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Summary

Quantized vortices, which are the topological defects that arise from the order

parameters of the superfluid, superconductors and Bose–Einstein condensate (BEC),

have a long history that begins with the study of liquid Helium. Their appearance

is regarded as the key signature of superfluidity and superconductivity, and most of

their phenomenological properties have been well captured by the Ginzburg-Landau-

Schrödinger equation (GLSE) and the Gross-Pitaevskii equation (GPE).

The purpose of this thesis is twofold. The first is to conduct extensive numerical

studies for the vortex dynamics and interactions in superfluidity and superconduc-

tivity via solving GLSE on different bounded domains in R2 and under different

boundary conditions. The second is to study GPE both analytically and numeri-

cally in the whole space.

This thesis mainly contains two parts. The first part is to investigate vortex

dynamics and their interaction in GLSE on bounded domain. We begin with the

stationary vortex state of the GLSE, and review various reduced dynamical laws

(RDLs) that govern the motion of the vortex centers under different boundary con-

ditions and prove their equivalence. Then, we propose accurate and efficient numer-

ical methods for computing the GLSE as well as the corresponding RDLs in a disk

vi
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or rectangular domain under Dirichlet or homogeneous Neumann boundary condi-

tion (BC). These methods are then applied to study the various issues about the

quantized vortex phenomena, including validity of RDLs, vortex interaction, sound-

vortex interaction, radiation and pinning effect introduced by the inhomogeneities.

Based on extensive numerical results, we find that any of the following factors: the

value of ε, the boundary condition, the geometry of the domain, the initial location

of the vortices and the type of the potential, affect the motion of the vortices sig-

nificantly. Moreover, there exist some regimes such that the RDLs failed to predict

correct vortex dynamics. The RDLs cannot describe the radiation and sound-vortex

interaction in the NLSE dynamics, which can be studied by our direct simulation.

Furthermore, we find that for GLE and CGLE with inhomogeneous potential, vor-

tices generally move toward the critical points of the external potential, and finally

stay steady near those points. This phenomena illustrate clearly the pinning effect.

Some other conclusive experimental findings are also obtained and reported, and

discussions are made to further understand the vortex dynamics and interactions.

The second part is concerned with the dynamics of GPE with angular momentum

rotation term and/or the long-range dipole-dipole interaction. Firstly, we review

the two-dimensional (2D) GPE obtained from the 3D GPE via dimension reduc-

tion under anisotropic external potential and derive some dynamical laws related

to the 2D and 3D GPE. By introducing a rotating Lagrangian coordinate system,

the original GPEs are re-formulated to the GPEs without the angular momentum

rotation. We then cast the conserved quantities and dynamical laws in the new

rotating Lagrangian coordinates. Based on the new formulation of the GPE for

rotating BECs in the rotating Lagrangian coordinates, we propose a time-splitting

spectral method for computing the dynamics of rotating BECs. The new numerical

method is explicit, simple to implement, unconditionally stable and very efficient in

computation. It is of spectral order accuracy in spatial direction and second-order

accuracy in temporal direction, and conserves the mass in the discrete level. Ex-

tensive numerical results are reported to demonstrate the efficiency and accuracy
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of the new numerical method. Finally, the numerical method is applied to test the

dynamical laws of rotating BECs such as the dynamics of condensate width, angular

momentum expectation and center-of-mass, and to investigate numerically the dy-

namics and interaction of quantized vortex lattices in rotating BECs without/with

the long-range dipole-dipole interaction.
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Chapter 1

Introduction

Vortex, which can exist in vast areas, is any spiral motion with closed stream

lines. It can survive not only in macro scale such as in the air, liquid or the tur-

bulent flow, but also in micro scale such as the Bose-Einstein condensate (BEC),

the superfluidity and superconductivity, etc. The micro-vortices differ from those

macro-vortices by the so-called ‘vorticity’, which is a mathematical concept related

to the amount of ‘circulation’ or ‘rotation’. Among those micro-vortices, the quan-

tized vortex that arises from quantum mechanics distinguish itself from others by

the signature of ‘quantized vorticity’.

1.1 Vortex in superfluidity and superconductivity

Quantized vortices are topological defects that arise from the order parameter

in superfluids, Bose-Einstein condensate (BEC) and superconductors in which fric-

tionless fluids flow with circulation being quantized around each vortex.

Bose-Einstein condensation, superconductivity and superfluidity are among the

most intriguing phenomena in nature. Their astonishing properties are direct con-

sequences of quantum mechanics. While most other quantum effects only appear

in matter on the atomic or subatomic scale, superfluids and superconductors show

the effects of quantum mechanics acting on the bulk properties of matter on a large

1
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scale. They are macroscopic quantum phenomena. This is an essential origin of su-

perfluidity and superconductivity, in which macroscopically phase coherence allows

a dissipationless current to flow. Bulk superfluids are distinguished from normal

fluids by their ability to support dissipationless flow.

Superconductivity is a phenomenon of exactly zero electrical resistance occurring

in certain materials at low temperature. It was discovered by Heike Kamerlingh

Onnes in 1911. Type-I superconductivity is characterized by the so-called Meissner

effect, which introduce the complete exclusion of magnetic from the superconductor.

While for the type-II superconductors in the so-called mixed vortex state, quantized

amount of magnetic flux carried by the vortex lines is allowed to penetrate the

superconductors [56, 58].

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of weakly

interacting bosons below some critical temperature. It supports the quantum effects

in macroscopic scale since numbers of the bosons will condense into the single-

particle state, at which point we can treat those condensed bosons as one-particle

[2,86,121,124,129]. The phenomena of BEC was predicted in 1924 by Albert Einstein

based on the work of Satyendra Bath Bose and was first realized in experiments in

1955 [7, 37, 50]. Later, with the observation of quantized vortices [2, 38, 106, 107,

109, 122, 148], plenty of work have been devoted to study the phenomenological

properties of vortices in the rotating BEC, dipolar BEC, multi-component BEC and

spinor BEC, etc, which has now opened the door to the study of superfluidity in the

Bose-system [4, 89].

Superfluid is a state of matter characterized by the complete absence of viscosity.

In other words, if placed in a closed loop, superfluids can flow endlessly without

friction. Known as a major facet in the study of quantum hydrodynamics, the

superfluidity effect was discovered by Kapitsa, Allen and Misener in 1937. The

formation of the superfluid is known to be related to the formation of a BEC. This

is made obvious by the fact that superfluidity occurs in liquid helium-4 at far higher

temperatures than it does in helium-3. Each molecule of helium-4 is a boson particle,
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by virtue of its zero spin. Helium-3, however, is a fermion particle, which can form

bosons only by pairing with itself at much lower temperatures, in a process similar

to the electron pairing in superconductivity.

Feynman [61] predicted that the rotation of superfluids might be subject to the

quantized vortices in 1955, while in 1957 Abrikosov [3] predicted the existence of

the vortex lattice in superconductors. Studies on phenomena related to quantized

vortex has since boomed and the Nobel Prize in Physics was recently awarded to

Cornell, Weimann and Ketterle in 2001 for their decisive contributions to Bose-

Einstein condensation and to Ginzburg, Abrikosov and Leggett in 2003 for their

pioneering contributions to superfluidity and superconductivity.

1.2 Problems and contemporary studies

In recent years, phenomenological properties of quantized vortices in superflu-

idity and superconductivity have been extensively studied by both mathematical

analysis and numerical simulations. It is remarkable that many of those properties

can be well characterized by relatively simple models such as the Ginzburg-Landau-

Schrödinger equation (GLSE) [11] and the Gross-Pitaesvkii equation (GPE) [18,121].

In this thesis, we focus on the following two subjects.

1.2.1 Ginzburg-Landau-Schrödinger equation

First, we are concerned with the vortex dynamics and interactions in a specific

form of 2D Ginzburg-Landau-Schrödinger equation , which describe a vast variety of

phenomena in physics community, ranging from superconductivity and superfluidity

to strings in field theory, from the second order phase transition to nonlinear waves

[11, 62, 64, 85, 120, 123]:

(λε + iβ)∂tψ
ε(x, t) = ∆ψε +

1

ε2
(V (x)− |ψε|2)ψε, x ∈ D, t > 0, (1.1)
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with initial condition

ψε(x, 0) = ψε0(x), x ∈ D, (1.2)

and under either Dirichlet boundary condition (BC)

ψε(x, t) = g(x) = eiω(x), x ∈ ∂D, t ≥ 0, (1.3)

or homogeneous Neumann BC

∂ψε(x, t)

∂ν
= 0, x ∈ ∂D, t ≥ 0. (1.4)

Here, D ⊂ R2 is a smooth and bounded domain, t is time, x = (x, y) ∈ R2 is

the Cartesian coordinate vector, V (x) satisfying lim|x|→∂D V (x) = 1 is a positive

real-valued smooth function, ψε := ψε(x, t) is a complex-valued wave function (or-

der parameter), ω is a given real-valued function, ψε0 and g are given smooth and

complex-valued functions satisfying the compatibility condition ψε0(x) = g(x) for

x ∈ ∂D, ν = (ν1, ν2) and ν⊥ = (−ν2, ν1) ∈ R2 satisfying |ν| =
√
ν21 + ν22 = 1 are

the outward normal and tangent vectors along ∂D, respectively, i =
√
−1 is the

unit imaginary number, 0 < ε < 1 is a given dimensionless constant, and λε, β are

two nonnegative constants satisfying λε + β > 0. The GLSE covers many different

equations arise in various different physical fields. For example, when λε .= 0, β = 0,

it reduces to the Ginzburg-Landau equation (GLE) for modelling superconductiv-

ity. When λε = 0, β = 1, the GLSE collapses to the nonlinear Schrödinger equation

(NLSE) which is well known for modelling, for example, BEC or superfluidity. While

λε > 0 and β > 0, the GLSE is the so-called complex Ginzburg-Landau equation

(CGLE) or nonlinear Schrödinger equation with damping term which arise in the

study of the hall effect in type II superconductor.

In superconductivity, V (x) ≡ 1 stands for the equilibrium density of supercon-

ducting electron [42, 43, 55]. When V (x) ≡ 1, the medium is uniform, while if

V (x) .≡ 1, the medium is inhomogeneous which is used to, for example, describe the

pining effect in superconductor with impurities.
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Denote the Ginzburg-Landau (GL) functional (‘energy’) as [46, 74, 104]

Eε(t) :=
∫

D

[
1

2
|∇ψε|2 +

1

4ε2
(
V (x)− |ψε|2

)2
]
dx = Eεkin(t) + Eεint(t), t ≥ 0, (1.5)

whose corresponding Euler–Lagrange equation reads as:

∆ψε +
1

ε2
(V (x)− |ψε|2)ψε = 0, x ∈ D. (1.6)

In (1.5), the kinetic and interaction energies are defined as

Eεkin(t) :=
1

2

∫

D
|∇ψε|2dx, Eεint(t) :=

1

4ε2

∫

D

(
V (x)− |ψε|2

)2
dx, t ≥ 0,

respectively. The GLSE (1.1) now can be rewritten as

(λε + iβ)∂tψ
ε(x, t) = −

δE(ψ)
δψ∗ , (1.7)

where ψ∗ denotes the complex conjugate of function ψ. Moreover, it is easy to show

that the GLE or CGLE dissipates the total energy, i.e., dEε

dt ≤ 0, while the NLSE

conserve the total energy, i.e., dEε

dt = 0.

During the last several decades, constructions and analysis of the solutions of

(1.6) as well as vortex dynamics and interaction related to the GLSE (1.1) under

different scalings have been extensively studied in the literatures.

For GLE defined in R2, under the normal scaling λε = ε ≡ 1 and homogeneous

potential V (x) ≡ 1, Neu [113] found numerically that quantized vortices with wind-

ing number m = ±1 are dynamically stable, and respectively, |m| > 1 dynamically

unstable. Based on the assumption that the vortices are well separated and of wind-

ing number +1 or −1, he also obtained formally the reduced dynamical law (RDL)

governing the motion of the vortex centers by method of asymptotic analysis. How-

ever, this RDL is only correct up to the first collision time and cannot indicate the

motion of multi-degree vortices. Recently, in a series of papers [30, 32, 33], Bethuel

et al. investigated the asymptotic behaviour of vortices as ε → 0 under the accel-

erating time scale λε =
1

ln 1
ε
. Under very general assumptions (which release those

constrains in Neu’s work), they proved that the limiting vortices, which can be of
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multiple degree, move according to a RDL, which is a set of simple ordinary differ-

ential equations (ODEs). Much stronger than Neu’s RDL, this RDL is always valid

except for a finite number of times that representing vortex splittings, recombina-

tions and/or collisions. Their studies also show an interesting phenomena called as

“phase-vortex interaction”, the phenomena that can cause an unexpected drift of

the vortices, which they pointed out that cannot occur in the case of the domain be-

ing bounded. Moreover, they conducted some similar research in higher dimensional

space [31].

In the bounded domain case when the potential is homogeneous, i.e., V (x) ≡ 1

Lin [96, 97, 99] extended Neu’s results by considering the dynamics of vortices in

the asymptotic limit ε → 0 under various scales of λε and with different BCs.

Based on the well-preparation assumption similar to Neu’s, he derived the RDLs

that govern the motion of these vortices and rigorously proved that vortices move

with velocities of the order of | ln ε|−1 if λε = 1. Similar studies have also been

conducted by E [59], Jerrard et al. [73], Jimbo et al. [80,83] and Sandier et al. [128].

Unfortunately, all those RDLs are only valid up to the first time that the vortices

collide and/or exit the domain and cannot describe the motion of multiple degree

vortices. Recently, Serfaty [132] extended the RDL of the vortices after collisions,

but still under the assumption that those vortices are of degree +1 or −1 and that

only simple collision could happen during dynamics (i.e, the situation that more

than two vortices meet at the same time and place are not allowed). Actually, the

motion of the multiple degree vortices and the dynamics of vortices after collision

and/or splittings still remain as interesting open problems. When the potential is

inhomogeneous, i.e., V (x) .≡ 1, Jian et al. [75–77] investigated the pinning effect

of the vortices asymptotically as ε → 0 in the GLE with Dirichlet BC under the

scale λε = 1. They established the corresponding RDLs that govern the dynamics

of limiting vortices.

As for the steady states of GLE or the solution of Euler–Lagrange equation (1.6),

situations are quite different case by case. In the whole plane case, as indicated by
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Neu’s results [113], it was generally believed that two vortices with winding number

of opposite sign undergo attractive interaction and tend to coalesce and annihilation.

Hence, for the steady states of the GLE in whole plane, either there are no vortices

or all the vortices are of the same sign. However, when the domain is bounded,

Lin [98] proved the existence of the mixed vortex-antivortex solution of the Euler–

Lagrange equation subject to the Dirichlet BC (1.3) for sufficiently small ε, i.e., the

steady states of GLE under Dirichlet BC (1.3) allows vortices with winding number

of opposite sign. Nevertheless, Jimbo et al. [81] and Serfaty [131] obtained that any

solutions with vortices to (1.1) and (1.4) are unstable in a convex or simple connected

domain, while recently del Pino et al. [51] proved the existence of the solution with

exactly k vortices of degree one for any integer number k if the domain were not

simply connected by the approach of variational reduction. Hence, all the vortices

in the initial data (1.2) will either collide with each other and annihilate or simply

exit the domain finally. Actually, several studies had been established in both the

planar domains and/or higher dimensional domains for the stability of the steady

state solution of GLE with Neumann BC (1.4) [49, 79, 81, 82, 84], which imply the

close relation between the stability of the equilibrium solution with vortices and the

geometrical property of the domain.

For NLSE defined in R2, when V (x) = 1 and ε = 1, Bethuel et al. [34] proved

global well-posedness of NLSE for classes of initial data that have vortices. For

the vortex dynamics, Fetter [60] predicted that, to the leading order, the motion

of vortices in the NLSE would be governed by the same law as that in the ideal

incompressible fluid. Then, the same prediction was given by Neu [113]. He conjec-

tured the stability of the vortex states under NLSE dynamics as an open problem,

based on which he found that the vortices behave like point vortices in ideal fluid,

and obtained the corresponding RDLs. However, these RDLs are only correct up to

the leading order. Corrections to this leading order approximation due to radiation

and/or related questions when long-time dynamics of vortices is considered still re-

main as important open problems. In fact, using the method of effective action and
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geometric solvability, Ovichinnikov and Sigal confirmed Neu’s approximation and

derived some leading radiative corrections [116, 117] based on the assumption that

the vortices are well separated, which was extended by Lange and Schroers [95] to

study the dynamics of overlapping vortices. Recently, Bethuel et al. [29] derived the

asymptotic behaviour of the vortices as ε→ 0.

In the bounded domain case, when V (x) = 1, many papers have been dedicated

to the study of the vortex states and dynamics after Neu’s work [113]. Mironescu

[111] investigated stability of the vortices in NLSE with (1.3) and showed that for

fixed winding number m: a vortex with |m| = 1 is always dynamical stable; while

for those of winding number |m| > 1, there exists a critical εcm such that if ε > εcm,

the vortex is stable, otherwise unstable. Mironescu’s results were then improved

by Lin [100] using the spectrum of a linearized operator. Subsequently, Lin and

Xin [104] studied the vortex dynamics on a bounded domain with either Dirichlet

or Neumann BC, which was further investigated by Jerrard and Spirn [74]. In

addition, Colliander and Jerrard [46,47] studied the vortex structures and dynamics

on a torus or under periodic BC. In these studies, the authors derived the RDLs

which govern the dynamics of vortex centers under the NLSE dynamics when ε→ 0

with fixed distances between different vortex centers initially. They obtained that to

the leading order the vortices move according to the Kirchhoff law in the bounded

domain case. However, these reduced dynamical laws cannot indicate radiation

and/or sound propagations created by highly co-rotating or overlapping vortices. In

fact, it remains as a very fascinating and fundamental open problem to understand

the vortex-sound interaction [114], and how the sound waves modify the motion of

vortices [62].

For the CGLE under scaling λε =
1

ln 1
ε

and homogeneous potential, based on some

proper assumptions, Miot [110] studied the dynamics of vortices asymptotically as

ε → 0 in the whole plane case while Kurzke et al. [92] investigated that in the

bounded domain case, the corresponding RDLs were derived to govern the motion

of the limiting vortices in the whole plane and/or the bounded domain, respectively.
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The results shows that the RDLs in the CGLE is actually a hybrid of RDL for

GLE and that for NLSE. More recently, Serfaty and Tice [133] studied the vortex

dynamics in a more complicated CGLE which involves electromagnetic field and

pinning effect.

On the numerical aspects, finite element methods were proposed to investigate

numerical solutions of the Ginzburg-Landau equation and related Ginzburg-Landau

models of superconductivity [5, 44, 54, 58, 87]. Recently, by proposing efficient and

accurate numerical methods for discretizing the GLSE in the whole space, Zhang

et al. [152, 153] compared the dynamics of quantized vortices from the reduced

dynamical laws obtained by Neu with those obtained from the direct numerical

simulation results from GLE and/or NLSE under different parameters and/or initial

setups. They solved numerically Neu’s open problem on the stability of vortex

states under the NLSE dynamics, i.e., vortices with winding number m = ±1 are

dynamically stable, and resp., |m| > 1 dynamically unstable [152,153], which agree

with those derived by Ovchinnikov and Sigal [115]. In addition, they identified

numerically the parameter regimes for quantized vortex dynamics when the reduced

dynamical laws agree qualitatively and/or quantitatively and fail to agree with those

from GLE and/or NLSE dynamics.

However, to our limited knowledge, there were few numerical studies on the

vortex dynamics and interaction of the GLSE (1.1) in bounded domain, much less

for the sound-vortex interaction in the NLSE dynamics.

1.2.2 Gross-Pitaevskii equation with angular momentum

The occurrence of quantized vortices is a hallmark of the superfluid nature

of Bose–Einstein condensates. In addition, condensation of bosonic atoms and

molecules with significant dipole moments whose interaction is both nonlocal and

anisotropic has recently been achieved experimentally in trapped 52Cr and 164Dy

gases [1, 48, 67, 94, 105, 108, 143].

Using the mean field approximation, when the temperature T is much smaller
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than the critical temperature Tc, the properties of a BEC in a rotating frame with

long-range dipole-dipole interaction are well described by the macroscopic complex-

valued wave function ψ = ψ(x, t), whose evolution is governed by the following

three-dimensional (3D) Gross-Pitaevskii equation (GPE) with angular momentum

rotation term and long-range dipole-dipole interaction [1, 16, 39, 130, 140, 144, 154]:

i!∂tψ(x, t) =

[
−

!2

2m
∇2 + V (x) + U0|ψ|2 +

(
Vdip ∗ |ψ|2

)
− ΩLz

]
ψ(x, t), t > 0, (1.8)

where t denotes time, x = (x, y, z)T ∈ R3 is the Cartesian coordinate vector, ! is

the Planck constant, m is the mass of a dipolar particle and V (x) is an external

trapping potential, which reads as

V (x) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (1.9)

if a harmonic trap potential is concerned with. Here, ωx, ωy and ωz are the trap fre-

quencies in x-, y- and z-directions, respectively. U0 =
4π!2as

m represents short-range

(or local) interaction between dipoles in the condensate with as the s-wave scatter-

ing length. Vdip(x) describes the long-range dipolar interaction potential between

dipoles, which is defined as

Vdip(x) =
µ0µ2

dip

4π

1− 3(x · n)2/|x|2

|x|3
=

µ0µ2
dip

4π

1− 3 cos2(ϑ)

|x|3
, x ∈ R2,

where µ0 and µdip are the vacuum permeability and permanent magnetic dipole

moment, respectively (e.g., µdip = 6µ
B
for 52Cr with µ

B
being the Bohr magneton),

n = (n1, n2, n3)T ∈ R3 is a given unit vector, i.e., |n| =
√
n2
1 + n2

2 + n2
3 = 1,

representing the dipole axis (or dipole moment) and ϑ = ϑn(x) is the angle between

the dipole axis n and the vector x. In addition, Ω is the angular velocity of the laser

beam and Lz = −i!(x∂y − y∂x) is the z-component of the angular momentum L =

x × P with the momentum operator P = −i!∇. The wave function is normalized

to

||ψ||22 :=
∫

R3

|ψ(x, t)|2dx = N,
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with N being the total number of dipolar particles in the dipolar BEC. Introducing

the dimensionless variables, t → t/ω0 with ω0 = min{ωx,ωy,ωz}, x → a0x and

ψ →
√
Nψ/a

3
2
0 , we have the dimensionless rotational dipolar GPE [18, 144, 145]:

i∂tψ(x, t) =

[
−
1

2
∇2 + V (x) + κ|ψ|2 + λ

(
Udip ∗ |ψ|2

)
− ΩLz

]
ψ(x, t), (1.10)

where κ = 4πNas
xs

, λ =
mNµ0µ2

dip

3!2xs
, V (x) = 1

2(γ
2
xx

2 + γ2yy
2 + γ2zz

2) is the dimensionless

harmonic trapping potential with γx = ωx/ω0, γy = ωy/ω0, γz = ωz/ω0, and Udip is

the dimensionless long-range dipole-dipole interaction potential defined as

Udip(x) =
3

4π|x|3

[
1−

3(x · n)2

|x|2

]
=

3

4π|x|3
[
1− 3 cos2(ϑ)

]
, x ∈ R3. (1.11)

The wave function is normalized to

‖ψ‖2 :=
∫

R3

|ψ(x, t)|2 dx = 1. (1.12)

In addition, similar to [16, 39], the above GPE (1.10) can be re-formulated as the

following Gross-Pitaevskii-Poisson system [13, 16, 39]

i∂tψ(x, t) =

[
−
1

2
∇2 + V (x) + (κ− λ)|ψ|2 − 3λϕ(x, t)− ΩLz

]
ψ(x, t), (1.13)

ϕ(x, t) = ∂nnu(x, t), −∇2u(x, t) = |ψ(x, t)|2 with lim
|x|→∞

u(x, t) = 0, (1.14)

where ∂n = n ·∇ and ∂nn = ∂n(∂n). From (1.14), it is easy to see that for t ≥ 0

u(x, t) =

(
1

4π|x|

)
∗ |ψ|2 :=

∫

R3

1

4π|x− x′|
|ψ(x′, t)|2dx′, x ∈ R3. (1.15)

Recently, many numerical and theoretical studies have been done on rotating

(dipolar) BECs. There have been many numerical methods proposed to study the

dynamics of non-rotating BECs, i.e. when Ω = 0 and λ = 0 [5,18,24,40,88,112,138].

Among them, the time-splitting sine/Fourier pseudospectral method is one of the

most successful methods. It has spectral accuracy in space and is easy to implement.

In addition, as shown in [16], this method can also be easily generalized to simulate

the dynamics of dipolar BECs when λ .= 0. However, in rotating condensates, i.e.,

when Ω .= 0, we can not directly apply the time-splitting pseudospectral method
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proposed in [24] to study their dynamics due to the appearance of angular rotational

term. So far, there have been several methods introduced to solve the GPE with an

angular momentum term. For example, a pseudospectral type method was proposed

in [17] by reformulating the problem in the two-dimensional polar coordinates (r, θ)

or three-dimensional cylindrical coordinates (r, θ, z). The method is of second-order

or fourth-order in the radial direction and spectral accuracy in other directions. A

time-splitting alternating direction implicit method was proposed in [23], where the

authors decouple the angular terms into two parts and apply the Fourier transform in

each direction. Furthermore, a generalized Laguerre-Fourier-Hermite pseudospectral

method was presented in [20]. These methods have higher spatial accuracy compared

to those in [5, 15, 88] and are also valid in dissipative variants of the GPE (1.10),

cf. [139]. On the other hand, the implementation of these methods can become quite

involved.

1.3 Purpose and scope of this thesis

As shown in the last two subsections, a vast number of researches have been

done and plenty of results have been obtained for the vortex dynamics in BEC,

superfluidity and superconductivity. However, there are still some limitations.

• For the vortex dynamics in superconductivity and superfluidity on bounded

domain, most studies are primarily researches of the RDLs of well separated

vortices. Vortex phenomena related to overlapping vortices and/or vortex col-

lision as well as the effect of the boundary condition and effect of the domain

geometry on the vortex dynamics still remains unknown. Numerical simula-

tions have become powerful and useful to figure out those exotic phenomena.

However, few numerical studies for the bounded domain case were reported.

• For the vortex dynamics in GPE with angular momentum, there have been

only a few reports about the interactions between a few vortices. Moreover,

the existing numerical methods have their own limitations. (i). The finite
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difference method (FDM) or finite element method (FEM) usually need a

very fine mesh size, and their order of accuracy are usually low, hence they are

time–consuming and inefficient. (ii). Although time splitting spectral method

with alternative direction technique is of spectral accuracy, they might cause

some problems when the rotating frequency is large. (iii). Additionally, the

generalized Laguerre-Fourier-Hermite pseudospectral method is not easy to

implement.

Hence, in this thesis, we mainly focus on the following two parts:

• (i). to present efficient and accurate numerical methods for discretizing the

reduced dynamical laws and the GLSE (1.1) on bounded domains under dif-

ferent BCs, (ii). to understand numerically how the boundary condition and

radiation as well as geometry of the domain affect vortex dynamics and in-

teraction, (iii). to investigate the pining effect of the vortices in CGLE and

GLE dynamics, (iv). to study numerically vortex interaction in the GLSE

dynamics and/or compare them with those from the reduced dynamical laws

with different initial setups and parameter regimes, and (v). to identify cases

where the reduced dynamical laws agree qualitatively and/or quantitatively

as well as fail to agree with those from GLSE on vortex interaction.

• to propose a simple and efficient numerical method to solve the GPE with

angular momentum rotation term which may include a dipolar interaction

term. One novel idea in this method consists in the use of rotating Lagrangian

coordinates as in [10] in which the angular momentum rotation term vanishes.

Hence, we can easily apply the method for non-rotating BECs in [24] to solve

the rotating case.

Studies for the first part will be carried out in chapter 2 to chapter 5, while research

on the second part will be conducted in chapter 6. In chapter 7, conclusions and

possible directions of future work will be summarized and discussed.



Chapter 2

Methods for GLSE on bounded domain

In this chapter, begin with the stationary vortex state of the Ginzburg-Landau-

Schrödinger (GLSE) equation, various RDLs that governed the motion of the vortex

centers under different boundary conditions (BCs) are reviewed and their equivalent

forms are presented and proved. Then, accurate and efficient numerical methods are

proposed for computing the GLSE in a disk or rectangular domain under Dirichlet

or homogeneous Neumann BC. These methods will be applied to study various

phenomena on the vortex dynamics and interaction in following chapters.

2.1 Stationary vortex states

To consider the vortex solution of the GLSE (1.1), we consider the following time

independent GLSE with V (x) = 1 in a disk domain centered at origin with radius

R0, i.e., D = BR0(0):

∆φε +
1

ε2
(1− |φε|2)φε = 0, x ∈ D, (2.1)

|φε(x, t)| = 1, if x ∈ ∂D, (2.2)

where φε(x, t) is a complex-valued function which can be viewed as the steady states

of the GLSE (1.1) in a disk domain. The vortex solution takes the form of:

φεm(x) = f εm(r)e
imθ, x = (r cos(θ), r sin(θ)) ∈ D, (2.3)

14
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Figure 2.1: Plot of the function f εm(r) in (2.4) with R0 = 0.5. left: ε = 1
40 with

different winding number m. right: m = 1 with different different ε.

whose existence and qualitative properties were carried out in [69,70]. Here, m ∈ Z

is called as the topological charge or winding number or index that represents the

singularity of the vortex, the modulus f εm(r) is a real-valued function satisfying:

[
1

r

d

dr

(
r
d

dr

)
−

1

r2
+

1

ε2
(
1− (f εm(r))

2
)]

f εm(r) = 0, 0 < r < R0, (2.4)

f εm(r = 0) = 0, f εm(r = R0) = 1. (2.5)

Numerically, the solution f εm can be obtained by either employing a shooting method

[45] or a finite difference method with Newton iteration being used for the resulted

non-linear system [152]. Fig. 2.1 depicts the results for function f εm(r) with different

ε and m, while Fig. 2.2 shows the surf plots of the density |φεm|2 and the contour

plots of the corresponding phase for m = 1 and m = 5. The stability of the vortex

was investigated by Mironescu [111]. He showed that for fixed winding number m,

the vortex with |m| = 1 is always dynamical stable while for those of winding number

|m| > 1, there is a critical εcm such that if ε > εcm, the vortex is stable, otherwise

unstable. Mironescu’s results was then improved by Lin [100] by considering the

spectrum of a linearized operator. It might be interesting to study how the stability

of a vortex depends on the perturbation, and how the vortices of high index split if

they are not stable.
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(a)

(b)

Figure 2.2: Surf plot of the density |φεm|2 (left column) and the contour plot of the

corresponding phase (right column) for m = 1 (a) and m = 4 (b).

