Ppm(Λ)P
−1 = pm(A). (2.4.49)

To build a polynomial approximation of A, we define a+ = max{λ}, the largest

eigenvalue. a− = min{λ}, the smallest eigenvalue and amax = a+ if |a+| > |a−|,
amax = a− otherwise.

For m = 0, the polynomial p0 is just a constant where p(x) = |amax|. Then |A|
is approximated by |amax|Id where Id is the identity matrix.

For m = 1, the polynomial p1 is a linear polynomial satisfies p(a−) = |a−| and
p(a+) = |a+|.

Finally, in our simulation, we will use a degree 2 polynomial scheme. In this case,

the polynomial p2 is a degree 2 polynomial which satisfies p(a−) = |a−|, p(a+) = |a+|
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as well as p′(amax) = sign(amax). Numerically, we write p2(A) = αA2+βA+γ where

α, β, γ can be obtained by solving the following linear system











|a+|
|a−|

sign(amax)











=











a2+ a+ 1

a2− a− 1

2amax 1 0





















α

β

γ











. (2.4.50)

Similarly, the flux G is given as

Gi,j+ 1

2
=
G(Qi,j , Qyi,j) +G(Qi,j+1, Qyi,j+1)

2
− 1

2
|B(Qi,j+ 1

2
, Qyi,j+ 1

2

)|(Qi,j+1−Qi,j).

(2.4.51)

with

Qy
n
i,j =

Qn
i,j+1 −Qn

i,j

∆y
, Qn

i,j+ 1

2

=
Qn

i,j +Qn
i,j+1

2
, Qy

n
i,j+ 1

2

=
Qy

n
i,j +Qy

n
i,j+1

2
.

(2.4.52)

And the Jacobian matrix B has the form

B(Q,Qy) =
∂G(Q,Qy)

∂Q

=











c2ρy 0 c1

− c4uv
ρ2

c4v
ρ

+ c5ρy
c4u
ρ

c3 − c4v2

ρ2
+ c6ρ 0 2c4v

ρ
+ c5ρy











=











a 0 b

e g f

c 0 d











.

(2.4.53)

So the eigenvalues of B have the same expressions as those of A.

In summary, we will initialize the density ρ and orientation θ in the 2D domain

described above. Thus Ω1 = cos θ and Ω2 = sin θ and we can compute Q0
i,j for

i = 0, 1..nx + 1, j = 0, 1..ny + 1.

Given the information on timestep n, the scheme (2.4.44) is firstly applied for

i = 1, 2..nx and j = 1, 2..ny, i.e. the inner grid points in the domain.

For a periodic boundary condition, where Q(0, y) = Q(Lx, y) and Q(x, 0) =

Q(x, Ly), We will update the boundary as Qn+1
0,j = Qn+1

nx,j
, Qn+1

nx+1,j = Qn+1
1,j , Qn+1

i,0 =
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Qn+1
i,ny

, Qn+1
i,ny+1 = Qn+1

i,1 . The derivatives Qx
n
0,j, Qx

n
nx+1,j and Qy

n+1
i,0 , Qy

n+1
i,ny+1 can be

obtained in the same manner.

For a Neumann homogeneous boundary condition, where Qx(0, y) = Qx(Lx, y) =

0 and Qy(x, 0) = Qy(x, Ly) = 0, we will update the boundary as Qn+1
0,j = Qn+1

1,j ,

Qn+1
nx+1,j = Qn+1

nx,j, Q
n+1
i,0 = Qn+1

i,1 , Qn+1
i,ny+1 = Qn+1

i,ny
. And the derivatives at the outer

grid points are given as Qx
n
0,j = Qx

n
nx+1,j = 0 and Qy

n+1
i,0 = Qy

n+1
i,ny+1 = 0.

After computing Qn+1, we can normalize Ω and proceed for the next time step.

Finally we will briefly discuss about the determination of the coefficients c1 to

c7 as in (2.2.117) to (2.2.124). While Φ, k1 and k0 can be computed by direct

integration, the rest of the terms involve the computations of h, which is defined

as g(cos(θ))/ sin(θ). Note that in 2D, the generalized collision invariant ψ(θ) =

g(cos(θ)) satisfies (2.2.70), and this can be written as

∂θ(e
cos θ
d ∂θψ) = sin θe

cos θ
d . (2.4.54)

This is an ODE which can be solved analytically by direct integration with respect

to θ and together with the boundary condition ψ(0) = ψ(2π). We can get

ψ = −dθ +
2πd

θ
∫

0

e−
cos x
d dx

2π
∫

0

e−
cos x
d dx

. (2.4.55)

This expression can be evaluated using trapezoidal rule numerically.

2.4.4 Numerical methods for particle model from the Navier-

Stokes system

In this section we discuss the numerical methods by the particle model discretized

using the SPH approach. The model is described by (2.3.51) to (2.3.55). Since

it is already a full description of the microscopic model. Therefore the particle

initialization and GPU parallelization is the same as the modified Vicsek model.

Note that we do not need the orientation in this case and the speed of each

particle is adjusted by the self propulsion force. In addition, the “mass” and density
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need to be initialized. The “mass” of each particle is given by 1
N

× ρaverage × |Ω|,
where Ω is the volume of the domain.

Integration

Note that the force is decomposed into interaction force and self-propulsion force,

where the sole purpose of the self-propulsion force is to adjust the speed of individual

particles. A time splitting scheme is then applied for the integration of the system.

For each time step, the equations are split into two parts. The first part is

dv

dt
=
∑

j

Frij +
∑

j

Faij . (2.4.56)

The second part is

dv

dt
= Fpi. (2.4.57)

In each time step, we solve the first part. In order to compute Fr, we need to

compute ρ first. This is based on (2.3.55). We collect the contribution from all

the neighbouring particles and the neighbour search algorithm is the same as the

modified Vicsek model. After we compute all the individual density, we can get the

interaction force and update

v
n+ 1

2

i = vni + dt(
∑

j

Frij +
∑

j

Faij). (2.4.58)

The second part is an ODE which can be solved exactly, thus we use the ana-

lytical solution of the ODE to update the velocity.

if ρ < ρc, ODE is |v|′ = −λ|v|3, we get |vn+1| = 1√
2λdt+ k

, k =
1

|vn+ 1

2 |2
.

Similarly,

if ρ > ρc, ODE is |v|′ = λ(c− |v|2)|v|, where c = v20(1−
ρc + ρ0
ρ+ ρ0

)2.

If c > |vn+ 1

2 |2 we get |vn+1| =
√
cec(λdt+k)

√
1 + e2c(λdt+k)

, k =
1

c
ln(

|vn+ 1

2 |
√

c− |vn+ 1

2 |2
).

If c < |vn+ 1

2 |2 we get |vn+1| =
√
cec(λdt+k)

√
e2c(λdt+k) − 1

, k =
1

c
ln(

|vn+ 1

2 |
√

|vn+ 1

2 |2 − c
).
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Boundary Condition

For a periodic boundary condition, the treatment is exactly the same as the

modified Vicsek model. However, when a wall is present, the boundary condition

maybe complicated. Since the development of SPH, the treatment for boundary

conditions include the boundary force method [35], the dummy particle method

[76] and the mirror particle method [90]. Using the boundary force method, it is

almost impossible to treat some standard boundary conditions such as homogeneous

Neumann boundary condition.

In the dummy particle method, several extra layers of particles are placed inside

the wall. One layer of particles is placed on the boundary with equal distances

between neighbours. More than one layer of boundary particles are required for the

correction of density summation near the boundary.

The density of the dummy particles needs to be chosen carefully to match the

density of the fluids. And for a curved domain or near a corner, the placement of the

dummy particles needs to be designed. Dummy particles are easy to implement in

the sense that they are set up at the beginning and do not move for a fixed domain.

To implement a Neumann boundary condition, slip or non-slip, we will use the

mirror particle method. The boundary condition is ∂v
∂~n

= 0, where ~n is the outward

normal of the domain. At each time step, mirror particles are generated as the

reflection of the real fluid particles. Note that mirror particles are only required for

a particle which is near the wall, with a distance to wall smaller than R, where R is

the interaction radius.

We consider 2D domains for simplicity. For a rectangle domain, if a fluid particle

is near a corner, an extra mirror particle is created as a point reflection to the corner.

This is to prevent the density deficiency.

For a circle domain centered at the origin with radius L, consider a particle i near

the boundary, a set of the mirror particles are generated for each fluid particle in the

neighbourhood of particle i. This set of mirror particles only interact with particle

i but not the others. Suppose the position of the ith particle is Xi = (cos θ, sin θ),
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for each particle j near particle i at position Xj, the position of the mirror particle

is given as

X̃j = R(θ)(2(L, 0)− R(−θ)Xj). (2.4.59)

Here R(θ) is the rotation matrix for an anticlockwise rotation θ.

The velocity of the mirror particles require special treatment based on the bound-

ary condition. Considering a mirror particle of the fluid particle j with velocity

vj , we firstly decompose vj into the tangential and normal components. Here

vnormal
j = (vj · ~n)~n and vtangentialj = vj − vnormal

j . For a Neumann boundary con-

dition, the mirror particle is given the velocity ṽj = vtangentialj − vnormal
j . If a non-slip

boundary condition is used instead which require v = 0 at the boundary, the mirror

particle is given the velocity ṽj = −vtangentialj − vnormal
j instead. The negative sign for

the tangential force makes sure the velocity along the tangential direction is 0 once

the alignment force is applied.

2.5 Numerical results

The goal of this section is to provide the numerical results which would validate

the numerical schemes described in the previous section.

2.5.1 Microscopice modified Vicsek model

We firstly present the particle simulations for the Microscopic Modified Vicsek

Model. 2× 104 particles are simulated in a 2D box domain with periodic boundary

condition in both directions. The parameters used are:

v0 = 1, µ = 50, α = 1, D = 0.1, Lx = 1, Ly = 1. (2.5.1)

We can see the formation of clusters after some time (Figure 2.5). To compare with

the Vicsek model and study the effect of the repulsive force, we present the result for

different µ at time T = 1.0, other parameters are fixed as the previous test (Figure

2.6).
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Figure 2.5: Simulation for 2× 104 particles at time T = 0, 0.5, 1.0, 3.0 respectively.

2.5.2 Comparison between the microscopic and macroscopic

model

In the microscopic Vicsek model with repulsion, we choose the potential kernel

as

φ(x) =







|x|2
r

− 2|x|+ r, if |x| ≤ r,

0, if |x| > r.
(2.5.2)

With r = R = 1, which are the interaction radius for repulsion and alignment

respectively before scaling, we can compute in dimension two:

Φ =

∫

φdx =
π

6
, k1 =

1

4

∫

K(|z|)|z|2dz = π

8
, and k0 =

∫

K(|z|)dz = π.

(2.5.3)

The other parameters, which are fixed for all simulations if not differently stated
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Figure 2.6: Simulation for 2 × 104 particles at time T = 1 with µ = 0, 10, 100, 300

respectively. The initial orientation is randomized and the same initial data is used

for all the tests.

are:

v0 = 1, µ =
1

2
, α = 1, D = 0.1, Lx = 10, Ly = 10. (2.5.4)

After numerical computation of the coefficients, we have that in (2.4.23), (2.4.24):

c1 = 0.9486, c2 = −0.5236, c3 = 0.1, c4 = 0.8486, (2.5.5)

c5 = −0.5236, c6 = 0.4967, c7 = −0.1186. (2.5.6)

Note that the microscopic model is the continuum limit in the sense that ǫ→ 0.
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The scaled individual based model reads as

dXi

dt
= vi, vi = ωi −∇xΦ(Xi(t), t), (2.5.7)

dωi = Pω⊥

i
(
1

ǫ
ω̄(Xi(t), t)dt+ αvidt+

√
2DǫdBi

t), (2.5.8)

Φ(x, t) =
1

ǫ2N

N
∑

j=1

∇φ( |x− xj |
ǫ

), (2.5.9)

ω̄(x, t) =
J(x, t)

|J(x, t)| , J(x, t) =
1

N

N
∑

j=1

K(
|x−Xj |√

ǫ
)ωj. (2.5.10)

Only 2D models are compared. In the microscopic model, once the position of

the particles are determined, we can compute the density by distributing the weight

of a particle onto the neighbouring four grid points. Consider a particle within

a 2D grid box. The horizontal line and the vertical line divide the box into four

rectangles, and the weight contributed to each grid point is proportional to the area

of the rectangle which is furthest away from the grid point. After normalization, we

can get the density profile of a particle system.

