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Summary  

 

Two classification modules in an overall system are looked into – one that does 

classification for data from overlapping classes using the fuzzy adaptive resonance theory 

map (fuzzy ARTMAP), and another which sorts repetitive signals, separating them into 

their respective sources. When faced with overlapping data, fuzzy ARTMAP suffers from 

the category proliferation problem on top of a difficulty in classification. These are 

overcome by a combination of modifications which allows multiple class predictions for 

certain data, and prevents the excessive creation of categories. Signal sorting methods 

such as sequence search and histogram methods can sort the signals into their respective 

sequences with a regular interval between signals, but effectiveness of the methods is 

affected when the intervals between signals in the source are highly deviating. Using 

available expert knowledge, the signals are effectively and accurately separated into their 

respective sources.  
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1.1. Classification  

 

Classification methods have found their way into various applications because of their 

many uses. They can learn rules and classify new data based on previously learnt 

examples, speed up processes (especially for large amounts of data), or decision making 

and diagnosis, where human error and biasness can be avoided by using a classification 

system [1]. Various methods are available, and they have been utilized in different 

applications, such as fuzzy adaptive resonance theory map (fuzzy ARTMAP) in 

handwriting recognition [2], support vector machines in computer-aided diagnosis [3], 

multi-layer perceptrons in speech recognition [4], etc.  

 

Different classification methods will have their own limitations, which may become more 

apparent or pronounced with certain types of data or under particular situations. Effective 

application of these methods will inevitably involve some extent of adaptation. However, 

many modifications made to the methods tend to introduce drastic changes to the original 

architecture, or impose much additional computational costs. This may result in some of 

the initial benefits and strengths of the method to be lost. As such, we are interested in 

finding ways to overcome the limitations with minimal changes. This can be done by 

considering a particular given situation, or by considering the characteristics and 

knowledge of the data involved.  

 

 

 

Chapter 1. Introduction  



 2

1.2. The Problem  

 

This project looks into part of an overall classification system. The entire system consists 

of different modules, each with a certain objective to attain. Our focus is on two of these 

modules – the fuzzy ARTMAP classification module and signal sorting module.  

 

The fuzzy ARTMAP module classifies data according to their attribute values. However, 

some class distributions in the attribute space are overlapping, such that data lying in the 

overlapping region may belong to either class. Yet during classification, only one class is 

predicted by the system, leading to a difficulty in classification. In addition, the 

overlapping classes also lead to the category proliferation problem. There are various 

existing methods that aim to reduce this problem, but they tend to involve major changes 

to the fuzzy ARTMAP architecture or introduce considerable computational costs. It is 

therefore in the interest of this project to find ways to reduce the category proliferation 

problem and also deal with the classification of data in overlapping classes without 

significantly changing the architecture, and using minimal additional computational costs.  

 

The signal sorting module deals with repetitive data. Signals from the same source occur 

at regularly spaced intervals, and the sample consists of signals from various sources. 

Signal separation methods such as sequence search and difference histograms can be used 

to sort the signals into their respective sources, but they face limitations when the regular 

intervals between signals from the same source deviate from the average value. As expert 

knowledge on the sources is available in the system, it becomes desirable to find a way to 

incorporate this knowledge into the existing process to improve it without introducing 

major changes to the original method.  
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1.3. Main Results  

 

To deal with the problem of overlapping classes in fuzzy ARTMAP, we modify the 

classification process so that more than one class can be predicted for certain data. The 

decision control of which classes to predict is built into the system and there is no need 

for a separate parameter to be selected by the user. The extent of category proliferation is 

eased significantly with the introduction of some modifications, used in conjunction with 

an existing proposed variation called match tracking - (abbreviated as MT-, where the 

dash is read as ‘minus’). These modifications work well even for large datasets with 

higher amounts of noise.  

 

Expert knowledge on the signals and their sources is available for the signal sorting 

module in the form of a database. The information in the database is not exclusive and 

consists of irrelevant information as well, but can still improve the performance of the 

existing methods on our data. The selection of parameters for the difference histogram 

method is automated and appropriately chosen, while the sequence search process is 

completed with greater certainty and accuracy by referring to the database. Although the 

time taken by the signal sorting method is longer than before, the overall process is 

actually faster due to the elimination of the need to scan for the right parameter values.  

 

1.4. Contributions  

 

The contribution of the work on the fuzzy ARTMAP problem of overlapping classes is to 

offer a simple way that is straightforward to implement, which can overcome the 

difficulty in classifying data from overlapping classes, as well as the problem of category 

proliferation. It does not introduce much additional computational costs and the whole 

training and classification process is completed much faster than before for such 

overlapping data. A paper containing this work has been submitted [5].   
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In signal sorting, expert knowledge is successfully incorporated into the existing methods 

without making drastic changes. It enables signals to be separated effectively and 

accurately. There is a reduced need to scan values for user-selected parameters, which are 

difficult to determine since they vary with different data. This effectively reduces the 

total time needed for the complete process.  

 

1.5. Sequence of content  

 

The thesis is arranged as follows. Chapter 2 describes the work done for the fuzzy 

ARTMAP module. It will first introduce the classification process and the problem of 

overlapping classes. With an understanding of how the method works and how the 

problems arise, modifications can be made. The results and discussions following the 

testing of the modifications are then shown.  

 

Chapter 3 focuses on the signal sorting module. It illustrates the existing methods and 

elaborates on the problems that are encountered upon implementation of the methods on 

actual data. Expert knowledge that is available will be used in overcoming the problem, 

so the format of the knowledge used is first described, followed by the way it can be used 

to improve on the existing methods. Results and discussions are then presented, as well as 

the potential concerns with incorporating expert knowledge into the method.  

 

Finally, Chapter 4 concludes the work done in the project and the possible future 

directions to further the investigations conducted and results obtained here.  
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Fuzzy adaptive resonance theory map (fuzzy ARTMAP) is a supervised clustering 

algorithm that can be used for classification tasks. It has many strengths that make it very 

appealing, such as incremental learning as new data becomes available [6], fast learning 

dynamic neuron commitment , and the use of few training epochs to achieve reasonably 

good performance accuracy [7]. Together with various modifications, fuzzy ARTMAP 

has performed well when applied to areas such as radar range profiles [8], online 

handwriting recognition [9], classification of natural textures [10], genetic abnormality 

diagnosis [11], wetland classification [12], etc. However, fuzzy ARTMAP suffers from 

the category proliferation problem [13], which is a drawback that is of concern to us. This 

will be further investigated in the following sections.  

 

2.1. Fuzzy ARTMAP Architecture  

 

The overall structure of fuzzy ARTMAP consists of two adaptive resonance theory (ART) 

modules – ARTa and ARTb, and a mapping field called the MAP module (see Figure 1). 

ARTa and ARTb cluster patterns in the input space and output space respectively. Clusters 

from ARTa are mapped to ARTb through the mapping field.  

 

Chapter 2. Fuzzy ARTMAP Classification  
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Figure 1: Basic architecture of fuzzy ARTMAP  

 

For classification problems, each input pattern is mapped to an output class, so ARTb 

becomes redundant. We can remove the ARTb module and map categories from ARTa 

directly to their respective classes in the MAP field (Figure 2). This simplified fuzzy 

ARTMAP was introduced by Kasuba in [14] will be used in this project. More details of 

the algorithm can be found in [15] and [16].  

 

 

Figure 2: Basic architecture for simplified fuzzy ARTMAP 

Input data consists of vectors representing the attribute values of each sample. The values 

are scaled such that they are in the range [0,1]. Before being presented to the network, the 

input data undergo complement coding, such that an input  

1( ,..., )Ma a a=  

 with M attributes will be represented as a vector  

1 1

( ,1 )
( ,..., ,1 ,...,1 ).M M

I a a
a a a a

= −
= − −

 

The length of the vector will then be doubled.  

ARTa 

MAP 

ARTb ARTa 

MAP 
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The ART module consists of nodes which can cluster similar input patterns together, and 

all the patterns clustered by the same node will be mapped to the same class, although 

there may be more than one node mapped to the same class. These nodes are commonly 

referred to as categories, and they are represented by their own weight vectors. The 

weights of a category is given by  

1 1

( ,1 )
( ,..., ,1 ,...,1 ),M M

W u v
u u v v

= −
= − −

 

where 1( ,..., )Mu u u=  and 1( ,..., )Mv v v= , where [ ], 0,1i iu v ∈ . Geometrically, the category 

can be represented as a hyperbox in M-dimensional hyperspace, with u  and v  

representing the lower and upper endpoints of the hyperbox respectively. Therefore the 

categories are also often simply referred to as hyperboxes.  

 

A simple basic idea of fuzzy ARTMAP classification is as follows: during training, when 

an input pattern in presented, the hyperbox nearest to the input point in hyperspace will 

code (or cluster) that point if it is mapped to the same class as the rest of the points coded 

by the same hyperbox. In order to code that input point, the hyperbox grows just enough 

to contain it. Then when an unknown input pattern is presented during classification, the 

hyperbox nearest to it in hyperspace will code it, so the output class will be the same as 

all the other points coded by that same hyperbox.  

 

With a brief overall idea in mind, we shall now take a closer look at the algorithm of 

training and classification of the fuzzy ARTMAP. The following operators will be used 

in the algorithm.  

 

The fuzzy min ∧  and max ∨  operators are defined as follows:  

For vectors 1( ,..., )nA a a=  and 1( ,..., )nB b b= ,  

1 1(min( , ),...,min( , ))n nA B a b a b∧ = ,   

1 1(max( , ),...,max( , ))n nA B a b a b∨ = .  

The size i  of any weight or input vectors is defined as 1 2| | | | ... | |nA a a a= + + + .  
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Training  

 

Input patterns are presented to the network one at a time and the full presentation of the 

whole set of training input is known as one epoch. For every input pattern that is 

presented after complement coding has been carried out, the network learns by following 

the process given in the flowchart in Figure 3.  

 

 

Figure 3: Flowchart for simplified fuzzy ARTMAP training process 

 

When the rth input pattern rI  is presented, all the categories undergo competition based 

on their activation values. The activation value for category j with weights jW  is defined 

as  

No

No

Yes

Yes

Present input 

Activation value competition of 
nodes  

Update weights for 
winning node 

Disqualify 

node 
Pass vigilance 

test?

Pass match 
test?

Match 

tracking  
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| |
r j

j
j

I W
T

Wα

∧
=

+
,  

where α  is a small positive value called the choice parameter. The activation value is a 

measure of how close the input data is to each of the existing hyperboxes. The choice 

parameter biases the measure towards smaller hyperboxes in case of a tie in value 

between two hyperboxes of equal distance from the input data. The use of activation 

value for competition among the nodes can be understood as clustering together the input 

patterns which are most similar in terms of their attribute values. The node with highest 

activation value will be the one which clusters input patterns with highest similarity to the 

given input pattern.  

 

Based on the competition of activation values, the node or category with highest value 

will be the winner. This winning category with weights maxW  will then undergo a 

vigilance test  

r max

r

I W
I

ρ
∧

≥ ,  

where (0,1)ρ ∈  is known as the vigilance parameter. This test is a measure of how much 

the hyperbox has to grow in order to contain the input pattern. A hyperbox that is already 

very large or one that is far from the input pattern will be more likely to fail the vigilance 

test, and this vigilance parameter is a restriction on the size of the hyperbox. If the 

hyperbox category fails the test, one with next highest activation value is considered, 

until one which passes the vigilance test is found.  

