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Summary

Bose-Einstein condensation has been a widely studied research topic among physicists and applied

mathematicians since its first experimental observation in 1995. Various theories were developed

to describe the Bose-Einstein condensates (BECs) subjected to different ranges of temperature and

interaction. This thesis focuses on studying the BECs in cold dilute atomic gases, in which the mean

field theory is valid and the Gross-Pitaevskii equation (GPE) provides a good description of the

macroscopic wavefunction of the condensate atoms at a temperature much lower than the transition

temperature. This thesis starts with analytically studying the ground state of a single component

BEC in several types of trapping potentials, for both repulsively and attractively interacting atoms.

In the strongly repulsively interacting regime, asymptotic ground state solution is found by applying

the Thomas-Fermi approximation, i.e. by neglecting the kinetic energy in the Gross-Pitaevskii energy

functional; while in the strongly attractively interacting regime, asymptotic solution is found by

neglecting the potential energy. One dimensional BEC with weakly attractive interaction is studied

in a symmetric double well potential in particular. In this case, the ground state may not be a

symmetric state, which is in contrast to a BEC with repulsive interaction. Applying a Gaussian

wavepacket ansatz to the GPE, a critical interaction strength at which the symmetry breaking of

the ground state taking place can be predicted. The study is followed by the introduction of the

normalized gradient flow (NGF) method to solve the GPE numerically for the condensate ground

state. The NGF can be solved accurately and effectively, even in three dimensional simulation,

through the utilization of the sine-pseudospectral method and the backward/semi-implicit backward

Euler scheme with the inclusion of a constant stabilization parameter. The method is then extended

to a spin-1 BEC which is described by three-component coupled GPEs. An additional normalization

condition is derived, to resolve the problem of insufficient conditions for the normalization of three

wavefunctions. Two inherent conditions of the system are the conservation of total particle number

and the conservation of total spin. The method is also applicable to a spin-1 BEC subjected to

v



SUMMARY vi

uniform magnetic field, with a proper treatment of different Zeeman energies experienced by different

components. Finally, the transport of a strongly repulsively interacting BEC through a shallow

optical lattice of finite width is studied numerically, as well as analytically in terms of nonlinear Bloch

waves. The development and disappearance of a self-trapped state is observed. Such dynamical self-

trapping can be well explained by the nonlinear band structure in a periodic potential, where the

nonlinear band structure arises due to the interparticle interaction in the GPE.



Chapter 1

Introduction

The phenomenon of Bose-Einstein condensation was predicted by Albert Einstein in 1925 [58, 59],

after generalizing Satyendra Nath Bose’s derivation of Planck’s distribution for photons [26] to the

case of non-interacting massive bosons. The prediction was made in the early stage of development

of quantum mechanics, even before the classification of particles into bosons and fermions, which

are characterized by zero or integer spin and half-integer spin, respectively.

Particles exhibit particle-wave duality property. Being a point-like particle, each particle at the

same time behaves as a wave. At temperature T , the wave properties of a particle of mass m are

characterized by the de-Broglie wavelength

λdB =
(

2πh̄2

mkBT

)1/2

(1.1)

which increases as the temperature decreases. h̄ is the Planck constant and kB is the Boltzmann

constant. When the temperature of the system is so low that λdB is comparable to the average

spacing between the particles, their thermal de-Broglie waves overlap and the atoms behave coher-

ently, as a single giant atom. This is when the Bose-Einstein condensation takes place. The coherent

atoms all occupy the same single-particle state and they can be viewed as a single collective object

occupying a macroscopic wavefunction which is the product of all single-particle wavefunctions. The

phenomenon can also be predicted from the Bose-Einstein statistics for bosons. At temperature T , a

system of bosons distribute themselves among different energy levels according to the Bose-Einstein

1
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distribution,

f(εi) =
1

exp( εi−µ
kBT )− 1

, (1.2)

where εi is the energy of the ith quantum state and µ is the chemical potential of the system. When

the temperature is lowered to the critical temperature Tc, the lowest energy quantum state ε0 is

populated by a large fraction of particles. A phase transition from thermally distributed particles to

the Bose-Einstein condensed state takes place. If the temperature is further lowered, a nearly pure

condensate, only accompanied by a few thermally excited atoms, can be achieved.

To achieve the condensed state, an extremely low temperature of the order of 100nK is required

so that λdB is of the order of interatomic spacing. At the same time, a gaseous state of the system

has to be maintained to avoid collision of particles that leads to the formation of molecules and

clusters. This causes great challenges for experimentalists since almost all substances condense into

solid state at such low temperature, except 4He, which remains liquid even at absolute zero. For

these reasons, the idea of Bose-Einstein condensation was not paid much attention until superfluid

4He was discovered [72] and until the suggestion of superfluid 4He being a system of Bose-Einstein

condensate was proposed by London [77], noting that Einstein’s formula for the Tc gave a good

estimate of the observed transition temperature of superfluidity of 4He. A number of theoretical

studies on the superfluid were carried out since its discovery. Tisza, initiated by London, came up

with the two-fluid model [108] which stated that 4He consists of two parts: the normal component

that moves with friction and the superfluid component that moves without friction. The model was

further developed by Landau into the two-fluid quantum hydrodynamics [74] which remains as the

basis of modern description of superfluid 4He. Even though at a later time the superfluid 4He was

shown not to be a Bose-Einstein condensed system (there is only < 10% of condensate particles),

those theoretical works provided a solid background to the later development of the theories in BEC

in dilute atomic gases after 1995.

After 1980’s, when the cooling technique became relatively advanced compared to the earlier

time, physicists started to seek for a BEC in spin-polarized H atoms, which was predicted to be stable

in a gas phase even at T = 0K since no bound state can be formed between two spin-polarized H

atoms. However, attempts to achieve a BEC failed as the three-body interaction causes the spin flip

and the combination of H atoms into molecules. Nevertheless, various cooling techniques further

developed over the years in seeking spin-polarized H condensate were applied to other dilute akali

gases and the first observation of Bose-Einstein condensation of dilute atomic 87Rb gas was reported



INTRODUCTION 3

in June 1995 by JILA group leaded by E. Cornell and C. Wieman [8]. Two experimental achievements

were reported in the same year by the Ketterle’s group in MIT for 23Na [48] and Hulet’s group in

Rice University for 7Li [28]. Atomic H condensate was finally produced in the year 1998 [61]. There

are two cooling stages to create the dilute atomic BEC: laser cooling and evaporative cooling. Laser

cooling serves as the pre-cooling stage, in which laser beams are used to bombard and slow down

the atoms, thereby reducing the energy of the atoms to T ∼ 10µK. However, this temperature is

still too high for the atoms to form a condensate. The second cooling stage is to trap the atoms with

magnetic field. The magnetic trap creates a thermally isolated and material-free wall that confines

the atoms and at the same time prevents the nucleation of atomic cluster on the wall (optical trap

created by laser light was developed at a later time that substituted the magnetic trap to hold spinor

condensates as well as to create a periodic trapping potential and a box potential). Radio frequency

is applied to flip the electronic spin of the atoms with higher energy. These spin-flipped atoms are

repelled by the magnetic trap, carrying away the excess energy and thereby achieving the purpose

of cooling of the remaining atoms, in a similar way as hot water is cooled through evaporation of

the water molecules from the surface. As the temperature is being brought down, the cool atoms

in the trap will start occupying the lowest energy state and form the condensate. The evaporative

cooling can reduce the temperature down to 50nK-100nK, as reported in the first BEC experiment.

The experiments in 1995 have spurred great excitement and are of tremendous interest in the

field of atomic and condensed matter physics. Due to the collective behaviours of the atoms, one

can now measure the microscopic quantum mechanical properties in a macroscopic scale by optical

means. It also provides a testing ground for exploring the quantum phenomena of interacting many-

body system. Plenty of theoretical studies on cold dilute atomic gases were carried out and a number

of labs were set up to study the properties of BECs. The quantity of BEC related research articles

has been growing at the rate of about 100 per year since then. Early reports studied BEC in ideal

gas. However, the interparticle interaction in the dilute atomic gases, despite being very weak, plays

an important role and turns the problem into a non-trivial many-body problem. A theoretical model

that is widely studied for BEC in a trap is the mean field model. In this model, the interaction that

an atom experiences is described by the average interacting potential field caused by other atoms in

the system, resulting in a nonlinear term in the Schrödinger equation that describes the condensate

atoms at zero temperature. Despite its simplicity, the model is shown to describe many properties of

the condensate quite accurately. By taking the effect of temperature into account, the properties of

the condensate and the thermal cloud at a temperature much lower than the transition temperature
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are also well modelled within the mean field approximation. The mean field theory does not work

well at a temperature close to the transition temperature, at which the population of thermally

excited atoms is high. Several models have been developed beyond the mean field approach for this

range of temperature.

1.1 Mean Field Theory

Hamiltonian of the quantum field operators ψ̂(x, t) and ψ̂†(x, t) which creates and annihilates a

particle at position x at time t, can be expressed as

Ĥ =
∫

ψ̂†(x, t)
(
− h̄2

2m
∇2 + V (x, t)

)
ψ̂(x, t) dx

+
1
2

∫ ∫
ψ̂†(x, t)ψ̂†(x′, t)Vint(x′ − x)ψ̂(x, t)ψ̂(x′, t) dx′ dx, (1.3)

where V (x, t) is the external trapping potential and Vint(x′ − x) is the two-body interatomic inter-

acting potential. The field operators of bosons satisfy the Bose commutation relations

[
ψ̂(x, t), ψ̂†(x′, t)

]
= δ(x− x′), (1.4)

[
ψ̂(x, t), ψ̂(x′, t)

]
=

[
ψ̂†(x, t), ψ̂†(x′, t)

]
= 0, (1.5)

where [Â, B̂] = ÂB̂− B̂Â is the commutator of operators Â and B̂. In dilute cold gases, only binary

collision is important. The collision is characterized by a single parameter as, which is the s-wave

scattering length of the atom. Under the condition as much smaller than the interparticle spacing,

the interacting potential can be effectively replaced by the mean field potential [47, 60]

Vint(x′ − x) = gδ(x′ − x), (1.6)

where the coupling constant g = 4πh̄2as

m . Positive as corresponds to repulsive interaction and negative

as corresponds to attractive interaction. The Heisenberg interpretation for the time evolution of the

field operator, with effective potential (1.6), is then given by

ih̄
∂ψ̂(x, t)

∂t
=

[
ψ̂(x, t), Ĥ

]

=
[
− h̄2

2m
∇2 + V (x, t) + gψ̂†(x, t)ψ̂(x, t)

]
ψ̂(x, t). (1.7)
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When the system of particles consists of a large fraction of Bose-Einstein condensate, the con-

densate part can be separated out from the quantum field operator and be represented by a classical

field ψ(x, t) [23, 25]. That is, the quantum field operator can be expressed as the sum of the

condensate order parameter ψ(x, t) and the quantum fluctuation field ψ̃(x, t) which represents the

non-condensate particles:

ψ̂(x, t) = ψ(x, t) + ψ̃(x, t), (1.8)

where

〈
ψ̂(x, t)

〉
= ψ(x, t), (1.9)

〈
ψ̃(x, t)

〉
= 0. (1.10)

The brackets
〈
Â

〉
denotes the expectation value of operator Â on a suitably defined ensemble.

The thesis deals mainly with the zero temperature model, in which the non-condensate atoms

are completely neglected, or equivalently, the quantum field ψ̂(x, t) is replaced by the classical field

ψ(x, t). However, in order to provide a detailed physical background to the mean field description of

Bose-Einstein condensation, as well as to present the possible extended studies from current research

within the context of this thesis, finite temperature mean field models will also be reviewed here.

Applying expression (1.8) with assumptions (1.9)–(1.10), the equation of motion for the conden-

sate part is

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V (x, t)

]
ψ + g

〈
ψ̂†ψ̂ψ̂

〉

=
[
− h̄2

2m
∇2 + V (x, t) + g(nc + 2nT )

]
ψ + gm̃ψ∗ + g

〈
ψ̃†ψ̃ψ̃

〉
, (1.11)

where

nc = |ψ|2 = condensate density, (1.12)

nT =
〈
ψ̃†ψ̃

〉
= non-condensate density, (1.13)

m̃ =
〈
ψ̃ψ̃

〉
= off-diagonal non-condensate density, (1.14)

〈
ψ̃†ψ̃ψ̃

〉
= three-field correlation function. (1.15)

Here ψ∗ denotes the complex conjugate of the wavefunction. The off-diagonal term and the three-
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field correlation term are called the anomalous terms. If the external trapping potential does not

depend of time, separation of variables can be applied to (1.7) and the quantum field operator can

be written as

ψ̂(x, t) = φ̂(x)e−iµt/h̄, (1.16)

where µ is the chemical potential of the system. The time-independent quantum field operator φ̂(x)

satisfies the time-independent nonlinear Schrödinger equation

µφ̂(x) =
[
− h̄2

2m
∇2 + V (x) + gφ̂†(x)φ̂(x)

]
φ̂(x). (1.17)

Separating the condensate and non-condensate part of φ̂(x) according to (1.8), we get the time-

independent Schrödinger equation for the condensate

µφ =
[
− h̄2

2m
∇2 + V (x) + g(nc + 2nT )

]
φ + gm̃φ∗ + g

〈
φ̃†φ̃φ̃

〉
. (1.18)

Any solution of (1.18) is called the stationary solution since the probability density of finding a

particle at position x and time t, |ψ(x, t)|2 = |φ(x)|2, is independent of time.

The exact equation of motion for the non-condensate particles can be found by subtracting

(1.11) from (1.7), which yields

ih̄
∂ψ̃

∂t
=

[
− h̄2

2m
∇2 + V (x, t)

]
ψ̃ + g

[
ψ̂†ψ̂ψ̂ −

〈
ψ̂†ψ̂ψ̂

〉]
. (1.19)

Depending on the temperature of the system, some terms corresponding to the non-condensate may

be neglected, resulting in several mean field models for BECs. The term ψ̂†ψ̂ψ̂ in (1.19) can be

simplified via the Bogoliubov transformation and different approximations in the mean field models

will be introduced in the following parts of this chapter.

1.1.1 Hartree-Fock-Bogoliubov (HFB) model

If the three-field correlation function is ignored, the Bose-Einstein condensed system is described by

the Hartree-Fock-Bogoliubov theory (HFB) [64]. Equations (1.11) and (1.18) are reduced to

ih̄
∂ψ(x, t)

∂t
=

[
− h̄2

2m
∇2 + V (x, t) + g(nc + 2nT )

]
ψ(x, t) + gm̃ψ∗(x, t), (1.20)
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and

µφ(x) =
[
− h̄2

2m
∇2 + V (x) + g(nc + 2nT )

]
φ(x) + gm̃φ∗(x). (1.21)

For the non-condensate particles, expanding the term ψ̂†ψ̂ψ̂ in (1.19) by applying assumption (1.8)

and the following mean field approximations:

ψ̃†ψ̃ ≈
〈
ψ̃†ψ̃

〉
, (1.22)

ψ̃ψ̃ ≈
〈
ψ̃ψ̃

〉
, (1.23)

ψ̃†ψ̃ψ̃ ≈ 2
〈
ψ̃†ψ̃

〉
ψ̃ + ψ̃†

〈
ψ̃ψ̃

〉
, (1.24)

we obtain the equation of motion for the fluctuation field operator within the HFB approximation:

ih̄
∂ψ̃

∂t
=

[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
ψ̃ + g(ψ2 + m̃)ψ̃†. (1.25)

Equation (1.25) can be diagonalized by expressing the field operators in terms of a set of non-

interacting quasiparticle creation operator αj and annihilation operator α†j . This is done through

the Bogoliubov transformation,

ψ̃(x, t) =
∑

j

[
uj(x, t)αj + v∗j (x, t)α†j

]
, (1.26)

where uj and vj are the quasiparticle amplitudes. The quasiparticle operators satisfy the Bose

commutation relations:
[
αi, α

†
j

]
= δij , (1.27)

[αi, αj ] =
[
α†i , α

†
j

]
= 0. (1.28)

The Bogoliubov transformation converts (1.25) into the HFB equations at finite temperature,

ih̄
∂uj

∂t
=

[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
uj + g(ψ2 + m̃)vj , (1.29)

−ih̄
∂vj

∂t
=

[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
vj + g((ψ∗)2 + m̃∗)uj , (1.30)

where

nc = |ψ|2, (1.31)
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nT =
∑

j

[|uj |2Nj + |vj |2(Nj + 1)
]
, (1.32)

m̃ =
∑

j

ujv
∗
j (1 + 2Nj), (1.33)

Nj =
〈
α†jαj

〉
=

1
exp ( εj

kBT )− 1
. (1.34)

Nj is the occupation number of the jth state quasiparticle at temperature T , expressed according

to the Bose-Einstein distribution, and εj is the jth state quasiparticle energy.