2.2 Reduced dynamical laws

It had been pointed out that the vortex of index |m| = 1 is always stable, and

those of index |m| > 1 is stable only up to some condition. Thus, it should be

interesting to understand how those vortices of winding number |m| = 1 dynamic

and interact with each other, and how the BC, the geometry of the domain affect

their motion. To this end, we choose the initial data in (1.2) as:

ψε0(x) = eih(x)
M∏

j=1

φ̃εnj
(x− x0

j ) = eih(x)
M∏

j=1

φ̃εnj
(x− x0

j , y − y0j ), x ∈ D̄, (2.6)
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here M > 0 is the total number of vortices in the initial data, the phase shift h(x) is

a harmonic function and for j = 1, 2, . . . ,M , nj = 1 or −1, and x0
j = (x0

j , y
0
j ) ∈ D are

the winding number and initial location of the j-th vortex, respectively. Moreover,

φ̃εnj
is chosen as

φ̃εnj
=





f εnj

(|x|)einjθ(x), if 0 ≤ |x| ≤ R0,

einjθ(x), if |x| ≥ R0,
(2.7)

where f εnj
is the modulus of the vortex solution in (2.3) with winding number nj

and R0 is constant which is small than the diameter of the domain D.

It is well known that to the leading order in the limit ε → 0, theM well separated

vortices move according to the reduced dynamical law, which are ODE systems. In

this section, we review various reduced dynamical laws in different cases and present

some equivalent forms. We divide into three parts. The first part and second part

are devoted to the case of the GLSE (1.1) under Dirichlet and/or homogeneous BC

without pinning effect, i.e., V (x) ≡ 1, respectively. The third part is concerned with

the GLE with inhomogeneous potential, i.e., V (x) .≡ 1 under Dirichlet BC.

2.2.1 Under homogeneous potential

In this section, we let λε =
α

ln(1/ε) . To simplify our presentation, for j = 1, · · · , N ,

hereafter we let xεj(t) = (xεj(t), y
ε
j (t)) be the location of the M distinct and isolated

vortex centers in the solution of the GLSE (1.1) with initial condition (2.6) at time

t ≥ 0, and denote

X0 := (x0
1,x

0
2, . . . ,x

0
M), Xε := Xε(t) = (xε1(t),x

ε
2(t), . . . ,x

ε
M(t)), t ≥ 0,

then we have [46, 72, 92, 97]:

Theorem 2.2.1. As ε→ 0, for j = 1, · · · , N , the vortex center xεj(t) will converge

to point xj(t) satisfying:

(αI + βnjJ)
dxj(t)

dt
= −∇xjW (X), 0 ≤ t < T, (2.8)

xj(t = 0) = x0
j . (2.9)
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In equation (2.8), T is the first time that either two vortex collide or any vortex exit

the domain, X := X(t) = (x1(t),x2(t), . . . ,xM(t)),

I =



1 0

0 1



 , J =



0 −1

1 0



 ,

are the 2 × 2 identity and symplectic matrix, respectively. Moreover, the function

W (X) is the so called renormalized energy defined as:

W (X) =: Wcen(X) +Wbc(X), (2.10)

where Wcen is the renormalized energy associated to the M vortex centers that

defined as

Wcen(X) = −
∑

1≤i (=j≤N

ninj ln |xi − xj|, (2.11)

and Wbc(X) is the renormalized energy involving the effect of the BC (1.3) and/or

(1.4), which takes different formations in different cases.

Under Dirichlet boundary condition

For the GLSE (1.1) with initial condition (2.6) under Dirichlet BC (1.3), it has

been derived formally and rigorously [28,46,92,99,103,132] that Wbc(X) = Wdbc(X)

in the renormalized energy (2.10) admits the form:

Wdbc(X) =: −
M∑

j=1

njR(xj ;X) +

∫

∂D



R(x;X) +
M∑

j=1

nj ln |x− xj|



 ∂ν⊥ω(x)
2π

ds, (2.12)

where, for any fixed X ∈ DM , R(x;X) is a harmonic function in x, i.e.,

∆R(x;X) = 0, x ∈ D, (2.13)

satisfying the following Neumann BC

∂R(x;X)

∂ν
= ∂ν⊥ω(x)−

∂

∂ν

M∑

l=1

nl ln |x− xl|, x ∈ ∂D. (2.14)
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Notice that to calculate ∇xjW (X), we need to calculate ∇xjR, and since for j =

1, · · · , N , xj is implicitly included in R(x, X) as a parameter, hence it is difficult

to calculate ∇xjR and thus difficult to solve the reduced dynamical law (2.8) with

(2.10)–(2.12) even numerically. However, by using an identity in [28] (see Eq. (51)

on page 84),

∇xj [W (X) +Wdbc(X)] = −2nj∇x

[

R(x;X) +
M∑

l=1&l (=j

nl ln |x− xl|

]

x=xj

,

we have the following simplified equivalent form for (2.8).

Lemma 2.2.1. For 1 ≤ j ≤ M and t > 0, system (2.8) can be simplified as

(αI+βmjJ)
d

dt
xj(t) = 2nj

[
∇xR (x;X) |x=xj(t) +

M∑

l=1&l (=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

]
. (2.15)

Moreover, for any fixed X ∈ DM , by introducing function H(x, X) and Q(x, X)

that both are harmonic in x satisfying respectively the boundary condition [73,104]:

∂H(x;X)

∂ν⊥
= ∂ν⊥ω(x)−

∂

∂ν

M∑

l=1

nl ln |x− xl|, x ∈ ∂D, (2.16)

Q(x;X) = ω(x)−
M∑

l=1

nlθ(x− xl), x ∈ ∂D, (2.17)

with the function θ : R2 → [0, 2π) defined as

cos(θ(x)) =
x

|x|
, sin(θ(x)) =

y

|x|
, 0 .= x = (x, y) ∈ R2, (2.18)

we have the following lemma for the equivalence of the reduced dynamical law

(2.15) [21, 22]:

Lemma 2.2.2. . For any fixed X ∈ DM , we have the following identity

J∇xQ (x;X) = ∇xR (x;X) = J∇xH (x;X) , x ∈ D, (2.19)

which immediately implies the equivalence between system (2.15) and the following
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two systems: for t > 0

(αI + βnjJ)
d

dt
xj(t) = 2nj

[

J∇xH (x;X) |x=xj(t) +
M∑

l=1&l (=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

]

,

(αI + βnjJ)
d

dt
xj(t) = 2nj

[
J∇xQ (x;X) |x=xj(t) +

M∑

l=1&l (=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

]
.

Proof. For any fixed X ∈ DM , since Q is a harmonic function, there exists a function

ϕ1(x) such that

J∇xQ (x;X) = ∇ϕ1(x), x ∈ D.

Thus, ϕ1(x) satisfies the Laplace equation

∆ϕ1(x) = ∇ · (J∇xQ(x;X)) = ∂yxϕ1(x)− ∂xyϕ1(x) = 0, x ∈ D, (2.20)

with the following Neumann BC

∂νϕ1(x) = (J∇xQ(x;X)) · ν = ∇xQ(x;X) · ν⊥ = ∂ν⊥Q(x;X), x ∈ ∂D. (2.21)

Noticing (2.17), we obtain for x ∈ ∂D,

∂νϕ1(x) = ∂ν⊥ω(x)−
∂

∂ν⊥

M∑

l=1

nlθ(x−xl) = ∂ν⊥ω(x)−
∂

∂ν

M∑

l=1

nl ln |x−xl|. (2.22)

Combining (2.20), (2.22), (2.13) and (2.14), we get

∆(R(x;X)−ϕ1(x)) = 0, x ∈ D, ∂ν (R(x;X)− ϕ1(x)) = 0, x ∈ ∂D. (2.23)

Thus

R(x;X) = ϕ1(x) + constant, x ∈ D,

which immediately implies the first equality in (2.19).

Similarly, since H is a harmonic function, there exists a function ϕ2(x) such that

J∇xH (x;X) = ∇ϕ2(x), x ∈ D.

Thus, ϕ2(x) satisfies the Laplace equation

∆ϕ2(x) = ∇ · (J∇xH(x;X)) = ∂yxϕ2(x)− ∂xyϕ2(x) = 0, x ∈ D, (2.24)
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with the following Neumann BC

∂νϕ2(x) = (J∇xH(x;X))·ν = ∇xH(x;X)·ν⊥ = ∂ν⊥H(x;X), x ∈ ∂D. (2.25)

Combining (2.24), (2.25), (2.13), (2.14) and (2.16), we get

∆(R(x;X)−ϕ2(x)) = 0, x ∈ D, ∂ν (R(x;X)− ϕ2(x)) = 0, x ∈ ∂D. (2.26)

Thus

R(x;X) = ϕ2(x) + constant, x ∈ D,

which immediately implies the second equality in (2.19).

Under homogeneous Neumann boundary condition

For the GLSE (1.1) with initial condition (2.6) under homogeneous Neumann

BC (1.4), it has been derived formally and rigorously [46,74,92] that Wbc(X) in the

renormalized energy (2.10) admit the form:

Wbc(X) = Wnbc(X) := −
M∑

j=1

njR̃(xj ;X), (2.27)

and by using the following identity

∇xj [W (X) +Wnbc(X)] = −2nj∇x

[
R̃(x;X) +

M∑

l=1&l (=j

nl ln |x− xl|

]

xj

, (2.28)

we have the following simplified equivalent form for (2.8):

Lemma 2.2.3. For 1 ≤ j ≤ M and t > 0, system (2.8) can be simplified as

(αI+βnjJ)
d

dt
xj(t) = 2nj

[

∇xR̃ (x;X) |x=xj(t) +
M∑

l=1&l (=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

]

. (2.29)

Moreover, for any fixed X ∈ DM , by introducing function H̃(x, X) and Q̃(x, X) that

both are harmonic in x satisfying respectively the boundary condition [80,81,83,104]:

∂H̃(x;X)

∂ν⊥
= −

∂

∂ν

M∑

l=1

nlθ(x− xl), x ∈ ∂D, (2.30)

∂Q̃(x;X)

∂ν
= −

∂

∂ν

M∑

l=1

nlθ(x− xl), x ∈ ∂D, (2.31)
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with the function θ : R2 → [0, 2π) being defined in (2.18), we have the following

lemma for the equivalence of the reduced dynamical law (2.29) [21, 22]:

Lemma 2.2.4. For any fixed X ∈ DM , we have the following identity

J∇xQ̃ (x;X) = ∇xR̃ (x;X) = J∇xH̃ (x;X) , x ∈ D, (2.32)

which immediately implies the equivalence of system (2.29) and the following two

systems: for t > 0

(αI + βnjJ)
d

dt
xj(t) = 2nj

[
∇xH̃ (x;X) |x=xj(t) +

M∑

l=1&l (=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

]
,

(αI + βnjJ)
d

dt
xj(t) = 2nj

[
J∇xQ̃ (x;X) |x=xj(t) +

M∑

l=1&l (=j

nl
xj(t)− xl(t)

|xj(t)− xl(t)|2

]
.

Proof. Follow the line in the proof of lemma 2.2.1 and we omit the details here for

brevity.

2.2.2 Under inhomogeneous potential

It has been shown in last section that in a homogeneous potential, vortices

in the GLE dynamics under Dirichlet BC will move according to gradient flow of

the so called renormalized energy, which is associated to the BC. However, in an

inhomogeneous potential, i.e V (x) .≡ 1, the phenomena is quite different. Generally

speaking, vortices no longer move along the gradient flow of the renomalized energy,

they move toward the critical points of the potential V (x) instead [42, 76, 78]. And

it has been proved that they obey the following reduced dynamical law [76]:

Theorem 2.2.2. As ε → 0, for j = 1, · · · , N , the vortex center xεj(t) in the GLE

dynamics with λε = 1 under Dirichlet BC will converge to point xj(t), which satisfies:

dxj(t)

dt
= −

∇V (xj)

V (xj)
, 0 ≤ t < +∞, (2.33)

xj(t = 0) = x0
j . (2.34)
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In addition, for each j, if there is a Lipschitz domain Gj ⊂ D such that

x0
j ∈ Gj , min

x∈∂Gj

V (x) > V (x0
j ), , j = 1, · · · ,M,

the solution in (2.33) will satisfy:

for t > 0,xj(t) .= xl(t) if j .= l, and xj(t) ∈ Gj .

Hence, the vortices will all be pinned together to the critical points of V (x) and

further to the minimum points if V (x) has no other critical points.

Unfortunately, to our limited knowledge, there are no existing studies that deal

with the vortex dynamics in the inhomogeneous potential in the GLE dynamics

under Neumann BC, or in the CGLE or NLSE dynamics in the limiting process

ε→ 0.

2.3 Numerical methods

In this section, we present efficient and accurate numerical methods for discretiz-

ing the GLSE (1.1) with a time dependent potential U(x, t) in either a rectangle or a

disk with initial condition (1.2) and under either Dirichlet BC (1.3) or homogeneous

Neumann BC (1.4):

(λε + iβ)∂tψ
ε(x, t) = ∆ψε +

1

ε2
(U(x, t)− |ψε|2)ψε, x ∈ D, t > 0, (2.35)

here U(x, t) = V (x) +W (x, t) with W (x, t) an external potential. The key idea in

our numerical methods are based on: (i) applying a time-splitting technique which

has been widely used for nonlinear partial differential equations [65,137] to decouple

the nonlinearity in the GLSE [19,27,141,152]; and (ii) adapt proper finite difference

and/or spectral method to discretize a gradient flow with constant coefficient [17,

21, 22].

2.3.1 Time-splitting

Let τ > 0 be the time step size, denote tn = nτ for n ≥ 0. For n = 0, 1, . . ., from

time t = tn to t = tn+1, the GLSE (1.1) is solved in two splitting steps. One first
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solves

(λε + iβ)∂tψ
ε(x, t) =

1

ε2
(U(x, t)− |ψε|2)ψε, x ∈ D, t ≥ tn, (2.36)

for the time step of length τ , followed by solving

(λε + iβ)∂tψ
ε(x, t) = ∆ψε, x ∈ D, t ≥ tn, (2.37)

for the same time step. Equation (2.37) is discretized in the next two subsections

on a rectangle and a disk, respectively. For t ∈ [tn, tn+1], to solve equation (2.36),

we rewrite

ψε(x, t) =
√
ρε(x, t)eiS

ε(x,t) (2.38)

with ρε and Sε being the density and phase of ψε, respectively. From (2.36), we can

easily obtain the following ODE for ρε(x, t) = |ψε(x, t)|2:

∂tρ
ε(x, t) = η[U(x, t)− ρε(x, t)]ρε(x, t), x ∈ D, tn ≤ t ≤ tn+1, (2.39)

where η = 2λε/ε2(λ2ε + β2). Solving equation (2.39 ), we have

ρε(x, t) =
ρε(x, tn) exp[ηUn(x, t)]

1 + ηρε(x, tn)
∫ t
tn
exp[ηUn(x, s)ds]

, (2.40)

where Un(x, t) =
∫ t

tn
U(x, s)ds. Moreover, if W (x, t) ≡ 0, i.e., U(x, t) = V (x),

ρ(x, t) can be analytically integrated to have

ρε(x, t) =






ρε(x, tn), λε = 0,

ρε(x,tn)
1+ηρε(x,tn)(t−tn)

, V (x) = 0& λε .= 0,

V (x)ρε(x,tn)
ρε(x,tn)+(V (x)−ρε(x,tn)) exp[−ηV (x)(t−tn)]

, V (x),λε .= 0.

(2.41)

Plugging (2.38) back into (2.36), we obtain the equation for the phase Sε(x, t):

∂tS
ε(x, t) = −

β

ε2(λ2ε + β2)
[U(x, t)− ρε(x, t)], x ∈ D, tn ≤ t ≤ tn+1. (2.42)

Combining (2.40) and (2.42), we obtain for t ∈ [tn, tn+1],

ψε(x, t) = ψε(x, tn)
√
Pn(x, t) exp

[
−

iβ

ε2(λ2ε + β2)
(Un(x, t)−

∫ t

tn

ρε(x, s)ds)

]
, (2.43)
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where

Pn(x, t) =
exp[ηUn(x, t)]

1 + η|ψε(x, tn)|2
∫ t
tn
exp[ηUn(x, s)]ds

. (2.44)

Furthermore, if U(x, t) = V (x), we have the explicit formation of ψε:

ψε(x, t) = ψε(x, tn)






exp
[
− iβ
ε2β2 (V (x)− |ψε(x, tn)|2)(t− tn)

]
, λε = 0,

√
P̂ (x, t) exp

[
− iβ

2λ2ε
ln P̂ (x, t)

]
, λε .= 0

(2.45)

where

P̂ (x, t) =






1
1+η|ψε(x,tn)|2(t−tn)

, V (x) ≡ 0,

V (x)
|ψε(x,tn)|2+(V (x)−|ψε(x,tn)|2) exp(−ηV (x)(t−tn))

, V (x) .≡ 0,
(2.46)

Remark 2.3.1. If functions Un(x, t) and other integrals in (2.43) cannot be calcu-

lated analytically, numerical quadrature such as the trapezoidal rule can be applied

to solve them.

Remark 2.3.2. In practice, we always use the second-order Strang splitting [137],

that is, from time t = tn to t = tn+1: (i) evolve (2.36) for half time step τ/2 with

initial data given at t = tn; (ii) evolve (2.37) for one step τ starting with the new

data; and (iii) evolve (2.36) for half time step τ/2 again with the newer data.

2.3.2 Discretization in a rectangular domain

Let D = [a, b] × [c, d] be a rectangular domain, and denote mesh sizes hx=
b−a
N

and hy=
d−c
L with N and L being two even positive integers.

First we present a Crank-Nicolson 4th-order compact finite difference (CNFD)

method for discretizing the equation (2.37) with Dirichlet BC (1.3) by using the

4th-order compact finite difference discretization for spatial derivatives followed by

a Crank-Nicolson scheme for temporal derivative. In order to do so, denote the grid

points as xj = a+jhx for j = 0, 1, . . . , N and yl = c+lhy for l = 0, 1, . . . , L; and ψε,nj,l
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be the numerical approximation of ψε(xj , yl, tn) for j = 0, 1, . . . , N , l = 0, 1, . . . , L

and n ≥ 0. Define the finite difference operators as

δ2xψ
ε,n
j,l =

ψε,nj+1,l − 2ψε,nj,l + ψε,nj−1,l

h2
x

, δ2yψ
ε,n
j,l =

ψε,nj,l+1 − 2ψε,nj,l + ψε,nj,l−1

h2
y

,

then a CNFD discretization for (2.37) reads, i.e., for 1 ≤ j ≤ N−1 and 1 ≤ l ≤ L−1

(λε + iβ)

τ

[

I +
h2x
12
δ2x +

h2y
12
δ2y

](
ψε,n+1
j,l − ψε,nj,l

)
=

[

δ2x + δ2y +
h2x + h2y

12
δ2xδ

2
y

](
ψε,n+1
j,l + ψε,nj,l

2

)

,

(2.47)

where I is the identity operator and the boundary condition (1.3) is discretized as

ψε,n+1
0,l = g(a, yl), ψε,n+1

M,l = g(b, yl), l = 0, 1, . . . , L,

ψε,n+1
j,0 = g(xj, c), ψε,n+1

j,L = g(xj, d), j = 0, 1, . . . , N.

Here although an implicit time discretization is applied for (2.37), the linear system

in (2.47) can be solved explicitly via direct Poisson solver through DST [90] at the

computational cost of O (NL ln(NL)).

Combining the above CNFD discretization with the second order Strang splitting

presented in the previous subsection, we obtain a time-splitting Crank-Nicolson finite

difference (TSCNFD) discretization for the GLSE (1.1) on a rectangle with Dirichlet

BC (1.3). This TSCNFD discretization is unconditionally stable, second order in

time and fourth order in space, the memory cost is O(NL) and the computational

cost per time step is O (NL ln(NL)).

Next we present a cosine pseudospectral method for the equation (2.37) with

homogeneous Neumann BC (1.4) by using cosine spectral discretization for spatial

derivatives followed by integrating in time exactly. To this end, let

YNL = span{φpq(x) = cos(µx
p(x−a)) cos(µy

q(y−c)), 0 ≤ p ≤ N−1, 0 ≤ q ≤ L−1},

with

µx
p =

pπ

b− a
, p = 0, 1, . . . , N − 1; µy

q =
qπ

d− c
, q = 0, 1, . . . , L− 1.
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Then the cosine spectral discretization for (2.37) with (1.4) is as follows:

Find ψεNL(x, t) ∈ YNL, i.e.,

ψεNL(x, t) =
N−1∑

p=0

L−1∑

q=0

ψ̂εpq(t)φpq(x), x ∈ D, t ≥ tn, (2.48)

such that

(λε + iβ)∂tψ
ε
NL(x, t) = ∆ψεNL(x, t), x ∈ D, t ≥ tn. (2.49)

Plugging (2.48) into (2.49), noticing the orthogonality of the cosine functions, for

0 ≤ p ≤ N − 1 and 0 ≤ q ≤ L− 1, we find

(λε + iβ)
d

dt
ψ̂εpq(t) = −

[
(µx

p)
2 + (µy

q)
2
]
ψ̂εpq(t), t ≥ tn. (2.50)

The above ODE can be integrated exactly in time, i.e.,

ψ̂εpq(t) = eη̃[(µ
x
p)

2+(µy
q )2](t−tn) ψ̂εpq(tn), t ≥ tn, 0 ≤ p ≤ N−1, 0 ≤ q ≤ L−1, (2.51)

where η̃ = iβ−λε
λ2ε+β2 . The above procedure is not suitable in practice due to the difficulty

of computing the integrals in (2.48). In practice, we need approximate the integrals

by a quadrature rule on grids. Define the grid points as xj+ 1
2
= a + (j + 1

2)hx

for j = 0, 1, . . . , N − 1 and yl+ 1
2
= c + (l + 1

2)hy for j = 0, 1, . . . , L − 1; denote

ψε,n
j+ 1

2 ,l+
1
2

be the numerical approximation of ψε(xj+ 1
2
, yl+ 1

2
, tn) for j = 0, 1, . . . , N−1,

l = 0, 1, . . . , L − 1 and n ≥ 0; and ψε,n be the solution vector at time t = tn

with components {ψε,n
j+ 1

2 ,l+
1
2

, 0 ≤ j ≤ N − 1, 0 ≤ l ≤ L − 1} for n ≥ 0. Choose

ψε,0
j+ 1

2 ,l+
1
2

= ψε0(xj+ 1
2
, yl+ 1

2
) for 0 ≤ j ≤ N − 1 and 0 ≤ l ≤ L − 1, then a cosine

pseudospectral approximation for (2.37) with (1.4) reads as, for 0 ≤ j ≤ N − 1 and

0 ≤ l ≤ L− 1

ψε,n+1
j+ 1

2 ,l+
1
2

=
N−1∑

p=0

L−1∑

q=0

αx
pα

y
qe
η̃[(µx

p)
2+(µy

q )2]τ ψ̂ε,npq φpq(xj+ 1
2
, yl+ 1

2
), n ≥ 0, (2.52)

where

ψ̂ε,np,q = αx
pα

y
q

N−1∑

j=0

L−1∑

l=0

ψε,n
j+ 1

2 ,l+
1
2

φpq(xj+ 1
2
, yl+ 1

2
), 0 ≤ p ≤ N − 1, 0 ≤ q ≤ L− 1,
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with

αx
p =






√
1
N , p = 0,

√
2
N , 1 ≤ p ≤ N − 1,

αy
q =






√
1
L , q = 0,

√
2
L , 1 ≤ q ≤ L− 1.

Again, combining the above cosine pseudospectral discretization with the second

order Strang splitting presented in the subsection 3.1, we obtain a time-splitting co-

sine pseudospectral (TSCP) discretization for the GLSE (1.1) on a rectangle with

homogeneous Neumann BC (1.4). This TSCP discretization is unconditionally sta-

ble, second order in time and spectral order in space, the memory cost is O(NL)

and the computational cost per time step is O (NL ln(NL)) via DCT [134].

Remark 2.3.1. If the homogeneous Neumann BC (1.4) is replaced by periodic BC,

the above TSCP discretization for the GLSE (1.1) is still valid provided that we

replace the cosine basis functions by the Fourier basis functions in the spectral dis-

cretization and use the quadrature rule associated to the Fourier functions [134]. We

omit the details here for brevity.

2.3.3 Discretization in a disk domain

Let D = {x | |x| < R} be a disk with R > 0 a fixed constant. In this case,

it is natural to adopt the polar coordinate (r, θ). In order to discretize (2.37) with

either (1.3) or (1.4), we apply the standard Fourier pseudospectral method in θ-

direction [134], finite element method in r-direction, and Crank-Nicolson method in

time [12, 17, 152]. With the following truncated Fourier expansion

ψε(r, θ, t) =
l=L/2−1∑

l=−L/2

ψ̂l(r, t)e
ilθ, 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π, (2.53)

where L is an even positive number and ψ̂l is the Fourier coefficients for the l-

th mode, plugging (2.53) into (2.37) and using the orthogonality of the Fourier

functions, we obtain for l=−L
2 , · · · ,

L
2 − 1:

(λε+ iβ)∂tψ̂l(r, t) =
1

r
∂r
(
r∂rψ̂l(r, t)

)
−

l2

r2
ψ̂l(r, t), 0 < r < R, t ≥ tn, (2.54)
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with the following boundary condition at r = 0

∂rψ̂0(0, t) = 0, ψ̂l(0, t) = 0, l .= 0, t ≥ tn. (2.55)

When the Dirichlet BC (1.3) is used for (2.37), we then impose the following

boundary condition at r = R:

ψ̂l(R, t) = ĝl :=
1

2π

∫ 2π

0

g(θ)e−ilθdθ, −
L

2
≤ l ≤

L

2
− 1, t ≥ tn. (2.56)

Let P k denote all polynomials with degree at most k, denote 0 = r0 < r1 < · · · <

rN = R be a partition for the interval [0, R] with N a positive integer and a mesh

size h = max0≤j≤N−1(rj+1 − rj), and define a finite element space by

Uh =
{
uh ∈ C[0, R] | uh|[rj,rj+1] ∈ P k, 0 ≤ j ≤ N − 1

}
.

Introducing the following finite element approximate sets associated to the Dirichlet

BCs for −L
2 ≤ l ≤ L

2 − 1 as

Ug
l =






{
uh ∈ Uh | uh(R) = ĝ0

}
, l = 0,

{
uh ∈ Uh | uh(0) = 0, uh(R) = ĝl

}
, l .= 0;

(2.57)

then we obtain the FEM approximation for (2.54) with (2.55) and (2.56):

Find ψ̂h
l (·, t) ∈ Ug

l with −L
2 ≤ l ≤ L

2 − 1 such that

d

dt
A(ψ̂h

l ,φ
h) = B(ψ̂h

l ,φ
h) + l2C(ψ̂h

l ,φ
h), ∀φh ∈ U0

l , tn ≤ t ≤ tn+1; (2.58)

where the bilinear forms A, B and C are defined as

A(uh, vh) = (λε + iβ)

∫ R

0

ruhvhdr, B(uh, vh) = −
∫ R

0

r∂ru
h∂rv

hdr,

C(uh, vh) = −
∫ R

0

1

r
uhvhdr, ∀uh, vh ∈ Uh.

The above ODE system (2.58) is then discretized by the standard Crank-Nicolson

scheme in time. Here although an implicit time discretization is applied for (2.58),

the one-dimensional nature of the problem makes the coefficients matrix for the

linear system band limited. For example, if the piecewise linear polynomial is used,
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i.e., k = 1 in Uh, the matrix is tridiagonal. Thus for each fixed −L
2 ≤ l ≤ L

2 −1, fast

algorithms can be applied to solve the resulting linear systems at the cost of O(N).

Similarly, when the homogeneous Neumann BC (1.4) is used for (2.37), the above

discretization is still valid provided that we replace the boundary condition at r = R

in (2.56) by

∂rψ̂l(R, t) = 0, −
L

2
≤ l ≤

L

2
− 1, t ≥ tn, (2.59)

the finite element subsets Ug
l in (2.57) and U0

l in (2.58) by the following finite element

spaces

Un
l =





Uh, l = 0,
{
uh ∈ Uh | uh(0) = 0

}
, l .= 0.

(2.60)

The detailed discretization is omitted here for brevity.

Remark 2.3.2. The equation (2.54) with (2.55) can also be discretized in space

by either Legendre or Chebyshev pseudospectral method [134] and in time by the

Crank-Nicolson method.



Chapter 3

Vortex dynamics in GLE

Formal analysis indicate that, if initially ψε0 has isolated vortices, these vortices

move with velocities of the order of | ln ε|−1 in the GLE dynamics with λε = 1

[26, 96, 99]. Therefore, to obtain nontrivial vortex dynamics, in this chapter, we

always assume 0 < ε < 1 and choose

λε =
1

| ln ε|
=

1

ln(1/ε)
, 0 < ε < 1. (3.1)

We then apply the numerical method presented in chapter 2 to simulate quan-

tized vortex interaction of GLE, i.e., β = 0,λε = 1
ln(1/ε) in the GLSE (1.1), with

different ε and under different initial setups including single vortex, vortex pair,

vortex dipole and vortex lattice. We study how the dimensionless parameter ε, ini-

tial setup, boundary value and geometry of the domain D affect the dynamics and

interaction of vortices. Moreover, we compare the results obtained from the GLE

with those from the corresponding reduced dynamical laws, and identify the cases

where the reduced dynamical laws agree qualitatively and/or quantitatively as well

as fail to agree with those from GLE on vortex interaction. Finally, we also obtain

numerically different patterns of the steady states for quantized vortex lattices and

study the alignment of the vortices in the steady state.

31
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3.1 Initial setup

For a given bounded domain D, the GLSE (1.1) is unchanged by the re-scaling

x → lx, t → l2t and ε → lε with l the diameter of D. Thus without lose of generality,

hereafter, without specification, we always assume that the diameter of D is O(1).

The initial data ψε0 in (1.2) for simulating GLE thus is chosen as (2.6) with R0 = 0.25

in (2.7). To simulate GLE under Dirichlet BC, we choose the function g(x) in (1.3)

as

g(x) = ei(h(x)+
∑M

j=1 njθ(x−x
0
j )), x ∈ ∂D, (3.2)

and we consider following six kinds of modes for the phase shift h(x) in (3.2) and

(2.6):

• Mode 0: h(x) = 0, Mode 1: h(x) = x+ y,

• Mode 2: h(x) = x− y, Mode 3: h(x) = x2 − y2,

• Mode 4: h(x) = x2 − y2 − 2xy, Mode 5: h(x) = x2 − y2 − 2xy.

Moreover, to simulate GLE under homogeneous Neumann BC, we choose the phase

shift h(x) to be the solution of the following problem:






∆h(x) = 0, x ∈ D,

∂
∂νh(x) = − ∂

∂ν

∑M
l=1 nlθ(x− xl), x ∈ ∂D,

∫
D h(x)dx = 0.