 

The match test is a check performed on the class of the winning category against the 

corresponding output class of the input pattern rI . A class-mismatch triggers off a match 

tracking process, whereby the current category is disqualified and the remaining 

categories compete based on activation value again. The procedure is repeated but the 

vigilance parameter is temporarily raised for this input-output pair to 

| |
r j

r

I W
I

ε
∧

+ ,  
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where ε  is usually a small positive value.  

 

But if the category passes the vigilance test and the match test, it will code the input 

pattern rI  and its weights are updated according to  

j j rW W I← ∧ . 

The new weights are given as  

( ) ( )
( ) ( )( )

( )( )

,1 ,1

, 1 1

,1 .

new
j jW W I

u v a a

u a v a

u a v a

= ∧

= − ∧ −

= ∧ − ∧ −

= ∧ − ∨

 

Geometrically, the new hyperbox after growing just enough to contain the input point 

will have the lower and upper end points ( )u a∧  and ( )v a∨  respectively.  

 

Fuzzy ARTMAP adopts the winner-take-all strategy, so only this winning category has 

its weights updated to include the input pattern. The training process is stopped when a 

maximum number of epochs are reached, or when there are no more changes to the 

weights of the categories within a single epoch.  

 

Over the training process, new categories may need to be created at certain times. In the 

beginning when training first started and there are no nodes, a new node is created to start 

coding the first input pattern. The weights of a new category are given by  

( ) 1
i

W = ,   1,..., 2i M= .  

If all categories fail the vigilance test, or if match tracking fails to return a winning 

category, a new one will be created.  
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Classification  

 

The classification process of the fuzzy ARTMAP is similar to the training process. The 

flowchart in Figure 4 depicts the classification process.  

 

 

Figure 4: Flowchart for simplified fuzzy ARTMAP classification process 

 

 For a given input pattern, the activation values of the categories are computed and the 

one with highest value undergoes the vigilance test as it did in the training process. If the 

category passes the vigilance test, it will be the winner and its class is predicted as the 

output class of that input pattern. Otherwise, the test is repeated for the next category 

with highest activation value until one is found. In the event that none of the categories 

pass the vigilance test, the input pattern is treated as unclassified.  

 

 

No

Yes

Present input 

Activation value competition of 
nodes  

Output class of 
winning node 

Disqualify 

node 
Pass vigilance 

test?
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2.2. Problem of Overlapping Classes  

 

The fuzzy ARTMAP module has to deal with data from overlapping classes, but certain 

problems arise from the use of such kind of data. Data from overlapping classes is 

difficult to classify in itself since it can belong to either class. In addition, training the 

network with such data also leads to category proliferation.  

 

2.2.1. Category Proliferation  

 

Category proliferation is a well known drawback of fuzzy ARTMAP. It refers to the 

excessive creation of categories during training which does not necessarily improve the 

performance of the network [17]. More resources will be required, in terms of storage for 

the large number of categories, as well as the amount of time needed to carry out training 

and testing. Moreover, the generalization capability of the network may be adversely 

affected [18].  

 

Different factors may lead to category proliferation, such as noisy data [7] or simply 

training with a large data set [18]. However, the problem is most severe when training 

with data from overlapping classes [19].  

 

When the distribution of two (or more) classes overlap, input patterns lying in the 

overlapping region cannot be accurately nor reliably classified. Fuzzy ARTMAP training 

terminates when there are no more changes to the weights of categories in a single epoch, 

which means the network will try to correctly classify all of the training input data. As a 

result, in the overlapping region between classes, a large number of granular categories 

will be created. This will allow all the training input to be correctly classified so there are 

no changes to the weights, but these categories may not contribute to overall predictive 

accuracy when other data is presented. With more training epochs, more categories are 

created to map out the overlapping region, which is illustrated in Figure 5c.  
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(a)  

 
(b)  

 
(c)  

 

Figure 5: Class distribution and hyperbox weight distribution after learning with ρ=0.75.  (a) Class 
distribution of the data from 2 classes (b) Position of hyperboxes after 1 training epoch (c) Position of 

hyperboxes after training until convergence of training data, which required 9 epochs 
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Over the training process, new categories are created under certain circumstances, such as 

when there are input data from classes that have not been encountered yet, or when all the 

existing nodes fail the vigilance test. However, it is the match tracking process that is the 

largest contributor to major increases in the number of categories.  

 

As input patterns lying in the overlapping region may belong to either class, many 

hyperbox categories will be created in that region, and they can also be mapped to either 

class. Class mismatches are more likely to occur for these data and match tracking will be 

triggered off more frequently, and the vigilance parameter is raised. For an input pattern 

presented, many class mismatches may occur due to the large number of categories 

present in that overlapping region, leading to a magnified temporary increment in the 

vigilance parameter brought about by match tracking. A higher value of the vigilance 

parameter translates to increased difficulty for existing categories to pass the test, and 

hence a new category is more likely to be created to code the input pattern.  

 

Various methods have been proposed to cope with the problem of overlapping classes 

and they can be widely classified into two types – post-processing methods that operate 

on the network after training has been completed, or modifications to the learning method 

to reduce the creation of categories in the first place [13]. The former includes methods 

such as rule pruning [20] which removes excess categories based on their usage 

frequency and accuracy. The latter includes modifications in the learning method [21] 

and weight updating schemes [22], as well as fuzzy ARTMAP variants such as 

distributed ARTMAP [23], Gaussian ARTMAP [24] and boosted ARTMAP [25].  

 

2.2.2. Difficulty of Classification  

 

Classification of input patterns are done based on the attribute values of the patterns. 

However, when the class distributions of two classes overlap with each other, it is 

difficult to classify an input pattern that lies in the overlapping region. Fuzzy ARTMAP 

only makes one prediction for the input pattern though it can belong to either class. Even 
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if the activation values for two categories are the same and both pass the vigilance test, 

only one will be the winner. This choice is usually made by selecting the category with 

smaller index, or simply selecting one at random.  

 

As a result, it would be unfair to expect the network to assign a class prediction 

accurately to such an input pattern. Rather than predicting only one class which has a 

high chance of being the incorrect one, we seek to modify the network such that it can 

predict more than one class, particularly for input patterns that lie in the overlapping 

region between classes. Based on the predicted output classes, users can make better 

decisions. Other information besides the given attributes can be used, or expert 

knowledge can be combined to determine the class from the predicted list.  

 

Certain variants of fuzzy ARTMAP such as probabilistic fuzzy ARTMAP [15] compute 

the probability with which a test pattern can belong to each class and predict the output as 

the class with highest probability. Fuzzy ARTMAP with relevance factor [26] also gives 

a value of confidence in the classification. The distributed ARTMAP [23] uses 

distributed learning instead of winner-take-all, and the output class prediction is 

implemented using a voting strategy. It is possible to make slight modifications to these 

variants so that they can return more than one output class, but implementing these 

networks already require major changes to the learning method or architecture and 

introduce additional computational costs. The dynamics of the system are also no longer 

as straightforward or intuitive as the original fuzzy ARTMAP. This project thus aims to 

retain as much of the original architecture as possible and minimize the additional 

computational effort introduced by the modifications, yet still enable the network to 

output the possible classes in which the pattern lies, and at the same time reduce the 

extent of category proliferation.  

 

 

 

 



 16

2.3. Methodology  

 

In view of the problems faced by fuzzy ARTMAP due to the use of data from 

overlapping classes, several modifications were introduced to enable the network to 

better cope with such kind of data. The classification process of the fuzzy ARTMAP was 

modified to allow it to predict more than one output class if the data falls in the 

overlapping region between classes. Consequently, the classification accuracy measure 

was also modified to adapt to this kind of classification. In addition, other changes were 

made to help deal with category proliferation.   

 

2.3.1. Classification and Accuracy Measure  

 

In fuzzy ARTMAP classification, only the category with highest activation value and 

which also passes the vigilance test is the winner and will classify the input pattern. In 

order to predict more than one class, the activation values can be considered such that the 

hyperboxes with sufficiently high activation values are all considered winners, as long as 

they also pass the vigilance test. A number of classes can then be predicted based on 

these winning hyperboxes. A minimum activation value parameter can be introduced, 

such that any value above this threshold is considered high enough. The key is then to 

find a fair way to determine when an activation value can be considered to be high 

enough.  

 

Since multiple class predictions should only occur for data from the overlapping region 

between classes, there is a need to take a closer look at such data. In the overlapping 

region, many category hyperboxes are generated during the training process. These 

hyperboxes are also overlapping with one another and they may be mapped to different 

classes. As the input patterns which require multiple class predictions lie in this region, 

they would tend to be contained within more than one category hyperbox.  
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The activation value of a category hyperbox to a given input pattern determines how 

close the hyperbox is to that input. It will be higher for hyperboxes that actually contain 

the input pattern. By considering that input patterns in overlapping regions would lie in 

hyperboxes which may be mapped to different classes, we can find a threshold activation 

value, above which we can determine that the hyperbox contains the input pattern.  

 

Threshold Activation Value  

 

In this section, we find a threshold activation value by considering the activation value 

function as well as the vigilance test. The activation value is a measure of how close the 

input pattern is to a particular hyperbox, and will be highest for a hyperbox that contains 

it. Among those that contain the input pattern, the activation value function is biased 

towards smallest hyperboxes, which will have higher values. The vigilance test actually 

imposes a restriction on the maximum size of the hyperbox, so among the hyperboxes 

that contain an input pattern, the one with largest size will have smallest activation value. 

Based on this, we can derive the minimum activation value corresponding to the largest 

hyperbox that contains the input data.  

 

We will first see how the activation value is a measure of how close the input data is to 

the hyperbox. Suppose the input data is ( ,1 )I a a= −  and the weights of the hyperbox are 

given as ( ,1 )W u v= − . For input data consisting of M attributes (before complement 

coding), the hyperbox and input pattern will be in M-dimensional hyperspace, and the 

vector size W  can be rewritten as  

( )
( )

( ) ( )
( )

1 1

1 1

1 1

,1

, , ,1 , ,1

1 1

,

M M

M M

M M

W u v

u u v v

u u v v

u u M v v

u M v

= −

= − −

= + + + − + + −

= + + + − + +

= + −

… …

… …

… …

 

and the vector size I W∧  can be rewritten as  
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( ) ( )
( ) ( )( )

( )( )

,1 ,1

, 1 1

,1

.

I W u v a a

u a v a

u a v a

u a M v a

∧ = − ∧ −

= ∧ − ∧ −

= ∧ − ∨

= ∧ + − ∨

 

Let d W I W= − ∧ , which we want to simplify and show that it is the shortest distance 

from the input pattern to the hyperbox.  

.

W I W u M v u a M v a

u u a v a v

− ∧ = + − − ∧ − + ∨

= − ∧ + ∨ −
 

From Chapter 2.1, we have seen that a hyperbox which expands just enough to code an 

input pattern will have weights ( )( ),1new
jW u a v a= ∧ − ∨ , where ( )u a∧  and ( )v a∨  are 

the lower and upper end points of the hyperbox. In Figure 6, the illustration is shown in 

2-dimensions although the input pattern and hyperboxes are in M-dimensional 

hyperspace.  