If the trapping potential does not depend on time, the quasiparticle amplitudes can be written

as

uj(x, t) = uj(x)e−iεjt/h̄e−iµt/h̄, (1.35)

vj(x, t) = vj(x)e−iεjt/h̄e−iµt/h̄. (1.36)

The stationary solutions uj(x) and vj(x) satisfy the time-independent HFB equations:

εjuj =
[
− h̄2

2m
∇2 + V − µ + 2g(nc + nT )

]
uj + g(φ2 + m̃)vj , (1.37)

−εjvj =
[
− h̄2

2m
∇2 + V − µ + 2g(nc + nT )

]
vj + g((φ∗)2 + m̃∗)uj . (1.38)

Equations (1.37)–(1.38) together with (1.21) form a closed set of equations, which describe the

Bose-Einstein condensed system at finite temperature T . The quasiparticle amplitudes satisfy the

normalization condition ∫
u∗i uj − v∗i vj dx = δij . (1.39)

The number of atoms in the condensed state is given by

Nc =
∫

nc dx = N −NT = N −
∫

nT dx, (1.40)

where N is the total number of particles and NT is the number of non-condensate atoms.

1.1.2 Hartree-Fock-Bogoliubov-Popov (HFBP) model

HFB theory is able to produce good predictions of the excitation frequencies of dilute atomic gases

measured in laboratory. However, the model suffers from infrared and ultraviolet divergence. Also
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an unphysical energy gap is predicted in the excitation spectrum. In order to produce a gapless

excitation spectrum, the HFB theory with Popov approximation was suggested [64, 69]. For lower

values of temperature, the theoretical results agree excellently with the experimental results [56].

Compared to the HFB model, more theoretical studies on the mean field finite temperature models

are carried out on the basis of HFBP description [55, 111, 119]. Within the Popov approximation, the

off-diagonal non-condensate density m is neglected. The Hartree-Fock-Bogoliubov-Popov (HFBP)

equations are obtained easily from the HFB model, as

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V + g(nc + 2nT )

]
ψ, (1.41)

ih̄
∂uj

∂t
=

[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
uj + gψ2vj , (1.42)

−ih̄
∂vj

∂t
=

[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
vj + g(ψ∗)2uj . (1.43)

The time-independent HFBP equations read

µφ =
[
− h̄2

2m
∇2 + V + g(nc + 2nT )

]
φ, (1.44)

εjuj =
[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
uj + gφ2vj , (1.45)

−εjvj =
[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
vj + g(φ∗)2uj . (1.46)

The HFBP theory produces excellent results for a Bose-Einstein condensed system under 0.6Tc

[56, 68]. As the critical temperature is approached, the calculated excitation frequencies diverge from

those measured in experiments, and theories beyond mean field approximation should be applied to

describe the Bose-Einstein condensed system.

1.1.3 Hartree-Fock (HF) model

For high energy excitations, the quasiparticle amplitude vj is small and is negligible. In this regime,

the coupled equations (1.42)–(1.43) and (1.45)–(1.46) in the HFBP model can be replaced by single

particle excitation, that is

ih̄
∂uj

∂t
=

[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
uj (1.47)
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for time-dependent case, and

εjuj =
[
− h̄2

2m
∇2 + V + 2g(nc + nT )

]
uj (1.48)

for time-independent case. The non-condensate density is given by

nT =
∑

j

|uj |2 1
exp εj

kBT − 1
. (1.49)

1.1.4 Gross-Pitaevskii equation (GPE)

At zero temperature, all anomalous terms and the non-condensate part can be neglected. This is

equivalent to replacing the quantum field ψ̂(x, t) in (1.7) by the classical field ψ(x, t). It gives rise

to a nonlinear Schrödinger equation, the well-known Gross-Pitaevskii equation (GPE),

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V + g|ψ|2

]
ψ, (1.50)

for the Bose-Einstein condensed system. The GPE was first developed independently by Gross

[65] and Pitaevskii [95] in 1961 to describe the vortex structure in superfluid. The macroscopic

wavefunction/order parameter is normalized to the total number of particles in the system, which

is conserved over time, i.e. ∫
|ψ(x, t)|2 dx = N. (1.51)

A stationary state satisfies the time-independent GPE

µφ =
[
− h̄2

2m
∇2 + V + g|φ|2

]
φ, (1.52)

under constraint (1.51).

For ideal (non-interacting) gas, all particles occupy the ground state at T = 0K and ψ(x, t)

in the GPE describes the properties of all N particles in the system. For interacting gas, owing

to the interparticle interaction, not all particles condense into the lowest energy state even at zero

temperature. This phenomenon is called the quantum depletion. In a weakly interacting dilute

atomic vapor, which is the main concern in this thesis, the non-condensate fraction is very small.

The mean field theory can be successfully applied and the quantum depletion can be neglected at
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zero temperature, assuming a pure BEC in the system. If one is interested in finding the quantum

depletion, the HFBP model (1.41)–(1.46) can be applied, in which

nT = ndepletion =
∑

j

|vj |2 (1.53)

is the non-condensate particle number in the depletion, as reduced from (1.32) at T = 0K. In the

case of strongly correlated system, e.g. superfluid 4He in which the quantum depletion is greater

than 90% even at T = 0K, the mean field approximation fails to describe the system.

1.2 Other Finite Temperature BEC Models

Mean field models introduced in the previous section are unsuccessful to give a good description

of a cold dilute gas at temperature T > 0.6Tc, which is populated by a large number of thermally

excited particles. Several theories have been developed to study the dynamics of the system in this

higher temperature range.

The HFB and HFBP models deal with the BEC in the collisionless regime in which the collisional

mean-free-path of excited particles is much larger than the wavelength of excitations. This usually

corresponds to a low density and low temperature thermal cloud. In a collision-dominated regime,

the problem becomes hydrodynamic in nature and the interparticle collisions should be taken into

consideration. The ZGN theory [89, 116, 117], named after the 3 physicists, Zaremba, Griffin, and

Nikuni, who developed the theory, describes a finite temperature BEC in the semiclassical limit in

which the thermal energy (of the order of kBT ) is much larger than the energy levels of the trapping

potential and is much larger than the interaction energy of the particles. The ZGN theory follows

the mean field approach (1.11) within the Popov approximation which neglects the off-diagonal non-

condensate density m. However, it is different from the HFBP model in a way that the three-field

correlation function
〈
ψ̃†ψ̃ψ̃

〉
in (1.11) is retained. This term contributes to the collision and energy

exchange between the condensate and the non-condensate. A semiclassical approximation is applied

to the non-condensate, represented by a phase-space distribution function f(p, x, t). The function

f(p,x, t) is described by a quantum Boltzmann kinetic equation that couples to the condensate

through mean field and interparticle collisions. The final result in the ZGN theory is a closed system

of two-fluid hydrodynamic equations in terms of the local densities and velocities of the condensate

and non-condensate components. The theory was shown to be consistent with the Landau two-fluid
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model in the limiting case of complete local equilibrium in the condensate and the non-condensate

of a uniform weakly interacting gas.

Another model that simulates the finite temperature BEC dynamics is the projected Gross-

Pitaevskii equation (PGPE) proposed by Davis et al. [49, 51, 52]. It is a classical field and non-

perturbative approach. The method was developed based on the approximation that the low-lying

energy modes of the quantum Bose-field are highly occupied. They can therefore be treated by a

classical field evolving according to the modification of the GPE with a projection operator, in which

the high energy modes with small number of particles are excluded. The PGPE was shown to be

able to evolve randomized initial wavefunction to a state describing the thermal equilibrium, and

to assign a temperature to the final configuration. In the cases of small interaction strength or low

temperature, the predictions of the PGPE are comparable to the predictions of Bogoliubov theory

[50, 51, 52].

1.3 Purpose of Study and Structure of Thesis

Due to success of the HFBP model to describe various properties of a BEC as well as to produce a

gapless excitation spectrum, this model has been widely applied in physics literature. However, the

complexity of the equations creates high difficulties in the numerical simulation, especially in 3D

BEC modelling. Self-consistent scheme has been applied to solve the HFBP equations by several

authors. Yet, these studies have been restricted to a BEC in a parabolic trapping potential with

radial/spherical symmetry that greatly simplifies the three dimensional problem by reduction to

a lower dimensional problem. Even in these studies, the calculation is very time consuming and

the numerical methods applied are usually of low order accuracy. Therefore, an efficient algorithm

to solve the simplest model, the zero temperature GPE, is a pre-requisite to solving the HFBP

equations efficiently. Furthermore, in studying the collective excitations of BEC, one needs to solve

the Bogoliubov-de-Gennes (BdG) equations in a form similar to (1.45)–(1.46) but with nT = 0. An

accurate approximation to the BEC ground state is required to solve the BdG equations so as to

avoid the appearance of any unphysical excitation frequency in the excitation spectrum.

The purpose of this thesis is to develop efficient and accurate algorithms to solve the zero

temperature GPE. Such algorithms can provide a good preparatory step in developing efficient

numerical schemes to solve other finite temperature mean field models. Furthermore, the PGPE
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possesses great similarity to the GPE. With an efficient method to solve the GPE, the method may

also be applicable to the PGPE with appropriate modification.

This thesis will start with analytically studying the ground state of a single component BEC in

several types of trapping potential, for both repulsively and attractively interacting atoms (Chapter

2). In Chapter 3, accurate and efficient numerical methods for the computation of a single component

BEC ground state will be proposed, developed on the basis of the imaginary time method. Numerical

examples will be provided to show the efficiency of the proposed method. In Chapter 4, the numerical

method will be extended to a spin-1 BEC which is described by three-component coupled GPEs.

The numerical scheme will further be extended to solve for the spin-1 BEC ground state subjected to

uniform magnetic field, which exhibits rich properties due to different Zeeman energies experienced

by different components. Finally, the transport of a strongly repulsive BEC through a shallow optical

lattice of finite width will be studied in Chapter 5. The study will be carried out numerically via

the modelling of the time-dependent GPE as well as analytically in terms of nonlinear Bloch waves.

Concluding remarks will be given in Chapter 6.



Chapter 2

Analytical Study of Single

Component BEC Ground State

2.1 The Gross-Pitaevskii Equation

Neglecting the quantum depletion, the properties of a Bose-Einstein condensate (BEC) at zero

temperature are well described by the macroscopic wavefunction ψ(x, t) whose evolution is governed

by the Gross-Pitaevskii equation (GPE) [65, 95], which is a self-consistent mean field nonlinear

Schrödinger equation (NLSE):

ih̄
∂

∂t
ψ(x, t) =

(
− h̄2

2m
∇2 + V (x) + Ng|ψ(x, t)|2

)
ψ(x, t), x ∈ R3, t ≥ 0. (2.1)

The external trapping potential V (x) is taken to be time-independent. It is convenient to normalize

the wavefunction by requiring

‖ψ(·, t)‖2 :=
∫

R3
|ψ(x, t)|2 dx = 1. (2.2)

The equations (2.1) and (2.2) are obtained by rescaling ψ → √
Nψ in (1.50) and (1.51).

14
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2.1.1 Different external trapping potentials

In early BEC experiments, quadratic harmonic oscillator well was used to trap the atoms. Recently

more advanced and complicated traps have been applied for studying BECs in laboratories [29, 35,

82, 94]. In this section, we will review several typical trapping potentials which are widely used in

current experiments.

I. Three-dimensional (3D) harmonic oscillator potential [94]:

Vho(x) = Vho(x) + Vho(y) + Vho(z), x ∈ R3, Vho(τ) =
m

2
ω2

τ τ2, τ = x, y, z, (2.3)

where ωx, ωy, and ωz are the trapping frequencies in x-, y-, and z-direction respectively.

II. 2D harmonic oscillator + 1D double well potential (Type I) [82]:

V
(1)
dw (x) = V

(1)
dw (x) + Vho(y) + Vho(z), x ∈ R3, V

(1)
dw (x) =

m

2
ν4

x

(
x2 − â2

)2
, (2.4)

where ±â are the double well centers along the x-axis, νx is a given constant with physical dimension

1/[m s]1/2.

III. 2D harmonic oscillator + 1D double well potential (Type II) [33, 67]:

V
(2)
dw (x) = V

(2)
dw (x) + Vho(y) + Vho(z), x ∈ R3, V

(2)
dw (x) =

m

2
ω2

x (|x| − â)2 . (2.5)

IV. 3D harmonic oscillator + optical lattice potential [2, 41, 94]:

Vhop(x) = Vho(x) + Vopt(x) + Vopt(y) + Vopt(z), x ∈ R3, Vopt(τ) = Sτ Eτ sin2(q̂τ τ), (2.6)

where q̂τ = 2π/λτ is the angular frequency of the laser beam, with wavelength λτ , that creates

the stationary 1D periodic lattice, Eτ = h̄2q̂2
τ/2m is the recoil energy, and Sτ is a dimensionless

parameter characterizing the intensity of the laser beam. The optical lattice potential has periodicity

Tτ = π/q̂τ = λτ/2 along the τ -axis (τ = x, y, z).



ANALYTICAL STUDY OF SINGLE COMPONENT BEC GROUND STATE 16

V. 3D box potential [94]:

Vbox(x) =





0, 0 < x, y, z < L,

∞, otherwise.
(2.7)

where L is the length of the box.

2.1.2 Dimensionless GPE

In order to scale (2.1) under the normalization (2.2), we introduce the following dimensionless

parameters [17]:

t̃ =
t

t0
, x̃ =

x

x0
, ψ̃

(
x̃, t̃

)
= x

3/2
0 ψ (x, t) , Ẽ(ψ̃) =

E(ψ)
E0

, (2.8)

where t0, x0 and E0 are the scaling parameters of dimensionless time, length and energy units,

respectively. Substituting (2.8) into (2.1), multiplying by t20/mx
1/2
0 , and removing all ˜ yield the

dimensionless GPE under normalization in 3D,

i
∂ψ(x, t)

∂t
=

(
−1

2
∇2 + V (x) + β|ψ(x, t)|2

)
ψ(x, t), x ∈ R3. (2.9)

The dimensionless energy functional E(ψ) is defined as

E(ψ) =
∫

R3

[
1
2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4

]
dx. (2.10)

The choices for the scaling parameters t0 and x0, the dimensionless potential V (x) with γy = t0ωy

and γz = t0ωz, the energy unit E0 = h̄/t0 = h̄2/mx2
0, and the interaction parameter β = 4πasN/x0

for different external trapping potentials are given below:

I. 3D harmonic oscillator potential:

t0 =
1
ωx

, x0 =
√

h̄

mωx
, V (x) =

1
2

(
x2 + γ2

yy2 + γ2
zz2

)
.
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II. 2D harmonic oscillator + 1D double well potential (type I):

t0 =
(

m

h̄ν4
x

)1/3

, x0 =
(

h̄

mν2
x

)1/3

, a =
â

x0
, V (x) =

1
2

[(
x2 − a2

)2
+ γ2

yy2 + γ2
zz2

]
.