(3.3)

Without specification, this initial setup will also be used in chapter 4 in studying

vortex interaction in the NLSE dynamics and chapter 5 in the CGLE dynamics. To

simplify our presentation, for j = 1, 2, . . . ,M , hereafter we let xεj(t) and xr
j(t) be

the j-th vortex center in the GLE dynamics and corresponding reduced dynamics,

respectively, and denote dεj(t) = |xεj(t)− xr
j(t)| as their difference. Moreover, in the

presentation of figures, the initial location of a vortex with winding number +1, −1

and the location that two vortices merge are marked as ‘+’, ‘◦’ and ‘3’, respectively.
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Furthermore, if a vortex could finally stay steady in somewhere, we denote its final

location as ‘*’. Finally, in our computations, if not specified, we take D = [−1, 1]2,

mesh sizes hx = hy = ε
10 and time step τ = 10−6. The GLE with (1.3), (1.2) and

(2.6) is solved by the method TSCNFD presented in section 3.

3.2 Numerical results under Dirichlet BC

3.2.1 Single vortex

Here we present numerical results of the motion of a single quantized vortex

under the GLE dynamics and its corresponding reduced dynamical laws. We take

M = 1, n1 = 1 and consider following cases: case I. x0
1 = (0, 0), h(x) = x + y;

case II. x0
1 = (0, 0), h(x) = x − y; case III. x0

1 = (0, 0), h(x) = x2 − y2; case IV.

x0
1 = (0.1, 0.2), h(x) = x + y; case V. x0

1 = (0.1, 0.2), h(x) = x − y; and case VI.

x0
1 = (0.1, 0.2), h(x) = x2−y2. Fig. 3.1 depicts trajectory of the vortex center when

ε = 1
32 for the above 6 cases and dε1 with different ε for case II, IV and VI. From Fig.

3.1 and additional numerical experiments not shown here for brevity, we can draw

following conclusions: (i). When h(x) ≡ 0, the vortex center doesn’t move and this

is similar to the case in the whole space. (ii). When h(x) = (x+by)(x− y
b ) with b .= 0,

the vortex does not move if x0 = (0, 0), while it does move if x0 .= (0, 0) (cf. case

III and VI for b = 1). (iii). When h(x) .= 0 and h(x) .= (x+ by)(x− y
b ) with b .= 0,

in general, the vortex center does move to a different point from its initial location

and stays there forever. This is quite different from the situation in the whole space,

where a single vortex may move to infinity under the initial data (2.6) with h(x) .= 0

and D = R2. (iv). In general, the initial location, the geometry of the domain and

the boundary value will all affect the motion of the vortex center. (v). When ε→ 0,

the dynamics of the vortex center in the GLE dynamics converges uniformly in

time to that in the reduced dynamics (cf. Fig. 3.1) which verifies numerically the

validation of the reduced dynamical laws. In fact, based on our extensive numerical

experiments, the motion of the vortex center from the reduced dynamical laws agree
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Figure 3.1: (a)-(b): Trajectory of the vortex center in GLE under Dirichlet BC when

ε = 1
32 for cases I-VI (from left to right and then from top to bottom), and (c): dε1

for different ε for cases II, IV and VI (from left to right) in section 3.2.1.

with those from the GLE dynamics qualitatively when 0 < ε < 1 and quantitatively

when 0 < ε4 1.

3.2.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the

GLE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = n2 = 1, x0
1 = (−0.5, 0) and x0

2 = (0.5, 0) in (2.6). Fig. 3.2 depicts time

evolution of the amplitude |ψε|, while Fig. 3.3 shows that of the GL functionals as
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well as the trajectory of the vortex centers when ε = 1
32 in with different h(x) in

(2.6). Fig. 3.4 shows time evolution of xr
1(t), x

ε
1(t) and dε1(t) with different h(x) in

(2.6).

From Figs. 3.2, 3.3 & 3.4 and additional numerical results not shown here for

brevity, we can draw the following conclusions for the interaction of vortex pair un-

der the GLE dynamics with Dirichlet BC: (i). The two vortices undergo a repulsive

interaction, they never collide, both of them move towards the boundary of D for a

while and finally stop somewhere near the boundary which indicate that the bound-

ary imposes a repulsive force on the vortices when t is large enough (cf. Figs. 3.2

& 3.3). (ii). When h(x) ≡ 0, the two vortex centers move outward along the line

connecting them initially, and their trajectories are symmetric, i.e., xε1(t) = −xε2(t),

while when h(x) .= 0, it affects the motion of the two vortex centers significantly

(cf. Fig. 3.3). (iii). When ε → 0, the dynamics of the two vortex centers in the

GLE dynamics converges uniformly in time to that in the reduced dynamics (cf.

Fig. 3.4) which verifies numerically the validation of the reduced dynamical laws

in this case. In fact, based on our extensive numerical experiments, the motions of

the two vortex centers from the reduced dynamical laws agree with those from the

GLE dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1.

(iv). During the dynamics of GLE, the GL functional and its kinetic part decrease

when time increases, its interaction part changes dramatically when t is small, and

when t → ∞, all the three quantities converge to constants (cf. Fig. 3.3), which

immediately imply that a steady state solution will be reached when t → ∞.

3.2.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the

GLE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = −1, n2 = 1, x0
1 = (−d0, 0) and x0

2 = (d0, 0) in (2.6). Fig. 3.5 depicts time

evolution of the amplitude |ψε|, while Fig. 3.6 shows that of the GL functionals as

well as the trajectory of the vortex centers when ε = 1
32 in GLE with different d0
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(a)

(b)

Figure 3.2: Contour plots of |ψε(x, t)| at different times for the interaction of vortex

pair in GLE under Dirichlet BC with ε = 1
32 and different h(x) in (2.6): (a) h(x) = 0,

(b) h(x) = x+ y.
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Figure 3.3: Trajectory of vortex centers (left) and time evolution of the GL func-

tionals (right) for the interaction of vortex pair in GLE under Dirichlet BC with

ε = 1
32 for different h(x) in (2.6): (a) h(x) = 0, (b) h(x) = x+ y.

and h(x) in (2.6) as well as the critical value dεc for different ε when h(x) ≡ x + y.

Fig. 3.7 shows time evolution of xr
1(t), x

ε
1(t) and dε1(t) with d0 = 0.5 for different ε

and h(x) in (2.6).

From Figs. 3.5, 3.6 & 3.7 and additional numerical results not shown here for
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Figure 3.4: Time evolution of xε1(t) and xr
1(t) (left and middle) and their difference

dε1 (right) for different ε for the interaction of vortex pair in GLE under Dirichlet

BC for different h(x) in (2.6): (a) h(x) = 0, (b) h(x) = x+ y.

brevity, we can draw the following conclusions for the interaction of vortex dipole

under the GLE dynamics with Dirichlet BC: (i). Both boundary value, i.e., h(x),

and distance between the two vortex centers initially, i.e., 2d0, affect the motion of

the vortices significantly. (ii). When h(x) ≡ 0, for any initial location of the vortex

dipole, the two vortices always undergo an attractive interaction and their centers

move toward each other along the line connecting them initially, their trajectory are

symmetric with respect to the line perpendicular to the segment connecting them

initially, and finally, they merge at the middle point of this segment, i.e., the point

xmerge =
1
2(x

0
1+x0

2) (cf. Figs. 3.5 & 3.6). At the collision, both vortices in the vortex

dipole merge/annihilate with each other; and after the collision, they will disappear

and no vortex is left afterwards during the dynamics. For any fixed 0 < ε < 1, there

is a collision time Tε which increases when ε decreases. (iii). When h(x) = x + y,

the two vortices move along a symmetric trajectory, i.e., xε1(t) = −xε2(t). Moreover,

for the reduced dynamical laws, there exists a critical value drc, which is found
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(a)

(b)

(c)

Figure 3.5: Contour plots of |ψε(x, t)| at different times for the interaction of vortex

dipole in GLE under Dirichlet BC with ε = 1
32 for different d0 and h(x) in (2.6): (a)

h(x) = 0, d0 = 0.5, (b) h(x) = x+ y, d0 = 0.5, (c) h(x) = x+ y, d0 = 0.3.

numerically as drc ≈ 0.4142, such that when d0 < drc, then the vortex dipole will

merge at finite time, and respectively, when d0 > drc, the vortex dipole will never

collide. Similarly, for the vortex dipole under the GLE dynamics, for each fixed

0 < ε < 1, there exists a critical value dεc such that when d0 < dεc, then the vortex

dipole will merge at finite time, and respectively, when d0 > dεc, the vortex dipole

will never collide (cf. Figs. 3.5 & 3.6). We find numerically the critical distance

dεc for 0 < ε < 1 and depict them in Fig. 3.8. From these values, we can fit the
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Figure 3.6: (a)-(c): Trajectory of vortex centers (left) and time evolution of the

GL functionals (right) for the interaction of vortex dipole in GLE under Dirichlet

BC with ε = 1
32 for different d0 and h(x) in (2.6): (a) h(x) = 0, d0 = 0.5, (b)

h(x) = x+y, d0 = 0.5, (c) h(x) = x+y, d0 = 0.3. (d): Critical value dεc for different

ε when h(x) ≡ x+ y.

following relationship between dεc and drc:

dεc ≈ drc + 41.26ε3.8, 0 ≤ ε < 1.

(iv). When ε → 0, the dynamics of the two vortex centers under the GLE dynamics

converges uniformly in time to that of the reduced dynamical laws before the collision

happens (cf. Fig. 3.7) which verifies numerically the validation of the reduced

dynamical laws in this case. In fact, based on our extensive numerical experiments,

the motion of the two vortex centers from the reduced dynamical laws agree with

those from the GLE dynamics qualitatively when 0 < ε < 1 and quantitatively

when 0 < ε 4 1 if the initial distance between the two vortex centers satisfies either

0 < d0 < drc or d0 > dεc. On the contrary, if drc < d0 < dεc, then the motion of

the vortex dipole from the reduced dynamical laws is different qualitatively from

that of the GLE dynamics. (v). During the dynamics of GLE, the GL functional

decreases when time increases, its kinetic and interaction parts change dramatically
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Figure 3.7: Time evolution of xε1(t), x
r
1(t) (left and middle) and their difference dε1

(right) for different ε for the interaction of vortex dipole in GLE under Dirichlet BC

with d0 = 0.5 for different h(x) in (2.6): (a) h(x) = 0, (b) h(x) = x+ y.
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Figure 3.8: Critical value dεc for the interaction of vortex dipole of the GLE under

Dirichlet BC with h(x) ≡ x+ y in (2.6) for different ε.

when t is small, and when t → ∞, all the three quantities converge to constants (cf.

Fig. 3.6). Moreover, if finite time merging/annihilation happens, the GL functional

and its kinetic and interaction parts change significantly during the collision. In

addition, when t → ∞, the interaction energy goes to 0 which immediately implies

that a steady state will be reached in the form of φε(x) = eic(x), where c(x) is a
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harmonic function satisfying c(x)|∂D = h(x) +
∑M

j=1 njθ(x− x0
j ).

3.2.4 Vortex lattices

Here we present numerical results of the interaction of vortex lattices under the

GLE dynamics. We will consider the following cases: case I. M = 3, n1 = n2 =

n3 = 1, x0
1 = (−0.25,

√
3
4 ), x0

2 = (−0.25,−
√
3
4 ), x0

3 = (0.5, 0); case II. M = 3,

n1 = n2 = n3 = 1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case III. M = 3,

n1 = n2 = n3 = 1, x0
1 = (0, 0.3), x0

2 = (0.15, 0.15), x0
3 = (0.3, 0); case IV. M = 3,

n1 = −1, n2 = n3 = 1, x0
1 = (−0.25,

√
3
4 ), x0

2 = (−0.25,−
√
3
4 ), x0

3 = (0.5, 0); case V.

M = 3, n2 = −1, n1 = n3 = 1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case VI.

M = 3, n1 = −1, n2 = n3 = 1, x0
1 = (0.2, 0.3), x0

2 = (−0.3, 0.4), x0
3 = (−0.4,−0.2);

case VII. M = 4, n1 = n2 = n3 = n4 = 1, x0
1 = (0, 0.5), x0

2 = (−0.5, 0), x0
3 =

(0,−0.5), x0
4 = (0.5, 0); case VIII. M = 4, n1 = n3 = −1, n2 = n4 = 1, x0

1 = (0, 0.5),

x0
2 = (−0.5, 0), x0

3 = (0,−0.5), x0
4 = (0.5, 0); and case IX. M = 4, n1 = n2 = −1,

n3 = n4 = 1, x0
1 = (0, 0.5), x0

2 = (−0.5, 0), x0
3 = (0,−0.5), x0

4 = (0.5, 0). Fig.

3.9 shows trajectory of the vortex centers when ε = 1
32 in and h(x) = 0 in (2.6)

for the above 9 cases. From Fig. 3.9 and additional numerical experiments not

shown here for brevity, we can draw the following conclusions: (i). The interaction

of vortex lattices under the GLE dynamics with Dirichlet BC is very interesting and

complicated. The detailed dynamics and interaction pattern of a lattice depends on

its initial alignment of the lattice, geometry of the domain D and the boundary value

g(x). (ii). For a lattice of M vortices, if they have the same index, then no collision

will happen for any time t ≥ 0. On the other hand, if they have opposite index, e.g.

M+ > 0 vortices with index ‘+1’ and M− > 0 vortices with index ‘−1’ satisfying

M+ +M− = M , collision will always happen at finite time. In addition, when t is

sufficiently large, there exist exactly |M+ −M−| vortices of winding number ‘+1’ if

M+ > M−, and resp. ‘−1’ if M+ < M−, left in the domain.
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Figure 3.9: Trajectory of vortex centers for the interaction of different vortex

lattices in GLE under Dirichlet BC with ε = 1
32 and h(x) = 0 for cases I-IX (from

left to right and then from top to bottom) in section 3.2.4.

3.2.5 Steady state patterns of vortex lattices

Here we present the steady state patterns of vortex lattices in the GLE dynamics

under Dirichlet BC. We study how the geometry of the domain D and boundary

condition affect the alignment of vortices in the steady states. To this end, we take

ε = 1
16 in,

nj = 1, x0
j = 0.5

(
cos

(
2jπ

M

)
, sin

(
2jπ

M

))
, j = 1, 2, . . . ,M,

i.e., initially we have M like vortices which are located uniformly in a circle centered

at origin with radius R1 = 0.5.
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(a)

(b)

(c)

Figure 3.10: Contour plots of |φε(x)| for the steady states of vortex lattice in GLE

under Dirichlet BC with ε = 1
16 for M = 8, 12, 16, 20 (from left column to

right column) and different domains: (a) unit disk D = B1(0), (b) square domain

D = [−1, 1]2, (c) rectangular domain D = [−1.6, 1.6]× [−1, 1].

Denote φε(x) as the steady state, i.e., φε(x) = limt→∞ ψε(x, t) for x ∈ D. Fig.

3.10 depicts the contour plots of the amplitude |φε| of the steady state in the GLE

dynamics with h(x) = x2 − y2 + 2xy in (2.6) for different M and domains, while

Fig. 3.11 depicts similar results on a rectangular domain D = [−1.6, 1.6] × [−1, 1]

for different M and h(x) in (2.6). In addition, Fig. 3.11 shows similar results with

M = 8 for different h(x) and domain D.

From Figs. 3.10, 3.11 & 3.12 and additional numerical results not shown here

for brevity, we can draw the following conclusions for the steady state patterns

of vortex lattices under the GLE dynamics with Dirichlet BC: (i). The vortex

undergo repulsive interaction between each other and they move to locations near

the boundary of D, there is no collision and a steady state pattern is formed when
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(a)

(b)

(c)

(d)

(e)

Figure 3.11: Contour plots of |φε(x)| for the steady states of vortex lattice in GLE

under Dirichlet BC with ε = 1
16 on a rectangular domain D = [−1.6, 1.6] × [−1, 1]

for M = 8, 12, 16, 20 (from left column to right column) and different h(x): (a)

h(x) = 0, (b) h(x) = x + y, (c) h(x) = x2 − y2, (d) h(x) = x − y, (e) h(x) =

x2 − y2 − 2xy.

t → ∞. In fact, the steady state is also the solution of the following minimization

problem

φε = argminφ(x)|x∈∂D=ψε
0(x)|x∈∂D

Eε(φ).

Actually, based on our extensive numerical experiments, we found that for a vortex

lattice of any configuration, i.e., vortices in the vortex lattice may be opposite wind-

ing number, the vortices either merge and annihilate and all the leftover vortices are
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Figure 3.12: Contour plots of |φε(x)| for the steady states of vortex lattice in GLE

under Dirichlet BC with ε = 1
16 and M = 8 on a unit disk D = B1(0) (top row) or

a square D = [−1, 1]2 (bottom row) under different h(x) = 0, x + y, x2 − y2, x −

y, x2 − y2 − 2xy (from left column to right column).
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Figure 3.13: Width of the boundary layer LW vs M (the number of vortices) under

Dirichlet BC on a square D = [−1, 1]2 when ε = 1
16 for different h(x): (a) h(x) = 0,

(b) h(x) = x+ y.

all pinned in near the boundary finally. This phenomena is similar with the one in

the superconductor involving magnetic field [101].

(ii). During the dynamics, the GL functional decreases when time increases.

(iii). Both the geometry of the domain and the boundary condition, i.e., h(x), affect

the final steady states significantly. The configuration of a vortex lattice at the

steady state follows the symmetry of D and h(x). For example, in the disk domain,

when h(x) = x2 − y2 + 2xy, the vortex lattice is symmetric with respect to the two
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lines y = (1−
√
2)x and y = (1 +

√
2)x which satisfy h(x) = 0 (cf. Fig. 3.10). (iv).

At the steady state, the distance between the vortex centers and ∂D depends on ε

and M . For fixed M , when ε decreases, the distance decreases; and respectively,

for fixed ε, when M increases, the distance decreases. In order to characterize this

distance, we denote

LW := LW (M, ε) = lim
t→∞

min
1≤j≤M

dist(xεj(t), ∂D), M ≥ 2.

For a square domain D = [−1, 1]2, we find these distances numerically and depict

LW (M, ε) with ε = 1
16 for different M in Fig. 3.13. From these results, we can fit

the following relations between LW (M, ε = 1/16) as a function of M as

LW ≈ 0.4M−0.7713, M 6 1,

for h(x) ≡ 0, and respectively,

LW ≈ 0.3714M−0.7164, M 6 1,

for h(x) = x + y. For other cases, we can also fit out similar results, we omit here

for brevity.

3.2.6 Validity of RDL under small perturbation

It is well known that in the NLSE dynamics highly co-rotating vortex will radiate

out sound waves, which will in turn modify their motion. In other words, the reduced

dynamical law which does not take the radiation into account will become invalid

after the sound wave coming up, or equivalent to say, a small perturbation comes up

in the field. To understand if there were same bad situations in the GLE dynamics,

i.e., if the RDL in the GLE dynamics is valid under small perturbation or not, we

take the initial data (1.2) as

ψε(x, 0) = ψδ,ε0 (x) = ψε0(x) + δe−20((|x|−0.48)2+y2), x = (x, y) ∈ D, (3.4)

where ψε0 is given in (2.6) with h(x) ≡ 0, M = 2, n1 = n2 = 1 and x0
1 = −x0

2 =

(0.5, 0), i.e., we perturb the initial data for studying the interaction of a vortex pair



3.3 Numerical results under Neumann BC 47

0 0.25 0.5
0

0.028

0.056

t

d 1δ,
ε

 

 

0 0.25 0.5
0

0.027

0.054

t

d 1δ,
ε

 

 
δ=0,ε=1/16
δ=0,ε=1/32
δ=0,ε=1/64

δ=ε=1/16
δ=ε=1/32
δ=ε=1/64

Figure 3.14: Time evolution of dδ,ε1 (t) for non-perturbed initial data (left) and per-

turbed initial data (right) in section 3.2.6

by a Gaussian function with amplitude δ. Then we take δ = ε and let ε go to

0, and solve the GLE with initial condition (3.4) for the vortex centers xδ,ε1 (t) and

x
δ,ε
2 (t) and compare them with those from the reduced dynamical law. We denote

dδ,εj (t) = |xδ,εj (t) − xr
j(t)| for j = 1, 2 as the error. Fig. 3.14 depicts time evolution

of dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the case when

δ = 0, i.e., no perturbation. From this figure, we can see that small perturbation

in the initial data does not affect the motion of the vortices much, same as that

with non-perturbed initial setups, the dynamics of the two vortex centers under the

GLE dynamics with perturbed initial setups converge to those obtained from the

reduced dynamical law when ε→ 0 as well. Actually, from our extensive numerical

examples, we see that any kind of small perturbations that we consider in the initial

setup does not affect the motion of the vortex dynamics much, the RDL always hold

valid.

3.3 Numerical results under Neumann BC

3.3.1 Single vortex

Here we present numerical results of the motion of a single quantized vortex

under the GLE dynamics and its corresponding reduced dynamical laws, i.e., we

take M = 1 and n1 = 1 in (2.6). Fig. 3.15 depicts trajectory of the vortex center

for different x0
1 in (2.6) when ε = 1

32 in and dε1 for different ε. From Fig. 3.15 and
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Figure 3.15: Trajectory of the vortex center when ε = 1
32 (left column) and dε1 for dif-

ferent ε (right column) for the motion of a single vortex in GLE under homogeneous

Neumann BC with different x0
1 in (2.6): (a) x0

1 = (0, 0.1), (b) x0
1 = (0.1, 0.1).

additional numerical results not shown here for brevity, we can see that: (i). The

initial location of the vortex, i.e., value of x0 affects the motion of the vortex a lot

and this shows the effect on the vortex from the Neumann BC. (ii). If x0
1 = (x0, y0) .=

(0, 0) satisfies x0 = 0 or y0 = 0 or x0 = ±y0, the trajectory is a straight line. (iii).

If x0
1 = (0, 0), the vortex will not move all the time, otherwise, the vortex will move

and finally exit the domain and never come back. This is quite different from the

situations in bounded domain with Dirichlet BC where a single vortex can never

move outside the domain or in the whole space where a single vortex doesn’t move

at all under the initial condition (2.6) when D = R2. (iv). As ε → 0, the dynamics of

the vortex center under the GLE dynamics converges uniformly in time to that of the

reduced dynamical laws well before it exits the domain, which verifies numerically

the validation of the reduced dynamical laws in this case. Of course, when the vortex

center is being exited the domain or after it moves out of the domain, the reduced

dynamics laws are no longer valid. However, the dynamics of GLE is still physically

interesting. In fact, based on our extensive numerical experiments, the motion of

the vortex centers from the reduced dynamical law agrees with that from the GLE

dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1 well

before it moves out of the domain.
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3.3.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the

GLE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = n2 = 1, x0
1 = (−0.5, 0) and x0

2 = (0.5, 0) in (2.6).

Fig. 3.16 depicts time evolution of the amplitude |ψε|, time evolution of the

GL functionals, xr
1(t), x

ε
1(t) and dε1(t), and trajectory of the vortex centers for GLE

under homogeneous Neumann BC.

From Fig. 3.16 and additional numerical results not shown here for brevity,

we can draw the following conclusions for the interaction of vortex pair under the

GLE dynamics with homogeneous Neumann BC: (i). The two vortices undergo a

repulsive interaction, their centers move outwards along the line connected them

initially with symmetric trajectories, i.e., xε1(t) = −xε2(t) (cf. Fig. 3.16 (a) & (b)).

Moreover, if the two vortices are not located symmetrically initially, the one closer

to the boundary will first move outside the domain and the other one will exit

the domain later. All the vortices will exit the domain D at finite time Tε which

increases when ε decreases. (ii). When ε → 0, the dynamics of the two vortex

centers under the GLE dynamics converge uniformly in time to that of the reduced

dynamical laws before any one of them exit the domain (cf. Fig. 3.16(c)), which

verifies numerically the validation of the reduced dynamical laws in this case. In

fact, based on our extensive numerical experiments, the motion of the two vortex

centers from the reduced dynamical laws agree with those from the GLE dynamics

qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1. (iii). During

the dynamics of GLE, the GL functional and its kinetic parts decrease when time

increases, its interaction part doesn’t change much when t is small and changes

dramatically when any one of the two vortices move outside the domain D. When

t → ∞, all the three quantities converge to 0 (cf. Fig. 3.16(c)), which imply that a

constant steady state will be reached in the form of φε(x) = eic0 for x ∈ D with c0

a constant.
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Figure 3.16: Dynamics and interaction of a vortex pair in GLE under Neumann

BC: (a) contour plots of |ψε(x, t)| with ε = 1
32 at different times, (b) trajectory of the

vortex centers (left) and time evolution of the GL functionals (right) for ε = 1
32 , (c)

time evolution of xε1(t) and xr
1(t) (left and middle) and their difference dε1(t) (right)

for different ε.

3.3.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the

GLE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = −1, n2 = 1, x0
1 = (−d0, 0) and x0

2 = (d0, 0) with d0 a constant.

Fig. 3.17 depicts contour plots of the amplitude |ψε|, while Fig. 3.18 shows time

evolution of GL functionals and trajectory of the vortex centers when ε = 1
32 in for
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(a)

(b)

Figure 3.17: Contour plots of |ψε(x, t)| at different times for the interaction of vortex

dipole in GLE under Neumann BC with ε = 1
32 for different d0: (a) d0 = 0.2, (b)

d0 = 0.7.

(a) -0.2 0 0.2
-0.2

0

0.2

x

y 0 0.07 0.14
0

9

18

t
 

 

0 0.07 0.14
0

1.6

3.2

 

 

t

E ε

int

E ε

E ε

kin

(b) -1 0 1
-1

0

1

x

y 0 0.11 0.22
0

10

20

t
 

 

0 0.11 0.22
0

1.7

3.4

t
 

 

E ε

E ε

kin

E ε

int

Figure 3.18: Trajectory of vortex centers (left) and time evolution of the GL func-

tionals (right) for the interaction of vortex dipole in GLE under Neumann BC with

ε = 1
32 for different d0: (a) d0 = 0.2, (b) d0 = 0.7.

different d0 in (2.6). Fig. 3.19 shows time evolution of xr
1(t), x

ε
1(t) and dε1(t) for

different ε and d0.

From Figs. 3.17, 3.18 & 3.19 and additional numerical results not shown here for

brevity, we can draw the following conclusions for the interaction of vortex dipole
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Figure 3.19: Time evolution of xε1(t) and xr
1(t) (left and middle) and their difference

dε1(t) (right) for different ε and d0: (a) d0 = 0.2, (b) d0 = 0.7.

under the GLE dynamics with homogeneous Neumann BC: (i). The initial location

of the vortices, i.e., d0, affects the motion of vortices significantly. In fact, there exists

a critical value drc = dεc for 0 < ε < 1, which is found numerically as drc = 0.5, such

that when the distance between the two vortex centers initially d0 =
1
2 |x

0
1−x0

2| < drc,

then the two vortices will move towards each other along the line connecting their

initial locations and finally merge at the origin at finite time Tε which increases when

ε decreases, and respectively, when d0 > drc, the two vortices will move outwards

along the line connecting their initial locations and finally move out of the domain at

finite time Tε which increases when ε decreases (cf. Figs. 3.17 & 3.18). Moreover, the

trajectories of the two vortices are symmetric, i.e., x1(t) = −x2(t), and finally the

GLE dynamics will lead to a constant steady state with amplitude 1, i.e., φε(x) = eic0

for x ∈ D with c0 a real constant. (ii). When ε → 0, the dynamics of the two vortex

centers under the GLE dynamics converges uniformly in time to that of the reduced

dynamical laws before they collide or move out of the domain (cf. Fig. 3.19) which

verifies numerically the validation of the reduced dynamical laws in this case. In
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fact, based on our extensive numerical experiments, the motion of the two vortex

centers from the reduced dynamical laws agree with those from the GLE dynamics

qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1. (iii). During

the dynamics of GLE, the GL functional and its kinetic part decrease when time

increases, its interaction part doesn’t change much when t is small. All the three

quantities changes dramatically when the two vortices collide or move across ∂D

and eventually converge to 0 when t → ∞ (cf. Fig. 3.18).

3.3.4 Vortex lattices

Here we present numerical results of the interaction of vortex lattices under

the GLE dynamics. We will consider the following cases: case I. M = 3, n1 =

n2 = n3 = 1, x0
1 = (−0.2,

√
3
5 ), x0

2 = (−0.2,−
√
3
5 ), x0

3 = (0.4, 0); case II. M = 3,

n1 = n2 = n3 = 1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case III. M = 3,

n1 = n2 = n3 = 1, x0
1 = (−0.4, 0.2), x0

2 = (0, 0.2), x0
3 = (0.4, 0.2); case IV. M = 3,

n2 = −1, n1 = n3 = 1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case V. M = 3,

n3 = −1, n1 = n2 = 1, x0
1 = (−0.2,

√
3
5 ), x0

2 = (−0.2,−
√
3
5 ), x0

3 = (0.4, 0); case VI.

M = 4, n1 = n2 = n3 = n4 = 1, x0
1 = (0.4,−0.4 sin(1)), x0

2 = (−0.2, 0.4 cos(1)),

x0
3 = (−0.2, 0.4 sin(1)), x0

4 = (0, 0); case VII. M = 4, n1 = n3 = −1, n2 = n4 = 1,

x0
1 = (−0.4, 0), x0

2 = (− 2
15 , 0), x0

3 = ( 2
15 , 0), x0

4 = (0.4, 0); case VIII. M = 4,

n1 = n2 = −1, n3 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (−0.2,
√
3
5 ), x0

3 = (−0.2,−
√
3
5 ),

x0
4 = (0, 0); and case IX. M = 4, n2 = n3 = 1, n1 = n4 = −1, x0

1 = (0.4, 0),

x0
2 = (−0.2,

√
3
5 ), x0

3 = (−0.2,−
√
3
5 ), x0

4 = (0, 0).

Fig. 3.20 shows trajectory of the vortex centers when ε = 1
32 in for the above 9

cases. From Fig. 3.20 and additional numerical results not shown here for brevity, we

can draw the following conclusions: (i). The interaction of vortex lattices under the

GLE dynamics with homogeneous Neumann BC is very interesting and complicated.