Similarly for a given density, to initialize the particles, we allocate N×ρ particles
in the region with density ρ randomly. The positions are drawn with a uniform

distribution.

Furthermore, an average is taken over several simulation to reduce the statistical

error since white noise is implemented in the microscopic model. N = 105 particles

are used in each simulation. The interaction radius in the microscopic model are

fixed to r = 0.0625 for the repulsive range and R = 0.25 for the alignment interaction

range.

Two problems are considered. We firstly consider the Riemann problem. The

initial data is

(ρl, θl) = (0.0067, 0.7), (ρr, θr) = (0.0133, 2.3). (2.5.11)

Periodic boundary condition is used both in the direction of x and y. The time

step is ∆t = 0.01 and the mesh size is ∆x = ∆y = 0.25. The final time is chosen

that T = 1. We firstly show the L1 norm of the relative error in Figure 2.7. As
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shown in the figure, as we increase the number of realizations in the microscopic

model, or decrease ǫ, the error decreases and the microscopic model provides a good

approximation for the individual based model.

Figure 2.7: Relative error between the macroscopic and the microscopic model for

density (left) and θ (right) as a function of the number of averages for different

values of ǫ. The error decreases with both decreasing ǫ and increasing number of

averages, showing that the microscopic model provides a valid approximation of the

individual based model for ρ and θ.

Note that in the Riemann problem, the result is independent of y. Therefore

in Figure 2.8 we show the density ρ and the flux direction θ for the same Riemann

problem along the x-axis for ǫ = 0.05 at time T = 1s. Again we can see that these

two models produce close results. The difference maybe due to the different schemes

used for different models.

Another problem considered for the comparison is the Taylor-Green vortex prob-

lem. This initial condition is chosen trying to mimic the behaviour of the sperm

suspension. The initial data is given as ρ0 = 0.01 being a constant density, and
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Figure 2.8: Solution of the Riemann problem along the x-axis for the macroscopic

model (blue line) and for the microscopic model with ǫ = 0.05 (red line) at T = 1.

Ω0(x, y) =
Ω̃0(x,y)

|Ω̃0(x,y)|
is a normalization of the Green vortex Ω̃ = (Ω̃1, Ω̃2) given as

Ω̃1(x, y) =
1
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The parameters are chosen as ǫ = 0.05, r = 0.04, R = 0.3, finial time T = 0.6 and

number of particles N = 105. Again a periodic boundary condition is used. The

following figures show the density comparison together with the orientation.

Figure 2.9: Density ρ for the Green Taylor Problem at T = 0.6. Left:microscopic

model. Right:macroscopic model
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Figure 2.10: Mean orientation Ω for the Green Taylor Problem at T = 0.6.

Left:microscopic model. Right:macroscopic model

2.5.3 Particle model from the Navier-Stokes system

Finally we present the particle simulation with the interaction rules derived from

the Navier-Stokes equations. We could expect a more homogeneous structure due

the derivation of the model. We firstly show the 2D particles with 2× 104 particles

in different domains. (figure 2.11)

The parameter used are:

dt = 0.001, v0 = 5, p0 = 5, ν = 0.1 and λ = 2000. (2.5.14)

Note that the large λ results in a constant speed while the stability is ensured in our

spilitting scheme. Note that in a domain with a periodic boundary condition or in

the annulus domain, we can observe collective motion towards a certain direction,

whereas in a confined domain (the circle case), the particles form a homogeneous

structure.
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Figure 2.11: Particle simulations in 2D domains. Top left: rectangle domain

Lx = Ly = 1 with periodic boundary condition. Top right: rectangle domain

Lx = Ly = 1 with periodic boundary condition in x direction and Neumann bound-

ary condition in y direction. Bottom left: circle domain, radius=1, Neumann bound-

ary condition. Bottom right: annulus domain, outer radius=1, inner radius=0.4,

Neumann boundary condition.



Chapter 3

Models and Methods for Collective Motion

of Polymers

3.1 Existing models

The above particle models add specific interaction rules for individuals. How-

ever, in reality, there is no way for animals or micro-organisms to make accurate

measurement for an alignment. Understanding the mechanisms such that cellular

organization can be achieved still remains as an open question. It is found that

chemoattractant can guides cell motion and leads to complex patterns in some sys-

tems [13]. For example E.coli as well as amoebae like D.discoideum can move due to

the chemical sigmals produced by other cells [12]. [45] showed that in some bacteria,

there is not evidence of the chemoattractant mechanism, as the physical contact

between bacteria or sperms play a role for the alignment of such suspensions. As

the volume exclusion effect becomes significant, we should no longer model the in-

dividual polymer by points without a volume. [44] has shown that the shape of

micro-swimmers is essential for individual swimming of certain cell types, and it

remains unclear how the shape will affect the collective behaviour.

These interactions result in a large varieties of pattern. The easiest observable

patterns in a bacteria suspension are large scale vortices and jets with size and

68



3.1 Existing models 69

speeds much more than those swimming individuals. Other observations include

the formation of spatial inhomogeneities, locally correlated motions.

Different models are available with different shapes and large scale simulations

have been carried out to model the dynamics of the particles directly. A “mini-

mal” swimmer model can be found in [60]. Each polymer is represented as a rigid

dumbbell. The dumbbell exert equal and opposite force on the fluid, creating a far

field dipole induced by self-propulsion. In [56], the dumbbell model is generalized

to an ellipsoid model. A similar description of self-propulsion was used in recent

numerical simulations in two dimensions by Decoene.

Another different class of models consider the propulsion not as the result of

flagellum on the fluid but rather as a prescribed surface slip velocity. This is so

called the “squirmer” model, which was initially developed by Lighthill [78] and

Blake. The classical squirmer model prescribes the velocity on a sphere for motion.

The squirmer model is then refined by Pedley and coworkers, who generalize the

squirmer model to anisotropic shapes, for example, spheroids, and also with more

complex boundary conditions, where the tangential stress is prescribed instead of

slip.

Such particle-based models are invaluable since they result in qualitative agree-

ment with experiments and can be analysed statistically.

In order to understand the hydrodynamic interactions, computational fluid dy-

namics are involved. For a viscose fluid with low Reynold number, Stokesian dy-

namics can be applied. The key feature is that it can handle a large number of

particles and produce fairly accurate result. The particle motion is described by the

coupled N body Langevin equation in the following form:

m
dU

dt
= FH + F P + FB. (3.1.1)

U is the translational/rotational vector with dimension 6N , the three terms in the

right hand side represent hydrodynamic forces, non hydrodynamic forces and noise.

The relation between the forces and the motion is assemble in the grand mobility

matrix resulting in a large linear system.
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To study fluid particle interaction, we can also adopt the boundary integral

method. This method allows the computation of flows associated with complex

geometries. It discretize the integral form of the original Navier-Stokes equation,

and it reduces the computation from a 3D domain to a 2D domain on a surface.

3.2 Self-propelling polymer model

In this section we will consider each individual polymer as rigid linked spheres

with radius R moving in a 3D domain. Steric rod rod interactions are described

by a segment model, where each rod is partitioned into n equidistant segments, or

spheric beads. All the segments of the rods interact each other.

Each individual rod α has the mass of nm with m being the mass of individual

beads. The center of mass has position xα and the velocity of the center of mass is

vα. The orientation of the rod is an unit vector uα.

Consider a pair of rods α and β. Their pairwise potential is given by

Φαβ = Φ0

n
∑

i=1

n
∑

j=1

Φ(rαβij ) (3.2.1)

Here Φ(r) is a repulsive potential same as the modified Vicsek model, Φ0 is a constant

and rαβij is the distance between the ith segment of rod α, and the jth segment of

rod β, given as

rαβij = |∆rαβ + (liu
α − lju

β)|, (3.2.2)

where ∆rαβ is the distance between the center of mass of the two rods, and li =

(−(n− 1) + 2(i− 1))R.

Each individual rod also experience a self propelling force f which would relax

its current velocity towards its current orientation and a fixed speed v0

fα = µ(v0u
α − vα) (3.2.3)

This gives us a complete description of a self propelling rod.
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3.2.1 Numerical methods

The aim of this section is to provide the detailed method of simulating a large

system of self propelling rigid rods. For each rod α, we drop the superscript α for

simplicity, the simulation basics at each time step involves the position of center

of mass x(t), the rotation matrix R(t), the momentum P (t) as well as the angular

momentum L(t).

Here x(t) and R(t) describes the transform from the translation and rotation

from the body space to the world space. x(t) is the center of mass and R(t) is the

rotation matrix. In the body space, we assume the center of mass is positioned at

the origin and the rod is aligned with the x axis, with the orientation of the rod

point towards the positive x axis. For any bead i at xi0 in the body space, the

corresponding position in the world space is xi(t) = R(t)xi0 + x(t). In this way, we

can see that the orientation u(t) can be written as R(t)(1, 0, 0)T which is the first

column of R(t). Finally the position of each bead is given as xi(t) = x(t) + liu.

The translating is easy to deal with. The governing equation for x(t) is dx(t)
dt

=

v(t). The velocity v(t) is related to the linear momentum P (t) = Mv(t), and the

governing equation for P (t) is dP (t)
dt

= F (t). Here F (t) is the total force acting on the

rod, which include the interaction forces summed over all the beads together with

the self propelling force. Note that the only algorithm that determines the motion

is the steric interaction.

Although there is no interaction among individual beads within the same rod, we

still can take the interaction into consideration, since the equal and opposite forces

can cancel each other. Therefore, for the computation of the total force on each

bead Fi, we can consider the individual beads as a particle system and compute the

all interaction forces. GPU parallelization can be applied, where each tread store

the data for individual beads, instead of individual rods. Finally for each rod, we

have F =
∑

Fi + f , where f is the self propelling force.

The rotation needs to be handled carefully. To find the time derivative of the

rotation matrix R(t), we consider a vector r(t) in world space. We have the following
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indentity: dr(t)
dt

= ω(t) × r(t), where ω(t) is the angular velocity, a vector which

the rigid body rotates about. Therefore by writing the rotation matrix as R =

(R1, R2, R3), we have

dR(t)

dt
= (ω(t)× R1, ω(t)× R2, ω(t)×R3) = ω(t)∗R(t), (3.2.4)

with a∗ for a vector a is defined by the matrix:

a∗ =











0 −az ay

az 0 −ax
−ay ax 0











. (3.2.5)

To compute ω(t), we consider the angular momentum. We have the total angular

momentum L(t) = I(t)ω(t), with I(t) being a 3× 3 matrix called the inertia tensor.

This tensor is a 3D assemble of the scalar moment of inertia in the case where the

axis of rotation is fixed. I(t) describes how the mass in a body is distributed relative

to the center of mass. By computing I(t) and L(t), we can get ω(t) = I(t)−1L(t).

Analogue to the relation dP (t)
dt

= F (t), the relation between L(t) and the total

torque is dL(t)
dt

= τ(t). The total external torque is τ(t) =
∑

τi(t) =
∑

(xi(t) −
x(t)) × Fi(t). Again the virtual force added among particles within the same rod

does not affect τ(t).

Finally the inertia tensor has the following form, denoting ri(t) = xi(t)− x(t):

I(t) =
∑

i











mi(r
2
iy + r2iz) −mirixriy −mirixriz

−miriyrix mi(r
2
ix + r2iz) −miriyriz

−mirizrix −mirizriy mi(r
2
ix + r2iy)











. (3.2.6)

In actual implementation, this can be written as

I(t) = R(t)I(0)R(t)T , I(0) =
∑

i

mi((x
T
i0xi0)Id− xi0x

T
i0). (3.2.7)

As a result, we have

I(t)−1 = R(t)I(0)−1R(t). (3.2.8)
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Note that I(0)−1 is independent of time and can be used through out the simulation.

We can put everything in a state vector X(t) and summarize our result.