III. 2D harmonic oscillator + 1D double well potential (type II):

t0 =
1
ωx

, x0 =
√

h̄

mωx
, a =

â

x0
, V (x) =

1
2

[
(|x| − a)2 + γ2

yy2 + γ2
zz2

]
.

IV. 3D harmonic oscillator + optical lattice potential:

t0 =
1
ωx

, x0 =
√

h̄

mωx
, kτ =

2π2x2
0Sτ

λ2
τ

, qτ =
2πx0

λτ
, τ = x, y, z,

V (x) =
1
2
(x2 + γ2

yy2 + γ2
zz2) + kx sin2(qxx) + ky sin2(qyy) + kz sin2(qzz).

V. 3D box potential:

t0 =
mL2

h̄
, x0 = L, V (x) =





0, 0 < x, y, z < 1,

∞, otherwise.

Under external potentials I–IV, in a disk-shape condensation, i.e. ωy ≈ 1/t0 and ωz À 1/t0 (⇔
γy ≈ 1 and γz À 1), following the procedure used in [13, 18, 75], the 3D GPE can be reduced to

a 2D GPE. Similarly, in a cigar-shaped condensation, i.e. ωy À 1/t0 and ωz À 1/t0 (⇔ γy À 1

and γz À 1), the 3D GPE can be reduced to a 1D GPE. This suggests us to consider a GPE in d

dimensions (d = 1, 2, 3):

i
∂

∂t
ψ(x, t) =

(
−1

2
∇2 + Vd(x) + βd|ψ(x, t)|2

)
ψ(x, t), x ∈ Ω ⊆ Rd, (2.11)

ψ(x, t) = 0, x ∈ Γ = ∂Ω, (2.12)

ψ(x, 0) = ψ0(x), x ∈ Ω; (2.13)

where βd is the scaled interacting parameter and Vd(x) is the scaled external potential.



ANALYTICAL STUDY OF SINGLE COMPONENT BEC GROUND STATE 18

There are two important invariants of (2.11), which are the normalization of the wavefunction

N(ψ) =
∫

Ω

|ψ(x, t)|2 dx ≡ N(ψ0) =
∫

Ω

|ψ0(x)|2 dx = 1, t ≥ 0 (2.14)

and the energy functional

E(ψ) =
∫

Ω

[
1
2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4

]
dx ≡ E(ψ0), t ≥ 0. (2.15)

The energy functional E(ψ) can be split into three parts, i.e. kinetic energy Ekin(ψ), potential energy

Epot(ψ) and interaction energy Eint(ψ), which are defined as

Eint(ψ) =
∫

Ω

βd

2
|ψ(x, t)|4dx, Epot(ψ) =

∫

Ω

Vd(x)|ψ(x, t)|2dx, (2.16)

Ekin(ψ) =
∫

Ω

1
2
|∇ψ(x, t)|2 dx, E(ψ) = Ekin(ψ) + Epot(ψ) + Eint(ψ). (2.17)

2.1.3 Stationary states

The magnitude square of the wavefunction, |ψ(x, t)|2, represents the probability density of finding a

particle at position x and time t. We are interested to find the stationary states of the Bose-Einstein

condensed system, whose probability density is independent of time. To find a stationary solution

of (2.11), we write

ψ(x, t) = e−iµtφ(x), (2.18)

where µ is the chemical potential of the condensate and φ(x) is a function independent of time.

Substituting (2.18) into (2.11) yields the equation

µ φ(x) =
(
−1

2
∇2 + V (x) + βd|φ(x)|2

)
φ(x), x ∈ Ω ⊆ Rd, (2.19)

for φ(x) under the normalization condition

‖φ‖2 :=
∫

Ω

|φ(x)|2 dx = 1. (2.20)
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This is a nonlinear eigenvalue problem with a constraint. Any eigenvalue µ can be computed from

its corresponding eigenfunction φ by

µ = µ(φ) =
∫

Ω

[
1
2
|∇φ(x)|2 + V (x)|φ(x)|2 + βd|φ(x)|4

]
dx

= E(φ) +
∫

Ω

βd

2
|φ(x)|4dx. (2.21)

In fact, the eigenfunctions of (2.19) under the constraint (2.20) are equivalent to the critical points

of the energy functional E(φ) over the unit sphere S = {φ | ‖φ‖ = 1, E(φ) < ∞}.

From mathematical point of view, the ground state of a BEC is defined as the solution of the

following minimization problem:

Find (µg, φg ∈ S) such that

Eg := E(φg) = min
φ∈S

E(φ), µg = µ(φg) = Eg +
∫

Ω

βd

2
|φg(x)|4 dx. (2.22)

When βd ≥ 0 and lim|x|→∞ V (x) = ∞, there exists a unique positive solution of the minimization

problem (2.22) [76]. It is easy to show that the ground state φg is an eigenfunction of (2.19). Other

eigenfunctions of (2.19) whose energies are larger than Eg are called the excited states in physics

literature.

2.2 Condensate Ground State with Repulsive Interaction

2.2.1 Box potential

In this section, we will present the asymptotic approximations for the ground and the excited states,

as well as their energy and chemical potential approximations up to o(1) in terms of βd, for a BEC

in a box potential, i.e. Vd(x) ≡ 0 and Ω = [0, 1]d in (2.19) [17]. Approximations will be presented

for both weakly interacting regime (βd → 0), and strongly repulsively interacting regime (βd →∞).

In this case, we have the following equalities between the energies and chemical potential:

Eint(φ) =
1
2

[µ(φ)− Ekin(φ)] , E(φ) = Ekin(φ) + Eint(φ). (2.23)
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2.2.1.1 Approximations in weakly interacting regime

When βd = 0, the problem (2.19)–(2.20) reduces to a linear eigenvalue problem, i.e.

µ φ(x) = −1
2
∇2φ(x), x ∈ Ω, φ(x)|Γ = 0, ‖φ‖ = 1. (2.24)

By applying separation of variables, a complete set of orthonormal eigenfunctions can be found as

φJ (x) =
d∏

m=1

φjm
(xm), φl(τ) =

√
2 sin(lπτ), l ∈ N, J = (j1, · · · , jd) ∈ Nd. (2.25)

The corresponding eigenvalues are

µJ =
d∑

m=1

µjm , µl =
1
2
l2π2, l ∈ N. (2.26)

From these solutions, we can get the ground state solution φg(x) = φ(1,···,1)(x). The corresponding

energy and chemical potential are Eg = µg = dπ2/2. All the other eigenfunctions are called the

excited states. Of course, these solutions can be viewed as approximations for the ground and the

excited states when βd = o(1), by dropping the nonlinear term on the right hand side of (2.19).

2.2.1.2 Thomas-Fermi approximation

In the strongly repulsively interacting regime (βd À 1), the diffusion term, i.e. the first term on the

right hand side of the time-independent GPE (2.19), can be dropped. This yields

µTF
g φTF

g (x) = βd

∣∣φTF
g (x)

∣∣2 φTF
g (x), x ∈ Ω. (2.27)

Such approximation is called the Thomas-Fermi (TF) approximation in physics. From (2.27), we

obtain

φTF
g (x) =

√
µTF

g

βd
, x ∈ Ω. (2.28)

Substituting (2.28) into the normalization condition (2.20) gives

1 =
∫

Ω

|φTF
g (x)|2 dx =

∫

Ω

µTF
g

βd
dx =

µTF
g

βd
⇒ µTF

g = βd. (2.29)
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Noticing (2.21), we get the Thomas-Fermi energy

ETF
g = µTF

g − βd

2

∫

Ω

|φTF
g |4 dx =

µTF
g

2
=

βd

2
. (2.30)

Therefore, when βd À 1 the TF approximation for the ground state, the energy, and the chemical

potential are given by

φg(x) ≈ φTF
g (x) = 1, x ∈ Ω, (2.31)

Eg ≈ ETF
g =

βd

2
, µg ≈ µTF

g = βd. (2.32)

It is easy to see that the TF approximation for the ground state does not satisfy the zero boundary

conditions (2.12), due to the removal of the diffusion term in (2.19). This suggests that boundary

layers appear in the ground state when βd À 1. Due to existence of the boundary layers, the kinetic

energy does not converge to zero when βd → ∞ and therefore it cannot be neglected. In the next

section, we will present a better approximation by applying the matched asymptotic method.

2.2.1.3 Ground state in 1D

When d = 1, Vd(x) ≡ 0 and Ω = [0, 1] in the GPE (2.19), boundary layers exist at the two boundaries

x = 0 and x = 1. We therefore solve (2.19) near x = 0 and x = 1 separately. Firstly, we consider

0 ≤ x ≤ 1/2 and rescale (2.19) by introducing

x =
1√
µg

X, φ(x) =
√

µg

β1
Φ(X), (2.33)

where µg ≈ β1 is the chemical potential of the ground state. Substituting (2.33) into (2.19) yields

Φ(X) = −1
2
ΦXX(X) + Φ3(X), 0 ≤ X < ∞, (2.34)

Φ(0) = 0, lim
X→∞

Φ(X) = 1. (2.35)

Solving (2.34)–(2.35), we obtain

Φ(X) = tanh (X) , 0 ≤ X < ∞. (2.36)
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Substituting (2.36) into (2.33), an approximation for φg(x) near x = 0 when β1 À 1 is obtained as

φg(x) ≈
√

µg

β1
tanh

(√
µgx

)
, 0 ≤ x < 1/2. (2.37)

Similarly, an approximation for φg(x) near x = 1 when β1 À 1 is found to be

φg(x) ≈
√

µg

β1
tanh

(√
µg(1− x)

)
, 1/2 < x ≤ 1. (2.38)

Applying the matched asymptotic method to (2.37) and (2.38), we get an approximation for the

ground state when β1 À 1:

φg(x) ≈ φMA
g (x) (2.39)

=

√
µMA

g

β1

[
tanh

(√
µMA

g x
)

+ tanh
(√

µMA
g (1− x)

)
− tanh

(√
µMA

g

)]
.

Substituting (2.39) into (2.20), and making an approximation of e−α ≈ 0 for α À 1 during the

evaluation of integral, we obtain

1 =
∫ 1

0

|φMA
g (x)|2 dx ≈ µMA

g

β1
− 2

√
µMA

g

β1
. (2.40)

Solving (2.40) yields the matched asymptotic chemical potential,

µg ≈ µMA
g = β1 + 2

√
β1 + 1 + 2 = µTF

g + 2
√

β1 + 1 + 2, β1 À 1. (2.41)

Substituting (2.39) into (2.16)–(2.17) yields the matched asymptotic energies,

Ekin,g ≈ EMA
kin,g =

2
3

√
β1 + 1 + 2, (2.42)

Eint,g ≈ EMA
int,g =

β1

2
+

2
3

√
β1 + 1, β1 À 1, (2.43)

Eg ≈ EMA
g =

β1

2
+

4
3

√
β1 + 1 + 2. (2.44)

From the above asymptotic results, we draw the following conclusions:

(i) The width of the boundary layer in the matched asymptotic approximation is O(1/
√

β1).
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1/β1 4/25 2/25 1/25 1/50 1/100 1/400
max |φg − φMA

g | 8.17E-3 9.24E-4 4.67E-5 8E-7 – – – –
‖φg − φMA

g ‖L2 6.84E-3 8.05E-4 4.11E-5 6E-7 – – – –
|Ekin,g − EMA

kin,g| 1.3018 0.9479 0.6464 0.4340 0.2946 0.1399
Rate 0.4577 0.5523 0.5747 0.5589 0.5372
|Eint,g − EMA

int,g| 0.5948 0.4608 0.3218 0.2171 0.1473 0.0701
Rate 0.3683 0.5180 0.5678 0.5596 0.5356
|Eg − EMA

g | 0.7071 0.4871 0.3245 0.2171 0.1472 0.0698
Rate 0.5377 0.5860 0.5799 0.5606 0.5382
|µg − µMA

g | 0.1124 0.0263 0.0027 0.0001 – – – –
Eg/µg 0.6854 0.6234 0.5813 0.5543 0.5368 0.5175
Eint,g/Eg 0.4591 0.6042 0.7204 0.8042 0.8628 0.9323
Ekin,g/Eg 0.5409 0.3958 0.2796 0.1958 0.1372 0.0677

Table 2.1: Convergence study of the matched asymptotic approximation for the BEC
ground state in 1D box potential when β1 À 1.

(ii) The ratios between the energies satisfy

lim
β1→∞

Eg

µg
=

1
2
, lim

β1→∞
Eint,g

Eg
= 1, lim

β1→∞
Ekin,g

Eg
= 0. (2.45)

To verify (2.39), (2.41)–(2.45) numerically, we compute and list the errors between the numeri-

cally computed ground state and its matched asymptotic approximation in Table 2.1 (the numerical

method will be introduced in Chapter 3). Figure 2.1 (a) shows the numerically computed ground

state for different β1. Here and below, the convergence rate of a function f(α) as α → 0 is computed

as: ln[f(2α)/f(α)]/ ln 2.

From Table 2.1 and Figure 2.1 (a), we draw the following conclusions:

(1) The matched asymptotic approximation converges to the ground state, when β1 →∞, with

a convergence rate

max |φg − φMA
g | = O(e−3

√
β1/2), ‖φg − φMA

g ‖L2 = O(e−3
√

β1/2), β1 À 1.

(2) The asymptotic approximations (2.41)–(2.45) are verified. Furthermore, the numerical results

suggest the following convergence rates:

Ekin,g = EMA
kin,g + O(1/

√
β1), Eint,g = EMA

int,g + O(1/
√

β1),

Eg = EMA
g + O(1/

√
β1), µg = µMA

g + O(e−3
√

β1/2), β1 À 1.
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(3) Boundary layers are observed at x = 0 and x = 1 in the ground state when β1 À 1, and the

width of the layers is about 2/
√

β1. The width of the boundary layer is measured numerically from

the wavefunction changing from 0 to 1/
√

2 ≈ 0.7071.

2.2.1.4 Excited states in 1D

Applying similar procedure used in approximating the BEC ground state solution, we construct the

matched asymptotic approximations for the excited states in 1D box potential in the Thomas-Fermi

regime. When β1 À 1, the kth (k ∈ N) excited state has two boundary layers located at x = 0 and

x = 1, and k interior layers located at x = j/(k + 1) (j = 1, · · · , k). Using the matched asymptotic

method, an approximation φMA
k (x) for the kth excited state φk (k ∈ N) is obtained as

φk(x) ≈ φMA
k (x) =

√
µMA

k

β1

[
[(k+1)/2]∑

j=0

tanh
(√

µMA
k

(
x− 2j

k + 1

))

+
[k/2]∑

j=0

tanh
(√

µMA
k

(
2j + 1
k + 1

− x

))
− Ck tanh

(√
µMA

k

)]
, k ∈ N, (2.46)

where [τ ] is the integer part of the real number τ , and constant Ck is given by

Ck =





1, k even,

0, k odd,
n ∈ N.