The detailed dynamics and interaction pattern of a lattice depends on its initial

alignment of the lattice and geometry of the domain D. (ii). For a lattice of M

vortices, if they have the same index, then at least M − 1 vortices will move out of
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Figure 3.20: Trajectory of vortex centers for the interaction of different vortex

lattices in GLE under homogeneous Neumann BC with ε = 1
32 for cases I-IX (from

left to right and then from top to bottom) in section 3.3.4.

the domain at finite time and no collision will happen for any time t ≥ 0. On the

other hand, if they have opposite index, collision will happen at finite time. After

collisions, the leftover vortices will then move out of the domain at finite time and

at most one vortex may left in the domain. When t is sufficiently large, in most

cases, no vortex is left in the domain; of course, when the geometry and initial setup

are properly symmetric and M is odd, there maybe one vortex left in the domain.
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Figure 3.21: Contour plots of the amplitude |ψε(x, t)| for the initial data (top)

and corresponding steady states (bottom) of vortex lattice in the GLE under ho-

mogeneous Neumann BC with ε = 1
16 for different number of vortices M and

winding number nj : M = 3, n1 = n2 = n3 = 1 (first and second columns);

M = 3, n1 = −n2 = n3 = 1 (third column); and M = 4, n1 = −n2 = n3 = −n4 = 1

(fourth column).

3.3.5 Steady state patterns of vortex lattices

Here we present the steady state patterns of vortex lattices under the GLE

dynamics with homogeneous Neumann BC. To this end, we take ε = 1
16 in and

assume the M vortices are initially located uniformly on a line, i.e.,

x0
j =

(
−0.5 +

j − 1

M − 1
, 0

)
, j = 1, 2, . . . ,M,

or on a circle with radius R1 = 0.5, i.e.,

x0
j = 0.5

(
cos

(
2jπ

M

)
, sin

(
2jπ

M

))
, j = 1, 2, . . . ,M.

Fig. 3.21 depicts the amplitude |ψε| of the initial data and final steady states under

the GLE dynamics with different initial setups.
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From Fig. 3.21 and additional numerical results not shown here for brevity,

we can draw the following conclusions for the interaction of vortex lattices under

the GLE dynamics with homogeneous Neumann BC: (i). If the three like vortices

initially located uniformly on a circle, they will repel each other and finally exit

outside the domain and never come back. (ii). If the three like vortices initially

located uniformly on a line, the left and right vortices will finally exit outside the

domain and never come back, while the middle one does not move all the time. (iii).

If the three vortices initially located uniformly on a line with the middle vortex

whose winding number is opposite to the other two, the middle one will not move

all the time, while the left and right vortices will move toward the origin and one

of them will merge with the middle vortex, finally only one vortex will stay at the

origin forever. (iv). If the four vortices initially located uniformly on a circle with

the sign of winding number alternatively changed, the four vortices will move toward

the original point and merge with each other, and finally there will be no vortex

in the domain. (v). Actually, from our extensive numerical experiments, we can

conclude that for any initial setup, if the number of vortices M is even, the vortices

will either merge or move outside the domain, and finally there will be no vortex

leftover in the domain; while if M is odd, there will be at most one vortex leftover

in the domain when t → ∞.

3.3.6 Validity of RDL under small perturbation

Same as the motivation in section 3.2.6, here we study the radiation property

of the GLE dynamics under homogeneous Neumann BC in this subsection. To this

end, we take the initial data (1.2) as (3.4) with ψε0 chosen as (2.6) with M = 2,

n1 = n2 = 1, x0
1 = −x0

2 = (0.5, 0) and h(x) as (3.3). Then we take δ = ε and let ε go

to 0, and solve the GLE with initial condition (3.4) for the vortex centers xδ,ε1 (t) and

xδ,ε2 (t) and compare them with those from the reduced dynamical law. We denote

dδ,εj (t) = |xδ,εj (t)−xr
j(t)| for j = 1, 2 as the error. Fig. 3.22 depicts time evolution of

dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the case when δ = 0, i.e.,
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Figure 3.22: Time evolution of dδ,ε1 (t) for non-perturbed initial data (left) and per-

turbed initial data (right) in section 3.3.6

no perturbation. From this figure, we can see that small perturbation in the initial

data does not affect the motion of the vortices much, same as the non-perturbed

initial setups, the dynamics of the two vortex centers under the GLE dynamics with

perturbed initial setups also converge to those obtained from the reduced dynamical

law when ε→ 0, which is simply similar as the situation in the GLE dynamics with

perturbed initial data under Dirichlet BC.

3.4 Vortex dynamics in inhomogeneous potential

In this subsection, we study numerically the vortex dynamics in the GLE dynam-

ics under Dirichlet BC in inhomogeneous potential. We let the external potential in

(1.1) as:

V (x) =
1

1 + 9e−γx((x−x0
c)

2−γy(y−y0c )
2)
, x ∈ D, (3.5)

where γx, γy, x0
c and y0c are constants, i.e., we impose a single well external potential

with minimal location sitting at point (x0
c , y

0
c ). To study the joint effect of the

pinning effect, the boundary effect and the interaction between vortices on the vortex

dynamics, we consider two types of inhomogeneous external potential:

• Type I. Symmetric external potential, i.e., γx = γy = 20;

• Type II. Anisotropic external potential, i.e., γx = 30, γy = 15.
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Choose the initial data as (2.6) and for simplicity, we always let h(x) = 0 and

(x0
c , y

0
c ) = (0, 0) =: O. We study following three cases: case I: M = 1, n1 = 1, x1 =

[0.4, 0.4], V (x) is chosen as type I potential; case II: M = 1, n1 = 1, x1 = [0.4, 0.4],

V (x) is chosen as type II potential; case III: M = 2, n1 = n2 = 1, x1 = [−0.3, 0],

x2 = [0, 0.3], V (x) is chosen as type I potential.

Fig. 3.23, shows the trajectory, time evolution of the distance between the vortex

center and potential center and dε1(t) for different ε for case I and II, as well as

trajectory of vortex center for different ε of the vortices for case III. From this figure

and additional numerical experiment not shown here for brevity, we can see that:

(i). For the single vortex, it moves monotonically toward the points xp = (x0
c , y

0
c ),

where the external potential V(x) attains its minimum value (cf. Fig. 3.23 (a)

& (b)), which shows clearly the pinning effect. Moreover, the trajectory depend

on the type of the potential V (x). The speed that vortex move to xp as well as

the final location that vortex stay steady depend on the value of ε (cf. Fig. 3.23

(a) & (b)). The smaller the ε is, the closer the final location to xp and the faster

the vortex move to it. (ii). As ε → 0, the dynamics of the vortex center in the

GLE dynamics converges uniformly in time to that in the reduced dynamics which

verifies numerically the validation of the reduced dynamical laws in this case. (iii).

For the vortex pair, when ε is large, the two vortices will move apart from each other

for a while, then monotonically toward each other and to xp, which illustrate the

pinning effect clearly (cf. Fig. 3.23 (c)). Then, they will move apart from each other

again in the opposite direction with one toward xp due to the repulsive interaction

between the two vortices. Otherwise, when ε is small enough, the vortex will simply

move monotonically close to each other and to xp and finally they will stop and

stay steady at someplace near xp. The smaller the ε is, the closer the two vortex

to the point xp. As we know, in the speeded time scale λε =
1

ln( 1ε )
, the vortex pair

undergo a repulsive interaction and they always move apart from each other toward

the boundary in the GLE dynamics under homogeneous potential when h(x) = 0,

and the smaller the ε is, the stronger they repulse from each other, thus, it might
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Figure 3.23: (a) and (b): trajectory, time evolution of the distance between the

vortex center and potential center and dε1(t) for different ε for case I and II, and (c):

Trajectory of vortex center for different ε of the vortices for case III in section 3.4.

be interesting that we studying the pinning effect of the vortex pair in speeded time

scale to see how the vortex pair continue to move after they move close to xp. Will

they move apart from each other again?

3.5 Conclusion

In this chapter, by applying the efficient and accurate numerical methods pro-

posed in chapter 2 to simulate Ginzburg-Landau equation (GLE) with a dimension-

less parameter 0 < ε < 1 on bounded domains with either Dirichlet or homogenous
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Neumann BC and its corresponding reduced dynamical laws (RDLs), we studied

numerically quantized vortex interaction in GLE with/without impurities for super-

conductivity and compared numerically patterns of vortex interaction between the

GLE dynamics and its corresponding reduced dynamical laws under different initial

setups.

For the GLE under a homogeneous potential, based on extensive numerical re-

sults, we verified that the dynamics of vortex centers under the GLE dynamics

converges to that of the reduced dynamical laws when ε → 0 before they collide

and/or move out of the domain. Certainly, after either vortices collide with each

other or move out of the domain, the RDLs are no longer valid; however, the dy-

namics and interaction of quantized vortices are still physically interesting and they

can be obtained from the direct numerical simulations for the GLE with fixed ε > 0

even after they collide and/or move out of the domain. We also identified the pa-

rameter regimes where the RDLs agree with qualitatively and/or qualitatively as

well as fail to agree with those from the GLE dynamics. In the validity regimes, the

RDL is still valid under small perturbation in the initial data due to the dissipative

nature of the GLE. Some very interesting nonlinear phenomena related to the quan-

tized vortex interactions in the GLE for superconductivity were also observed from

our direct numerical simulation results of GLE. Different steady state patterns of

vortex lattices under the GLE dynamics were obtained numerically. From our nu-

merical results, we observed that boundary conditions and domain geometry affect

significantly on vortex dynamics and interaction, which showed different interaction

patterns compared to those in the whole space case [152, 153].

For the GLE in an inhomogeneous potential under the Dirichlet BC, we also

numerically verified the validity of the RDL. By directly simulating the GLE, we

find that vortices move in quite different ways from that in the homogeneous case.

The vortices basically move toward critical points of the inhomogeneous potential

in the limiting process ε → 0, which show the pinning effect that caused by the

impurities given by the inhomogeneities.



Chapter 4

Vortex dynamics in NLSE

In this chapter, we apply the numerical method presented in chapter 2 to simulate

quantized vortex interaction of NLSE, i.e., λε = 0, β = 1 in the GLSE (1.1), with

different ε and under different initial setups including single vortex, vortex pair,

vortex dipole and vortex lattice. We study how the dimensionless parameter ε,

initial setup, boundary value and geometry of the domain D affect the dynamics

and interaction of vortices. Moreover, we compare the results obtained from the

NLSE with those from the corresponding reduced dynamical laws, and identify the

cases where the reduced dynamical laws agree qualitatively and/or quantitatively

as well as fail to agree with those from NLSE on vortex interaction. Finally, we

also investigate the sound-vortex interaction and study the radiative nature of the

vortices in NLSE dynamics.

Without specification, the initial data is chose as the same one in section 3.1 in

chapter 3.

4.1 Numerical results under Dirichlet BC

4.1.1 Single vortex

In this subsection, we present numerical results of the motion of a single quan-

tized vortex in the NLSE dynamics and the corresponding reduced dynamics, i.e

61
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we take M = 1, n1 = 1 in (2.6). To study how the initial phase shift h(x) and

initial location of the vortex x0 affect the motion of the vortex and to understand

the validity of the reduced dynamical law, we consider the following 11 cases:

• Case I-III: x0
1 = (0, 0), and h(x) is chosen as Mode 1, 2 and 3, respectively;

• Case IV-VIII: x0
1 = (0.1, 0), and h(x) is chosen as Mode 1, 2, 3, 4 and 5,

respectively;

• Case IX-XI: x0
1 = (0.1, 0.1), and h(x) is chosen as Mode 3, 4 and 5, respectively.

Moreover, to study the effect of domain geometry, we consider D of three types: type

I. a square D = [−1, 1] × [−1, 1], type II. a rectangle D = [−1, 1] × [−0.65, 0.65],

and type III. a unit disk D = B1(0). Thus we also study the following 4 additional

cases:

• Case XII-XIII: x0
1 = (0, 0), h(x) = x + y, D is chosen as type II and III,

respectively;

• Case XIV-XV: x0
1 = (0.1, 0), h(x) = x2 − y2, D is chosen as type II and III,

respectively.

Fig. 4.1 depicts trajectory of the vortex center when ε = 1
40 for Cases I-VI and dε1

with different ε for Cases I, V and VI. Fig. 4.2 shows trajectory of the vortex center

when ε = 1
64 in NLSE for cases VI-XI, while Fig. 4.3 shows that for Cases XII-XVII

when ε = 1
32 . From Figs. 4.1-4.3 and additional numerical experiments not shown

here for brevity, we can draw the following conclusions: (i). When h(x) ≡ 0, the

vortex center doesn’t move and this is similar to the case in the whole space. (ii).

When h(x) = (x + by)(x − y
b ) with b .= 0, the vortex does not move if x0

1 = (0, 0),

while it does move if x0
1 .= (0, 0) (cf. Fig. 4.1 Cases III and VI for b = 1). (iii).

When h(x) .= 0 and h(x) .= (x+ by)(x− y
b ) with b .= 0, in general, the vortex center

does move. For the NLSE dynamics, there exists a critical value εc depending on

h(x), x0
1 and D such that if ε < εc, the vortex will move periodically in a close
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loop (cf. Fig. 4.1), otherwise their trajectory will not be a close loop. This differs

from the situation in the reduced dynamics significantly, where the trajectory is

always periodic (cf. Fig. 4.2 red dash line). Thus the reduced dynamical laws fail

qualitatively when ε > εc. It should be an interesting problem to find how this

critical value depends on h(x), x0
1 and the geometry of D. (iv). In general, the

initial location, the geometry of the domain and the boundary value will all affect

the motion of the vortex (cf. Fig. 4.3). (v). When ε → 0, the dynamics of the vortex

center in the NLSE dynamics converges uniformly in time to that in the reduced

dynamics (cf. Fig. 4.1 bottom row) which verifies numerically the validation of the

reduced dynamical laws.

4.1.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the

NLSE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = n2 = 1. We always suppose that the two vortices are initially located symmetric

on the x-axis, i.e., we take x0
2 = −x0

1 = (d0, 0) with 0 < d0 < 1 in (2.6). Let ε = 1
40 ,

we consider the following three cases: case I. d0 = 0.1 and h(x) = 0, case II. d0 = 0.5

and h(x) = 0, case III. d0 = 0.5 and h(x) = x+ y. Fig. 4.4 depicts the trajectory of

the vortex pair, the time evolution of Eε(t), Eεkin(t), xε1(t), xε2(t) and dε1(t) for above

3 cases.

From Figs. 4.4 and additional numerical results not shown here for brevity, we

can draw the following conclusions for the interaction of vortex pair under the NLSE

dynamics with Dirichlet BC: (i). The total energy is conserved during the dynamics

of the NLSE in all cases. (ii). The pattern of the motion of the vortex centers depend

on both the initial location of the two vortices and the initial phase shift h(x) in

(2.6). (iii). When h(x) ≡ 0, the vortices move periodically and their trajectories

are symmetric, i.e., xε1(t) = −xε2(t). Moreover, for both the reduced dynamical law

and NLSE dynamics, there is a critical value of d0, say drc and dεc respectively, such

that if d0 < drc (or d0 < dεc in NLSE dynamics), the two vortices will rotate with
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Figure 4.1: Trajectory of the vortex center in NLSE under Dirichlet BC when ε = 1
40

for Cases I-VI (from left to right and then from top to bottom in top two rows),

and dε1 for different ε for Cases I,V&VI (from left to right in bottom row) in section

4.1.1.

each other and move along a circle-like trajectory, otherwise, they will move along

a crescent-like trajectory (cf. Figs.4.4 (a) & (b)). We find numerically the critical

value drc ≈ 0.4923 and dεc for 0 < ε < 1 which are depicted in Fig. 4.5. From these

values, we can fit the following relation for drc and dεc:

dεc = drc + 2.11ε2.08, 0 < ε < 1.

(iv). When h(x) .= 0, it affects the motion of the two vortex centers significantly (cf.

Figs.4.4 (c)). (v). For any fixed d0, the dynamics of the two vortex centers under
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Figure 4.2: Trajectory of the vortex center in NLSE dynamics under Dirichlet BC

when ε = 1
64 (blue solid line) and from the reduced dynamical laws (red dash line)

for Cases VI-XI (from left to right and then from top to bottom) in section 4.1.1.

the NLSE dynamics converges uniformly in time to that of the reduced dynamical

laws (cf. Figs.4.4 (d)) when ε→ 0. However, for fixed ε, the reduced dynamical law

fails qualitatively to describe the motion of vortices if drc < d0 < dεc.

4.1.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the

NLSE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = −n2 = −1, x0
2 = −x0

1 = (d0, 0) in (2.6) with d0 = 0.5 and ε = 1
25 . Fig.

4.6 depicts contour plots of |ψε(x, t)| at different times, trajectory of the vortex

dipole, time evolution of xε1(t), x
ε
2(t) and dε1(t) for different h(x). From Fig. 4.6 and

additional numerical results not shown here for brevity, we can draw the following

conclusions: (i). The total energy is conserved numerically very well during the

dynamics. (ii). The pattern of the motion of the vortex centers depend on both the

initial location of the two vortices and the initial phase shift h(x) in (2.6). (iii). The



4.1 Numerical results under Dirichlet BC 66

-1 0 1
-0.65

0

0.65

x

y
-1 0 1

-1

0

1

x

y

-1 0 1
-0.65

0

0.65

x

y

-1 0 1
-1

0

1

x

y

Figure 4.3: Trajectory of the vortex center in NLSE under Dirichlet BC when ε = 1
40

for cases I, XII-XIII, VI and XIV-XV (from left to right and then from top to bottom)

in section 4.1.1.

vortex dipole moves upward symmetrically with respect to y-axis and finally merges

and annihilates somewhere near the top boundary simultaneously. The distance

between the merging place and the boundary is of O(ε) when ε is small. After

merging, new waves will be created and reflected by the top boundary. The new

waves will then move back into the domain and be reflected back into the domain

again when they hit the boundaries (cf. Fig. 4.6). Moreover, the vortex dipole in

the NLSE dynamics will always merge in some place near the top boundary for all

d0. However, in the reduced dynamics, they never merge inside D, in fact, they will

move outside the domain before they merge. Hence, the reduced dynamical law fails

quantitatively when the vortex dipole is near the boundary. (iv). When h(x) .= 0,

it affects the motion of the two vortex centers significantly (cf. Figs.4.4 (c)). (v).

When ε → 0, the dynamics of the two vortex centers under the NLSE dynamics

converges uniformly to that of the reduced dynamical laws (cf. Fig. 4.6) before they

merge each other or near the boundary which verifies numerically the validation of
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Figure 4.4: Form left to right in (a)-(c): trajectory of the vortex pair, time evolution

of Eε(t) and Eεkin(t) as well as xε1(t) and xε2(t) for the 3 cases in section 4.1.2. (a).

case I, (b). case II, (c). case III. (d). time evolution of dε1(t) for case I-III (form left

to right).

the reduced dynamical laws in this case. In fact, based on our extensive numerical

experiments, the motions of the two vortex centers from the reduced dynamical
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Figure 4.5: Critical value dεc for the interaction of vortex pair of the NLSE under

the Dirichlet BC with different ε and h(x) = 0 in (2.6): if d0 < dεc, the two vortex

will move along a circle-like trajectory, if d > dεc, the two vortex will move along a

crescent-like trajectory.

laws agree with those from the NLSE dynamics qualitatively when 0 < ε < 1 and

quantitatively when 0 < ε4 1 when they are not too close to the boundary.

4.1.4 Vortex lattice

Here we present numerical studies on the dynamics of vortex lattices in the NLSE

with Dirichlet BC (1.3), i.e., choose the initial data (1.2) as (2.6) and study four

cases:

Case I. M = 3, n1 = n2 = n3 = 1, x0
1 = −x0

3 = (d0, 0) and x0
2 = (0, 0).

Case II. M = 3, n1 = −n2 = n3 = 1, x0
1 = −x0

3 = (d0, 0) and x0
2 = (0, 0).

Case III. M = 4, n1 = n2 = −n3 = −n4 = 1, x0
1 = −x0

2 = (d1, 0) and x0
3 =

−x0
4 = (0, d2) with 0 < d1, d2 < 1.

Case IV. D = B5(0), M = 9, n1 = n2 = · · · = n9 = 1 and the 9 vortex centers are

initially located on a 3×3 uniform mesh points for the rectangle [−d0, d0]× [−d0, d0]

with 0 < d0 < 1.

Fig. 4.7 depicts the trajectory and time evolution of x0
1(t), x

0
2(t) and x0

3(t) in

the NLSE dynamics for Cases I and II. Fig. 4.8 shows contour plots of |ψε| at

different times in the NLSE dynamics for Case III, and Fig. 4.9 depicts contour

plots of −|ψε|, Sε(x, t) as well as slice plots of |ψε(x, 0, t)| for showing sound wave
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Figure 4.6: Contour plots of |ψε(x, t)| at different times (top two rows) as well as

the trajectory, time evolution of xε1(t), x
ε
2(t) and dε1(t) (bottom two rows) for the

dynamics of a vortex dipole with different h(x)in section 4.1.3: (1). h(x) = 0 (top

three rows), (2). h(x) = x+ y (bottom row).

propagation of the NLSE dynamics in Case IV. Based on Figs. 4.7-4.9 and additional

computations not shown here for brevity, we can draw the following conclusions: (i).

For Case I, there exits a critical time Tc depending on both d0 and ε such that when
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Figure 4.7: Trajectory of the vortex xε1 (blue line), xε2 (dark dash-dot line) and xε3

(red dash line) (first and third rows) and their corresponding time evolution (second

and fourth rows) for Case I (top two rows) and Case II (bottom two rows) for small

time (left column), intermediate time (middle column) and large time (right column)

with ε = 1
40 and d0 = 0.25 in section 4.1.4.
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Figure 4.8: Contour plots of |ψε(x, t)| with ε = 1
16 at different times for the NLSE

dynamics of a vortex lattice in Case III with different initial locations: d1 = d2 = 0.25

(top two rows); d1 = 0.55, d2 = 0.25 (middle two rows); d1 = 0.25, d2 = 0.55 (bottom

two rows) in section 4.1.4.



4.1 Numerical results under Dirichlet BC 72

(a) (b)

(c) (d)

(e)

-5 0 5
0

0.56

1.12 t=0

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.56

1.12 t=0.057

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.56

1.12 t=0.174

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.56

1.12 t=0.291

x

|ψ
ε (x

,0
,t)

|

(f)

-5 0 5
0

0.54

1.08 t=0.372

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.54

1.08 t=0.588

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.54

1.08 t=0.777

x

!ψ
ε (x

,0
,t)

|

-5 0 5
0

0.54

1.08 t=0.969

x

|ψ
ε (x

,0
,t)

|

Figure 4.9: Contour plots of −|ψε(x, t)| ((a) & (c)) and the corresponding phase

Sε(x, t) ((b) & (d)) as well as slice plots of |ψε(x, 0, t)| ((e) & (f)) at different times

for showing sound wave propagation under the NLSE dynamics of a vortex lattice

in Case IV with d0 = 0.5 and ε = 1
8 in section 4.1.4.

t < Tc the middle vortex (initially at the origin) will not move while the other two

vortices rotate clockwise around the origin. This dynamics agrees very well with the
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Figure 4.10: Time evolution of dδ,ε1 (t) for non-perturbed initial data (left) and per-

turbed initial data (right) in section 4.1.5

NLSE dynamics in the whole plane [152, 153]. However, when t > Tc, the middle

vortex will begin to move towards one of the other two vortices and form as a vortex

pair which will rotate with each other and also with the other single vortex for a

while. Then this pair will separate and one of them will form a new vortex pair

with the single vortex, leave the other one to be a new single vortex rotating with

them. This process will be repeated tautologically like three dancers exchange their

partners alternatively. This shows that the boundary effect seems essentially affect

the vortex dynamics and interaction (cf. Fig. 4.7). (ii). For Case II, similar as

Case I, there exists a critical time Tc depending on d0 and ε such that when t < Tc

the middle vortex (initially at the origin) will not move while the other two vortices

rotate counterclockwise around the origin. This dynamics agrees very well with the

NLSE dynamics in the whole plane [152, 153]. However, when t > Tc, the middle

vortex will begin to move towards one of the other two vortices and form as a vortex

dipole which will move nearly parallel towards the boundary and merge near the

boundary. Sound waves will be created and reflected back into the domain which

drive the leftover vortex in the domain to move (cf. Fig. 4.7). From section 4.1.1,

we know that a single vortex in the NLSE with h(x) = 0 does not move, hence this

example illustrates clearly the sound-vortex interaction. This also indicates that the

reduced dynamical law fails completely after annihilation when t > Tc. (iii). For

Case III, the four vortices form as two vortex dipoles when t is small. Then the

two dipoles will move outwards in opposite direction and finally the two vortices

in each vortex dipole merge and annihilate at some place near the boundary. If
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d1 = d2, the two vortex dipoles move symmetrically with respect to the line y = x,

and merge some place near the top-right and bottom-left corners, respectively; if

d1 > d2, both of them will move towards the top-bottom boundary and merge near

there; and if d1 < d2, both of them will move towards the side boundary and merge

near there. New waves are created after merging and they are reflected back into

the domain when they hit the boundary (cf. Fig. 4.8). (iv). For Case IV, the vortex

initially at the origin does not move due to symmetry, while the other eight vortices

rotate clockwise and move along two circle-like trajectories (cf. Fig. 4.9). During

the dynamics, sound waves are generated and they propagate outwards and are

reflected back into the domain when they hit the boundary. The distances between

other vortices and the one centered at the origin increase when sound waves are

radiated outwards; on the other hand, they decrease and become even smaller than

their initial distances when sound waves are reflected by the boundary and move

back into the domain (cf. Fig. 4.9). This example clearly shows sound waves and

their impact on the dynamics of vortices.

4.1.5 Radiation and sound wave

We study the radiation property of the NLSE dynamics under Dirichlet BC in

this subsection. To this end, we study two types of perturbation.

Type I: Perturbation on the initial data, i.e., we take the initial data (1.2) as

ψε(x, 0) = ψδ,ε0 (x) = ψε0(x) + δe−10((|x|−0.08)2+y2), x = (x, y) ∈ D, (4.1)

where ψε0 is given in (2.6) with h(x) ≡ 0, M = 2, n1 = n2 = 1 and x0
1 = −x0

2 =

(0.1, 0). Then we take δ = ε and let ε go to 0, and solve the NLSE with initial

condition (4.1) for the vortex centers xδ,ε1 (t) and xδ,ε2 (t) and compare them with those

from the reduced dynamical law. We denote dδ,εj (t) = |xδ,εj (t)− xr
j(t)| for j = 1, 2 as

the error. Fig. 4.10 depicts time evolution of dδ,ε1 (t) for the case when δ = ε, i.e.,

small perturbation, and the case when δ = 0, i.e., no perturbation. From this figure,

we can see that the dynamics of the two vortex centers under the NLSE dynamics
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converge to those obtained from the reduced dynamical law when ε → 0 without

perturbation (cf. Fig. 4.10 left). On the contrary, the two vortex centers under the

NLSE dynamics do not converge to those obtained from the reduced dynamical law

when ε → 0 with small perturbation (cf. Fig. 4.10 right). This clearly demonstrates

radiation and sound wave effect on vortices in the NLSE dynamics with Dirichlet

BC.

Type II: Perturbation by an external potential, i.e., we replace V (x) ≡ 1 in

NLSE by V (x, t) = 1−W (x, t) with

W (x, t) =





− sin(2t)2, t ∈ [0, 0.5],

0, t > 0.5,
x ∈ D. (4.2)

The initial data is chosen as (2.6) with M = 1, n1 = 1, x0
1 = (0, 0), D = B5(0) and

ε = 1
4 . In fact, the perturbation is introduced when t ∈ [0, 0.5] and is removed after

t = 0.5. Fig. 4.11 illustrates surface plots of −|ψε| and contour plots of Sε(x, t)

as well as the slice plots of ψε(x, 0, t) at different times for showing sound wave

propagation. From Fig. 4.11, we can see that the perturbed vortex configuration

rotates and radiates sound waves. This agrees well with some former prediction in

the whole plane, for example, in Lange and Schroers [95] for the case M = 2. The

waves will be reflected back into the domain when they hit the boundary and then

be absorbed by the vortex core. Then the vortex core will radiate new waves and the

process is repeated tautologically. This process explicitly illustrates the radiation in

the NLSE dynamics.

Remark 4.1.1. Based on this example and other numerical results not show here for

brevity, we can conclude that the vortex with winding number m = ±1 is dynamically

stable under the NLSE dynamics in a bounded domain with a perturbation in the

initial data and/or external potential. Meanwhile, we also found numerically that

the vortex with winding number m = 2 and ε = 1
32 is also dynamically stable under

a perturbation in the external potential. Actually, Mirionescu [111] indicated that

for a vortex with winding number |m| > 1, there exists a critical value εcm such



4.1 Numerical results under Dirichlet BC 76

(a) (b)

(c) (d)

(e)

-5 0 5
0

0.54

1.08 t=0

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.54

1.08 t=0.22

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.54

1.08 t=0.52

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.54

1.08 t=0.6

x

|ψ
ε (x

,0
,t)

|

(f)

-5 0 5
0

0.54

1.08 t=1.1

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.59

1.18 t=1.56

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.59

1.18 t=2.4

x

|ψ
ε (x

,0
,t)

|

-5 0 5
0

0.63

1.26 t=2.97

x

|ψ
ε (x

,0
,t)

|

Figure 4.11: Surface plots of −|ψε(x, t)| ((a) & (c)) and contour plots of the corre-

sponding phase Sε(x, t) ((b) & (d)) as well as slice plots of |ψε(x, 0, t)| ((e) & (f)) at

different times for showing sound wave propagation under the NLSE dynamics in a

disk with ε = 1
4 and a perturbation in the potential in section 4.1.5.

that if ε < εcm, the vortex is unstable, otherwise the vortex is stable. It was also

numerically observed that a vortex with |m| > 1 is unstable under a perturbation in
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Figure 4.12: Trajectory of the vortex center when ε = 1
32 and time evolution of dε1 for

different ε for the motion of a single vortex in NLSE under homogeneous Neumann

BC with x0
1 = (0.35, 0.4) (left two) or x0

1 = (0, 0.2) (right two) in (2.6) in section

4.2.1.

the potential but stable under a perturbation in the initial data in the whole plane

case [152]. Hence, it would be an interesting problem to investigate numerically

how the stability of a vortex depends on its winding number, value of ε and strength

and/or type of the perturbation under the NLSE dynamics in bounded domains.

4.2 Numerical results under Neumann BC

4.2.1 Single vortex

Here we present numerical results of the motion of a single quantized vortex

under the NLSE dynamics and its corresponding reduced dynamical laws, i.e., we

take M = 1 and n1 = 1 in (2.6). Fig. 4.12 depicts trajectory of the vortex center

for different x0
1 in (2.6) when ε = 1

32 in NLSE and dε1 for different ε. From Fig. 4.12

and additional numerical results not shown here for brevity, we can see that:

(i). If x0
1 = (0, 0), the vortex will not move all the time, otherwise, the vortex will

move and its initial location x0
1 does not affect its motion qualitatively. Actually,

it moves periodically in a circle-like trajectory centered at the origin. This is quite

different from the situation in bounded domain with Dirichlet BC where the motion

of a single vortex depends significantly on its initial location for some h(x). It is also

quite different from the situation in the whole space where a single vortex doesn’t

move at all under the initial condition (2.6) when D = R2.
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Figure 4.13: Trajectory of the vortex pair (left), time evolution of Eε and Eεkin
(second), xε1(t) and xε2(t) (third), and dε1(t) (right) in the NLSE dynamics under

homogeneous Neumann BC with ε = 1
32 and d0 = 0.5 in section 4.2.2.

