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Summary

Clustering is a fundamental task in machine learning that consists in grouping

a set of objects such that the objects in the same group (called a cluster) are more

similar than those in other groups. Clustering is a ubiquitous problem in various

applications, such as analyzing the information contained in gene expression data,

performing market research according to firms’ financial characteristics or analyzing

stock price behavior.

The main purpose of this thesis is to theoretically analyze the applications of

clustering in various unsupervised learning problems, including the learning of mix-

ture models and nonnegative matrix factorization (NMF).

The thesis mainly consists of two parts. The first part considers the informa-

tiveness of the k-means algorithm, which is perhaps the most popular clustering

algorithm, for learning mixture models. The learning of mixture models can be

viewed as a clustering problem. Indeed, given data samples independently gener-

ated from a mixture of distributions, we often would like to find the correct target

clustering of the samples according to which component distribution they were gen-

erated from. For a clustering problem, practitioners often choose to use the simple

k-means algorithm. k-means attempts to find an optimal clustering which mini-

mizes the sum-of-squared distance between each point and its cluster center. In

v



vi Summary

Chapter 2 of this thesis, we provide sufficient conditions for the closeness of any

optimal clustering and the correct target clustering assuming that the data sam-

ples are generated from a mixture of log-concave distributions. Moreover, we show

that under similar or even weaker conditions on the mixture model, any optimal

clustering for the samples with reduced dimensionality is also close to the correct

target clustering. These results provide intuition for the informativeness of k-means

(with and without dimensionality reduction) as an algorithm for learning mixture

models. We verify the correctness of our theorems using numerical experiments and

demonstrate using datasets with reduced dimensionality significant speed ups for

the time required to perform clustering.

In the second part, we propose a geometric assumption on nonnegative data ma-

trices such that under this assumption, we are able to provide upper bounds (both

deterministic and probabilistic) on the relative error of nonnegative matrix factor-

ization. The algorithm we propose first uses the geometric assumption to obtain an

exact clustering of the columns of the data matrix; subsequently, it employs several

rank-one NMFs to obtain the final decomposition. When applied to data matri-

ces generated from our statistical model, we observe that our proposed algorithm

produces factor matrices with comparable relative errors vis-à-vis classical NMF al-

gorithms but with much faster speeds. On face image and hyperspectral imaging

datasets, we demonstrate that our algorithm provides an excellent initialization for

applying other NMF algorithms at a low computational cost. Finally, we show on

face and text datasets that the combinations of our algorithm and several classical

NMF algorithms outperform other algorithms in terms of clustering performance.
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Chapter 1
Introduction

1.1 Clustering

Generally speaking, clustering is the task of maximizing the similarity of objects

within a cluster and minimizing the similarity of objects between different clus-

ters. Clustering is a ubiquitous problem in various applications, such as analyzing

the information contained in gene expression data [1], performing market research

according to firms’ financial characteristics or analyzing stock price behavior [2].

Objective-based clustering is a commonly-used technique for clustering. This is

the procedure of minimizing a certain objective function to partition data samples

into a fixed or appropriately-selected number of subsets known as clusters. The

k-means algorithm [3] is perhaps the most popular objective-based clustering ap-

proach. Suppose we have a data matrix of N samples V = [v1,v2, . . . ,vN ] ∈ RF×N ,

a K-clustering (or simply a clustering or a partition) is defined as a set of pairwise

disjoint index sets C := {C1,C2, . . . ,CK} whose union is {1, 2, . . . , N}. The corre-

sponding sum-of-squares distortion measure with respect to V and C is defined as

D(V,C ) :=
K∑
k=1

∑
n∈Ck

‖vn − ck‖2
2, (1.1.1)

1



2 Chapter 1. Introduction

where ck := 1
|Ck|

∑
n∈Ck

vn is the cluster center or centroid of the k-th cluster. The

goal of the k-means algorithm is to find an optimal clustering C opt that satisfies

D(V,C opt) = min
C
D(V,C ), (1.1.2)

where the minimization is taken over all K-clusterings. Optimizing this objective

function is NP-hard [4]. Despite the wide usage of k-means and the theoretical

analysis of k-means [5–7], there are few theoretical investigations with respect to

optimal clusterings. Moreover, in real applications, such as clustering face images

by identities, there are certain unknown correct target clusterings. While using k-

means as a clustering algorithm, we make a key implicit assumption that any optimal

clustering is close to the correct target clustering [8]. If there is an optimal clustering

that is far away from the correct target clustering, then using k-means is meaningless

because even if we obtain an optimal or approximately-optimal clustering, it may

not be close to the desired correct target clustering.

Besides the k-means algorithm, there are many other objective-based clustering

algorithms, such as k-medians [9] or min-sum clustering [10]. In addition, there

are many other types of clustering algorithms besides objective-based clustering,

for example, hierarchical clustering [11, 12]. Furthermore, it is well-known that the

k-means algorithm is sensitive to initialization [5]. Various initialization techniques

have been proposed, and the most popular one among them may be the k-means++

algorithm [5]. It uses a randomized greedy search algorithm to select initial cluster

centroids from the samples. We use a deterministic greedy search algorithm in the

clustering step of our algorithm for nonnegative matrix factorization and we derive

corresponding theoretical guarantees for our algorithm.

1.2 The Learning of Mixture Models

Suppose there are K unknown distributions F1, F2, . . . , FK and a probability

vector w := [w1, w2, . . . , wK ]. The corresponding K-component mixture model is a

generative model that assumes data samples are independently sampled such that
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the probability that each sample is generated from the k-th component is wk, the

mixing weight for the k-th component. Suppose that v1,v2, . . . ,vN are samples

independently generated from a K-component mixture model, the correct target

clustering C := {C1,C2, . . . ,CK} satisfies the condition that n ∈ Ck if and only if

vn is generated from the k-th component. One of the most important goals of the

learning of a mixture model is to find the correct target clustering of the samples

(and thereby inferring the parameters of the model). The learning of mixture models,

especially Gaussian mixture models (GMMs) [13–15], is of fundamental importance

in machine learning and applied statistics.

1.3 Dimensionality Reduction

Due to the inherent inefficiencies in processing high-dimensional data, dimension-

ality reduction has received considerable attention. Applying dimensionality reduc-

tion techniques before clustering high-dimensional datasets can lead to significantly

faster running times and reduced memory sizes. In addition, algorithms for learning

GMMs usually include a dimensionality reduction step. For example, Dasgupta [16]

shows that general ellipsoidal Gaussians become “more spherical” and thereby more

amenable to (successful) analysis after a random projection onto a low-dimensional

subspace. Vempala and Wang [17] show that reducing dimensionality by spectral

decomposition leads to the amplification of the separation among Gaussian com-

ponents. For performing the k-means algorithm to learn mixture models, we also

consider reducing the dimensionality of data samples first before clustering. For the

dimensionality reduction task, we start with considering principal component anal-

ysis (PCA) [18], which is perhaps the most popular dimensionality reduction tech-

nique. Because we need to perform singular value decomposition (SVD) in PCA,

and SVD is time-consuming when the number of samples and the dimensionality of

samples are large, we also consider performing randomized SVD [19,20] in PCA and

performing random projection similarly to [16] for dimensionality reduction for the
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sake of achieving faster running time.

1.4 Nonnegative Matrix Factorization (NMF)

The nonnegative matrix factorization (NMF) problem can be formulated as fol-

lows: Given a nonnegative data matrix V ∈ RF×N
+ and a positive integer K, we

seek nonnegative factor matrices W ∈ RF×K
+ and H ∈ RK×N

+ , such that the dis-

tance (measured in some norm) between V and WH is minimized. Due to its

non-subtractive, parts-based property which enhances interpretability, NMF has

been widely used in machine learning [21] and signal processing [22] among oth-

ers. In addition, there are many fundamental algorithms to approximately solve the

NMF problem, including the multiplicative update algorithms [23], the alternating

(nonnegative) least-squares-type algorithms [24–27], and the hierarchical alternating

least square algorithms [28] (also called the rank-one residual iteration [29]). How-

ever, it is proved in [30] that NMF problem is NP-hard and all the basic algorithms

simply either ensure that the sequence of objective functions is non-increasing or

that the algorithm converges to the set of stationary points [29,31,32]. To the best

of our knowledge, none of these algorithms is suitable for analyzing a bound on the

approximation error of NMF.

In an effort to find computationally tractable algorithms for NMF and to provide

theoretical guarantees on the errors of these algorithms, researchers have revisited

the so-called separability assumption proposed by Donoho and Stodden [33]. An ex-

act nonnegative factorization V = WH is separable if for any k ∈ {1, 2, . . . , K},

there is an n(k) ∈ {1, 2, . . . , F} such that W(n(k), j) = 0 for all j 6= k and

W(n(k), k) > 0. That is, an exact nonnegative factorization is separable if all the

features can be represented as nonnegative linear combinations of K features. It is

proved in [34] that under the separability condition, there is an algorithm that runs

in time polynomial in F , N and K and outputs a separable nonnegative factoriza-

tion V = W∗H∗ with the number of columns of W∗ being at most K. Furthermore,
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to handle noisy data, a perturbation analysis of their algorithm is presented. The

authors assumed that V is normalized such that every row of it has unit `1 norm and

V has a separable nonnegative factorization V = WH. In addition, each row of V is

perturbed by adding a vector of small `1 norm to obtain a new data matrix V′. With

additional assumptions on the noise and H, their algorithm leads to an approximate

nonnegative matrix factorization W′H′ of V′ with a provable error bound for the `1

norm of each row of V′−W′H′. To develop more efficient algorithms and to extend

the basic formulation to more general noise models, a collection of elegant papers

dealing with NMF under various separability conditions has emerged [35–41].

1.5 Purposes and Scope of This Thesis

There are three main contributions in Chapter 2.

1. We prove that if the data points are independently generated from a K-

component spherical GMM with an appropriate separability assumption and

the so-called non-degeneracy condition [42,43] (see Definition 1 to follow), then

any optimal clustering of the data points is close to the correct target cluster-

ing with high probability provided the number of samples is commensurately

large. We extend this result to mixtures of log-concave distributions.

2. We prove that under the same generation process, if the data points are pro-

jected onto a low-dimensional space using the first K−1 principal components

of the empirical covariance matrix, then, under similar conditions, any opti-

mal clustering for the data points with reduced dimensionality is close to the

correct target clustering with high probability. Again, this result is extended

to mixtures of log-concave distributions.

3. Lastly, we show that under appropriate conditions, any approximately-optimal

clustering of the data points is close to the correct target clustering. This
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enables us to use the theoretical framework provided herein to analyze var-

ious efficient dimensionality reduction techniques such as random projection

and randomized singular value decomposition (SVD). It also allows us to com-

bine our theoretical analyses with efficient variants of k-means that return

approximately-optimal clusterings.

The main contributions in Chapter 3 are:

• Theoretical Contributions: We introduce a geometric assumption on the data

matrix V that allows us to correctly group columns of V into disjoint subsets.

This naturally suggests an algorithm that first clusters the columns and sub-

sequently uses a rank-one approximate NMF algorithm [44] to obtain the final

decomposition. We analyze the error performance and provide a deterministic

upper bound on the relative error. We also consider a random data genera-

tion model and provide a probabilistic relative error bound. Our geometric

assumption can be considered as a special case of the separability (or, more

precisely, the near-separability) assumption [33]. However, there are certain

key differences: First, because our assumption is based on a notion of cluster-

ability [45], our proof technique is different from those in the literature that

leverage the separability condition. Second, unlike most works that assume

separability [35–39], we exploit the `2 norm of vectors instead of the `1 norm

of vectors/matrices. Third, V does not need to be assumed to be normalized.

As pointed out in [37], normalization, especially in the `1-norm for the rows

of data matrices may deteriorate the clustering performance for text datasets

significantly. Fourth, we provide an upper bound for relative error instead of

the absolute error. Our work is the first to provide theoretical analyses for

the relative error for near-separable-type NMF problems. Finally, we assume

all the samples can be approximately represented by certain special samples

(e.g., centroids) instead of using a small set of salient features to represent

all the features. Mathematically, these two approximations may appear to

be equivalent. However, our assumption and analysis techniques enable us to
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provide an efficient algorithm and tight probabilistic relative error bounds for

the NMF approximation (cf. Theorem 8).

• Experimental Evaluations: Empirically, we show that this algorithm performs

well in practice. When applied to data matrices generated from our statistical

model, our algorithm yields comparable relative errors vis-à-vis several clas-

sical NMF algorithms including the multiplicative algorithm, the alternating

nonnegative least square algorithm with block pivoting, and the hierarchical

alternating least square algorithm. However, our algorithm is significantly

faster as it simply involves calculating rank-one SVDs. It is also well-known

that NMF is sensitive to initializations. The authors in [46, 47] use spherical

k-means and an SVD-based technique to initialize NMF. We verify on several

image and hyperspectral datasets that our algorithm, when combined with

several classical NMF algorithms, achieves the best convergence rates and/or

the smallest final relative errors. We also provide intuition for why our al-

gorithm serves as an effective initializer for other NMF algorithms. Finally,

combinations of our algorithm and several NMF algorithms achieve the best

clustering performance for several face and text datasets. These experimental

results substantiate that our algorithm can be used as a good initializer for

standard NMF techniques.

This thesis is organized as follows.

In Chapter 2, we focus on using the k-means clustering and dimensionality re-

duction for learning mixtures models. More specifically, we mention some related

works on learning Gaussian mixture models, k-means clustering, and dimensional-

ity reduction in Section 2.1. Our main theoretical results concerning upper bounds

on the misclassification error distance (ME distance) for spherical GMMs are pre-

sented in Section 2.2. In addition, numerical results examining the correctness of

our bounds for spherical GMMs are also presented in this section. These results are

extended to mixtures of log-concave distributions in Section 2.3. Other extensions
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(using other dimensionality-reduction techniques and the combination of our results

with efficient clustering algorithms) are discussed in Section 2.4.

In Chapter 3, we propose a new initialization method for NMF which recovers

a pair of factor matrices with provable relative error bounds under our geometric

assumption. We discuss related works in Section 3.1. After that, we present our

geometric assumption as well as certain useful lemmas in Section 3.2. In Section 3.3,

we present our main theorem for deterministic data and we provide an algorithm

named cr1-nmf which is able to recover a pair of factor matrices with relative error

bounds. In addition, we verify in numerical experiments on several real datasets that

this algorithm can be used as a good initialization method for NMF. We present our

theorems for data matrices generated from a probabilistic model in Section 3.4. Au-

tomatically determining the latent dimensionality for NMF is an important practical

problem and we consider this problem in Section 3.5. Finally, we verify the correct-

ness of our theorems by synthetic experiments in Section 3.6.1 and we present the

effectiveness and efficacy of our algorithm by real-data experiments in Section 3.6.2.

In Chapter 4, conclusions are drawn and we discuss some possible future works.



Chapter 2
k-Means Clustering and Dimension

Reduction for Learning Mixture Models

We mentioned that the learning of mixture models is of fundamental importance

in machine learning and applied statistics. In addition, as we will mention in Section

2.1.1 to follow, there are plenty of algorithms designed to learn mixture models. The

learning of mixture models can be considered as a clustering problem that attempts

to find the correct target clustering of samples according to which component dis-

tribution they were generating from. For a given clustering problem, it is natural to

first try the popular k-means algorithm. However, a natural question beckons. Is

it even appropriate to use the k-means algorithm to learn mixture models? What

are some sufficient conditions such that the answer to the above question is “Yes”?

In this chapter, we answer these questions by comparing the correct target cluster-

ing with any optimal clustering of the objective function of the k-means clustering.

Furthermore, motivated by the reduction in complexity (running times and memory

sizes) in applying clustering algorithms on reduced-dimensionality datasets, we also

provide theoretical guarantees for the case in which the dataset first undergoes a

dimensionality reduction step.

9



10
Chapter 2. k-Means Clustering and Dimension Reduction for Learning

Mixture Models

2.1 Background

In this section, we discuss some relevant existing works.

2.1.1 Learning Gaussian Mixture Models (GMMs)

Suppose there are K unknown distributions F1, F2, . . . , FK and a probability

vector w := [w1, w2, . . . , wK ]. The corresponding K-component mixture model is a

generative model that assumes data samples are independently sampled such that

the probability that each sample is generated from the k-th component is wk, the

mixing weight for the k-th component. For a K-component mixture model and for

any k ∈ [K], we always use uk to denote the component mean vector, and use Σk to

denote the component covariance matrix. When Σk = σ2
kI for all k ∈ [K], where I

is the identity matrix, we say the mixture model is spherical and σ2
k is the variance

of the k-th component. Suppose that v1,v2, . . . ,vN are samples independently

generated from a K-component mixture model, the correct target clustering C :=

{C1,C2, . . . ,CK} satisfies the condition that n ∈ Ck if and only if vn is generated

from the k-th component. One of the most important goals of the learning of a

mixture model is to find the correct target clustering of the samples (and thereby

inferring the parameters of the model).

The learning of mixture models, especially Gaussian mixture models (GMMs)

[14,15], is of fundamental importance in machine learning. The EM algorithm [48,49]

is widely used to estimate the parameters of a GMM. However, EM is a local-search

heuristic approach for maximum likelihood estimation in the presence of incom-

plete data and in general, it cannot guarantee the parameters’ convergence to global

optima [50]. Recently, Hsu and Kakade [42] and Anandkumar et al. [43] provide ap-

proaches based on spectral decomposition to obtain consistent parameter estimates

for spherical GMMs from first-, second- and third-order observable moments. To

estimate parameters, they need to assume the so-called non-degeneracy condition

for spherical GMMs with parameters {(wk,uk, σ2
k)}k∈[K].
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Definition 1. (Non-degeneracy condition) We say that a mixture model satisfies

the non-degeneracy condition if its component mean vectors u1, . . . ,uK span a K-

dimensional subspace and the probability vector w has strictly positive entries.

On the other hand, under certain separability assumptions on the Gaussian com-

ponents, Dasgupta [16], Dasgupta and Schulman [51], Arora and Kannan [52], Vem-

pala and Wang [17], and Kalai et al. [53] provide provably correct algorithms that

guarantee most samples are correctly classified or that parameters are recovered with

a certain accuracy with high probability. In particular, equipped with the following

separability assumption

‖ui − uj‖2 > C max{σi, σj} 4

√
K log

F

wmin

, ∀, i, j ∈ [K], i 6= j, (2.1.1)

for a spherical GMM, where C > 0 is a sufficiently large constant1 and wmin :=

mink∈[K] wk, Vempala and Wang [17] present a simple spectral algorithm with run-

ning time polynomial in both F and K that correctly clusters random samples

according to which spherical Gaussian they were generated from.

Remark 1. We present more detailed discussion about previous work. In particular,

we summarize known results for learning GMMs under pairwise separation assump-

tions. For simplicity, logarithmic factors in separation assumptions are ignored.

Denote σ2
k as the maximum variance of the k-th component of the mixture along any

direction. Dasgupta [16] provides an algorithm which is based on random projection

to learn GMMs with the conditions that the mixing weights of all distributions are

about the same, and the distance between any two different component mean vectors

‖ui − uj‖2 is at least c
√
F max{σi, σj}, where c is a positive constant. Dasgupta

and Schulman [51] further provide an EM based algorithm with the condition that

‖ui − uj‖2 is at least cF
1
4 max{σi, σj}. Arora and Kannan [52] also consider a

learning algorithm with similar separation assumptions. Vempala and Wang [17]

1Throughout, we use the generic notations C and Ci, i ∈ N to denote (large) positive constants.

They depend on the parameters of the mixture model and may change from usage to usage.
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are the first to consider using spectral algorithms (based on singular value decompo-

sition) for dimensionality reduction to enable the learning of spherical GMMs. Their

spectral algorithm requires a much weaker condition, i.e., ‖ui − uj‖2 being at least

cK
1
4 max{σi, σj}, for spherical GMMs. Achlioptas and McSherry [54] extend Vem-

pala and Wang’s results [17] to mixtures of arbitrary Gaussians with ‖ui−uj‖2 being

at least c

Ç
K + 1√

min{wi,wj}

å
max{σi, σj}. Kannan et al. [55] also present an algo-

rithm for learning mixtures of arbitrary Gaussians with the corresponding separation

between ui and uj being at least c(σi + σj)
K

3
2

w2
min

.

Despite the large number of algorithms designed to find the (approximately)

correct target clustering of a GMM, many practitioners use k-means because of its

simplicity and successful applications in various fields. Kumar and Kannan [56]

show that the k-means algorithm with a proper initialization can correctly cluster

nearly all the data points generated from a GMM that satisfies a certain proximity

assumption. Our theoretical results provide an explanation on why the k-means

algorithm that attempts to find an optimal clustering is a good choice for learning

mixture models. We compare and contrast our work to that of [56] in Remark 5.

2.1.2 A Lower Bound on Distortion and the ME Distance

Let V = [v1,v2, . . . ,vN ] ∈ RF×N be a dataset and C := {C1,C2, . . . ,CK} be a

K-clustering. Let H ∈ RK×N with elements H(k, n) be the clustering membership

matrix satisfying H(k, n) = 1 if n ∈ Ck and H(k, n) = 0 if n /∈ Ck for (k, n) ∈

[K] × [N ]. Let nk = |Ck| and H̄ := diag( 1√
n1
, 1√

n2
, . . . , 1√

nK
)H be the normalized

version of H. We have H̄H̄T = I and the corresponding distortion can be written

as [57]

D(V,C ) = ‖V −VH̄T H̄‖2
F = ‖V‖2

F − tr(H̄VTVH̄T ). (2.1.2)

The centering of any data matrix V = [v1,v2, . . . ,vN ] is a shift with respect to the

mean vector v̄ = 1
N

∑N
n=1 vn and the resultant data matrix Z = [z1, z2, . . . , zN ], with

zn = vn − v̄ for n ∈ [N ], is said to be the centralized matrix of V. Let Z be the
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centralized data matrix of V and define S := ZTZ. Note that D(V,C ) = D(Z,C )

for any clustering C . Ding and He [57] make use of this property to provide a lower

bound D∗(V) for distortion over all K-clusterings. That is, for any K-clustering C ,

D(V,C ) ≥ D∗(V) := tr(S)−
K−1∑
k=1

λk(S), (2.1.3)

where λ1(S) ≥ λ2(S) ≥ . . . ≥ 0 are the eigenvalues of S sorted in non-increasing

order.