Substituting (2.46) into (2.20), we get

1 =
∫ 1

0

|φMA
k (x)|2 dx ≈ µMA

k

β1


1− 2(k + 1)√

µMA
k


 . (2.47)

Solving (2.47) yields the chemical potential of the kth excited state,

µk ≈ µMA
k = β1 + 2(k + 1)

√
β1 + (k + 1)2 + 2(k + 1)2, k ∈ N. (2.48)

Substituting (2.46) into (2.16)–(2.17) gives the matched asymptotic energies,

Ekin,k ≈ EMA
kin,k =

2
3
(k + 1)

√
β1 + (k + 1)2 + 2(k + 1)2, (2.49)

Eint,k ≈ EMA
int,k =

β1

2
+

2
3
(k + 1)

√
β1 + (k + 1)2, k ∈ N, β1 À 1, (2.50)
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Ek ≈ EMA
k =

β1

2
+

4
3
(k + 1)

√
β1 + (k + 1)2 + 2(k + 1)2. (2.51)

From (2.41)–(2.44) and (2.48)–(2.51), we can formally draw the following conclusion when β1 À 1:

If all eigenfunctions, i.e. φg, φ1, φ2, · · ·, of the nonlinear eigenvalue problem (2.21) are ranked

according to their energies, then the corresponding eigenvalues (or chemical potentials) are ranked

in the increasing order, i.e.

E(φg) < E(φ1) < E(φ2) < · · · =⇒ µ(φg) < µ(φ1) < µ(φ2) < · · · . (2.52)

This suggests that the two definitions of the ground state used in physics literature, i.e. (1) solution

of the minimization problem (2.22), (2) eigenfunction of the nonlinear eigenvalue problem (2.19)

with the smallest eigenvalue, are equivalent. Furthermore, we have

lim
β1→∞

Ek

Eg
= 1, lim

β1→∞
µk

µg
= 1, lim

β1→∞
Ek

µg
=

1
2
, (2.53)

lim
β1→∞

Eint,k

Ek
= 1, lim

β1→∞
Ekin,k

Ek
= 0, k ∈ N. (2.54)

Again, to verify the results (2.46), (2.48)–(2.54) numerically, we compute and list the errors

between the numerically computed first and fifth excited states and their matched asymptotic ap-

proximations in Tables 2.2&2.3 . Table 2.4 lists the energies and chemical potentials of the ground

state and the first five excited states for different β1. Furthermore, Figure 2.1(b)&(c) show the

numerical solutions of the first and the fifth excited states for different β1.

From Tables 2.2–2.4 and Figure 2.1(b)&(c), we draw the following conclusions for the excited

states:

(1) Conclusions (1) and (2) for the ground state in the previous section are still valid for the

excited states.

(2) Boundary layers at x = 0 and x = 1, and interior layers at x = j/(k + 1) (j = 1, · · · , k) are

observed in the kth excited state when β1 À 1. The width of the boundary layers is about 2/
√

β1

and that of the interior layers is about 4/
√

β1.

(3) Conclusions (2.52)–(2.54) are confirmed by our numerical results. In fact, (2.52) is valid for

all β1 ≥ 0.
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1/β1 1/25 1/50 1/100 1/400 1/1600 1/6400
max |φ1 − φMA

1 | 6.44E-3 7.12E-4 3.54E-5 – – – – – –
‖φ1 − φMA

1 ‖L2 5.28E-3 6.02E-4 2.99E-5 – – – – – –
|Ekin,1 − EMA

kin,1| 5.2073 3.7918 2.5854 1.1783 0.5597 0.2700
Rate 0.4577 0.5525 0.5668 0.5370 0.5258
|Eint,1 − EMA

int,1| 2.3788 1.8432 1.2874 0.5894 0.2804 0.1367
Rate 0.3680 0.5178 0.5636 0.5359 0.5182
|E1 − EMA

1 | 2.8285 1.9487 1.2981 0.5890 0.2794 0.1333
Rate 0.5375 0.5861 0.5700 0.5380 0.5338
|µ1 − µMA

1 | 0.4496 0.1055 0.0106 0.0003 – – – –
E1/µ1 0.6854 0.6241 0.5813 0.5368 0.5175 0.5085
Eint,1/E1 0.4591 0.6042 0.7204 0.8628 0.9323 0.9664
Ekin,1/E1 0.5409 0.3958 0.2796 0.1372 0.0677 0.0336

Table 2.2: Convergence study of the matched asymptotic approximation for the BEC
first excited state in 1D box potential when β1 À 1.

1/β1 1/50 1/100 1/400 1/1600 1/6400 1/12800
max |φ5 − φMA

5 | 0.1451 0.0437 0.0011 – – – – – –
‖φ5 − φMA

5 ‖L2 0.1072 0.0337 0.0009 – – – – – –
|Ekin,5 − EMA

kin,5| 68.955 60.445 36.230 16.711 7.7560 5.3607
Rate 0.1900 0.3692 0.5582 0.5537 0.5329
|Eint,5 − EMA

int,5| 25.409 24.679 17.477 8.3534 3.8800 2.6840
Rate 0.0421 0.2489 0.5325 0.5532 0.5317
|E5 − EMA

5 | 43.546 35.766 18.754 8.3580 3.8760 2.6766
Rate 0.2840 0.4657 0.5830 0.5543 0.5342
|µ5 − µMA

5 | 18.137 11.087 1.2770 0.0046 0.0040 – –
E5/µ5 0.8541 0.7772 0.6325 0.5581 0.5269 0.5186
Eint,5/E5 0.1708 0.2867 0.5811 0.7919 0.8977 0.9281
Ekin,5/E5 0.8292 0.7133 0.4189 0.2081 0.1023 0.0719

Table 2.3: Convergence study of the matched asymptotic approximation for the BEC
fifth excited state in 1D box potential when β1 À 1.

2.2.1.5 Extension to high dimensions

The matched asymptotic approximation for the 1D ground state can be extended to d dimensions

(d > 1). Similar to the 1D case, we can find the approximation for the ground state in d dimensions

with x = (x1, · · · , xd)T as

φg(x) ≈ φMA
g (x) (2.55)

=

√
µMA

g

βd

d∏

j=1

[
tanh

(√
µMA

g xj

)
+ tanh

(√
µMA

g (1− xj)
)
− tanh

(√
µMA

g

)]
.
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Figure 2.1: Ground state and excited states of BEC in 1D box potential for increasing
β1 (in the order of decreasing peak). (a) Ground state for β1 = 0, 6.25, 25, 100, 400, 6400;
(b) first excited state for β1 = 0, 25, 100, 400, 6400; (c) fifth excited state for β1 =
0, 400, 1600, 12800.

β1 0 25 100 400 1600 6400 25600
Eg 4.9348 21.623 65.547 228.77 855.38 3308.7 13015
E1 19.739 37.689 86.493 262.19 915.08 3421.5 13235
E2 44.413 62.765 114.45 300.98 979.42 3538.7 13458
E3 78.956 97.473 150.76 345.97 1048.8 3660.3 13686
E4 123.37 141.97 196.17 397.99 1123.5 3786.6 13917
E5 177.65 196.30 251.06 457.80 1203.9 3917.7 14153
µg 4.9348 37.201 122.10 442.05 1682.0 6562.0 25922
µ1 19.739 54.990 148.80 488.40 1768.2 6728.1 26248
µ2 44.413 80.758 180.96 539.34 1858.7 6898.3 26578
µ3 78.956 151.77 219.96 595.21 1953.6 7072.8 26912
µ4 123.37 160.42 267.06 656.48 2053.1 7251.6 27251
µ5 177.65 214.83 323.03 723.84 2157.4 7434.7 27593

Table 2.4: Energies and chemical potentials for the ground state and the first five excited
states of BEC in 1D box potential.
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Substituting (2.55) into (2.20), we obtain

1 =
∫

(0,1)d

|φMA
g (x)|2dx ≈ µMA

g

βd


1− 2√

µMA
g




d

. (2.56)

Solving (2.56) yields an approximation for the chemical potential when βd À 1, i.e.

µg ≈ µMA
g = βd + 2d

√
βd + d(2− d) + 2d, d > 1. (2.57)

Similarly, the approximations for different energies of the ground state are obtained as follows:

Ekin,g ≈ EMA
kin,g =

2d

3

√
βd + d(2− d) +

2d

3
(d + 2) , (2.58)

Eint,g ≈ EMA
int,g =

βd

2
+

2d

3

√
βd + d(2− d) +

1
3
d(1− d), d > 1, (2.59)

Eg ≈ EMA
g =

βd

2
+

4d

3

√
βd + d(2− d) +

1
3
d(d + 5). (2.60)

2.2.2 Non-uniform potential

In this section, we will find the energy and chemical potential asymptotics up to o(1) in terms of

βd for a BEC confined within a non-uniform external potential, i.e. Vd(x) 6= 0 and Ω = Rd in

(2.19) [17]. When βd À 1, we can ignore the kinetic energy term in the GPE (2.19) and derive the

Thomas-Fermi (TF) approximation:

µTF
g φTF

g (x) = Vd(x)φTF
g (x) + βd|φTF

g (x)|2φTF
g (x), x ∈ Rd. (2.61)

Solving (2.61), we obtain the TF approximation for the ground state:

φTF
g (x) =





√(
µTF

g − Vd(x)
)
/βd, Vd(x) ≤ µTF

g ,

0, otherwise,
(2.62)

where µTF
g is determined from the normalization condition

‖φTF
g ‖2 :=

∫

Rd

|φTF
g (x)|2 dx = 1. (2.63)

Due to the fact that φTF
g (x) is not differentiable at Vd(x) = µTF

g , E(φTF
g ) = ∞ and Ekin(φTF

g ) = ∞.

Therefore, one cannot use the definitions (2.15) and (2.17) to define the total energy and kinetic
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energy of the TF approximation (2.62). Noticing (2.17) and (2.21), as proposed in [12, 18, 21], we

use the following way to calculate the total energy and the kinetic energy:

ETF
g ≈ Eg = E(φg) = µ(φg)− Eint(φg) ≈ µTF

g − ETF
int,g , (2.64)

ETF
kin,g ≈ Ekin,g = E(φg)− Eint(φg)− Epot(φg) ≈ ETF

g − ETF
int,g − ETF

pot,g , (2.65)

where

ETF
int,g = Eint(φTF

g ), ETF
pot,g = Epot(φTF

g ).

2.2.2.1 Harmonic oscillator potential

For a 1D BEC in a harmonic oscillator potential, we take d = 1 and V1(x) = γ2
xx2/2 with γx > 0 in

(2.62). Substituting (2.62) into (2.63), we obtain

1 =
∫ ∞

−∞
|φTF

g |2 dx =
2
3

(
2µTF

g

)3/2

β1γx
. (2.66)

Solving (2.66) yields the chemical potential asymptotic when β1 À 1,

µg ≈ µTF
g =

1
2

(
3β1γx

2

)2/3

. (2.67)

Substituting (2.62) in this case into (2.16), we obtain the Thomas-Fermi energies

Eint,g ≈ ETF
int,g =

1
5

(
3βγx

2

)2/3

, Epot,g ≈ ETF
pot,g =

1
10

(
3βγx

2

)2/3

, (2.68)

Eg ≈ ETF
g =

3
10

(
3βγx

2

)2/3

, Ekin,g ≈ ETF
kin,g = 0. (2.69)

From (2.67)–(2.69), it can be easily found that

lim
β1→∞

Eg

µg
=

3
5
, lim

β1→∞
Eint,g

Eg
=

2
3
, lim

β1→∞
Epot,g

Eg
=

1
3
. (2.70)

To verify the TF approximation (2.62) in this case and the TF energies (2.67)–(2.70) , we compute

and list the errors between the numerically calculated ground state and its TF approximation in

Table 2.5. In Table 2.6, we list the energies and chemical potentials of the ground state and the

first excited state. Furthermore, Figure 2.2 shows the ground state and the first excited state for

different β1.
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Figure 2.2: Ground state (left) and first excited state (right) of BEC in 1D harmonic
oscillator potential V1(x) = x2/2 for β1 = 0, 6.25, 25, 100, 400, 1600 (in the order of
decreasing peaks).

1/β1 1/100 1/200 1/400 1/800 1/1600 1/6400
max |φg − φTF

g | 0.0788 0.0605 0.0464 0.0355 0.0272 0.0159
Rate 0.3807 0.3836 0.3840 0.3852 0.3872
‖φg − φTF

g ‖L2 0.0571 0.04230 0.0312 0.0230 0.0170 0.0092
Rate 0.4350 0.4371 0.4389 0.4404 0.4427
|Epot,g − ETF

pot,g| 0.0246 0.0171 0.0118 0.0080 0.0054 0.0023
Rate 0.5238 0.5383 0.5528 0.5687 0.6196
|Eint,g − ETF

int,g| 0.0204 0.0144 0.0101 0.0070 0.0047 0.0021
Rate 0.4980 0.5167 0.5348 0.5531 0.6051
Ekin,g − 0 0.0350 0.0245 0.0170 0.0117 0.0080 0.0037
Rate 0.5134 0.5267 0.5381 0.5478 0.5599
|Eg − ETF

g | 0.0392 0.0272 0.0187 0.0128 0.0087 0.0039
Rate 0.5280 0.5394 0.5492 0.5582 0.5725
|µg − µTF

g | 0.0188 0.0128 0.0086 0.0058 0.0039 0.0019
Rate 0.5613 0.5651 0.5659 0.5638 0.5329
Eg/µg 0.6020 0.6009 0.6004 0.6002 0.6001 0.6000
Eint,g/Eg 0.6612 0.6643 0.6656 0.6662 0.6665 0.6666
Epot,g/Eg 0.3347 0.3339 0.3336 0.3334 0.3334 0.3333

Table 2.5: Convergence study for the TF approximation of BEC ground state in 1D
harmonic oscillator potential V1(x) = x2/2.

β1 0 25 100 400 1600 6400 25600
Eg 0.5000 3.4402 8.5085 21.360 55.786 135.51 341.46
E1 1.5000 4.2115 9.2419 22.078 54.497 136.22 342.17
µg 0.5000 5.6421 14.134 35.578 89.632 225.85 569.10
µ1 1.5000 6.3732 14.850 36.288 90.340 226.56 569.80

Table 2.6: Energies and chemical potentials of the ground state and the first excited
state of a BEC in 1D harmonic oscillator potential V1(x) = x2/2.
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From Tables 2.5&2.6 and Figure 2.2, we draw the following conclusions:

(1) The TF approximation converges to the ground state, when β1 →∞, with convergence rate

θ1 = 2/5, i.e.

max |φg − φTF
g | = O

(
ln β1

βθ1
1

)
, ‖φg − φTF

g ‖L2 = O

(
ln β1

βθ1
1

)
.

(2) The TF approximation (2.62) in a harmonic oscillator potential and (2.67)–(2.70) are verified.

Furthermore, the numerical results suggest a convergence rate of θ2 = 2/3 for the energies and

chemical potential in the following way:

Ekin,g = O

(
ln β1

βθ2
1

)
, Eint,g = ETF

int,g + O

(
ln β1

βθ2
1

)
, Epot,g = ETF

pot,g + O

(
ln β1

βθ2
1

)
,

Eg = ETF
g + O

(
β1

βθ2
1

)
, µg = µTF

g + O

(
β1

βθ2
1

)
, β1 À 1.

(3) Interior layer is observed at x = 0 in the first excited state when β1 À 1 and the width of

the layer is O(1/β
1/3
1 ).

(4) The energies and chemical potentials of the ground and the first excited states are in the

same order for any β1 ≥ 0, i.e.