Let X(t) =

















x(t)

R(t)

P (t)

L(t)

















, then X ′(t) =

















v(t)

ω(t)∗R(t)

F (t)

τ(t)

















. (3.2.9)

An Euler scheme is used for time integration: Xn+1−Xn

dt
= X ′n For each time step, we

firstly compute all the force on individual beads F n
i . Only for F n

i , the computations

for individual beads are done in parallel. For the rest, only the computations for

individual rods can be done in parallel.

With F n
i , we compute the total force F n and torque τn. Together with

vn =
P n

M
, In = RnI(0)RnT , ωn = (In)−1Ln, (3.2.10)

we can get X ′n and proceed with the simulation.

To reduce the numerical error accumulated in the computation of R(t), a unit

quaternion q = [s, v] = [s, vx, vy, vz] representing a rotation of s radians about an

axis v can be used to store the rotation. We have

q′(t) =
ω(t)

q(t)
, (3.2.11)

which is analogue to R′(t) = ω∗R(t)

Now define the quaternion multiplication by:

[s1, v1][s2, v2] = [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2]. (3.2.12)

If q1, q2 are rotations, q2q1 indicates a composite rotation q1 followed by q2. Therefore

we have qn+1 = dqn × qn.

From (3.2.11), following by a normalization of q, we get the expression for dq

which is

dq = [cos(
θ

2
), a sin(

θ

2
)]. (3.2.13)
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Here a = ω
|ω| , θ = |ωdt|, and finally, for the computation of ω, we still need Rn in

terms of qn = [sn, vn]. Dropping the superscript n, we have

R =











1− 2v2y − 2v2z 2vxvy − 2svz 2vxvz + 2svy

2vxvy + 2svz 1− 2v2x − 2v2z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx 1− 2v2x − 2v2y











. (3.2.14)

This completes our time integration. Once we get the position and orientation of a

rod, we can compute the position of all the beads on it. Note that the boundary

conditions and grid generation are exactly the same as the modified Vicsek model.

3.2.2 Numerical results

In this section we show the simulation result of the self propelling rods. By

changing the number of rods, the shape, the interaction force, as well as the shape

of the domain, a large number of patterns can be observed. A dense suspension is

crucial for the collective motion in most cases, and a laning phase can be observed

for rigid rods with large aspect ratios. We also observe cluster formation near the

boundary of circular domains.

Figure 3.1 shows the result of 2000 rods with n = 3 representing 6000 particles

in different domains. Particle interaction radius is chosen as 0.05, the potential

amplitude Φ0 = 100 and speed v0 = 0.5.

Figure 3.2 show some selected scenarios varying the aspect ratio.

3.3 Polymer fluid interaction

In the previous sections we treat the suspension of micro swimmers as an active

rigid polymers where the swimmer fluid interactions are ignored. However, in recent

experiments carried out to understand the large scale structure that is obtained by

individual swimming mechanism [26, 75], it is found that the hydrodynamics play

an essential role and should not be easily ignored also. Complex flow structure such
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Figure 3.1: Rigid rod simulations. Top left: 2D rectangle domain Lx = Ly = 1 with

periodic boundary condition. Top right: 2D annulus domain, outer radius=1, inner

radius=0.3, repulsive boundary condition. Bottom figures show the corresponding

3D domain with Lz = 0.3.

Figure 3.2: Rigid rod simulations. Left: n=10, 600 rods, highly local alignment

observed for long rods. Right: n=4, 500 rods, alignment normal to the boundary

observed near the boundary.
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as large-scale vortices and jet can be induced. It is also found the speed of the flow

can be much faster than each swimming individuals [83].

Therefore in this section we will consider rigid particles embedded in a Newtonian

fluid using a finite element approach. For a direct simulation of particles immersed

in fluid. One series of work begins with [65], followed by [66]. Their approach

replies on a moving mesh which follows the fluid domain. Another method for

fluid simulation extend the fluid domain to a fictitious domain, thus have the name

of fictitious domain method or domain embedding method. These methods use a

Cartesian mesh which would cover the whole domain (both fluids and particles).

Rigid motion can be enforced using a Lagrange Multiplier, for example, in [97], the

strain tensor is constraint to be zero. Rigid motion can also be enforced by penalty

methods, where a penalty term for the strain tensor is applied.

The domain considered is a 2D domain Ω ∈ R2, and we assume that it should be

bounded, connected and regular. Polymers are modelled as rigid particles immersed

in the fluid. Self propulsion is modelled as propelling force along their axis of motion,

and volume exclusion is considered by repulsive force. The polymers are denoted by

Pi, i = 1..N and the whole rigid domain is P = ∪iPi, The domain Ω\P̄ is the fluid

domain with Newtonian fluid. Whereas in [79], the particles are rigid spheres, we

will model swimming polymers as rigid ellipses.

To model the force, we will investigate the mechanism by which the polymer may

propagate at low Reynolds numbers. In many cases, such as sperms or Escherichia

coli, the thrust comes from the rear part of the body. For example, E coli swims

using ve to six agella that are rotated by molecular motors embedded in the cell

membrane. This kind of swimmer are named “pushers”. In contrast, another type of

swimmer are “pullers”, example include algal species C. reinhardtii. Pullers perform

a breaststroke-like motion to “pull” liquid from the front and force it to the sides

of the micro-organism. In short, both types of micro-swimmer can generate a force

dipole with opposite directions. For pushers, we will model it by applying two

opposite forces. The support of the forces form a dumbbell, which is composed of a
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large sphere at the head and a small sphere at the tail. The center of the spheres

are chosen to be the foci of the ellipse as a natural choice. Forces are applied to be

a constant function over the support. The force on the head has the same direction

as the ellipse where the force on the tail has the opposite direction.

The repulsive forces are also considered on the foci of the ellipse. We can treat

the 2 foci as particles and apply a repulsive force when particles from different

ellipses come close to each other. The potential is chosen in the same way as the

modified Vicsek model.

For each particle i, we denote its center of mass by xi, velocity by vi and orien-

tation by the angle θi. The angular velocity is denoted by ωi which is dθi
dt
. For the

density and force on the particle i, we denote by ρi and fi whereas for the density

and external force on the fluid, we denote by ρf and ff .

Firstly we consider the fluid region. In 2D, we want to find the velocity u =

(u1, u2) and the pressure field p in Ω\P̄ . The governing equations are

ρf
Du

Dt
− µ∆u+∇p = ff in Ω\P̄ , (3.3.1)

∇ · u = 0 in Ω\P̄ , (3.3.2)

u = 0 on ∂Ω. (3.3.3)

The motion of each particle is then governed by

u = vi + ωi × (x− xi)
⊥ on ∂Pi, ∀i. (3.3.4)

Next we consider the forces on the particles. Using Newton’s second law, we can

write

mi
dvi
dt

=

∫

Pi

fidx−
∫

∂Pi

σnds, ∀i, (3.3.5)

Ji
dωi

dt
=

∫

Pi

(x− xi)
⊥ · fidx−

∫

∂Pi

(x− xi)
⊥ · σnds, ∀i. (3.3.6)

In summary, the model describes rigid ellipses immersed in fluid. The fluid

domain satisfies the Navier-Stokes equation. The velocity of the particle and the

fluid agrees on the surface of the particle.
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3.3.1 Numerical methods

Now we discuss the numerical methods to solve the systems (3.3.1) to (3.3.6).

Standard approaches would require a mesh discretization in the fluid region and

leave the polymers as rigid bodies. This would cause remeshing every time step.

In order to avoid remeshing, as developed in [69], we can introduce the following

functional spaces to deal with the rigid constraints.

K∇ = {u ∈ H1
0 (Ω),∇ · u = 0}, (3.3.7)

KP = {u ∈ H1
0 (Ω), ∀i ∃(vi, ωi) ∈ R

2 × R, u = vi + ωi(x− xi)
⊥ a.e. in Pi}.

(3.3.8)

Basically, K∇ is the space of divergence free functions on Ω and KP is the space of

functions on Ω that will not deform P . We can also write KP in the following form

KP = {u ∈ H1
0 (Ω), D(u) = 0 a.e. in P}. (3.3.9)

Note that the space KP is dependent on P and can vary over time. Now we will find

a solution u which is in K∇ ∩ KP . this solution is defined over the whole domain

while the rigidity is guaranteed. Choosing ũ as a test function and multiply the

Navier Stokes equation by ũ over the fluid domain Ω\P̄ . We can have
∫

Ω\P̄
ρf
Du

Dt
· ũdx− µ

∫

Ω\P̄
∆u · ũdx+

∫

Ω\P̄
∇p · ũdx =

∫

Ω\P̄
ff · ũdx. (3.3.10)

Using integration by parts,
∫

Ω\P̄
ρf
Du

Dt
· ũdx+ 2µ

∫

Ω\P̄
D(u) : D(ũ)dx

−
∫

Ω\P̄
p∇ · ũdx−

∫

∂(Ω\P̄ )

σn · ũdx =

∫

Ω\P̄
ff · ũdx.

(3.3.11)

We can extend the result from Ω\P̄ to Ω since we have D(ũ) = 0 in P , which

implies that ∇ · ũ = 0 in P . Therefore the second and third terms can be extended

to Ω directly. The fourth term can be dealt with the fact ũ is in KP . Therefore we

have

∀i, ∃ṽi, ωi such that ũ(x) = ṽi + ω̃i(x− xi)
⊥ in Pi. (3.3.12)
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The relation as well as the boundary condition leads to

∫

Ω\P̄
ρf
Du

Dt
· ũdx+

N
∑

i=1

mi
dvi
dt
ṽidx+

N
∑

i=1

Ji
dωi

dt
ω̃idx

+ 2µ

∫

Ω

D(u) : D(ũ)dx−
∫

Ω

p∇ · ũdx =

∫

Ω

f · ũdx,
(3.3.13)

where f = ffχΩ\P̄ +
N
∑

i=1

fiχPi
Here χ is the indicator function for the domain.

Finally we have the following identity:

∀i,mi
dvi
dt
ṽi + Ji

dωi

dt
ω̃i =

∫

Pi

ρi
Du

Dt
· ũ. (3.3.14)

In the end, we have the complete variational formulation:
∫

Ω

ρ
Du

Dt
· ũdx+ 2µ

∫

Ω

D(u) : D(ũ)dx−
∫

Ω

p∇ · ũdx =

∫

Ω

f · ũdx, ∀ũ ∈ KP ,

(3.3.15)
∫

Ω

q∇ · udx = 0, ∀q ∈ L2(Ω). (3.3.16)

Here ρ = ρfχΩ\P̄ +
N
∑

i=1

ρiχPi
.

To discretize the variational form, we use the method of characteristics to dis-

cretize the total derivative Du
Dt

. Note that this material derivative is from the La-

grangian point of view, and we can define the characteristic trajectory X passing x

at time t as

∂X

∂τ
(x, t, τ) = u(X(x, t, τ), τ), X(x, t, t) = x, (3.3.17)

and Du
Dt

can be discretized as

(
Du

Dt
)n+1(x) ≈ un+1(x)− un(X(x, tn+1, tn))

∆t
. (3.3.18)

Up to now, the formulation requires that the test functions are in the constrained

functional space KP , to ensure the rigid motion of the particles. In order to get rid

of the constraint, we adopt the idea in [69]. The constraint can be relaxed by

introducing a penalty term in the minimized functional, which is

1

ǫ

∫

Pn+1

D(un+1) : D(un+1)dx. (3.3.19)
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it is shown in [69], that as ǫ → 0, we will have D(un+1)|Pn+1 → 0 therefore un+1

would tends to a rigid motion in P n+1.

Put everything together, we can get the following scheme: For every time step,

the velocity of a particle i is computed as

V n
i =

∫

Pn
i
undx

∫

Pn
i
1dx

(3.3.20)

The position of the center of mass is then

xn+1
i = xni +∆V n

i , (3.3.21)

and the density ρ is computed as

ρn+1 = ρfχΩP̄n+1 +

N
∑

i=1

ρiχPn+1
i

. (3.3.22)

Finally we solve the dicretized weak formulation, that is, find un+1 ∈ H1
0 (Ω) and p

n+1 ∈
L2(Ω) such that

1

∆t

∫

Ω

ρn+1un+1 · ũdx+ (2µ+
2

ǫ
)D(un+1) : D(ũ)dx−

∫

Ω

pn+1∇ · ũdx

=
1

∆t

∫

Ω

(ρnun) ◦Xn · ũdx+
∫

Ω

fn+1 · ũdx, ∀ũ ∈ H1
0 (Ω),

(3.3.23)

∫

q∇ · un+1dx = 0, ∀q ∈ L2(Ω). (3.3.24)

Here (ρnun)◦Xn = ρnun at Xn(x) whereXn(x) is an approximation ofX(x, tn+1, tn),

on the characteristic trajectory. This term takes convection into consideration.