For any two K-clusterings, the so-called misclassification error (ME) distance

provides a quantitative comparison of their structures.

Definition 2. (ME distance) The misclassification error distance of any two K-

clusterings C (1) := {C (1)
1 ,C (1)

2 , . . . ,C (1)
K } and C (2) := {C (2)

1 ,C (2)
2 , . . . ,C (2)

K } is

dME(C (1),C (2)) := 1− 1

N
max
π∈PK

K∑
k=1

∣∣∣C (1)
k ∩ C (2)

π(k)

∣∣∣ , (2.1.4)

where PK is the set of all permutations of [K]. It is known from [58] that the ME

distance is indeed a distance.

For any δ, δ′ ∈ [0, K − 1], define the functions

τ(δ, δ′) := 2

√
δδ′
Å

1− δ

K − 1

ãÅ
1− δ′

K − 1

ã
, and (2.1.5)

τ(δ) := τ(δ, δ) = 2δ
Å

1− δ

K − 1

ã
. (2.1.6)

Combining Lemma 2 and Theorem 3 in [59], we have the following lemma.

Lemma 1. Let C := {C1,C2, . . . ,CK} and C ′ := {C ′1,C ′2, . . . ,C ′K} be two K-

clusterings of a dataset V ∈ RF×N . Let pmax := maxk
1
N
|Ck| and pmin := mink

1
N
|Ck|.

Let Z be the centralized matrix of V and S = ZTZ. Define

δ :=
D(V,C )−D∗(V)

λK−1(S)− λK(S)
, and δ′ :=

D(V,C ′)−D∗(V)

λK−1(S)− λK(S)
. (2.1.7)

Then if δ, δ′ ≤ 1
2
(K − 1) and τ(δ, δ′) ≤ pmin, we have

dME(C ,C ′) ≤ τ(δ, δ′)pmax. (2.1.8)



14
Chapter 2. k-Means Clustering and Dimension Reduction for Learning

Mixture Models

This lemma says that any two “good” K-clusterings (in the sense that their

distortions are sufficiently close to the lower bound of distortion D∗(V)) are close

to each other. In addition, we have the following useful corollary.

Corollary 1. Let C := {C1,C2, . . . ,CK} be a K-clustering of a dataset V ∈ RF×N

and define pmax, pmin, Z, S, and δ as in Lemma 1. Then if δ ≤ 1
2
(K − 1) and

τ(δ) ≤ pmin, we have

dME(C ,C opt) ≤ pmaxτ(δ), (2.1.9)

where C opt represents a K-clustering that minimizes the distortion for V.

This corollary essentially says that if the distortion of a clustering is sufficiently

close to the lower bound of distortion, then this clustering is close to any optimal

clustering with respect to the ME distance.

2.1.3 Dimension Reduction by Principal Component Anal-

ysis (PCA)

Due to the inherent inefficiencies in processing high-dimensional data, dimen-

sionality reduction has received considerable attention. Applying dimensionality

reduction techniques before clustering high-dimensional datasets can lead to signif-

icantly faster running times and reduced memory sizes. In addition, algorithms for

learning GMMs usually include a dimensionality reduction step. For example, Das-

gupta [16] shows that general ellipsoidal Gaussians become “more spherical” and

thereby more amenable to (successful) analysis after a random projection onto a

low-dimensional subspace. Vempala and Wang [17] show that reducing dimension-

ality by spectral decomposition leads to the amplification of the separation among

Gaussian components.

Principal component analysis (PCA) [18] is a popular strategy to compute the

directions of maximal variances in vector-valued data and is widely used for dimen-

sionality reduction. We write the singular value decomposition (SVD) of a symmetric
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matrix A ∈ RF×F as A = UDUT with U ∈ RF×F being an orthogonal matrix and

D ∈ RF×F being a diagonal matrix. In addition, when R := rank(A) < F , the

so-called compact SVD of A is written as A = URDRUT
R, where UR := U( : , 1: R)

and DR := Σ(1 : R, 1: R). For any dataset V ∈ RF×N and any positive inte-

ger k ≤ F , the so-called k-PCA for the dataset usually consists of two steps: (i)

Obtain the centralized dataset Z; (ii) Calculate the SVD of Σ̄N := 1
N

ZZT , i.e.,

obtain Σ̄N = PDPT , and project the dataset onto a k-dimensional space to obtain

Ṽ := PT
kV, where Pk := P( : , 1: k). For brevity, we say that Ṽ is the post-k-PCA

dataset of V (or simply the post-PCA dataset). If only the projection step is per-

formed (and not the centralizing step), we term the corresponding approach k-PCA

with no centering or simply k-SVD, and we say that the corresponding Ṽ is the

post-k-SVD dataset (or simply the post-SVD dataset) of V.

When performing dimensionality reduction for clustering, it is important to com-

pare any optimal clustering for the dataset with reduced dimensionality to any op-

timal clustering for the original dataset. More specifically, any optimal clustering

for the dataset with reduced dimensionality should be close to any optimal cluster-

ing for the original dataset. However, existing works [60, 61] that combine k-means

clustering and dimensionality reduction can only guarantee that the distortion of

any optimal clustering for the dataset with reduced dimensionality, C̃ opt, can be

bounded by a factor γ > 1 times the distortion of any optimal clustering for the

original dataset, C opt. That is,

D(V, C̃ opt) ≤ γD(V,C opt). (2.1.10)

As mentioned in [60], directly comparing the structures of C̃ opt and C opt (instead

of their distortions) is more interesting. In this chapter, we also prove that, if the

samples are generated from a spherical GMM (or a mixture of log-concave distribu-

tions) which satisfies a separability assumption and the non-degeneracy condition,

when the number of samples is sufficiently large, the ME distance between any opti-

mal clustering for the original dataset and any optimal clustering for the post-PCA

dataset can be bounded appropriately.
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In addition, we can show that any optimal clustering of the dimensionality-

reduced dataset is close to the correct target clustering by leveraging (2.1.10). This

simple strategy seems to be adequate for data-independent dimensionality reduction

techniques such as random projection. However, for data-dependent dimensional-

ity reduction techniques such as PCA, we believe that it worth applying distinct

proof techniques similar to those developed herein to obtain stronger theoretical

results because of the generative models we assume. See Section 2.4.1 for a detailed

discussion.

2.2 Error Bounds for Spherical GMMs

In this section, we assume the datasets are generated from spherical GMMs. Even

though we can and will make statements for more general log-concave distributions

(see Section 2.3), this assumption allows us to illustrate our results and mathematical

ideas as cleanly as possible. We first present our main theorem for the upper bound

of ME distance between any optimal clustering and the correct target clustering for

the original dataset in Section 2.2.1. Then, in Section 2.2.2, we present our main

theorem for the upper bound of ME distance between any optimal clustering and the

correct target clustering for the dimensionality-reduced dataset. Finally, numerical

results examining the correctness of our bounds are presented in Section 2.2.3.

2.2.1 The Theorem for Original Data

First, we show that with the combination of a new separability assumption and

the non-degeneracy condition (cf. Definition 1) for a spherical GMM, any optimal

clustering for a dataset generated from the spherical GMM is close to the correct

target clustering with high probability when the number of samples is sufficiently

large.

We adopt the following set of notations. Let V1 ∈ RF×N1 and V2 ∈ RF×N2 , we

denote by [V1,V2] the horizontal concatenation of the two matrices. Let ΣN :=
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1
N

VVT and Σ̄N := 1
N

ZZT , where Z is the centralized matrix of V. Fix a mixture

model with parameters {(wk,uk,Σk)}k∈[K] where wk, uk and Σk denote the mixing

weight, the mean vector, and the covariance matrix of the k-th component. Let

Σ :=
K∑
k=1

wk
Ä
uku

T
k + Σk

ä
, and Σ0 :=

K∑
k=1

wkuku
T
k . (2.2.1)

Denote ū :=
∑K
k=1wkuk and write

Σ̄ :=
K∑
k=1

wk
Ä
(uk − ū)(uk − ū)T + Σk

ä
, (2.2.2)

and Σ̄0 :=
K∑
k=1

wk(uk − ū)(uk − ū)T , (2.2.3)

and λmin := λK−1(Σ̄0). For a K-component spherical mixture model with covariance

matrices σ2
kI for k ∈ [K], we write σ̄2 :=

∑K
k=1 wkσ

2
k.

For p ∈ [0, 1
2
(K − 1)], we define the function

ζ(p) :=
p

1 +
√

1− 2p
K−1

. (2.2.4)

We have 1
2
p ≤ ζ(p) ≤ p. Our first theorem reads:

Theorem 1. Suppose all the columns of data matrix V ∈ RF×N are independently

generated from a K-component spherical GMM and N > F > K. Assume the

spherical GMM satisfies the non-degeneracy condition. Let wmin := mink wk and

wmax := maxk wk. Further assume

δ0 :=
(K − 1)σ̄2

λmin

< ζ(wmin). (2.2.5)

Let C := {C1,C2, . . . ,CK} be the correct target K-clustering corresponding to the

spherical GMM. Assume that ε > 0 that satisfies

ε ≤ min
ßwmin

2
, λmin, (K − 1)σ̄2

™
and

(K − 1)σ̄2 + ε

λmin − ε
≤ ζ(wmin − ε).

(2.2.6)

Then for any t ≥ 1, if N ≥ CF 5K2t2/ε2, where C > 0 depends on

{(wk,uk, σ2
k)}k∈[K], we have, with probability at least 1− 36KF 2 exp (−t2F ),

dME(C ,C opt) ≤ τ

Ç
(K − 1)σ̄2 + ε

λmin − ε

å
(wmax + ε), (2.2.7)

where C opt is an optimal K-clustering for V and τ(·) is defined in (2.2.12).
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Remark 2. The condition (2.2.5) can be considered as a separability assumption.

In particular, when K = 2, we have λmin = w1w2‖u1 − u2‖2
2 and (2.2.5) becomes

‖u1 − u2‖2 >
σ̄»

w1w2ζ(wmin)
, (2.2.8)

which is similar to (2.1.1), the separability assumption of [17].

Remark 3. The separability condition in (2.2.5) is different from some other pair-

wise separability assumptions in the literature [16, 17, 51–53]. Our condition is a

global separability condition. The intuitive reasons for this are twofold. First, we

study the optimal solutions to the sum-of-squares distortion measure in (1.1.1). This

is a global measure, involving all clusters, and so we believe a global separability

condition is natural. Second, we leverage several technical lemmas in the literature,

such as Lemma 1. These lemmas also involve global parameters such as λK−1(S) and

λK(S), thus a global separability condition of the form of (2.2.5) seems unavoidable.

Remark 4. The non-degeneracy condition is used to ensure that λmin > 0. When

K = 2, to ensure that λmin > 0, we only need to assume that the two component

mean vectors are distinct. In particular, we do not require u1 and u2 to be linearly

independent.

The proof of Theorem 1 is based on Corollary 1 and various concentration

bounds. We need to make use of the following probabilistic lemmas. First, we

present the following lemma from [62] that provides an upper bound for perturba-

tion of eigenvalues when the matrix is perturbed.

Lemma 2. If A and A + E are in RM×M , then

|λm(A + E)− λm(A)| ≤ ‖E‖2 (2.2.9)

for any m ∈ [M ] with λm(A) being the m-th largest eigenvalue of A.

Because we will make use of the second-order moments of a mixture model, we

present a simple lemma summarizing key facts.
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Lemma 3. Let x be a random sample from a K-component mixture model with

parameters {(wk,uk,Σk}k∈[K]. Then,

E
Ä
xxT

ä
=

K∑
k=1

wk
Ä
uku

T
k + Σk

ä
= Σ, and (2.2.10)

E
Ä
(x− ū)(x− ū)T

ä
=

K∑
k=1

wk
Ä
(uk − ū)(uk − ū)T + Σk

ä
= Σ̄. (2.2.11)

To apply Corollary 1, we need to ensure that λK−1(S) − λK(S) which appears

in the denominators of the expressions in (2.1.7) is positive. Note that if we as-

sume all the columns of data matrix V are independently generated from a K-

component spherical GMM, we have 1
N

(λK−1(S)− λK(S))
p−→ λK−1(Σ̄0), where

p−→

represents convergence in probability as N → ∞. Under the non-degeneracy con-

dition, λK(Σ0) > 0. In addition, by the observation that Σ̄0 = Σ0 − ūūT and the

following lemma in [62], we have λmin = λK−1(Σ̄0) ≥ λK(Σ0) > 0.

Lemma 4. Suppose B = A + τvvT where A ∈ Rn×n is symmetric, v has unit

2-norm (i.e., ‖v‖2 = 1) and τ ∈ R. Then,

λi(B) ∈

 [λi(A), λi−1(A)] if τ ≥ 0, 2 ≤ i ≤ n

[λi+1(A), λi(A)] if τ ≤ 0, i ∈ [n− 1]
. (2.2.12)

Furthermore, in order to obtain our probabilistic estimates, we need to make use

of following concentration bounds for sub-Gaussian and sub-Exponential random

variables. The definitions and relevant lemmas are extracted from [63].

Lemma 5. (Hoeffding-type inequality) A sub-Gaussian random variable X is one

such that (E|X|p)1/p ≤ C
√
p for some C > 0 and for all p ≥ 1. Let X1, . . . , XN

be independent zero-mean sub-Gaussian random variables, then for every a =

[a1, a2, . . . , aN ]T ∈ RN and every t ≥ 0, it holds that

P
(∣∣∣∣ N∑

i=1

aiXi

∣∣∣∣ ≥ t

)
≤ exp

Ç
1− ct2

‖a‖2
2

å
, (2.2.13)

where c > 0 is a constant.
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Typical examples of sub-Gaussian random variables are Gaussian, Bernoulli and

all bounded random variables. A random vector x ∈ RF is called sub-Gaussian if

xTz is a sub-Gaussian random variable for any deterministic vector z ∈ RF .

Lemma 6. (Bernstein-type inequality) A sub-Exponential random variable X is

one such that (E|X|p)1/p ≤ Cp for some C > 0 and for all p ≥ 1. Let X1, . . . , XN

be independent zero-mean sub-Exponential random variables. It holds that

P
Ç∣∣∣∣ N∑

i=1

Xi

∣∣∣∣ ≥ εN

å
≤ 2 exp

Ç
−c ·min

Å ε2
M2

,
ε

M

ã
N

å
, (2.2.14)

where c > 0 is an absolute constant and M > 0 is the maximum of the sub-

Exponential norms2 of {Xi}Ni=1, i.e., M = maxi∈[N ] ‖Xi‖Ψ1.

The set of sub-Exponential random variables includes those that have tails heav-

ier than Gaussian. It is easy to see that a sub-Gaussian random variable is also

sub-Exponential. The following lemma, which can be found in [63], is straightfor-

ward.

Lemma 7. A random variable X is sub-Gaussian if and only if X2 is sub-

Exponential.

Using this lemma, we see that Lemma 6 also provides a concentration bound for

the sum of the squares of sub-Gaussian random variables. Finally, we can estimate

empirical covariance matrices by the following lemma. Note that in this lemma, we

do not need to assume that the sub-Gaussian distribution G in RF has zero mean.

Lemma 8. (Covariance estimation of sub-Gaussian distributions) Consider a sub-

Gaussian distribution G in RF with covariance matrix Σ. Define the empirical

covariance matrix ΣN := 1
N

∑N
n=1 vnv

T
n where each vn is an independent sample of

G. Let ε ∈ (0, 1) and t ≥ 1. If N ≥ C(t/ε)2F for some constant C > 0, then with

probability at least 1− 2 exp(−t2F ),

‖ΣN −Σ‖2 ≤ ε. (2.2.15)
2The sub-Exponential norm of a sub-Exponential random variable X is defined as ‖X‖Ψ1

:=

supp≥1 p
−1 (E|X|p)

1/p
.
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The general idea of the proof of Theorem 1 is to first estimate the terms defining

δ in (2.1.7) probabilistically. Next, we apply Corollary 1 to show that any opti-

mal clustering for the original data matrix is close to the correct target clustering

corresponding to the spherical GMM. Because the complete proof which contains

various probabilistic estimates is somewhat lengthy, we provide the proof sketch

below. Detailed calculations are deferred to the end of this section.

Proof Sketch of Theorem 1: We estimate every term in (2.1.7) for the correct target

clustering C . By Lemmas 5 and 6, we have for any ε ∈ (0, 1),

P
Ç∣∣∣∣ 1

N
D(V,C )− Fσ̄2

∣∣∣∣ ≥ ε

2

å
≤ 2K((e+ 2)F + 2)exp

Ç
−C1

Nε2

F 2K2

å
, (2.2.16)

where C1 > 0 depends on {(wk,uk, σ2
k)}k∈[K]. See the complete proof for the detailed

calculation of this and other inequalities in this proof sketch. In particular, for the

justification of (2.2.16), see the steps leading to (2.2.34). These simply involve the

triangle inequality, the union bound, and careful probabilistic estimates. In addition,

by Lemma 8, for any t ≥ 1, if N ≥ C2F
3K2t2/ε2 (where C2 > 0 also depends on

{(wk,uk, σ2
k)}k∈[K]),

P
Å
‖Σ̄N − Σ̄‖2 ≥

ε

2

ã
≤ (9FKe+ 2K) exp

Ä
−t2F

ä
. (2.2.17)

Therefore, by the matrix perturbation inequalities in Lemma 16, when N ≥

C2F
3K2t2/ε2, we have

P
Ç∣∣∣∣ 1

N
λK−1(S)−

Ä
λmin + σ̄2

ä ∣∣∣∣ ≥ ε

2

å
≤ (9FKe+ 2K) exp

Ä
−t2F

ä
, (2.2.18)

P
Ç∣∣∣∣ 1

N
λK(S)− σ̄2

∣∣∣∣ ≥ ε

2

å
≤ (9FKe+ 2K) exp

Ä
−t2F

ä
. (2.2.19)

Furthermore, if N ≥ C2F
5K2t2/ε2, we have

P
Ç∣∣∣∣ 1

N
D∗(V)− (F −K + 1)σ̄2

∣∣∣∣ ≥ ε

2

å
≤ (F −K + 1)(9FKe+ 2K) exp(−t2F ). (2.2.20)

Combining these results, appealing to Corollary 1, the union bound, and the prop-

erty that both τ(·) and ζ(·) are continuous and monotonically increasing functions

on [0, 1
2
(K − 1)], we obtain (2.2.7) as desired.
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Note that both τ(·) and ζ(·) are continuous and monotonically increasing on

[0, 1
2
(K − 1)]. When the mixing weights are skewed (leading to a small wmin), we

require a strong separability assumption in (2.2.6). This is consistent with the

common knowledge [64] that imbalanced clusters are more difficult to disambiguate

for k-means. When δ0 is small (i.e., the data is well-separated) and N is large (so

ε and t can be chosen to be sufficiently small and large respectively), we have with

probability close to 1 that the upper bound on the ME distance given by (2.2.7) is

close to 0.

When the ME distance between any optimal clustering for k-means C opt and the

correct target clustering C of the samples generated from a spherical GMM is small

(and thus the implicit assumption of k-means is satisfied), we can readily perform

k-means to find C opt to infer C . The tightness of the upper bound in (2.2.7) is

assessed numerically in Section 2.2.3.

Remark 5. The result by [56] (discussed in Section 2.1.1) may, at a first glance,

appear to be similar to Theorem 1 in the sense that both results show that un-

der appropriate conditions, k-means is a good choice for learning certain mixture

models. However, there is a salient difference. The analysis of [56] is based on a vari-

ant of k-means algorithm, while we only analyze the objective function of k-means

(in (1.1.1)) which determines all optimal clusterings. Since there are multiple ways

to approximately minimize the ubiquitous but intractable sum-of-squares distortion

measure in (1.1.1), our analysis is partly algorithm-independent and thus fundamen-

tal in the theory of clustering. Our analysis and theoretical results, in fact, underpin

why the separability assumptions of various forms appear to be necessary to make

theoretical guarantees for using k-means to learn mixture models.

Finally, we present the complete proof of Theorem 1.

Complete Proof of Theorem 1: To apply Corollary 1, we first estimate 1
N
D(V,C ).
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We have

1

N
D(V,C ) =

1

N

K∑
k=1

∑
n∈Ck

‖vn − ck‖2
2 =

1

N

K∑
k=1

Ñ∑
n∈Ck

‖vn‖2
2 − nk‖ck‖2

2

é
(2.2.21)

=
K∑
k=1

nk
N

Ç∑
n∈Ck
‖vn‖2

2

nk
− ‖ck‖2

2

å
, (2.2.22)

where nk := |Ck|. By Lemma 5 and by the property that if X has a sub-Gaussian

distribution,3 ‖X − EX‖Ψ2 ≤ 2‖X‖Ψ2 (similarly, if X has a sub-Exponential distri-

bution, ‖X − EX‖Ψ1 ≤ 2‖X‖Ψ1) [63], we have for k ∈ [K],

P
Å∣∣∣∣nkN − wk∣∣∣∣ ≥ wk

2

ã
≤ e exp(−C0N), (2.2.23)

where C0 > 0 is a constant depending on wk, k ∈ [K]. Then with probability at

least 1 − Ke exp(−C0N), we have nk

N
≥ wk

2
for all k ∈ [K]. For brevity, we only

consider this case and replace nk with N in the following inequalities. In addition,

for any 0 < ε ≤ wmin

2
< 1,

P
Å∣∣∣∣nkN − wk∣∣∣∣ ≥ ε

ã
≤ e exp(−τkNε2), (2.2.24)

where τk > 0 is a constant depending on wk.