E(φg) < E(φ1) =⇒ µ(φg) < µ(φ1).

2.2.2.2 Double well potential

While considering a 1D BEC in a double well potential, we take d = 1 and V1(x) = γ4
x(x2 − a2)2/2

with γx > 0 and a ≥ 0, in (2.62). Substituting (2.62) into (2.63) yields

1 =
∫ ∞

−∞
|φTF

g (x)|2 dx =
4

15β1γx

(
6µTF

g + a2γ2
x

√
2µTF

g − 2a4γ4
x

) √√
2µTF

g + a2γ2
x. (2.71)

Solving (2.71), we get the TF approximation for the chemical potential,

µg ≈ µTF
g =

1
8
(50β2

1γ2
x)2/5 − a2γ2

x

6
(50β2

1γ2
x)1/5 +

7a4γ4
x

18
. (2.72)
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Substituting (2.62) in this case into (2.16) gives the Thomas-Fermi energies

Eint,g ≈ ETF
int,g =

1
18

(
50β2

1γ2
x

)2/5 − a2γ2
x

21
(
50β2

1γ2
x

)1/5
, (2.73)

Epot,g ≈ ETF
pot,g =

1
72

(
50β2

1γ2
x

)2/5 − a2γ2
x

14
(
50β2

1γ2
x

)1/5
+

7a4γ4
x

18
, (2.74)

Eg ≈ ETF
g =

5
72

(
50β2

1γ2
x

)2/5 − 5
42

a2γ2
x

(
50β2

1γ2
x

)1/5
+

7a4γ4
x

18
, (2.75)

Ekin,g ≈ ETF
kin,g = 0. (2.76)

From (2.72)–(2.75), we obtain

lim
β1→∞

Eg

µg
=

5
9
, lim

β1→∞
Eint,g

Eg
=

4
5
, lim

β1→∞
Epot,g

Eg
=

1
5
. (2.77)

To verify the TF approximation (2.62) in the double well and the TF energies (2.72)–(2.77), we

compute and list the errors between the numerically computed ground state and its TF approxima-

tion in Table 2.7. Table 2.8 lists the energies and chemical potentials of the ground and the first

excited states, for the case of d = 1 and V1(x) = (x2 − 32)2/2 in (2.19). Furthermore, Figure 2.3

shows the ground state and the first excited state for different β1.
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Figure 2.3: Ground state (left) and first excited state (right) of BEC in type I double
well potential V1(x) = (x2 − 32)/2 for β1 = 0, 12.5, 50, 200, 800, 6400 (in the order of
decreasing peaks).

From Tables 2.7&2.8 and Figure 2.3, conclusions (1)–(4) in section 2.2.2.1 are still valid except

that θ1, θ2 are to be replaced by θ1 = 2/5, θ2 = 2/5 and the width of the interior layers is O(1/β
3/10
1 ).

[Remark] In physics literature [33, 67], another type of double well potential, i.e. d = 1 and

V1(x) = γ2
x(|x| − a)2/2 with γx > 0 and a ≥ 0 is also used. In this case, the following TF approxi-
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1/β1 1/100 1/400 1/1600 1/6400 1/25600 1/51200
max |φg − φTF

g | 0.1260 0.0915 0.0634 0.0429 0.0286 0.0233
Rate 0.2312 0.2638 0.2824 0.2921 0.2950
‖φg − φTF

g ‖L2 0.2238 0.0495 0.0254 0.0149 0.0087 0.0066
Rate 1.0888 0.4806 0.3865 0.3892 0.3958
|Epot,g − ETF

pot,g| 18.824 8.7812 4.0019 2.0167 1.0758 0.7963
Rate 0.5500 0.5669 0.4943 0.4533 0.4340
|Eint,g − ETF

int,g| 6.0436 3.1554 1.3089 0.6176 0.3157 0.2303
Rate 0.4688 0.6347 0.5418 0.4841 0.4550
Ekin,g − 0 0.3982 0.1460 0.0854 0.0565 0.0376 0.0306
Rate 0.7238 0.3868 0.2980 0.2938 0.2972
|Eg − ETF

g | 12.382 5.4797 2.6076 1.3426 0.7225 0.5355
Rate 0.5880 0.5357 0.4788 0.4470 0.4321
|µg − µTF

g | 6.3386 2.3244 1.2986 0.7249 0.4067 0.3051
Rate 0.7237 0.4180 0.4206 0.4169 0.4147
Eg/µg 0.6212 0.6182 0.5671 0.5482 0.5465 0.5476
Eint,g/Eg 0.6099 0.6175 0.7632 0.8240 0.8297 0.8263
Epot,g/Eg 0.3674 0.3789 0.2359 0.1758 0.1703 0.1737

Table 2.7: Convergence study of the TF approximation of BEC ground state in type I
double well potential V1(x) = (x2 − 32)2/2.

β1 0 25 100 400 1600 3200 25600
Eg 2.9716 7.8639 17.555 40.357 105.56 320.41 1011.3
E1 2.9716 7.8639 17.555 40.790 107.05 323.06 1015.3
µg 2.9716 11.990 28.261 65.277 186.14 584.43 1850.4
µ1 2.9716 11.990 28.261 66.396 188.42 587.99 1855.5

Table 2.8: Energies and chemical potentials of the ground and the first excited states of
a BEC in type I double well potential V1(x) = (x2 − 32)2/2.

mations are obtained:

µg ≈ µTF
g =

1
2

(
3β1γx

2

)2/3

− aγx

2

(
3β1γx

2

)1/3

+
3
8
a2γ2

x, (2.78)

Eint,g ≈ ETF
int,g =

1
5

(
3β1γx

2

)2/3

− aγx

8

(
3β1γx

2

)1/3

, (2.79)

Epot,g ≈ ETF
pot,g =

1
10

(
3β1γx

2

)2/3

− aγx

4

(
3β1γx

2

)1/3

+
3
8
a2γ2

x, (2.80)

Eg ≈ ETF
g =

3
10

(
3β1γx

2

)2/3

− 3aγx

8

(
3β1γx

2

)1/3

+
3
8
a2γ2

x, (2.81)

Ekin,g ≈ ETF
kin,g = 0, (2.82)

lim
β1→∞

Eg

µg
=

3
5
, lim

β1→∞
Eint,g

Eg
=

2
3
, lim

β1→∞
Epot,g

Eg
=

1
3
. (2.83)
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2.2.2.3 Optical lattice potential

For a 1D BEC in a harmonic plus optical lattice potential, we take d = 1 and V1(x) = γ2
xx2/2 +

kx sin2(qxx) in (2.62). Substituting (2.62) into (2.63) yields

1 =
∫ ∞

−∞
|φTF

g (x)|2 dx ≈ 1
3β1γx

(
2
√

(2µTF
g )3 − kx

√
2µTF

g

)
. (2.84)

Solving (2.84), we get

µg ≈ µTF
g =

1
2

(
3β1γx

2

)2/3

+
kx

2
. (2.85)

Substituting (2.62) in this case into (2.16) gives

Eint,g ≈ ETF
int,g =

1
5

(
3β1γx

2

)2/3

, Epot,g ≈ ETF
pot,g =

1
10

(
3β1γx

2

)2/3

+
kx

2
, (2.86)

Eg ≈ ETF
g =

3
10

(
3β1γx

2

)2/3

+
kx

2
, Ekin,g ≈ ETF

kin,g = 0. (2.87)

From (2.85)–(2.87), we obtain

lim
β1→∞

Eg

µg
=

3
5
, lim

β1→∞
Eint,g

Eg
=

2
3
, lim

β1→∞
Epot,g

Eg
=

1
3
. (2.88)

To verify the approximation (2.62) in this case and the TF energies (2.85)–(2.88), we compute

and list the errors between the numerically computed ground state and its TF approximation in

Table 2.9. In Table 2.10, we list the energies and chemical potentials of the ground and the first

excited states for V1(x) = x2/2 + 25 sin2(πx/4). Figure 2.4 shows the ground state and the first

excited state for different β1.

From Tables 2.9&2.10 and Figure 2.4, conclusions (1)–(4) in section 2.2.2.1 are valid except that

θ1, θ2 are to be replaced by θ1 = 2/5, θ2 = 2/3 and the width of the interior layers is O(1/β
1/3
1 ).

2.2.2.4 Extension to general case

For a BEC in a general d-dimensional potential, Vd(x) = V0(x) + W (x) satisfying

V0(x) =
1
2
(γα

1 |x1|α + · · ·+ γα
d |xd|α), lim

|x|→∞
W (x)
V0(x)

= 0, (2.89)
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Figure 2.4: Ground state (upper row) and first excited state (lower row) of a BEC in
optical lattice potential V1(x) = x2/2 + 25 sin2(πx/4) for β1 = 0 (left column), β1 = 400
(middle column) and β1 = 1600 (right column).

1/β1 1/100 1/400 1/1600 1/3200 1/25600
max |φg − φTF

g | 0.3963 0.1544 0.0699 0.0366 0.0190
Rate 0.6800 0.5717 0.9334 0.3647
‖φg − φTF

g ‖L2 0.8257 0.3471 0.1569 0.0952 0.0313
Rate 0.6251 0.5728 0.7208 0.5305
|Epot,g − ETF

pot,g| 5.8815 2.2310 0.7943 0.3403 0.0857
Rate 1.1282 0.3160 1.2229 0.5203
|Eint,g − ETF

int,g| 1.8585 0.6681 0.1102 0.0638 0.0282
Rate 0.7380 1.3000 0.7885 0.8623
Ekin,g − 0 0.2928 0.0727 0.0193 0.0103 0.0022
Rate 1.0049 0.9567 0.9060 0.7357
|Eg − ETF

g | 3.7301 1.4902 0.6648 0.3936 0.1117
Rate 0.6619 0.5823 0.7562 0.6188
|µg − µTF

g | 1.8716 0.8222 0.5547 0.4571 0.1400
Rate 0.6340 0.5934 0.5678 0.1793
Eg/µg 0.6967 0.6847 0.6460 0.6316 0.6086
Eint,g/Eg 0.4353 0.4604 0.5481 0.5832 0.6433
Epot,g/Eg 0.5477 0.5373 0.4516 0.4167 0.3567

Table 2.9: Convergence study of the TF approximation of BEC ground state in optical
lattice potential V1(x) = x2/2 + 25 sin2(πx/4).

with x = (x1, · · · , xd)T , α > 0, γj > 0, 1 ≤ j ≤ d, substituting the TF approximation (2.62) into

normalization condition (2.63) gives

1 =
∫

Rd

|φTF
g (x)|2dx ≈ (2µTF

g )(α+d)/α

2βd

∏d
j=1 γxj

Cα,d, (2.90)
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β1 0 25 100 400 1600 6400 25600
Eg 2.7447 9.7896 17.239 32.351 65.612 147.75 353.85
E1 8.0708 12.382 18.884 33.438 66.468 148.51 354.58
µg 2.7447 13.595 24.744 47.247 101.57 237.99 581.46
µ1 8.0708 15.192 25.868 48.041 102.34 238.72 582.18

Table 2.10: Energies and chemical potentials of the ground and the first excited states
of a BEC in optical lattice potential V1(x) = x2/2 + 25 sin2(πx/4).

where Cα,d is given by

Cα,d =
∫
∑d

j=1
|xj |α≤1


1− 2

d∑

j=1

|xj |α

 dx. (2.91)

Solving (2.90) yields

µTF
g =

1
2

(
2βd

∏d
j=1 γxj

Cα,d

)α/(α+d)

. (2.92)

Substituting (2.62) into (2.16), we get the Thomas-Fermi energies as

Eint,g ≈ ETF
int,g =

Dα,d

4Cα,d

(
2βd

∏d
j=1 γxj

Cα,d

)α/(α+d)

, (2.93)

Epot,g ≈ ETF
pot,g =

Cα,d −Dα,d

2Cα,d

(
2βd

∏d
j=1 γxj

Cα,d

)α/(α+d)

, (2.94)

Eg ≈ ETF
g =

Gα,d

4Cα,d

(
2βd

∏d
j=1 γxj

Cα,d

)α/(α+d)

, Gα,d = 2Cα,d −Dα,d, (2.95)

where Dα,d is given by

Dα,d =
∫
∑d

j=1
|xj |α≤1


1− 2

d∑

j=1

|xj |α



2

dx. (2.96)

From (2.92)–(2.95), we obtain

lim
βd→∞

Eg

µg
=

Gα,d

2Cα,d
, lim

βd→∞
Eint,g

Eg
=

Dα,d

Gα,d
, lim

βd→∞
Epot,g

Eg
=

2(Cα,d −Dα,d)
Gα,d

. (2.97)
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2.3 Condensate Ground State with Attractive Interaction in

One Dimension

Various studies have been carried out to investigate the ground state of Bose-Einstein condensate, in

particular the condensate with repulsive interaction, whose ground state is unique and is symmetric

in a symmetric trapping potential [76]. As discussed in section 2.2, the ground state of a weakly

interacting condensate may be approximated by non-interacting BEC ground state, while the ground

state of a strongly repulsively interacting condensate can be obtained asymptotically through the

Thomas-Fermi approximation. For condensate in which particles interact attractively, the ground

state may not be unique, depending on the type of the confining potential. In spite of the symmetry

of the external trapping potential, the symmetry of the stationary states may be broken when the

interaction becomes large.

There are two types of trapping potentials allow the analytical solution of the GPE (2.19) under

attractive interaction (β < 0) to be studied up to date: uniform potential subject to periodic bound-

ary conditions and double square well potential subject to zero boundary conditions. Condensate

in a ring shape uniform potential can be described by a 1D GPE,

µφ(θ) = −1
2

d2

dθ2
φ(θ) + β|φ(θ)|2φ(θ), 0 ≤ θ < 2π, (2.98)

with ∫ 2π

0

|φ(θ)|2 dθ = 1. (2.99)

The condensate is uniformly distributed for both non-interacting case (β = 0) and repulsively

interacting case (β > 0). For attractively interacting condensate, the translational symmetry is

spontaneously broken when β < −2π and the lowest energy stationary state is a bright soliton

[71, 73]. The ground state can be expressed in terms of the Jacobian elliptic functions [71]. For

attractive BEC in a 1D double square well, Mahmud et al. [79] have studied the analytical solutions

through the Jacobi elliptic functions and Zin et al. [121] have derived the exact condition for the

critical value βc at which the symmetry breaking state starts emerging as the ground state. An

approximate formula for βc was also derived from a simple variational method, for the case of deep

double square well [121].

In this section, we will study the ground state of attractively interacting condensates in another
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two generally used double well potentials and investigates the effect of the interplay between the

interparticle interaction and the depth of the double well on the symmetry of the condensate ground

state. For clarity, the negative sign of the interaction parameter β, which corresponds to the attrac-

tive interaction will be included in the GPE in this section. Furthermore, for simplicity, only 1D

Bose-condensed system will be studied. The GPE (2.19) is therefore modified into

µ φ(x) = −1
2

d2

dx2
φ(x) + V (x) φ(x)− β|φ(x)|2φ(x), x ∈ R, (2.100)

for a 1D BEC. Here, the wavefunction is normalized to 1 and β > 0 denotes the attractive interaction.