(ii). As ε → 0, the dynamics of the vortex center under the NLSE dynamics

converges uniformly in time to that of the reduced dynamical laws. In fact, based

on our extensive numerical experiments, the motion of the vortex center from the

reduced dynamical laws agrees with that from the NLSE dynamics qualitatively

when 0 < ε < 1 and quantitatively when 0 < ε 4 1.

4.2.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the

NLSE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = n2 = 1 and x0
2 = −x0

1 = (d0, 0) with 0 < d0 < 1 in (2.6). Fig. 4.13 depicts the

trajectory of the vortex pair, time evolution of Eε(t), Eεkin(t), xε1(t), xε2(t) and dε1(t)

when ε = 1
32 in NLSE and d0 = 0.5 in (2.6).

From Fig. 4.13 and additional numerical results not shown here for brevity,

we can draw the following conclusions for the interaction of vortex pair under the

NLSE dynamics with homogeneous Neumann BC: (i). The total energy is conserved

numerically very well during the dynamics. (ii). The two vortices move periodically

along a circle-like trajectory for all 0 < d0 < 1 and their trajectories are symmetric.

(iii). When ε → 0, the dynamics of the two vortex centers under the NLSE dynamics

converges uniformly in time to that of the reduced dynamical laws which verifies

numerically the validation of the reduced dynamical laws in this case. In fact, based

on our extensive numerical experiments, the motions of the two vortex centers from
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Figure 4.14: Trajectory and time evolution of xε1(t) and xε2(t) for d0 = 0.25 (top left

two), d0 = 0.7 (top right two) and d0 = 0.1 (bottom left two) and time evolution of

dε1(t) for d0 = 0.25 and d0 = 0.7 (bottom right two) in section 4.2.3.

the reduced dynamical laws agree with those from the NLSE dynamics qualitatively

when 0 < ε < 1 and quantitatively when 0 < ε 4 1.

4.2.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the

NLSE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = −n2 = −1, x0
2 = −x0

1 = (d0, 0) with different d0 and ε = 1
32 . Fig. 4.14 depicts

the trajectory of the vortex dipole, time evolution of xε1(t), x
ε
2(t) and dε1(t).

From Fig. 4.14 and additional numerical results not shown here for brevity,

we can draw the following conclusions for the interaction of vortex dipole under the

NLSE dynamics with homogeneous Neumann BC: (i). The total energy is conserved

numerically very well during the dynamics. (ii). The pattern of the motion of the

two vortices depends on their initial locations. (iii). The two vortices will move

symmetrically (and periodically if they are well separated) with respect to y-axis.

Moreover, there exists a critical value drc = dεc = dc for 0 < ε < 1, which is found

numerically as dc = 0.5, such that if initially d0 < dc, the two vortices will move

firstly upwards to the top boundary, then turn outwards to the side boundary and
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finally move counter-clockwise and clockwise, respectively (cf. Fig. 4.14). While if

d0 > dc, then they will move firstly downwards to the bottom boundary, then turn

inwards to the domain and finally move counter-clockwise and clockwise, respectively

(cf. Fig. 4.14). Certainly, when d0 = 0.5, the vortex dipole does not move due to

symmetry. (iv). For fixed 0 < ε < 1, there exists another critical value d̂εc satisfying

limε→0 d̂εc = 0, such that if d0 < d̂εc, the vortex dipole in the NLSE dynamics will

merge at a finite time Tc depending on ε and d0 (cf. Fig. 4.14). However, the vortex

dipole from the reduced dynamical laws never merges at finite time. Hence, the

reduced dynamical laws fail qualitatively if 0 < d0 < d̂ε0. (v). For fixed d0, when

ε → 0, the dynamics of the two vortex centers in the NLSE dynamics converges

uniformly in time to that of the reduced dynamical laws before they merge (cf.

Figs. 4.14) which verifies numerically the validation of the reduced dynamical laws

in this case. In fact, based on our extensive numerical experiments, the motions of

the two vortex centers from the reduced dynamical laws agree with those from the

NLSE dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1.

4.2.4 Vortex lattice

Here we present numerical studies on the dynamics of vortex lattices in the NLSE

with homogeneous Neumann BC, i.e., we choose the initial data (1.2) as (2.6) and

study four cases:

Case I. M = 3, n1 = n2 = n3 = 1, x0
1 = −x0

3 = (d0, 0) and x0
2 = (0, 0).

Case II. M = 4, n1 = n2 = n3 = n4 = 1, x0
1 = −x0

2 = (d1, 0) and x0
3 = −x0

4 =

(d2, 0) with 0 < d1 .= d2 < 1.

Case III. M = 4, n1 = n2 = −n3 = −n4 = 1, x0
1 = −x0

2 = (d1, 0) and x0
3 =

−x0
4 = (0, d2) with 0 < d1, d2 < 1.

Case IV. M = 9, n1 = · · · = n9 = 1, and the vortex centers are initially located

on a 3×3 uniform mesh points for the rectangle [−d0, d0]×[−d0, d0] with 0 < d0 < 1.

Fig. 4.15 shows trajectory and time evolution of xε1(t), x
ε
2(t) and xε3(t) in the

NLSE dynamics for Case I. Fig. 4.16 depicts contour plots of |ψε| at different times
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Figure 4.15: Trajectory of the vortex xε1 (blue line), xε2 (dark dash-dot line) and xε3

(red dash line) and their corresponding time evolution for Case I during small time

(left column), intermediate time (middle column) and large time (right column) with

ε = 1
40 and d0 = 0.25 in section 4.2.4.

in NLSE dynamics for Cases II and III, and Fig. 4.17 shows contour plots of −|ψε|

and slice plots of |ψ(0, y, t)| in NLSE dynamics for Case IV to show sound wave

propagation. Based on Figs. 4.15-4.17 and additional results not shown here for

brevity, we can draw the following conclusions: (i). For Case I, there exits a critical

time Tc depending on both d0 and ε such that when t < Tc the middle vortex

(initially at the origin) will not move while the other two vortices rotate clockwise

around the origin. This dynamics agrees very well with the NLSE dynamics in the

whole plane [152,153]. However, when t > Tc, the middle vortex will begin to move

towards one of the other two vortices and form as a vortex pair which will rotate with

each other and also with the other single vortex for a while. Then the two vortices in

the pair will separate, one of them will form a new vortex pair with the third single

vortex leaving the other one to be a new single vortex that rotates around them.

This process will repeat tautologically like three dancers exchange their partners
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Figure 4.16: Contour plots of |ψε(x, t)| with ε = 1
16 at different times for the NLSE

dynamics of a vortex lattice for Case II with d1 = 0.6, d2 = 0.3 (top two rows) and

Case III with d1 = d2 = 0.3 (bottom two rows) in section 4.2.4.

alternatively. This indicates that the boundary effect essentially affects the vortex

dynamics and interaction (cf. Fig. 4.15). (ii). For Case II, the four vortices form as

two vortex pairs when t is small. These two pairs rotate with each other clockwise,

meanwhile, the two vortices in each pair also rotate with each other clockwise, and

radiations and sound waves are emitted. The sound waves propagate radially and

are reflected back into the domain when they hit the boundary, which push the two

vortex pairs get closer. When the two vortex pairs get close enough, the two vortices

with smallest distance among the four form a new vortex pair and leave the rest
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Figure 4.17: Contour plots of −|ψε(x, t)| (left) and slice plots of |ψε(0, y, t)| (right)

at different times under the NLSE dynamics of a vortex lattice in Case IV with

d0 = 0.15 and ε = 1
40 for showing sound wave propagation in section 4.2.4.

two as single vortex individually. The vortex pair rotates around the origin. This

process is iteratively repeated during the dynamics (cf. Fig. 4.16 top two rows).

(iii). For Case III, when t is small, the four vortices form as two vortex dipoles

and they move symmetrically with respect to the line y = −x towards the top right

and bottom left corners, respectively. Meanwhile, the two vortices in each dipole

move symmetrically with respect to the line y = x. After a while and when the two

dipoles arrive at some places near the corners, the two vortices in each dipole split

with each other and re-formulate two different dipoles. After this, the two vortices

in each dipole move symmetrically with respect to the line y = −x, and the two

new dipoles then move symmetrically with respect to the line y = x towards their

initial locations. This process is then repeated periodically (cf. Fig. 4.16 bottom
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two rows). (iv). For Case IV, the vortex initially centered at the origin does not

move due to symmetry, and the other eight vortices rotate clockwise and move along

two circle-like trajectories (cf. Fig. 4.17). During the dynamics, sound waves are

generated and they propagate outwards. Some of the sound waves will exit out of the

domain while others are reflected back into the domain when they hit the boundary.

The distances between the one located at the origin and the other vortices become

larger when the sound waves are radiated outwards, while they decrease when the

sound waves are reflected from the boundary and move back into the domain (cf.

Fig. 4.17).

4.2.5 Radiation and sound wave

Here we study numerically how the radiation and sound waves affect the dy-

namics of quantized vortices in the NLSE dynamics under homogeneous Neumann

BC. To this end, we take the initial data (1.2) as (4.1) with ψε0 chosen as (2.6) with

M = 2, n1 = n2 = 1 and x0
1 = −x0

2 = (0.1, 0) and h(x) as (3.3). Then we take δ = ε

and let ε goes to 0, and solve the NLSE with initial condition (4.1) for the vortex

centers xδ,ε1 (t) and x
δ,ε
2 (t) and compare them with those from the reduced dynamical

law. We denote dδ,εj (t) = |xδ,εj (t)− xr
j(t)| for j = 1, 2 as the error. Fig. 4.18 depicts

time evolution of dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the

case when δ = 0, i.e., no perturbation. From this figure, we can see that the dynam-

ics of the two vortex centers under the NLSE dynamics converge to those obtained

from the reduced dynamical law when ε → 0 without perturbation (cf. Fig. 4.18

left). On the contrary, the two vortex centers under the NLSE dynamics do not

converge to those obtained from the reduced dynamical law when ε→ 0 with small

perturbation (cf. Fig. 4.18 right). This clearly demonstrates radiation and sound

wave effect on vortices under the NLSE dynamics with homogenous Neumann BC.
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Figure 4.18: Time evolution of dδ,ε1 (t) for non-perturbed initial data (left) and per-

turbed initial data (right) in section 4.2.5

4.3 Conclusion

In this chapter, by applying the efficient and accurate numerical methods pro-

posed in chapter 2 to simulate nonlinear Schrödinger equation (NLSE) with a di-

mensionless parameter 0 < ε < 1 in bounded domains under either Dirichlet or

homogenous Neumann BC as well as its corresponding reduced dynamical laws for

the dynamics of M quantized vortex centers, we studied numerically quantized vor-

tex dynamics and interaction and investigated the sound-vortex interaction [62,114]

in NLSE for superfluidity as well as examined the validity of the corresponding re-

duced dynamical laws under different initial setups. Based on extensive numerical

results, firstly, we verified that the dynamics of vortex centers under the NLSE dy-

namics converges to that of the reduced dynamical laws when ε → 0 before they

collide and/or move too close to the boundary. Certainly the reduced dynamical law

is only valid up to the first collision time of any two vortices, therefore they cannot

show the vortex dynamics after collision, which, however, can be observed and inves-

tigated by our directly numerical simulations. Secondly, we identified the parameter

regimes where the reduced dynamical laws agree with quantitatively and/or quali-

tatively as well as fail to agree with those from the NLSE dynamics. We concluded

that the dynamical pattern of two vortices depend on the initial phase shift (in the

case of Dirichlet BC) as well as the initial distance of the two vortices. Thirdly, We

also found that the boundary effect affect the vortex interaction very much, which

lead to very different nonlinear phenomena from those observed in the whole plane
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case. The Dirichlet BC might correspond to introduce a tangential force (clockwise

force for negative charged vortex while counter-clockwise for positive charged vortex)

while the Neumann BC might correspond to apply a normal force at the boundary

to the vortices, hence vortices might move according to a crescent-like trajectory, or

move nearly parallel to the boundary without going outside the domain, or merge

near the boundary in some situation. Moreover, we found that the radiation of

NLSE dynamics which is carried by oscillating sound waves modifies the motion of

vortices much, especially in the dynamics of vortex lattice, highly co-rotating vortex

pairs and overlapping vortices. However, it should be reminded that the motion of

the vortices still qualitatively obeys the reduced dynamical law when sound waves

have moved away from them, either absorbed by the vortex core or the boundary.

Finally, we would like to remark here that it should be an interesting question to

find out how the dynamics pattern of the vortices depend on the domain shape

and size as well as the distances between vortices, and it might be fascinating and

difficult problems to extend the reduced dynamical laws for the motion of vortices

involving vortex collision and splitting, which has been conducted by Serfaty [132]

and Bethuel et al. [30] in the context of Ginzburg-Landau equation, as well as find

possible corrections to the reduced dynamical laws due to radiation.



Chapter 5

Vortex dynamics in CGLE

In this chapter, we apply the numerical method presented in chapter 2 to sim-

ulate quantized vortex interaction of CGLE, i.e., λε .= 0, β .= 0 in GLSE (1.1),

with different ε and under different initial setups including single vortex, vortex

pair, vortex dipole and vortex lattice. Let λε = α
ln(1/ε) , we study how the dimen-

sionless parameter ε, initial setup, boundary value and geometry of the domain D

affect the dynamics and interaction of vortices. Moreover, we compare the results

obtained from the CGLE with those from the corresponding reduced dynamical

laws, and identify the cases where the reduced dynamical laws agree qualitatively

and/or quantitatively as well as fail to agree with those from CGLE on vortex in-

teraction. Finally, we also obtain numerically different patterns of the steady states

for quantized vortex lattices and study the alignment of the vortices in the steady

state.

Without specification, we let α = β = 1 and choose the initial data as the same

one in section 3.1 in chapter 3.

87
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5.1 Numerical results under Dirichlet BC

5.1.1 Single vortex

In this subsection, we present numerical results of the motion of a single quan-

tized vortex in the CGLE dynamics and the corresponding reduced dynamics, i.e

we take M = 1, n1 = 1 in (2.6). To study how the initial phase shift h(x) and

initial location of the vortex x0 affect the motion of the vortex and to understand

the validity of the reduced dynamical law, we consider the following 12 cases:

• Case I-III: x0
1 = (0, 0), and h(x) is chosen as Mode 1, 2 and 3, respectively;

• Case IV-VIII: x0
1 = (0.1, 0), and h(x) is chosen as Mode 1, 2, 3, 4 and 5,

respectively;

• Case IX-XII: x0
1 = (0.1, 0.2), and h(x) is chosen as Mode 2, 3, 4 and 5, respec-

tively.

Moreover, to study the effect of domain geometry, we consider domains D of three

types: type I: D = [−1, 1] × [−1, 1], type II: D = [−1, 1] × [−0.65, 0.65], type III:

D = B1(0), and study additionally the following 4 cases:

• Case XIII-XIV: x0
1 = (0, 0), h(x) = x + y and domain D is chosen as type II

and III, respectively;

• Case XV-XVI: x0
1 = (0.1, 0.2), h(x) = x2− y2 and domain D is chosen as type

II and III, respectively.

Fig. 5.1 depicts trajectory of the vortex center when ε = 1
32 for cases II-IV and VI

as well as time evolution of dε1(t) for different ε for cases II and VI. Fig. 5.2 depicts

trajectory of the vortex center for cases V-XII, while Fig. 5.3 shows that for cases

I, X, XIII-XVII when ε = 1
32 in CGLE. From Figs. 5.1-5.3 and additional numerical

experiments not shown here for brevity, we can draw following conclusions: (i).

When h(x) ≡ 0, the vortex center doesn’t move, which is similar to the vortex
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Figure 5.1: Trajectory of the vortex center in CGLE under Dirichlet BC when

ε = 1
32 for cases II-IV and VI and time evolution of dε1 for different ε for cases II and

VI (from left to right and then from top to bottom) in section 5.1.1.
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Figure 5.2: Trajectory of the vortex center in CGLE under Dirichlet BC when ε = 1
32

for cases IV-VII (left) and cases V-XII (right) in section 5.1.1.

dynamics in the whole space and in GLE and NLSE dynamics. (ii). When h(x) =

(x+by)(x− y
b ) with b .= 0, the vortex does not move if x0 = (0, 0), while it does move

if x0 .= (0, 0) (cf. case III and VI for b = 1). This is also same with the phenomena

in GLE and NLSE dynamics. (iii). When h(x) .= 0 and h(x) .= (x + by)(x − y
b )

with b .= 0, in general, the vortex center does move to a different point from its
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Figure 5.3: Trajectory of the vortex center in CGLE under Dirichlet BC when ε = 1
32

for cases: (a) I, XIII, XIV, (b) X, XV, XVI (from left to right) in section 5.1.1.

initial location and stays there forever. This is quite different from the situation

in the whole space, where a single vortex may move to infinity under the initial

data (2.6) with h(x) .= 0. (iv). In general, the initial location, the geometry of the

domain and the boundary value will all affect the motion of the vortex center. (v).

When ε → 0, the dynamics of the vortex center in the CGLE dynamics converges

uniformly in time to that in the reduced dynamics (cf. Fig. 5.1) which verifies

numerically the validation of the reduced dynamical laws. In fact, based on our

extensive numerical experiments, the motion of the vortex center from the reduced

dynamical laws agrees with those from the CGLE dynamics qualitatively when 0 <

ε < 1 and quantitatively when 0 < ε4 1.

5.1.2 Vortex pair

Here we present numerical results of the interaction of vortex pair in the CGLE

dynamics and its corresponding reduced dynamics, i.e., we takeM = 2, n1 = n2 = 1,

x0
1 = (−0.3, 0) and x0

2 = (0.3, 0) in (2.6). Fig. 5.4 depicts the trajectory of the vortex
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Figure 5.4: Trajectory of the vortex centers (a) and their corresponding time

evolution of the GL functionals (b) in CGLE dynamics under Dirichlet BC when

ε = 1
25 with different h(x) in (2.6) in section 5.1.2.

centers and their corresponding time evolution of the GL functionals when ε = 1
25

in the CGLE with different h(x) in (2.6), while Fig. 5.5 shows contour plots of

|ψε(x, t)| for ε = 1
25 at different times as well as the time evolution of xε1(t), x

r
1(t)

and dε1(t) for different ε with h(x) = 0 in (2.6).

From Figs. 5.4 and 5.5 and additional numerical experiments now shown here

for brevity, we can draw the following conclusions for the interaction of vortex pair

in the CGLE dynamics with Dirichlet BC: (i). The two vortices undergo a repulsive

interaction, they never collide. They rotate with each other and meanwhile move

apart from each other towards the boundary of D and finally stop somewhere near

the boundary, which indicates that the boundary imposes a repulsive force on the

vortices (cf. Fig. 5.4). As shown in previous chapters, a vortex pair in the GLE

dynamics moves outward along the line that connects the two vortices and finally

stay steady near the boundary, while in the NLSE dynamics the two vortices always

rotate around each other periodically. Hence, the motion of the vortex pair here is
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somehow the combination of that in the GLE and NLSE dynamics. Actually, from

extensive numerical results, we find that the larger the value β (α) is, the closer

the motion in CGLE dynamics is to that in NLSE (GLE) dynamics, which evidence

numerically that the CGLE under Dirichlet BC is somehow in between the GLE

and NLSE under Dirichlet BC. (ii). The phase shift h(x) affects the motion of the

vortices significantly. When h(x) = (x + by)(x − y
b ) with b .= 0, the vortices will

move outward symmetric with respect to the origin, i.e., x1(t) = −x2(t) (cf. Fig.

5.4). (iii). When ε → 0, the dynamics of the two vortex centers in the CGLE

dynamics converges uniformly in time to that in the reduced dynamics (cf. Fig.

5.5) which verifies numerically the validation of the reduced dynamical laws in this

case. In fact, based on our extensive numerical experiments, the motions of the two

vortex centers from the reduced dynamical laws agree with those from the CGLE

dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1. (iv).

During the dynamics of CGLE, the GL functional and its kinetic part decrease

when time increases, its interaction part changes dramatically when t is small, and

when t → ∞, all the three quantities converge to constants (cf. Fig. 5.4), which

immediately imply that a steady state solution will be reached when t → ∞.

5.1.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the

CGLE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = −n2 = −1, x0
2 = −x0

1 = (0.3, 0) in (2.6). Fig. 5.6 depicts the trajectory of the

vortex centers and their corresponding time evolution of the GL functionals when

ε = 1
25 in the CGLE with different h(x) in (2.6), while Fig. 5.7 shows contour

plot of |ψε(x, t)| for ε = 1
25 at different times as well as the time evolution of xε1(t),

xr
1(t) and dε1(t) for different ε with h(x) = 0 in (2.6). From Figs. 5.6 and 5.7

and additional numerical experiments now shown here for brevity, we can draw the

following conclusions for the interaction of vortex dipole in the CGLE dynamics

with Dirichlet BC: (i). The two vortices undergo an attractive interaction, they
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Figure 5.5: Contour plot of |ψε(x, t)| for ε = 1
25 at different times as well as time

evolution of xε1(t) in CGLE dynamics and xr
1(t) in the reduced dynamics under

Dirichlet BC with h(x) = 0 in (2.6) and their difference dε1(t) for different ε in

section 5.1.2.

will collide and annihilation with each other. (ii). The phase shift h(x) and the

initial distance of the two vortices affect the motion of the vortices significantly. If

h(x) = 0, the vortex dipole will finally merge regardless where they are initially

located. However, similar as the case in GLE dynamics, if h(x) .≡ 0, say h(x) =

x + y for example, there would be a critical distance dεc, which depend on the

value of ε, that divide the motion of the vortex dipole into two groups: (a) if

the distance between the vortex dipole initially |x0
2 − x0

1| > dεc, the vortex will

never merge, they will finally stay steady and separately at some place that near

the boundary. (b) otherwise, they do finally merge and annihilation. (iii). For

h(x) = 0, when ε → 0, the dynamics of the two vortex centers in the CGLE

dynamics converges uniformly in time to that in the reduced dynamics (cf. Fig.

5.7) which verifies numerically the validation of the reduced dynamical laws in this

case. In fact, based on our extensive numerical experiments, the motions of the two
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Figure 5.6: Trajectory of the vortex centers (a) and their corresponding time

evolution of the GL functionals (b) in CGLE dynamics under Dirichlet BC when

ε = 1
25 with different h(x) in (2.6) in section 5.1.3.

vortex centers from the reduced dynamical laws agree with those from the CGLE

dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε 4 1 before

they merge. (iv). During the dynamics of CGLE, the GL functional decreases when

time increases, its kinetic and interaction parts don’t change dramatically when t is

small, and when t → ∞, all the three quantities converge to constants. Moreover,

if finite time merging/annihilation happens, the GL functional and its kinetic and

interaction parts change significantly during the collision. In addition, when t → ∞,

the interaction energy goes to 0 which immediately implies that a steady state will

be reached in the form of φε(x) = eic(x), where c(x) is a harmonic function satisfying

c(x)|∂D = h(x) +
∑M

j=1 njθ(x− x0
j ).

5.1.4 Vortex lattice

Here we present numerical results of the interaction of vortex lattices under the

CGLE dynamics. We consider the following cases: case I. M = 3, n1 = n2 = n3 = 1,
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Figure 5.7: Contour plots of |ψε(x, t)| for ε = 1
25 at different times as well as time

evolution of xε1(t) in CGLE dynamics, xr
1(t) in the reduced dynamics under Dirichlet

BC with h(x) = 0 in (2.6) and their difference dε1(t) for different ε in section 5.1.3.

x0
1 = (0.5, 0); x0

2 = (−0.25,
√
3
4 ), x0

3 = (−0.25,−
√
3
4 ), case II. M = 3, n1 = n2 = n3 =

1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case III. M = 3, n1 = n2 = n3 = 1,

x0
1 = (0, 0.3), x0

2 = (0.15, 0.15), x0
3 = (0.3, 0); case IV. M = 3, −n1 = n2 = n3 = 1,

x0
1 = (0.5, 0); x0

2 = (−0.25,
√
3
4 ), x0

3 = (−0.25,−
√
3
4 ), case V. M = 3, n2 = −1,

n1 = n3 = 1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case VI. M = 3, n1 = −1,

n2 = n3 = 1, x0
1 = (0.2, 0.3), x0

2 = (−0.3, 0.4), x0
3 = (−0.4,−0.2); case VII. M = 4,

n1 = n2 = n3 = n4 = 1, x0
1 = (0.5, 0), x0

2 = (0, 0.5), x0
3 = (−0.5, 0), x0

4 = (0,−0.5);

case VIII. M = 4, n1 = n3 = 1, n2 = n4 = −1, x0
1 = (0.5, 0), x0

2 = (0, 0.5),

x0
3 = (−0.5, 0), x0

4 = (0,−0.5); case IX. M = 4, n2 = n3 = −1, n1 = n4 = 1, x0
1 =

(0.5, 0), x0
2 = (0, 0.5), x0

3 = (−0.5, 0), x0
4 = (0,−0.5); case X. M = 4, n1 = n3 = 1,

n2 = n4 = −1, x0
1 = (0.5, 0.5), x0

2 = (−0.5, 0.5), x0
3 = (−0.5,−0.5), x0

4 = (0.5,−0.5);

case XI. M = 4, n2 = n3 = −1, n1 = n4 = 1, x0
1 = (0.5, 0.5), x0

2 = (−0.5, 0.5),

x0
3 = (−0.5,−0.5), x0

4 = (0.5,−0.5); case XII. M = 4, n1 = n3 = −1, n2 = n4 = 1,

x0
1 = (0.4, 0), x0

2 = (−0.4/3, 0), x0
3 = (0.4/3, 0), x0

4 = (0.4, 0); case XIII. M = 4,
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n2 = n3 = −1, n1 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (−0.4/3, 0), x0
3 = (0.4/3, 0),

x0
4 = (0.4, 0); case XIV. M = 4, n1 = n2 = −1, n3 = n4 = 1, x0

1 = (0.4, 0),

x0
2 = (−0.4/3, 0), x0

3 = (0.4/3, 0), x0
4 = (0.4, 0); case XV. M = 4, n1 = n3 = −1,

n2 = n4 = 1, x0
1 = (0.2, 0.3), x0

2 = (−0.3, 0.4), x0
3 = (−0.4,−0.2); x0

4 = (0.3,−0.3);

Fig. 5.8 shows trajectory of the vortex centers when ε = 1
32 in 1.1 and h(x) = 0 in

(2.6) for the above 15 cases. From Fig. 5.8 and additional numerical experiments not

shown here for brevity, we can draw the following conclusions: (i). The interaction of

vortex lattices under the CGLE dynamics with Dirichlet BC is very interesting and

complicated. The detailed dynamics and interaction pattern of a lattice depends on

its initial alignment of the lattice, geometry of the domain D and the boundary value

g(x). (ii). For a lattice of M vortices, if they have the same index, then no collision

will happen for any time t ≥ 0. On the other hand, if they have opposite index, e.g.

M+ > 0 vortices with index ‘+1’ and M− > 0 vortices with index ‘−1’ satisfying

M+ +M− = M , collision will always happen at finite time. In addition, when t is

sufficiently large, there exist exactly |M+ −M−| vortices of winding number ‘+1’ if

M+ > M−, and resp. ‘−1’ if M+ < M−, left in the domain.

5.1.5 Steady state patterns of vortex lattices

Here we present the steady state patterns of vortex lattices in the CGLE dynam-

ics under Dirichlet BC. We study how the geometry of the domain D and boundary

condition affect the alignment of vortices in the steady states. To this end, we take

ε = 1
32 in,

nj = 1, x0
j = 0.5

(
cos

(
2jπ

M

)
, sin

(
2jπ

M

))
, j = 1, 2, . . . ,M,

i.e., initially we have M like vortices which are located uniformly in a circle centered

at origin with radius R1 = 0.5.

Denote φε(x) as the steady state, i.e., φε(x) = limt→∞ ψε(x, t) for x ∈ D. Fig.

5.9 depicts the contour plots of the amplitude |φε| of the steady state in the CGLE

dynamics with h(x) = 0 in (2.6) for different M and domains, while Fig. 5.10 depicts



5.1 Numerical results under Dirichlet BC 97

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

-1 0 1
-1

0

1

x

y

Figure 5.8: Trajectory of vortex centers for the interaction of different vortex

lattices in GLE under Dirichlet BC with ε = 1
32 and h(x) = 0 for cases I-IX (from

left to right and then from top to bottom) in section 5.1.4.
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(a)

(b)

(c)

Figure 5.9: Contour plots of |φε(x)| for the steady states of vortex lattice in CGLE

under Dirichlet BC with ε = 1
32 for M = 8, 12, 16, 20 (from left column to

right column) and different domains: (a) unit disk D = B1(0), (b) square domain

D = [−1, 1]2, (c) rectangular domain D = [−1.6, 1.6]× [−0.8, 0.8].

similar results with M = 12 for different h(x) in (2.6).

From Figs. 5.9 & 5.10 and additional numerical results not shown here for

brevity, we can draw the following conclusions for the steady state patterns of vor-

tex lattices under the CGLE dynamics with Dirichlet BC: (i). The vortex undergo

repulsive interaction between each other and they move to locations near the bound-

ary of D, there is no collision and a steady state pattern is formed when t → ∞. In

fact, the steady state is also the solution of the following minimization problem

φε = argminφ(x)|x∈∂D=ψε
0(x)|x∈∂D

Eε(φ).

Actually, based on our extensive numerical experiments, we found that for a vortex

lattice of any configuration, i.e., vortices in the vortex lattice may be opposite wind-

ing number, the vortices either merge and annihilate and all the leftover vortices
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Figure 5.10: Contour plots of |φε(x)| for the steady states of vortex lattice in CGLE

under Dirichlet BC with ε = 1
32 and M = 12 on a unit disk D = B1(0) (top row)

or a square D = [−1, 1]2 (middle row) or a rectangular domain D = [−1.6, 1.6] ×

[−0.8, 0.8] (bottom row) under different h(x) = x + y, x2 − y2, x − y, x2 − y2 +

2xy, x2 − y2 − 2xy (from left column to right column).

are all pinned in near the boundary finally. This phenomena is similar with the one

in the superconductor involving magnetic field [101]. (ii). During the dynamics,

the GL functional decreases when time increases. (iii). Both the geometry of the

domain and the boundary condition, i.e., h(x), affect the final steady states signif-

icantly. (iv). At the steady state, the distance between the vortex centers and ∂D

depends on ε and M . For fixed M , when ε decreases, the distance decreases; and

respectively, for fixed ε, when M increases, the distance decreases. We remark it

here as a interesting open problem to find how the width depend on the value of ε,

the boundary condition as well as the geometry of the domain.
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Figure 5.11: Time evolution of dδ,ε1 (t) for non-perturbed initial data (left) and per-

turbed initial data (right) in section 5.1.6

5.1.6 Validity of RDL under small perturbation

As seen from former chapters, the small perturbation affects the motion of the

vortices in NLSE dynamics much but hardly affects those in the GLE dynamics.