 

 
(i) 

 
(ii) 

Figure 6: 2D view of hyperplane separating the hyperbox into two halves. (i) The input pattern lies 
on side P of the hyperplane (ii) The input pattern lies on the side Q of the hyperplane  

 

P
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u a∧  

v = v a∨
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As shown in Figure 6, a hyperplane can be drawn to separate the hyperbox into half, each 

side containing either the lower or upper end point. If the input pattern lies on the side P 

in Figure 6, the point ( )v a∨  will be the same as v  itself. Then  

0.v a v∨ − =  

We now consider u u a− ∧ .  

( ) ( ) ( )( )
( ) ( )

1 1 1 1

1 1 1

, , min , , , min ,

min , min , ,
M M

M M M

u u a u u u a u a

u u a u u a

− ∧ = −

= − + + −

… …

…
 

which is the shortest distance in each dimension between the points u  and u a∧ . This 

distance measure is called the Manhattan or block distance between u  and u a∧ . In 2-

dimension, it can be illustrated more clearly in the Figures 7 and 8.  

 

In Figure 7, the position of the input pattern a  is such that u a∧  will coincide with it. 

The distance 1 2d d d= +  measures the block distance from a  to u , which is the nearest 

point on the hyperbox to a .  

 

Figure 7: Shortest distance from the input pattern to the hyperbox when position of input pattern a 
on side P coincides with u^a 

 

   a =u a∧
1d

P 
Q 

O

v v a= ∨  

u
2d

1 2d d d= +
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In Figure 8, the point u a∧  does not coincide with the input pattern a . The distance d  

between u  and u a∧  is the same as the shortest block distance between the input pattern 

a  and the hyperbox.  

 

Figure 8: Shortest distance from the input pattern to the hyperbox when the position of input pattern 
a on side P does not coincide with u^a  

 

All other cases are similar to either of these cases. Given that d W I W= − ∧ , we can 

rewrite the activation value as  

1 .

I W
T

W

W d
W

W d
W
d
W

α

α

α α
α
α
α

∧
=

+

−
=

+

+ − −
=

+

+
= −

+

 

The nearer the input pattern a  is to the hyperbox, the larger the activation value will be. 

Since , , 0d Wα ≥ , the activation value is largest when 0d = , which is when the 

hyperbox contains the input pattern.  

 

P 
Q 

O

v
v a= ∨

 

u

u a∧ a
d d
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Among the hyperboxes that contain an input pattern a , a smaller hyperbox will have 

higher activation value. This can be shown by considering two hyperboxes AH  and BH  

with respective weights ( ),1A A AW u v= −  and ( ),1 .B B BW u v= −  Hyperbox AH  has 

maximum size and they can be positioned in 2-d in Figure 9 without loss of generality.  

 

Figure 9: Hyperboxes of different sizes  

 

The end points Av  and Bv  coincide but Au  is closer to the origin than Bu  since AH  is 

larger. This will give ,A Bu u<  so we have  

0.

B A B B A A

B A

W W u M v u M v

u u

− = + − − − +

= −

>

 

Therefore, a hyperbox with larger size will have smaller weight vectors.  

 

Let the activation values for AH  and BH  containing the input pattern be  

A
A

A

W
T

Wα
=

+
 

and  

.B
B

B

W
T

Wα
=

+
 

 

Au

Bu

A Bv v=
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Then  

( ) ( )
( )( )
( )

( )( )

.

0,

B A
B A

B A

B A A B

B A

B A

B A

W W
T T

W W

W W W W
W W

W W
W W

α α

α α
α α

α
α α

− = −
+ +

+ − +
=

+ +

−
=

+ +

>

 

since  

0.B AW W− >  

Therefore, the activation value for a smaller hyperbox is higher than for a larger 

hyperbox if they both contain the input pattern. In turn, the activation value of the largest 

hyperbox which contains the hyperbox is still larger than one which does not.  

 

It now remains to find the size of the weights maxW  for the largest hyperbox, in order to 

obtain a threshold for the activation value. This size can be found by considering the 

vigilance test. A hyperbox with weights W  can code an input pattern only if it satisfies 

the vigilance test, after which the new weights will be updated according to  

.newW W I← ∧  

The updated hyperbox will contain the input pattern and still satisfy the vigilance test, so 

we have  

.

new newI W W
I I

ρ

∧
=

≥

 

newW  is therefore bounded below by Iρ .  
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The size of an input pattern is given by  

( )1 1, , ,1 , ,1

,
M MI a a a a

M

= − −

=

… …
 

where M is the number of attributes of the data. This gives the bound  

maxW Mρ≥  

for the largest hyperbox size. This gives us the minimum activation value for a hyperbox 

containing an input pattern as  

.M
M
ρ

α ρ+
 

Any hyperbox with activation value above this threshold will be containing the input 

pattern.  

 

With this threshold, category hyperboxes whose activation value exceeds it are allowed 

to classify the input pattern, and their classes will be among those predicted for the input 

pattern.  

Using the data from the class distribution as shown in Figure 5(a), the network was 

trained and testing was carried out. Most of the test data had only one class predicted, but 

a portion of them had two classes predicted and they are depicted in Figure 10. Those 

data points lie only in the overlapping region between the two classes, and not in other 

regions where distinct class prediction is possible.   
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Figure 10: Patterns with more than one predicted class  
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Change in Accuracy Measure  

 

With the change in classification, input patterns in the overlapping region have more than 

one predicted class. The measure of predictive accuracy will need to be changed to adapt 

to this new method of classification. An input pattern is deemed as correctly classified if 

the actual class is one of those predicted by the network. This is because the objective is 

to identify the possible class predictions for data in overlapping region, and then use 

other methods to further distinguish them. For the simple 2d data with class distribution 

as shown in Figure 5(a), the network was trained until completion, which took 9 epochs 

and the category hyperboxes were positioned as in Figure 5(c). The original method of 

classification and measure gave 94.33% accuracy on the testing data generated from the 

class distribution, whereas the modified classification with multiple class prediction and 

the corresponding measure gave 100% accuracy, since the category hyperboxes have 

already covered the full class distribution.  

 

2.3.2. Measures to Reduce Category Proliferation  

 

In order to reduce the category proliferation problem caused by overlapping classes, 

several measures were taken and investigated in this project. By using a single epoch for 

training, match tracking - and training the input data class by class, the number of 

categories created during the learning process can be limited to prevent excessive 

creation. In addition, some hyperboxes may be merged after the training process to 

further reduce the number of categories. 

 

Single epoch training  

 

Various training strategies can be used in the learning of input patterns. In [18], strategies 

include training until convergence on training data set, single epoch training, cross 
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validation and training until convergence of hyperbox weight values. These criteria 

determine when to terminate the learning process.  

 

As seen in Figure 5(b), a large number of categories are already created after one training 

epoch for data from overlapping classes. Training until completion requires even more 

epochs, during which the network tries to correctly classify all the training data. However, 

Figure 5(c) shows that for the given example, the change beyond the first epoch arises 

mainly in the form of the creation of more categories in the overlapping region. These 

categories will give a classification accuracy of 100% on the training data used since the 

network terminates the process only when the training data are all correctly classified, but 

the additional categories will not contribute much to the actual predictive accuracy of test 

patterns. This is especially so after a change in the accuracy measure. For the 2-d data 

used in Figure 5, the modified accuracy on the training and testing data was 100% for 

both Figure 5(b) and 5(c).  

 

Given the weight updating rule, the network already produces a number of categories that 

can classify a majority of the training input patterns in the first epoch. Further epochs can 

better map the class boundaries or handle populated exceptions. But as the main concern 

here is overlapping classes rather than a complex decision boundary, further epochs are 

less desirable due to category proliferation as granular categories are created in the 

overlapping region of classes. To reduce this problem, only one training epoch will be 

used. A later modification will further demonstrate the benefit of single epoch training. 

 

Match Tracking - (MT-)  

 

A class mismatch during the training process triggers off the match tracking process, 

which temporarily raises the vigilance parameter while searching for an alternative 

winning hyperbox that is mapped to the same class as the predicted input pattern. This 

makes the vigilance test harder to pass and a new category is more likely to be created. 

Since data from overlapping classes is equivalent to inconsistent cases mentioned in [27], 
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the variant match tracking - suggested in [27] is employed here. Fewer categories are 

likely to result from class mismatches. Instead of using a small positive value for ε , it is 

set to a negative value, hence the method is termed MT- (minus). By changing the value 

for ε , the temporary vigilance test is not too difficult to pass, which allows more chance 

to the existing categories before creating a new one.   

 

Ordered Presentation of Training Input  

 

Besides MT-, another measure is taken to reduce the creation of new categories resulting 

from class mismatches. Instead of shuffling the training data and presenting them to the 

network in random order for learning, the data is first sorted by class and presented one 

class at a time. The order of training input pattern presentation influences the number of 

categories and generalization capability [28]. There are no restrictions on the order of 

input presentation within each class, nor on which class to present first. The key is to 

present data from the same class in bulk. The number of class mismatches leading to 

match tracking can be reduced and thus prevent the excessive creation of categories. This 

can be explained by considering the training process of data from two classes which 

overlap with each other.   

 

During the presentation of input patterns from the first class, only categories mapped to 

that class are present, so naturally there are no class mismatches. Hence by the end of the 

input presentation for that class, the category hyperboxes have been allowed to grow in 

size. When the input patterns from the second class are presented, the overlapping region 

between the two classes may still see the creation of new categories, but the number will 

be reduced. This is because the existing hyperboxes mapped to the first class have 

already grown to a larger size, so the activation value for the newly created smaller 

hyperboxes of the second class will have comparatively higher activation values. With a 

better chance of winning the competition, the number of class mismatches can be reduced. 

In addition, even when class mismatches occur and trigger off match tracking, the larger 
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size of the hyperboxes of the first class will result in a smaller value of | |r jI W∧  and 

subsequently a temporary new vigilance value given by  

| |
| |

r j

r

I W
I

ε
∧

+ , 

which is lower than the one resulting from a mismatch occurring from a hyperbox with 

large size. This vigilance test is less difficult to pass, which will then reduce the 

likelihood of the creation of a new category. This result can be better illustrated in Table 

1.  

 

Table 1: Results from class by class single-epoch training of 2-D data from Figure 5  

Train set 4000 Vigilance = 0.5 Vigilance = 0.75 

 Rand-train Sort-train Rand-train Sort-train 

Total number of 

categories 

30 2 52 17 

Number of 

categories created 

from match tracking 

28 0 43 4 

Average raised 

vigilance 

0.8776 0.5505 0.9059 0.7673 

Number of times 

match tracking is 

triggered 

327 5 369 34 

 

In Table 1, rand-train denotes training the network with a randomly shuffled order of 

training data and sort-train denotes training class by class. The layout of hyperboxes 

shown in Figure 5 was obtained using vigilance parameter of value 0.75. As the large 

number of hyperboxes could arise from a high vigilance parameter value, Table 1 

includes the results from using a lower vigilance parameter value of 0.5 as well. In both 

cases, match tracking (MT) was triggered off more frequently for rand-train than for sort-

train. At 0.5ρ = , match tracking was triggered off 327 times for rand-train as compared 
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to only 5 times for sort-train. At 0.75ρ = , it was triggered off 369 times as compared to 

only 34 times for sort-train. This frequent match tracking gave rise to majority of the 

categories that were created. For 0.5ρ = , 28 of the 30 categories created using rand-train 

was a result of match tracking; and for 0.75ρ = , 43 out of the 52 categories created arose 

from match tracking. In addition, the average value of the increased vigilance parameter 

during match tracking was also higher for rand-train as compared to sort-train: 0.88 as 

compared to 0.55 using 0.5ρ =  and 0.91 as compared to 0.77 using 0.75ρ = . It should 

be noted, however, that if additional training epochs were to be used, a large number of 

categories could still be created for the sort-train method as the network attempts to 

classify all training input patterns. 