The total energy per particle is

E(φ) = Ekin(φ) + Epot(φ) + Eint(φ)

=
∫

R

1
2
|dφ

dx
|2 + V |φ|2 − β

2
|φ|4 dx, (2.101)

where Ekin, Epot and Eint denote the kinetic energy, potential energy, and interaction energy, re-

spectively. The chemical potential, µ, is given by

µ(φ) =
∫

R

1
2
|dφ

dx
|2 + V |φ|2 − β|φ|4 dx

= E −
∫

R

β

2
|φ|4 dx. (2.102)

2.3.1 Harmonic oscillator potential

We first study the attractively interacting condensate in a 1D harmonic oscillator potential

V (x) =
1
2
γ2x2. (2.103)

For non-interacting particles, the ground state is a Gaussian wave packet. For interacting particles,

we assume that the ground state takes a similar kind of Gaussian profile,

f(x) =
1√
σ
√

π
exp

(
− x2

2σ2

)
, (2.104)
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whose L2 norm is 1 and σ is the condensate width. The energy of the trial wavefunction (2.104) is

E =
1

4σ2
+

γ2σ2

4
− β

2
√

2πσ
. (2.105)

It can be observed that the minimizer of the energy (2.105) always exists. Using the variational

approach, σ that minimizes the energy is found to satisfy

σ4 +
1
γ2

(
β√
2π

σ − 1
)

= 0. (2.106)

In fact, a Gaussian ansatz with variational method has been applied in several articles to study the

stationary states as well as the dynamical stability of attractively interacting BEC in a 3D harmonic

oscillator potential [92, 93, 101, 106]. In the experiment conducted for the attractively interacting

BEC, the condensate is found to collapse when the number of particles is larger than a critical

value [27]. The Gaussian ansatz applied to the GPE provided an approximation to this critical

value [93, 101]. Inelastic collision and three-body collisions which are not included in the GPE also

contribute to the collapse. The collapse of the BEC, however, does not appear in one dimension

under the Gaussian ansatz, since the ground state of (2.105) always exists.

Two regimes are considered under the Gaussian ansatz (2.104):

(i) Non-interacting regime: When β = 0, the solution of (2.106) is the exact solution of a

linear Schrödinger equation with a harmonic oscillator potential, i.e.

σ =
1√
γ

, E =
γ

2
. (2.107)

(ii)Weakly interacting regime: When β ∼ 1, the solution of (2.106) may be approximated

by σ of non-interacting system and we have

σ ∼ 1√
γ

, E ∼ γ

2
− β

2

√
γ

2π
. (2.108)

Other than case (i) and case (ii), another regime that is the strongly attractively interacting

regime (β À 1) should be considered. In this regime, the potential energy is relatively smaller than

the kinetic energy and the interacting energy. It can be neglected near the center of the trap which

is occupied by a large fraction of condensate. By introducing two new variables X =
√−µx and
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Φ =
√
−µ
β φ and ignoring the trapping potential, the GPE (2.100) is reduced to

−1
2
ΦXX(X)− |Φ(X)|2Φ(X) + Φ(X) = 0, X ∈ R, (2.109)

The solution of the equation above is

Φ(X) =
√

2 sech(
√

2X), (2.110)

and the solution of the GPE (2.100) is a bright soliton

φ(x) =
√−2µ

β
sech

(√
−2µx

)
, (2.111)

where the chemical potential µ, as determined from the normalization of the wavefunction, and the

energy are

µ = −β2

8
, E = −β2

24
. (2.112)

Table 2.11 displays the energy approximations of the condensate ground state with different

interacting strength as well as the numerical solution of the GPE. For β < 5.0, the Gaussian ansatz

(2.104) works well in approximating the ground state. For β > 5.0, the interaction is strong enough

such that the trapping potential plays less significant role and that the ground state is a sech soliton.

2.3.2 Symmetry breaking state of weakly interacting condensate in dou-

ble well potential

A class of widely studied trapping potential other than the harmonic oscillator trap is the double

well potential. We consider double well potentials of type I,

V (x) =
1
2
γ4

(
x2 − a2

)2
, (2.113)

and of type II,

V (x) =
1
2
γ2 (|x| − a)2 , (2.114)
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β Enum Evar Eβ∼1 Esech

0 0.5000 0.5000 - -
0.1 0.4799 0.4800 0.4801 -
0.2 0.4597 0.4597 0.4601 -
0.5 0.3974 0.3976 0.4003 -
1.0 0.2882 0.2875 0.3005 -
2.0 0.0458 0.0515 0.1011 0.1667
5.0 -0.9801 -0.9353 -0.4974 -1.0417

10.0 -4.1503 -3.9632 -1.4947 -4.1667
20.0 -16.6626 -15.9116 - -16.6667
50.0 -104.1600 -99.4712 - -104.1667

100.0 -416.6665 -397.8872 - -416.6667

Table 2.11: Energies of an attractively interacting BEC in harmonic potential V (x) =
1
2x2. (Enum: numerical solution from the GPE (2.100); Evar: numerical solution from
variational method (2.106); Eβ∼1: weakly interacting energy approximation as in (2.108);
Esech: strongly interacting energy approximation as in (2.112)).

where γ > 0 measures the height of the well and ±a are the centers of the double well, both

assumed to be O(1). For the dynamics of attractively interacting condensate in the double well

(2.113), it is known that they exhibit the self-trapping property, in spite of the symmetry of the trap

[4, 82, 113]. In their stationary states, a similar property, the existence of symmetry breaking states,

is observed in the solutions of the GPE [45]. In order to investigate the energy ranking of a positive

symmetric state and a positive symmetry breaking state, we consider two regimes characterized by

different strength of interaction, and carry out some analytical studies to these low-lying energy

states. Condensates in non-interacting and weakly interacting regime will be studied in this section,

while those in strongly interacting regime will be studied in the next section.

For a system of non-interacting atoms or weakly interacting atoms, the following normalized

trial wavefunction is taken to approximate the positive stationary solution of the GPE (2.100),

φtrial(x) = Cf(x + κ) + Df(x− κ), (2.115)

where f is the Gaussian function defined in (2.104) and coefficients C and D satisfy

C2 + D2 + 2CDe−
κ2

σ2 = 1. (2.116)

Such approximation is justified by the fact that the potential near x = ±a can be approximated by

a harmonic potential with frequency 2γ2a for type I double well and by a harmonic potential with

frequency γ for type II double well.
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2.3.2.1 Type I double well potential

The energy functionals of the trial wavefunction (2.115) in type I double well (2.113) are

Ekin =
1

4σ2

[
1− 4CDe−

κ2

σ2

(
κ2

σ2

)]
, (2.117)

Epot =
1
2
γ4

[
a4 − a2σ2 +

3
4
σ4 + (C2 + D2)

(
(3σ2 − 2a2)κ2 + κ4

)]
, (2.118)

Eint = − β

2
√

2πσ

[
C4 + D4 + 6C2D2e−

2κ2

σ2 + 4CD(C2 + D2)e−
3κ2

2σ2

]
. (2.119)

We consider the case when the two Gaussian profiles are well separated, i.e. a À σ, or equivalently

κ À σ, since the condensate is expected to localize around ±a where the trapping potential is

minimum. By neglecting the term e−
κ2

σ2 , the total energy can be estimated by

E ∼ 1
4σ2

+
1
2
γ4

[
a4 − a2σ2 +

3
4
σ4 + (3σ2 − 2a2)κ2 + κ4

]
− β

2
√

2πσ
(C4 + D4), (2.120)

where C and D satisfy the normalization condition

C2 + D2 ∼ 1. (2.121)

Minimizing the energy with respect to κ and σ yields the following set of equations:

κ =

√
a2 − 3

2
σ2, (2.122)

σ6 − 2
3
a2σ4 − β

6
√

2πγ4
(C4 + D4)σ +

1
6γ4

= 0. (2.123)

Minimizing the energy again with respect to C, two sets of solutions are obtained:

(i) Symmetric state 1:

C =
1√
2
, D =

1√
2
, φs1 =

1√
2σs1

√
π

[
exp

(
− (x + κ)2

2σ2
s1

)
+ exp

(
− (x− κ)2

2σ2
s1

)]
. (2.124)

(ii) Symmetry breaking state:

C = 0, D = 1, φsb =
1√

σsb
√

π
exp

(
− (x− κ)2

2σ2
sb

)
. (2.125)

The symmetry breaking state has an energy degeneracy of two, in such a way that the condensate
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can either stay in the left well or in the right well. The two states have condensate width satisfying

(i) Symmetric state 1:

σ6
s1 −

2
3
a2σ4

s1 −
β

12
√

2πγ4
σs1 +

1
6γ4

= 0. (2.126)

(ii) Symmetry breaking state:

σ6
sb −

2
3
a2σ4

sb −
β

6
√

2πγ4
σsb +

1
6γ4

= 0. (2.127)

In the weakly interacting regime, the solutions of (2.126)–(2.127) may be approximated with the

condensate width with β = 0, i.e. both states have the same width σs1 = σsb = σ, given by

σ =

√
−1

2
(s + t) +

2
9
a2 −

√
3i

2
(s− t), (2.128)

where

s =
1

3 3
√

2
3

√√√√
(
− 9

2γ4
+

16
27

a6

)
+

√(
9

2γ4

)2

− 16
3γ4

a6,

t =
1

3 3
√

2
3

√√√√
(
− 9

2γ4
+

16
27

a6

)
−

√(
9

2γ4

)2

− 16
3γ4

a6.

The energies of the two states, by taking the coupling term into account, are

(i) Symmetric state 1:

Es1 =
1

4σ2

[
1− 2e−

κ2

σ2

(
κ2

σ2

)]
+ γ4

[
a2σ2 − 3

4
σ4

]
− β

2
√

2πσ

[
1
2

+
3
2
e−

2κ2

σ2 + 2e−
3κ2

2σ2

]
. (2.129)

(ii) Symmetry breaking state:

Esb =
1

4σ2
+ γ4

[
a2σ2 − 3

4
σ4

]
− β

2
√

2πσ
. (2.130)

If the coupling term in (2.129)–(2.130) is ignored, then Es1 − Esb = β

4
√

2πσ
. For a non-interacting

condensate, symmetric state 1 and the symmetry breaking state have the same energy and the

symmetry breaking state is the ground state for any β > 0. This is valid when γ = ∞ or a = ∞,
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i.e. when there is totally no overlap between the two Gaussian profiles. By taking the coupling term

into account, the energy difference between symmetric state 1 and the symmetry breaking state is

Es1 − Esb = −1
2

κ2

σ4
e−

κ2

σ2 +
β

2
√

2πσ

[
1
2
− 3

2
e−

2κ2

σ2 − 2e−
3κ2

2σ2

]
. (2.131)

For non-interacting particles, symmetric state 1 is the ground state. The energy of the symmetry

breaking state becomes smaller than the energy of symmetric state 1 when the interaction becomes

larger in such a way that the increment in the kinetic energy and potential energy when all particles

stay in single well is compensated by the decrement in their interacting energy. This takes place at

the critical value

βc =
2
√

2πe−
κ2

σ2

1− 3e−
2κ2

σ2 − 4e−
3κ2

2σ2

(
κ2

σ3

)
. (2.132)

The energies of the two states are ranked according to

Es1 < Esb, β < βc,

Esb ≤ Es1, β ≥ βc.

Minimizing the total energy (2.120) with respect to σ and κ will give another set of solutions

other than (2.122)–(2.123), i.e.

κ = 0, (2.133)

σ6 − 2
3
a2σ4 +

β

3
√

2πγ4
σ − 1

3γ4
= 0. (2.134)

This is a symmetric state (symmetric state 2) located at the trap center with a potential barrier

specified by γ. The potential barrier is poorly approximated by a harmonic potential and therefore

the Gaussian ansatz fails. In the weakly interacting regime, the potential energy plays a significant

role in the total energy and thus symmetric state 2, where large number of particles stays at the

trap center, has relatively high potential energy, and higher total energy than the other two states.
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2.3.2.2 Type II double well potential

The energy functionals of the trial wavefunction (2.115) in type II double well potential (2.114) are

Ekin =
1

4σ2

[
1− 4CDe−

κ2

σ2

(
κ2

σ2

)]
, (2.135)

Epot =
1
4
γ2

[
2a2 − 4aσ√

π
+ σ2 + (C2 + D2)

(
2κ2 +

4aσ√
π

(1− e−
κ2

σ2 )− 4κaErf
(κ

σ

))]
,(2.136)

Eint = − β

2
√

2πσ

[
C4 + D4 + 6C2D2e−

2κ2

σ2 + 4CD(C2 + D2)e−
3κ2

2σ2

]
. (2.137)

We again consider the case when the two Gaussian profiles are well separated, i.e. a À σ, or

equivalently κ À σ. By neglecting the term e−
κ2

σ2 , the total energy can be estimated by

E ∼ 1
4σ2

+
1
4
γ2

[
2κ2 + 2a2 + σ2 − 4κaErf

(κ

σ

)]
− β

2
√

2πσ
(C4 + D4), (2.138)

where C and D satisfy the normalization condition (2.121). Minimizing the energy (2.138) with

respect to κ and σ, by neglecting the term e−
κ2

σ2 and approximating Erf(κ/σ) ∼ 1 when κ À σ, the

two parameters are found to satisfy the following set of equations:

κ = a, (2.139)

σ4 +
β√

2πγ2
(C4 + D4)σ − 1

γ2
= 0. (2.140)

Minimizing the energy again with respect to C yields two sets of solutions:

(i) Symmetric state 1:

C =
1√
2
, D =

1√
2
, φs1 =

1√
2σs1

√
π

[
exp

(
− (x + a)2

2σ2
s1

)
+ exp

(
− (x− a)2

2σ2
s1

)]
. (2.141)

(ii) Symmetry breaking state:

C = 0, D = 1, φsb =
1√

σsb
√

π
exp

(
− (x− a)2

2σ2
sb

)
. (2.142)

Similarly to type I double well, the symmetry breaking state has an energy degeneracy of two. The

two states have condensate width satisfying
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(i) Symmetric state 1:

σ4
s1 +

β

2
√

2πγ2
σs1 − 1

γ2
= 0. (2.143)

(ii) Symmetry breaking state:

σ4
sb +

β√
2πγ2

σsb − 1
γ2

= 0. (2.144)

In the weakly interacting regime, the solutions may be approximated with the condensate width

with β = 0, i.e. both states have the same width σs1 = σsb = σ, given by

σ =
1√
γ

. (2.145)

The energies of the two states, by taking the coupling term into account, are

(i) Symmetric state 1:

Es1 =
γ

2

[
1− γa2e−γa2

]
+ γ2

[
a2 (1− Erf (

√
γa))− a√

γπ
e−γa2

]

−β

2

√
γ

2π

[
1
2

+
3
2
e−2γa2

+ 2e−
3
2 γa2

]
. (2.146)

(ii) Symmetry breaking state:

Esb =
γ

2
+ γ2

[
a2 (1− Erf (

√
γa))− a√

γπ
e−γa2

]
− β

2

√
γ

2π
. (2.147)

If the coupling term in (2.146)–(2.147) is ignored, then Es1 − Esb = β

4
√

2πσ
. Similarly to type

I double well potential, symmetric state 1 and the symmetry breaking state have the same energy

for non-interacting condensate and the symmetry breaking state is the ground state for any β > 0.

By taking the coupling term into account, the energy difference between symmetric state 1 and the

symmetry breaking state is

Es1 −Esb = −1
2
γ2a2e−γa2

+
β

2

√
γ

2π

[
1
2
− 3

2
e−2γa2 − 2e−

3
2 γa2

]
. (2.148)

For non-interacting particles, symmetric state 1 is the ground state. The critical interaction at which
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the energy of the symmetry breaking state becomes smaller than the energy of symmetric state 1 is

βc =
2
√

2πe−γa2

1− 3e−2γa2 − 4e−
3
2 γa2

(
γ

3
2 a2

)
. (2.149)

Minimizing the total energy (2.138) with respect to σ and κ will yield another set of solutions

other than (2.139)–(2.140), i.e.