By Lemma 7, the square of each entry of a random vector generated from a

spherical Gaussian distribution has a sub-Exponential distribution. In addition, for

random vector v generated from the k-th component of the spherical GMM, we have

E[v(f)2] = uk(f)2 + σ2
k for any f ∈ [F ]. By Lemma 6, for any k ∈ [K],

P

Ñ∣∣∣∣∣ 1

nk

∑
n∈Ck

‖vn‖2
2 −
Ä
‖uk‖2

2 + Fσ2
k

ä ∣∣∣∣∣ ≥ ε

é
≤

F∑
f=1

P

Ñ∣∣∣∣∣ 1

nk

∑
n∈Ck

vn(f)2 −
Ä
uk(f)2 + σ2

k

ä ∣∣∣∣∣ ≥ ε

F

é
(2.2.25)

≤ 2F exp

Ç
−ξk

Nε2

F 2

å
, (2.2.26)

3The sub-Gaussian norm of a sub-Gaussian random variable X is defined as ‖X‖Ψ2
:=

supp≥1 p
−1/2 (E|X|p)

1/p
.
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where ξk > 0 is a constant depending on wk, σ
2
k,uk. Similarly, by Lemma 5, there

exists ζk > 0 depending on wk, σ
2
k and uk, such that

P
(∣∣∣‖ck‖2

2 − ‖uk‖2
2

∣∣∣ ≥ ε
)
≤

F∑
f=1

P
Å∣∣∣ck(f)2 − uk(f)2

∣∣∣ ≥ ε

F

ã
(2.2.27)

≤ 2eF exp

Ç
−ζk

Nε2

F 2

å
. (2.2.28)

The final bound in (2.2.28) holds because for any f , if uk(f) = 0, we have

P
Å∣∣∣ck(f)2 − uk(f)2

∣∣∣ ≥ ε

F

ã
= P

Ç
|ck(f)| ≥

 
ε

F

å
. (2.2.29)

On the other hand, if uk(f) 6= 0,

P
Å∣∣∣ck(f)2 − uk(f)2

∣∣∣ ≥ ε

F

ã
≤ P

Ç
|ck(f)− uk(f)| ≥ ε

3|uk(f)|F

å
+ P (|ck(f) + uk(f)| ≥ 3|uk(f)|) .

(2.2.30)

Now let dk := 1
nk

∑
n∈Ck
‖vn‖2

2 − ‖ck‖2
2 and Lk := ‖uk‖2

2 + Fσ2
k. Then, there exists a

constant C1 > 0 depending on {(wk, σ2
k,uk)}k∈[K] such that

P
Ç∣∣∣∣ 1

N
D(V,C )− Fσ̄2

∣∣∣∣ ≥ ε

2

å
≤

K∑
k=1

P
Å∣∣∣∣nkN dk − wkFσ2

k

∣∣∣∣ ≥ ε

2K

ã
(2.2.31)

≤
K∑
k=1

P
Å∣∣∣∣nkN − wk∣∣∣∣Fσ2

k ≥
ε

4K

ã
+

K∑
k=1

P
Å∣∣∣dk − Fσ2

k

∣∣∣ nk
N
≥ ε

4K

ã
(2.2.32)

≤
K∑
k=1

P
Ç∣∣∣∣nkN − wk∣∣∣∣ ≥ ε

4KFσ2
k

å
+

K∑
k=1

P
Ånk
N
≥ 2wk

ã
+

K∑
k=1

P

Ñ∣∣∣∣∣ 1

nk

∑
n∈Ck

‖vn‖2
2 − Lk

∣∣∣∣∣ ≥ ε

16wkK

é
+

K∑
k=1

P
Ç∣∣∣‖ck‖2

2 − ‖uk‖2
2

∣∣∣ ≥ ε

16wkK

å
(2.2.33)

≤ 2K ((e+ 2)F + e) exp

Ç
−C1

Nε2

F 2K2

å
, (2.2.34)

where (2.2.31) is a consequence of (2.2.22). This proves (2.2.16).

Now we estimate the positive eigenvalues of S := ZTZ, where Z is the centralized

data matrix of V. Equivalently, we may consider the eigenvalues of Σ̄N := 1
N

ZZT =
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1
N

∑N
n=1(vn − v̄)(vn − v̄)T , where v̄ = 1

N

∑
n vn. The expectation of centralized

covariance matrix for the spherical GMM is
∑K
k=1wk(uk − ū)(uk − ū)T + σ̄2I = Σ̄.

For any f ∈ [F ],

P (|v̄(f)− ū(f)| ≥ ε) ≤
K∑
k=1

P
Ç∣∣∣∣∣nkN · ∑n∈Ck

vn(f)

nk
− wkuk(f)

∣∣∣∣∣ ≥ ε

K

å
(2.2.35)

≤ 3Ke exp

Ç
−C2

Nε2

K2

å
, (2.2.36)

and

P
Å
‖v̄v̄T − ūūT‖2 ≥

ε

2

ã
≤ P

Å
‖(v̄ − ū)(v̄ − ū)T‖2 ≥

ε

6

ã
+ P

Å
‖(v̄ − ū)ūT‖2 ≥

ε

6

ã
+ P

Å
‖ū(v̄ − ū)T‖2 ≥

ε

6

ã
(2.2.37)

≤ P
Å
‖v̄ − ū‖2

2 ≥
ε

6

ã
+ 2P

Ç
‖v̄ − ū‖2 ≥

ε

6‖ū‖2

å
. (2.2.38)

Hence, similarly to (2.2.28), and by (2.2.36), we obtain

P
Å
‖v̄v̄T − ūūT‖2 ≥

ε

2

ã
≤ 9FKe exp

Ç
−C3

Nε2

F 2K2

å
, (2.2.39)

where C3 > 0 is a constant depending on {(wk,uk, σ2
k)}k∈[K]. Note that

ΣN −Σ =
K∑
k=1

nk
N

∑
n∈Ck

vnv
T
n

nk
−

K∑
k=1

wk(uku
T
k + σ2

kI). (2.2.40)

Then similar to (2.2.33) and by Lemma 8, we have that for any t ≥ 1, if N ≥

C4F
3K2t2/ε2, where C4 > 0 is a constant depending on {(wk,uk, σ2

k)}k∈[K],

P
Å
‖Σ̄N − Σ̄‖2 ≥

ε

2

ã
= P

Å∥∥∥(ΣN −Σ)−
Ä
v̄v̄T − ūūT

ä∥∥∥
2
≥ ε

2

ã
(2.2.41)

≤ P
Å
‖ΣN −Σ‖2 ≥

ε

4

ã
+ P

Å
‖v̄v̄T − ūūT‖2 ≥

ε

4

ã
(2.2.42)

≤ (2K + 9FKe) exp
Ä
−t2F

ä
. (2.2.43)

This proves (2.2.17).
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Now, if N ≥ C4F
5K2t2/ε2, we have

P
Ç∣∣∣∣ 1

N
D∗(V)− (F −K + 1)σ̄2

∣∣∣∣ ≥ ε

2

å
= P

(∣∣∣∣∣ 1

N

F∑
k=K

λk(S)− (F −K + 1)σ̄2

∣∣∣∣∣ ≥ ε

2

)
(2.2.44)

= P
(∣∣∣∣∣ F∑

k=K

λk(Σ̄N)− (F −K + 1)σ̄2

∣∣∣∣∣ ≥ ε

2

)
(2.2.45)

≤
F∑

k=K

P
Ç
|λk(Σ̄N)− λk(Σ̄)| ≥ ε

2(F −K + 1)

å
(2.2.46)

≤ (F −K + 1)P
Ç
‖Σ̄N − Σ̄‖2 ≥

ε

2(F −K + 1)

å
(2.2.47)

≤ (F −K + 1)(9FKe+ 2K) exp(−t2F ). (2.2.48)

This proves (2.2.20).

In addition, if N ≥ C4F
3K2t2/ε2, similarly,

P
Ç∣∣∣∣ 1

N
λK−1(S)−

Ä
λK−1(Σ̄0) + σ̄2

ä∣∣∣∣ ≥ ε

2

å
≤ (9FKe+ 2K) exp

Ä
−t2F

ä
,

(2.2.49)

P
Ç∣∣∣∣ 1

N
λK(S)− σ̄2

∣∣∣∣ ≥ ε

2

å
≤ (9FKe+ 2K) exp

Ä
−t2F

ä
.

(2.2.50)

This proves (2.2.18) and (2.2.19).

Finally, let pmin = 1
N

mink |Ck| and pmax = 1
N

maxk |Ck|. Then if ε > 0 satis-

fies (2.2.6), when N ≥ CF 5K2t2/ε2 with C > 0 being a constant depending on

{(wk, σ2
k,uk)}k∈[K], with probability at least 1− 36F 2K exp (−t2F ),

δ :=
D(V,C )−D∗(V)

λK−1(S)− λK(S)
≤ (K − 1)σ̄2 + ε

λmin − ε
(2.2.51)

Thus by (2.2.6),

δ ≤ ζ(wmin − ε) ≤ ζ(pmin). (2.2.52)

This is equivalent to

τ(δ) ≤ pmin. (2.2.53)



2.2 Error Bounds for Spherical GMMs 27

Therefore, by Corollary 1, if N ≥ CF 5K2t2/ε2 (where C > 0 is an appropriate

constant depending on {(wk,uk, σ2
k)}k∈[K]),

dME(C ,C opt) ≤ τ(δ)pmax ≤ τ(δ)(wmax + ε) (2.2.54)

≤ τ

Ç
(K − 1)σ̄2 + ε

λmin − ε

å
(wmax + ε) (2.2.55)

with probability at least 1− 36KF 2 exp (−t2F ).

2.2.2 The Theorem for Post-PCA Data

Next, we show that under similar assumptions for the generating process and

with a weaker separability assumption for the spherical GMM, any optimal clustering

for the post-PCA dataset is also close to the correct target clustering with high

probability when N is large enough.

Theorem 2. Let the dataset V ∈ RF×N be generated under the same conditions

given in Theorem 1 with the separability assumption (2.2.5) being modified to

δ1 :=
(K − 1)σ̄2

λmin + σ̄2
< ζ(wmin). (2.2.56)

Let Ṽ ∈ R(K−1)×N be the post-(K − 1)-PCA dataset of V. Then, for any ε > 0 that

satisfies

ε ≤ min
ßwmin

2
, λmin + σ̄2, (K − 1)σ̄2

™
, and

(K − 1)σ̄2 + ε

λmin + σ̄2 − ε
≤ ζ(wmin − ε),

(2.2.57)

and for any t ≥ 1, when N ≥ CF 3K5t2/ε2, where C > 0 depends on

{(wk,uk, σ2
k)}k∈[K], we have, with probability at least 1− 165KF exp (−t2K),

dME(C , C̃ opt) ≤ τ

Ç
(K − 1)σ̄2 + ε

λmin + σ̄2 − ε

å
(wmax + ε), (2.2.58)

where C is the correct target clustering and C̃ opt is an optimal K-clustering for Ṽ.

Remark 6. Vempala and Wang [17] analyze the SVD of ΣN (corresponding to PCA

with no centering) instead of Σ̄N (corresponding to PCA). The proof of Corollary
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3 in [17] is based on the key observation that the subspace spanned by the first K

singular vectors of ΣN lies close to the subspace spanned by the K component mean

vectors of the spherical GMM with high probability when N is large. By performing

K-SVD (cf. Section 2.1.3) on ΣN , we have the following corollary.

Corollary 2. Let the dataset V ∈ RF×N be generated under the same conditions

given in Theorem 1. Let Ṽ be the post-K-SVD dataset of V, then for any positive

ε satisfying (2.2.6) and for any t ≥ 1, if N ≥ CF 3K5t2/ε2, then with probability at

least 1−167KF exp (−t2K), the same upper bound in (2.2.7) holds for dME(C , C̃ opt),

where C̃ opt is an optimal K-clustering for Ṽ.

Combining the results of Theorems 1 and 2, by the triangle inequality for

ME distance, we obtain the following corollary concerning an upper bound for

dME(C opt, C̃ opt), the ME distance between any optimal clustering of the original

dataset and any optimal clustering of the post-PCA dataset.

Corollary 3. Let the dataset V ∈ RF×N be generated under the same conditions

given in Theorem 1. Let Ṽ be the post-(K − 1)-PCA dataset of V, then for any

positive ε satisfying (2.2.6) and for any t ≥ 1, if N ≥ CF 5K5t2/ε2, then with

probability at least 1−201KF 2 exp (−t2K), dME(C opt, C̃ opt) is upper bounded by the

sum of the right-hand-sides of (2.2.7) and (2.2.58).

The proof of Theorem 2 hinges mainly on the fact that the subspace spanned

by the first K − 1 singular vectors of Σ̄N is “close” to the subspace spanned by the

first K − 1 singular vectors of Σ̄0. See Lemma 9 to follow for a precise statement.

Note that the assumption in (2.2.56) is weaker than (2.2.5) and the upper bound

given by (2.2.58) is smaller than that in (2.2.7) (if all the parameters are the same).

In addition, when K = 2, by applying PCA to the original dataset as described in

Theorem 2, we obtain a 1-dimensional dataset, which is easier to cluster optimally

compared to the 2-dimensional dataset obtained by performing PCA with no cen-

tering as described in Remark 6. These comparisons also provide a theoretical basis

for the fact that centering can result in a stark difference in PCA.



2.2 Error Bounds for Spherical GMMs 29

Now, we prove Theorem 2. Following the notations in Section 2.1.3, we write

Σ̄N = PDPT , PK−1 = P( : , 1: K−1), and P−(K−1) = P( : , K : F ). We also denote

Ṽ = PT
K−1V as the post-(K−1)-PCA dataset of V. Instead of using PK−1 which is

correlated to the samples, we consider the SVD of Σ̄0 and project the original data

matrix onto RK−1 using the first K − 1 singular vectors of Σ̄0. We can similarly

estimate the terms in (2.1.7) for the corresponding (K − 1)-dimensional spherical

GMM. Furthermore, we estimate the difference between the results obtained from

projecting the original data matrix onto RK−1 using the first K − 1 singular vectors

of Σ̄0 and the results obtained from projecting the original data matrix onto RK−1

using the columns of PK−1.

Proof of Theorem 2: By the non-degeneracy condition and Lemma 4, we have

rank(Σ̄0) = K − 1. Let the compact SVD of Σ̄0 be

Σ̄0 = QK−1EK−1Q
T
K−1, (2.2.59)

where QK−1 ∈ RF×(K−1) has orthonormal columns and EK−1 ∈ R(K−1)×(K−1) is a

diagonal matrix. Since QT
K−1QK−1 = I, by the property of Gaussians, we know if

x is a random vector with a spherical Gaussian distribution N (u, σ2I) in RF , then

QT
K−1x is a random vector with a spherical Gaussian distribution N (QT

K−1u, σ
2I) in

RK−1. Let V̂ := QT
K−1V, Ẑ be the centralized matrix of V̂ and Ŝ := ẐT Ẑ. Denote

ˆ̄u = QT
K−1ū and ûk = QT

K−1uk for all k ∈ [K]. Let ˆ̄Σ0 :=
∑K
k=1wk(ûk− ˆ̄u)(ûk− ˆ̄u)T .

Define X := [
√
w1(u1− ū), . . . ,

√
wK(uK− ū)] ∈ RF×K and let X̂ := QT

K−1X. Select

Q−(K−1) ∈ RF×(F−K+1) such that [QK−1,Q−(K−1)] is an orthogonal matrix. We have

XTX− X̂T X̂ = XTX−XT (QK−1Q
T
K−1)X = XTQ−(K−1)Q

T
−(K−1)X = 0.

(2.2.60)

Thus we have

λmin = λK−1(XXT ) = λK−1(XTX) = λK−1(X̂T X̂) = λK−1( ˆ̄Σ0). (2.2.61)
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Then similar to that in Theorem 1, for any ε ∈ (0, 1),

P
Ç∣∣∣∣ 1

N
D(V̂,C )− (K − 1)σ̄2

∣∣∣∣ ≥ ε

2

å
≤ 2K((e+ 2)K + e) exp

Ç
−C3

Nε2

K4

å
.

(2.2.62)

In addition, for any t ≥ 1, if N ≥ C4K
5t2/ε2,

P
Ç∣∣∣∣ 1

N
λK−1(Ŝ)− (λmin + σ̄2)

∣∣∣∣ ≥ ε

2

å
≤ 9(eK2 + 2K)e exp(−t2K), (2.2.63)

where C3, C4 > 0 depend on {(wk,uk, σ2
k)}k∈[K]. Note that 1

N
D∗(V̂) = 1

N
λK(Ŝ) = 0.

Thus, we only need to estimate 1
N

∣∣∣D(V̂,C )−D(Ṽ,C )
∣∣∣ and 1

N

∣∣∣λK−1(Ŝ)−λK−1(S̃)
∣∣∣,

where S̃ := Z̃T Z̃ and Z̃ is the centralized matrix of Ṽ. By (2.1.2) and writing

R := QK−1Q
T
K−1 −PK−1P

T
K−1, we have

1

N

∣∣∣D(V̂,C )−D(Ṽ,C )
∣∣∣ =

∣∣∣∣∣
Æ

1

N

Ä
VVT −VH̄T H̄VT

ä
,R

∏∣∣∣∣∣ (2.2.64)

≤
Ä
1 + ‖H̄T‖2

F

ä Ç 1

N
‖V‖2

F

å
‖R‖F (2.2.65)

= (1 +K)

Ç
1

N
‖V‖2

F

å
‖R‖F. (2.2.66)

Note that

E
ñ

1

N
‖V‖2

F

ô
=

K∑
k=1

wk
Ä
‖uk‖2

2 + Fσ2
k

ä
. (2.2.67)

In addition, by Lemma 16 and routine calculations,

1

N

∣∣∣λK−1(Ŝ)− λK−1(S̃)
∣∣∣ ≤ ∥∥∥∥ 1

N
(Ŝ− S̃)

∥∥∥∥
2
≤
∥∥∥∥ 1

N
(Ŝ− S̃)

∥∥∥∥
F

=
∥∥∥∥ 1

N
ZTRZ

∥∥∥∥
F

(2.2.68)

≤ 1

N
‖R‖F‖Z‖2

F ≤ ‖R‖F

Ç
1

N
‖V‖2

F + ‖v̄‖2
2

å
. (2.2.69)

Thus in (2.2.66) and (2.2.69), we need to bound ‖R‖F. According to (2.2.17),

‖Σ̄N − Σ̄‖2 can be bounded probabilistically. By Lemma 9 to follow, the upper

bound of ‖R‖F can be deduced by the upper bound of ‖Σ̄N − Σ̄‖2. By leveraging

additional concentration bounds for sub-Gaussian and sub-Exponential distributions
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given in Lemmas 5 and 6, we deduce that if N ≥ C5F
3K5t2/ε2,

P
Ç

1

N

∣∣∣D(V̂,C )−D(Ṽ,C )
∣∣∣ ≥ ε

2

å
≤ 48KF exp(−t2F ), (2.2.70)

P
Ç

1

N

∣∣∣λK−1(Ŝ)− λK−1(S̃)
∣∣∣ ≥ ε

2

å
≤ 48KF exp(−t2F ), (2.2.71)

where C5 > 0 depends on {(wk,uk, σ2
k)}k∈[K]. The proofs of (2.2.70) and (2.2.71) are

omitted for the sake of brevity. See inequalities (2.3.61) and (2.3.62) in Section 2.3.2

for calculations similar to those to obtain these bounds. Combining these bounds

with (2.2.62) and (2.2.63) and by using Corollary 1, we obtain (2.2.58) as desired.

The following is a lemma essential for establishing upper bounds of (2.2.66) and

(2.2.69) in the proof of Theorem 2. Note that if we view the Grassmannian manifold

as a metric measure space, the distance between subspaces E and F can be defined

as [65]

dS(E ,F) := ‖PE −PF‖F, (2.2.72)

where PE and PF are the orthogonal projections onto E and F . Because QK−1Q
T
K−1

and PK−1P
T
K−1 are the orthogonal projection matrices for projections onto the sub-

spaces spanned by the columns of QK−1 and PK−1 respectively, ‖R‖F is a measure

of the distance between these two subspaces.

Lemma 9. For ε > 0, if ‖Σ̄N − Σ̄‖2 ≤ ε, then

‖R‖F ≤
4
√
Kε

λmin

. (2.2.73)

Proof. By Lemma 16, |λF (Σ̄N)− σ̄2| = |λF (Σ̄N)− λF (Σ̄)| ≤ ε. Then

‖Σ̄N − λF (Σ̄N)I− Σ̄0‖2 ≤ 2ε. (2.2.74)

Because Σ̄N − λF (Σ̄N)I is also positive semidefinite, the SVD is

Σ̄N − λF (Σ̄N)I = PD̄PT , (2.2.75)



32
Chapter 2. k-Means Clustering and Dimension Reduction for Learning

Mixture Models

where D̄ := D−λF (Σ̄N)I. Let D̄K−1 = D̄(1 : K−1, 1: K−1). Note that rank(Σ̄0) =

K − 1. By Lemma 16, λK(PD̄PT ) ≤ 2ε and thus we have

‖PD̄PT −PK−1D̄K−1P
T
K−1‖2 = λK(PD̄PT ) ≤ 2ε. (2.2.76)

Therefore, there exists a matrix E0 with ‖E0‖2 ≤ 4ε, such that

Σ̄0 = PK−1D̄K−1P
T
K−1 + E0. (2.2.77)

That is,

QK−1EK−1Q
T
K−1 = PK−1D̄K−1P

T
K−1 + E0. (2.2.78)

Recall that P−(K−1) := P(:, K : F ). We obtain

QK−1Q
T
K−1 = E0QK−1E

−1
K−1Q

T
K−1 + PK−1D̄K−1P

T
K−1QK−1E

−1
K−1Q

T
K−1

(2.2.79)

= PK−1P
T
K−1PK−1D̄K−1P

T
K−1Σ̄

+
0 +E0Σ̄

+
0 (2.2.80)

= PK−1P
T
K−1 + P−(K−1)P

T
−(K−1)E0Σ̄

+
0 , (2.2.81)

where Σ̄+
0 := QK−1E

−1
K−1Q

T
K−1 is the Moore-Penrose generalized inverse (or pseu-

doinverse) of Σ̄0 and its largest eigenvalue is λ−1
min. Because P−(K−1)P

T
−(K−1) projects

vectors in RF onto the linear space spanned by the orthonormal columns of P−(K−1),

we have

‖R‖F = ‖QK−1Q
T
K−1 −PK−1P

T
K−1‖F (2.2.82)

≤ ‖E0Σ̄
+
0 ‖F ≤ ‖E0‖2

√
K‖Σ̄+

0 ‖2 ≤
4
√
Kε

λmin

, (2.2.83)

where we use the inequality that ‖MN‖F ≤ ‖M‖2‖N‖F for any two compatible

matrices M and N. The inequality ‖Σ̄+
0 ‖F ≤

√
K‖Σ̄+

0 ‖2 arises because Σ̄+
0 only

contains K − 1 positive eigenvalues.