The question that how this affects those vortex motion in CGLE dynamics now

come up naturally. To this end, similar as the one studied in the GLE dynamics, we

take the initial data (1.2) as (3.4) with ψε0 chosen as (2.6) with h(x) ≡ 0, M = 2,

n1 = n2 = 1 and x0
1 = −x0

2 = (0.3, 0). Then we take δ = ε and let ε go to 0, and

solve the CGLE under Dirichlet BC and with initial condition (3.4) for the vortex

centers xδ,ε1 (t) and xδ,ε2 (t) and compare them with those from the reduced dynamical

law. We denote dδ,εj (t) = |xδ,εj (t)− xr
j(t)| for j = 1, 2 as the error. Fig. 5.11 depicts

time evolution of dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the

case when δ = 0, i.e., no perturbation. From this figure, we can see that small

perturbation in the initial data does not affect the motion of the vortices much,

same as the non-perturbed initial setups, the dynamics of the two vortex centers

under the CGLE dynamics with perturbed initial setups also converge to those

obtained from the reduced dynamical law when ε → 0. Same as the case in GLE

dynamics, this situation is foreseeable since the CGLE is also a dissipative system,

and small perturbation initially imposed for a dissipative system will not affect the

system much for the dynamics.
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Figure 5.12: Trajectory of the vortex center when ε = 1
25 (left) as well as time

evolution of xε1 (middle) and dε1 for different ε (right) for the motion of a single

vortex in CGLE under homogeneous Neumann BC with different x0
1 in (2.6) in

section 5.2.1.: (a) x0
1 = (0.1, 0), (b) x0

1 = (0.1, 0.2).

5.2 Numerical results under Neumann BC

5.2.1 Single vortex

Here we present numerical results of the motion of a single quantized vortex

under the CGLE dynamics and its corresponding reduced dynamical laws, i.e., we

take M = 1 and n1 = 1 in (2.6). Fig. 5.12 depicts trajectory of the vortex center for

different x0
1 in (2.6) when ε = 1

25 as well as time evolution of xε1 and dε1 for different

ε. From Fig. 5.12 and additional numerical results not shown here for brevity, we

can see that:

(i). The initial location of the vortex, i.e., value of x0 affects the motion of the

vortex a lot and this shows the effect on the vortex from the Neumann BC.

(ii). If x0
1 = (0, 0), the vortex will not move all the time, otherwise, the vortex

will move and finally exit the domain and never come back. This is quite different
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Figure 5.13: Contour plots of |ψε(x, t)| at different times when ε = 1
25 ((a) &

(b)) and the corresponding time evolution of the GL functionals ((c) & (d)) for the

motion of vortex pair in CGLE under homogeneous Neumann BC with different d0

in (2.6) in section 5.2.2: top row: d0 = 0.3, bottom row: d0 = 0.7.

from the situations in bounded domain with Dirichlet BC where a single vortex can

never move outside the domain or in the whole space where a single vortex doesn’t

move at all under the initial condition (2.6) when D = R2.

(iii). As ε → 0, the dynamics of the vortex center under the CGLE dynamics

converges uniformly in time to that of the reduced dynamical laws well before it exits

the domain, which verifies numerically the validation of the reduced dynamical laws

in this case. Surely, when the vortex center is being exited the domain or after it

moves out of the domain, the reduced dynamics laws are no longer valid. However,

the dynamics of CGLE is still physically interesting. In fact, based on our extensive

numerical experiments, the motion of the vortex center from the reduced dynamical

laws agrees with that from the CGLE dynamics qualitatively when 0 < ε < 1 and

quantitatively when 0 < ε4 1 well before it moves out of the domain.
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Figure 5.14: Trajectory of the vortex center when ε = 1
25 (left) as well as time

evolution of xε1 (middle) and dε1 for different ε (right) for the motion of vortex pair

in CGLE under homogeneous Neumann BC with different d0 in (2.6) in section 5.2.2:

(a) d0 = 0.3, (b) d0 = 0.7.

5.2.2 Vortex pair

Here we present numerical results of the interaction of vortex pair under the

CGLE dynamics and its corresponding reduced dynamical laws, i.e., we take M = 2,

n1 = n2 = 1 and x0
2 = −x0

1 = (d0, 0) with 0 < d0 < 1 in (2.6). Fig. 5.13 shows the

contour plots of |ψε(x, t)| at different times when ε = 1
25 , while Fig. 5.14 depicts

the trajectory of the vortex pair when ε = 1
25 as well as time evolution of xε1(t) and

dε1(t) for different d0 in (2.6).

From Figs. 5.14 and 5.13 and additional numerical results not shown here for

brevity, we can draw the following conclusions for the interaction of vortex pair

under the NLSE dynamics with homogeneous Neumann BC:

(i). The initial location of the vortex, i.e., value of d0 affects the motion of the

vortex a lot and this shows the effect on the vortex from the Neumann BC.

(ii). For the CGLE with ε fixed, there exist a sequence of critical values dc,ε1 >
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dc,ε2 > dc,ε3 > · · · > dc,εk > · · · such that: if d0 > dc,ε1 , the two vortex will exit the

domain from the side boundary; if dc,ε1 > d0 > dc,ε2 , the two vortex will exit the

domain from the top-bottom boundary; if dc,ε2 > d0 > dc,ε3 , the two vortex will exit

the domain from the side boundary again. Actually, they exit from the side or top-

bottom boundary alternatively, i.e., for n = 0, 1, · · · : if dc,ε2n > d0 > dc,ε2n+1, the two

vortex will exit the domain from the side boundary; otherwise, if dc,ε2n+1 > d0 > dc,ε2n+2,

the two vortex will exit the domain from the top-bottom boundary. For the reduced

dynamical law, there also exist such series of critical values {dc,rk , k = 0, · · · } which

divide the patterns of the trajectory. It might be an interesting problem to find

those dc,εk and dc,rk , and to study how they agree with each other.

Again, the motion here is somehow the combination of that in the GLE dynam-

ics and that in the NLSE dynamics. The vortex pair in the GLE dynamics will

always move outward along the line that connects the two vortices and finally exit

the domain, while in the NLSE dynamics, they always rotate around each other

periodically. Actually, from extensive numerical results, we find that for a fixed

initial setups, the larger the value β is, the more rotation the pair will do before

they exit the domain, i.e, the closer the motion in CGLE dynamics is to that in

NLSE dynamics; on contrary, the larger the value α, the faster the vortex exit the

domain, in other words, the closer the motion in CGLE dynamics is to that in NLSE

dynamics. This again evidence numerically that the CGLE under Neumann BC is

somehow in between the GLE and NLSE under Neumann BC.

(iii). As ε → 0, the dynamics of the two vortex centers under the CGLE dynamics

converge uniformly in time to that of the reduced dynamical laws well before any

one of them exit the domain, which verifies numerically the validation of the reduced

dynamical laws in this case. Surely, when the vortex centers are being exiting the

domain or after they moves out of the domain, the reduced dynamics laws are no

longer valid. However, the dynamics of CGLE is still physically interesting. In

fact, based on our extensive numerical experiments, the motions of the two vortex

centers from the reduced dynamical laws agree with those from the CGLE dynamics
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Figure 5.15: Contour plots of |ψε(x, t)| at different times when ε = 1
25 and the

corresponding time evolution of the GL functionals for the motion of vortex dipole

in CGLE under homogeneous Neumann BC with different d0 in (2.6) in section 5.2.3:

top row: d0 = 0.3, bottom row: d0 = 0.7.

qualitatively when 0 < ε < 1 and quantitatively when 0 < ε4 1.

(iv). During the dynamics of CGLE, the GL functional and its kinetic parts

decrease when time increases. They doesn’t change much when t is small and changes

dramatically when either one of the two vortices moves outside the domain D. When

t → ∞, all the three quantities converge to 0 (cf. Fig. 5.13 (c) & (d)), which imply

that a constant steady state will be reached in the form of φε(x) = eic0 for x ∈ D

with c0 a constant.

5.2.3 Vortex dipole

Here we present numerical results of the interaction of vortex dipole in the CGLE

dynamics and its corresponding reduced dynamics, i.e., we take M = 2, n2 = −n1 =

1 and x0
2 = −x0

1 = (d0, 0) with 0 < d0 < 1 in (2.6).

Fig. 5.15 shows the contour plots of |ψε(x, t)| at different times when ε = 1
25 ,

while Fig. 5.16 depicts the trajectory of the vortex pair when ε = 1
25 as well as time
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Figure 5.16: Trajectory of the vortex center when ε = 1
25 (left) as well as time

evolution of xε1 (middle) and dε1 for different ε (right) for the motion of vortex dipole

in CGLE under homogeneous Neumann BC with different d0 in (2.6) in section 5.2.2:

(a) d0 = 0.3, (b) d0 = 0.7.

evolution of xε1(t) and dε1(t) for different d0 in (2.6).

From Fig. 5.16 and 5.15 and additional numerical results not shown here for

brevity, we can draw the following conclusions for the interaction of vortex pair

under the NLSE dynamics with homogeneous Neumann BC:

(i). The initial location of the vortex, i.e., value of d0 affects the motion of the

vortex a lot and this shows the effect on the vortex from the Neumann BC. (ii).

For the CGLE with ε fixed, there exists a critical value dεc such that: if d0 > dεc,

the two vortices will exit the domain from the side boundary, otherwise, they will

merge somewhere in the boundary. For the reduced dynamical law, there also exists

such series of critical values drc which divide the patterns of the trajectory. It might

be an interesting problem to find those dεc and drc, and to study how they agree

with each other. Moreover, the trajectories of the two vortices are symmetric i.e.,

x1(t) = −x2(t), and finally the CGLE dynamics will lead to a constant steady state
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with amplitude 1, i.e., φε(x) = eic0 for x ∈ D with c0 a real constant. (iii). As

ε→ 0, the dynamics of the two vortex centers under the CGLE dynamics converge

uniformly in time to that of the reduced dynamical laws well before they move out

of the domain or merge with each other, which verifies numerically the validation of

the reduced dynamical laws in this case. In fact, based on our extensive numerical

experiments, the motions of the two vortex centers from the reduced dynamical

laws agree with those from the CGLE dynamics qualitatively when 0 < ε < 1 and

quantitatively when 0 < ε4 1.

5.2.4 Vortex lattice

Here we present numerical results of the interaction of vortex lattices under the

CGLE dynamics. We consider the following 15 cases:

case I. M = 3, n1 = n2 = n3 = 1, x0
1 = (0.4, 0); x0

2 = (−0.2,
√
3
5 ), x0

3 =

(−0.2,−
√
3
5 ), case II. M = 3, n1 = n2 = n3 = 1, x0

1 = (−0.4, 0.2), x0
2 = (0, 0.2),

x0
3 = (0.4, 0.2); case III. M = 3, n1 = n2 = n3 = 1, x0

1 = (−0.4, 0), x0
2 = (0, 0),

x0
3 = (0.4, 0); case IV. M = 3, −n1 = n2 = n3 = 1, x0

1 = (0.4, 0); x0
2 = (−0.2,

√
3
5 ),

x0
3 = (−0.2,−

√
3
5 ), case V. M = 3, −n2 = n1 = n3 = 1, x0

1 = (−0.4, 0), x0
2 = (0, 0),

x0
3 = (0.4, 0); case VI. M = 3, −n2 = n1 = n3 = 1, x0

1 = (−0.7, 0), x0
2 = (0, 0),

x0
3 = (0.7, 0); case VII. M = 4, n1 = n2 = n3 = n4 = 1, x0

1 = (0.4, 0), x0
2 = (0, 0.4),

x0
3 = (−0.4, 0), x0

4 = (0,−0.4); case VIII. M = 4, n1 = n3 = −1, n2 = n4 = 1,

x0
1 = (0.4, 0), x0

2 = (0, 0.4), x0
3 = (−0.4, 0), x0

4 = (0,−0.4); case IX. M = 4,

n1 = n3 = −1, n2 = n4 = 1, x0
1 = (0.59, 0), x0

2 = (0, 0.59), x0
3 = (−0.59, 0),

x0
4 = (0,−0.59); case X. M = 4, n1 = n3 = −1, n2 = n4 = 1, x0

1 = (0.7, 0),

x0
2 = (0, 0.7), x0

3 = (−0.7, 0), x0
4 = (0,−0.7); case XI. M = 4, n2 = n3 = −1,

n1 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (0, 0.4), x0
3 = (−0.4, 0), x0

4 = (0,−0.4); case XII.

M = 4, n2 = n3 = −1, n1 = n4 = 1, x0
1 = (0.6, 0), x0

2 = (0, 0.6), x0
3 = (−0.6, 0),

x0
4 = (0,−0.6); case XIII. M = 4, n1 = n3 = −1, n2 = n4 = 1, x0

1 = (0.4, 0),

x0
2 = (−0.4/3, 0), x0

3 = (0.4/3, 0), x0
4 = (0.4, 0); case XIV. M = 4, n1 = n3 = −1,

n2 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (−0.4/3, 0), x0
3 = (0.4/3, 0), x0

4 = (0.4, 0); case XV.
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Figure 5.17: Trajectory of vortex centers for the interaction of different vortex

lattices in CGLE under Neumman BC with ε = 1
32 for cases I-IX (from left to right

and then from top to bottom) in section 5.2.4.
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M = 4, n1 = n3 = −1, n2 = n4 = 1, x0
1 = (−0.6, 0), x0

2 = (−0.1, 0), x0
3 = (0.1, 0),

x0
4 = (0.6, 0);

Fig. 5.17 shows trajectory of the vortex centers for the above 15 cases when

ε = 1
32 , while Fig. 5.18 depicts the contour plots of |ψε| for the initial data and

corresponding steady states for cases I, III, V, VI, VII and XIV.

From Figs. 5.17 & 5.18 and additional numerical experiments not shown here

for brevity, we can draw the following conclusions: (i). The interaction of vortex

lattices under the CGLE dynamics with homogeneous BC is very interesting and

complicated. The detailed dynamics and interaction pattern of a lattice depends

on its initial alignment of the lattice and geometry of the domain D. (ii). For a

lattice of M vortices, if they have the same index, then at least M − 1 vortices will

move out of the domain at finite time and no collision will happen for any time

t ≥ 0. On the other hand, if they have opposite index, collision will happen at finite

time. After collisions, the leftover vortices will then move out of the domain at finite

time and at most one vortex may left in the domain. When t is sufficiently large,

in most cases, no vortex is left in the domain; of course, when the geometry and

initial setup are properly symmetric and M is odd, there maybe one vortex left in

the domain. (iii). If finally no vortex leftover in the domain, the GL functionals will

always vanish as t → ∞, which indicate that the final steady states always admit

the form of φε(x) = eic0 for x ∈ D with c0 a real constant.

5.2.5 Validity of RDL under small perturbation

Same as the motivation in section 5.1.6, here we study the radiation property of

the CGLE dynamics under homogeneous Neumann BC in this subsection.

To this end, we take the initial data (1.2) as (3.4) with ψε0 chosen as (2.6) with

M = 2, n1 = n2 = 1, x0
1 = −x0

2 = (0.7, 0) and h(x) as (3.3). Then we take δ = ε

and let ε go to 0, solve the CGLE with initial condition (3.4) for the vortex centers

xδ,ε1 (t) and xδ,ε2 (t) and compare them with those from the reduced dynamical law.

We denote dδ,εj (t) = |xδ,εj (t)− xr
j(t)| for j = 1, 2 as the error. Fig. 5.19 depicts time
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(a)

(b)

(c)

(d)

Figure 5.18: Contour plots of |ψε(x, t)| for the initial data ((a) & (c)) and cor-

responding steady states ((b) & (d)) of vortex lattice in CGLE dynamics under

Neumman BC with ε = 1
32 and for cases I, III, V, VI, VII and XIV (from left to

right and then from top to bottom) in section 5.2.4.

evolution of dδ,ε1 (t) for the case when δ = ε, i.e., small perturbation, and the case

when δ = 0, i.e., no perturbation. From Fig. 5.19, we can see that small perturbation
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Figure 5.19: Time evolution of dδ,ε1 (t) for non-perturbed initial data (left) and per-

turbed initial data (right) in section 5.2.5

in the initial data does not affect the motion of the vortices much, same as the non-

perturbed initial setups, the dynamics of the two vortex centers under the CGLE

dynamics with perturbed initial setups also converge to those obtained from the

reduced dynamical law when ε → 0, which is simply similar as the situation in the

CGLE dynamics with perturbed initial data under Dirichlet BC.

5.3 Vortex dynamics in inhomogeneous potential

In this subsection, we study numerically the vortex dynamics in the CGLE dy-

namics with Dirichlet BC under inhomogeneous potential. Analogous to the one

studied in section 3.4, the external potential and cases studied are chosen as the

same one presented in section 3.4.

Fig. 5.20, shows the trajectory and time evolution of the distance between

the vortex center and potential center for different ε for case I and II, as well as

trajectory of vortex center for different ε of the vortices for case III. From this figure

and additional numerical experiment not shown here for brevity, we can see that:

(i). For the single vortex, it moves monotonically toward the points xp = (x0
c , y

0
c ),

where the external potential V(x) attains its minimum value (cf. Fig. 5.20 (a) &

(b)), which shows clearly the pinning effect. Moreover, the trajectory depend on

the type of the potential V (x). The speed that vortex move to xp as well as the

final location that vortex stay steady depend on the value of ε (cf. Fig. 5.20 (a)

& (b)). The smaller the ε is, the closer the final location to xp and the faster the
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Figure 5.20: Trajectory and time evolution of the distance between the vortex

center different ε for case I-III ((a)-(c)) in section 5.3.

vortex move to it. (ii). As ε → 0, the trajectory seems to converge, and the final

location of the vortex seems to converge to points xp, which are the position that

the potential attain its minimum. (iii). For the vortex pair, well, the phenomena is

quite different from the one in the GLE dynamics. The vortices will always move

close to each other and the point xp firstly, which show the pinning effect. However,

they will move apart from each other and the point xp after some time. And the

smaller the ε is, the farther the vortex pair sit away from each other and the points

xp.
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5.4 Conclusion

In this chapter, by applying the efficient and accurate numerical methods pro-

posed in chapter 2 to simulate complex Ginzburg-Landau equation (CGLE) with a

dimensionless parameter 0 < ε < 1 on bounded domains with either Dirichlet or

homogenous Neumann BC and its corresponding reduced dynamical laws (RDLs),

we studied numerically quantized vortex interaction in CGLE with/without impuri-

ties for superconductivity and compared numerically patterns of vortex interaction

between the CGLE dynamics and its corresponding reduced dynamical laws under

different initial setups. We find that vortex dynamics in the CGLE is somehow the

combination of that in GLE and NLSE.

For the CGLE under a homogeneous potential, based on extensive numerical

results, we verified that the dynamics of vortex centers under the CGLE dynamics

converges to that of the reduced dynamical laws when ε → 0 before they collide

and/or move out of the domain. Certainly, after either vortices collide with each

other or move out of the domain, the RDLs are no longer valid; however, the dy-

namics and interaction of quantized vortices are still physically interesting and they

can be obtained from the direct numerical simulations for the CGLE with fixed

ε > 0 even after they collide and/or move out of the domain. We also identified the

parameter regimes where the RDLs agree with qualitatively and/or qualitatively as

well as fail to agree with those from the CGLE dynamics. In the validity regimes,

the RDL is still valid under small perturbation in the initial data due to the dissipa-

tive nature of the CGLE. Some very interesting nonlinear phenomena related to the

quantized vortex interactions in the CGLE for superconductivity were also observed

from our direct numerical simulation results of CGLE. Different steady state pat-

terns of vortex lattices under the CGLE dynamics were obtained numerically. From

our numerical results, we observed that boundary conditions and domain geome-

try affect significantly on vortex dynamics and interaction, which showed different

interaction patterns compared to those in the whole space case [152, 153].

For the CGLE in an inhomogeneous potential under the Dirichlet BC, by directly
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simulate the GLE, we find that vortices move in a quite different ways from that

in the homogeneous case. The vortices basically move toward critical points of the

inhomogeneous potential in the limiting process ε → 0, which show the pinning

effect that caused by the impurities given by the inhomogeneities.



Chapter 6

Numerical methods for GPE with angular

momentum

In this chapter, we first review how to reduce the 3D GPE (1.10) with strongly

anisotropic confining potential V (x) into 2D GPE, then we propose a simple, effi-

cient and accurate numerical method for simulating the dynamics of rotating Bose-

Einstein condensates (BECs) in a rotational frame with/without a long-range dipole-

dipole interaction. We then apply the numerical method to test the dynamical laws

of rotating BECs such as the dynamics of condensate width, angular momentum

expectation and center-of-mass, and to investigate numerically the dynamics and

interaction of quantized vortex lattices in rotating BECs without/with the long-

range dipole-dipole interaction.

6.1 GPE with angular momentum

In many physical experiments of rotating BEC, the external trap V (x) in (1.10)

is strongly confined in the z-direction, i.e.,

V (x) = V2(x, y) +
z2

2ε4
, x ∈ R3, (6.1)

115
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with 0 < ε 4 1 a given dimensionless parameter [13], resulting in a pancake-shaped

BEC. Similar to the case of a non-rotating BEC, formally the GPE (1.10) or (1.13)-

(1.14) can effectively be approximated by a two-dimensional (2D) GPE as [16,17,39]:

i∂tψ(x⊥, t) =

[
−
1

2
∇2

⊥ + V2(x⊥) +
κ+ λ(3n2

3 − 1)

ε
√
2π

|ψ|2 −
3λ

2
ϕ− ΩLz

]
ψ, (6.2)

ϕ = ϕ(x⊥, t) =
(
∂n⊥n⊥

− n2
3∇2

⊥
)
u(x⊥, t), x⊥ = (x, y)T ∈ R2, t ≥ 0, (6.3)

where ∇⊥ = (∂x, ∂y)T , ∇2
⊥ = ∂xx + ∂yy, n⊥ = (n1, n2)T , ∂n⊥

= n⊥ · ∇⊥, ∂n⊥n⊥
=

∂n⊥
(∂n⊥

) and

u(x⊥, t) = Gε ∗ |ψ|2, Gε(x⊥) =
1

(2π)3/2

∫

R

e−s2/2

√
|x⊥|2 + ε2s2

ds, x⊥ ∈ R2. (6.4)

The above problem (6.2)-(6.3) with (6.4) is usually called surface adiabatic model

(SAM) for a rotating BEC with dipole-dipole interaction in 2D. Furthermore, taking

ε→ 0+ in (6.4), we obtain

Gε(x⊥) →
1

2π|x⊥|
:= G0(x⊥), x⊥ ∈ R2. (6.5)

This, together with (6.4), implies that when ε → 0+,

u(x⊥, t) =
1

2π|x⊥|
∗ |ψ|2 ⇐⇒ (−∇2

⊥)
1/2u = |ψ|2 with lim

|x⊥|→∞
u(x⊥, t) = 0. (6.6)

The problem (6.2)-(6.3) with (6.6) is usually called surface density model (SDM) for

a rotating BEC with dipole-dipole interaction in 2D. Note that even for the SDM

we retain the ε-dependence in (6.2).

In fact, the GPE (1.10) or (1.13) in 3D and the SAM or SDM in 2D can be

written in a unified way in d-dimensions (d = 2 or 3) with x = (x, y)T when d = 2

and x = (x, y, z)T when d = 3:

i∂tψ(x, t) =

[
−
1

2
∇2 + V (x) + β|ψ|2 + ηϕ(x, t)− ΩLz

]
ψ(x, t), (6.7)

ϕ(x, t) = Lnu(x, t), u(x, t) = G ∗ |ψ|2, x ∈ Rd, t ≥ 0, (6.8)

where V (x) = V2(x) when d = 2 and

β =






κ+λ(3n2
3−1)

ε
√
2π

,

κ− λ,
η =





−3λ/2,

−3λ,
Ln =





∂n⊥n⊥

− n2
3∇2, d = 2,

∂nn, d = 3,
(6.9)
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G(x) =






1/2π|x|,

Gε(x),

1/4π|x|,

⇐⇒ Ĝ(ξ) =






1/|ξ|, d = 2 & SDM,

1
2π2

∫
R

e−ε2s2/2

|ξ|2+s2 ds, d = 2 & SAM,

1/|ξ|2, d = 3,

(6.10)

where f̂(ξ) denotes the Fourier transform of the function f(x) for x, ξ ∈ Rd. For

studying the dynamics of a rotating BEC, the following initial condition is used:

ψ(x, 0) = ψ0(x), x ∈ Rd, with ‖ψ0‖2 :=
∫

Rd

|ψ0(x)|2 dx = 1. (6.11)

We remark here that in most BEC experiments, the following dimensionless har-

monic potential is used

V (x) =
1

2





γ2xx

2 + γ2yy
2, d = 2,

γ2xx
2 + γ2yy

2 + γ2zz
2, d = 3,

(6.12)

where γx > 0, γy > 0 and γz > 0 are dimensionless constants proportional to the

trapping frequencies in x-, y- and z-direction, respectively.

6.2 Dynamical properties

In this section, we analytically study the dynamics of rotating dipolar BECs. We

present dynamical laws, including the conservation of angular momentum expecta-

tion, the dynamics of condensate widths and the dynamics of the center of mass.

The results are quite similar to the ones in [17, 24].

6.2.1 Conservation of mass and energy

The GPE in (6.7)–(6.11) has two important invariants: the mass (or normaliza-

tion) of the wave function, which is defined as

N(t) := ‖ψ(·, t)‖2 :=
∫

Rd

|ψ(x, t)|2dx ≡
∫

Rd

|ψ(x, 0)|2dx = 1, t ≥ 0, (6.13)

and the energy per particle

E(t) := E(ψ(·, t)) =
∫

Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4 +

η

2
ϕ|ψ|2 − Ωψ∗Lzψ

]
dx

≡ E(ψ(·, 0)) = E(ψ0), t ≥ 0, (6.14)
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where f ∗ denotes the conjugate of the complex-valued function f . Stationary states,

corresponding to critical points of the energy defined in (6.14), play an important

role in the study of rotating dipolar BECs. Usually, to find stationary states φs(x),

one can use the ansatz

ψ(x, t) = e−iµstφs(x), x ∈ Rd, t ≥ 0, (6.15)

where µs ∈ R is the chemical potential. Substituting (6.15) into (6.7) yields the

nonlinear eigenvalue problem

µsφs(x) =

[
−
1

2
∇2 + V (x) + β|φs|2 + ηϕs − ΩLz

]
φs(x), x ∈ Rd, (6.16)

ϕs(x) = Lnus(x), us(x) = G ∗ |φs|2, x ∈ Rd, (6.17)

under the constraint

‖φs‖2 =
∫

Rd

|φs(x)|2dx = 1. (6.18)

Thus, by solving the constrained nonlinear eigenvalue problem (6.16)–(6.18), one

can find the stationary states of rotating dipolar BECs. In physics literature, the

stationary state with the lowest energy is called ground state, while those with larger

energy are called excited states.

6.2.2 Conservation of angular momentum expectation

The angular momentum expectation of a condensate is defined as [17, 24]

〈Lz〉(t) =
∫

Rd

ψ∗(x, t)Lzψ(x, t) dx, t ≥ 0. (6.19)

This quantity is often used to measure the vortex flux. The following lemma de-

scribes the dynamics of angular momentum expectation in rotating dipolar BECs.

Lemma 6.2.1. Suppose that ψ(x, t) solves the GPE (6.7)–(6.11) with V (x) chosen

as the harmonic potential (6.12). Then we have

d〈Lz〉(t)
dt

= (γ2x − γ2y)

∫

Rd

xy|ψ|2dx− η

∫

Rd

|ψ|2 [(x∂y − y∂x)ϕ] dx, t ≥ 0. (6.20)
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Furthermore, the angular momentum expectation is conserved, i.e.,

〈Lz〉(t) ≡ 〈Lz〉(0), t ≥ 0, (6.21)

if the following two conditions are satisfied: (i). γx = γy; (ii). any one of the

following conditions hold true: (a). η = 0; (b). in 3D, n = (0, 0, 1)T ; (c). in 2D, n =

(0, 0, 1)T and ψ0 satisfies ψ0(x) = f(r)eimθ. That is, in a radially symmetric trap in

2D or a cylindrically symmetric trap in 3D, the angular momentum expectation is

conserved when either there is no dipolar interaction or the dipole axis is parallel to

the z-axis in 3-D or in 2-D with a radially symmetric or central vortex-type initial

data.

Proof. Differentiating (6.19) with respect to t, integrating by parts and taking (6.7)

into account, we get

d〈Lz〉(t)
dt

=− i

∫

R3

[
ψ∗
t (x∂y − y∂x)ψ + ψ∗(x∂y − y∂x)ψt

]
dx

=

∫

R3

[
(−iψ∗

t )(x∂y − y∂x)ψ + (iψt)(x∂y − y∂x)ψ
∗
]
dx

=

∫

R3

[
−

1

2

(
∇2ψ∗(x∂y − y∂x)ψ +∇2ψ(x∂y − y∂x)ψ

∗)

+
(
V (x) + βd|ψ|2 + ηϕ

) [
(x∂y − y∂x)|ψ|2

] ]
dx

=−
∫

R3

|ψ|2
[
(x∂y − y∂x) (V (x) + ηϕ)

]
dx, t ≥ 0. (6.22)

Substituting (6.12) into (6.22) leads to (6.20) immediately. In 3D, due to (1.14), the
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second term in (6.20) further becomes

− η

∫

R3
|ψ|2(x∂y − y∂x)ϕdx = η

∫

R3
∇2u(x∂y − y∂x) (∂nnu) dx

=− η

∫

R3
(∂ny∇2u+ y∇2∂nu)(∂x∂nu)dx+ η

∫

R3
(∂nx∇2u+ x∇2∂nu)(∂y∂nu) dx

=η

∫

R3

[
n1∂y(∂nu)− n2∂x(∂nu)

]
∇2u dx− η

∫

R3

[
x∂y(∂nu)− y∂x(∂nu)

]
∇2(∂nu) dx

=η

∫

R3

[
n1∂y(∂nu)− n2∂x(∂nu)

]
|ψ|2 dx+ η

∫

R3

[
y(∇∂nu)∂x(∇ · ∂nu)

+∇y∇(∂nu)∂x(∂nu)− x(∇∂nu)∂y(∇∂nu)−∇x∇(∂nu)∂y(∂nu)
]
dx

=η

∫

R3

[
n1∂y(∂nu)− n2∂x(∂nu)

]
|ψ|2 dx+ η

∫

R3
(∇∂nu)(y∂x − x∂y)(∇∂nu)dx

=η

∫

R3

[
n1∂y(∂nu)− n2∂x(∂nu)

]
|ψ|2 dx, t ≥ 0. (6.23)

Thus, in a radially symmetric trap, i.e., γx = γy, if there is λ = 0 or n = (0, 0, 1)T ,

we get

d〈Lz〉(t)
dt

= 0, t ≥ 0, (6.24)

from (6.20) and (6.23), which implies the conservation of 〈Lz〉 in (6.21).