κ = 0, (2.150)

σ4 +
β√

2πγ2
σ − 1

γ2
= 0. (2.151)

This is a symmetric state (symmetric state 2) located at the trap center. By the same argument

stated in the case of type I double well, this state has high energy and will not be considered in the

weakly interacting regime.

2.3.3 Strongly interacting condensate in double well potential

For a strongly attractively interacting BEC, asymptotic approximation can be performed by neglect-

ing the potential energy term in the GPE (2.100). In this regime, the interaction energy and the

kinetic energy are so large that the potential barrier plays a negligible role at where the atoms are

located. The solution of such approximation is a bright soliton, as shown in (2.109)–(2.111). As an

extension of the results obtained in the weakly interacting regime, we consider two possibilities for

the positive stationary states: single bright soliton solution and two bright solitons solution. The

two-soliton solution (symmetry state 1) together with its energy and chemical potential approxima-

tions is

φ1(x) =
√

β

4

[
sech

(
β

4
(x + κ)

)
+ sech

(
β

4
(x− κ)

)]
, E1 ∼ −β2

96
, µ1 ∼ −β2

32
, (2.152)

while the one-soliton solution (symmetry breaking state and symmetry state 2), together with its

energy and chemical potential approximations is

φ2(x) =
√

β

2
sech

(
β

2
(x− κ)

)
, E2 ∼ −β2

24
, µ2 ∼ −β2

8
. (2.153)

The location of the peak(s), κ, can be determined by minimizing the energy functional (2.101).
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2.3.3.1 Type I double well potential

Minimizing the energy functional (2.101) with respect to κ in the soliton solutions (2.152) and

(2.153), κ and the total energy of the three states in type I double well (2.113), with potential

energy included, are found to be

(i) Symmetric state 1:

κs1 =

√
a2 −

(
2π

β

)2

, (2.154)

Es1 = −β2

96
+ γ4

[
8π2a2

3β2
− 64π4

15β4

]
. (2.155)

(ii) Symmetry breaking state:

κsb =

√
a2 −

(
π

β

)2

, (2.156)

Esb = −β2

24
+ γ4

[
2π2a2

3β2
− 4π4

15β4

]
. (2.157)

(iii) Symmetric state 2:

κs2 = 0, (2.158)

Es2 = −β2

24
+ γ4

[
a4

2
− π2a2

3β2
+

7π4

30β4

]
. (2.159)

The energy differences between the three stationary states are

Es1 − Esb =
β2

32
+

π2γ4

β2

[
2a2 − 4π2

β2

]
, (2.160)

Es2 − Esb =
γ4a4

2
− π2γ4

β2

[
a2 − π2

2β2

]
, (2.161)

Es1 − Es2 =
β2

32
− γ4a4

2
+

π2γ4

β2

[
3a2 − 9π2

2β2

]
. (2.162)

In this regime, terms with 1
β4 may be safely neglected and the energies are ranked according to

Esb < Es1 < Es2, β < βc2,

Esb < Es2 ≤ Es1, β ≥ βc2,
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where

βc2 = 2
√

2

√
γ4a4 + γa

√
γ4a6 − 3π2

2
(2.163)

is the critical value for which symmetric state 2 possesses the same energy as symmetric state 1.

This happens when the interparticle interaction is so strong that the interaction energy, which value

is negative, is dominant in spite of the high potential energy acquired by the particles at the trap

center, which results in a lower total energy than symmetric state 1. Symmetric state 2 has higher

energy than the symmetric breaking state when β >
√

2π/a, which is O(1), and thus in the strongly

interacting regime (β À 1), the symmetry breaking state is always the ground state.

2.3.3.2 Type II double well potential

The energies of the sech soliton solutions (2.152) and (2.153) in type II double well (2.114), with

potential energy included, are

E1 = −β2

96
+

γ2

6β2

[
4π2 + 3β2(κ− a)2 − 24βa ln

(
1 + e−βκ/2

)]
, (2.164)

E2 = −β2

24
+

γ2

6β2

[
π2 + 3β2(κ− a)2 − 12βa ln

(
1 + e−βκ

)]
. (2.165)

Energy minimization with respect to κ yields

(i) Symmetric state 1:

κs1 ≈ a, (2.166)

Es1 = −β2

96
+ γ2

[
2π2

3β2
− 4a

β
ln

(
1 + e−βa/2

)]
. (2.167)

(ii) Symmetry breaking state:

κsb ≈ a, (2.168)

Esb = −β2

24
+ γ2

[
π2

6β2
− 2a

β
ln

(
1 + e−βa

)]
. (2.169)
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(iii) Symmetric state 2:

κs2 = 0, (2.170)

Es2 = −β2

24
+ γ2

[
π2

6β2
+

1
2
a2

]
. (2.171)

The energy differences between the three stationary states are

Es1 − Esb =
β2

32
+ γ2

[
π2

2β2
+

2a

β
ln

(
1 + e−βa

)− 4a

β
ln

(
1 + e−βa/2

)]
, (2.172)

Es2 − Esb = γ2

[
1
2
a2 +

2a

β
ln

(
1 + e−βa

)]
, (2.173)

Es1 − Es2 =
β2

32
+ γ2

[
π2

2β2
− 1

2
a2 − 4a

β
ln

(
1 + e−βa/2

)]
. (2.174)

When β À 1 and a ∼ O(1), the terms with e−βa and e−βa/2 may be neglected and the energies are

ranked according to

Esb < Es1 < Es2, β < βc2,

Esb < Es2 ≤ Es1, β ≥ βc2,

where the critical interaction strength at which the energy of symmetric state 2 becomes smaller

than the energy of symmetric state 1 is approximated by

βc2 = 2
√

2γ2a2 + γ
√

4γ2a4 − π2. (2.175)

2.3.4 Numerical results

2.3.4.1 Type I double well potential

Figure 2.5 depicts symmetric state 1 and the symmetry breaking state obtained through numerically

solving the GPE (2.100) as well as the approximation via the variational method, by finding the

condensate width in (2.126) and (2.127) numerically. Figure 2.6 shows symmetric states 1&2 and

the symmetry breaking state, for both numerical solutions and approximated sech soliton solutions.

Tables 2.12&2.13 show the energies obtained through the variational method as well as the

energies obtained from the numerical solutions of the GPE, with respect to several values of β. The
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β Enum κvar Evar Eβ∼1 κsech Esech

0 4.1136 0.9023 4.2283 - - -
4.1270 0.9023 4.2655 - - -

0.1 4.0872 0.9027 4.2008 4.2000 - -
4.0878 0.9031 4.2087 4.2088 - -

0.2 4.0607 0.9031 4.1732 4.1717 - -
4.0500 0.9039 4.1517 4.1522 - -

0.5 3.9806 0.9043 4.0901 4.0866 - -
3.8932 0.9063 3.9793 3.9822 - -

1.0 3.8457 0.9063 3.9501 3.9449 - -
3.6125 0.9103 3.6873 3.6988 - -

2.0 3.5698 0.9103 3.6647 3.6615 - -
3.0228 0.9180 3.0844 3.1322 - -

5.0 2.6904 0.9217 2.7641 2.8114 - -
1.0432 0.9389 1.1025 1.4322 - -

7.5 1.8971 0.9306 1.9594 2.1029 - -
-0.8917 0.9537 -0.7949 0.0155 - -

10.0 1.0351 0.9389 1.1015 1.3944 0.7780 3.3909
-3.1471 0.9655 -2.9780 -1.4012 0.9494 -2.9027
5.0199 - - - 0 5.2208

15.0 -0.8840 0.9537 -0.7950 -0.0226 0.9080 -0.1685
-8.8367 0.9809 -8.4332 -4.2345 0.9778 -8.8004
0.3306 - - - 0 0.3415

20.0 -3.1148 - - - 0.9494 2.9027
-16.3484 - - - 0.9876 -16.3409
-6.8302 - - - 0 -6.8283

35.0 -12.3414 - - - 0.9838 -12.3363
-50.9349 - - - 0.9960 -50.9346
-41.0951 - - - 0 -41.0951

50.0 -25.8313 - - - 0.9921 -25.8324
-104.1141 - - - 0.9980 -104.1141
-94.1929 - - - 0 -94.1929

Table 2.12: Comparison between the energies for BEC in type I double well V (x) =
10(x2 − 1)2. Row 1: symmetric state 1; row 2: symmetry breaking state; row 3: sym-
metric state 2; Enum: numerical solution of the GPE; Evar: numerical solution from
variational method (2.126)&(2.127); Eβ∼1: weakly interacting energy approximation
(2.129)–(2.130); Esech: strongly interacting energy approximation (2.154)–(2.159).
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β Enum κvar Evar Eβ∼1 κsech Esech

0 8.8808 1.9787 8.8969 - - -
8.8808 1.9787 8.8969 - - -

0.1 8.8389 1.9787 8.8549 - - -
8.7969 1.9788 8.8129 8.8130 - -

0.2 8.7969 1.9788 8.8129 8.8130 - -
8.7129 1.9789 8.7287 8.7291 - -

0.5 8.6707 1.9790 8.6865 8.6871 - -
8.4593 1.9792 8.4748 8.4773 - -

1.0 8.4593 1.9792 8.4748 8.4773 - -
8.0321 1.9797 8.0474 8.0577 - -

2.0 8.0321 1.9797 8.0474 8.0577 - -
7.1592 1.9807 7.1764 7.2186 - -

5.0 6.7132 1.9813 6.7322 6.7990 - -
4.3762 1.9838 4.4165 4.7011 - -

10.0 4.3762 1.9838 4.4165 4.7011 - -
-0.9528 1.9884 -0.7993 0.5053 - -

15.0 1.8346 1.9862 1.9185 2.6032 1.9556 6.8499
-7.4471 1.9922 -7.0695 -3.6904 1.9890 -7.0458

149.2266 - - - 0 149.4642
20.0 -0.9478 1.9884 -0.7993 0.5053 1.9752 1.0452

-15.4539 1.9948 -14.7432 -7.8862 1.9938 -15.3540
142.6403 - - - 0 142.6782

35.0 -11.2265 - - - 1.9919 -11.0472
-50.6167 - - - 1.9980 -50.6123
108.7427 - - - 0 108.7438

50.0 -25.2253 - - - 1.9960 -25.2008
-103.9567 - - - 1.9990 -103.9562

55.7280 - - - 0 55.7281
75.0 -58.2217 - - - 1.9982 -58.2197

-234.2815 - - - 1.9996 -234.2814
-74.4217 - - - 0 -74.4218

100.0 -103.9565 - - - 1.9990 -103.9562
-416.6140 - - - 1.9998 -416.6140
-256.6930 - - - 0 -256.6930

Table 2.13: Comparison between the energies for BEC in type I double well V (x) =
10(x2 − 4)2. Row 1: symmetric state 1; row 2: symmetry breaking state; row 3: sym-
metric state 2; Enum: numerical solution of the GPE; Evar: numerical solution from
variational method (2.126)&(2.127); Eβ∼1: weakly interacting energy approximation
(2.129)–(2.130); Esech: strongly interacting energy approximation (2.154)–(2.159).



ANALYTICAL STUDY OF SINGLE COMPONENT BEC GROUND STATE 53

−4 −2 0 2 4
0

0.4

0.8

1.2

x

φ s1

−4 −2 0 2 4
0

0.4

0.8

1.2

x

φ sb

Figure 2.5: Symmetric state 1 (left) and symmetry breaking state (right) of an attrac-
tively interacting BEC in type I double well V (x) = 10(x2−1)2, with interaction β = 1.0.
Solid line: numerical solution from solving the GPE; dashed line: approximated solution
with the Gaussian ansatz.
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Figure 2.6: Symmetric state 1 (left), symmetry breaking state (middle), and symmetric
state 2 (right) of an attractively interacting BEC in type I double well V (x) = 10(x2−1)2,
with interaction β = 20.0. Solid line: numerical solution from solving the GPE; dashed
line: approximated solution with sech soliton(s).

Gaussian ansatz is shown to work quite well for small β, in particular for double well potential with

large γ or large a. In the case of small γ or small a, the difference between the computed energy and

the variational energy is greater due to the neglected overlapping term. The numerically calculated

energies and chemical potentials of the three states in double well V (x) = 10(x2 − 1)2, as functions

of the interaction strength, are also plotted in Figure 2.7. It can be seen from Figure 2.7(b) that

both critical interaction parameters, βc and βc2, for the chemical potential are smaller than those

for the energy. Therefore, if one uses the smallest eigenvalue of the nonlinear eigenvalue problem

(2.100) to define the ground state, the ground state could be different from the one defined with the

lowest energy. This is in contrast to the repulsively interacting BEC whose ground state is the same

under the two definitions.
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Figure 2.7: Energy (left) and chemical potential (right) of BEC in type I double well
V (x) = 10(x2−1)2 (S1: symmetric state 1; SB: symmetry breaking state; S2: symmetric
state 2). The inset shows a zoom for small β, in the vicinity of βc.

Figures 2.8&2.9 show the dependence of the critical interaction parameters βc and βc2 on the

double well parameters γ and a, respectively. For large γ or large a cases, the predicted critical

values are quite close to those obtained through numerical simulation.
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Figure 2.8: Dependence of βc (left) and βc2 (right) on γ4, for type I double well potential
V (x) = 1

2γ4
(
x2 − 1

)2. Solid dot line: analytical result; solid cross line: numerical result.

2.3.4.2 Type II double well potential

Figure 2.10 depicts symmetric state 1 and the symmetry breaking state obtained through numeri-

cally solving the GPE (2.100) as well as the approximation via the variational method, by finding

the condensate width in (2.143) and (2.144) numerically. Figure 2.11 shows symmetric states 1&2

and the symmetry breaking state, for both numerical solutions and approximated sech soliton so-

lutions. Tables 2.14&2.15 show the energies obtained through the variational method as well as
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Figure 2.9: Dependence of βc (left) and βc2 (right) on a2, for type I double well potential
V (x) = 10
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Figure 2.10: Symmetric state 1 (left) and symmetry breaking state (right) of an attrac-
tively interacting BEC in type II double well V (x) = 20(|x| − 1)2, with β = 1.0. Solid
line: numerical solution from solving the GPE; dashed line: approximated solution with
the Gaussian ansatz.

the energies obtained from the numerical solutions of the GPE, with respect to several values of

β. Similarly to type I double well, the Gaussian ansatz is shown to work quite well here for small

β, in particular for the double well potential with large γ or large a. The numerically calculated

energies and chemical potentials of the three states in double well V (x) = 20(|x| − 1)2, as function

of the interaction strength, are plotted in Figure 2.12. Similarly to type I double well, the critical

interaction parameters for the energy and those for the chemical potential are different. Thus in this

case, the ground state defined by the lowest energy and by the smallest nonlinear eigenvalue could

be different.