Remark 7. By Lemmas 8 and 9, we see that the subspace spanned by the first

K − 1 singular vectors of Σ̄0 lies close to the subspace spanned by the first K − 1
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Figure 2.1: Visualization of post-2-SVD datasets.

singular vectors of Σ̄N when the number of samples is sufficiently large. Note that∑K
k=1wk(uk − ū)(uk − ū)T = Σ̄0 = QK−1EK−1Q

T
K−1. We also obtain that the

subspace spanned by uk − ū, k ∈ [K] is close to the subspace spanned by the first

K − 1 singular vectors of Σ̄N . Note that Σ0 =
∑K
k=1 wkuku

T
k . A similar result can

be obtained for K-SVD to corroborate an observation by [17] (cf. Remark 6).

2.2.3 Numerical Results

To verify the correctness of the upper bounds given in Theorems 1 and 2 and

the efficacy of clustering post-PCA samples, we perform numerical experiments on

synthetic datasets. We sample data points from two types of 2-component spherical

GMMs. The dimensionality of the data points is F = 100, and the number of

samples N ranges from 1000 to 10000. Component mean vectors are randomly and

uniformly picked from the hypercube [0, 1]F . Equal mixing weights are assigned to

the components. After fixing the mixing weights and the component mean vectors,

λmin is fixed. For all k ∈ [K], we set the variances to be

σ2
k =

λminζ(wmin − ε)
4(K − 1)

, corresponding to
δ0

ζ(wmin)
≈ 1

4
, or (2.2.84)

σ2
k =

λminζ(wmin − ε)
K − 1

, corresponding to
δ0

ζ(wmin)
≈ 1, (2.2.85)
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where ε = 10−6. In all figures, left and right plots correspond to (2.2.84) and (2.2.85)

respectively.

We observe from Figure 2.1 that for (2.2.84), the clusters are well-separated,

while for (2.2.85), the clusters are moderately well-separated. For both cases, the

separability assumption (2.2.5) is satisfied. Similar to that in [60], we use the com-

mand kmeans(V’, K, ‘Replicates’, 10, ‘MaxIter’, 1000) in Matlab to ob-

tain an approximately-optimal clustering of V. Here V’ represents the transpose of

V. This command means that we run k-means for 10 times with distinct initializa-

tions and pick the best outcome. For each run, the maximal number of iterations

is set to be 1000. Define dorg := dME(C ,C opt) and define the (expected) upper

bound for dME(C ,C opt) as d̄org := τ(δ0)wmax (provided by Theorem 1). Similarly,

we define dpca := dME(C , C̃ opt) and the (expected) upper bound for dME(C , C̃ opt)

is defined as d̄pca := τ(δ1)wmax (given by Theorem 2). We use a superscript “emp”

to represent the corresponding empirical value. For example, δemp
0 := D(V,C )−D∗(V)

λK−1(S)−λK(S)

is an approximation of δ0 (calculated from the samples), and d̄emp
org := τ(δemp

0 )pmax is

an approximation of d̄org, where pmax := maxk
1
N
|Ck|.

Our numerical results are reported in Figure 2.2. We observe that the empirical

values of upper bounds are close to the corresponding expected upper bounds. This

observation verifies the correctness of the probabilistic estimates. For the well-

separated case in (2.2.84), we observe that the upper bounds for ME distance are

small compared to the moderately well-separated case in (2.2.85). For the former,

the true distances dorg and dpca are both close to 0, even when the number of

samples is 1000 (a small number in this scenario). The k-means algorithm can

easily find an approximately-optimal clustering, which is also the approximately-

correct clustering. For the moderately well-separated case, we observe that the

upper bounds given in Theorem 1 and Theorem 2 are informative. In particular,

they are only approximately 2.5 times the corresponding true distances.
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Figure 2.2: True distances and their corresponding upper bounds.

From Figure 2.3, we observe that performing k-means for the original (high-

dimensional) datasets is significantly slower than performing k-means for the corre-

sponding post-PCA datasets (the reported running times for post-PCA datasets are

the sums of the running times for performing PCA and for performing k-means on

the post-PCA datasets) when the number of samples is large. This difference is more

pronounced for the moderately well-separated case. For this case and N = 10000,

we have an order of magnitude speed up. The running time for larger N can be less

than the running time for smaller N because the number of iterations for k-means

are possibly different. All the results are averaged over 10 runs. All experiments

we run on an Intel Core i7 CPU at 2.50GHz and 16GB of memory, and the Matlab
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Figure 2.3: Comparisons of running times in seconds. Notice the tremendous speed

up of clustering on the post-PCA dataset compared to the original one.

version is 8.3.0.532 (R2014a).

2.3 Extension to Mixtures of Log-Concave Distri-

butions

In this section, we extend the results in Section 2.2 to mixtures of log-concave

distributions. This is motivated partly by Arora and Kannan [52] who mentioned

the algorithm they design for analyzing the learning of GMMs may be extended

to log-concave distributions (besides Gaussians). Also, Kannan et al. [55] gener-

alize the work of Vempala and Wang [17] from spherical GMMs to mixtures of

log-concave distributions. Furthermore, Brubaker [66] considers the robust learning

of mixtures of log-concave distributions. We also consider the learning of mixtures of

log-concave distributions although the structure of the theoretical analysis is mostly

similar to that for spherical GMMs. In Section 2.3.1, before presenting our the-

orem and proof for the original dataset generated from a mixture of log-concave

distributions, we provide some necessary preliminary definitions and results for log-

concave distributions and random variables. To prove our main results concerning

such distributions for dimensionality-reduced datasets, we need to employ a slightly
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different proof strategy vis-à-vis the one for spherical GMMs. We discuss these dif-

ferences and present the theorem and proof for dimensionality-reduced datasets in

Section 2.3.2 .

2.3.1 The Theorem for Original Data

A function f : RF → R+ is log-concave if its logarithm is concave. That is, for

any two vectors x,y ∈ RF and any α ∈ [0, 1],

f(αx + (1− α)y) ≥ f(x)αf(y)1−α. (2.3.1)

A distribution is log-concave if its probability density (or mass) function is log-

concave. We say a random variable is log-concave if its distribution is log-concave.

There are many distributions that are log-concave, including Gaussian distributions,

exponential distributions, and Laplace distributions. In particular, distributions

that belong to exponential families are log-concave. Log-concave distributions have

several desirable properties. For example, the sum of two independent log-concave

random variables (i.e., the convolution of two log-concave distributions) is also log-

concave. In addition, the linear projection of a log-concave distribution onto a

lower-dimensional space remains log-concave. To start off, we need to estimate the

deviation of an empirical covariance matrix from the true covariance matrix. We

leverage the following lemma due to [55].

Lemma 10. Let ε, η ∈ (0, 1), and y1,y2, . . . ,yN be zero-mean i.i.d. random vectors

from a log-concave distribution in RF . Then there is an absolute constant C > 0

such that if N > C F
ε2

log5
(
F
εη

)
, with probability at least 1− η,

(1− ε)E
î
(vTy)2

ó
≤ 1

N

N∑
n=1

(vTyn)2 ≤ (1 + ε)E
î
(vTy)2

ó
, ∀v ∈ RF . (2.3.2)

Note that Lemma 10 provides an estimate for the empirical covariance matrix.

This is because that for any symmetric matrix M, ‖M‖2 = supv∈RF ,‖v‖2=1 |〈Mv,v〉|

and (2.3.2) is equivalent to

‖ΣN −Σ‖2 ≤ ε‖Σ‖2. (2.3.3)
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Using Lemma 10, we also have the following corollary which provides a useful

concentration bound for the sum of the squares of log-concave random variables.

Corollary 4. Let ε ∈ (0, 1), and y1, y2, . . . , yN be i.i.d. samples from a log-concave

distribution with expectation µ and variance σ2. Then if ε is sufficiently small, there

is an absolute constant C > 0 such that for N > C 1
ε2

log5
(

1
εη

)
, with probability at

least 1− η,∣∣∣∣∣∣ 1

N

N∑
n=1

y2
n − (µ2 + σ2)

∣∣∣∣∣∣ ≤ ε. (2.3.4)

Proof. When µ = 0, we can apply Lemma 10 with F = 1 directly. When µ 6= 0, we

have

P
(∣∣∣∣∣ 1

N

N∑
n=1

y2
n − (µ2 + σ2)

∣∣∣∣∣ > ε

)

≤ P
(∣∣∣∣∣ 1

N

N∑
n=1

(yn − µ)2 − σ2

∣∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣∣ 1

N

N∑
n=1

yn − µ
∣∣∣∣∣ > ε

4|µ|

)
. (2.3.5)

By Lemma 10, there is a C > 0 such that if N ≥ C 1
ε2

log5
(

1
εη

)
, the first term in

(2.3.5) is less than or equal η
2
. By Lemmas 5 and 6, the second term is less than or

equal 2 exp(−cε2N), where c > 0. When N ≥ 1
cε2

log( 4
η
), we have η

2
≥ 2 exp(−cε2N).

If ε is sufficiently small, we have 1
cε2

log( 4
η
) ≤ C 1

ε2
log5

(
1
εη

)
. Thus we obtain (2.3.4)

as desired.

We will make use of the following lemma [62] concerning the eigenvalues of a

matrix which is the sum of two matrices.

Lemma 11. If A and A + E are both n-by-n symmetric matrices, then

λk(A) + λn(E) ≤ λk(A + E) ≤ λk(A) + λ1(E), ∀ k ∈ [n]. (2.3.6)

For any k ∈ [K], let σ2
k,max and σ2

k,min be the maximal and minimal eigenvalues of

Σk respectively, and define σ̄2
max :=

∑K
k=1 wkσ

2
k,max and σ̄2

min :=
∑K
k=1 wkσ

2
k,min. Other

notations are the same as that in previous theorems. Then in a similar manner as

Theorem 1 for spherical GMMs, we have the following theorem for mixtures of

log-concave distributions.
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Theorem 3. Suppose that all the columns of data matrix V ∈ RF×N are indepen-

dently generated from a mixture of K log-concave distributions and N > F > K.

Assume the mixture model satisfies the non-degeneracy condition. We further as-

sume that

0 < δ2 :=
Fσ̄2

max − (F −K + 1)σ̄2
min

λmin + σ̄2
min − σ̄2

max

< ζ(wmin). (2.3.7)

Then for any sufficiently small ε ∈ (0, 1) and any t ≥ 1, if N ≥ CK2F 4

ε2
log5

(
K2F 3

εη

)
,

where C > 0 depends on the parameters of the mixture model, we have, with proba-

bility at least 1− η,

dME(C ,C opt) ≤ τ

Ç
Fσ̄2

max − (F −K + 1)σ̄2
min + ε

λmin + σ̄2
min − σ̄2

max − ε

å
(wmax + ε), (2.3.8)

where C opt is an optimal K-clustering for V.

The proof, which is presented below, is mostly similar to that for Theorem 1, ex-

cept that we employ different concentration inequalities and slightly different bound-

ing strategies (e.g., Lemma 11 is required).

Proof of Theorem 3. We have that the two inequalities concerning wk in (2.2.23)

and (2.2.24) still hold. In addition, for any k ∈ [K], if N ≥ C1
F 2

ε2
log5

(
F
εη

)
with

C1 > 0 being sufficiently large,

P

Ñ∣∣∣∣∣ 1

nk

∑
n∈Ik
‖vn‖2

2 −
Ä
‖uk‖2

2 + tr(Σk)
ä ∣∣∣∣∣ ≥ ε

é
≤

F∑
f=1

P

Ñ∣∣∣∣∣ 1

nk

∑
n∈Ik

vn(f)2 −
Ä
uk(f)2 + Σk(f, f)

ä ∣∣∣∣∣ ≥ ε

F

é
≤ Fη. (2.3.9)

By Lemma 6, similarly, we have for a sufficiently small c > 0,

P
(∣∣∣‖ck‖2

2 − ‖uk‖2
2

∣∣∣ ≥ ε
)
≤ 4F exp

Ç
−cNε

2

F 2

å
. (2.3.10)

Therefore, by
∑K
k=1 wktr(Σk) ≤ Fσ̄2

max, similar to that for spherical GMMs, if N ≥

C1
F 2K2

ε2
log5

(
F 2K2

εη

)
,

P
Ç

1

N
D(V,I )− Fσ̄2

max ≥
ε

2

å
≤ η. (2.3.11)
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Similarly, we have

P (|v̄(f)− ū(f)| ≥ ε) ≤ (4 + e)K exp

Ç
−cNε

2

K2

å
. (2.3.12)

We also have that

P
Å
‖Σ̄N − Σ̄‖2 ≥

ε

2

ã
≤ P

Å
‖ΣN −Σ‖2 ≥

ε

4

ã
+ P

Å
‖v̄v̄T − ūūT‖2 ≥

ε

4

ã
(2.3.13)

≤
K∑
k=1

P
(∥∥∥∥∥nkN

∑
n∈Ck

vnv
T
n

nk
− wk(ukuTk + Σk)

∥∥∥∥∥
2

≥ ε

4K

)

+ P
Å
‖v̄v̄T − ūūT‖2 ≥

ε

4

ã
(2.3.14)

≤
K∑
k=1

P
(∥∥∥∥∥
Ånk
N
− wk

ã
(uku

T
k + Σk)

∥∥∥∥∥
2

≥ ε

8K

)
+

K∑
k=1

P
Ånk
N
≥ 2wk

ã
+

K∑
k=1

P
(∥∥∥∥∥
∑
n∈Ck

vnv
T
n

nk
−(uku

T
k +Σk)

∥∥∥∥∥
2

≥ ε

16Kwk

)
+P
Å
‖v̄v̄T − ūūT‖2≥

ε

4

ã
.

(2.3.15)

Note that the following bound for Σ̄N − Σ̄ is slightly different from (2.2.43) because

Lemma 10 requires that the log-concave distribution has zero mean. Furthermore,

recall that ck := 1
|Ck|

∑
n∈Ck

vn, we have

P

Ñ∥∥∥∥∥ 1

nk

∑
n∈Ck

vnv
T
n − (uku

T
k + Σk)

∥∥∥∥∥
2

≥ ε

16Kwk

é
≤ P

Ñ∥∥∥∥∥ 1

nk

∑
n∈Ck

(vn − uk)(vn − uk)
T −Σk

∥∥∥∥∥
2

≥ ε

32Kwk

é
+ P

Ç
‖ckuTk + ukc

T
k − 2uku

T
k ‖2 ≥

ε

32Kwk

å
(2.3.16)

≤ P

Ñ∥∥∥∥∥ 1

nk

∑
n∈Ck

(vn − uk)(vn − uk)
T −Σk

∥∥∥∥∥
2

≥ ε

32Kwk

é
+ 2P

Ç
‖ck − uk‖2 ≥

ε

64Kwk‖uk‖2

å
. (2.3.17)

Therefore, we have that if N ≥ C1
F 2K2

ε2
log5

(
FK2

εη

)
, with probability at least 1− η,

‖Σ̄N − Σ̄‖2 <
ε

2
. (2.3.18)
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Now, note that by Lemma 11, for k ≤ F < N ,

λk
Ä
Σ̄
ä

= λk

(
Σ̄0 +

K∑
k=1

wkΣk

)
≥ λk(Σ̄0) + λF

(
K∑
k=1

wkΣk

)
(2.3.19)

≥ λk(Σ̄0) +
K∑
k=1

wkλF (Σk) = λk(Σ̄0) + σ̄2
min. (2.3.20)

Therefore, if N ≥ C1
F 4K2

ε2
log5

(
F 2K2

εη

)
, we have

P
Ç

1

N
D∗(V)− (F −K + 1)σ̄2

min ≤ −
ε

2

å
= P

(
1

N

F∑
k=K

λk(S)− (F −K + 1)σ̄2
min ≤ −

ε

2

)
(2.3.21)

≤
F∑

k=K

P
Ç
|λk(Σ̄N)− λk(Σ̄)| ≥ ε

2(F −K + 1)

å
(2.3.22)

≤ 2(F −K + 1)η. (2.3.23)

Or more concisely, if N ≥ C1
F 4K2

ε2
log5

(
F 3K2

εη

)
,

P
Ç

1

N
D∗(V)− (F −K + 1)σ̄2

min ≤ −
ε

2

å
≤ η. (2.3.24)

Similarly, by the inequalities λK−1(Σ̄) ≥ λK−1(Σ̄0) + σ̄2
min and λK(Σ̄) ≤ σ̄2

max, if

N ≥ C1
F 2K2

ε2
log5

(
FK2

εη

)
,

P
Ç

1

N
λK−1(S)−

Ä
λmin + σ̄2

min

ä
≤ − ε

2

å
≤ η, (2.3.25)

P
Ç

1

N
λK(S)− σ̄2

max ≥
ε

2

å
≤ η. (2.3.26)

Combining these results with Corollary 1, we similarly obtain the conclusion we

desire.

2.3.2 The Theorem for Post-PCA Data

For non-spherical GMMs or more general mixtures of log-concave distributions,

we cannot expect a result similar to that mentioned in Remarks 6 and 7. That is, in

general, the subspace spanned by the top K singular vectors of ΣN does not converge

to the subspace spanned by the K component mean vectors, where “convergence” is
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in the sense that the distance defined in (2.2.72) vanishes as N →∞. An illustration

of this fact is presented in [55, Figure 1]. However, we can still provide an upper

bound for the distance of this two subspaces for more general mixture models. It

is proved in [55] that the subspace spanned by the top K singular vectors of ΣN is

close (in terms of sample variances) to the means of samples generated from each

component of the mixture (see Lemma 12 to follow). Define the maximum variance

of a set of sample points generated from the k-th component of the mixture along

any direction in a subspace S as

σ2
k,S(V) := max

z∈S,‖z‖2=1

1

nk

∑
n∈Ck

∣∣∣zT (vn − ck)
∣∣∣2 , (2.3.27)

where ck := 1
|Ck|

∑
n∈Ck

vn is the centroid of the points in Ck. Recall that from

Section 2.1.2, we denote v̄ := 1
N

∑N
n=1 vn and Z as the centralized matrix of V. Let

c̄k = ck − v̄. We have σ2
k,S(Z) = σ2

k,S(V) for any subspace S and the the following

lemma which is similar to Theorem 1 in [55] holds. Note that this lemma holds not

only for mixtures of log-concave distributions, but also for any mixture model.

Lemma 12. Let C be the correct target clustering corresponding to the mixture. Let

W be the subspace spanned by the top K − 1 left singular vectors of Z. Then

K∑
k=1

nkd(c̄k,W)2 ≤ (K − 1)
K∑
k=1

nkσ
2
k,W(V), (2.3.28)

where d(c̄k,W) denotes the orthogonal distance of c̄k from subspace W for any k ∈

[K].

In addition, recall the notations PK−1,P−(K−1), and QK−1 (cf. (2.2.59)) from

Section 2.2.2. Let ūk := uk−ū for k ∈ [K]. Since
∑K
k=1wkūk = 0, rank(Σ̄0) ≤ K−1.

It is easy to see that d(x,W)2 = ‖x − PK−1P
T
K−1x‖2

2 for any vector x and by

denoting σ2
k,max as the maximal eigenvalue of Σk (the covariance matrix of the k-th

component), we obtain the following corollary of Lemma 12.

Corollary 5. If we further assume that the mixture is a mixture of log-concave

distributions, then for any sufficiently small ε ∈ (0, 1) and all η > 0, if N ≥
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C F 2K4

ε2
log5

(
FK3

εη

)
, with probability at least 1− η,

K∑
k=1

wkd(ūk,W)2 ≤
Ç

(K − 1)
K∑
k=1

wkσ
2
k,max

å
+ ε. (2.3.29)

Proof. Consider,

P
(∣∣∣∣∣ K∑

k=1

wkd(c̄k,W)2 −
K∑
k=1

wkd(ūk,W)2

∣∣∣∣∣ ≥ ε

2

)

≤
K∑
k=1

P
Ç∣∣∣‖P−(K−1)P

T
−(K−1)c̄k‖2

2 − ‖P−(K−1)P
T
−(K−1)ūk‖2

2

∣∣∣ ≥ ε

2Kwk

å
(2.3.30)

≤
K∑
k=1

P
Ç∣∣∣‖c̄k‖2

2 − ‖ūk‖2
2

∣∣∣ ≥ ε

2Kwk

å
(2.3.31)

≤ 8eK2F exp

Ç
−C1

Nε2

F 2K4

å
, (2.3.32)

where (2.3.31) is because that P−(K−1)P
T
−(K−1) is a projection matrix and C1 > 0 is

a constant depending on parameters of the mixture model. On the other hand,

σ2
k,W(V) ≤ λ1

Ç
1

nk

∑
n∈Ck

(vn − ck)(vn − ck)
T

å
, (2.3.33)

where λ1(·) denotes the largest eigenvalue of a matrix. Consequently, for some fixed

η′ ∈ (0, 1), if N ≥ C2
F 2K4

ε2
log5

(
FK2

εη′

)
(where C2 > 0 is a constant depending on
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parameters of the mixture model), we have

P
(

(K − 1)
K∑
k=1

wkσ
2
k,W(V)− (K − 1)

K∑
k=1

wkσ
2
k,max ≥

ε

2

)

≤
K∑
k=1

P
Ç
σ2
k,W(V)− σ2

k,max ≥
ε

2K2wk

å
(2.3.34)

≤
K∑
k=1

P

Ñ
λ1

Ç
1

nk

∑
n∈Ck

(vn − ck)(vn − ck)
T

å
− σ2

k,max ≥
ε

2K2wk

é
(2.3.35)

≤
K∑
k=1

P

Ñ∥∥∥∥∥ 1

nk

∑
n∈Ck

(vn − ck)(vn − ck)
T −Σk

∥∥∥∥∥
2

≥ ε

2K2wk

é
(2.3.36)

≤
K∑
k=1

P

Ñ∥∥∥∥∥ 1

nk

∑
n∈Ck

(vn − uk)(vn − uk)
T −Σk

∥∥∥∥∥
2

≥ ε

4K2wk

é
+

K∑
k=1

P
Ç
‖ck − uk‖2

2 ≥
ε

4K2wk

å
(2.3.37)

≤ 2Kη′, (2.3.38)

where (2.3.36) is due to Lemma 16 and (2.3.37) is due to the fact that

1

nk

∑
n∈Ck

(vn−ck)(vn−ck)
T =

 1

nk

∑
n∈Ck

(vn − uk)(vn − uk)
T

−(uk−ck)(uk−ck)
T .