With this weak formulation, any finite element solvers can be applied to solve the

problem. We use Freefem to solve this problem. The domain Ω is triangulated into

T h using a built-in Delaunay-Voronoi algorithm. We use P2 finite element space for

velocities and P1 finite element space for pressures.

3.3.2 Numerical results

We show the numerical result for few particles within a unit square domain with

zero Dirichlet boundary condition. We choose µ = 0.01, ǫ = 1 × 10−8, dt = 0.05,



3.3 Polymer fluid interaction 81

ρf = 1 and ρp = 5. The shape of the ellipse is determined as the sum of the distance

to the 2 foci is 0.25 while the foci are separated by 0.2.

Figure 3.3: The mesh and streamlines for a ellipsoid particle.

In Figure (3.3), the ellipse is placed at the center of the domain pointing upward.

Figure 3.4: The interaction for 2 particles. They approach each other and align.

In Figure (3.4), the center of the two ellipses are placed at (0.2, 0.2), (0.8, 0.2)

with orientations θ = π
4
, 3π

4
respectively.



Chapter 4

Single Polymer Statistics

In this chapter, we focus on the single polymer statistics. Because of their broad

range of properties, polymers play an essential and ubiquitous role in everyday life.

In particular, the mechanics of polymer is very important in nanomotors from bi-

ology and nanotechnology. For example, the molecular motors which walk along a

linear track make use of polymers. Virtually all the track-walking biomotors [109]

and the man-made counterparts reported to date use polymer linkers to connect the

leg-like track-binding parts. The polymer linkers are often semi-flexible oligomers

that consist of 10100 monomer units and exhibit a rich interplay between bend-

ing energy and conformational freedom (i.e., entropy). The polymer linkers can be

peptides in the form of soft random coils or relatively rigid alpha helices, or be nu-

cleotides in the form of single strands or double-stranded helices. The length and

intra-chain force of a polymer linker largely decide how fast a diffusing leg binds to

a binding site of the track and how much force can be transmitted into the motor’s

forward motion against a load. After an event of leg binding, the free energy of the

polymer linker affects the overall stability of a multi-leg bound state of the motor

and thereby the ensuing leg dissociation for the motor’s continual motion. There-

fore, controlling the polymer’s length, force and free energy is a rather common

mechanism by which biological and artificial nanomotors control their leg bind-

ing/dissociation, force transmission and even motional direction. Indeed, biological

82



83

motors exhibit a wide variety of sophisticated polymer control. As a prominent ex-

ample, a bipedal biological motor called kinesin aligns a part of its soft peptide linker

at one end in a zipper-like manner along the track to throw forward the diffusing leg

at the linker’s other end. This polymer ‘zippering’ generates a power stroke that not

only provides a forward bias for leg binding but also transmits an intra-chain force

forward against a load. This force is largely associated with the entropy change of

the linker. Another biological bipedal motor called myosin V generates a similar

power stroke but by forward tilting its rigid helical linker at one end. Interestingly,

tilting the linker at its one end can also transmit a force to selectively dissociate a

leg at the other end from the track even though the leg binds the track stronger

than the leg at the tilted end, as found in another biological bipedal motor. For

both kinesin and myosin V, the free energy associated with the polymer linker is

comparable to the leg-track binding energy in magnitude. This makes possible a

symmetry breaking by which a local asymmetry in the control of one end of the

polymer linker may be amplified into much larger directional steps of the motor as a

whole. This polymer mechanics-mediated symmetry breaking has been identified in

biological nanomotors and later implemented in artificial DNA nanomotors. Indeed,

the mechanism for single polymer control offers a mechanistic basis for nanoscale

motors and machines.

Understanding the rich single-polymer control effects is important not only for

the study of biological nanomotors, but also for development of artificial counterparts

for nanotechnology. While biological nanomotors are largely limited to peptides,

artificial nanomotors may be made of diverse building blocks ranging from peptides,

nucleotides to synthetic polymers. Besides, any effective polymer control may be

attributed to a fine interplay among the conformational entropy and bending energy

of the polymer and the energy associated with its binding with other molecular

partners. Therefore, the study of motor-relevant polymer controls calls for a general

and rigorous polymer-mechanical framework that counts the conformational entropy

and bending energy accurately and allows study of polymer controls in a generic,
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conceptually clear way. Such a general framework will be particularly useful in

providing guidelines for developing artificial nanomotors from scratch.

In this chapter, we firstly describe some common models in the field of polymer

study. We will then focus on the worm like chain model, which is a good candidate

for semi-flexible polymers and also a realistic working model for many polymeric

building blocks of nanomotors. Numerical methods are discussed to get the exact

end to end distribution of the worm like chain model.

4.1 Existing models

We will start with a brief description of fundamental models for polymer chain.

In the discrete level, a single chain is composed of n + 1 identical main atoms,

which are labelled by the position vectors xj , j = 0, 1, 2..n. The atoms are joined by

single bonds from one end to the other, and labelled by lj = xj − xj−1. The vector

lj is named bond vector and the magnitude of lj is the bond length. The angle θj

between lj and lj+1 is the supplement of the jth bond angle. The angle between the

two planes which contain lj−1, lj and lj, lj+1 respectively defines the internal rotation

angle φj.

One very important quantity is the end to end vector r = xn − x0 which is the

resultant of all the bond vectors r =
n
∑

j=1

lj. Other related quantities include the

mean-square end to end distance 〈r2〉 as a measure of the average chain dimension

which is given by

〈r2〉 =
n
∑

i=1

n
∑

j=1

〈li · lj〉

= nl2 + 2
∑∑

1≤i<j≤n

〈li · lj〉.
(4.1.1)

Here we assume all the bond length li = l. Further, if Si is the vector distance

between the ith atom from the center of mass, the radius of gyration S is defined
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by

S2 =
1

n + 1

n
∑

i=1

S2
i , (4.1.2)

and the well known formula for the mean square radius of gyration 〈S2〉 is given by

〈S2〉 = 1

(n+ 1)2

∑∑

0≤i<j≤n

〈(Sj − Si)
2〉. (4.1.3)

Now suppose the starting end of the polymer chain is fixed at the origin of a Carte-

sian coordinate system, we can define the partition function of the system to be

Z =

∫

exp

[

−U({xn})
kBT

]

d{xn}. (4.1.4)

Here {xn} is the notation for the set x1, x2.. and each set represents a unique con-

figuration. U is the potential energy and is defined as

U(xn) =

n
∑

j=1

uj(xj−1, xj) +W (xn). (4.1.5)

where uj(xj−1, xj) = uj(lj) is due to the fact that the bond between bead j and

j − 1 are connected by covalent bonds. W is the potential for all the other types of

potential including bond angle restrictions.

With these, the instantaneous distribution is given as

P ({xn}) = Z−1exp

[

−U({xn})
kBT

]

. (4.1.6)

To compute the end to end distribution, we can just integrate P ({xn}) over all the
configurations with the constraint

n
∑

j=1

lj = r.

The simplest model is the random flight chains. For this model, we have 〈li ·lj〉 =
0, for i 6= j which means that there is no correlation between any two bonds. It is

also called the freely joined chain or the random coil model. Note that 〈r2〉 = nl2

and 〈r2〉 is proportional to n. In the large n limit, the distribution function P (r) is

found to be [129]

P (r) = (
3

2πnl2
)3/2exp(− 3r2

2nl2
). (4.1.7)
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In this limit, the random-flight chain becomes the Gaussian chain. Also, for the

Gaussian chain, the following relationship is well-known:

〈S2〉 = 1

6
〈r2〉. (4.1.8)

Another discrete model is the freely rotating chain. In this case both bond length

l and bond angle π − θ are fixed, while the internal rotation angle φj is uniformly

distributed in its range from −π to π. It is shown that 〈li · li+1〉 = l2 cos θ and

generally 〈li · lj〉 = l2 cosj−i θ(i < j). By (4.1.1), we can obtain

〈r2〉 = nl2
1 + cos θ

1− cos θ
− 2l2 cos θ

1− cosn θ

(1− cos θ)2
. (4.1.9)

For this case, in the limit n→ ∞, assuming that 0 < θ < π/2. we can see that

〈r2〉 → nl2
1 + cos θ

1− cos θ
. (4.1.10)

Similarly we can compute the average 〈r · u0〉 with u0 = l1/l being the unit vector

in the direction of the first bond.

〈r · u0〉 = l−1

n
∑

i=1

〈ri · ri〉 = l
1− cosn θ

1− cos θ
. (4.1.11)

Note that r · u0 is the projection of r in the direction of l1. Again if we assume

0 < θ < π/2, as n goes to infinity, we have

〈r · u0〉 →
l

1− cos θ
. (4.1.12)

This quality in the right hand side is defined as the persistence length lp. Note

that lp > l for freely rotating chain and lp = l for random flight chain. Thus this lp

is usually used as a measure of the stiffness of the polymer.

The chains discussed so far are discrete models. For a discrete chain with n

bonds, with each bond of length l, we can define the total contour length lc to be

lc = nl. Also the contour distance s of the ith atom from the initial (0th atom) is

s = li. Now we can take the limit n→ ∞ and l → 0 to get a continuous model. In
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this way, the discrete chain contour becomes a continuous and differentiable space

curve. The unit tangent vector is then defined by

u(s) =
dx(s)

ds
. (4.1.13)

Here xi = x(s) is the radius vector. Note that |u(s)2| = 1 and the end to end

distribution can then be expressed as

r = x(lc)− x(0) =

lc
∫

0

u(s)ds. (4.1.14)

Also, in the continuous limit, we have

〈r2〉 =
∫ lc

0

∫ lc

0

〈u(s1) · u(s2)〉ds1ds2,

〈S2〉 = 1

lc
2

∫ lc

0

ds1

∫ lc

s1

ds2〈R2(s1, s2)〉.
(4.1.15)

Here r(s1, s2) is the vector distance between contour points s1 and s2. For the

continuous models, we define the Kuhn segment length AK and the persistence

length lp by

Ak = lim
lc→∞

(〈r2〉/lc),

lp = lim
lc→∞

〈r · u0〉.
(4.1.16)

Recall that the Gaussian chain is the limit case for the random flight chain when N

is large. We consider a continuous Gaussian chain, since 〈r2〉 = llc, this becomes the

defining equation for ”bond length” l in the continuous case. Regarding lc merely

as a continuous variable, (4.1.7) can be rewritten as

P (r; lc) = (
3

2πllc
)3/2exp(− 3r2

2ll2c
). (4.1.17)

This P (r; lc) turns to be the solution of the following differential equation

(
∂

∂lc
− l

6
∇2

r)P (r; lc) = 0. (4.1.18)

Note that if lc is regarded as ”time”, the above equation simply describes the

diffusion associated with the random process r(s) of a Brownian particle with diffu-

sion coefficient l/6 at a long time. This analogue would also be used when we study

the worm like chain model in the following sections.
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4.2 Worm Like Chain model

Previous theoretical studies of motor-relevant polymer effects focus on specific

molecular systems (mostly biological motors and associated peptide systems) or

are based on approximate solution of polymer mechanics. A good candidate for

developing the general framework is the worm like chain (WLC) model for semi-

flexible polymers. On one hand, the exact solution to the WLC model becomes

available recently to allow a precise counting of the conformational entropy, which

remains difficult for other methods like atomic simulations. On the other hand, the

WLC model has only two parameters: contour length as a measure of the maximum

stretch of a polymer and persistence length as a measure of the polymers bending

rigidity. Both parameters can be extracted by fitting experimental data, potentially

making the WLC model a realistic working model for any polymeric building blocks

of nanomotors.

Basically, the worm like chain model is a continuous model from the freely ro-

tating chain. Consider a freely rotating chain with n bonds, bond length l and bond

angle π − θ. We take its continuous limit n → ∞ and θ → 0. When taking this

limit, we should also require lc = nl and the persistence length is kept as a constant.