Look into (6.20), claims in (ii) (a) is clearly and (c) is straightforward due to the

radial symmetry of the solution of ψ(x, t) under the condition given there.

6.2.3 Dynamics of condensate width

The condensate width of a BEC in α-direction (where α = x, y, z or r =
√
x2 + y2)

is defined by

σα(t) =
√
δα(t), t ≥ 0, where δα(t) =

∫

Rd

α2|ψ(x, t)|2dx. (6.25)

In particular, when d = 2, we have the following lemma for its dynamics [17]:

Lemma 6.2.2. Consider two-dimensional BECs with radially symmetric harmonic

trap (6.12), i.e., d = 2 and γx = γy := γr. If η = 0, then for any initial datum

ψ0(x) in (6.11), it holds for t ≥ 0

δr(t) =
E(ψ0) + Ω〈Lz〉(0)

γ2r
[1− cos(2γrt)] + δ(0)r cos(2γrt) +

δ(1)r

2γr
sin(2γrt), (6.26)
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where δr(t) := δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0) and δ

(1)
r := δ̇x(0) + δ̇y(0). Further-

more, if the initial condition ψ0(x) is radially symmetric, we have for t ≥ 0

δx(t) = δy(t) =
1

2
δr(t)

=
E(ψ0) + Ω〈Lz〉(0)

2γ2x
[1− cos(2γxt)] + δ(0)x cos(2γxt) +

δ(1)x

2γx
sin(2γxt). (6.27)

Thus, in this case the condensate widths σx(t) and σy(t) are periodic functions with

frequency doubling trapping frequency.

Proof. Differentiating (6.25) with respect to t, integrating by parts and taking (6.7)

into account, we obtain

dδα(t)

dt
=

∫

Rd

α2 (ψ∗
tψ + ψ∗ψt) dx = i

∫

Rd

α2
[
(−iψ∗

t )ψ − ψ∗(iψt)
]
dx

= i

∫

Rd

[
−
α2

2

(
ψ∇2ψ∗ − ψ∗∇2ψ

)
− iΩα2 (x∂y − y∂x) |ψ|2

]
dx

=

∫

Rd

[
iα(ψ∂αψ

∗ − ψ∗∂αψ)− 2Ωα|ψ|2(x∂y − y∂x)α
]
dx, t ≥ 0. (6.28)

Similarly, differentiating (6.28) with respect to t, integrating by parts and noticing

(6.7), we have

d2δα(t)

dt2
=

∫

Rd

α

[
i
(
ψtψ

∗
α + ψψ∗

αt − ψ∗
tψα − ψ∗ψαt

)
− 2Ω(ψ∗

tψ + ψ∗ψt)(x∂y − y∂x)α

]
dx

=

∫

Rd

[
2α
(
(iψt)ψ

∗
α + (−iψ∗

t )ψα
)
+
(
ψ∗(iψt) + ψ(−iψ∗

t )
)

− 2iΩα(x∂yα− y∂xα)
(
(−iψ∗

t )ψ − ψ∗(iψt)
)]

dx

=

∫

Rd

[
α
(
− (ψ∗

α∇2ψ + ψα∇2ψ∗) + 2(V (x) + β|ψ|2 + ηϕ)∂α|ψ|2

+ 2iΩ(ψ∗
α(x∂y − y∂x)ψ − ψα(x∂y − y∂x)ψ

∗)
)
+
(
−

1

2
(ψ∗∇2ψ + ψ∇2ψ∗)

+ 2(V (x) + β|ψ|2 + ηϕ)|ψ|2 − iΩ(ψ(x∂y − y∂x)ψ
∗ − ψ∗(x∂y − y∂x)ψ)

)

+ 2iΩα(x∂yα− y∂xα)
(1
2
(ψ∇2ψ∗ − ψ∗∇2ψ) + iΩ(x∂y − y∂x)|ψ|2

)]
dx;
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Moreover, we obtain for t ≥ 0

d2δα(t)

dt2
=

∫

Rd

[(
2|ψα|2 − |∇ψ|2 − 2(V (x) + β|ψ|2 + ηϕ)|ψ|2 + β|ψ|4

− 2α|ψ|2∂α(V (x) + ηϕ) + 2iΩ(∂yα− ∂xα)ψ
∗(x∂y + y∂x)ψ

− 2iΩψ∗(x∂y − y∂x)ψ
)
+
(
|∇ψ|2 + 2(V (x) + β|ψ|2 + ηϕ)|ψ|2

+ 2iΩψ∗(x∂y − y∂x)ψ
)
+ (∂yα− ∂xα)

(
2iΩψ∗(x∂y + y∂x)ψ

+ 2Ω2(x2 − y2)|ψ|2
)]

dx

= −2γ2αδα(t) +

∫

R2

[
2|ψα|2 + β|ψ|4 − 2ηα|ψ|2∂αϕ

+ (∂yα− ∂xα)
(
4iΩ(x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

)]
dx. (6.29)

Hence when d = 2, if γx = γy = γr and η = 0, combine with (6.29), (6.14) and

lemma 6.2.1, we have

d2δr(t)

dt2
=
d2δx(t)

dt2
+

d2δy(t)

dt2
= −4γ2r δr(t) + 2

∫

R2

[
|∇ψ|2 + β|ψ|4

]
dx

=− 4γ2rδr(t) + 4

∫

R2

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx

+ 4Ω

∫

R2

Re(ψ∗Lzψ)dx

=− 4γ2rδr(t) + 4E(ψ0) + 4Ω〈Lz〉(0), t ≥ 0. (6.30)

Thus, (6.26) is the unique solution of the second order ODE (6.30) with the

initial condition δr(0) = δ(0)r and δ̇r(0) = δ(1)r .

Furthermore, if ψ0 has radial symmetric structure, the solution ψ(x, t) is also

radial symmetric since γx = γy, and can be rewritten in the form of

ψ(x, t) = f(r, t)eimθ(t)

and thus

δx(t) =

∫

Rd

x2|φ|2dx =

∫ ∞

0

∫ 2π

0

r2 cos2 θ|f(r, t)|2rdθdr

= π

∫ ∞

0

r2|f(r, t)|2rdr =
∫ ∞

0

∫ 2π

0

r2 sin2 θ|f(r, t)|2rdθdr

=

∫

Rd

y2|φ|2dx = δy(t) =
1

2
δr(t). (6.31)
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6.2.4 Dynamics of center of mass

We define the center of mass of a condensate at any time t by

xc(t) =

∫

Rd

x |ψ(x, t)|2dx, t ≥ 0. (6.32)

The following lemma describes the dynamics of the center of mass.

Lemma 6.2.3. Suppose that ψ(x, t) solves the GPE (6.7)–(6.11) with V (x) chosen

as the harmonic potential (6.12). Then for any given initial data ψ0, the dynamics

of the center of mass are governed by the following second-order ODEs:

ẍc(t)− 2ΩJ ẋc(t) + (Λ+ Ω2J2)xc(t) = 0, t ≥ 0, (6.33)

xc(0) = x(0)
c :=

∫

Rd

x|ψ0|2dx, (6.34)

ẋc(0) = x(1)
c :=

∫

Rd

Im (ψ∗
0∇ψ0) dx− ΩJx(0)

c , (6.35)

where Im(f) denotes the imaginary part of the function f and the matrices

J =



 0 1

−1 0



 , Λ =



 γ2x 0

0 γ2y



 , for d = 2,

or

J =





0 1 0

−1 0 0

0 0 0



 , Λ =





γ2x 0 0

0 γ2y 0

0 0 γ2z



 , for d = 3.

Proof. For simplicity, we consider d = 3 in the following proof. Differentiating (6.32)

with respect to t, integrating by parts and taking (6.7) into account, we obtain

dxc(t)

dt
=

∫

R3
x(ψ∗

t ψ + ψ∗ψt)dx = i

∫

R3
x
[
(−iψ∗

t )ψ − ψ∗(iψt)
]
dx

= i

∫

R3

[
−

1

2
x
(
ψ∇2ψ∗ − ψ∗∇2ψ

)
− iΩx(x∂y − y∂x)|ψ|2

]
dx

=

∫

R3

[
− iψ∗∇ψ − Ω|ψ|2(x∂y − y∂x)x

]
dx

=

∫

R3

(
− iψ∗∇ψ + ΩJx|ψ|2

)
dx = ΩJxc(t)− i

∫

R3
(ψ∗∇ψ) dx, t ≥ 0. (6.36)
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Differentiating (6.36) with respect to t and following the similar procedures, we have

d2xc(t)

dt2
− ΩJ

dxc(t)

dt

= −i

∫

R3

(ψ∗
t∇ψ + ψ∗∇ψt) dx =

∫

R3

[
(−iψ∗

t )∇ψ + (iψt)∇ψ∗
]
dx

=

∫

R3

[
−

1

2

(
∇2ψ∗∇ψ +∇2ψ∇ψ∗)+ (V (x) + ηϕ)∇|ψ|2

− iΩ
(
(x∂y − y∂x)ψ

∗∇ψ − (x∂y − y∂x)ψ∇ψ∗
)]

dx

= −
∫

R3

|ψ|2∇ [V (x) + ηϕ] dx− iΩJ

∫

R3

(ψ∗∇ψ) dx. (6.37)

Noticing (6.36) and V (x) defined in (6.12), we can rewrite the ODE (6.37) as

d2xc(t)

dt2
− ΩJ

dxc(t)

dt

= −Λ

∫

R3

x|ψ|2dx− ΩJ

(
dxc(t)

dt
+ ΩJxc(t)

)
+ η

∫

R3

(∇2u)∇∂nnu dx

= −Λ

∫

R3

x|ψ|2dx− ΩJ

(
dxc(t)

dt
+ ΩJxc(t)

)
− η

∫

R3

∇|∇(∂nu)|2 dx

= −Λxc(t) + ΩJ
dxc(t)

dt
+ Ω2xc(t), t ≥ 0. (6.38)

Combining (6.38) with (6.32) and (6.36) at time t = 0, we can get the ODEs (6.33)–

(6.35).

Lemma 6.2.3 shows that the dynamics of the center of mass depends on the trapping

frequencies and the angular velocity, but it is independent of the interaction strength

constants β and η in (6.7). For analytical solutions to the second-order ODEs (6.33)-

(6.35), we refer to [151].

6.2.5 An analytical solution under special initial data

From Lemma 6.2.3, we can construct an analytical solution to the GPE (6.7)–

(6.11) when the initial data is chosen as a stationary state with its center shifted.

Lemma 6.2.4. Suppose V (x) in (6.7) is chosen as the harmonic potential (6.12)

and the initial condition ψ0(x) in (6.11) is chosen as

ψ0(x) = φs(x− x0), x ∈ Rd, (6.39)
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where x0 ∈ Rd is a given point and φs(x) is a stationary state defined in (6.16)–

(6.18) with chemical potential µs, then the exact solution of (6.7)–(6.11) can be

constructed as

ψ(x, t) = φs(x− xc(t)) e
−iµst eiw(x,t), x ∈ Rd, t ≥ 0, (6.40)

where xc(t) satisfies the ODE (6.33) with

xc(0) = x0, ẋc(0) = −ΩJx0, (6.41)

and w(x, t) is linear in x, i.e.,

w(x, t) = c(t) · x + g(t), c(t) = (c1(t), . . . , cd(t))
T , x ∈ Rd, t ≥ 0

for some functions c(t) and g(t). Thus, up to phase shifts, ψ remains a stationary

state with shifted center at all times.

6.3 GPE under a rotating Lagrangian coordinate

In this section, we first introduce a coordinate transformation and derive the

GPE in transformed coordinates. Then we reformulate the dynamical quantities

studied in Section 6.2 in the new coordinate system.

6.3.1 A rotating Lagrangian coordinate transformation

For any time t ≥ 0, let A(t) be an orthogonal rotational matrix defined as

A(t) =



 cos(Ωt) sin(Ωt)

− sin(Ωt) cos(Ωt)



 , if d = 2, (6.42)

and

A(t) =





cos(Ωt) sin(Ωt) 0

− sin(Ωt) cos(Ωt) 0

0 0 1




, if d = 3. (6.43)
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It is easy to verify that A−1(t) = AT (t) for any t ≥ 0 and A(0) = I with I the

identity matrix. For any t ≥ 0, we introduce the rotating Lagrangian coordinates x̃

as [10, 63, 71]

x̃ = A−1(t)x = AT (t)x ⇔ x = A(t)x̃, x ∈ Rd, (6.44)

and denote the wave function in the new coordinates as φ := φ(x̃, t)

φ(x̃, t) := ψ(x, t) = ψ (A(t)x̃, t) , x ∈ Rd, t ≥ 0. (6.45)

In fact, here we refer the Cartesian coordinates x as the Eulerian coordinates and

Fig. 6.1 depicts the geometrical relation between the Eulerian coordinates x and

the rotating Lagrangian coordinates x̃ for any fixed t ≥ 0.

Ωt

ỹ

x̃

y

x

Figure 6.1: Cartesian (or Eulerian) coordinates (x, y) (solid) and rotating La-

grangian coordinates (x̃, ỹ) (dashed) in 2D for any fixed t ≥ 0.

Using the chain rule, we obtain the derivatives:

∂tφ(x̃, t) = ∂tψ(x, t) +∇ψ(x, t) ·
(
Ȧ(t)x̃

)
= ∂tψ(x, t)− Ω(x∂y − y∂x)ψ(x, t),

∇φ(x̃, t) = A−1(t)∇ψ(x, t), ∇2φ(x̃, t) = ∇2ψ(x, t).

Substituting them into (6.7)–(6.11) gives the following d-dimensional GPE in the

rotating Lagrangian coordinates:

i∂tφ(x̃, t) =

[
−
1

2
∇2 +W (x̃, t) + β|φ|2 + ηϕ(x̃, t)

]
φ(x̃, t), x̃ ∈ Rd, t > 0, (6.46)

ϕ(x̃, t) = Lm(t)u(x̃, t), u(x̃, t) = G ∗ |φ|2, x̃ ∈ Rd, t ≥ 0, (6.47)
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where G is defined in (6.10) and

W (x̃, t) = V (A(t)x̃), x̃ ∈ Rd, (6.48)

Lm(t) =





∂m⊥(t)m⊥(t) − n2

3∇2, d = 2,

∂m(t)m(t), d = 3,
t ≥ 0, (6.49)

with m(t) ∈ R3 and m⊥(t) ∈ R2 defined as

m(t) =





m1(t)

m2(t)

m3(t)




:= A−1(t)n =





n1 cos(Ωt)− n2 sin(Ωt)

n1 sin(Ωt) + n2 cos(Ωt)

n3




, t ≥ 0, (6.50)

and m⊥(t) = (m1(t), m2(t))T , respectively. The initial data transforms as

φ(x̃, 0) = ψ(x, 0) = ψ0(x) := φ0(x) = φ0(x̃), x̃ = x ∈ Rd. (6.51)

We remark here again that if V (x) in (6.7) is a harmonic potential as defined in

(6.12), then the potential W (x̃, t) in (6.46) has the form

W (x̃, t) =
1

4





ω1(x̃2 + ỹ2) + ω2 [(x̃2 − ỹ2) cos(2Ωt) + 2x̃ỹ sin(2Ωt)] , d = 2,

ω1(x̃2 + ỹ2) + ω2 [(x̃2 − ỹ2) cos(2Ωt) + 2x̃ỹ sin(2Ωt)] + 2γ2z z̃
2, d = 3,

where ω1 = γ2x + γ2y and ω2 = γ2x − γ2y . It is easy to see that when γx = γy := γr,

i.e., radially and cylindrically symmetric harmonic trap in 2D and 3D, respectively,

we have ω1 = 2γ2r and ω2 = 0 and thus the potential W (x̃, t) = V (x̃) becomes

time-independent.

In contrast to (6.7), the GPE (6.46) does not have an angular momentum rota-

tion term, which enables us to develop simple and efficient numerical methods for

simulating the dynamics of rotating dipolar BEC in Section 6.4.

6.3.2 Dynamical quantities

In the above, we introduced rotating Lagrangian coordinates and cast the GPE

in the new coordinate system. Next we consider the dynamical laws in terms of the

new wave function φ(x̃, t).
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Mass and energy. In rotating Lagrangian coordinates, the conservation of mass

(6.13) yields

‖ψ(·, t)‖2 :=
∫

Rd

|ψ(x, t)|2dx =

∫

Rd

|φ(x̃, t)|2dx̃ = ‖φ(·, t)‖2 ≡ 1, t ≥ 0. (6.52)

The energy defined in (6.14) becomes

Ẽ(φ(·, t)) =
∫

Rd

[
1

2
|∇φ|2 +W (x̃, t)|φ|2 +

β

2
|φ|4 +

η

2
ϕ|φ|2

]
dx̃

−
∫

Rd

∫ t

0

[
∂sW (x̃, s) +

η

2
(∂sLm(s))u(x̃, s)

]
|φ|2ds dx̃

≡ Ẽ(φ(·, 0)), t ≥ 0, (6.53)

where u is given in (6.47). Specifically, it holds

∂tLm(t) = 2






∂ȦT (t)n⊥
∂AT (t)n⊥

, d = 2,

∂ȦT (t)n∂AT (t)n, d = 3.

Angular momentum expectation. The angular momentum expectation in the

new coordinates becomes

〈Lz〉(t) = −i

∫

Rd

ψ∗(x, t)(x∂y − y∂x)ψ(x, t) dx

= −i

∫

Rd

φ∗(x̃, t)(x̃∂ỹ − ỹ∂x̃)φ(x̃, t) dx̃, t ≥ 0, (6.54)

which has the same form as (6.19) in the new coordinates of x̃ ∈ Rd and the

wave function φ(x̃, t). Indeed, if we denote L̃z as the z-component of the angular

momentum in the rotating Lagrangian coordinates, we have L̃z = −i(x̃∂ỹ − ỹ∂x̃) =

−i(x∂y − y∂x) = Lz, i.e., the coordinate transform does not change the angular

momentum in z-direction. In addition, noticing that for any t ≥ 0 it holds φ(x̃, t) =

ψ(x, t) and |A(t)| = 1 for any t ≥ 0 immediately yields (6.54).

Condensate width. After the coordinate transform, it holds

δr(t) =

∫

Rd

(x2 + y2)|ψ|2dx =

∫

Rd

(x̃2 + ỹ2)|φ|2dx̃ = δx̃(t) + δỹ(t), (6.55)

δz(t) =

∫

Rd

z2|ψ|2dx =

∫

Rd

z̃2|φ|2dx̃ = δz̃(t), (6.56)
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for any t ≥ 0.

Center of mass. The center of mass in rotating Lagrangian coordinates is defined

as

x̃c(t) =

∫

Rd

x̃ |φ(x̃, t)|2dx̃, t ≥ 0. (6.57)

Since det(A(t)) = 1 for any t ≥ 0, it holds that xc(t) = A(t)x̃c(t) for any time t ≥ 0.

In rotating Lagrangian coordinates, we have the following analogue of Lemma 6.2.4:

Lemma 6.3.1. Suppose V (x) in (6.7) is chosen as the harmonic potential (6.12)

and the initial condition φ0(x̃) in (6.51) is chosen as

φ0(x̃) = φs(x̃− x̃0), x̃ ∈ Rd, (6.58)

where x̃0 is a given point in Rd and φs(x̃) is a stationary state defined in (6.16)–

(6.18) with chemical potential µs, then the exact solution of (6.46)–(6.47) is of the

form

φ(x̃, t) = φs(x̃− x̃c(t)) e
−iµst eiw̃(x̃,t), t > 0, (6.59)

where x̃c(t) satisfies the second-order ODEs:

¨̃xc(t) + AT (t)ΛA(t) x̃c(t) = 0, t ≥ 0, (6.60)

x̃c(0) = x̃0, ˙̃xc(0) = 0, (6.61)

with the matrix Λ defined in Lemma 6.2.3 and w̃(x̃, t) is linear in x̃, i.e.,

w̃(x̃, t) = c̃(t) · x̃ + g̃(t), c̃(t) = (c̃1(t), . . . , c̃d(t))
T , x ∈ Rd, t ≥ 0.

We have seen that the form of the transformation matrix A(t) in (6.43) is such

that the coordinate transformation does not affect the quantities in z-direction, e.g.

〈Lz〉(t), σz(t) and zc(t).
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6.4 Numerical methods

To study the dynamics of rotating dipolar BECs, in this section we propose

a simple and efficient numerical method for discretizing the GPE (6.46)–(6.51) in

rotating Lagrangian coordinates. The detailed discretizations for both the 2D and

3D GPEs are presented. Here we assume Ω .= 0, and for Ω = 0, we refer to

[14, 16, 39, 143].

In practical computations, we first truncate the whole space problem (6.46)–

(6.51) to a bounded computational domain D ⊂ Rd and consider

i∂tφ(x̃, t) = −
1

2
∇2φ+W (x̃, t)φ+ β|φ|2φ+ ηϕφ, x̃ ∈ D, t > 0, (6.62)

ϕ(x̃, t) = Lm(t)u(x̃, t), u(x̃, t) =

∫

Rd

G(x̃− ỹ)ρ(ỹ, t) dỹ, x̃ ∈ D, t > 0; (6.63)

where

ρ(ỹ, t) =





|φ(ỹ, t)|2, ỹ ∈ D,

0, otherwise,
ỹ ∈ Rd.

The initial condition is given by

φ(x̃, 0) = φ0(x̃), x̃ ∈ D. (6.64)

The boundary condition to (6.62) will be chosen based on the kernel function G

defined in (6.10). Due to the convolution in (6.63), it is natural to consider using

the Fourier transform to compute u(x̃, t). However, from (6.10) and (6.52), we

know that limξ→0 Ĝ(ξ) = ∞ and |̂φ|2(ξ = 0) .= 0. As noted for simulating dipolar

BECs in 3D [16, 35, 125], there is a numerical locking phenomena, i.e., numerical

errors will be bounded below no matter how small the mesh size is, when one uses

the Fourier transform to evaluate u(x̃, t) and/or ϕ(x̃, t) numerically in (6.63). As

noticed in [13,16], the second (integral) equation in (6.63) can be reformulated into

the Poisson equation (1.14) and square-root-Poisson equation (6.6) for 3D and 2D

SDM model, respectively. With these PDE formulations for u(x̃, t), we can truncate

them on the domain D and solve them numerically via spectral method with sine
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basis functions instead of Fourier basis functions and thus we can avoid using the

0-modes [16]. Thus in 3D and 2D SDM model, we choose the homogeneous Dirichlet

boundary conditions to (6.62). Of course, for the 2D SAM model, one has to use the

Fourier transform to compute u(x̃, t), thus we take the periodic boundary conditions

to (6.62).

The computational domain D ⊂ Rd is chosen as D = [a, b] × [c, d] if d = 2 and

D = [a, b]× [c, d]× [e, f ] if d = 3. Due to the confinement of the external potential,

the wave function decays exponentially fast as |x̃| → ∞. Thus if we choose D to be

sufficiently large, the error from the domain truncation can be neglected. As long as

we solve φ(x̃, t) in the bounded computational domain D, we obtain a corresponding

solution ψ(x, t) in the domain A(t)D. As shown in Fig. 6.2 for the example of a 2D

domain, although the domains A(t)D for t ≥ 0, are in general different for different

time t, they share a common disk which is bounded by the inner green solid circle in

Fig. 6.2. Thus, the value of ψ(x, t) inside the vertical maximal square (the magenta

area) which lies fully within the inner disk can be calculated easily by interpolation.

6.4.1 Time-splitting method

Next, let us introduce a time-splitting method to discretize (6.62)–(6.64). We

choose a time-step size τ > 0 and define the time sequence as tn = nτ for n ∈ N.

Then from t = tn to t = tn+1, we numerically solve the GPE (6.62) in two steps.

First we solve

i∂tφ(x̃, t) = −
1

2
∇2φ(x̃, t), x̃ ∈ D, tn ≤ t ≤ tn+1 (6.65)

for a time step of length τ , and then we solve

i∂tφ(x̃, t) =
[
W (x̃, t) + β|φ|2 + ηϕ

]
φ(x̃, t), x̃ ∈ D, tn ≤ t ≤ tn+1, (6.66)

ϕ(x̃, t) = Lm(t)u(x̃, t), u(x̃, t) =

∫

Rd

G(x̃− ỹ)ρ(ỹ, t) dỹ, (6.67)

for the same time step.
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ỹ

x̃

D

x

y
t = π

4
t = π

2

A(t)D

t = 3π
4t = 0

Figure 6.2: The bounded computational domain D in rotating Lagrangian coor-

dinates x̃ (left) and the corresponding domain A(t)D in Cartesian (or Eulerian)

coordinates x (right) when Ω = 0.5 at different times: t = 0 (black solid), t = π
4

(cyan dashed), t = π
2 (red dotted) and t = 3π

4 (blue dash-dotted). The two green

solid circles determine two disks which are the union (inner circle) and the intersec-

tion of all domains A(t)D for t ≥ 0, respectively. The magenta area is the vertical

maximal square inside the inner circle.

Equation (6.65) can be discretized in space by sine or Fourier pseudospectral

methods and then integrated exactly in time. If homogeneous Dirichlet boundary

conditions are used, then we choose the sine pseudospectral method to discretize it;

otherwise, the Fourier pseudospectral method is used if the boundary conditions are

periodic. For more details, see e.g. [16, 24].

On the other hand, we notice that on each time interval [tn, tn+1], the problem

(6.66)–(6.67) leaves |φ(x̃, t)| and hence u(x̃, t) invariant, i.e., |φ(x̃, t)| = |φ(x̃, tn)|

and u(x̃, t) = u(x̃, tn) for all times tn ≤ t ≤ tn+1. Thus, for t ∈ [tn, tn+1], Eq. (6.66)

reduces to

i∂tφ(x̃, t) =
[
W (x̃, t) + β|φ(x̃, tn)|2 + η

(
Lm(t)u(x̃, tn)

)]
φ(x̃, t), x̃ ∈ D. (6.68)

Integrating (6.68) in time gives the solution

φ(x̃, t) = φ(x̃, tn) exp

[
−i

(
β|φ(x̃, tn)|2(t− tn) + ηΦ(x̃, t) +

∫ t

tn

W (x̃, s)ds

)]

(6.69)
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for x̃ ∈ D and t ∈ [tn, tn+1], where the function Φ(x̃, t) is defined by

Φ(x̃, t) =

∫ t

tn

[
Lm(s)u(x̃, tn)

]
ds =

(∫ t

tn

Lm(s) ds

)
u(x̃, tn). (6.70)

Plugging (6.50) and (6.49) into (6.70), we get

Φ(x̃, t) = L̃d(t)u(x̃, tn), x̃ ∈ D, tn ≤ t ≤ tn+1, (6.71)

where

L̃d(t) =





[l11e (t)− l33e (t)]∂x̃x̃ + [l22e (t)− l33e (t)]∂ỹỹ + l12e (t)∂x̃ỹ, d = 2,

l11e (t)∂x̃x̃ + l22e (t)∂ỹỹ + l33e (t)∂z̃z̃ + l12e (t)∂x̃ỹ + l13e (t)∂x̃z̃ + l23e (t)∂ỹz̃, d = 3,

with

l11e (t) =

∫ t

tn

m2
1(s)ds =

∫ t

tn

[
n2
1 cos

2(Ωs) + n2
2 sin

2(Ωs)− n1n2 sin(2Ωs)
]
ds

=
n2
1 + n2

2

2
(t− tn) +

n2
1 − n2

2

4Ω
[sin(2Ωt)− sin(2Ωtn)] +

n1n2

2Ω
[cos(2Ωt)− cos(2Ωtn)] ,

l22e (t) =

∫ t

tn

m2
2(s)ds =

∫ t

tn

[
n2
2 cos

2(Ωs) + n2
1 sin

2(Ωs) + n1n2 sin(2Ωs)
]
ds

=
n2
1 + n2

2

2
(t− tn)−

n2
1 − n2

2

4Ω
[sin(2Ωt)− sin(2Ωtn)]−

n1n2

2Ω
[cos(2Ωt)− cos(2Ωtn)] ,

l12e (t) = 2

∫ t

tn

m1(s)m2(s)ds =

∫ t

tn

[
(n2

1 − n2
2) sin(2Ωs) + 2n1n2 cos(2Ωt)

]
ds

=
n2
1 − n2

2

2Ω
[cos(2Ωtn)− cos(2Ωt)] +

n1n2

Ω
[sin(2Ωt)− sin(2Ωtn)] ,

l13e (t) = 2n3

∫ t

tn

m1(s)ds = 2n3

∫ t

tn

[n1 cos(Ωs)− n2 sin(Ωs)] ds

=
2n3

Ω
[n1 [sin(Ωt)− sin(Ωtn)] + n2 [cos(Ωt)− cos(Ωtn)]] ,

l23e (t) = 2n3

∫ t

tn

m2(s)ds = 2n3

∫ t

tn

[n1 sin(Ωs) + n2 cos(Ωs)] ds

=
2n3

Ω
[n2 [sin(Ωt)− sin(Ωtn)]− n1 [cos(Ωt)− cos(Ωtn)]] ,

l33e (t) =

∫ t

tn

n2
3 ds = n2

3(t− tn), tn ≤ t ≤ tn+1.

In Section 6.4.2, we will discuss in detail the approximations to Φ(x̃, t) in (6.71).

In addition, we remark here again that if V (x) in (6.7) is a harmonic potential as
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defined in (6.12), then the definite integral in (6.69) can be calculated analytically

as

∫ t

tn

W (x̃, s)ds =
1

4
ω1(x̃

2 + ỹ2)(t− tn) +H(x̃, t) +
1

2





0, d = 2,

γ2z z̃
2(t− tn), d = 3,

where

H(x̃, t) =
1

4

∫ t

tn

ω2

[
(x̃2 − ỹ2) cos(2Ωs) + 2x̃ỹ sin(2Ωs)

]
ds

=
ω2

8Ω

[(
x̃2 − ỹ2

)
[sin(2Ωt)− sin(2Ωtn)]− 2x̃ỹ [cos(2Ωt)− cos(2Ωtn)]

]
.

Of course, for general external potential V (x) in (6.7), the integral of W (x̃, s)

in (6.69) might not be found analytically. In this situation, we can simply adopt a

numerical quadrature to approximate it, e.g. the Simpson’s rule can be used as
∫ t

tn

W (x̃, s) ds ≈
t− tn
6

[
W (x̃, tn) + 4W (x̃,

tn + t

2
) +W (x̃, t)

]
.