(2.3.39)

Then with probability at least 1− (8e+ 2)Kη′,

K∑
k=1

wkd(uk − ū,W)2 ≤
Ç

(K − 1)
K∑
k=1

wkσ
2
k,max

å
+ ε. (2.3.40)

Now, we define η := (8e + 2)Kη′. Then, we obtain (2.3.29) with the sample com-

plexity result as in the statement of Corollary 5.

Because Corollary 5 only provides a guarantee for the closeness of centralized

component mean vectors to the SVD subspace of centralized samples, we need to

further extend it to show that the subspace spanned by all the centralized component

mean vectors is close to the SVD subspace of centralized samples. This is described

in the following lemma.
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Lemma 13. Let V ∈ RF×N be generated from a mixture of K log-concave dis-

tributions that satisfies the non-degeneracy condition (cf. Definition 1). Using the

notations defined above (see, in particular, the definition of λmin in Section 2.2.1),

∥∥∥PK−1P
T
K−1 −QK−1Q

T
K−1

∥∥∥2

F
≤ 2

∑K
k=1 wkd(ūk,W)2

λmin

. (2.3.41)

Proof. We have that

K∑
k=1

wkd(ūk,W)2 =
K∑
k=1

wk‖ūk −PK−1P
T
K−1ūk‖2

2 (2.3.42)

=
K∑
k=1

wkū
T
kP−(K−1)P

T
−(K−1)ūk = tr(ATA), (2.3.43)

where A := PT
−(K−1)UD, U := [ū1, . . . , ūK ], and D := diag(

√
w1, . . . ,

√
wK). Recall

that we write the SVD of Σ̄0 :=
∑K
k=1wkūkū

T
k as Σ̄0 = QK−1EK−1Q

T
K−1. We have

tr(ATA) = tr(UD2UTP−(K−1)P
T
−(K−1)) (2.3.44)

= tr(EK−1Q
T
K−1P−(K−1)P

T
−(K−1)QK−1) (2.3.45)

≥ λmintr(QT
K−1P−(K−1)P

T
−(K−1)QK−1), (2.3.46)

where the inequality is because the diagonal entries of QT
K−1P−(K−1)P

T
−(K−1)QK−1

are nonnegative.

Let β :=
∑K
k=1 wkd(ūk,W)2. By combining the above inequalities, we have

‖PT
−(K−1)QK−1‖2

F ≤
β

λmin

. (2.3.47)

Since

‖PT
K−1QK−1‖2

F + ‖PT
−(K−1)QK−1‖2

F = ‖PTQK−1‖2
F = tr(QT

K−1PPTQK−1)

(2.3.48)

= K − 1 = ‖PT
K−1Q‖2

F = ‖PT
K−1QK−1‖2

F + ‖PT
K−1Q−(K−1)‖2

F, (2.3.49)

where Q−(K−1) ∈ RF×(F−K+1) is selected such that [QK−1,Q−(K−1)] is orthogonal,
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we also have that ‖PT
K−1Q−(K−1)‖2

F ≤ β
λmin

. Now we have

‖QK−1Q
T
K−1 −PK−1P

T
K−1‖2

F

= tr(QT
K−1P−(K−1)P

T
−(K−1)QK−1) + tr(PT

K−1Q−(K−1)Q
T
−(K−1)PK−1) (2.3.50)

= ‖PT
−(K−1)QK−1‖2

F + ‖PT
K−1Q−(K−1)‖2

F ≤
2β

λmin

, (2.3.51)

concluding the proof of Lemma 13.

Combining the results of Corollary 5 and Lemma 13, we obtain an upper bound

of the distance between the two subspaces, and we can prove a result concerning

optimal clusterings of the dimensionality-reduced dataset (via PCA) generated from

a mixture of log-concave distributions. This parallels the procedures for the proof

strategy of Theorem 2.

Now, we demonstrate that under similar assumptions on the generating process

of the samples (compared to those in Theorem 3), any optimal clustering for the

post-PCA (cf. Section 2.1.3) dataset is also close to the correct target clustering

with high probability.

Theorem 4. Define L̄ :=
∑K
k=1wk (‖uk‖2

2 + tr(Σk)). Let the dataset V ∈ RF×N

be generated under the same conditions given in Theorem 3 with the separability

assumption in (2.3.7) being modified to

0 < δ3 :=
(K − 1)σ̄2

max + a

λmin + σ̄2
min − b

< ζ(wmin), (2.3.52)

where

a := (1+K)L̄

√
2(K − 1)σ̄2

max

λmin

, and b := (L̄−‖ū‖2
2)

√
2(K − 1)σ̄2

max

λmin

. (2.3.53)

Let Ṽ ∈ RF×(K−1) be the post-(K − 1)-PCA dataset of V. Then for any sufficiently

small ε ∈ (0, 1), if N ≥ C F 2K6

ε2
log5

(
F 2K4

εη

)
, where C > 0 depends on the parameters

of the mixture model, we have, with probability at least 1− η,

dME(C , C̃ opt) ≤ τ

Ç
(K − 1)σ̄2

max + a+ ε

λmin + σ̄2
min − b− ε

å
(wmax + ε), (2.3.54)

where C is the correct target clustering and C̃ opt is an optimal K-clustering for Ṽ.
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Proof. We use the same notations as those in the proof of Theorem 2 and in the

statement of Theorem 4. Since QK−1 ∈ RF×(K−1) has orthonormal columns,

tr(QT
K−1ΣkQK−1) ≤

K−1∑
j=1

λj(Σk) ≤ (K − 1)σ2
k,max, ∀ k ∈ [K]. (2.3.55)

Therefore, similar to that for the case for the original dataset (cf. the inequality

in (2.3.11)), if N ≥ C1
K4

ε2
log5

(
K4

εη

)
with C1 > 0 being sufficiently large,

P
Ç

1

N
D(V̂, I)− (K − 1)σ̄2

max ≥
ε

2

å
≤ η. (2.3.56)

In addition, we have λK−1(QT
K−1ΣkQK−1) ≥ λF (Σk) = σ2

k,min.4 Similarly, we have

λ1(QT
K−1ΣkQK−1) ≤ λ1(Σk) = σ2

k,max. Thus if N ≥ C1
K4

ε2
log5

(
K3

εη

)
,

P
Ç

1

N
λK−1(Ŝ)− (λmin + σ̄2

min) ≤ − ε
2

å
≤ η. (2.3.57)

Recall that we write R := QK−1Q
T
K−1 − PK−1P

T
K−1. Let r :=

√
2(K−1)σ̄2

max

λmin
. Com-

bining Corollary 5 and Lemma 13, we have that if N ≥ C F 2K4

ε2
log5

(
FK3

εη

)
, with

probability at least 1− η,

‖R‖F ≤ r + C2ε, (2.3.58)

where C2 > 0 is sufficiently large. In addition, using the inequalities

1

N

∣∣∣D(V̂,I )−D(Ṽ,I )
∣∣∣ ≤ 1 +K

N
‖V‖2

F‖R‖F (2.3.59)

1

N

∥∥∥Ŝ− S̃
∥∥∥

2
≤ ‖R‖F‖Z‖2

F, (2.3.60)

4Indeed, assume, to the contrary, that λK−1(QT
K−1ΣkQK−1) < σ2

k,min. Then there is a

λ < σ2
k,min and a corresponding unit vector x ∈ RK−1, such that QT

K−1ΣkQK−1x = λx. Thus,

σ2
k,min‖x‖22 = σ2

k,min‖QK−1x‖22 ≤ xTQT
K−1ΣkQK−1x = λ‖x‖22 < σ2

k,min‖x‖22, which is a contradic-

tion.
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we deduce that

P
Ç

1

N

∣∣∣D(V̂,I )−D(Ṽ,I )
∣∣∣− a ≥ ε

2

å
≤ P

Ç
1

N
‖V‖2

F‖R‖F − L̄r ≥
ε

2(1 +K)

å
(2.3.61)

≤ P
ÇÅ 1

N
‖V‖2

F − L̄
ã
r ≥ ε

4(1 +K)

å
+ P

Ç
1

N
‖V‖2

F ≥ L̄+ 1

å
+ P

Ç
‖R‖F − r ≥

ε

4(1 +K)(L̄+ 1)

å
. (2.3.62)

Therefore, by (2.3.9) and (2.3.58), we obtain that if N ≥ C1
F 2K6

ε2
log5

(
F 2K4

εη

)
,

P
Ç

1

N

∣∣∣D(V̂,I )−D(Ṽ,I )
∣∣∣− a ≥ ε

2

å
≤ η. (2.3.63)

Similarly, when N ≥ C1
F 2K6

ε2
log5

(
F 2K4

εη

)
,

P
Ç

1

N

∥∥∥Ŝ− S̃
∥∥∥

2
− b ≥ ε

2

å
≤ η. (2.3.64)

Combining these results with Corollary 1, we obtain the desired conclusion.

Note that by using the fact that w = (w1, w2, . . . , wK) is a probability vector

and the non-degeneracy condition, we have
∑K
k=1wk‖uk‖2

2 > ‖ū‖2
2 and thus b > 0.

The proof of Theorem 4 is similar to that for Theorem 2, except that the estimate

of ‖PK−1P
T
K−1 − QK−1Q

T
K−1‖F is obtained differently. The separability assump-

tion (2.3.7) for mixtures of log-concave distributions reduces to (2.2.5) for spherical

GMMs because in this case, we have σ̄2
max = σ̄2

min = σ̄2. If the mixture model is non-

spherical, the separability assumption (2.3.7) is generally stricter than (2.2.5). This

is especially the case when σ̄2
max � σ̄2

min. This implies non-spherical mixture models

are generally more difficult to disambiguate and learn. For dimensionality-reduced

datasets (using PCA), the separability assumption in (2.3.52) is stricter than the

separability assumption in (2.2.56), even for spherical GMMs, because of the pres-

ence of the additional positive terms a and b in (2.3.53). In addition, unlike that for

spherical GMMs, the separability assumption in (2.3.52) for dimensionality-reduced

datasets may also be stricter than the separability assumption in (2.3.7) also because

of the same additional positive terms a and b.
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2.4 Discussion and Other Perspectives

In this section, we discuss several interesting and practically-relevant extensions

of the preceding results. In Section 2.4.1, we show that Theorems 2 and 4 may be

readily extended to other dimensionality-reduction techniques besides PCA/SVD

by leveraging results such as (2.1.10). In Section 2.4.2, we show that we can apply

efficient clustering algorithms to obtain an approximately-optimal clustering which

is also close to the correct target clustering.

2.4.1 Other Dimensionality-Reduction Techniques

Our results can be used to prove similar upper bounds for the ME distance

between any approximately-optimal clustering and the correct target clustering. The

following corollary follows easily from Lemma 1.

Corollary 6. Consider a K-clustering C with corresponding δ (cf. Lemma 1) and

a K-clustering C ′ that satisfies

D(V,C ′) ≤ γD(V,C opt), (2.4.1)

for some γ ≥ 1. Then if

δγ :=
γD(V,C )−D∗(V)

λK−1(S)− λK(S)
, (2.4.2)

satisfies

δγ ≤
K − 1

2
, and τ(δγ) ≤ pmin, (2.4.3)

we have

dME(C ′,C ) ≤ pmaxτ(δ). (2.4.4)

Proof. We have δ ≤ δγ ≤ 1
2
(K − 1) and τ(δ, δγ) ≤ τ(δγ) ≤ pmin. Lemma 1 thus

yields dME(C ,C ′) ≤ pmaxτ(δ).
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According to the above corollary, we deduce that if we make a stronger sep-

arability assumption as in (2.4.3), we can bound the ME distance between any

approximately-optimal clustering and the correct target clustering. Therefore, by

leveraging (2.1.10), our theoretical results for dimensionality reduction by PCA (in

Theorems 2 and 4) can be extended to other dimensionality-reduction techniques

such as random projection [67–70] and randomized SVD [19, 20, 70]. We describe

these dimensionality-reduction techniques in the following and provide known results

for γ satisfying (2.1.10).

• A random projection from F dimensions to D < F dimensions is represented

by a D × F matrix, which can be generated as follows [71]: (i) Set each en-

try of the matrix to be an i.i.d. N (0, 1) random variable; (ii) Orthonormalize

the rows of the matrix. Theoretical guarantees for dimensionality-reduction

via random projection are usually established by appealing to the well-known

Johnson-Lindenstrauss lemma [72] which says that pairwise distances and in-

ner products are approximately preserved under the random projection.

• Because computing an exact SVD is generally expensive, randomized SVD has

gained tremendous interest for solving large-scale problems. For a data matrix

V ∈ RF×N , to reduce the dimensionality of the columns from F to K < F , one

performs a randomized SVD using an F ×K matrix ZK . More specifically, we

can adopt the following procedure [60]: (i) Generate aD×F (D > K) matrix L

whose entries are i.i.d.N (0, 1) random variables; (ii) Let A = LV ∈ RD×N and

orthonormalize the rows of A to construct a matrix B; (iii) Let ZK ∈ RF×K

be the matrix of top K left singular vectors of VBT ∈ RF×D. Such ZK is

expected to satisfy ‖V − ZKZT
KV‖F ≈ ‖V − PKPT

KV‖F, where PK is the

matrix of top K left singular vectors of V. The key advantage of randomized

SVD over exact SVD is that when D � min{F,N}, the computation of the

randomized SVD is significantly faster than the computing of an exact SVD.

• We may also employ feature selection techniques such as those described in [73]
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Table 2.1: Summary of Feature Extraction Techniques

Technique Reference Dimensions γ

PCA/SVD
[75]

[61]

K

dK/εe

2

1 + ε

random projection [61] O(K/ε2) 1 + ε

randomized SVD [61] dK/εe 1 + ε

and [74].

A subset of the results of [61] is presented in Table 2.1. This table shows the

γ such that (2.1.10) is satisfied for various reduced dimensions and dimensionality

reduction techniques. Even though the results in Table 2.1 appear promising, we ob-

serve from numerical experiments that for dimensionality reduction by PCA/SVD,

if the data matrix is generated from a spherical GMM, even if it is moderately-well

separated (cf. Section 2.2.3 to follow), D(V, C̃ opt) ≈ D(V,C opt). That is, in this

case, γ ≈ 1 even though the reduced dimensionality is K − 1 or K . Furthermore,

we show in Theorem 2 that for dimensionality reduction by PCA, we require a

weaker separability assumption (compared to that in Theorem 1). However, from

Table 2.1, for SVD, if the reduced dimensionality is K, then γ = 2 and we will

require a stronger separability assumption according to Corollary 6. Therefore, the

results for PCA/SVD in Table 2.1 are generally pessimistic. This is reasonable be-

cause PCA/SVD is data-dependent and we have assumed specific generative mixture

models for our data matrices.

2.4.2 Other Efficient Clustering Algorithms

Although k-means is a popular heuristic algorithm that attempts to minimize the

sum-of-squares distortion, in general, minimizing this objective is NP-hard and k-

means only converges to a locally optimal solution. In addition, k-means is sensitive
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to initialization [5]. Fortunately, there are variants of k-means with judiciously cho-

sen initializations that possess theoretical guarantees, e.g., k-means++ [5]. In addi-

tion, efficient variants of k-means [45,76] have been proposed to find approximately-

optimal clusterings under appropriate conditions. Our theoretical results can be

easily combined with these efficient algorithms to produce approximately-optimal

clusterings which are also close to the correct target clustering. We demonstrate this

by using a result in [76]. Namely, if we denote the optimal distortion with k ∈ N

clusters as OPTk, Theorem 4.13 in [76] states that:

Lemma 14. If OPTK

OPTK−1
≤ ε2 for a small enough ε > 0, the randomized algorithm pre-

sented before Theorem 4.13 in [76] returns a solution of cost at most
Ä

1−ε2
1−37ε2

ä
OPTK

with probability 1−O(
√
ε) in time O(FNK +K3F ).

We demonstrate that this lemma and the proposed algorithm can be combined

with our theoretical results to produce further interesting results. For simplicity,

we assume the data matrix V ∈ RF×N is generated from a K-component spherical

GMM. Then by previous calculations, the lower bound of the distortion for K − 1

clusters is D∗K−1 :=
∑F
k=K−1 λk(S) (cf. Section 2.1.2). As N → ∞, D∗K−1 converges

to λmin + (F −K + 2)σ̄2 in probability. In addition, the distortion for the correct

target clustering (with K clusters) converges to Fσ̄2 in probability. Therefore, if

the number of samples is large enough, with high probability,

OPTK

OPTK−1

≤ Fσ̄2

λmin + (F −K + 2)σ̄2
. (2.4.5)

Thus if σ̄2 is sufficiently small or λmin is sufficiently large, by Lemma 14, we can

use the algorithm suggested therein to obtain an approximately-optimal clustering

for the original dataset. In addition, by Theorem 1 and Corollary 6, under an

appropriate separability assumption, the approximately-optimal clustering is close

to the correct target clustering that we ultimately seek.

We have provided one example of an efficient algorithm to obtain an

approximately-optimal clustering. Interested readers may refer to the paper by
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Ackerman and Ben-David [45] which discusses other computationally efficient algo-

rithms with guarantees.





Chapter 3
A New Initialization Method for NMF

As we mentioned in Chapter 1, classical algorithms for NMF [23,29,31,32] typ-

ically have no theoretical guarantees beyond guaranteeing that the sequence of the

values of the objective function is non-increasing and the iterates converge to a

stationary point. Further, there are no analyses concerning error bounds. Re-

cently, near-separable NMF has become popular and researchers are able to derive

error bound analysis for near-separable NMF. However, usually, to leverage on con-

vex analysis technique, a strong assumption that the data matrix V is normalized

such that each column (or row) of it has unit `1 norm is made. As pointed out

in [37], normalization, especially in the `1-norm for the rows of data matrices may

degrade the clustering performance for text datasets significantly. In this chapter,

we propose a geometric assumption which can be considered as a special case of

the near-separability assumption. We design an algorithm named cr1-nmf. It first

uses the geometric assumption to obtain an exact clustering of the columns of the

data matrix; subsequently, it employs several rank-one NMFs to obtain the final

decomposition. In particular, we are able to derive error bound analysis without the

normalization assumption. Numerical experiment results reveal that our algorithm

can be used as a good initializer for classical NMF algorithms.

55
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3.1 Background

In this section, we describe some works that are related to ours.

3.1.1 Near-Separable NMF

Arora et al. [34] provide an algorithm that runs in time polynomial in F , N andK

to find the correct factor matrices under the separability condition. Furthermore, the

authors consider the near-separable case and prove an approximation error bound

when the original data matrix V is slightly perturbed from being separable. The

algorithm and the theorem for near-separable case is also presented in [36]. The

main ideas behind the theorem are as follows: first, V must be normalized such

that every row of it has unit `1 norm; this assumption simplifies the conical hull for

exact NMF to a convex hull. Second, the rows of H need to be robustly simplicial,

i.e., every row of H should not be contained in the convex hull of all other rows and

the largest perturbation of the rows of V should be bounded by a function of the

smallest distance from a row of H to the convex hull of all other rows. Later we

will show in Section 3.2 that our geometric assumption stated in inequality (3.2.2)

is similar to this key idea in [34]. Although we impose a clustering-type generating

assumption for data matrix, we do not need the normalization assumption in [34],

which is stated in [37] that may lead to bad clustering performance for text datasets.

In addition, because we do not impose this normalization assumption, instead of

providing an upper bound on the approximation error, we provide the upper bound

for relative error, which is arguably more natural.

3.1.2 Initialization Techniques for NMF

Similar to k-means, NMF can easily be trapped at bad local optima and is sensi-

tive to initialization. We find that our algorithm is particularly amenable to provide

good initial factor matrices for subsequently applying standard NMF algorithms.

Thus, here we mention some works on initialization for NMF. Spherical k-means
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(spkm) is a simple clustering method and it is shown to be one of the most efficient

algorithms for document clustering [77]. The authors in [46] consider using spkm for

initializing the left factor matrix W and observe a better convergence rate compared

to random initialization. Other clustering-based initialization approaches for NMF

including divergence-based k-means [78] and fuzzy clustering [79]. It is also natural

to consider using singular value decomposition (SVD) to initialize NMF. In fact,

if there is no nonnegativity constraint, we can obtain the best rank-K approxima-

tion of a given matrix directly using SVD, and there are strong relations between

NMF and SVD. For example, we can obtain the best rank-one NMF from the best

rank-one SVD (see Lemma 17), and if the best rank-two approximation matrix of

a nonnegative data matrix is also nonnegative, then we can also obtain best rank-

two NMF [44]. Moreover, for a general positive integer K, it is shown in [47] that

nonnegative double singular value decomposition (nndsvd), a deterministic SVD-

based approach, can be used to enhance the initialization of NMF, leading to a

faster reduction of the approximation error of many NMF algorithms. The CUR

decomposition-based initialization method [80] is another factorization-based initial-

ization approach for NMF. We compare our algorithm to widely-used algorithms for

initializing NMF in Section 3.6.2.