Here we set the the persistence length to be (2λ)−1

lp =
1

2λ
=

l

1− cos θ
. (4.2.1)

and θ → 0. so that

cos θ = 1− 2λl = 1− 2λlc
n
. (4.2.2)

Denote this limit taking process to be lim
worm

, we have

lim
worm

cosn θ = lim
n→∞

(1− 2λlc
n

)n = e−2λlc . (4.2.3)

Using the results in the freely rotating chain, we have

〈R · u0〉 =
1

2λ
(1− e−2λlc),

〈R2〉 = lc
λ
− 1

2λ2
(1− e−2λlc).

(4.2.4)
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In the limit of λlc → 0 which is the rigid rod limit, we can see that 〈R2〉 = l2c and if

λlc → ∞ which is the random coil limit, we have 〈R2〉 = lc
λ
. As a result, the worm

like chain is an interpolation from both extremes. Therefore, it is a good model for

most typical semi-flexible polymers.

Now we study the end to end distribution. Recall that the worm like chain is a

continuous space curve x(s) by taking the limit from the freely rotating chain and

the persistence length being fixed, here s is the arc-length parameter, which ranges

from 0 to lc, the contour length of the polymer. The tangent vector t(s) to the curve

is t(s) = dx(s)/ds and it is a unit vector (|t2(s)| = 1). Furthermore, the curvature

of the polymer is given by κ = |dt(s)/ds|. We define the conditional distribution

function G(r, t|t0; lc), such that at the terminal end, x(lc) = r,t(lc) = t and at the

initial end, x(0) = 0, t(0) = t0. G(r, t|t0; lc) is called the Green function and is

normalized such that
∫

G(r, t|t0; lc)drdt = 1. (4.2.5)

The characteristic function I(k, t|t0; lc) is defined to be the Fourier transform of G

with respect to r

I(k, t|t0; lc) =
∫

G(r, t|t0; lc)exp(ik · r)dr. (4.2.6)

Other distribution functions can be obtained in the follwing manner:

G(t|t0; lc) =
∫

G(r, t|t0; lc)dr = I(0, t|t0; lc), (4.2.7)

G(r|t0; lc) =
∫

G(r, t|t0; lc)dt, (4.2.8)

G(r, t; lc) = (4π)−1

∫

G(r, t|t0; lc)dt0, (4.2.9)

G(r; lc) = (4π)−1

∫

G(r, t|t0; lc)dtdt0. (4.2.10)

Note that the generation of the curve may be described by a simple Markov process

and the distribution function follows a Fokker-Planck equation. As shown in [36],

the Fokker-Planck equation reads

(
∂

∂lc
− λ∇2

t + t · ∇r)G(r, t|t0; lc) = δ(lc)δ(r)δ(t− t0) (4.2.11)
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Taking the Fourier transform of 4.2.11, we obtain

(
∂

∂lc
− λ∇2

t − ik · t)I(k, t|t0; lc) = δ(lc)δ(t− t0). (4.2.12)

These are the governing equations in the statistical mechanics of the worm like chain.

4.3 Methods for the WLC end to end distribution

For simplicity, we denote G(r, u|u0; lc) by Q(r). To compute Q(r), we need to

sum over all the configuration C, such that the chain ends at r. For each particular

configuration, the energy associated is given as E(C) = 1
2
A

lc
∫

0

κ2ds. Here A is

the bending modulus, given as A = lpkBT . Using this energy, we can give the

worm like chain a statistical interpretation. Q(~r) can be expressed as the sum of

Boltzmann factor exp(−E(C)/kBT ) over all the possible configurations. This is a

standard counting problem in statistical mechanics thus it can be addressed in the

language of path integral. It has been addressed that the difficulty is presented by

the inextensibility constraint. The key to solve the problem is to consider Brownian

motion in the space of the tangent vectors u(s) instead of the position vectors

x(s). The tangent vectors form a unit sphere and the problem reduces to studying

Brownian motion on the unit sphere. For now we will suppose the initial tangent

vector is tA = dx/ds|s=0 and the final tangent vector is tB = dx/ds|s=lc. Then Q(~r)

would have the following path integral representation:

Q(~r) = N

tB
∫

tA

D[t(s)]exp(− lp
2

lc
∫

0

(
dt

ds
)2ds). (4.3.1)

Here N is a normalizing constant, and the delta function takes out all the configu-

rations that end at position r.

4.3.1 1D case

As a starting point, we will firstly consider the problem in one dimension. Instead

of considering Q(r), we can focus on P (z) =
∫

Q(~r)δ(r3− z)d~r where r3 is the third



4.3 Methods for the WLC end to end distribution 91

component of ~r, which is Q(~r) integrated over a plane of constant z. Note that

P (z) =

∫

Q(~r)δ(r3 − z)d~r

= N

tB
∫

tA

D[t(s)]exp(− lp
2

∫ lc

0

(
dt

ds
)2ds)× δ(z −

∫ lc

0

t3ds).
(4.3.2)

To find P (z), we will consider the following transform

P̃ (f) =

∫ lc

−lc

exp(
fz

lp
)P (z)dz

= N

∫ tB

tA

D[t(s)]exp(− lp
2

∫ lc

0

(
dt

ds
)2ds)× exp(

f

lp

∫ lc

0

t3ds)

= N

∫ tB

tA

D[t(τ ′)]exp(−
∫ β

0

1

2
(
dt

dτ ′
)2 − ft3dτ

′) Here τ ′ =
s

lp
, β =

lc
lp

= N

∫ tB

tA

D[t(τ)]exp(i

∫ −iβ

0

1

2
(
dt

dτ
)2 + ft3dτ) Here τ = −iτ ′

= N

∫ tB

tA

D[t(τ)]exp(i

∫ −iβ

0

Ldτ).

(4.3.3)

Here L = 1
2
( dt
dτ
)2+ft3 is the Lagrangian of the system. If we can find P̃ (f), then we

can take the inverse transform to get the result. To do the inverse transform, note

that P (z) vanishes for z < −lc and z > lc, therefore, we can see that the transform

can be written as

P̃ (f) =

∫ ∞

−∞
exp(

fz

lp
)P (z)dz

=

∫ ∞

−∞
exp(βfz̃)p(z̃)dz̃ Here z̃ =

z

lc
, p(z̃) = lcP (z), β =

lc
lp

=

∫ ∞

−∞
exp(−iuz̃)p(z̃)dz̃ Here − iu = βf.

(4.3.4)

Realizing this is in the form of Fourier transform, we can write down the inverse

transform for p(z̃) as

p(z̃) =
1

2π

∫ ∞

−∞
P̃ (−iu

β
)exp(iuz̃)du. (4.3.5)

Finally P (z) can be obtained as p(z̃)
lc

.

Now we focus on P̃ (f) = N
∫ tB
tA
D[t(τ)]exp(i

∫ −iβ

0
Ldτ) with L = 1

2
( dt
dτ
)2 + ft3.



4.3 Methods for the WLC end to end distribution 92

To compute this quantity, we shall note that there is a relationship between

the path integral and the Schrödinger’s equation. The path integral approach to

quantum mechanics was developed by Feynmann in 1942. In its original form, it

applies to a point particle moving in a Cartisian cooridinate system and yields the

transition amplitude. We will sketch the basic idea of path integral representation

of time evolution amplitudes.

In terms of the bra-ket notation, the Schrödinger equation can be expressed in

the following way:

ih
d

dt
|ψ〉 = H|ψ〉. (4.3.6)

Here H is the Hamiltonian operator. We shall illustrate the one dimensional case

for simplicity. The Hamiltonian operator can be written as

H =
p2

2m
+ V (q), (4.3.7)

with V (q) being the potential energy. The above Schrödinger equation can be inte-

grated to find the wave function |ψ(t)〉 at any time t from the state at another time

0 as

|ψ(t)〉 = exp(− i

h
Ht)|0〉. (4.3.8)

The transition amplitude for a transition from an initial state |0〉 to a final state |F 〉
at time T is given by

〈F |ψ(t)〉 = 〈F |exp(− i

h
HT )|0〉. (4.3.9)

Feynman realized that we can divide the interval from 0 to T into N infinitesimal

time steps, each of length ∆t = T
N
, then transition amplitude can then be written

as

〈F |exp(− i

h
)|0〉 = 〈F |exp(− i

h
H∆t)exp(− i

h
H∆t)...exp(− i

h
H∆t)|0〉. (4.3.10)

We can insert the identity I =
∫

dq|q〉〈q| between each pair of the exponentials to

obtain

〈F |exp(− i

h
HT )|0〉 = (

N−1
∏

j=1

∫

dqj)〈F |exp(−
i

h
H∆t)|qN−1〉...〈q1|exp(−

i

h
H∆t)|0〉.
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(4.3.11)

Using the Baker-Campbell-Hausdorff formula, where H=T+V being the sum of a

kinetic and a potential energy:

e−i∆t(T+V )/h = e−i∆tV/he−i∆tT/he−i∆tX/h2

, (4.3.12)

and dropping order ǫ2 terms, we can write each transition amplitude as

〈qj+1|exp(−
i

h
H∆t)|qj〉 = 〈qj+1|exp(−

i

h

p2

2m
∆t)exp(− i

h
V (qj)∆t)|qj〉 (4.3.13)

Again we insert the identity I =
∫

dp
2π
|p〉〈p| into the above expression to yield

〈qj+1|exp(−
i

h
H∆t)|qj〉 = exp(− i

h
V (qj)∆t)

∫

dp

2π
〈qj+1|exp(−

i

h

p2

2m
∆t)|p〉〈p|qj〉

= exp(− i

h
V (qj)∆t)

∫

dp

2π
exp(− i

h

p2

2m
∆t)〈qj+1|p〉〈p|qj〉

= exp(− i

h
V (qj)∆t)

∫

dp

2π
exp(− i

h

p2

2m
∆t− i

h
p(qj+1 − qj)).

(4.3.14)

In the last line, we used the identity 〈p|qj〉 = exp( i
h
pqj)√
h

. This integral over p can be

done exactly to obtain

〈qj+1|exp(−
i

h
H∆t)|qj〉 = (

−im
2π∆th

)
1

2 exp[
i

h
∆t(

1

2
m(

qj+1 − qj
∆t

)2−V (qj))] (4.3.15)

Combining the result, the transition ampltude for the entire period is

〈F |exp(− i

h
HT )|0〉 = (

−im
2π∆th

)
N
2 exp[

i

h

N−1
∑

j=0

∆t(
1

2
m(

qj+1 − qj
∆t

)2−V (qj))] (4.3.16)

Taking the limit N → ∞,the transition amplitude can be expressed in the path

integral formulation

〈F |exp(− i

h
HT )|0〉 =

∫

Dq(t)exp[
i

h
S]. (4.3.17)

with S being the classical action as the integral of the Lagrangian S =
∫ T

0
Ldt and

L = 1
2
mq̇2 − V (q). Note that in classical mechanics, the classical path which is the



4.3 Methods for the WLC end to end distribution 94

only possible path is determined by the minimization of the action integral S, and

in quantum motions,various paths other than the classical path can be realized. The

path integral sums all the paths which contribute to the quantum amplitude.