 

Merging Categories  

 

Although MT- and training class by class can reduce match-tracking occurrences and 

category proliferation to a certain extent, the overlapping classes will still lead to the 

creation of some additional granular categories within the overlapping region. To deal 

with them, post-processing methods can be employed to reduce the number of categories 

even further after training. Pruning is a popular strategy which can reduce the number of 

categories based on factors such as usage frequency or predictive accuracy [20]. But due 

to the modified accuracy, as well as the use of categories to predict more than one class, 

pruning is no longer an effective strategy for use here. This is because the small 

categories in the overlapping region may not be frequently used as they may not win the 

competition, and the predictive accuracy may be low since the patterns in that region may 

belong to either class. According to the pruning criteria, these categories would be 

removed, yet they are necessary for the network to predict more classes for certain input 

patterns. Rather than pruning and removing them, these categories can be merged instead.  

 

Merging can be carried out based on different conditions, and the following are selected. 

Two category hyperboxes are merged together if: (a) they are mapped to the same class, 

(b) the centroids of the two hyperboxes are near to each other, satisfying a certain 
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distance threshold, and (c) the resultant hyperbox after merging, which contains both 

original hyperboxes, does not exceed the maximum size imposed by the selected 

vigilance parameter. The centroid of a category hyperbox is taken as the midpoint of each 

dimension of the hyperbox, and the distance between the centroids is computed using the 

Manhattan distance, which is the measure used to compute the maximum hyperbox size 

[29]. If a hyperbox is larger than this size, it will certainly fail the vigilance test and 

cannot classify an input pattern. In this situation, even those that were initially classified 

by the original hyperboxes are no longer classified by the resultant hyperbox after 

merging. 

 

2.4. Results  

 

The modifications suggested are tested out on various data. Initial testing is done on two 

datasets from the UCI Machine Learning Repository, to verify the efficacy of the 

methods in handling the category proliferation problem. Further validation is carried out 

on a massive simulated data set with a large number of classes as well as training and 

testing patterns.  

 

All the datasets used have some degree of overlap in terms of the range of values which 

their attributes can take. The attributes are all a mixture of discrete and numerical values. 

Each dataset is split into 70% for training and 30% for testing. Data from overlapping 

classes may be difficult to classify accurately. Table 2 shows the results of classification 

of the UCI data using fuzzy ARTMAP (FAM) without the modifications, as well as 

multilayer perceptron (MLP) and learning vector quantization (LVQ). Details of the UCI 

datasets – yeast and contraceptive method choice data – will be given later in this section. 

The results shown here are those obtained by using the parameter values of each method 

after scanning to find the most suitable values that gave the best performance.  
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Table 2: Accuracy of UCI data using different classification methods  

 FAM MLP LVQ 

Yeast Data 45.39% 44.04% 45.17% 

Contraceptive Method 

Choice Data 

45.93% 43.67% 49.32% 

 

All three methods could not achieve accuracies above 50% despite various combinations 

of the parameters used. It is difficult to classify the patterns because the class 

distributions are overlapping and they can belong to more than one class, and this is why 

the classification is modified to return more than one output class where relevant, and the 

accuracy measure changed accordingly. The results are shown in the following sections, 

depicting the average number of categories formed and the accuracy for different 

modifications used to reduce category proliferation.  

 

Table 3: Combinations of modifications  

 MT- Train 

class by 

class 

Merge 

categories 

Single 

epoch 

training 

FAM     

FAM-MT-     

FAM-new     

FAM-combined     

 

Having seen how the number of categories grows with the number of training epochs 

used, only one training epoch is used even if there are no other modifications made to the 

training process, in order to facilitate comparisons on the number of categories. The 

combinations of modifications used and their corresponding names are shown in Table 3. 

FAM is the original fuzzy ARTMAP classification using single epoch training. FAM-

MT- uses matching tracking – with negative ε  instead of the usual match tracking with 

positive ε . FAM-new employs only the new modifications suggested (training class by 

class and merging of categories). FAM-combined uses all the modifications mentioned. 
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The results to these different combinations of the modifications are shown to compare the 

improvements made by the different measures.  

 

 For ordered input presentation, the classes were simply presented in the order of their 

class label indices. All the accuracies shown below are for the modified classification and 

accuracy measure, and results are averaged over 100 simulations. The vigilance value 

was chosen as 0.5ρ =  for all the data since it gave the best results after testing with 

values from 0.1 to 0.9 with step size of 0.1. The match tracking parameter was set as 

0.000001ε =  for normal match tracking and 0.01ε = −  for MT-.  The choice parameter 

was set to 0.000001.α =   

 

2.4.1. Results for UCI Datasets  

 

Results for Yeast Database  

 

The yeast database from Machine Learning Repository was donated by Paul Horton [30]. 

Proteins from yeast were classified into 10 classes based on their cellular localization 

sites, such as cytoskeletal, nuclear and mitochondrial, vacuolar, peroxisimal, extracellular, 

localized to lumen of endoplasmic reticulum, membrane proteins with cleaved signal, 

uncleaved signal, or no N-terminal signal. The 8 attributes are calculated from the amino 

acid sequences and include scores from McGeoch's method and von Heijne's method for 

signal sequence recognition, score of ALOM membrane spanning region prediction 

program, results of discriminant analysis of amino acid content of 20-residue N-terminal 

region of mitochondrial and non-mitochondrial proteins, discriminant analysis of the 

amino acid content of vacuolar and extracellular proteins, discriminant analysis of 

nuclear localization signals of nuclear and non-nuclear proteins, peroxisomal targeting 

signal in the C-terminus, and the presence or absence of an HDEL substring. The final 

attribute is binary. All the attribute values already lie in the range 0 to 1. A total of 1484 

samples were available, with no missing attribute values in the dataset.  
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Table 4: Comparisons between modifications on results for yeast data  

 Number of 

categories 

Accuracy 

FAM 175 81.09% 

FAM-MT- 90 82.91% 

FAM-new 23 84.51% 

FAM-combined 20 83.07% 

 

By targeting the creation of categories from the match-tracking process, the number of 

categories could be reduced. Simply employing MT- could reduce the number of 

categories by almost 50%, but the other modifications suggested here gave a more 

significant reduction of up to 86%. The accuracy also improved from 81.09% to 84.51%, 

indicating that the reduction in categories was primarily in the overlapping region since 

the reduced categories did not adversely affect accuracy.  

 

Results for Contraceptive Method Choice Data  

 

The contraceptive method choice data [31] on Machine Learning Repository is taken 

from the 1987 National Indonesia Contraceptive Prevalence Survey. Women were 

interviewed on their choice of contraceptive methods and classified into 3 classes – short 

term use, long term use, or no use of contraceptive methods. The 9 attributes reflected 

demographic and socio-economic characteristics such as age, religion, employment, 

media exposure, standard of living, number of children, husband’s occupation, and both 

the wife and husband’s education. The samples belong to either of the 3 classes, but the 

attributes used to describe the samples are not entirely sufficient to separate them into the 

classes. Two women sharing very similar characteristics could choose different 

contraceptive methods, so the class distributions are overlapping. Most of the attributes 

are discrete, but they are represented by fixed values between 0 and 1. The size of this 

dataset is 1473 and there are no missing attribute values.  
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Table 5: Comparisons between modifications on results for contraceptive method choice data  

 Number of 

categories 

Accuracy 

FAM 233 78.88% 

FAM-MT- 169 82.94% 

FAM-new 57 89.90% 

FAM-combined 56 87.10% 

 

MT- reduced the number of categories by about 27%, but the suggested modifications 

could reduce it by about 75%, and markedly improving the accuracy from 78.88% to 

89.90% at the same time. A combination of MT- and the suggested modifications yielded 

the fewest categories like for the yeast dataset, but the accuracy was slightly affected.  

 

In the above two datasets from the UCI Machine Learning Repository, the combined 

modifications reduced the number of categories by at least half while the accuracy 

improved. We shall now test out the modifications on larger simulated data.  
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2.4.2. Results for Synthetic Data  

 

Results for Synthetic data without noise  

 

This data is simulated and has a size of 49500. There are 165 classes and the data has 7 

attributes before complement coding. Three of the attributes are numerical and the other 

four are discrete.   

 

Table 6: Comparisons between modifications on results for synthetic data without noise  

 Number of 

categories 

Accuracy 

FAM 2046 95.19% 

FAM-MT- 177 99.78% 

FAM-new 416 99.76% 

FAM-combined 165 99.82% 

 

Due to the higher number of classes and the higher degree of overlap between the classes, 

a single epoch of training led to the creation of up to 2046 categories. Without any 

modifications, one epoch of training yielded 2046 categories. By changing ε  from 

0.000001 to -0.01 in MT-, the vigilance parameter was controlled during the match 

tracking process, and the number of categories created dropped by more than 90%. This 

could imply there had been many occurrences of class mismatches during training, so by 

controlling the vigilance parameter and preventing it from growing too much, the 

creation of new categories was inhibited. Unlike the two UCI datasets, MT- worked 

better than the suggested modifications for this dataset. A reason for this may be the large 

number of classes and training data. There are overlaps between many classes and the 

large number of patterns in the overlapping region will trigger match tracking many times. 

Despite presenting the patterns in order during training, class mismatches still occur quite 

frequently, leading to match tracking and creation of categories. Nevertheless, the best 

performance was achieved by employing all the modifications. The number of categories 
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dropped further to 165, which was the minimum number required given the number of 

classes the data was distributed into. Predictive accuracy improved further to 99.82%.  

 

Results for Synthetic data with noise   

 

This dataset is similar to the previous one, consisting of 49500 data with 7 attributes each. 

However, this dataset is introduced with Gaussian noise using 20% standard deviation.   

 

Table 7: Comparisons between modifications on results for synthetic data with noise  

 Number of 

categories 

Accuracy 

FAM 6115 84.50% 

FAM-MT- 2482 92.19% 

FAM-new 2165 93.26% 

FAM-combined 1325 94.62% 

 

With the introduction of noise to the data, the predictive accuracy was badly affected and 

the number of categories created grew drastically. MT- reduced the number of categories 

by about 60%, while the suggested modifications reduced it by about 65%. Unlike for the 

previous dataset, the reduction of categories was more significant using the suggested 

modifications than MT-. This could be due to the presence of noise. Nevertheless, it was 

still a combination of all the modifications that gave the best performance, reducing the 

number of categories by more than 78% and improving the predictive accuracy 

significantly from 85% to 95%, an indication that the modifications work well with noisy 

data.  
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2.5. Discussion  

 

Table 8: Summary of results using fuzzy ARTMAP with and without modifications  

 No 

modifications

With 

modifications

Yeast  

Number of categories 175 20 

Accuracy 81.09% 83.07% 

Contraceptive Method Choice Data  

Number of categories 233 56 

Accuracy 78.88% 87.10% 

Synthetic Data without Noise  

Number of categories 2046 165 

Accuracy 95.19% 99.82% 

Synthetic Data with Noise  

Number of categories 6115 1325 

Accuracy 84.50% 94.62% 

 

Table 8 summarizes the results from testing on the various data. The combined use of all 

the modifications can reduce the number of categories created and at the same time 

improve the accuracy. However, there are certain concerns about the modifications 

introduced that are investigated further.  