3.2 Our Problem Formulation

In this section, we first present our geometric assumption and prove that the

exact clustering can be obtained for the normalized data points under the geometric

assumption. Next, we introduce several useful lemmas in preparation for the proofs

of the main theorems in subsequent sections.

Our Geometric Assumption for the data matrix V is presented in the following.

We assume the columns of V lie in K circular cones which satisfy a geometric

assumption presented in (3.2.2) to follow. We define circular cones as follows:

Definition 3. Given u ∈ RF
+ with unit `2 norm and an angle α ∈ (0, π/2), the
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Example of Two Disjoint 3D Circular Cones

 

Figure 3.1: Illustration of the geometric assumption in (3.2.2). Here α1 = α2 = 0.2

and β12 = 0.9 > 3α1 + α2.

circular cone with respect to (w.r.t.) u and α is defined as

C(u, α) :=
ß
x ∈ RF \ {0} :

xTu

‖x‖2

≥ cosα
™
. (3.2.1)

In other words, C(u, α) contains all x ∈ RF \ {0} for which the angle between u

and x is not larger than α. We say that α and u are respectively the size angle and

basis vector of the circular cone. In addition, the corresponding truncated circular

cone in nonnegative orthant is C(u, α) ∩ P , where P := RF
+.

We assume that there are K truncated circular cones C1 ∩ P , . . . , CK ∩ P with

corresponding basis vectors and size angles, i.e., Ck := C (uk, αk) for k ∈ [K]. Let

βij := arccos
Ä
uTi uj

ä
. We make the geometric assumption that the columns of our

data matrix V lie in K truncated circular cones which satisfy

min
i,j∈[K],i 6=j

βij > max
i,j∈[K],i 6=j

αi + 3αj. (3.2.2)

If we sort α1, . . . , αK as α̂1, . . . , α̂K such that α̂1 ≥ α̂2 ≥ . . . ≥ α̂K , (3.2.2) is

equivalent to

min
i,j∈[K],i 6=j

βij > 3α̂1 + α̂2. (3.2.3)

The size angle αk is a measure of perturbation in k-th circular cone and βij, i 6= j

is a measure of distance between the i-th basis vector and the j-th basis vector.

Thus, (3.2.2) is similar to the second idea in [34] (cf. Section 3.1.1), namely, that
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the largest perturbation of the rows of V is bounded by a function of the smallest

distance from a row of H to the convex hull of all other rows. This assumption is

realistic for datasets whose samples can be clustered into distinct types; for example,

image datasets in which images either contain a distinct foreground (e.g., a face)

embedded on a background, or they only comprise a background. See Figure 3.1 for

an illustration of the geometric assumption in (3.2.2) and refer to Figure 1 in [36]

for an illustration of the separability condition.

Now we discuss the relation between our geometric assumption and the separa-

bility and near-separability [34, 36] conditions that have appeared in the literature

(and discussed in Section 1.4). Consider a data matrix V generated under the ex-

treme case of our geometric assumption that all the size angles of the K circular

cones are zero. Then every column of V is a nonnegative multiple of a basis vector

of a circular cone. This means that all the columns of V can be represented as

nonnegative linear combinations of K columns, i.e., the K basis vectors u1, . . . ,uK .

This can be considered as a special case of separability assumption. When the size

angles are not all zero, our geometric assumption can be considered as a special case

of the near-separability assumption.

In Lemma 15, we show that Algorithm 1, which has time complexity O(KFN),

correctly clusters the columns of V under the geometric assumption.

Lemma 15. Under the geometric assumption on V, if Algorithm 1 is applied to V,

then the columns of V are partitioned into K subsets, such that the data points in

the same subset are generated from the same truncated circular cone.

Proof. We normalize V to obtain V′, such that all the columns of V′ have unit `2

norm. From the definition, we know if a data point is in a truncated circular cone,

then the normalized data point is also in the truncated circular cone. Then for any

two columns x, y of V′ that are in the same truncated circular cone Ck∩RF
+, k ∈ [K],

the largest possible angle between them is min{2αk, π/2}, and thus the distance

‖x−y‖2 between these two data points is not larger than
»

2 (1− cos (2αk)). On the

other hand, for any two columns x, y of V′ that are in two truncated circular cones
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Algorithm 1 Greedy clustering method with geometric assumption in (3.2.2)

Input: Data matrix V ∈ RF×N
+ , K ∈ N

Output: A set of non-empty, pairwise disjoint index sets I1,I2, . . . ,IK ⊆ [N ]

such that their union is [N ]

1) Normalize V to obtain V′, such that all the columns of V′ have unit `2 norm.

2) Arbitrarily pick a point z1 ∈ V′ (i.e., z1 is a column in V′) as the first centroid.

3) for k = 1 to K − 1 do

zk+1 := arg min
z∈V′

{max{zTi z, i ∈ [k]}} (3.2.4)

and set zk+1 be the (k + 1)-st centroid.

4) Ik := {n ∈ [N ] : k = arg maxj∈[K] z
T
j V′(:, n)} for all k ∈ [K].

Ci ∩ RF
+, Cj ∩ RF

+, i 6= j, the smallest possible angle between them is βij − αi − αj,

thus the smallest possible distance between them is
»

2 (1− cos (βij − αi − αj)).

Then under the geometric assumption (3.2.2), the distance between any two unit

data points in distinct truncated circular cones is larger than the distance between

any two unit data points in the same truncated circular cone. Hence, Algorithm 1

returns the correct clusters.

Now we present the following two useful lemmas. Lemma 16 provides an upper

bound for perturbations of singular values. Lemma 17 shows that we can directly

obtain the best rank-one nonnegative matrix factorization from the best rank-one

SVD.

Lemma 16 (Perturbation of singular values [62]). If A and A + E are in RF×N ,

then

P∑
p=1

(σp(A + E)− σp(A))2 ≤ ‖E‖2
F, (3.2.5)

where P = min{F,N} and σp(A) is the p-th largest singular value of A. In addition,

we have

|σp(A + E)− σp(A)| ≤ σ1(E) = ‖E‖2 (3.2.6)
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for any p ∈ [P ].

Lemma 17 (Rank-One Approximate NMF [44]). Let σuvT be the rank-one trun-

cated singular value decomposition of a matrix V ∈ RF×N
+ . Then u′ := σ|u|,

v′ := |v| solves

min
x∈RF

+,y∈RN
+

‖V − xyT‖F. (3.2.7)

3.3 Relative Error Bounds for Non-Probabilistic

Data

In this section, we first present a deterministic theorem concerning an upper

bound for the relative error of NMF. Subsequently, we provide several extensions of

this theorem.

Theorem 5. Suppose all the data points in data matrix V ∈ RF×N
+ are drawn from

K truncated circular cones C1∩RF
+, . . . , CK∩RF

+, where Ck := C (uk, αk) for k ∈ [K].

Then there is a pair of factor matrices W∗ ∈ RF×K
+ , H∗ ∈ RK×N

+ , such that

‖V −W∗H∗‖F

‖V‖F

≤ max
k∈[K]
{sinαk}. (3.3.1)

Proof. Define Ik := {n ∈ [N ] : vn ∈ Ck ∩ RF
+} (if a data point vn is contained

in more than one truncated circular cones, we arbitrarily assign the data point to

any truncated circular cone that it is contained in). Then I1,I2, . . . ,IK ⊆ [N ]

are disjoint index sets and their union is [N ]. Any two data points V (:, j1) and

V (:, j2) are in the same circular cones if j1 and j2 are in the same index set. Let

Vk = V (:,Ik) and without loss of generality, suppose that Vk ∈ Ck for k ∈ [K].

For any k ∈ [K] and any column z of Vk, suppose the angle between z and uk is β,

we have β ≤ αk and z = ‖z‖2(cos β)uk + y, with ‖y‖2 = ‖z‖2(sin β) ≤ ‖z‖2(sinαk).

Thus Vk can be written as the sum of a rank-one matrix Ak and a perturbation

matrix Ek. By Lemma 17, we can find the best rank-one approximate NMF of Vk

from the singular value decomposition of Vk. Suppose w∗k ∈ RF
+ and hk ∈ R|Ik|

+



62 Chapter 3. A New Initialization Method for NMF

solve the best rank-one approximate NMF. Let Sk := w∗kh
T
k be the best rank-one

approximation matrix of Vk. Let Pk = min{F, |Ik|}, then by Lemma 16, we have

‖Vk − Sk‖2
F =

Pk∑
p=2

σ2
p (Vk) =

Pk∑
p=2

σ2
p (Ak + Ek) ≤ ‖Ek‖2

F. (3.3.2)

From the previous result, we know that

‖Ek‖2
F

‖Vk‖2
F

=

∑
z∈Vk

‖z‖2
2 sin2 βz∑

z∈Vk
‖z‖2

2

≤ sin2 αk, (3.3.3)

where βz denotes the angle between z and uk, βz ≤ αk, and z ∈ Vk runs over all

columns of the matrix Vk.

Define h∗k ∈ RN
+ as h∗k(n) = hk(n), if n ∈ Ik and h∗k(n) = 0 if n /∈ Ik. Let

W∗ :=
î
w∗1,w

∗
2, . . . ,w

∗
K

ó
and H∗ :=

î
(h∗1)T ; (h∗2)T . . . ; (h∗K)T

ó
, then we have

‖V −W∗H∗‖2
F

‖V‖2
F

=

∑K
k=1 ‖Vk −w∗kh

T
k ‖2

F

‖V‖2
F

(3.3.4)

≤
∑K
k=1 ‖Vk‖2

F sin2 αk∑K
k=1 ‖Vk‖2

F

. (3.3.5)

Thus we have (3.3.1) as desired.

In practice, to obtain the tightest possible upper bound for (3.3.1), we need to

solve the following optimization problem:

min max
k∈[K]

α(Vk), (3.3.6)

where α(Vk) represents the smallest possible size angle corresponding to Vk (defined

in (3.3.11)) and the minimization is taken over all possible clusterings of the columns

of V. We consider finding an optimal size angle and a corresponding basis vector

for any data matrix, which we hereby write as X := [x1, . . . ,xM ] ∈ RF×M
+ where

M ∈ N+. This is solved by the following optimization problem:

minimizeα,u α

subject to xTmu ≥ cosα, m ∈ [M ], (3.3.7)

u ≥ 0, ‖u‖2 = 1, α ≥ 0,



3.3 Relative Error Bounds for Non-Probabilistic Data 63

where u ≥ 0 denotes element-wise nonnegativity and the decision variables are

(α,u). Alternatively, consider

maximizeα,u cosα

subject to xTmu ≥ cosα, m ∈ [M ], (3.3.8)

u ≥ 0, ‖u‖2 = 1.

Similar to the primal optimization problem for linearly separable support vector

machines [81], we can obtain the optimal u and α for (3.3.8) by solving

minimizeu
1

2
‖u‖2

2

subject to xTmu ≥ 1, m ∈ [M ], u ≥ 0, (3.3.9)

where the decision variable here is only u. Note that (3.3.9) is a quadratic pro-

gramming problem and can be easily solved by standard convex optimization soft-

ware. Suppose û is the optimal solution of (3.3.9), then u∗ := û/‖û‖2 and

α∗ := arccos (1/‖û‖2) is the optimal basis vector and size angle.

We now state and prove a relative error bound of the proposed approximate

NMF algorithm detailed in Algorithm 2 under our geometric assumption. We see

that if the size angles of all circular cones are small compared to the angle between

the basis vectors of any two circular cones, then exact clustering is possible, and

thus the relative error of the best approximate NMF of an arbitrary nonnegative

matrix generated from these circular cones can be appropriately controlled by these

size angles. Note that first factor of the SVD can be computed for example with the

power method [62]. Recall that as mentioned in Section 3.2, Theorem 6 is similar

to the corresponding theorem for the near-separable case in [34] in terms of the

geometric condition imposed.

Theorem 6. Under the geometric assumption given in Section 3.2 for generating

V ∈ RF×N
+ , Algorithm 2 outputs W∗ ∈ RF×K

+ , H∗ ∈ RK×N
+ , such that

‖V −W∗H∗‖F

‖V‖F

≤ max
k∈[K]
{sinαk}. (3.3.10)
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Algorithm 2 Clustering and Rank One NMF (cr1-nmf)

Input: Data matrix V ∈ RF×N
+ , K ∈ N

Output: Factor matrices W∗ ∈ RF×K
+ , H∗ ∈ RK×N

+

1) Use Algorithm 1 to find a set of non-empty, pairwise disjoint index sets

I1,I2, . . . ,IK ⊆ [N ].

2) for k = 1 to K do

Vk := V (:,Ik) ; (3.3.11)

[Uk,Σk,Xk] := svd (Vk) ; (3.3.12)

w∗k := |Uk(:, 1)|, hk := Σk(1, 1)|Xk(:, 1)|; (3.3.13)

h∗k := zeros(1, N),h∗k (Ik) = hk. (3.3.14)

3) W∗ :=
î
w∗1, . . . ,w

∗
K

ó
, H∗ :=

î
(h∗1)T ; . . . ; (h∗K)T

ó
.

Proof. From Lemma 15, under the geometric assumption in Section 3.2, we can

obtain a set of non-empty, pairwise disjoint index sets I1,I2, . . . ,IK ⊆ [N ] such

that their union is [N ] and two data points V (:, j1) and V (:, j2) are in the same

circular cones if and only if j1 and j2 are in the same index set. Then from Theorem 5,

we can obtain W∗ and H∗ with the same upper bound on the relative error.

In addition, for any fixed K < min{F,N}, we can use K truncated circular

cones with same size angle to cover nonnegative unit sphere, or equivalently, cover

the nonnegative orthant P . Then by applying Theorem 5, we can obtain a general

upper bound for relative error.

Theorem 7. Given a data matrix V ∈ RF×N
+ and K ∈ N with F ≤ N , K < F (if

F > N , we consider the transpose of V). If we define the minimum of the relative

error of the order-K NMF of V to be

J(V, K) :=

min
W∈RF×K

+ ,H∈RK×N
+

‖V −WH‖F

‖V‖F
, (3.3.15)
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we have the bound for J(V, K)

J(V, K) ≤

…
F − 3 + 4 sin2 π

4K
/ sin2 π

2K…
F − 2 + 4 sin2 π

4K
/ sin2 π

2K

. (3.3.16)

When K = 1, we can take the circular cone C (u, α) with u = e/
√
F and

α = arccos 1/
√
F to cover the nonnegative orthant, where e is the vector with all

1’s. sinα =
√
F − 1/

√
F , and this coincides with (3.3.16) for K = 1. From the

best rank-one approximation error in Frobenius norm of SVD, it is easy to see the

equality can be achieved by taking identity matrix, i.e., V = IF .

3.4 Relative Error Bounds for Probabilistic Data

We now provide a tighter relative error bound by assuming a probabilistic model.

For simplicity, we assume a straightforward and easy-to-implement statistical model

for the sampling procedure. We first present the proof of the tighter relative error

bound corresponding to the probabilistic model in Theorem 8 to follow, then we

show that the upper bound for relative error is tight if we assume all the circular

cones are contained in nonnegative orthant in Theorem 9.

We assume the following generating process for each column v of V in Theorem 8

to follow.

1. sample k ∈ [K] with equal probability 1/K;

2. sample the squared length l from the exponential distribution1 Exp(λk) with

parameter (inverse of the expectation) λk;

3. uniformly sample a unit vector z ∈ Ck w.r.t. the angle between z and uk;
2

4. if z /∈ RF
+, set all negative entries of z to zero, and rescale z to be a unit vector;

1Exp(λ) is the function x 7→ λ exp(−λx)1{x ≥ 0}.
2This means we first uniformly sample an angle β ∈ [0, αk] and subsequently uniformly sample

a vector z from the set {x ∈ RF : ‖x‖2 = 1,xTuk = cosβ}
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5. let v =
√
lz;

Theorem 8. Suppose the K truncated circular cones Ck∩RF
+ with Ck := C(uk, αk) ∈

RF for k ∈ [K] satisfy the geometric assumption given by (3.2.2). Let λ :=

(λ1;λ2; . . . ;λK) ∈ RK
++. We generate the columns of a data matrix V ∈ RF×N

+

from the above generative process. Let f(α) := 1
2
− sin 2α

4α
, then for a small ε > 0,

with probability at least 1− 8 exp(−ξNε2), one has

‖V −W∗H∗‖F

‖V‖F

≤

Ã∑K
k=1 f(αk)/λk∑K

k=1 1/λk
+ ε, (3.4.1)

where the constant ξ > 0 depends only on λk and f(αk) for all k ∈ [K].

Remark 8. The assumption in Step 1 in the generating process that the data points

are generated from K circular cones with equal probability can be easily generalized to

unequal probabilities. The assumption in Step 2 that the square of the length of a data

point is sampled from an exponential distribution can be easily extended any non-

negative sub-Exponential distribution (cf. Lemma 6), or equivalently, the length of

a data point is sampled from a nonnegative sub-Gaussian distribution (cf. Lemma 5

in Section 2.2.1).

The relative error bound produced by Theorem 8 is better than that of Theo-

rem 6, i.e., the former is more conservative. This can be seen from (3.4.3) to follow,

or from the inequality α ≤ tanα for α ∈ [0, π/2). We also observe this in the

experiments in Section 3.6.1.

Theorem 8 is proved by combining the large deviation bound in Lemma 6 with

the deterministic bound on the relative error in Theorem 6.

Proof of Theorem 8. From (3.3.2) and (3.3.3) in the proof of Theorem 6, to obtain

an upper bound for the square of the relative error, we consider the following random

variable

DN :=

∑N
n=1 L

2
n sin2Bn∑N

n=1 L
2
n

, (3.4.2)
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where Ln is the random variable corresponding to the length of the n-th point, and

Bn is the random variable corresponding to the angle between the n-th point and uk

for some k ∈ [K] such that the point is in Ck ∩RF
+. We first consider estimating the

above random variable with the assumption that all the data points are generated

from a single truncated circular cone C∩RF
+ with C := C(u, α) (i.e., assume K = 1),

and the square of lengths are generated according to the exponential distribution

Exp(λ). Because we assume each angle βn for n ∈ [N ] is sampled from a uniform

distribution on [0, α], the expectation of sin2Bn is

E
î
sin2Bn

ó
=
∫ α

0

1

α
sin2 β dβ =

1

2
− sin 2α

4α
= f(α). (3.4.3)

Here we only need to consider vectors z ∈ RF
+ whose angles with u are not larger

than α. Otherwise, we have E[sin2Bn] ≤ f(α). Our probabilistic upper bound also

holds in this case.

Since the length and the angle are independent, we have

E [DN ] = E [E [DN |L1, . . . , LN ]] = f(α), (3.4.4)

and we also have

E
î
L2
n sin2Bn

ó
= E

î
L2
n

ó
E
î
sin2Bn

ó
=
f(α)

λ
. (3.4.5)

Define Xn := L2
n for all n ∈ [N ]. Let

HN :=

∑N
n=1 Xn

N
, and GN :=

∑N
n=1Xn sin2Bn

N
. (3.4.6)

We have for all n ∈ [N ],

E[Xp
n] = λ−pΓ(p+ 1) ≤ λ−ppp, ∀ p ≥ 1, (3.4.7)

where Γ(·) is the gamma function. Thus ‖Xn‖Ψ1 ≤ λ−1, and Xn is sub-Exponential.

By the triangle inequality, we have ‖Xn−EXn‖Ψ1 ≤ ‖Xn‖Ψ1 +‖EXn‖Ψ1 ≤ 2‖Xn‖Ψ1 .

Hence, by Lemma 6, for all ε > 0, we have (2.2.14) where M can be taken as

M = 2/λ. BecauseÄ
E
îÄ
Xn sin2Bn

äp óä1/p ≤ λ−1p sin2 α ≤ λ−1p, (3.4.8)
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we have a similar large deviation result for GN .

On the other hand, for all ε > 0

P (|DN − f(α)| ≥ ε) = P
Ç∣∣∣∣GN

HN

− f(α)
∣∣∣∣ ≥ ε

å
(3.4.9)

≤ P
Å
|λGN−f(α)|≥ ε

2

ã
+P
Ç∣∣∣∣GN

HN

−λGN

∣∣∣∣≥ ε2
å
. (3.4.10)

For the second term, by fixing small constants δ1, δ2 > 0, we have

P
Ç∣∣∣∣GN

HN

− λGN

∣∣∣∣ ≥ ε

2

å
= P

Ç |1− λHN |GN

HN

≥ ε

2

å
(3.4.11)

≤ P
Ç |1−λHN |GN

HN

≥ ε

2
, HN ≥

1

λ
− δ1, GN≤

f(α)

λ
+δ2

å
+ P

Ç
HN <

1

λ
− δ1

å
+ P

Ç
GN >

f(α)

λ
+ δ2

å
. (3.4.12)

Combining the large deviation bounds for HN and GN in (2.2.14) with the above

inequalities, if we set δ1 = δ2 = ε and take ε sufficiently small,

P (|DN − f(α)| ≥ ε) ≤ 8 exp
Ä
−ξNε2

ä
, (3.4.13)

where ξ is a positive constant depending on λ and f(α).