Now consider our P̃ (f) = N
∫ tB
tA
D[t(τ)]exp(i

∫ −iβ

0
Ldτ). with L = 1

2
( dt
dτ
)2 +

ft3. This can be interpreted as the path integral representation for the kernal of a

quantum particle on the surface of a unit sphere at inverse temperature β. Thus

we can express P̃ (f) as the quantum amplitude to go from an initial tangent vector

tA to a final tangent vector tB in an imaginary time in the presence of an external

potential −f cos θ.
Note that the Lagrangian is L = 1

2
( dt
dτ
)2+ft3, therefore the corresponding Hamil-

tonian is Hf = −∇2

2
− f cos θ. The gradient operator acts on the unit sphere and

we have the following expression in a spherical coordinate:

∇2 =
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
. (4.3.18)

As a result, we can write
∫ tB

tA

D[t(τ)]exp(i

∫ −iβ

0

Ldτ) = 〈tA|e−iHf (−iβ)|tB〉

= 〈tA|e−βHf |tB〉.
(4.3.19)

Here 〈·〉 =
∫ 2π

0

∫ π

0
· sin θdθdφ Note that P̃ (f) can be expressed as

P̃ (f) =
∑

n

e−βEnψ∗
n(tA)ψn(tB). (4.3.20)

Here ψn(t) is a complete set of normalized eigenstates of the Hamiltonian H =

−∇2

2
− f cos θ and En are the corresponding eigenvalues. The key to the numerical

evaluation of P̃ (f) is a convenient choice of basis. We shall choose the basis as

P̂l(x) =
√

2l+1
4π
Pl(x). Here x = cos θ, l = 0..∞ and Pl(x) are the Legendre functions

defined to be

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (4.3.21)

With this basis chosen, we will firstly truncate the initial and tangent vector up

to size N . For a free end, which means an equal probability in all directions, the
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state is a constant function over the unit sphere which is normalized as 〈t|t〉 = 1,

therefore we have |t〉 =
√
14π for a free end. In our set of basis chosen, this is a

column vector which the first entry is 1 and the rest are 0.

For a fixed end along the z direction, the state is a delta function given as

|t〉 = 1

2π
δ(cos θ − cos 0) =

1

2π
δ(x− 1). (4.3.22)

The expansion coefficient is computed as

∫ 2π

0

∫ 1

−1

1

2π
δ(x− 1)

√

2l + 1

4π
Pl(x)dxdφ =

√

2l + 1

4π
Pl(1) =

√

2l + 1

4π
. (4.3.23)

Thus the state |t〉 is a column vector with entries
√

2l+1
4π

for each corresponding

l. Now to get a matrix representation for exp(−βHf), we can write Hf as Hf =

H0−fH1, with H0 = −∇2

2
and H1 = cos θ. Firstly, we get the matrix representation

for H0. Note that P̂l(x) are the eigenfunctions of the operator H0, with eigenvalues

l(l+1)
2

. Since the basis chosen is a complete set of orthonormal basis, H0 is then a

diagonal matrix with diagonal entries 〈P̂l|H0|P̂l〉 = l(l+1)
2

.

Now we consider H1, where H1P̂l = xP̂l. Using the well known three term

recurrence relation known as Bonnets recursion formula:

xPl =
l + 1

2l + 1
Pl+1 +

l

2l + 1
Pl−1, (4.3.24)

we can compute

xP̂l =
l + 1

√

(2l + 1)(2l + 3)
P̂l+1 +

l
√

(2l − 1)(2l + 1)
P̂l−1. (4.3.25)

As a result we can get the element for the matrix representation of H1: the (l +

1), l entry is 〈P̂l+1|H1|P̂l〉 = l+1√
(2l+1)(2l+3)

and the l − 1, l entry is 〈P̂l−1|H1|P̂l〉 =

l√
(2l−1)(2l+1)

.

Finally, the matrix Hf is an infinite tri-diagonal matrix with the diagonal entries

as the elements in Hll = l(l + 1)/2 and the super-diagonal entries Hll+1 = −f(l +
1)
√

1/[(2l + 1)(2l + 3)]. To evaluate P̃ (f), we truncate the infinite matrix to size

N by N .
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Once we have the matrix representation of the matrix Hf , the matrix exponential

is evaluated using Padé’s approximation. For the scalar case, the Padé’s approxi-

mation of a function f(x) is the quotient of two polynomials Np/q(x) and Dp/q(x) of

degree p and q respectively. And for a matrix A, the quotient, which is called the

(p, q)-degree type Padé’ approximation is defined as

Rp/q(A) = [Dp/q(A)]
−1Np/q(A), (4.3.26)

where Np/q(A) = n)I + n1A + n2A
2 + ... + npA

p and Dp/q(A) = I + d1A + d2A
2 +

...+ dqA
q. Note that when q = 0, this reduce to the Taylor expansion for f(A). We

assume f(A) has the Maclaurin expansion

f(A) = a0I + a1A+ a2A
2 + ...+ akA

k + ... . (4.3.27)

Since the highest possible order of non zero derivative of Rp/q(A) is p+ q, we have

Rp/q(A)− f(A) =

∞
∑

k=p+q+1

c′kA
k. (4.3.28)

Multiply Dp/q on both sides,

Dp/q(A)f(A)−Np/q(A) = Dp/q

∞
∑

k=p+q+1

c′kA
k =

∞
∑

k=p+q+1

ckA
k. (4.3.29)

Therfore we have
p
∑

i=0

niA
i − (I +

q
∑

i=1

diA
i)(

∞
∑

i=0

aiA
i) =

∞
∑

k=p+q+1

ckA
k. (4.3.30)

When the left hand side of the above is multiplied out and setting the coefficient of

the powers of Ai to be 0 for i = 0, 1, ..., p+ q, we have a system of p + q + 1 linear

equations. There are q equations involves only the unknowns d1, d2...dq which can

be solved first. Another p + 1 equations involving n0, n1...np can be solved after.

Now we are interested in computing the matrix exponential. Therefore setting f(A)

as eA, we have an = 1
n!

in the Taylor series of f . Soving the system of equations, we

finally have

Np/q =

p
∑

i=0

(p+ 1− i)!p!

(p+ q)!i!(p− i)!
Ai. (4.3.31)
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and

Dp/q =

q
∑

i=0

(p+ q − i)!q!

(p+ q)!i!(q − i)!
(−A)i. (4.3.32)

It is shown in [86] that the diagonal approximants p = q are preferred. And in this

case, we have n0 = 1, ni = ni−1
p+1−i

(2p+1−i)i
, and di = (−1)ini. Finally our approxima-

tion for eA which is Rp/p is given as

Rp/p =















1 + 2(
p/2
∑

i=0

n2iA
2i − A

p/2−1
∑

i=0

n2i+1A
2i)−1(A

p/2−1
∑

i=0

n2i+1A
2i), if p is even,

−1 − 2(A
(p−1)/2
∑

i=0

n2i+1A
2i −

(p−1)/2
∑

i=0

n2iA
21)−1(

(p−1)/2
∑

i=0

n2iA
2i), if p is odd.

(4.3.33)

The drawback of Padé approximation is that it is only accurate near the origin and

it is not valid, when |A| is too large. This problem can be solved using the scaling

and squaring method [86]. Using the identity

eA = (e2
−sA)2

s ≈ [Rp/p(2
−sA)]2

s

. (4.3.34)

We can choose ||2−sA|| ≤ 1/2 and obtain the result by repeated squaring. Choosing

p = 6 yields desired results.

In this way, we can get P̃ (f). To perform the inverse transform, we consider

k = −N
2

: N
2
− 1 and compute an array of P̃k defined to be P̃k = P̃ (− iu

β
) with

u = πk. We want to compute p(z̃). Numerically we consider z̃ = j · 2
N

and compute

an array of Pj defined to be Pj = p(2j
N
). We have

P̃k = P̃ (f) =

∫ 1

−1

e−iuz̃p(z̃)dz̃

≈ 2

N

N
2
−1
∑

j=−N
2

e−iu(j· 2

N
)Pj =

2

N

N
2
−1
∑

j=−N
2

e−
2πi
N

·j·kPj.

(4.3.35)

This is in the form of the discrete Fourier transform, and we perform the inverse

fast Fourier transform to get p(z̃) and finally P (z) = p(z̃)
lc

.
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4.3.2 3D case

Note that P (z) is the 1D distribution, or the end to end probability such that

the final end lies on a particular plane. To compute the end to end distribution in

dimension three, the interested quantity is Q(~r), which is the probability that the

end position lies at position ~r. The simplest case is that when both ends are free.

Due to symmetry, we can see that Q(r) only depends on the distance between ~r and

the origin, thus Q(~r) = Q(r), with r = |~r|. Note that P (z) is obtained by integrate

all the possibilities on plane z, we have

P (z) =

∫

√
l2c−z2

0

2πxQ(
√
z2 + x2)dx = −

∫ z

lc

2πrQ(r)dr. (4.3.36)

Differentiating both sides yields P ′(z) = −2πzQ(z), therefore we have the 3D dis-

tribution. The case where the ends are fixed becomes more complicated. To find

Q(~r), we again consider the transform:

P̃ (~f) =

∫

exp(
~f · ~r
lp

)Q(~r)d~r

= N

∫ tB

tA

D[t(τ ′)]exp(−
∫ β

0

1

2
(
dt

dτ ′
)2 − ~f · tdτ ′) Here τ ′ =

s

lp
, β =

lc
lp

= N

∫ tB

tA

D[t(τ)]exp(i

∫ −iβ

0

1

2
(
dt

dτ
)2 + f · τdτ) Here τ = −iτ ′

= N

∫ tB

tA

D[t(τ)]exp(i

∫ −iβ

0

Ldτ),

(4.3.37)

where the Lagrangian is given by L = 1
2
( dt
dτ
)2 + f1t1 + f2t2 + f3t3.

To find the inverse transform, we see that

P̃ (~f) =

∫

exp(
~f · ~r
lp

)Q(~r)d~r

=

∫

exp(β ~f · ~̃r)q(~̃r)d~̃r Here ~̃r =
r̃

lc
, q(~̃r) = l3cQ(~̃r), β =

lc
lp

=

∫

exp(−i~u · ~̃r)q(~̃r)d~̃r Here − i~u = β ~f.

(4.3.38)

Again this is in the form of Fourier transform, we have

q(~̃r) =
1

(2π)3

∫

P̃ (−i~u
β
)exp(i~u · ~̃r)d~u, (4.3.39)
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And Q(~r) = q(~̃r)
l3c

in the inverse transform if we can obtain P̃ (~f).

To find P̃ (~f), Again we realize it is written in the path integral form P̃ (~f) =

N
∫ tB
tA
D[t(τ)]exp(i

∫ −iβ

0
Ldτ) In 3D we have L = 1

2
( dt
dτ
)2+f1t1+f2t2+f3t3. Therefore

the corresponding Hamiltonian becomes

Hf = −∇2

2
−f1 sin θ cosφ−f2 sin θ sinφ−f3 cos θ = H0−f1H1−f2H2−f3H3. (4.3.40)

Again we shall choose a convenient set of basis. In 3D, due to the presence of

the angle φ in Hf , the Legendre functions are not enough and our choice is the

normalized spherical harmonics defined as

Y m
l (x, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (x)eimφ, (4.3.41)

with Pm
l (x) being the associated Legendre functions defined in terms of the deriva-

tives of the Legendre functions as

Pm
l (x) = (1− x2)m/2P

[m]
l (x). (4.3.42)

Here l = 0...∞ and m = −l...l. And the normalization is due to

∫ π

0

Pm
l (x)Pm

l (x) sin θdθ =
(l +m)!

(l −m)!

2

2l + 1
(4.3.43)

In order to get the matrix representation of Hf , we will get the the matrix repre-

sentation for each of H0,H1,H2 and H3. The lm, l′m′ entry of the matrix elements

is given by 〈Y m
l |H|Y m′

l′ 〉 for each H . We choose a cutoff L such that l = 0...L and

for each l, m = −l...l.Note the for m negative, we have

P
−|m|
l (x) =

(l − |m|)!
(l + |m|)!P

|m|
l (x). (4.3.44)

Firstly, H0 = −∇2

2
, we have Y m

l being the eigenfunctions of H0: H0Y
m
l = l(l+1)

2
Y m
l ,

therefore we have:

〈Y m′

l′ |H0|Y m
l 〉 =











l(l+1)
2
, l′ = l & m′ = m,

0, otherwise,

(4.3.45)
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Next, we deal with H3 = cos θ, the integral on angle φ can be done directly to obtain
∫ 2π

0
(eimφ)∗eimφ′

dφ = 2π for φ = φ′ and is 0 otherwise. To deal with the integral on

x(= cos θ), we make use of the recursion relationship: xPm
l = l+m

2l+1
Pm
l−1 +

l−m+1
2l+1

Pm
l+1

for l ≥ 1. Combining the result, we have the matrix elements for H3:

〈Y m′

l′ |H3|Y m
l 〉 =







































1√
3
, l = m = m′ = 0 & l′ = 1,

√

(l+1+m)(l+1−m)
(2l+1)(2l+3)

, l′ = l + 1 & m′ = m & l ≥ 1,
√

(l−m)(l+m)
(2l−1)(2l+1)

, l′ = l − 1 & m′ = m & l ≥ 1,

0, otherwise.