 

Although additional epochs of training lead to category proliferation in overlapping data, 

they are needed to approximate the boundaries separating the class distributions where 

they are not overlapping. By reducing the number of training epochs to only one, patterns 

lying near the boundary between classes may not be properly classified. Therefore, the 

method is better suited to data whose classes have a wider margin of separation where 

they are not overlapping. This could translate to suitability to data with more attributes 
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since non-overlapping class distributions are less likely to be leaning on the same 

boundary when in the higher dimensional hyperspace.  

 

By training class by class, the number of categories created due to overlapping classes 

can be reduced. However, incremental learning is sometimes required as new data 

becomes available, and it is inefficient to retrain the network class by class from scratch 

using all the training data. Rather than doing so, the network can learn the new batch of 

data incrementally as long as it is also sorted by class. Although the results would not be 

as good as training class by class from scratch, it will still be better than training all the 

data in a random order. Table 9 compares the results of training a set of data in random 

order against the results of training in 2 and 3 batches incrementally. Rand-train denotes 

the training the whole set of data in random order, which is consistent with training 

incrementally as new data becomes available. Sort-train Case 1 trains the network in 2 

batches – the first 70% followed by the remaining 30%. Sort-train Case 2 trains the 

network in 3 batches – the first 70% followed by 15% and then the last 15%. Training 

was carried out for one epoch, without MT- or merging. The parameters used are same as 

before and the results are averaged over 100 simulations.  

 

Table 9: Results for ordered incremental learning using UCI data  

 

 

No. of 

categories 

Accuracy 

Yeast 

Rand-train 175 81.10% 

Sort-train Case 1 65 88.22% 

Sort-train Case 2 74 88.11% 

Contraceptive Method Choice 

Rand-train 236 78.64% 

Sort-train Case 1 83 91.05% 

Sort-train Case 2 96 90.81% 
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As with the number of epochs, the effectiveness of training class by class degrades with 

the number of times incremental learning is used. However, the results are still better than 

training the input in a random order, as long as the bulk of the training data has been 

trained in order from the beginning.  

 

The merging of categories allows the input patterns of the hyperboxes to still be classified 

by the corresponding resultant hyperbox after merging. With multiple class prediction 

and the modified accuracy measure, merging will not lead to misclassification. This is 

because the patterns initially classified by the hyperboxes before they undergo merging 

will still be classified by the resultant hyperbox. Input patterns that were originally 

classified by other hyperboxes will still be so, even if it is now contained in the resultant 

hyperbox, since both classes will be predicted. However, there may be an increase in the 

number of predictions for the patterns, and such patterns may not even be in the 

overlapping region. Therefore, additional class predictions need to be justified with an 

increase of reasonable proportion in the predictive accuracy.  

 

Table 10: Improvements in performance from using merging 

Percentage improvement in  

No. of 

categories 

Accuracy 

Yeast 6.52% 0.13% 

Contraceptive 

Method Choice 

0.23% 0% 

Synthetic data 

without noise 

0.07% 0% 

Synthetic data 

with noise 

15.37% 0.55% 

 

Table 10 shows the results of merging after the other modifications have been carried out, 

averaged over 100 simulations. For the UCI data and the synthetic data without noise, the 

other modifications are already sufficient to reduce the number of categories, and 
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merging makes little improvement to the results. There are slightly better improvements 

for the synthetic data with noise, seeing a drop of about 15.37% in the number of 

categories. However, the increase in accuracy is only 0.55%, and further investigation is 

carried out on the increase in the number of class predictions for the test data.  

 

14850 patterns were used for testing of the synthetic data with noise. On average, 

merging increased the total number of class predictions for all patterns by 382, but the 

number of correctly classified patterns increased by only 82. The large increase in the 

number of predicted classes could be due to the large size of the resultant hyperbox after 

merging, covering more space than that belonging to the class. To rectify this, a reduction 

in the distance threshold may be used, or a higher vigilance value to impose a stricter 

hyperbox size restriction can be employed during the merging process, in order to limit 

the size of the resultant merged hyperbox. However, the poor performance could also be 

a reflection of the unsuitability of merging for the data used due to the geometry of the 

class distributions.   
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The other module in the classification system which is explored is the signal sorting 

module. The data sample fed into this module consists of signals from various sources. 

Each signal has its own time-of-arrival (TOA) along with other attributes. Signals from 

the same source will form a sequence train with approximately the same time interval 

between the TOAs, and this interval is known as the pulse repetitive interval (PRI). 

Sequence trains from different sources will have different PRI. The purpose of the signal 

sorting module is to separate the signals into their various sources, which is equivalent to 

sorting them into their respective sequence trains.  

 

The attributes of the signals alone are not sufficient to separate the signals into their 

various sources. The TOA will have to be used to sort them into their sequences with the 

same PRI, and this is precisely the signal sorting process. Existing methods such as 

sequence search and difference histogram methods can do this, but are also not entirely 

sufficient to do so and will face certain difficulties. One way of dealing with this is to 

first cluster the signals based on their attributes, and then carry out signal sorting on the 

signals from each cluster. Such methods have been introduced in [32], [33] and [34].  

 

However, when expert knowledge is available, it could play a more active role in the 

signal sorting process. As data gets accumulated over time, this knowledge can be 

incorporated into the system to improve the performance [35]. In the case of our system 

of interest, prior knowledge of the attributes and the sources are available in the form of a 

database. Our goal is to make use of this knowledge in the signal sorting process to 

overcome the limitations and difficulties faced in the existing methods.  

 

 

Chapter 3. Signal Sorting by TOA  
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3.1. Existing Method  

 

3.1.1. Sequence Search  

 

The sample consists of signals from various sources but sorted according to their TOA. 

Sequence search works to identify the PRI of the sources present by attempting to 

construct sequence trains based on the possible values. More details of the algorithm can 

be found in [36].  

 

From a starting signal, the interval to its adjacent signal is found and a trial train is 

constructed based on this interval. If there are enough matches between the trial train and 

the sample, this trial train will be extracted and its interval is the identified PRI. Sequence 

search is then carried out on the remaining signals in the sample and the process is 

repeated. If there are insufficient matches, the interval is discarded and trial train 

construction is attempted using the interval between the starting signal and the 

subsequent signal instead. This process can be more clearly illustrated using algorithm 

3.1.  

 

The sequence search method is reliable and accurate, and straightforward to implement. 

However, it is very processor intensive [37].  Rather than constructing trial trains for all 

possible PRIs, it would be more efficient to find a smaller subset of possible PRIs and 

construct trial trains only for those values. Such a set of possible PRIs can be found using 

the difference histogram method.  
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Algorithm 3.1  

 

Sample consists of signals with TOAs 1 2{ , ,..., }ns s s   

for 1, 2,...,i n←  

 Starting signal ← is  

 for 1,...,j i n← +   

  interval ← j is s−  

  Construct trial train using this interval  

  if number of matches are sufficient,  

   Extract train and restart algorithm  

  end (if)  

 end (for j)  

end (for i)  

 

3.1.2. Difference Histogram Method  

 

A successful sequence search requires sufficient matches between the constructed train 

using a particular PRI and the actual sample, so the given PRI should frequently appear 

as an interval between signals in the sample. To find such PRIs, a histogram of the 

intervals between TOA of the signals in the sample can be formed. If a certain histogram 

bin is tall enough, its corresponding PRI value is likely to be a PRI. A threshold can be 

used to determine whether the bin is sufficiently tall, before the PRI value is used for 

sequence search. This threshold cannot simply be a fixed value, since smaller intervals 

are bound to appear more often in a sample containing signals from several sources, but 

they generally do not correspond to actual PRI values. Therefore, the threshold should be 

a function that takes this into consideration. The success of the histogram method will 

depend mainly on the way the histogram is formed and the threshold that is used. We will 

first look at the two different histogram methods, namely the cumulative difference 
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(CDIF) histogram method and the sequential difference (SDIF) histogram method, 

followed by the threshold function that is actually used.  

 

CDIF Histogram  

 

At the first difference level, the CDIF histogram method forms a histogram (see Figure 

11(i) for an illustrated example) of the TOA first differences 1d , which are the intervals 

between each signal and its adjacent signal. The count at each interval and its double 

interval is compared to a threshold. If the count exceeds the threshold, that interval will 

be a possible PRI and sequence search is carried out by constructing a trial train based on 

that PRI.  

 

Figure 11 shows the histogram bins compared against the threshold up to the fourth 

difference level, when an interval was successfully identified for sequence search. The 

sample used consists of 3 trains with PRI 5, 8 and 11. Four difference levels had to be 

computed before an interval and its double interval both exceeded the threshold. In 

Figure 11(iv), the bin at PRI = 5 and at PRI = 10 both exceeded the threshold, so 

sequence search can be carried out for interval 5. 

 

 

 

 

 

 

 

 

 

 

 

 



 44

Algorithm 3.2  

 

Sample consists of signals with TOAs = { }1 2, , , ns s s…  

Set number of bins binsN  

for 1, 2,...c ←   

 Find cth differences cd , where ( )c i c ii
d s s+= − , for 1,...,i n c= −  

 Form histogram for cd   

 Accumulate histogram count from id , for 1,..., 1i c= −  

 Draw threshold jt  and compare with bin heights jh for 1,..., binsj N=  

 Let { }| l lL l h t= ≥  

 for j L∈  

  if 2 j L∈  

   Do sequence search for histogram bin centre jp  

   if the train is successfully extracted,  

    Reset 1c ←  

    Repeat CDIF algorithm on the remaining samples  

   end  

  end  

 end (for j)  

end (for c)  
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(iv) 

Figure 11: CDIF histograms up to difference level 4  

 

SDIF Histogram  

 

The SDIF histogram method forms histograms like in CDIF (see Figure 12(i)) but 

without accumulating the count from previous difference levels. To determine the 

possible PRI based on which sequence search should be carried out, the histogram is not 

only compared to the threshold function, but an additional subharmonic check is required 

if the tallest histogram bin does not cut the threshold. Let pm denote the interval 
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represented by the histogram bin with maximum height, and p1 be the interval of the first 

histogram bin which exceeds the threshold. If p1 represents a multiple of pm, then pm 

should be used for sequence search. Otherwise, sequence search will be carried out for all 

intervals whose count exceeds the threshold. Subsequent difference level histograms are 

formed like in CDIF (see Figure 12(ii)) but without count accumulation. The sample used 

here is the same as that used in Figure 11. At the second difference level, the count for 

interval 5 is the maximum and also exceeds the threshold, hence it passes the 

subharmonic check. Algorithm 3.3 presents the steps for SDIF method.  
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(ii) 

Figure 12: SDIF histograms up to difference level 2  
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Algorithm 3.3  

 

Sample consists of signals with TOAs = { }1 2, , , ns s s…  

Set number of bins binsN  

for 1, 2,...c ←  

 Find cth differences cd , where ( )c i c ii
d s s+= − , for 1,...,i n c= −  

 Form histogram for cd   

 Draw threshold kt  and compare with bin heights kh for k ← 1,…, binsN   

 Let { } 1 2,...| ,l lL l h t l l= ≥ =  

 maxp ← interval represented by tallest bin  

 if 
1l

p  is a multiple of maxp  

  Include index of tallest bin into L  

 end  

 for j L∈  

  Do sequence search for histogram bin centre kp  

  if the train is successfully extracted,  

   Reset 1c ←  

   Repeat SDIF algorithm on the remaining samples  

  end  

 end (for j)  

end (for c)  

 

Threshold Function  

 

The use of histogram methods can be more efficient than traditional sequence search 

because trial trains need only be constructed for certain PRI values. It is therefore 

important to correctly determine these PRI values so that sequence search is not carried 
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out unnecessarily for false PRI values. The key to doing this is to employ the right 

threshold function, against which the histogram bins are compared. A threshold that cuts 

the histogram at incorrect intervals will yield bin intervals that do not correspond to 

actual PRI values. Sequence search will then be performed more times than necessary, 

resulting in a waste of resources and undermining the effectiveness of the difference 

histogram method. In addition, a false PRI may be identified and the wrong signals may 

be extracted, causing greater difficulty later on.  