Now we turn to the general case in which K ∈ N. We have

E [Xn] =

∑K
k=1 1/λk
K

, and (3.4.14)

E
î
Xn sin2Bn

ó
=

∑K
k=1 f(αk)/λk

K
, (3.4.15)

and for all p ≥ 1,

(E[Xp
n])1/p =

(∑K
k=1 λ

−p
k Γ(p+ 1)

K

)1/p

≤ p

mink λk
. (3.4.16)

Similar to (3.4.13), we have

P
Ç∣∣∣∣∣DN−

∑K
k=1 f(αk/λk)∑K

k=1 1/λk

∣∣∣∣∣≥ε
å
≤ 8 exp

Ä
−ξNε2

ä
, (3.4.17)

and thus, if we let ∆ :=

 ∑K
k=1

f(αk)/λk∑K
k=1

1/λk
, we have

P
(∣∣∣»DN −∆

∣∣∣ ≤ ε
)
≥ P

(∣∣∣DN −∆2
∣∣∣ ≤ ∆ε

)
(3.4.18)

≥ 1− 8 exp
Ä
−ξN∆2ε2

ä
. (3.4.19)

This completes the proof of (3.4.1).
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Furthermore, if the K circular cones C1, . . . , CK are contained in the nonnegative

orthant RF
+, we do not need to project the data points not in RF

+ onto RF
+. Then we

can prove that the upper bound in Theorem 8 is asymptotically tight, i.e.,

‖V−W∗H∗‖F

‖V‖F

p−→

Ã∑K
k=1 f(αk)/λk∑K

k=1 1/λk
, as N →∞. (3.4.20)

Theorem 9. Suppose the data points of V ∈ RF×N
+ are generated as given in The-

orem 8 with all the circular cones being contained in the nonnegtive orthant, then

Algorithm 2 produces W∗ ∈ RF×K
+ and H∗ ∈ RK×N

+ with the property that for any

ε ∈ (0, 1) and t ≥ 1, if N ≥ c(t/ε)2F , then with probability at least 1−6K exp(−t2F )

one has∣∣∣∣∣∣∣
‖V −W∗H∗‖F

‖V‖F

−

Ã∑K
k=1 f(αk)/λk∑K

k=1 1/λk

∣∣∣∣∣∣∣ ≤ cε (3.4.21)

where c is a constant depending on K and αk, λk for k ∈ [K].

To prove Theorem 9, we first provide a few definitions and lemmas. Consider the

following condition that ensures that the circular cone C(u, α) is entirely contained

in the non-negative orthant RF
+.

Lemma 18. If u = (u(1), u(2), . . . , u(F )) is a positive unit vector and α > 0 satisfies

α ≤ arccos
»

1− u2
min, (3.4.22)

where umin := minf u(f), then C(u, α) ⊆ RF
+.

Proof of Lemma 18. Because any nonnegative vector x is spanned by basis vectors

e1, e2, . . . , eF , given a positive unit vector u, to find the largest size angle, we only

need to consider the angle between u and ef , f ∈ [F ]. Take any f ∈ [F ], if the angle

β between u and ef is not larger than π/4, we can obtain the unit vector symmetric

to ef w.r.t. u in the plane spanned by u and ef is also nonnegative. In fact, the

vector is 2(cos β)u − ef . Because u(f) = cos β and β ≤ π/4, we have 2 cos2 β ≥ 1
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and the vector is nonnegative. If β > π/4, i.e., u(f) < 1/
√

2, we can take the

extreme nonnegative unit vector z in the span of u and ef , i.e.,

z =
u− u(f)ef
‖u− u(f)ef‖2

, (3.4.23)

and it is easy to see uTz =
»

1− u(f)2. Hence the angle between z and u is

π/2− β < π/4. Therefore, the largest size angle αef w.r.t. ef is

αef :=

 arccosu(f), if u(f) ≥ 1/
√

2

arccos
»

1− u(f)2, if u(f) < 1/
√

2
(3.4.24)

or equivalently, αef = min{arccosu(f), arccos
»

1− u(f)2}. Thus, the largest size

angle corresponding to u is

min
f

¶
min{arccosu(f), arccos

»
1− u(f)2}

©
(3.4.25)

Let umax := maxf u(f) and umin := minf u(f). Then the largest size angle corre-

sponding to u is

min
¶

arccosumax, arccos
»

1− u2
min

©
. (3.4.26)

Because u2
max+u2

min ≤ 1 for F > 1, the expression in (3.4.26) equals arccos
»

1− u2
min

and this completes the proof.

Lemma 19. Define f(β) := 1
2
− sin(2β)

4β
and g(β) := 1

2
+ sin(2β)

4β
for β ∈

Ä
0, π

2

ó
. Let ef ,

f ∈ [F ] be the unit vector with only the f -th entry being 1, and C be the circular cone

with basis vector u = ef , size angle being α, and the inverse expectation parameter

for the exponential distribution being λ. Then if the columns of the data matrix

V ∈ RF×N are generated as in Theorem 8 from C (K = 1) and with no projection

to the nonnegative orthant (Step 4 in the generating process), we have

E
Ç

VVT

N

å
=

Df

λ
(3.4.27)

where Df is a diagonal matrix with the f -th diagonal entry being g(α) and other

diagonal entries being f(α)/(F − 1).
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Proof of Lemma 19. Each column vn, n ∈ [N ] can be generated as follows: First,

uniformly sample a βn ∈ [0, α] and sample a positive scalar ln from the exponential

distribution Exp(λ), then we can write vn =
√
ln [cos βnef + sin βnyn], where yn

can be generated from sampling yn(1), . . . , yn(f − 1), yn(f + 1), . . . , yn(F ) from the

standard normal distribution N (0, 1), and setting yn(j) = yn(j)/
»∑

i 6=f yn(i)2, j 6=

f , yn(f) = 0. Then

E [vn(f1)vn(f2)]

= E
î
ln((cos2 β)ef (f1)ef (f2)+(sin2 β)yn(f1)yn(f2))

ó
(3.4.28)

=


0, f1 6= f2,

g(α)/λ, f1 = f2 = f,

f(α)/ ((F − 1)λ) , f1 = f2 6= f.

, (3.4.29)

where ef (f1) = 1{f = f1} is the f1-th entry of the vector ef . Thus E
Ä
VVT/N

ä
=

E
Ä
vnv

T
n

ä
= Df/λ.

Proof of Theorem 9. Similar to Theorem 6, we have

‖V −W∗H∗‖2
F

‖V‖2
F

=

∑K
k=1 ‖Vk −w∗kh

T
k ‖2

F∑K
k=1 ‖Vk‖2

F

(3.4.30)

=

∑K
k=1 (‖Vk‖2

F − σ2
1 (Vk))∑K

k=1 ‖Vk‖2
F

(3.4.31)

= 1−
∑K
k=1 σ

2
1 (Vk)∑K

k=1 ‖Vk‖2
F

. (3.4.32)

Take any k ∈ [K] and consider σ2
1 (Vk). Define the index fk := argminf∈[F ]uk and

the orthogonal matrix Pk as in (3.6.1). The columns of Vk can be considered as

Householder transformations of the data points generated from the circular cone

C0
fk

:= C (efk , αk) (the circular cone with basis vector efk and size angle αk), i.e.,

Vk = PkXk, where Xk contains the corresponding data points in C0
fk

. In addition,

denoting Nk as the number of data points in Vk, we have

σ2
1 (Vk)

Nk

=
σ2

1

Ä
VT
k

ä
Nk

= λmax

Ç
VkV

T
k

Nk

å
(3.4.33)
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where λmax

Ä
VkV

T
k /Nk

ä
represents the largest eigenvalue of VkV

T
k /Nk. Take any

v ∈ Vk. Note that v can be written as v = Pkx with x being generated from C0
fk

.

Now, for all unit vectors z ∈ RF , we have

‖v‖Ψ2 = ‖Pkx‖Ψ2 = ‖x‖Ψ2 (3.4.34)

= sup
‖z‖2=1

sup
p≥1

p−1/2
Ä
E
Ä
|xTz|p

ää1/p
(3.4.35)

≤ sup
p≥1

p−1/2E (‖x‖p2)1/p (3.4.36)

= ‖‖x‖2‖Ψ2 ≤
»
‖‖x‖2

2‖Ψ1 ≤ 1/
»
λk. (3.4.37)

That is, all columns are sampled from a sub-Gaussian distribution. By Lemma 19,

E
Ä
vvT

ä
= E

Ä
PkxxTPT

k

ä
= PkDfkP

T
k /λk. (3.4.38)

By Lemma 8, we have for ε ∈ (0, 1), t ≥ 1 and if Nk ≥ ξk(t/ε)
2F (ξk is a positive

constant depending on λk), with probability at least 1− 2 exp(−t2F ),

∣∣∣λmax

Ä
VkV

T
k /Nk

ä
− λmax

Ä
E
Ä
vvT

ää∣∣∣
≤ ‖VkV

T
k /Nk − E

Ä
vvT

ä
‖2 ≤ ε, (3.4.39)

where the first inequality follows from Lemma 16. Because λmax

Ä
E
Ä
vvT

ää
=

g(αk)/λk, we can obtain that with probability at least 1− 4K exp(−t2F ),∣∣∣∣∣∣
K∑
k=1

σ2
1 (Vk)

N
−

K∑
k=1

g(αk)

Kλk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
k=1

λmax

Ç
VkV

T
k

Nk

å
Nk

N
−

K∑
k=1

g(αk)

Kλk

∣∣∣∣∣∣ (3.4.40)

≤ 2Kε, (3.4.41)

where the final inequality follows from the triangle inequality and (3.4.39). From

the proof of Theorem 8, we know that with probability at least 1− 2 exp(−c1Nε
2),∣∣∣∣∣‖V‖2

F

N
−
∑K
k=1 1/λk
K

∣∣∣∣∣ ≤ ε. (3.4.42)
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Taking N to be sufficiently large such that t2F ≤ c1Nε
2, we have with probability

at least 1− 6K exp(−t2F ),

∑K
k=1 g(αk)/λk∑K
k=1 1/λk

− c2ε ≤
∑K
k=1 σ

2
1 (Vk)∑K

k=1 ‖Vk‖2
F

(3.4.43)

≤
∑K
k=1 g(αk)/λk∑K
k=1 1/λk

+ c3ε. (3.4.44)

Note that g(αk) + f(αk) = 1. As a result, we have

∑K
k=1 f(αk)/λk∑K

k=1 1/λk
− c3ε ≤

‖V −W∗H∗‖2
F

‖V‖2
F

(3.4.45)

≤
∑K
k=1 f(αk)/λk∑K

k=1 1/λk
+ c2ε. (3.4.46)

Thus, with probability at least 1− 6K exp(−t2F ), we have∣∣∣∣∣∣∣
‖V −W∗H∗‖F

‖V‖F

−

Ã∑K
k=1 f(αk)/λk∑K

k=1 1/λk

∣∣∣∣∣∣∣ ≤ c4ε, (3.4.47)

where c4 depends on K and {(αk, λk) : k ∈ [K]}.

3.5 Automatically Determining the Latent Di-

mension

Automatically determining the latent dimensionality K is an important problem

in NMF. Unfortunately, the usual and popular approach for determining the latent

dimensionality of nonnegative data matrices based on Bayesian automatic relevance

determination by Tan and Févotte [82] does not work well for data matrices gener-

ated under the geometric assumption given in Section 3.2. This is because in [82],

W and H are assumed to be generated from the same distribution. Under the geo-

metric assumption, V has well clustered columns and the corresponding coefficient

matrix H can be approximated by a clustering membership indicator matrix with

columns that are 1-sparse (i.e., only contains one non-zero entry). Thus, W and

H have very different statistics. While there are many approaches [83–85] to learn
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the number of clusters in clustering problems, most methods lack strong theoretical

guarantees.

By assuming the generative procedure for V proposed in Theorem 8, we consider

a simple approach for determining K based on the maximum of the ratios between

adjacent singular values. We provide a theoretical result for the correctness of this

approach. Our method consists in estimating the correct number of circular cones

K̂ as follows:

K̂ := arg max
k∈{Kmin,...,Kmax}

σk(V)

σk+1(V)
. (3.5.1)

Here Kmin > 1 and Kmax < rank(V) are selected based on domain knowledge. The

main ideas that underpin (3.5.1) are (i) the approximation error for the best rank-k

approximation of a data matrix in the Frobenius norm and (ii) the so-called elbow

method [86] for determining the number of clusters. More precisely, let Vk be the

best rank-k approximation of V. Then ‖V−Vk‖2
F =

∑r
j=k+1 σ

2
j (V), where r is the

rank of V. If we increase k to k + 1, the square of the best approximation error

decreases by σ2
k+1(V). The elbow method chooses a number of clusters k so that

the decrease in the objective function value from k clusters to k+ 1 clusters is small

compared to the decrease in the objective function value from k − 1 clusters to k

clusters. Although this approach seems to be simplistic, interestingly, the following

theorem tells that under appropriate assumptions, we can correctly find the number

of circular cones with high probability.

Theorem 10. Suppose that the data matrix V ∈ RF×N
+ is generated according to

the generative process given in Theorem 8 where K is the true number of circular

cones. Further assume that the size angles for K circular cones are all equal to

α, the angles between distinct basis vectors of the circular cones are all equal to

β, and the parameters (inverse expectations) for the exponential distributions are

all equal to λ. In addition, we assume all the circular cones are contained in the

nonnegative orthant RF
+ (cf. Theorem 9) and K ∈ {Kmin, . . . , Kmax} with Kmin > 1

and Kmax < rank(V). Then, for any t ≥ 1, and sufficiently small ε satisfying
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(3.5.17) in the proof, if N ≥ c(t/ε)2F (for a constant c > 0 depending only on λ, α

and β), with probability at least 1− 2 (Kmax −Kmin + 1) exp (−t2F ),

σK(V)

σK+1(V)
= max

j∈{Kmin,...,Kmax}

σj(V)

σj+1(V)
. (3.5.2)

Before proving Theorem 10, we first state and prove the following lemma.

Lemma 20. Suppose data matrix V is generated as in Theorem 8 with all the

circular cones being contained in RF
+, then the expectation of the covariance matrix

v1v
T
1 is

E
î
v1v

T
1

ó
=

∑K
k=1 f(αk)/λk
K(F − 1)

I

+
1

K

K∑
k=1

g(αk)− f(αk)/(F − 1)

λk
uku

T
k , (3.5.3)

where v1 denotes the first column of V.

Proof. From the proof in Lemma 19, we know if we always take e1 to be the original

vector for the Householder transformation, the corresponding Householder matrix

for the k-th circular cone Ck is given by (3.6.1) and we have

E
î
v1v

T
1

ó
=

1

K

K∑
k=1

PkDkP
T
k

λk
, (3.5.4)

where Dk is a diagonal matrix with the first diagonal entry being g(αk) := 1
2
+ sin(2αk)

4αk

and other diagonal entries are

f(αk)

F − 1
=

1
2
− sin(2αk)

4αk

F − 1
. (3.5.5)

We simplify PkDkP
T
k using the property that all the F − 1 diagonal entries of Dk

are the same. Namely, we can write

Pk = I− 2zkz
T
k = I− (e1 − uk)(e1 − uk)

T

1− uk(1)
(3.5.6)

=



uk(1) uk(2) · · · uk(F )

uk(2) 1− uk(2)2

1−uk(1)
· · · −uk(2)uk(F )

1−uk(1)
...

...
. . .

...

uk(F ) −uk(F )uk(2)
1−uk(1)

· · · 1− uk(F )2

1−uk(1)


. (3.5.7)
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Note that Pk =
î
pk1,p

k
2, . . . ,p

k
F

ó
is symmetric and the first column of Pk is uk. Let

Dk be the diagonal matrix with diagonal entries being d1, d2, . . . , dF . Then we have

PkDkP
T
k =

K∑
j=1

djp
k
j (p

k
j )
T (3.5.8)

= d1uku
T
k + d2

K∑
j=2

pkj (p
k
j )
T (3.5.9)

= g (αk) uku
T
k +

f(αk)

F − 1

Ä
I− uku

T
k

ä
(3.5.10)

=
f(αk)

F − 1
I +

Ç
g(αk)−

f(αk)

F − 1

å
uku

T
k . (3.5.11)

Thus, we obtain (3.5.3) as desired.

We are now ready to prove Theorem 10.

Proof of Theorem 10. Define

a :=

∑K
k=1 f(α)/λ

K(F − 1)
=
f(α)/λ

F − 1
, and (3.5.12)

b :=
g(α)− f(α)/(F − 1)

Kλ
. (3.5.13)

By exploiting the assumption that all the αk’s and λk’s are the same, we find that

E
î
v1v

T
1

ó
= aI + b

K∑
k=1

uku
T
k . (3.5.14)

Let U = [u1,u2, . . . ,uK ]. We only need to consider the eigenvalues of
∑K
k=1 uku

T
k =

UUT . The matrix UTU has same non-zero eigenvalues as that of UUT . Further-

more,

UTU =



1 cos β · · · cos β

cos β 1 · · · cos β
...

...
. . .

...

cos β cos β · · · 1


(3.5.15)

= (cos β)eeT + (1− cos β)I (3.5.16)
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where e ∈ RK is the vector with all entries being 1. Therefore, the eigenvalues of

UTU are 1+(K−1) cos β, 1−cos β, . . . , 1−cos β. Thus, the vector of eigenvalues of

E
î
v1v

T
1

ó
is [a+ b(1 + (K−1) cos β), a+ b(1− cos β), . . . , a+ b(1− cos β), a, a, . . . , a].

By Lemmas 16 and 8, we deduce that for any t ≥ 1 and a sufficiently small ε > 0,

such that

a+ ε

a− ε
<
a+ b(1− cos β)− ε

a+ ε
, (3.5.17)

then if N ≥ c(t/ε)2F (where c > 0 depends only on λ, α, and β), then with

probability at least 1− 2 (Kmax −Kmin + 1) exp (−t2F ), Eqn. (3.5.2) holds.

In Section 3.6.1, we show numerically that the proposed method in (3.5.1) works

well even when the geometric assumption is only approximately satisfied (see Section

3.6.1 for a formal definition) assuming that N is sufficiently large. This shows that

the determination of the correct number of clusters is robust to noise.

Remark 9. The conditions of Theorem 10 may appear to be rather restrictive.

However, we make them only for the sake of convenience in presentation. We do

not need to assume that the parameters of the exponential distribution are equal if,

instead of σj(V), we consider the singular values of a normalized version of V. The

assumptions that all the size angles are the same and the angles between distinct

basis vectors are the same can also be relaxed. The theorem continues to hold even

when the geometric assumption in (3.2.2) is not satisfied, i.e., β ≤ 4α. However,

we empirically observe in Section 3.6.1 that if V satisfies the geometric assumption

(even approximately), the results are superior compared to the scenario when the

assumption is significantly violated.

Remark 10. We may replace the assumption that the circular cones are contained

in the nonnegative orthant by removing Step 4 in the generating process (projection

onto P) in the generative procedure in Theorem 8. Because we are concerned with

finding the number of clusters (or circular cones) rather than determining the true

latent dimensionality of an NMF problem (cf. [82]), we can discard the nonnegativity



78 Chapter 3. A New Initialization Method for NMF

constraint. The number of clusters serves as a proxy for the latent dimensionality

of NMF.

3.6 Numerical Results

3.6.1 Experiments on Synthetic Data

To verify the correctness of our bounds, to observe the computational efficiency

of the proposed algorithm, and to check if the procedure for estimating K is effective,

we first perform numerical simulations on synthetic datasets. All the experiments

were executed on a Windows machine whose processor is an Intel(R) Core(TM)

i5-3570, the CPU speed is 3.40 GHz, and the installed memory (RAM) is 8.00

GB. The Matlab version is 7.11.0.584 (R2010b). The Matlab codes for running the

experiments can be found at https://github.com/zhaoqiangliu/cr1-nmf.

Comparison of Relative Errors and Running Times

To generate the columns of V, given an integer k ∈ [K] and an angle β ∈ [0, αk],

we uniformly sample a vector z from {x : xTuk = cos β}, i.e., z is a unit vector such

that the angle between z and uk is β. To achieve this, note that if uk = ef , f ∈ [F ]

(ef is the vector with only the f -th entry being 1), this uniform sampling can

easily be achieved. For example, we can take x = (cos β)ef + (sin β)y, where

y(f) = 0, y(i) = s(i)/
»∑

j 6=f s(j)2, i 6= f , and s(i) ∼ N (0, 1), i 6= f . We can then

use a Householder transformation [87] to map the unit vector generated from the

circular cone with basis vector ef to the unit vector generated from the circular cone

with basis vector uk. The corresponding Householder transformation matrix is (if

uk = ef , Pk is set to be the identity matrix I)

Pk = I− 2zkz
T
k , where zk =

ef − uk
‖ef − uk‖2

. (3.6.1)

In this set of experiments, we set the size angles α to be the same for all the circular

cones. The angle between any two basis vectors is set to be 4α + ∆α where ∆α :=

https://github.com/zhaoqiangliu/cr1-nmf
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0.01. The parameter for the exponential distribution λ := 1./(1 : K). We increase

N from 102 to 104 logarithmically. We fix the parameters F = 1600, K = 40 and α =

0.2 or 0.3. The results shown in Figure 3.2. In the left plot of Figure 3.2, we compare

the relative errors of Algorithm 2 (cr1-nmf) with the derived relative error bounds.

In the right plot, we compare the relative errors of our algorithm with the relative

errors of three classical algorithms: (i) the multiplicative update algorithm [23]

(mult); (ii) the alternating nonnegative least-squares algorithm with block-pivoting

(nnlsb), which is reported to be one of the best alternating nonnegative least-

squares-type algorithm for NMF in terms of both running time and approximation

error [26]; (iii) and the hierarchical alternating least squares algorithm [28] (hals).

In contrast to these three algorithms, our algorithm is not iterative. The iteration

numbers for mult and hals are set to 100, while the iteration number for nnlsb

is set to 20, which is sufficient (in our experiments) for approximate convergence.

For statistical soundness of the results of the plots on the left, 50 data matrices

V ∈ RF×10000
+ are independently generated and for each data matrix V, we run

our algorithm for 20 runs. For the plots on the right, 10 data matrices V are

independently generated and all the algorithms are run for 10 times for each V.

We also compare the running time for these algorithms when they first achieve the

approximation error smaller than or equal the approximation error of Algorithm 2.

The running times are shown in Table 3.1. Because the running times for α = 0.2

and α = 0.3 are similar, we only present the running times for the former.

From Figure 3.2, we observe that the relative errors obtained from Algorithm 2

are smaller than the theoretical relative error bounds. When α = 0.2, the relative

error of Algorithm 2 appears to converge to the probabilistic relative error bound

as N becomes large, but when α = 0.3, there is a gap between the relative error

and the probabilistic relative error bound. From Theorems 8 and 9, we know that

this difference is due to the projection of the cones to the nonnegative orthant. If

there is no projection (this may violate the nonnegative constraint), the probabilistic

relative error bound is tight as N tends to infinity. We conclude that when the size
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Table 3.1: Running times in seconds of various algorithms (α = 0.2)

N cr1-nmf mult nnlsb hals

102 0.03±0.03 1.56±0.76 5.82± 1.15 0.46±0.20

103 0.26±0.10 9.54±5.91 6.44± 2.70 3.01±1.85

104 1.85±0.22 85.92±54.51 27.84± 8.62 17.39±5.77

angle α is large, the projection step causes a larger gap between the relative error

and the probabilistic relative error bound. We observe from Figure 3.2 that there are

large oscillations for mult. Other algorithms achieve similar approximation errors.