(4.3.46)

Next we consider H1 = sin θ cosφ, we will only write the non-zero entries for

now. For the integral on φ, we have
∫ 2π

0

(ei(m+1)φ)∗ cos φeimφ = π, (4.3.47)

∫ 2π

0

(ei(m−1)φ)∗ cos φeimφ = π. (4.3.48)

To deal with the integral for θ, we seek for recurrence relation for sin θPm
l , and we

only consider the decompositions with m+1 and m−1. As in [1], we have for l ≥ 1,

sin θPm
l =

1

2l + 1
Pm+1
l+1 − 1

2l + 1
Pm+1
l−1 . (4.3.49)

Note that the associated Lengendre functions are obtained by differentiating the

Lengendre functions, and the other recurrence relation can be found based on the

generating function for the Legendre Polynomials, which is

1√
1− 2rx+ r2

=
∞
∑

l=0

rlPl(x). (4.3.50)

By differentiating the generating function with respect to r and compare rl coef-

ficient, followed by differentiating it with respect to x for m − 1 times, we have

(l+ 1)P
[m−1]
l+1 − (2l+ 1)xP

[m−1]
l − (m− 1)(2l+ 1)P

[m−2]
l + lP

[m−1]
l−1 = 0. (4.3.51)

In similar manner, we can get

(x2−1)P
[m]
l +(2m−2−l)xP [m−1]

l +(m−1)(m−2−l)P [m−2]
l +lP

[m−1]
l−1 = 0. (4.3.52)
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and

(2l + 1)P
[m−2]
l = P

[m−1]
l+1 − P

[m−1]
l−1 . (4.3.53)

Using (2l+1) × (4.3.52) + (2m-2-l) × (4.3.51) and subs into (4.3.53), after some

manipulation, we get the desired result

(2l+1)(1−x2) 1

2Pm
l = (l+m)(l+m−1)Pm−1

l−1 −(l−m+2)(l−m+1)Pm−1
l+1 . (4.3.54)

Note x = cos θ, this can be written as

sin θPm
l =

(l +m)(l +m− 1)

(2l + 1)
Pm−1
l−1 − (l −m+ 2)(l −m+ 1)

2l + 1
Pm−1
l+1 . (4.3.55)

Combining the results for the integrals for θ and φ, we have the elements in the

matrix representation of H1 as below:

〈Y m′

l′ |H1|Y m
l 〉 =







































































1√
6
, l = m = 0 & l′ = m′ = 1,

√

(l+m+2)(l+m+1)
4(2l+1)(2l+3)

, l′ = l + 1 & m′ = m+ 1 & l ≥ 1,

−
√

(l−m)(l−m−1)
4(2l−1)(2l+1)

, l′ = l − 1 & m′ = m+ 1 & l ≥ 1,

−
√

(l−m+2)(l−m+1)
4(2l+1)(2l+3)

, l′ = l + 1 & m′ = m− 1 & l ≥ 1,
√

(l+m)(l+m−1)
4(2l−1)(2l+1)

, l′ = l − 1 & m′ = m− 1 & l ≥ 1,

0, otherwise,

(4.3.56)

The treatment for H2 = sin θ sinφ is very similar to H1. For the integral of φ, we

have

∫ 2π

0

(ei(m+1)φ)∗ sin φeimφ = −iπ, (4.3.57)

∫ 2π

0

(ei(m−1)φ)∗ sin φeimφ = iπ. (4.3.58)

Together with the previous recurrence formula, we have the matrix representation



4.3 Methods for the WLC end to end distribution 102

for H2 as

〈Y m′

l′ |H2|Y m
l 〉 =







































































− i√
6
, l = m = 0 & l′ = m′ = 1,

−i
√

(l+m+2)(l+m+1)
4(2l+1)(2l+3)

, l′ = l + 1 & m′ = m+ 1 & l ≥ 1,

i
√

(l−m)(l−m−1)
4(2l−1)(2l+1)

, l′ = l − 1 & m′ = m+ 1 & l ≥ 1,

−i
√

(l−m+2)(l−m+1)
4(2l+1)(2l+3)

, l′ = l + 1 & m′ = m− 1 & l ≥ 1,

i
√

(l+m)(l+m−1)
4(2l−1)(2l+1)

, l′ = l − 1 & m′ = m− 1 & l ≥ 1,

0, otherwise,

(4.3.59)

Finally, we have the full matrix representation of Hf = H0 − f1H1 − f2H2 − f3H3.

The matrix exponential can be computed in the same pattern as the previous section

for each ~f . Numerically, P̃ (f) is a three dimensional array with size N × N × N .

P̃k1,k2,k3 is an approximation for P̃ (~f) with fm = − iπkm
β

and km = −N
2
...N

2
− 1

for m = 1, 2, 3. After computing each element in this three dimensional array, we

apply a three dimensional inverse fast Fourier transform to obtain the resultant three

dimensional array Qj1,j2,j3, which is a representation for Q(~R), with jm = −N
2
...N

2
−1

and Rm = 2jm
N

in each dimension for m = 1, 2, 3.

Now we consider different configurations of the initial and final ends. For a free

end or a fixed end, the state is the same as in the 1D case. Note that the basis

in 1D corresponds to the spherical harmonics Y m
l for m = 0. Therefore the entries

corresponding to the coefficients of Y 0
l is the same as the entries corresponding to

the coefficients of P̂l(x).

Next we deal with the case that the starting end makes an angle Θ with the

z axis while the final end is free. In order to find the probability Q(0, 0, z) along

the z axis, we can rotate the whole system by an angle Θ. The problem becomes

finding the probability distribution along a line which makes an angle Θ with the

z axis while the starting vector is fixed along the z direction, and the probability

Q(0, 0, z) in our original problem is Q(0, z cosΘ, z sinΘ) in the new system. The
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data can be drawn from the probability distribution in the y − z plane. We can

compute the probability distribution Q(0, y, z) first. Numerically this corresponds

to the plane QN
2
+1,i,j in our three dimensional array. On the 2D grid, we use bilinear

interpolation to get the interpolated value.

Based on the distribution function Q(~r), thermodynamic quantities can be de-

rived. The free energy of the ensemble in which the free end of the polymer is at

position ~r is

F (~r) = −kBT lnQ(~r). (4.3.60)

To keep the free end staying at the position ~r, a force must be applied. The force is

~f(~r) = ∇F (~r). (4.3.61)

These quantities can be easily retrieved using finite difference methods.

4.4 Numerical results and applications

In this section, we present some numerical results for the exact WLC model to

study several single-polymer control effects concerning remote positioning and force

transmission, which are essential to biological and artificial nanomotors. Figure 4.1

shows the end to end distribution in 1D.

We then present the 3D end to end probability for different chain rigidity, or β.

Results are taken on different y planes in Figure 4.2. With the exactly distribution

at hand, we can discuss their applications.

4.4.1 Single-polymer ‘flyfishing’ by a local alignment at one

end

In the study of biological nano-motors, it is long believed that a zippering-like

control of a soft polymer linker at one end biases a motor leg at the other end of

the linker to bind the track forward towards the zippering direction over opposite
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direction. As we shall show below, the exact WLC dynamics suggests that more

effects pertinent to a motor’s position-selective binding can occur generally. Figure

4.3 presents the probability distribution of one free end of a WLC polymer along

the z axis when the other end is located at the origin and has different orientations

for its tangent: the end at the origin either has free orientation or is aligned towards

an angle θ = 90, 45, 0 degree with reference to the positive z direction to mimic

the zippering effect. For the free orientation and the vertical orientation (θ = 90

degree), the free end has two symmetric most probable positions at a positive and

a negative z value. When the fixed end is tilted from 90 to 45 degree and further

0 degree, the probability peak at negative z values virtually vanishes but the peak

at the positive z value rises. This is in consistence with the well-known zippering-

induced bias. However, an examination of the extent of accuracy by which aligning

the end can position the other free end to a certain location reveals several new,

distinct patterns.

Firstly, the full width at half maximum (FWHM) of the probability peaks be-

comes as small as about 2nm for the zero-degree alignment (Figure 4.4). This

suggests the possibility of positioning the free end to the most probable location, or

the critical zc within an error of about 1nm for a polymer with a contour length of

10nm.

Secondly, such a precise site-selective positioning may occur for rather flexible

polymers with lp/lc = 0.3 to 0.4, it does not necessarily require a rigid molecular

rod (lp/lc > 1). Indeed the probability for locations around zc peaks at intermediate

values of persistence length (lp) for a certain contour length (lc) (Figure 4.5). The

FWHM also becomes largely flat when lp/lc changes from 0.3 to 1. Hence a flexible

polymer of lp/lc about 0.3 to 0.4 already accesses the regime of precise positioning.

Lastly, the precise positioning can be modulated by adjusting the end alignment

and polymer rigidity. Changing the end alignment from 90 degree to 0 degree shrinks

the FWHM of the probability peaks monotonically (Figure 4.4), hence improves

the positioning accuracy. The most probable location of positioning zc may be
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modulated too by the alignment, or by changing the polymer rigidity, which may

be done by adjusting the solution conditions like ion concentrations, pH values,

temperature etc..

Hence aligning a flexible polymer of lp/lc = 0.3 to 0.4 and lc = 10nm at one end

positions the other free end to a most probable position of zc about 8nm within an

error of about 1nm along the path parallel to the alignment. Such a surprisingly pre-

cise positioning to a unique, remote location (relative to the length of the polymer)

is achieved by controlling the flexible polymer at one end, essentially resembling the

art of flyfishing but at molecular level.

The direction and speed of a bipedal nanomotor is largely decided by the position-

selective binding of its legs, which is in turn affected by the mechanics of the inter-

leg polymer linker. Fine-tuning a nanomotor into the regime of molecular flyfishing

may improve the motors directional fidelity, which is important for making motors

of high energy efficiency. The flyfishing effect also helps improve a motors speed

by accelerating forward binding of its legs: From the free or vertical orientation to

zero-degree orientation, the FWHM drops by a factor of about 2nm (Figure 4.4)

and two most-probable positions merge into one. This amounts to a drop of a factor

of about 4nm for the search volume of a diffusing leg at the linkers free end. A

rough estimation for the first-passage time suggests more than two-fold increase in

the legs forward binding rate by the flyfishing. Hence the single-polymer flyfishing

likely plays a role in biological nanomotors that possess high directional fidelity,

energy efficiency or high speed. This is consistent with the observation of zippering

in biomotor kinesin, which is the smallest bipedal motor found in biology but has a

directional fidelity of more than 90%, an efficiency of 60% - 80% and a speed of a

few micrometers per second.
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4.4.2 Single-polymer power stroke and intra-chain force trans-

mission

The polymer zippering effect found in biomotors is often likened to the power

stroke of a piston in macroscopic engines. However, validity of the notation of

power stroke for a polymer linker is questioned since any effective transmission of

force along a soft polymer is hard to imagine. The molecular flyfishing effect lends

a support to the single-polymer power stroke. Consider again the flexible polymer

of lp/lc = 0.3 to 0.4 and lc = 10nm. Keeping an alignment at one end requires

application of a force, which may be regarded as an input. The outcome at the

other end is a combination of two effects along the direction of the alignment. First,

the two most probable positions before the alignment converge into one, resulting

in a forward displacement of 2× zc ≈ 16nm for the free end. Second, the alignment

causes a free-energy difference of ∼ 11kBT over the displacement, amounting to a

force transmission of 2.75 pN (for room temperature of 25◦C) from the controlled

end to the free end. The directional displacement and the force transmission of a

few pN combine to suggest a piston-like power stroke in real sense.

Furthermore, a finite force transmission is possible by the flysfishing effect even

for very soft polymers. The force transmission becomes zero only for zero displace-

ment, which is made clear below using the Gaussian chain model and the freely

joint chain model, and is confirmed by the exact solution. (Figure 4.7) For the same

displacement of 16nm, the alignment causes a free-energy difference of ∼ 7kBT for a

polymer even with lp/lc → 0. This implies a minimum force transmission of 1.75pN

by the flyfishing for arbitrary polymers. Interestingly, the minimum free-energy

difference of ∼ 7kBT is close to the experimentally observed entropy difference

(∼ 6kBT ) associated with the directional bias of biomotor kinesin, which possesses

an inter-leg peptide linker of lc ≈ 10nm and lp < 1nm and makes a forward leg

binding over a regular displacement of ∼ 16nm.