We remark here that, in practice, we always use the second-order Strang splitting

method [137] to combine the two steps in (6.65) and (6.66)–(6.67). For a more

general discussion of the splitting method, we refer the reader to [14, 24, 65].

6.4.2 Computation of Φ(x̃, t)

In this section, we present approximations to the function Φ(x̃, t) in (6.71).

From the discussion in the previous subsection, we need only show how to discretize

u(x̃, tn) in (6.63) and its second-order derivatives in (6.71).

Surface adiabatic model in 2D

In this case, the function u(x̃, tn) in (6.70) is given by

u(x̃, tn) =

∫

R2

G(x̃− ỹ)ρ(ỹ, t) dỹ, x̃ ∈ D, (6.72)

with the kernel function G defined in the second line of (6.10). To approximate it,

we consider a 2D box D with periodic boundary conditions.
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Let M and K be two even positive integers. Then we make the (approximate)

ansatz

u(x̃, tn) =
M/2−1∑

p=−M/2

K/2−1∑

q=−K/2

ûf
pq(tn) e

iν1p(x̃−a)eiν
2
q (ỹ−c), x̃ = (x̃, ỹ) ∈ D, (6.73)

where ûf
pq(tn) is the Fourier coefficient of u(x̃, tn) corresponding to the frequencies

(p, q) and

ν1p =
2pπ

b− a
, ν2q =

2qπ

d− c
, (p, q) ∈ SMK .

The index set SMK is defined as

SMK =

{
(p, q) | −

M

2
≤ p ≤

M

2
− 1, −

K

2
≤ q ≤

K

2
− 1

}
.

We approximate the convolution in (6.72) by a discrete convolution and take its

discrete Fourier transform to obtain

ûf
pq(tn) = Ĝ(ν1p , ν

2
q ) · (|̂φn|2)fpq, (p, q) ∈ SMK , (6.74)

where (|̂φn|2)fpq is the Fourier coefficient corresponding to the frequencies (p, q) of

the function |φ(x̃, tn)|2, and Ĝ(ν1p , ν
2
q ) are given by (see details in (6.10))

Ĝ(ν1p , ν
2
q ) =

1

2π2

∫ ∞

−∞

e−ε
2s2/2

(ν1p)
2 + (ν2q )

2 + s2
ds, (p, q) ∈ SMK . (6.75)

Since the integrand in (6.75) decays exponentially fast, in practice we can first trun-

cate it to an interval [s1, s2] with |s1|, s2 > 0 sufficiently large and then evaluate the

truncated integral by using quadrature rules, e.g. composite Simpson’s or trape-

zoidal quadrature rule.

Combining (6.71), (6.73) and (6.74), we obtain an approximation of Φ(x̃, t) in

the solution (6.69) via the Fourier spectral method as

Φ(x̃, t) =
M/2−1∑

p=−M/2

K/2−1∑

q=−K/2

[
L(ν1p , ν

2
q , t)Ĝ(ν1p , ν

2
q ) · (|̂φn|2)fpq

]
eiν

1
p(x̃−a)eiν

2
q (ỹ−c), (6.76)

for time tn ≤ t ≤ tn+1, where the function L(ξ1, ξ2, t) is defined as

L(ξ1, ξ2, t) = −
[(
l11e (t)− l33e (t)

)
ξ21 +

(
l22e (t)− l33e (t)

)
ξ22 + l12e (t)ξ1ξ2

]
.
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Surface density model in 2D

In this case, the function u(x̃, tn) in (6.70) also satisfies the square-root-Poisson

equation in (6.6) which can be truncated on the computational domain D with

homogeneous Dirichlet boundary conditions as

(−∇2)1/2u(x̃, tn) = |φ(x̃, tn)|2, x̃ ∈ D; u(x̃, tn)|∂D = 0. (6.77)

The above problem can be discretized by using a sine pseudospectral method in

which the 0-modes are avoided. Letting M,K ∈ N, we denote the index set

TMK = {(p, q) | 1 ≤ p ≤ M − 1, 1 ≤ q ≤ K − 1} ,

and define the functions

Up,q(x̃) = sin(µ1
p(x̃− a)) sin(µ2

q(ỹ − c)), (p, q) ∈ TMK , x̃ = (x̃, ỹ) ∈ D,

where

µ1
p =

pπ

b− a
, µ2

q =
qπ

d− c
, (p, q) ∈ TMK . (6.78)

Assume that

u(x̃, tn) =
M−1∑

p=1

K−1∑

q=1

ûs
pq(tn)Up,q(x̃), x̃ ∈ D, (6.79)

where ûs
pq(tn) is the sine transform of u(x̃, tn) at frequencies (p, q). Substituting

(6.79) into (6.77) and taking sine transform on both sides, we obtain

ûs
pq(tn) =

(|̂φn|2)spq√
(µ1

p)
2 + (µ2

q)
2
, (p, q) ∈ TMK , (6.80)

where (|̂φn|2)spq is the sine transform of |φ(x̃, tn)|2 at frequencies (p, q).

Combining (6.79), (6.80) and (6.71), we obtain an approximation of Φ(x̃, t) in

the solution (6.69) via sine spectral method as

Φ(x̃, t) =
M−1∑

p=1

K−1∑

q=1

(|̂φn|2)spq√
(µ1

p)
2 + (µ2

q)
2

[
L(µ1

p, µ
2
q, t)Up,q(x̃) + l12e (t)Vp,q(x̃)

]
, (6.81)

where the functions L(ξ1, ξ2, t) and Vp,q(x̃) are defined as

L(ξ1, ξ2, t) = −
[(
l11e (t)− l33e (t)

)
ξ21 +

(
l22e (t)− l33e (t)

)
ξ22
]
, (6.82)

Vp,q(x̃) = ∂x̃ỹUp,q(x̃) = µ1
pµ

2
q cos(µ

1
p(x̃− a)) cos(µ2

q(ỹ − c)), (p, q) ∈ TMK . (6.83)
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Approximations in 3D

In 3D case, again the function u(x̃, tn) in (6.70) also satisfies the Poisson equation

in (1.14) which can be truncated on the computational domain D with homogeneous

Dirichlet boundary conditions as

−∇2u(x̃, tn) = |φ(x̃, tn)|2, x̃ ∈ D; u(x̃, tn)|∂D = 0. (6.84)

The above problem can be discretized by using a sine pseudospectral method in

which the 0-modes are avoided. Denote the index set

TMKL = {(p, q, r) | 1 ≤ p ≤ M − 1, 1 ≤ q ≤ K − 1, 1 ≤ r ≤ L− 1}

where M,K,L > 0 are integers and define the functions

Up,q,r(x̃) = sin(µ1
p(x̃− a)) sin(µ2

q(ỹ − c)) sin(µ3
r(z̃ − e)), (p, q, r) ∈ TMKL,

where

µ3
r = rπ/(f − e), 1 ≤ r ≤ L− 1.

Again, we take the (approximate) ansatz

u(x̃, tn) =
M−1∑

p=1

K−1∑

q=1

L−1∑

r=1

ûs
pqr(tn) Up,q,r(x̃), x̃ = (x̃, ỹ, z̃) ∈ D, (6.85)

where ûs
pqr(tn) is the sine transform of u(x̃, tn) corresponding to frequencies (p, q, r).

Substituting (6.85) into the Poisson equation (6.84) and noticing the orthogonality

of the sine functions, we obtain

ûs
pqr(tn) =

(|̂φn|2)spqr
(µ1

p)
2 + (µ2

q)
2 + (µ3

r)
2
, (p, q, r) ∈ TMKL, (6.86)

where (|̂φn|2)spqr is the sine transform of |φ(x̃, tn)|2 corresponding to frequencies

(p, q, r).

Combining (6.71), (6.85) and (6.86), we obtain an approximation of Φ(x̃, t) in

the solution (6.69) via sine spectral method as

Φ(x̃, t) =
M−1∑

p=1

K−1∑

q=1

L−1∑

r=1

ûs
pqr(tn)

[
L(µ1

p, µ
2
q, µ

3
r, t)Up,q,r(x̃) + l12e V (1)

p,q,r(x̃)

+ l13e V (2)
p,q,r(x̃) + l23e V (3)

p,q,r(x̃)

]
, x̃ ∈ D, (6.87)
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where the functions L(ξ1, ξ2, ξ3, t), V (1)
p,q,r(x̃), V (2)

p,q,r(x̃) and V (3)
p,q,r(x̃) (for (p, q, r) ∈

TMKL) are defined as

L(ξ1, ξ2, ξ3, t) = −
[
l11e (t)ξ21 + l22e (t)ξ22 + l33e (t)ξ23

]
,

V (1)
p,q,r(x̃) = ∂x̃ỹUp,q,r(x̃) = µ1

pµ
2
q cos(µ

1
p(x̃− a)) cos(µ2

q(ỹ − c)) sin(µ3
r(z̃ − e)),

V (2)
p,q,r(x̃) = ∂x̃z̃Up,q,r(x̃) = µ1

pµ
3
r cos(µ

1
p(x̃− a)) sin(µ2

q(ỹ − c)) cos(µ3
r(z̃ − e)),

V (3)
p,q,r(x̃) = ∂ỹz̃Up,q,r(x̃) = µ2

qµ
3
r sin(µ

1
p(x̃− a)) cos(µ2

q(ỹ − c)) cos(µ3
r(z̃ − e)).

Remark 6.4.1. After obtaining the numerical solution φ(x̃, t) on the bounded com-

putational domain D, if it is needed to recover the original wave function ψ(x, t) over

a set of fixed grid points in the Cartesian coordinates x, one can use the standard

Fourier/sine interpolation operators from the discrete numerical solution φ(x̃, t) to

construct an interpolation continuous function over D [36, 135], which can be used

to compute ψ(x, t) over a set of fixed grid points in the Cartesian coordinates x for

any fixed time t ≥ 0.

Remark 6.4.2. If the potential V (x) in (6.7) is replaced by a time-dependent po-

tential, e.g. V (x, t), the rotating Lagrangian coordinates transformation and the nu-

merical method are still valid provided that we replace W (x̃, t) in (6.48) by W (x̃, t) =

V (A(t)x̃, t) for x̃ ∈ Rd and t ≥ 0.

6.5 Numerical results

In this section, we first test the accuracy of our numerical method, where through-

out we apply the two-dimensional surface density model. Then study the dynamics

of rotating dipolar BECs, including the center of mass, angular momentum expecta-

tion and condensate widths. In addition, the dynamics of vortex lattices in rotating

dipolar BEC are presented.
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Table 6.1: Spatial discretization errors ‖φ(t)− φ(∆x̃,∆ỹ,τ)(t)‖ at time t = 1.

∆x̃ = 1/2 ∆x̃ = 1/4 ∆x̃ = 1/8 ∆x̃ = 1/16

β = 33.5914 6.1569E-2 1.7525E-4 5.8652E-11 <1E-11

β = 58.7849 1.9746E-1 2.3333E-3 2.5738E-8 2.6124E-11

β = 92.3762 4.8133E-1 1.3385E-2 1.6620E-6 6.2264E-10

β = 119.8488 1.2984 7.7206E-2 9.5202E-5 3.0974E-8

6.5.1 Numerical accuracy

In order to test numerical accuracy, we consider a 2D GPE (6.62)-(6.63) with

the SDM long-range interaction (6.6) and harmonic potential (6.12), i.e., d = 2 in

the GPE (6.62). The other parameters are chosen as Ω = 0.4, γx = γy = 1, η = −15
2

and dipole axis n = (0, 0, 1)T . The initial condition in (6.64) is taken as

φ0(x̃) =
1

π1/4
e

−(x̃2+2ỹ2)
2 , x̃ ∈ D, (6.88)

where we perform our simulations on the bounded computational domain D =

[−16, 16]2. Denote φ(∆x̃,∆ỹ,τ)(t) as the numerical solution at time t obtained with

the mesh size (∆x̃,∆ỹ) and time step τ . With a slight abuse of notation, we let

φ(t) represent the numerical solution with very fine mesh size ∆x̃ = ∆ỹ = 1/64 and

small time step τ = 0.0001 and assume it to be a sufficiently good representation of

the exact solution at time t.

Tables 6.1–6.2 show the spatial and temporal errors of our numerical method for

different β in the GPE (6.62), where the errors are computed as ‖φ(t)−φ(∆x̃,∆ỹ,τ)(t)‖l2

(with ∆x̃ = ∆ỹ) at time t = 1. To calculate the spatial errors in Table 6.1, we always

use a very small time step τ = 0.0001 so that the errors from time discretization can

be neglected compared to those from spatial discretization. Table 6.1 shows that the

spatial accuracy of our method is of spectral order. In addition, the spatial errors

increase with the nonlinearity coefficient β when the mesh size is kept constant.
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Table 6.2: Temporal discretization errors ‖φ(t)− φ(∆x̃,∆ỹ,τ)(t)‖ at time t = 1.

τ = 1/40 τ = 1/80 τ = 1/160 τ= 1/320 τ = 1/640

β = 33.5914 1.0434E-3 2.6018E-4 6.4992E-5 1.6233E-5 4.0456E-6

β = 58.7849 2.5241E-3 6.2783E-4 1.5674E-4 3.9143E-5 9.7550E-6

β = 92.3762 4.9982E-3 1.2380E-3 3.0882E-4 7.7108E-5 1.9215E-5

β = 119.8488 1.1417E-2 2.7716E-3 6.9009E-4 1.7223E-4 4.2915E-5

In Table 6.2, we always use mesh sizes ∆x̃ = ∆ỹ = 1/64 which are the same

as those used in obtaining the ‘exact’ solution, so that one can regard the spatial

discretization as ‘exact’ and the only errors are from time discretization. For different

β, Table 6.2 shows second order decrease of the temporal errors with respect to time-

step size τ . Similarly, for the same τ , the temporal errors increase with β.

6.5.2 Dynamics of center of mass

In the following, we study the dynamics of the center of mass by directly simulat-

ing the GPE (6.7)–(6.8) in 2D with SDM long-range interaction (6.6) and harmonic

potential (6.12). To that end, we take d = 2, β = 30
√
10/π, η = −15

2 and dipole

axis n = (1, 0, 0)T . The initial condition in (6.11) is taken as

φ0(x) = α ζ(x− x0), with ζ(x) = (x+ iy)e
−(x2+y2)

2 , x ∈ D, (6.89)

where the constant α is chosen to satisfy the normalization condition ‖ψ0‖2 = 1.

Initially, we take x0 = (1, 1)T . In our simulations, we use the computational domain

D = [−16, 16]2, the mesh size ∆x̃ = ∆ỹ = 1/16 and the time step size τ = 0.0001.

We consider the following two sets of trapping frequencies: (i) γx = γy = 1, and

(ii) γx = 1, γy = 1.1. Fig. 6.3 shows the trajectory of the center of mass xc(t) in

the original coordinates as well as the time evolution of its coordinates for different

angular velocities Ω, where γx = γy = 1. On the other hand, Fig. 6.5.2 presents
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the same quantities for γx = 1 and γy = 1.1. In addition, the numerical results

are compared with analytical ones from solving the ODEs in (6.33)–(6.35). Figs.

6.3–6.5.2 show that if the external trap is symmetric, i.e., γx = γy, the center of

mass always moves within a bounded region which is symmetric with respect to the

trap center (0, 0)T . Furthermore, if the angular velocity Ω is rational, the movement

is periodic with a period depending on both the angular velocity and the trapping

frequencies. In contrast, when γx .= γy, the dynamics of the center of mass become

more complicated. The simulation results in Figs. 6.3–6.5.2 are consistent with

those obtained by solving the ODE system in Lemma 6.2.3 for given Ω, γx, and

γy [151] and those numerical results reported in the literatures by other numerical

methods [17, 20, 23].

On the other hand, we also study the dynamics of the center of mass x̃c(t) in the

new coordinates. When γx = γy and Ω arbitrary, the center of mass has a periodic

motion on the straight line segment connecting −x̃0 and x̃0. This is also true for

xc(t) with Ω = 0 (cf. Fig. 6.3). However, the trajectories are different for different

Ω if γx .= γy. This observations agree with the results in Lemma 6.2.4.

In addition, our simulations show that the dynamics of the center of mass are

independent of the interaction coefficients β and η, which is consistent with Lemma

6.2.3.

6.5.3 Dynamics of angular momentum expectation and con-

densate widths

To study the dynamics of the angular momentum expectation and condensate

widths, we adapt the GPE (6.7)–(6.8) in 2D with SDM long-range interaction (6.6)

and harmonic potential (6.12), i.e., we take d = 2 and Ω = 0.7. Similarly, the initial

condition in (6.11) is taken as

ψ0(x) = α ζ(x), x ∈ D, (6.90)
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Figure 6.3: Results for γx = γy = 1. Left: trajectory of the center of mass, xc(t) =

(xc(t), yc(t))T for 0 ≤ t ≤ 100. Right: coordinates of the trajectory xc(t) (solid

line: xc(t), dashed line: yc(t)) for different rotation speed Ω, where the solid and

dashed lines are obtained by directly simulating the GPE and ‘*’ and ‘o’ represent

the solutions to the ODEs in Lemma 6.2.3.
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Figure 6.4: Results for γx = 1, γy = 1.1. Left: trajectory of the center of mass,

xc(t) = (xc(t), yc(t))T for 0 ≤ t ≤ 100. Right: coordinates of the trajectory xc(t)

(solid line: xc(t), dashed line: yc(t)) for different rotation speed Ω, where the solid

and dashed lines are obtained by directly simulating the GPE and ‘*’ and ‘o’ repre-

sent the solutions to the ODEs in Lemma 6.2.3.
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where ζ(x) is defined in (6.89) and α is a constant such that ‖ψ0‖2 = 1. In our

simulations, we consider the following four cases:

(i) γx = γy = 1, β = 25
√
10/π, η = 0, and n = (1, 0, 0)T ;

(ii) γx = γy = 1, β = 25
√
10/π, η = −15, and n = (1, 0, 0)T ;

(iii) γx = γy = 1, β = 55
√
10/π, η = −15, and n = (0, 0, 1)T ;

(iv) γx = 1, γy = 1.1, β = 55
√

10/π, η = −15, and n = (0, 0, 1)T .
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Figure 6.5: Time evolution of the angular momentum expectation (left) and energy

and mass (right) for Cases (i)-(iv) in section 5.3.

In Fig. 6.5, we present the dynamics of the angular momentum expectation,

energy and mass for each of the above four cases in the interval t ∈ [0, 15]. We see

that if the external trap is radially symmetric in 2D, then the angular momentum

expectation is conserved when either there is no dipolar interaction (Case (i)) or the

dipolar axis is parallel to the z-axis (Case (iii)). Otherwise, the angular momentum

expectation is not conserved. The above numerical observations are consistent with

the analytical results obtained in Lemma 6.2.1. In addition, we find that our method

conserves the energy and mass very well during the dynamics (cf. Fig. 6.5 right).

Furthermore, from our additional numerical results not shown here for brevity, we

observed that the angular momentum expectation is conserved in 3D for any initial
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Figure 6.6: Time evolution of condensate widths in the Cases (i)–(iv) in section 5.3.

data if the external trap is cylindrically symmetric and either there is no dipolar

interaction or the dipolar axis is parallel to the z-axis, which can also be justified

mathematically.

The dynamics of the condensate widths are presented in Fig. 6.6. We find that

δr(t) is periodic as long as the trapping frequencies satisfy γx = γy and the influence

of the dipole axis vanishes, e.g. in the Case (i), which confirms the analytical results

of Lemma 6.2.2. Furthermore, from our additional numerical results not shown here

for brevity, we observed that δr(t) is periodic and δx(t) = δy(t) =
1
2δr(t) if η = 0 for

any initial data or n = (0, 0, 1)T for radially symmetric or central vortex-type initial

data.

6.5.4 Dynamics of quantized vortex lattices

In the following, we apply our numerical method to study the dynamics of quan-

tized vortex lattices in rotating dipolar BECs. Again, we adapt the GPE (6.7)–(6.8)
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t = 0 t = 1.5 t = 3

t = 4 t = 5.5 t = 7

Figure 6.7: Contour plots of the density function |ψ(x, t)|2 for dynamics of a vortex

lattice in a rotating BEC (Case (i)). Domain displayed: (x, y) ∈ [−13, 13]2.

in 2D with SDM long-range interaction (6.6) and harmonic potential (6.12), i.e.,

we choose d = 2, β = 1000 and Ω = 0.9. The initial datum in (6.11) is chosen

as a stationary vortex lattice which is computed numerically by using the method

in [149, 150] with the above parameters and γx = γy = 1, η = 0, i.e., no long-range

dipole-dipole interaction initially. Then the dynamics of vortex lattices are studied

in two cases:

(i) perturb the external potential by setting γx = 1.05 and γy = 0.95 at t = 0;

(ii) turn on the dipolar interactions by setting η = −600 and dipolar axis n =

(1, 0, 0)T at time t = 0.

In our simulations, we use D = [−16, 16]2, ∆x̃ = ∆ỹ = 1/16 and τ = 0.0001. Figs.

6.7–6.8 show the contour plots of the density function |ψ(x, t)|2 at different time

steps for Cases (i) and (ii), respectively, where the wave function ψ(x, t) is obtained

from φ(x̃, t) by using interpolation via sine basis (see Remark 6.4.1). We see that
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during the dynamics, the number of vortices is conserved in both cases. The lattices

rotate to form different patterns because of the anisotropic external potential and

dipolar interaction in Cases (i) and (ii), respectively. In addition, the results in

Case (i) are similar to those obtained in [17], where a spectral type method in polar

coordinates was used to simulate the dynamics of vortex lattices.

t = 0 t = 1.5 t = 3.5

t = 5.5 t = 8.5 t = 10.5

Figure 6.8: Contour plots of the density function |ψ(x, t)|2 for dynamics of a vortex

lattice in a rotating dipolar BEC (Case (ii)). Domain displayed: (x, y) ∈ [−10, 10]2.

6.6 Conclusions

We proposed a simple and efficient numerical method to simulate the dynamics of

rotating dipolar Bose-Einstein condensation (BEC) whose properties are described

by the Gross–Pitaevskii equation (GPE) with both the angular rotation term and

the long-range dipole-dipole interaction. First, by decoupling the short-range and

long-range interactions, we reformulated the GPE as a Gross-Pitaevskii-(fractional)

Poisson system. Then we eliminated the angular rotation term from the GPE using
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a rotating Lagrangian coordinate transformation, which makes it possible to design a

simple and efficient numerical method. In the new rotating Lagrangian coordinates,

we presented a numerical method which combines the time-splitting techniques with

Fourier/sine pseudospectral approximation to simulate the dynamics of rotating

dipolar BECs. The numerical method is explicit, unconditional stable, spectral

accurate in space and second order accurate in time, and conserves the mass in the

discretized level. The memory cost is O(MK) in 2D and O(MKL) in 3D, and the

computational cost per time step is O (MK ln(MK)) in 2D and O (MKL ln(MKL))

in 3D. More specifically, the method is very easy to be implemented via FFT or

DST. We then numerically examined the conservation of the angular momentum

expectation and studied the dynamics of condensate widths and center of mass for

different angular velocities. In addition, the dynamics of vortex lattice in rotating

dipolar BEC were investigated. Numerical studies show that our method is very

effective in simulating the dynamics of rotating dipolar BECs.



Chapter 7

Conclusion remarks and future work

In this thesis, by proposing efficient and accurate numerical methods to solve

GLSE and corresponding RDLs, we conducted an extensive numerical study on

quantized vortex phenomena in GLE, NLSE and CGLE on bounded domain with a

small parameter ε. Moreover, we also investigated analytically and numerically on

the the dynamics of rotating dipolar BEC whose properties are described by the GPE

with both the angular rotation term and the long-range dipole-dipole interaction.

In the first part, we studied quantized vortex dynamics and interaction in the

GLSE. Firstly, steady vortex states of the GLSE are reviewed and an efficient and

accurate numerical methods was proposed to simulate GLSE with initial data involv-

ing vortices under different boundary conditions. The numerical method is based

on: (i). applying a time-splitting technique to decouple the nonlinearity in the

GLSE; (ii). for the resulted linear PDE (gradient flow with constant coefficient in

GLE/CGLE case or free Schrödinger equation in NLSE case), if in a rectangular do-

main, for the case of Dirichlet BC, we adapt a fourth-order compact finite difference

method in the spatial discretization and a Crank-Nicolson method in the temporal

discretization, while for the case of Neumann BC, we apply a cosine pseudospectral

method to discretize it; otherwise in a disk domain, we adopt the polar coordinate

in our numerical discretization, then utilized the standard Fourier pseudospectral

discretization in the transverse direction, finite element discretization in the radial
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direction and a Crank-Nicolson discretization in temporal direction. Secondly, we

reviewed various RDLs which govern the motion of the vortex centers to the leading

order, and proposed some methods to solve them. Finally, we applied the proposed

methods to simulate quantized vortex interaction of GLSE with different ε and

initial setups including single vortex, vortex pair, vortex dipole and vortex lattices.

Based on extensive numerical results, we found that the value of ε, the boundary

condition, the geometry of the domain, the initial location of the vortices and the

type of the potential affect the motion of the vortices significantly. Generally, the

boundary effect affect the vortex interaction very much, which lead to very different

nonlinear phenomena from those observed in the case of domain being the whole

plane. Moreover, we verified that the dynamics of vortex centers in the GLSE

dynamics converges to that of the reduced dynamics when ε→ 0 before they collide

and/or move out of the domain and/or after the sound wave propagate away from

them. Surely, after either vortices collide with each other or move out of the domain

or when sound wave is being radiating or propagate back toward them, the RDLs

are no longer valid; however, the dynamics and interaction of quantized vortices

are still physically interesting and they can be obtained from our direct numerical

simulations. Moreover, for each fixed ε, there are regimes which at least depend on

the boundary condition and the geometry of the domain, such that the RDLs failed

qualitatively to describe the vortex motion.

For the case of NLSE, vortices behave like point vortices in ideal fluid on bounded

domains, they never move outside domain. Moreover, we found that the radiation of

NLSE dynamics which is carried by oscillating sound waves modifies the motion of

vortices much, especially in the dynamics of vortex lattice, highly co-rotating vortex

pairs and overlapping vortices. And due to the dispersive and radiative nature, the

RDLs which does not take the radiation into account will be invalid even if there

were small perturbations near around the vortex centers initially.

For the case of the GLE and/or CGLE, which are dissipative systems, vortices

move in a quite different way from the case of NLSE, they can exit the domain in
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some circumstance. Vortices of like (opposite) winding number will undergo repul-

sive (attractive) interaction, they will move outside domain or merge and annihilate

somewhere in the domain or move toward the boundary and finally stop somewhere

near the boundary. Moreover, there are no radiation or sound waves come up during

the dynamics and interaction of the vortices, the RDLs are still valid if there were

small perturbations in the initial setups. We also investigated the patterns of the

steady states of the vortex lattices, we found that: (i). In the case of Dirichlet BC,

the vortices will all move toward the boundary to form a boundary layer, whose

width is proportional to the value of ε and inverse proportional to the number of

vortices in the lattice. The alignment of the vortices in the steady state depend

on the initial location of the vortices, the boundary condition and the geometry of

the domain. (ii). In the case of Neumann BC, the most of the vortices will exit

the domain, and finally at most one vortex will leftover sitting at the center of the

domain for some proper initial data. However, this steady states is not stable. If we

imposed a slightly perturbation, the vortices will begin to move and finally exit the

domain. These findings confirm the analytical results very well [81, 98]. Further-

more, in the presence of inhomogeneous potential, vortices generally move toward

the critical points of the external potential, and finally stop steady near around

those points, which illustrate clearly the pinning effect.

In the second part, we studied the dynamics of GPE with angular momentum

rotation term and/or the long-range dipolar-dipolar interaction term. Firstly, we

review the two-dimensional (2D) GPE obtained from the 3D GPE via dimension

reduction under anisotropic external potential and derive some dynamical laws re-

lated to the 2D and 3D GPE. By introducing a rotating Lagrangian coordinate

system, the original GPEs are re-formulated to GPEs without the angular momen-

tum rotation which is replaced by a time-dependent potential in the new coordinate

system. We then cast the conserved quantities and dynamical laws in the new rotat-

ing Lagrangian coordinates. Based on the new formulation of the GPE for rotating

BECs in the rotating Lagrangian coordinates, we proposed a time-splitting spectral
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method for computing the dynamics of rotating BECs. The new numerical method

is explicit, simple to implement, unconditionally stable and very efficient in compu-

tation. It is spectral order accurate in space and second-order accurate in time, and

conserves the mass in the discrete level. Extensive numerical results are reported to

demonstrate the efficiency and accuracy of the new numerical method. Finally, the

numerical method is applied to test the dynamical laws of rotating BECs such as the

dynamics of condensate width, angular momentum expectation and center-of-mass,

and to investigate numerically the dynamics and interaction of quantized vortex

lattices in rotating BECs without/with the long-range dipole-dipole interaction.

The topics that considered here is merely a small part of the world of vortex

dynamics. Many interesting and difficult problems still remains open. The study of

vortex dynamics can always be divided into two groups: (i). either to derive possible

RDLs which are sets of simple ODEs that govern the motion of vortices, (ii). or

to simulate the PDEs directly by some efficient and accurate numerical methods.

Firstly, most of the RDLs reported in the literatures now can be valid only up to the

first collision time and they were derived under some assumptions not so general.

The problem that how to relax those assumptions and extend exist or derive new

RDLs to describe the motion of vortices involving vortex collision, vortex of multiple

degree (and thus splittings and reconnections might happen), vortex exiting domain

and vortices radiating sound waves still remains as a difficult and thus interesting

open problem. This is the first possible direction that we will consider in the future.

Secondly, although the direct simulation can provide us as much information as we

want including vortex splittings, collisions, reconnections and possible sound wave

propagation in dispersive system as well as pinning effect of the vortices, the design

of effective numerical algorithm itself is a difficult issue. The efficiency of the method

presented in this thesis for simulating the GLSE depend on the value of ε, and it

becomes useless for extreme small ε. To propose effective numerical methods which

are ε-independent is another future work.

Moreover, the ideas proposed in this thesis to simulate dipolar rotating BEC is
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quite simple but effective. We believe that it can be easily extended to study two

component rotating dipolar or spinor BEC [89], etc.

Last but not least, as mentioned in the beginning of this thesis, the GLE we

consider here is the simplified model for model superconductivity, which might not

be that physical interesting, which motivate us to extend our methods to study

the vortex dynamics in full Ginzburg-Landau model that involving electromagnetic

field [127,136]. Other topics such as vortex dynamics in the nonlinear Klein-Gorden

equation [146], the nonlinear Maxwell-Klein-Gorden equation [147], the Landu-

Lifshitz-Gilbert equation [93] and the coupled Ginzburg-Landau equation for mod-

eling unconventional superconductor [102] will also be considered.
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