Table 3.1 shows that classical NMF algorithms require significantly more time (at

least an order of magnitude for large N) to achieve the same relative error compared

to our algorithm.

Automatically Determining K

We now verify the efficacy and the robustness of the proposed method in (3.5.1)

for automatically determining the correct number of circular cones. We generated

the data matrix V̂ := [V + δE]+, where each entry of E is sampled i.i.d. from

the standard normal distribution, δ > 0 corresponds to the noise magnitude, and

[·]+ represents the projection to nonnegative orthant operator. We generated the

nominal/noiseless data matrix V by setting α = 0.3, the true number of circular

cones K = 40, and other parameters similarly to the procedure in Section 3.6.1.

The noise magnitude δ is set to be either 0.1 or 0.5; the former simulates a relatively

clean setting in which the geometric assumption is approximately satisfied, while in

the latter, V̂ is far from a matrix that satisfies the geometric assumption, i.e., a very

noisy scenario. We generated 1000 perturbed data matrices V̂ independently. From

Figure 3.3 in which the true K = 40, we observe that, as expected, the method

in (3.5.1) works well if the noise level is small. Somewhat surprisingly, it also works

well even when the noise level is relatively high (e.g., δ = 0.5) if the number of data

points N is also commensurately large (e.g., N ≥ 5× 103).
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3.6.2 Experiments on Real Datasets

Initialization Performance in Terms of the Relative Error

Because real datasets do not, in general, strictly satisfy the geometric assump-

tion, our algorithm cr1-nmf, does not achieve as low a relative error compared to

other NMF algorithms. However, similar to the popular spherical k-means (spkm;

we use 10 iterations to produce its initial left factor matrix W) algorithm [46], our

algorithm may be used as initialization method for NMF. In this section, we compare

cr1-nmf to other classical and popular initialization approaches for NMF. These in-

clude random initialization (rand), spkm, and the nndsvd initialization method [47]

(nndsvd). We empirically show that our algorithm, when used as an initializer,

achieves the best performance when combined with classical NMF algorithms. The

specifications of the real datasets and the running times for the initialization meth-

ods are presented in Tables 3.2 and 3.3 respectively. We use face datasets (CK,

faces94, Georgia Tech face datasets) because this type of datasets is popularly used

for NMF. In fact, the invention of NMF is motivated by the finding that NMF

can learn the parts of objects in face datasets [88]. We use hyperspectral imaging

datasets (PaviaU dataset) and text datasets (tr11 and wap datasets, used for eval-

uating the clustering performance of various methods) because they are popularly

used in the analysis of NMF with separability assumptions [34, 39]. These variants

of NMF are closely related to our model, i.e., NMF with a geometric assumption. In

addition, faces94 and Georgia Tech are balanced datasets, while CK, tr11 and wap

datasets are unbalanced (for example, for CK dataset, the largest cluster contains

173 samples and the smallest cluster only contains 24 samples). We think that these

differences in the datasets can help us to make a more comprehensive evaluation.

We use mult, nnlsb, and hals as the classical NMF algorithms that are combined

3http://www.consortium.ri.cmu.edu/ckagree/
4http://cswww.essex.ac.uk/mv/allfaces/faces94.html
5http://www.anefian.com/research/face_reco.htm
6http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_

Scenes

http://www.consortium.ri.cmu.edu/ckagree/
http://cswww.essex.ac.uk/mv/allfaces/faces94.html
http://www.anefian.com/research/face_reco.htm
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Table 3.2: Information for real datasets used

Dataset Name F N K Description

CK3 49×64 8795 97 face dataset

faces944 200×180 3040 152 face dataset

Georgia Tech5 480×640 750 50 face dataset

PaviaU6 207400 103 9 hyperspectral

Table 3.3: Running times for initialization

Dataset Name cr1-nmf spkm nndsvd

CK 3.30± 0.10 6.68± 0.71 9.45± 0.12

faces94 14.50± 0.20 32.23± 2.28 32.81± 0.29

Georgia Tech 18.90± 1.13 24.77± 3.58 21.28± 0.35

PaviaU 0.73± 0.11 2.47± 0.48 0.84± 0.12

with the initialization approaches. Note that for nnlsb, we only need to initialize the

left factor matrix W. This is because the initial H can be obtained from initial W

using [26, Algorithm 2]. Also note that by the following lemma, the pair (W∗,H∗)

produced by Algorithm 2 is a fixed point for mult, so we use a small perturbation

of H∗ as an initialization for the right factor matrix.

Lemma 21. The (W∗,H∗) pair generated by Algorithm 2 remains unchanged in

the iterations of standard multiplicative update algorithm [23] for NMF.

Proof. There is at most one non-zero entry in each column of H∗. When updat-

ing H∗, the zero entries remain zero. For the non-zero entries of H∗, we consider

partitioning V into K submatrices corresponding to the K circular cones. Clearly,

‖V −W∗H∗‖2
F =

K∑
k=1

‖Vk −wkh
T
k ‖2

F, (3.6.2)

where Vk ∈ RF×|Ik| and hk ∈ R|Ik|+ . Because of the property of rank-one NMF

(Lemma 17), for any k, when wk is fixed, hk ∈ R|Ik|+ minimizes ‖Vk − wkh
T‖2

F.
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Table 3.4: Shift number for initialization approaches

CK faces94 Georgia Tech PaviaU

cr1-nmf+mult 3 2 3 2

spkm+mult 6 5 4 7

nndsvd+mult 8 5 3 2

cr1-nmf+hals 2 2 2 1

spkm+hals 5 4 3 5

nndsvd+hals 7 4 2 1

Also, for the standard multiplicative update algorithm, the objective function is

non-increasing for each update [23]. Thus hk for each k ∈ [K] (i.e., H∗) will remain

unchanged. A completely symmetric argument holds for W∗.

For spkm, similarly to [46, 47], we initialize the right factor matrix randomly.

In addition, to ensure a fair comparison between these initialization approaches, we

need to shift the iteration numbers appropriately, i.e., the initialization method that

takes a longer time should start with a commensurately smaller iteration number

when combined one of the three classical NMF algorithms. Table 3.4 reports the

number of shifts. Note that unlike mult and hals, the running times for different

iterations of nnlsb can be significantly different. We observe that for most datasets,

when run for the same number of iterations, random initialization and nndsvd initial-

ization not only result in larger relative errors, but they also take a much longer time

than spkm and our initialization approach. Because initialization methods can also

affect the running time of each iteration of nnlsb significantly, we do not report

shifts for initialization approaches when combined with nnlsb. Table 3.5 reports

running times that various algorithms first achieve a fixed relative error ε > 0 for

various initialization methods when combined with nnlsb. Our proposed algorithm

is clearly superior.

We present supplementary plots for Figure 3.4 and Table 3.5. Here, we use
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running time instead of number of iterations for the horizontal axis. In particular,

we display the performance of nnlsb for a fixed, reasonable, runtime with and

without initialization. We only present the results for nnlsb because of two reasons.

Firstly, when combined with initialization methods, compared to mult and hals,

nnlsb is unusual because the running times for different iterations of nnlsb can differ

significantly. Secondly, the plots for mult and hals are similar to that for nnlsb.

From Figure 3.5, we further observe that our initialization method is superior to

other initialization methods on the four datasets.

We observe from Figure 3.4 that our algorithm almost always outperforms all

other initialization approaches in terms of convergence speed and/or the final relative

error when combined with classical NMF algorithms for the selected real datasets

(except that nndsvd+hals performs the best for PaviaU). In addition, we present

the results from the Georgia Tech image dataset. For ease of illustration, we only

display the results for 3 individuals (there are images for 50 individuals in total)

for the various initialization methods combined with mult. Several images of these

3 individuals are presented in Figure 3.6. The basis images produced at the 20th

iteration are presented in Figure 3.7 (more basis images obtained at other iteration

numbers are presented in the supplementary material). We observe from the basis

images in Figure 3.7 that our initialization method is clearly superior to rand and

nndsvd. In the supplementary material, we additionally present an illustration of

Table 3.5 as a figure where the horizontal and vertical axes are the running times

(instead of number of iterations) and the relative errors respectively. These addi-

tional plots substantiate our conclusion that Algorithm 2 serves as a good initializer

for various other NMF algorithms.

Intuition for the Advantages of cr1-nmf over spkm as an Initializer for

NMF Algorithms

From Figure 3.4, we see that the difference between the results obtained from

using spkm as initialization method and the corresponding results obtained from
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using our initialization approach appears to be rather insignificant. However, from

Table 3.5, which reports the running time to first achieve specified relative errors

ε > 0 for the initialization methods combined with nnlsb (note that nnlsb only

needs to use the initial left factor matrix, and thus we can compare the initial

estimated basis vectors obtained by spkm and cr1-nmf directly), we see that our

initialization approach is clearly faster than spkm.

In addition, consider the scenario where there are duplicate or near-duplicate

samples. Concretely, assume the data matrix V :=

1 1 0

0 0 1

 ∈ R2×3
+ and K =

1. Then the left factor matrix produced by rank-one NMF is w = [1; 0] and the

normalized mean vector (centroid for spkm) is ū := [ 2√
5
; 1√

5
]. The approximation

error w.r.t. w is ‖V−wwTV‖F = 1, while the approximation error w.r.t. ū is ‖V−

ūūTV‖F ≈ 1.0954. Note that spkm is more constrained since it implicitly outputs a

binary right factor matrix H ∈ {0, 1}K×N while rank-one NMF (cf. Lemma 17) does

not impose this stringent requirement. Hence cr1-nmf generally leads to a smaller

relative error compared to spkm.

Initialization Performance in Terms of Clustering

We now compare clustering performances using various initialization methods.

To obtain a comprehensive evaluation, we use three widely-used evaluation met-

rics, namely, the normalized mutual information [89] (nmi), the Dice coefficient [90]

(Dice) and the purity [91, 92]. The clustering results for the CK and tr117 datasets

are shown in Tables 3.6 and 3.7 respectively. Clustering results for other datasets

are shown in the supplementary material (for space considerations). We run the

standard k-means and spkm clustering algorithms for at most 1000 iterations and

terminate the algorithm if the cluster memberships do not change. All the classical

NMF algorithms are terminated if the variation of the product of factor matrices is

7The tr11 dataset can be found at http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/

datasets.tar.gz. It is a canonical example of a text dataset and contains 6429 terms and 414

documents. The number of clusters/topics is K = 9.

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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small over 10 iterations. Note that nndsvd is a deterministic initialization method, so

its clustering results are the same across different runs. We observe from Tables 3.6

and 3.7 and those in the supplementary material that our initialization approach

almost always outperforms all others (under all the three evaluation metrics).

In addition, we present the clustering performance of faces94 and wap8 datasets.

Information concerning the faces94 dataset is presented in Section 3.6.2. The other

dataset under consideration, wap, is a text dataset with 8460 terms, 1560 documents,

and the number of clusters is K = 20. From Tables 3.8 and 3.9, we observe that our

initialization approach outperforms all others for all the three clustering evaluation

metrics, except for the faces94 dataset where spkm with the nnlsb NMF algorithm.

8http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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Figure 3.2: Errors and performances of various algorithms. On the left plot, we com-

pare the empirical performance to the theoretical non-probabilistic and probabilistic

bounds given by Theorems 6 and 8 respectively. On the right plot, we compare the

empirical performance to other NMF algorithms.
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Table 3.5: Running times when algorithm first achieve relative error ε for initializa-

tion methods combined with nnlsb

CK ε = 0.105 ε = 0.100 ε = 0.095

rand 727.53±23.93 1389.32±61.32 –

cr1-nmf 40.27±1.96 71.77±2.83 129.62±5.98

spkm 79.37±2.52 91.23±2.69 240.12±5.32

nndsvd 309.25±6.24 557.34±7.59 1309.51±21.97

faces94 ε = 0.140 ε = 0.135 ε = 0.131

rand 2451.8±26.6 7385.8±49.6 –

cr1-nmf 338.8±11.1 706.3±13.3 3585.2±49.4

spkm 465.3±13.5 1231.1±28.5 5501.4±134.4

nndsvd 1531.5±6.4 3235.8±12.1 10588.6±35.9

Georgia Tech ε = 0.185 ε = 0.18 ε = 0.175

rand 3766.7±92.8 5003.7±126.8 7657.4±285.9

cr1-nmf 147.3±2.8 308.2±7.8 1565.0±59.5

spkm 253.2±20.1 537.4±43.4 2139.2±142.9

nndsvd 2027.0±7.0 2819.4±9.5 4676.4±15.3

PaviaU ε = 0.0230 ε = 0.0225 ε = 0.0220

rand 192.51±16.11 224.65±16.17 289.48±16.74

cr1-nmf 13.30±0.40 16.93±0.61 30.06±0.94

spkm 32.00±3.16 40.27±4.39 52.40±6.29

nndsvd 79.92±0.84 106.29±0.91 160.10±0.92
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Figure 3.4: The first to fourth rows are the numerical results for CK, faces94, Georgia

Tech, and PaviaU datasets respectively.
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Figure 3.5: Numerical results for CK, faces94, Georgia Tech, and PaviaU datasets

processed by nnlsb with different initialization methods.
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Figure 3.6: Images of 3 individuals in Georgia Tech dataset.
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Figure 3.7: Basis images of 3 individuals in Georgia Tech dataset obtained at the

20th iteration. The first to fourth rows pertain to rand, cr1-nmf, spkm, and nndsvd

initializations respectively.



94 Chapter 3. A New Initialization Method for NMF

Table 3.6: Clustering performances for initialization methods combined with classi-

cal NMF algorithms for the CK dataset

nmi Dice purity

k-means 0.941±0.008 0.773±0.030 0.821±0.023

spkm 0.940±0.010 0.765±0.036 0.815±0.031

rand+mult 0.919±0.009 0.722±0.026 0.753±0.025

cr1-nmf+mult 0.987±0.002 0.944±0.006 0.961±0.006

spkm+mult 0.969±0.005 0.875±0.020 0.911±0.018

nndsvd+mult 0.870±0.000 0.614±0.000 0.619±0.000

rand+nnlsb 0.918±0.011 0.727±0.026 0.756±0.027

cr1-nmf+nnlsb 0.986±0.003 0.940±0.011 0.959±0.010

spkm+nnlsb 0.984±0.004 0.929±0.014 0.956±0.012

nndsvd+nnlsb 0.899±0.000 0.688±0.000 0.724±0.000

rand+hals 0.956±0.007 0.826±0.017 0.859±0.022

cr1-nmf+hals 0.974±0.006 0.889±0.015 0.925±0.016

spkm+hals 0.964±0.005 0.854±0.015 0.885±0.020

nndsvd+hals 0.942±0.000 0.786±0.000 0.830±0.000
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Table 3.7: Clustering performances for initialization methods combined with classi-

cal NMF algorithms for the tr11 dataset

nmi Dice purity

k-means 0.520±0.061 0.470±0.042 0.673±0.059

spkm 0.504±0.103 0.454±0.085 0.664±0.091

rand+mult 0.595±0.040 0.540±0.050 0.764±0.025

cr1-nmf+mult 0.649±0.049 0.610±0.052 0.791±0.023

spkm+mult 0.608±0.052 0.550±0.061 0.773±0.031

nndsvd+mult 0.580±0.000 0.515±0.000 0.761±0.000

rand+nnlsb 0.597±0.030 0.537±0.040 0.765±0.018

cr1-nmf+nnlsb 0.655±0.046 0.615±0.050 0.794±0.023

spkm+nnlsb 0.618±0.052 0.563±0.065 0.776±0.027

nndsvd+nnlsb 0.585±0.000 0.512±0.000 0.766±0.000

rand+hals 0.609±0.044 0.555±0.056 0.772±0.024

cr1-nmf+hals 0.621±0.052 0.580±0.062 0.778±0.026

spkm+hals 0.619±0.052 0.567±0.061 0.776±0.027

nndsvd+hals 0.583±0.000 0.511±0.000 0.768±0.000
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Table 3.8: Clustering performance for initialization methods combined with classical

NMF algorithms for the faces94 dataset

nmi Dice purity

k-means 0.945±0.007 0.788±0.027 0.778±0.026

spkm 0.939±0.005 0.779±0.019 0.775±0.021

rand + mult 0.840±0.007 0.595±0.019 0.577±0.019

cr1-nmf + mult 0.941±0.003 0.835±0.009 0.834±0.009

spkm + mult 0.938±0.005 0.825±0.016 0.826±0.016

nndsvd + mult 0.589±0.000 0.217±0.000 0.172±0.000

rand + nnlsb 0.842±0.007 0.607±0.015 0.587±0.018

cr1-nmf + nnlsb 0.952±0.002 0.873±0.009 0.873±0.008

spkm + nnlsb 0.953±0.004 0.871±0.013 0.870±0.015

nndsvd + nnlsb 0.924±0.000 0.798±0.000 0.785±0.000

rand + hals 0.894±0.007 0.725±0.016 0.708±0.017

cr1-nmf + hals 0.924±0.004 0.801±0.010 0.791±0.008

spkm + hals 0.903±0.005 0.746±0.007 0.734±0.007

nndsvd + hals 0.871±0.000 0.700±0.000 0.678±0.000



3.6 Numerical Results 97

Table 3.9: Clustering performance for initialization methods combined with classical

NMF algorithms for the wap dataset

nmi Dice purity

k-means 0.528±0.030 0.360±0.042 0.604±0.033

spkm 0.518±0.012 0.351±0.023 0.614±0.027

rand + mult 0.572±0.017 0.400±0.022 0.655±0.025

cr1-nmf + mult 0.598±0.020 0.433±0.030 0.688±0.022

spkm + mult 0.588±0.019 0.421±0.025 0.678±0.023

nndsvd + mult 0.589±0.000 0.429±0.000 0.679±0.000

rand + nnlsb 0.583±0.013 0.410±0.018 0.668±0.016

cr1-nmf + nnlsb 0.600±0.022 0.432±0.027 0.688±0.020

spkm + nnlsb 0.592±0.019 0.428±0.027 0.684±0.025

nndsvd + nnlsb 0.588±0.000 0.427±0.000 0.678±0.000

rand + hals 0.584±0.015 0.416±0.018 0.669±0.013

cr1-nmf + hals 0.602±0.015 0.435±0.022 0.694±0.019

spkm + hals 0.584±0.011 0.420±0.015 0.678±0.020

nndsvd + hals 0.594±0.000 0.421±0.000 0.681±0.000





Chapter 4
Conclusions and Future Works

In Chapter 2, we propose a fundamental understanding about when optimizing

the objective function of the k-means algorithm returns a clustering that is close to

the correct target clustering. To improve computational and memory issues, various

dimensionality reduction techniques such as PCA are also considered.

In Chapter 3, we propose a new geometric assumption for the purpose of perform-

ing NMF. In contrast to the separability condition [33, 34, 36], under our geometric

assumption, we are able to prove several novel deterministic and probabilistic results

concerning the relative errors of learning the factor matrices. We are also able to

provide a theoretically-grounded method of choosing the number of clusters (i.e., the

number of circular cones) K. We show experimentally on synthetic datasets that

satisfy the geometric assumption that our algorithm performs exceedingly well in

terms of accuracy and speed. Our method also serves a fast and effective initializer

for running NMF on real datasets. Finally, it outperforms other competing methods

on various clustering tasks.

For using k-means and dimensionality reduction techniques to learn mixture

models, several natural questions arise from the work in Chapter 2.

1. Instead of the separability assumptions made herein, we may consider modify-

ing our analyses so that we eventually make less restrictive pairwise separabil-

ity assumptions. This may enable us to make more direct comparisons between

99
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our separability assumptions and similar assumptions in the literature, such

as those in [17] and [55].

2. Brubaker [66] considers the robust learning of mixtures of log-concave distri-

butions. Similarly, we may extend our work to the robust learning of noisy

mixtures in which there may be outliers in the data.

3. Besides studying the sum-of-squares distortion measure for k-means in (1.1.1),

it may be fruitful to analyze other objective functions such as those for k-

medians [9] or min-sum clustering [10]. These may result in alternative sepa-

rability assumptions and further insights on the fundamental limits of various

clustering tasks.

4. We have provided upper bounds on the ME distance under certain sufficient

(separability) conditions. It would be fruitful to also study necessary condi-

tions on the separability of the mixture components to ensure that the ME

distance is small. This will possibly result in new separability assumptions

which will, in turn, aid in assessing the tightness of our bounds and how they

may be improved.

For the work presented in Chapter 3, we plan to explore the following extensions.

1. First, we hope to prove theoretical guarantees for the scenario when V only

satisfies an approximate version of the geometric assumption, i.e., we only have

access to V̂ := [V + δE]+ (cf. Section 3.6.1) where δ ≈ 0.

2. Second, here we focused on upper bounds on the relative error. To assess the

tightness of these bounds, we hope to prove minimax lower bounds on the

relative error similarly to Jung et al. [93].

3. Third, as mentioned in Section 3.2, our geometric assumption in (3.2.2) can be

considered as a special case of the near-separability assumption for NMF [33].

To the best of our knowledge, there is no theoretical guarantee for the relative

error under the near-separability assumption.
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4. For large-scale data, it is often desirable to perform NMF in an online fash-

ion [94,95], i.e., each data point vn arrives in a sequential manner. We would

like to develop online versions of the algorithm herein.

5. It would be fruitful to leverage the theoretical results for k-means++ [5] to pro-

vide guarantees for a probabilistic version of our initialization method. Note

that our method is deterministic while k-means++ is probabilistic, so a prob-

abilistic variant of Algorithm 2 may have to be developed for fair comparisons

with k-means++.

6. We may also extend our Theorem 10 to near-separable data matrices, possibly

with additional assumptions.
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