 

As mentioned before, the threshold should be a function rather than a constant value 

since smaller intervals are bound to appear more often when the sample consists of 

signals from various sources. In [38], the intervals between two signals are considered as 

random Poisson points and the histogram as the estimate of the probability distribution 

function of a random event. The function used is  

( ) ( ) kNThr x E c e
τ

τ
−

= − , 

where τ  is the bin index, E  is the number of signals in the interleaved sample, c  is the 

difference level, N  is the number of bins, and parameters x  and k  are positive constants 

less than one which are determined experimentally. This form of the threshold function is 

found to follow the histogram peaks closely and was shown to give good results, so we 

use the same threshold here.  

 

3.2. Implementation of Sequence Search and 

Histogram Methods  

 

Although the difference histogram and sequence search provides a framework for signal 

sorting, the actual implementation of the methods gave rise to certain issues. Certain 

parameters had to be introduced and minor adaptations of the sequence search method 

were needed in order to carry out the process.  
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3.2.1. Implementation Issues  

 

The difference histograms give the possible intervals for which sequence search can be 

carried out. In the example used for Figures 11 and 12, both CDIF and SDIF histograms 

gave PRI = 5 for sequence search, which was indeed the PRI of one of the sequences 

present in the sample. However, the histogram bin intervals consist of a range of values 

rather than a single value. When the bin count exceeds the given threshold, the PRI to be 

used for sequence search can be any of the values within the bin interval since the bin 

count could have been contributed by any of these values. As such, this should be 

reflected in the construction of trial train during sequence search. The trial train consists 

of signals from the sample which will form a sequence with a PRI value lying within that 

bin interval. The algorithm will be elaborated later in the section after other issues have 

been addressed.  

 

Another implication for the trial train construction in sequence search arises from the 

irregularity of signal intervals within PRI sequences. Although signals from the same 

source occur at regular intervals, this interval may not always be exact within the 

sequence, but instead deviate slightly from the mean PRI. So during the trial train 

construction, a certain tolerance should be allowed such that a signal can still be 

considered for the trial train even if it results in an interval lying outside the bin range, as 

long as it is within the given allowance. This tolerance should be closely related to the 

deviation of the PRI from the mean value within the sequence.  

 

In addition to the PRI deviations, the sample may also have missing signals that makes 

sequence search more difficult. The trial train construction may encounter instances 

where no signal from the sample can be considered since the resulting PRI of the train 

would no longer fall within the bin interval or its tolerance. In this situation, a missing 

signal may be assumed and the construction can continue. However, there cannot be too 

many consecutive missing signals in the train construction or the process will be 

inaccurate, so only a certain maximum number of signals can be assumed, beyond which 

the train construction should be aborted.  



 50

3.2.2. Algorithm for Sequence Search using Bin Interval  

 

Given the histogram bin that contains a likely PRI value, the sequence search is 

implemented as follows:  

 

• From a starting signal in the sample, project the bin interval to obtain a window 

and search for the next signal in the following order.  

o If there are signals in the window, the first will be used in the construction 

of the trial train.  

o If there are no signals in the window, search outside and find the nearest 

which lies within the tolerance allowance.  

o If no signals are found within the tolerance allowance, assume there is a 

missing signal and find the next signal.  

o If the maximum number of consecutive missing signals has been assumed, 

trial train construction is deemed to have failed.  

• Subsequently find the next signal by following the same procedure  

• If trial train construction fails for this starting signal or if the constructed train is 

too short, restart by using another starting signal.  

• If the constructed train satisfies the minimum length, extract those signals from 

the sample and compute the PRI.  

 

Example  

 

The algorithm can be better illustrated using an example.  

 

The sample below consists of signals from 3 sources with PRI = 5, 8, 11. There are slight 

deviations of the PRI from the mean for all 3 PRIs. The bin interval being used in 

sequence search is 4.9638 to 5.2251 and the key is to search for the signals corresponding 

to PRI 5, indicated in the sample in bold.  
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0, 5.2251, 8.1029, 10.0906, 11.0524, (15.1441 missing), 16.0852, 20.137, 

21.9812, 24.1221, 25.3327, 30.4637  

 

Figures 13 to 17 illustrate the search for the signals. The solid boxes indicate the window 

obtained by projecting the bin interval, and the dashed line boxes indicate the tolerance 

allowances. Signals denoted by * are those that are selected for use in the train 

construction.  

 

 

Figure 13: Example of sequence search using bin interval – Search for first signal  

From the starting signal with TOA = 0, the bin interval was projected and the signal with 

TOA = 5.2251 was found. 

 

 

Figure 14: Example of sequence search using bin interval – Search for signal within tolerance 
allowance  

From the signal with TOA = 5.2251, the bin interval was projected but no signal was 

found. However, the signal with TOA = 10.0906 lie within the tolerance allowance and 

was used in train construction.  
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Figure 15: Example of sequence search using bin interval – No signal found within tolerance 
allowance   

From the signal with TOA = 10.0906, the bin interval was projected but no bin was found 

in the window or the tolerance allowance.  

 

 

Figure 16: Example for sequence search using bin interval – Search for next signal after a missing 
signal is encountered  

A missing signal is assumed and the bin interval is projected again. The signal with TOA 

= 20.137 was found within the window.  

 

After a number of signals have been found in the trial train, there is a rough idea as to 

what the PRI might be. So instead of searching in the projected bin interval, the next 

signal in the trial train can be found by first computing the supposed PRI based on the 

trial train constructed so far, and then searching for the nearest signal to the projected PRI 

estimate, and which also lies within the tolerance window.  

 

In the previous example, after those signals have been used in the train construction, the 

supposed PRI of the partial constructed train was computed to be 5.03425. The next 

signal in the constructed train can then be found as in Figure 17.  

16
.0

85
2 

21
.9

81
2 

20
.1

37
* 

10
.0

90
6*

 

16
.0

85
2 

11
.0

52
4 



 53

 

 

Figure 17: Example for sequence search using bin interval – Selection of next signal based on 
supposed PRI  

From the signal with TOA = 20.137, the supposed PRI of 5.03425 was projected to 

25.17125 where we expect the next signal to be. The nearest signal has TOA = 25.3327, 

which lie within the tolerance allowance.  

 

3.2.3. Problems Encountered  

 

After the implementation issues were resolved, the process of signal sorting could be 

carried out. However, certain difficulties were encountered. The tolerance and threshold 

function play important roles in the method, as we will elaborate later in the following 

section, but their parameter values can only be experimentally determined. In addition, 

the efficacy of the method degraded as the deviations from mean PRI increased.  

 

The tolerance parameter creates a tolerance window during sequence search to 

accommodate deviations of PRI from the mean value. If the tolerance value is too large, 

the window will be too wide and could contain too many signals, resulting in inaccurate 

trial train construction or making it difficult to determine which signal should be used 

[39]. On the other hand, if the tolerance used is too small, the trial train construction will 

encounter difficulties in searching for the next signal in the train, especially if there are 

larger deviations of the PRI from the mean value.  
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The threshold function is the key to finding the right PRI values for sequence search, and 

the right threshold parameters are required for the function to cut the right bins in the 

histogram. If too many irrelevant bins are cut, sequence search will have to be carried out 

for many false PRIs, which will undermine the histogram methods. Moreover, if the bin 

containing a multiple of the actual PRI is used for sequence search instead, only part of 

the actual PRI sequence will be extracted through sequence search and the wrong PRI 

will be identified. As such, the choice of threshold parameters is important in the signal 

sorting process and requires appropriate selection. Yet these parameters can only be 

determined experimentally, which also means that there has to be some knowledge of the 

sample in order to evaluate which parameter values are suitable. Furthermore, the 

parameter values for one data sample generally do not suit another data sample [40], so 

testing will need to be carried out frequently.  

 

The problem of threshold parameters selection is compounded when there are large 

deviations of the PRI from the mean value. As the deviations increase, the histogram 

peaks become less distinct and harder to compare with the threshold function, which is 

illustrated in Figure 18. In Figures 18(a) and (b), the bin with PRI 5 is clearly taller than 

the other bins and is easily cut by the threshold. But as the amount of deviation from 

mean PRI increased, the threshold could not cut any bin in Figure 18(c) and no bin was 

distinctly taller than the others. Sequence search will not be carried out at this difference 

level for this histogram and higher difference levels will need to be computed. The 

threshold may cut the correct bin at higher difference levels, but it may also cut a bin 

containing a multiple of the PRI which could lead to incorrect extraction of the signals.  
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Figure 18(a): PRI 5 and 8 

have no deviations. 
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Figure 18(b): PRI 5 has 

deviation of 5% and PRI 8 

has deviation of 2% 
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Figure 18(c): PRI 5 and 8 

both have deviations of 

10% 

Figure 18: Difference histogram of sample with higher deviation  

 

In addition, the sequence search process will also become more difficult as the deviation 

from mean PRI becomes larger. The wider range of values that the PRI can take has to be 

accounted for by a larger tolerance value for sequence search, but this also increases the 

likelihood of more signals within the tolerance allowance. There will need to be a way to 

decide which of the signals should be used in the train construction.  

 

3.3. Use of Prior Knowledge  

 

For signal sorting, the data sample consists of signals from various sequences. Unlike 

generated data used for testing, in actual applications there is no way of telling exactly 

which signal belongs to which sequence, or how many sequences are present in the 

sample and what their PRIs are. On the other hand, historical data, records or expert 

knowledge could be available. This information may help in overcoming the difficulties 

encountered over the signal sorting process.  

 

For the data used in the signal sorting module of this system, prior knowledge of the 

sources is available in the form of a database, along with information on other sources 

whose signals may not be present in the sample. The information for each source include 

the following: PRI range, which is a range of values within which the PRI can lie, 
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attributes range, which is a range of values each attribute can take, and the deviation from 

the mean PRI.  

 

Information that is more relevant to the sample can be drawn from the database. Given 

the signals in the sample, their attributes can be checked against the attribute ranges in the 

database to pull out a portion of the entries, which will be referred to as the source table. 

From this table, higher relevance can be achieved for every bin interval obtained from the 

histogram method. The source table can be scanned for those entries whose PRI ranges 

overlap with the given bin interval, to comprise a list of possible matching sources for 

that bin, which will be referred to as a PRI list which can facilitate sequence search. The 

level of information extracted from the database can be seen more clearly in Figure 19. 

The information drawn from the database can then be used to help in selecting the 

tolerance and threshold parameters, as well as in the sequence search process after a 

histogram bin likely to contain a PRI is identified.   