The end alignment-induced free-energy change may be derived analytically for
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Gaussian chains and freely joint chains. Note that the Gaussian chain here is the

discrete Gaussian chain which is made up of Kuhn bonds that are assumed Gaussian

distributed, and is not the continuous limit of the freely joint chain.

The end-to-end distance distribution of a Gaussian chain under the approxima-

tion of one-dimensional random walk is:

P (N, z) =
1√
2πN

e−
z2

2N . (4.4.1)

N is number of the total steps. Each step is either in forward or backward direction

and z is the position after making N steps, so −N ≤ z ≤ N . If the first step

is toward the direction of positive z, the end-to-end distance distribution function

becomes P ′ as

P ′(N + 1, z) = P (N, z − 1), P ′(N + 1,−z) = P (N,−z − 1) (4.4.2)

Therefore the free energy difference between z and −z is .

δF (z) = kBT ln
P ′(N + 1, z)

P ′(N + 1,−z) = kBT ln
P (N, z − 1)

P (N,−z − 1)
= 2qkBT, q = z/N.

(4.4.3)

For two or three dimensional random walks, the factor 2 becomes 4 and 6, re-

spectively.

For a freely joint chain without the Gaussian approximation, the end-to-end

distance distribution is:

P (N, z) = Ce
−

z/2∑

s=1

ln(
N/2+s

N/2+1−s
)
. (4.4.4)

Here C is the normalization coefficient. Following a derivation similar to the previous

one for the Gaussian approximation, the free energy difference can still be written

in a simple analytical form:

δF (z) = kBT ln
N + 1 + z

N + 1− z
= kBT ln

1 + q

1− q
= 2qkBT (1+

∑

i=1

q2i

2i+ 1
), q =

z

N + 1
.

(4.4.5)
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The free energy difference is higher than the Gaussian chain result but decays to

the latter for q → 0. Both the Gaussian chain and freely joint chain models predict

a finite δF (z) for non-zero z values.

For the worm like chain, as shown in Figure 4.6, Fixing lc = 10nm, for small

lp, the probability Q(z) can be well described by the Gaussian function as Q(z) =

1
103σ

√
2π
exp(− (z/10−µ)2

2σ2 ), by taking the mean and variance of the worm like chain

data, we can do a linear interpolation and get µ = 0.1021lp and σ2 = 0.0670lp.

Taking lp → 0, we can compute ∆FGauss(z) = 0.30478z

4.4.3 Site-selective dissociation by intra-chain force

Unlike the force transmission through a free diffusing end, the force transmission

along a polymer with both ends restricted is well known. This type of force trans-

mission occurs in the inter-leg linker of a bipedal nanomotor when its two legs are

bound to the track, and has been suggested to be a cause for leg dissociation. This

is supported by the exact WLC solution. Consider again the example of a flexible

polymer of lp/lc = 0.3 to 0.4 and lc = 10nm for the inter-leg linker of a bipedal

nanomotor. Imagine the nanomotor on a linear track along the z axis with one

leg bound at the origin z = 0 and the other leg near the most probable positions

allowed by the inter-leg linker, namely z = +zc and zc. Note that zc remains close

to 8nm regardless of end orientation as predicted by the exact WLC solution. When

the second leg is bound near z = zc, the intra-linker force is increased when the

linkers end at the origin is changed from free or vertical orientation to a forward

orientation parallel to the track (i.e., θ = 0) (Figure 4.8). The force becomes more

than 12 pN at θ = 0, which is rather sufficient to dissociate a leg off the track for

many biological nanomotors. This is like the normal fishing in which the fishing

rod is tilted to pull a fish out of water. Moreover, the intra-chain forces on the

two ends have opposite direction, which leads to dissociation of one leg but not the

other depending on their position if the leg-track binding is responds to forward

or backward force in an symmetric way. The site-selective leg dissociation and the
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asymmetric leg-track binding are common features in biological nanomotors. For

an alignment with an intermediate angle between 0 and 90 degree, the intra-linker

force may be distributed on the two ends in two dimensions in a highly asymmetric

way. As a consequence, a strong leg may be dissociated by the linker alignment at

a weak leg as has been observed for biological motors.

4.4.4 New force-extension formula

The intra-chain force dissociating a leg depends on the end-to-end distance as

well as a polymers persistence length and contour length. To facilitate nanomotor

studies, we obtain an fitting formula capturing these dependences by fitting the

force-extension results from the exact WLC solution.

f(z)

kBT
=
β

lc

(

z

lc
+

1

4(1− z/lc)2
− 1

4
e

5.1
β0.3

z
lc

)

+
1

lc e0.94β

(

52.4

(

z

lc

)2

− 35.8

)

(

1− e−
10

β
z
lc

)

.

(4.4.6)

This new formula differs from previous proposed force-extension formulas in two

aspects. Firstly, at the long chain limit β = lc/lp → ∞, the new fitting formula

recovers the empirical Marko-Siggia formula,

f(z)

kBT
= β/lc(z/lc + (1z/lc)

−2/4− 1/4). (4.4.7)

The new formula also captures the exact WLC solution better than the latter for

short chains with low β values. We note that short chains with β < 30 are most rel-

evant to nanomotors. As a matter of fact, the mechanics of such short biopolymers

are much less known to date than long ones due to difficulty of single-molecule mea-

surement. Applicable to both long and short polymers, the new formula thus useful

not only for nanomotor studies but also for interpreting single-molecule mechanical

experiments on short polymers. Secondly, the Marko-Siggia formula and some later

improvements apply only to stretched polymers which have an end-to-end distance

larger than the thermodynamically most probable extension. The new formula ap-

plies not only to stretched polymers but also compressed polymers which have an
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end-to-end distance smaller than the most probable extension. Different combina-

tions of the end-to-end distance, contour length and persistence length may switch

a polymer from the stretch regime to the compression regime reverses direction of

the intra-chain force, which is captured by the exact solution and the new formula

(Figure 4.9). Figure 4.10 shows a comparison for the infomation at z = 5nm and

z = 8nm for different lp. We can see that in the case that both ends are free, the

fitting formula provides an excellent approximation for the force near these sites.
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Figure 4.1: The probability distribution integrated over a plane P (z). Left column:

both ends are free. Middle column: the initial end is fixed along the z axis. Right

column: both ends are fixed along the z axis.



4.4 Numerical results and applications 112

Figure 4.2: The probability distribution P (x, y, z) taken at different y planes for

different values of β, fixing lc = 1
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Figure 4.3: The probability distribution Q(z), energy F (z) and force f(z) for the

case lp = 4nm and lc = 10nm, with the starting direction being free or make an

angle θ with the z axis.
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Figure 4.4: The critical z where Q(z) reaches its maximum and the full width half

maximum for different θ where the starting vector makes an angle θ with the z-axis.

Here lc = 10nm and lp = 4nm.

Figure 4.5: The critical z where Q(z) reaches its maximum and the full width half

maximum for different lp

Figure 4.6: The probability distribution Q(z) (blue curve) together with the Gauss

approximation for different lp
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Figure 4.7: The energy difference ∆F for a chain with one end fixed along the z axis.

In the left figure, for each value of z, ∆F → ∆F ∗ as lp → 0. The dependence of

∆F ∗ on z is plotted in the right figure(blue curve). The probability Q(z) can be well

described by the Gaussian function. Taking lp → 0, we can compute ∆FGauss(z) =

0.30478z(green curve). The energy difference agrees near z = 0nm.

Figure 4.8: The force at z = −7nm and z = 7nm, for different θ
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Figure 4.9: The comparison between the new fit formula and the force f(z) obtained

by numerical methods for different β.
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Figure 4.10: The probability distribution, energy, force at position z = 5nm and

z = 8nm, for different lp



Chapter 5

Conclusion and Future Perspectives

This thesis is devoted to numerical simulations and application for some biolog-

ical relevant problems, namely the collective motion and single polymer statistics.

The results obtained for the subjects will be summarized and possible topics for

future work will also be discussed.

In chapter 2, we use simple particle to model spermatozoon and try to understand

their collective motion. By applying a repulsive force among individuals and apply

the alignment rule in the Vicsek model, we used GPU acceleration to simulate a large

system of particles. Simulations are done in both 2D and 3D. Without the repulsion,

we can see the formations of clusters especially at the boundaries. As we increase the

radius of repulsion and the repulsive force, we can see that a more homogeneous fluid

structure can be formed. To study the global macroscopic pattern in 2D, we defined

the empirical function and try to construct a differential equation for the density

and orientation. The construction is done using a mean field limit as the first step

followed by the hydrodynamic limit making use of a concept called the generalized

collision invariant which is a variant to the concept in gas dynamics. Numerical

methods are proposed to solve the macroscopic model. Again GPU acceleration is

used in the finite difference method. Comparison between the two models are made

and excellent agreement validates our derivation. In the future, better hardware

and parallel algorithm can be used to simulate up to billions of particles and the 3D

118



119

macroscopic model together with its simulation is still missing.

For a better particle model, we also used the global structure as the starting

point, which is an active self propelling fluid. Using the concept of smoothed particle

hydrodynamics, which is a particle methods for the fluid, we can discretize the

Navier-Stokes equation and yields the interaction rules for individual particles. The

forces consists of an alignment term, a repulsive term and a self propulsion term

which agrees with our previous model. Numerical results are provided showing that

this model would produce a more homogeneous structure than the previous model.

Future studies may include finding proper discretizations for a divergence free flow.

We may also start with a macroscopic model which can take account for the vortices

and waves appears in the spermatozoon suspension pattern.

In chapter 3, we consider individuals as polymers and take the steric interaction

into consideration. Firstly we model the polymer as rigid rods. GPU acceleration

help us to simulate a system of rigid bodies. While the only mechanism affecting

the self propelling rods is the volume exclusion effect, we still can observe different

patterns including collective motion. Results with different boundary conditions in

2D show good agreement with experiments with bristle-bot, while 3D simulations

are also provided. By changing the aspect ratio, the repulsive force or boundary

conditions, various patterns can be observed. It would be more realistic to model

spermatozoon as a chain with a corresponding rigidity. To better understand the

global structure, it is also helpful to derive a macroscopic model from it for further

studies.

We then modelled the particles by including hydrodynamic forces into the system

and use a finite element method to study the flow in 2D. A good parallel algorithm

is required for future studies in order to simulate a large system of particles. In

summary, we studied different models with different complexity, hoping to under-

stand the individual interactions that would produce a global collective pattern. The

number of particles that can be simulated decrease while we increase the complexity

of the model. Future studies will be conducted to find a model of the spermatozoon
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suspension with an appropriate level of accuracy, such that understanding the indi-

vidual interaction rules can help us capture the global behaviour of collective motion

with circular waves and whirlpools. Since the collective motion of spermatozoon, or

massal motility is the only parameter of semen sample that shows a goods agree-

ment with male fertility, Understanding it would help us to produce an automated

assessment process of semen fertility.

In chapter 4, we focus on the single polymer statistics instead a collection of

polymers. Semi-flexible polymers are modelled using the worm like chain model.

The statistics of the worm like chain model play an important role in the field of

nanomotors. By mapping the end to end distribution to a quantum rotor on a unit

sphere, we use a path integral approach to get the 3D end to end distribution. The

results suggest feasibility of these single-polymer controls up to a surprising accuracy

even for a rather soft polymer, which rationalizes high optimality previously found

for some biological nanomotors and reveals new mechanistic regimes to improve

performance of artificial nanomotors. This study demonstrates the capacity of the

exact WLC model to serve as a general working framework to study motor-relevant

polymer effects.

Also, a new force-extension formula is obtained from the exact solution of the

WLC model. The new formula relation has an improved accuracy over the widely

used approximate formula for stretched polymers, and also is applicable to com-

pressed polymers.

Future studies include understanding the chain statistics with different start and

end orientations, also semi-flexible polymers can be modelled with more sophisti-

cated models such as the helical worm like chain model, or models with kinks.
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