 

 

Figure 19: Graphical view of information drawn from database  
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3.3.1. Selecting the Tolerance Parameter  

 

As seen earlier, the tolerance has to be appropriately set when doing sequence search, and 

this selection can be guided by the prior knowledge given in the database. For a given bin 

interval, a PRI list can be generated. This list consists of the possible sources and the 

probable deviation of PRI from the mean value for each source. The tolerance parameter 

can then be set to the highest deviation from mean PRI for the sources in this list.  

 

3.3.2. Selecting the Threshold Parameters  

 

The histogram bins are compared to the threshold function to obtain the bin intervals for 

carrying out sequence search. The parameters x and k can be adjusted using the prior 

information to find a threshold function that correctly cuts the histogram bins.  

A bin is said to tally with the source table if its bin range overlaps with the PRI range of 

at least once source entry in the source table. If the threshold drawn using the initial 

parameter values cuts a bin that tallies with the source table, no change is made to the 

parameter values and sequence search is carried out as usual on the bin interval. However, 

if the threshold does not cut any bin, or if it cuts a bin that does not tally with the source 

table, adaptation of x and k is carried out. The values are adjusted such that the threshold 

cuts the tallest bin which tallies with the source table, without violating the restriction on 

the value range (x and k are positive values less than 1). The detailed steps are shown in 

the following section.  
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Adaptation of x and k using prior knowledge  

 

1. Find tb :  

Sort the N bins 1 2{ , ,..., }Nb b b  according to height and select the tallest bin tb  that 

tallies with the source table. The threshold will later be modified such that tb  is 

the first bin it will cut.   

2. Find mb :  

Since bin tb  is the first bin that the threshold should cut, consider the bins before 

it. For each bin 1 2{ , ,..., }tb b b , compute the corresponding values 1 2{ , ,..., }tx x x  for 

parameter x such that the threshold just cuts each bin at its tip. Identify 

1 1max{ ,..., }m tx x x −= , and consider its corresponding bin mb .  

3. Consider if mb  is shorter than tb :  

If bin tb  is the tallest bin of 1 2{ , ,..., }tb b b , choose { , }t mx average x x← so that the 

threshold will cut the bin with a comfortable allowance from its tip as shown in 

Figure 20.  

 

Figure 20: Position of threshold function if chosen bin is taller than those before it 
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4. Consider if mb  is taller than tb :  

If there is an earlier bin mb  that is taller than tb , change x and k such that the 

threshold still cuts tb  at the same point but will not cut mb . In Figure 21, the 

height of the bin mb  is given by mh .  

 

Figure 21: Position of threshold function if chosen bin is shorter than one before it 

 

Using the original values 0x  and 0k , we can find new values 1x  and 1k  as follows:  

a. Formulate simplified function:  

The threshold function, given by  

( ) ( ) kNThr x E c e
τ

τ
−

= − , 

can be written as the function quv pe−=  shown in Figure 22.  
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Figure 22: Simplified view of original and desired threshold function  

 

On the horizontal axis, u represents the index of the histogram bin; on the 

vertical axis, v represents the height of the bin.  

b. Matching each graph to its respective threshold function:  

The graph 0
0

q uv p e−=  represents the original threshold with values 0x  and 

0k , passing through the point ( , )tt v , where t tv h= . The values 0p  and 0q  

can be found by  

0 0 ( )p x E c= −  

and  

0
0

1q
k N

= . 

The graph 1
1

q uv p e−=  represents the desired threshold with new values 1x  

and 1k , passing through the same point ( , )tt v  and also the point ( , )mm v , 

where m mv h ε= + , for a small positive value ε . The values of 1p  and 1q  

can be found by formulating the following equations.  

c. Finding the values 1p  and 1q :  

Since the graph 1
1

q uv p e−=  should pass through the point ( , )mm v , we have 

1
1

q m
mv p e−= . In addition, both graphs pass through the point ( , )tt v , giving 

u 

v 

tm

tv  

mv  

0
0

q uv p e−=
1

1
q uv p e−=
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0 1
0 1

q t q t
tv p e p e− −= = . With these two equations, the values 1p  and 1q  can 

be computed by  

0

1
0

1 log
q t

mv eq
t m p

⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

 

and  
1

1
q m

mp v e= . 

d. Computing 1x  and 1k :  

The new values of the parameters can then be found using  

1
1

px
E c

=
−

 

and  

1
1

1k
q N

= . 

5. Check range of new x and k:  

Both the threshold parameter values must lie in the range (0,1). If either of the 

values returned by the above steps violates this restriction, the adaptation of x and 

k is deemed to have failed.  

 

If no values of x and k are found in the above steps, it could mean that the source is not 

included in the table at all, or that higher difference levels are required. No adjustments 

will be made to the original values of x and k. Sequence search is carried out as normal if 

the existing threshold cuts some bin. Otherwise, the next difference level will be 

computed.  

 

Threshold parameter values x and k that lead to the successful extraction of PRI and trial 

trains are saved for reference in subsequent rounds of threshold comparisons. The starting 

values of x and k are assigned with the average of the previous two values they have took 

on, and they will be used without change if the threshold cuts the right bin. This way, the 

parameters may adapt to the suitable value over time and the need for adjustment is 

reduced.  
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Figure 23 shows the histogram peaks resulting from the data used to obtain Figure 18(c). 

The sample consists of two sequences with PRI 5 and 8, each with deviation 10% from 

the mean PRI. The original threshold function cannot cut any of the bins at all.  

 

However, given information consisting of the possible PRIs that are included in the 

sample, the threshold parameters can be adapted such that the correct bin can be cut and 

sequence search activated. The information used in this example is shown in Table 11. 

Besides the two sources with PRI 5 and 8, there is information on other sources as well.  

 

Table 11: Example of information used in adaptation of x and k  

Possible PRIs in the interleaved sample (range) 

Lower limit in range Upper limit in range 

1.3 1.8 

2.5 3.1 

4.9 5.1 

7.6 8.5 

10 11.8 

 

Using the original threshold parameter values, the information above was used to find 

new values as shown in Table 12. The new values adjusted the threshold function so that 

it can now cut the bin as seen in Figure 23.  

 

Table 12: Values of x and k before and after adaptation  

 Initial values New values 

x 0.6 0.41844 

k 0.7 0.7 
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Figure 23: Thresholds before and after adaptation  

 

3.3.3. Trial Train Construction in Sequence Search  

 

In the construction of a trial train during sequence search, the prior knowledge can lend 

greater credibility to the selection of the next signal in a trial train. Based on the bin 

interval, the PRI list can be generated and the attributes of the signals can be checked 

against the list in certain situations. Furthermore, when a starting signal for train 

construction has been decided on, a list of likely sources can be obtained from the PRI 

list by checking which source entries have attributes ranges that match the starting signal. 

The prior knowledge can be used in the following ways.  

 

1. For a given histogram bin, trial train construction requires a starting signal, and 

the attempt is aborted only if the constructed train does not satisfy the minimum 



 64

length. The construction will restart with the next signal in the sample as starting 

signal. If a PRI sequence starts with a late TOA, many incorrect train 

constructions will need to be carried out using the wrong starting signal, resulting 

in a waste of resources. This number of unnecessary attempts can be reduced by 

using the PRI list to rule out those signals whose attributes do not match the given 

bin at all.  

2. When searching within the window of projected bin interval, there may be more 

than one signal. Instead of simply selecting the signal which appears first, the 

attributes of these signals are checked against the list of likely sources. The first 

signal whose attributes match the list is selected. If no such signal is found, we 

will search outside the window within the tolerance allowance.  

3. When searching within the tolerance allowance outside the window of projected 

bin interval, there may again be more than one signal lying within that tolerance. 

Rather than selecting the signal nearest to the original window, the attributes of 

these signals within the tolerance allowance are checked against list of likely 

sources. The signal closest to the original window which also matches the 

attributes will be selected. The same criterion is used when finding a signal 

closest to the supposed PRI (using the variation of the algorithm) after a certain 

length of trial train has been constructed.  

 

Depending on the attributes of the signals, the sequence search process may or may not 

benefit much from the prior information. However, it could help to at least rule out 

signals that clearly do not belong to the PRI sequence corresponding to the current bin 

interval.  

 

3.4. Results  

 

In this section, “basic sort” refers to signal sorting without using prior knowledge and 

“prior sort” refers to signal sorting using prior knowledge. The samples used for testing 



 65

are generated by combining signals from different classes. The PRIs of the trains in each 

class are given in the Table 13.  

 

Table 13: Class and PRI knowledge of data used  

Class PRI Amount of 

deviation 

K 1,000,000 0% 

H 2,999,750 2% 

C 1,195,008 2.5% 

I 2,998,690 5% 

L 2,953,189 7% 

M 2,379,376 7% 

F 2,888,262 10% 

D 909,668 14% 

E 1,054,285 14% 

 

The signals from the respective classes are combined together and separated into smaller 

portions. The length of each portion is such that there are at least 10 signals from every 

source class, so the number of signals in the portion would depend on the PRI of the 

source classes. The signal sorting program is tested out on each of these portions. For 

basic sort, the selection of threshold parameters x and k will affect the ability of the 

algorithm to extract the right PRIs, so the parameters values are incremented from 0.4 to 

0.8 at steps of 0.1 to find the most suitable values for x and k. The values that yielded the 

best performance are then used and the results are recorded. Each portion is tested 

separately for both algorithms, but the performance of basic sort varies across different 

portions, so only the best result is shown here; the result for the corresponding portion is 

shown for prior sort.  

 

In basic sort, the tolerance parameter is set to a default value of 0.2, while the threshold 

and tolerance parameters for prior sort will vary depending on the information drawn 

from the prior knowledge. The CDIF histogram is used for both methods, and difference 
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levels are computed up to a maximum of 4 levels. Tables 14 to 19 consists of the PRIs 

extracted and the class accuracy of the corresponding sequence extracted. For each 

sample, the time taken to complete signal sorting for that portion is shown, as well as the 

average time taken over the various portions of the sample. In both cases, the time taken 

is averaged over the different threshold parameters used for scanning in basic sort.  

 

3.4.1. Results for Sample with 2 classes  

 

Table 14: Classes C and I with deviation 2.5% and 5%  

 Without prior knowledge With prior knowledge 

Correct PRIs extracted 

(class accuracy) 

1,195,836 (100%) 

2,983,785 (100%) 

1,195,836 (100%) 

2,983,785 (100%) 

Time taken 0.0547s 0.0672s 

Average time required 0.0526s 0.0438s 

 

With little deviation from the mean PRI, both basic and prior sort were able to identify 

the PRIs and accurately extract the signals in the respective sequences. No signals 

remained in the sample after the signal sorting process.  

 

The first time taken is that for the portion of the sample with best performance, using the 

most suitable threshold parameter values found by testing. Basic sort took less time than 

prior sort, which has to first check if the parameters are suitable, and also check the 

attributes of the signals over the course of sequence search. However, when averaged 

over all the portions in the sample and all the threshold parameter values tested, basic sort 

took slightly longer than prior sort. In the process of finding the best parameter values, 

many are unsuitable and triggers sequence search for irrelevant bins. This leads to failed 

attempts at train construction or eventually the wrong trains being extracted, thus taking 

up more time.  
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Table 15: Classes D and E with deviations 14% and 14%  

 Without prior knowledge With prior knowledge 

Correct PRIs extracted 

(class accuracy) 

868,110 (100%) 

1,063,645 (100%) 

886,614 (100%) 

1,063,647 (100%) 

Time taken 0.0500s 0.0784s 

Average time required 0.0814s 0.0491s 

 

Both basic and prior sort were able to correctly extract the signals in the respective 

sequences, but one signal remained in the sample for basic sort, resulting in the PRI being 

slightly different from that found for prior sort.  

 

Over the various portions of the sample and using different threshold parameter values, 

basic sort often extracted too many incorrect sequences, thus the average time taken is 

much more than that for prior sort.  

 

3.4.2. Results for Sample with 3 Classes  

 

Table 16: Classes K, C and H with deviations 0%, 2.5% and 2% 

 Without prior knowledge With prior knowledge 

Correct PRIs extracted 

(class accuracy) 

996,529 (65%) 

1,199,091 (88%) 

3,000,001 (100%) 

1,000,000 (100%) 

1,195,835 (100%) 

2,997,727 (100%) 

Time taken 0.1003s 0.1197s 

Average time required 0.0889s 0.1000s 

 

With more sequences in the sample, basic sort was still able to identify the PRIs although 

the sequences sometimes included signals belonging to other PRIs. Prior sort did not 

include any irrelevant signals within each sequence as checks are carried out on the 

attribute values.  
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In terms of the time taken to carry out signal sorting, the durations for both methods were 

comparable. The average time required for basic sort is slightly less than for prior sort, 

unlike in previous samples, since irrelevant sequences were less frequently extracted.   

 

Table 17: Classes D, E and H with deviations 14%, 14% and 2% 

 Without prior knowledge With prior knowledge 

Correct PRIs extracted 

(class accuracy) 

905,965 (83%) 

1,059,949 (82%) 

2,986,840 (80%) 

905,965 (100%) 

1,059,949 (100%) 

2,984,432 (100%) 

Time taken 0.0269s 0.0822s 

Average time required 0.1028s 0.0839s 

 

In the portion of the sample that was easiest to sort the signals, the right threshold 

parameter values enabled the process to be completed in a much shorter time for basic 

sort than for prior sort. However, the other parameter values used in the process of testing 

gave considerably poorer results. Over the various portions and parameter values, signal 

sorting is carried out a number of times. The right trains were extracted only 14% of the 

time. For 44% of the time, the threshold function cut too many irrelevant bins, leading to 

the extraction of many incorrect sequences and taking up additional computational time. 

And in most of the remaining cases, no sequences were extracted at all. Due to the failure 

to apply sequence search on the right bins, a large number of failed or incorrect attempts 

resulted in the average time needed to be significantly more than when using the right 

parameter values.  
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3.4.3. Results for Sample with 4 Classes  

 

Table 18: Classes C, I, D and E with deviations 2.5%, 5%, 14% and 14% 

 Without prior knowledge With prior knowledge 

Correct PRIs extracted 

(class accuracy) 

902,925 (66%) 

1,216,257 (52%)* 

1,034,477 (62%) 

3,031,665 (44%) 

1,167,173 (75%)* 

902,925 (100%) 

1,192,719 (100%) 

1,050,118 (100%) 

2,970,803 (100%) 

Time taken 0.0381s 0.1278s 

Average time required 0.1477s 0.1085s 

 

With basic sort, most of the PRIs could be identified. However, the histogram bin found 

was sometimes slightly off the actual PRI, leading to the inaccurate extraction of 

sequences with PRI 1,216,257 and 1,167,173 (denoted by * in Table 18) instead of just 

1,192,719.  

 

Like in the previous sample, the average time over the various portions and parameter 

values was considerably longer than when using the right values. In addition, the 

sequences could not be correctly extracted. The correct PRIs could be identified but the 

corresponding sequences are inaccurate, and a false PRI would also appear along with the 

rest.   

Table 19: Classes E, F, L and M with deviations 14%, 10%, 7% and 7% 

 Without prior knowledge With prior knowledge 

Correct PRIs extracted 

(class accuracy) 

1,066,126 (80%) 

2,370,882 (62%) 

2,908,508 (80%) 

2,952,050 (86%) 

1,066,122 (100%) 

2,370,882 (85%) 

2,863,179 (100%) 

2,893,705 (78%) 

Time taken 0.0362s 0.1741s 

Average time required 0.0806s 0.1290s 
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Although prior sort extracted the signals more accurately than basic sort, it still could not 

achieve 100% accuracy for two of the sequences. This is because their attributes are the 

same and both their PRIs lie within the same bin that was used for sequence search. 

However, since the sequences for the other PRIs have been ruled out, the sequence search 

was still fairly accurate.  

 

Generally, the right PRIs and their sequences could be extracted rather quickly if the right 

threshold parameters were used. However, over the course of parameter scanning, the 

threshold function was often unable to cut the bins and no sequence search was carried 

out at all, hence no sequences were extracted and the process terminates early.  

 

3.5. Discussion  

 

The results for basic sort are such that the portion of the sample with best performance is 

shown, using the most suitable threshold parameter values. Prior sort shows the results on 

the same portion of the sample, but the threshold parameter values are left to adaptation.  

 

Over the sample sets tested, although both methods were able to identify about the same 

PRI, prior sort gave consistently better accuracy for the sequences that were extracted. 

This is mainly due to the check in the attributes values during the trial train construction. 

Despite the checks, the accuracy will not always be 100%. Given a histogram bin for 

sequence search, the PRI list can be found, containing the possible sources whose PRI 

range matches the bin interval. During the trial train construction process, the likely 

sources can be found based on the starting signal of the trial train. The presence of more 

than one likely source could lead to the selection of signals that do not belong to the 

current sequence. In addition, even if there is only one likely source, the attribute range 

may cover a large interval, leading to the selection of signals from other sources.  
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Although the accuracy of sequences extracted in the sample was not affected much, this 

gives an insight as to how the performance of prior sort is dependent on the nature and 

quality of the database supplied. As this knowledge is used in three main areas, let us take 

a closer look at how each area can possibly be affected by certain flaws of the database.  

 

The selection of tolerance parameter is based on the PRI deviation of the sources. Given 

the PRI list for a histogram bin, the tolerance is set to the highest PRI deviation for the 

sources in the PRI list. If this list contains too many irrelevant sources, or includes certain 

sources whose PRI deviation is exceptionally high, the tolerance may be set too high and 

affect the sequence search process, as too many signals are taken into consideration. 

However, the consequences are not too drastic since the attributes are still taken into 

consideration in the sequence search process, as compared to merely selecting the first 

signal encountered, which would have been the case if basic sort were used.  

 

The threshold parameters x and k are adapted using the PRI ranges in the source table, 

which contains all the possible sources, obtained by comparing the attributes of the 

signals to those in the database. If the first bin cut by the threshold does not tally with the 

source table, the parameters x and k will undergo adaptation. They are chosen such that 

the threshold can cut the tallest bin which tallies with the source table. This process 

works on the premise that all the sources are in the source table, so problems arise when 

the information about that source is missing. This may be caused by incomplete data or 

errors in the database. For example, there could be a disparity between the attribute range 

listed for the source entry and the signals themselves, resulting in its omission from the 

source table. As a result, threshold parameter adaptation may fail or the threshold may 

not be able to cut the right bin. Even though prior sort will then be unable to extract the 

sequence for this bin, the signals left in the sample can be processed again using basic 

sort. With the removal of some sequences, it will be less difficult and complicated to 

extract the remaining using just basic sort.  

 

Another problem that could arise in threshold parameter adaptation is when the threshold 

cuts the wrong bin. Although the selection of x and k values depend on the source table 
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entries as well as the height of the bins, the presence of certain types or irrelevant entries 

in the source table could impede the process and result in the threshold cutting the wrong 

bin. This is especially so for some entries whose PRI range covers a relatively small 

value that corresponds to a difference between PRIs of two sequences. In Figure 24, the 

sample consists of sequences with PRIs 5, 8 and 11. In the first difference level, the 

histogram bin with highest peak is centered at 1.875 rather than the PRI value 5. If the 

source table contains an entry with a PRI range corresponding to 1.875, the threshold 

parameters will be chosen such that this bin is cut. The attributes check during sequence 

search could prevent the incorrect extraction of such a sequence, although resources are 

still wasted, or the wrong sequence may be extracted altogether and affect the process.  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

 

Figure 24: Histogram peaks at values less than smallest PRI 

 

Finally, prior knowledge is used for attributes check in the sequence search process. 

Given the histogram bin, the entries in the source table are considered to find those with 

corresponding PRI ranges, in order to obtain the PRI list. Here, problems can arise due to 
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errors, or the nature of the source entry itself. In the case where the attribute range of the 

relevant source entry is erroneous, trial train extraction for that PRI may reject certain 

signals even though they belong to the sequence. Even if there are no errors in the 

attribute range but it covers a large interval, it will be more difficult to decide between 

the signals that lie within projected bin interval or tolerance window during trial train 

construction, hence rendering the attributes check less effective and not much different 

from using basic sort.  
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In this project, we looked into two components of a classification system to explore ways 

to improve them. The fuzzy adaptive resonance theory map (fuzzy ARTMAP) 

classification had difficulty dealing with data from overlapping classes, while the signal 

sorting module could be improved by incorporating available prior knowledge.  

 

In dealing with data from overlapping classes in fuzzy ARTMAP, the classification 

process was altered to allow multiple class prediction, and the accuracy measure 

amended accordingly. Together with a variant known as fuzzy ARTMAP with match 

tracking - (read as ‘minus’), the use of single epoch training and ordered training input 

presentation reduced the number of categories produced significantly, while keeping the 

classification accuracy unchanged or even improved. All these measures do not require 

major changes to the fuzzy ARTMAP architecture, and makes both the training and 

classification process more efficient than before.  

 

However, further investigation can be carried out on certain aspects. The training input 

data were presented class by class in order of class index, but different results may be 

obtained by presenting the classes in some different order, depending on which classes 

are overlapping with one other. Although merging of categories produced little 

improvements and was eventually omitted, the method can be refined by computing the 

centroid of a hyperbox based on the patterns it coded rather than its geometry.  

 

Prior knowledge was incorporated into the signal sorting process, enabling the threshold 

parameters to be set without scanning values for them, thus saving on computational time. 

Prior knowledge in the form of a database also lent credibility and greater certainty to the 

sequence search process by allowing a check on the attribute values on top of checking 

the time-of-arrival of each pulse. With the use of this information, all the pulse repetitive 

Chapter 4. Conclusion  
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intervals (PRIs) in the experimental data could be identified and their respective 

sequences accurately extracted, even when there is a larger deviation of the PRIs from the 

mean value.  

 

Nevertheless, more work is needed to determine the effect of the quality of the prior 

knowledge provided on the signal sorting results. The adaptation of threshold parameter 

values could fail due to errors in the database or misleading entries, and the sequence 

search process could be impeded by errors in the attribute ranges. In addition, certain 

sources in the sample may be missing from the database. To allow parameter selection to 

proceed without the need for scanning, weights may be assigned to each histogram bin in 

the adaptation process. Further consideration is also needed to ensure that even with 

errors in the attribute ranges, the sequences extracted by using prior knowledge are at 

least as accurate as without using it.  

 

For a PRI that is not listed in the database, prior sort may not be able to remove it and it 

could be left behind after the process is completed. Basic sort can be applied on the 

remaining sample then, and the selection of threshold parameter values can take into 

account the values that have previously been used.  

 

Errors in the database can compromise the performance of prior sort but it can still give 

better results than if no prior knowledge were used at all. More work can be done to 

ensure that the performance or prior sort using a database containing errors is at least as 

good as basic sort, otherwise the process should be stopped and basic sort can be used on 

its own.  
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