The dependencies of the critical interaction βc and βc2 on the double well parameters γ and a

are shown in Figures 2.13&2.14 respectively. Compared to type I double well, the Gaussian ansatz
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β Enum Evar Eβ∼1 Esech

0 3.1443 3.1254 - -
3.1581 3.1612 - -

0.1 3.1194 3.1009 3.1003 -
3.1078 3.1110 3.1111 -

0.2 3.0945 3.0764 3.0752 -
3.0587 3.0606 3.0609 -

0.5 3.0194 3.0025 2.9999 -
2.9068 2.9082 2.9104 -

1.0 2.8930 2.8782 2.8745 -
2.6478 2.6497 2.6595 -

2.0 2.6356 2.6251 2.6236 -
2.1100 2.1155 2.1579 -

5.0 1.8229 1.8272 1.8709 -
0.3088 0.3450 0.6530 -

10.0 0.3059 0.3432 0.6164 1.4828
-3.5928 -3.4209 -1.8552 -3.5091

15.0 -1.4728 -1.3835 -0.6381 -1.1799
-9.0927 -8.6812 -4.3634 -9.0826

20.0 -3.5806 -3.4209 -1.8926 -3.5091
-16.5041 -15.7599 -6.8716 -16.5022

0.6174 - - 3.4978
30.0 -9.0903 - - -9.0826

-37.4270 - - -37.4269
-19.2950 - - -17.4269

40.0 -16.4693 - - -16.5022
-66.6256 - - -66.6255
-48.0169 - - -46.6255

50.0 -25.9348 - - -25.9364
-104.1404 - - -104.1403
-85.2501 - - -84.1403

Table 2.14: Comparison between the energies for BEC in type II double well V (x) =
20(|x| − 1)2. Row 1: symmetric state 1; row 2: symmetry breaking state; row 3: sym-
metric state 2; Enum: numerical solution of the GPE; Evar: numerical solution from
variational method (2.143)&(2.144); Eβ∼1: weakly interacting energy approximation
(2.146)–(2.147); Esech: strongly interacting energy approximation (2.166)–(2.171).
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β Enum Evar Eβ∼1 Esech

0 3.1623 3.1623 - -
3.1623 3.1623 - -

0.1 3.1372 3.1372 3.1372 -
3.1120 3.1120 3.1121 -

0.2 3.1120 3.1120 3.1121 -
3.0615 3.0615 3.0619 -

0.5 3.0362 3.0362 3.0369 -
2.9086 2.9089 2.9115 -

1.0 2.9086 2.9089 2.9115 -
2.6491 2.6503 2.6606 -

2.0 2.6491 2.6503 2.6606 -
2.1109 2.1158 2.1590 -

5.0 1.8313 1.8392 1.9082 -
0.3090 0.3450 0.6541 -

10.0 0.3090 0.3450 0.6541 -1.5888
-3.5928 -3.4209 -1.8542 -3.5087

15.0 -1.4730 -1.3834 -0.6000 -1.1740
-9.0927 -8.6812 -4.3624 -9.0826

20.0 -3.5928 -3.4209 -1.8542 -3.5087
-16.5041 -15.7599 -6.8706 -16.5022

30.0 -9.0927 - - -9.0826
-37.4271 - - -37.4269
38.7813 - - 42.5731

40.0 -16.4940 - - -16.5022
-66.6256 - - -66.6255
10.5756 - - 13.3745

50.0 -25.9334 - - -25.9364
-104.1404 - - -104.1403
-26.3664 - - -24.1403

Table 2.15: Comparison between the energies for BEC in type II double well V (x) =
20(|x| − 2)2. Row 1: symmetric state 1; row 2: symmetry breaking state; row 3: sym-
metric state 2; Enum: numerical solution of the GPE; Evar: numerical solution from
variational method (2.143)&(2.144); Eβ∼1: weakly interacting energy approximation
(2.146)–(2.147); Esech: strongly interacting energy approximation (2.166)–(2.171).
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Figure 2.11: Symmetric state 1 (left), symmetry breaking state (middle), and symmetric
state 2 (right) of an attractively interacting BEC in type II double well V (x) = 20(|x| −
1)2, with β = 30.0. Solid line: numerical solution from solving the GPE; dashed line:
approximated solution with sech soliton(s).
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Figure 2.12: Energy (right) and chemical potential (left) of BEC in type II double well
V (x) = 20(|x|−1)2 (S1: symmetric state 1; SB: symmetry breaking state; S2: symmetric
state 2). The inset shows a zoom for small β, in the vicinity of βc.

and sech soliton approximation both give better approximation to the wavefunction, however, both

are less accurate in predicting the critical values, which are obtained through neglecting the terms

e−βa and e−βa/2 in the energy differences (2.172)–(2.174).

2.4 Discussion

We studied analytically the ground state of a Bose-Einstein condensate (BEC) in a trapping potential

for both repulsively interacting particles (βd > 0) and attractively interacting particles (βd < 0). For

a condensate with repulsive interaction, we presented asymptotic approximations up to o(1) in terms

of the interacting parameter, βd, for the energy and chemical potential of the ground state of BEC
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Figure 2.13: Dependence of βc (left) and βc2 (right) on γ2, for type II double well poten-
tial V (x) = 1
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Figure 2.14: Dependence of βc (left) and βc2 (right) on a, for type II double well potential
V (x) = 20 (|x| − a)2. Solid dot line: analytical result; solid cross line: numerical result.

in the semiclassical regime with several typical trapping potentials. For a uniform box potential, the

approximations were obtained by a matched asymptotic method; while for non-uniform potentials,

e.g. harmonic oscillator, double well and optical lattice potentials, the approximations were derived

from the Thomas-Fermi approximation. These asymptotic approximations were verified by our

extensive numerical results.

Furthermore, based on the asymptotic and numerical studies for the time-independent Gross-

Pitaevskii equation (GPE) with βd ≥ 0 in bounded Ω (or in unbounded Ω with lim|x|→∞ Vd(x) = ∞),

we draw the following conjectures:

(i) The GPE admits infinitely many eigenfunctions which are linearly independent.

(ii) If all the eigenfunctions are ranked according to their energies, φg, φ1, · · ·, then the corre-
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sponding eigenvalues (or chemical potentials) are in the increasing order, i.e.

E(φg) ≤ E(φ1) ≤ E(φ2) ≤ · · · =⇒ µ(φg) ≤ µ(φ1) ≤ µ(φ2) ≤ · · · .

(iii) When βd →∞, the ratios between energy and chemical potential are constants, i.e.

lim
βd→∞

E(φg)
µ(φg)

= const, lim
βd→∞

E(φk)
E(φg)

= 1, lim
βd→∞

µ(φk)
µ(φg)

= 1, k ∈ N.

(iv) When Ω is bounded, in the semiclassical regime, i.e. βd À 1, boundary layers with width

O(1/
√

βd) are observed at ∂Ω in both the ground and the excited states, and interior layers with

width O(1/
√

βd) are observed in the excited states. When Ω = Rd and V (x) is chosen as (2.89),

interior layers with width O(1/β
(2+α)/4(α+d)
d ) are observed in the excited states.

For a condensate with attractive interaction, two regimes are identified: the weakly interact-

ing regime (βd < 0, |βd| ∼ 1) and the strongly interacting regime (βd < 0, |βd| À 1). Gaussian

approximation was applied to the weakly interacting regime, for harmonic potential and two types

of double well potentials. The approximations of the positive stationary states in a double well

potential, in particular the symmetric state in which the condensate particles stay symmetrically in

two wells (symmetric state 1) and the symmetry breaking state in which the condensate occupies

only one well, were verified by the numerical results. For non-interacting particles, symmetric state

1 is always the ground state. For interacting particles, symmetry breaking state has a chance to

possess energy lower than the energy of symmetric state 1. A critical value βc at which the ground

state becomes non-unique, was predicted. For interaction |βd| > |βc|, the symmetry breaking state

emerges as the ground state. Due to the existence of symmetry breaking state in a double well

potential, if all stationary states are ranked according to their energies, the corresponding chemical

potentials might not be in the increasing order.

In the case of a strongly attractively interacting condensate in a non-uniform potential satisfy-

ing lim|x|→∞ Vd(x) = ∞, asymptotic approximation was derived from the GPE by neglecting the

trapping potential term, and the stationary states of the condensate are found in the form of sech

solitons. Three bright soliton states were identified for double well potentials: symmetric state 1,

symmetry breaking state, and symmetric state 2 in which the particles stay around the center of

the trap which is a local maximum of the double well potential. The symmetry breaking state was
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found to remain as the ground state in this regime and the soliton approximation were verified by

the extensive numerical results.



Chapter 3

Numerical Study of Single

Component BEC Ground State

One of the fundamental problems in the numerical simulation of BEC is to find its ground state so as

to compare the numerical results with theoretical studies or with experimental observations, as well

as to prepare the initial data for studying the dynamics of BEC. An efficient and accurate numerical

method is one of the key issues in order to compute effectively the ground state of BEC, especially

in the strongly repulsive interaction regime and in optical lattice potential. There has been a series

of recent studies for developing numerical methods to compute the BEC ground state. For example,

Bao and Du [12] presented a continuous normalized gradient flow with diminishing energy and

discretized it with a backward Euler finite difference (BEFD) and time-splitting sine-pseudospectral

method (TSSP) for computing the ground state and the first excited state of the condensate. This

idea was extended to multi-component BEC [10] and rotating BEC [20]. Bao and Tang [18] proposed

a method by directly minimizing the energy functional via finite element approximation to obtain

the ground and the excited states. Edwards and Burnett [57] presented a Runge-Kutta type method

and used it to solve for one-dimensional ground state and three-dimensional ground state with

spherical symmetry. Adhikari [1] used this approach to get the ground state solution of the GPE in

two dimesions with radial symmetry. Ruprecht et al. [97] used the Crank-Nicolson finite difference

method to solve for the BEC ground state. Chang et al. [38, 39] proposed a Gauss-Seidel-type

method to compute the stationary states of a multi-component BEC. Other approaches include

an explicit imaginary-time algorithm used by Cerimele et al. [37] and Chiofalo et al. [40], a direct

62
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inversion in the iterated subspace (DIIS) used by Schneider et al. [99], and a simple analytical type

method proposed by Dodd [54]. These numerical methods were applied to compute the ground state

of BEC with different trapping potentials.

For a BEC in an optical lattice or in a rotational frame, due to the oscillatory nature of the

trapping potential or the appearance of quantized vortices, the stationary states are smooth but

exhibit multiscale structures. Therefore the resolution in space of a numerical method is essential

for an efficient computation, especially in three-dimensional case. In this case, the numerical methods

proposed in the literature have some drawbacks: (i) TSSP is explicit, conditionally stable and of

spectral accuracy in space [12]. It is energy diminishing when the time step satisfies a constraint.

However, due to the time-splitting error which does not vanish at steady state, the time step must

be chosen to be very small so as to get the ground state solution in high accuracy. Therefore, the

total computational time is large due to the small time step. (ii) BEFD is implicit, unconditionally

stable and energy diminishing for any time step, thus large time step can be chosen in practical

computation. Yet, it is only of second order accuracy in space. When high accuracy is required or

when the solution exhibits multiscale structures, a large number of grid points must be taken so

as to get a reasonable solution. Hence, the memory requirement is a big burden in this case. (iii)

Other finite difference or finite element methods are usually of low order accuracy in space and in

many cases they have a severe constraint for time step due to the stability or energy diminishing

requirement [12]. In this chapter, we develop new numerical methods which enjoy the advantages

of both TSSP and BEFD, i.e. they are spectrally accurate in space and are efficient in terms of

computational time. The key features of the numerical methods are based on: (i) the application of

sine-pseudospectral discretization for spatial derivatives such that it is spectrally accurate; (ii) the

adoption of the backward Euler scheme (BESP) or the backward/forward Euler scheme (BFSP) for

linear/nonlinear terms in temporal derivatives in such a way that the numerical schemes have good

energy diminishing property; (iii) the introduction of a stabilization term with constant coefficient

in BESP to accelerate the convergence rate of the iterative method for solving a linear system or in

BFSP to increase the upper bound of time step constraint; and (iv) the utilization of the fast sine

transform (FST) as a preconditioner for solving a linear system efficiently [11].
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3.1 Numerical Methods

In this section, we will first review the normalized gradient flow (NGF) [12] for computing the solution

of the minimization problem (2.22) and its energy diminishing property, followed by showing how to

choose the initial data to compute the ground and the first excited states of a BEC with the NGF.

Two numerical schemes will be proposed, the backward Euler sine-pseudospectral method (BESP)

and the backward-forward Euler sine-pseudospectral method (BFSP) [11], to fully discretize the

NGF. We will then discuss how to choose the optimal stabilization parameter in the numerical

schemes to improve the computational efficiency.

3.1.1 Normalized gradient flow (NGF)

Consider a time step k = ∆t > 0 and set tn = n∆t for n = 0, 1, 2, · · · . Applying the steepest

decent method to the energy functional E(φ) (2.15) without constraint (2.14), and then projecting

the solution back to a unit sphere at the end of each time interval [tn, tn+1] to satisfy the constraint

(2.14), we obtain the following normalized gradient flow (NGF) [3, 12, 37, 40],

∂

∂t
φ(x, t) = −1

2
δE(φ)

δφ

=
(

1
2
∇2 − V (x)− β|φ|2

)
φ(x, t), x ∈ Rd, tn ≤ t < tn+1, n ≥ 0, (3.1)

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖L2

, x ∈ Rd, n ≥ 0, (3.2)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖ = 1; (3.3)

where φ(x, t±n ) = limt→t±n
φ(x, t). The gradient flow (3.1) can also be obtained from the GPE (2.11)

by changing the time t to imaginary time τ = it and this method is known as the imaginary time

method in physics literature [3, 40].

When β = 0 and V (x) ≥ 0 for all x ∈ Rd, it was proved that the NFG (3.1)–(3.3) is energy

diminishing for any time step ∆t > 0 and for any initial data φ0 [12], i.e.

E(φ(·, tn+1)) ≤ E(φ(·, tn)) ≤ · · · ≤ E(φ(·, t0)) = E(φ0), n = 0, 1, 2, · · · ,

which provides a rigorous mathematical justification for the algorithm to compute the ground state

in the linear case. When β > 0, a similar argument is no longer valid. However, letting ∆t → 0 in
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the NGF(3.1)–(3.3) yields the following continuous normalized gradient flow (CNGF) [12]:

∂

∂t
φ(x, t) =

(
1
2
∇2 − V (x)− β |φ|2 +

µ(φ(·, t))
‖φ(·, t)‖2

)
φ(x, t), x ∈ Rd, t ≥ 0, (3.4)

φ(x, 0) = φ0(x), x ∈ Rd with ‖φ0‖ = 1. (3.5)

This CNGF is normalization conserved and is energy diminishing provided that β ≥ 0 and V (x) ≥ 0

for all x ∈ Rd [12], i.e.

‖φ(·, t)‖2 ≡ ‖φ0‖2 = 1,
d

dt
E(φ(·, t)) = −2‖φt(·, t)‖2 ≤ 0, t ≥ 0,

which in turn implies that

E(φ(·, t2)) ≤ E(φ(·, t1)), 0 ≤ t1 ≤ t2 < ∞.

This provides a mathematical justification for the algorithm to compute the ground state in the

nonlinear case at least when the time step ∆t is small.

Due to uniqueness of the positive ground state of a non-rotating repulsively interacting BEC

[76], the ground state φg(x) and its corresponding chemical potential µg can be obtained from the

steady state solution of the NGF (3.1)–(3.3) or the CNGF (3.4)–(3.5), provided that the initial

data φ0(x) is chosen as a positive function, i.e. φ0(x) ≥ 0 for x ∈ Rd. Furthermore, when V (x)

is an even function, the NGF (3.1)–(3.3) can also be applied to compute the first excited state of

the BEC when the initial data φ0(x) is chosen to be an odd function [12]. In this case, the first

excited state is a metastable steady state of the gradient flow, corresponding to a local minimum

in the energy functional (2.15). In order to compute the ground and the first excited states of the

BEC efficiently and accurately, we will discuss how to choose proper initial data φ0(x) for different

parameter regimes and propose two numerical schemes: the backward Euler sine-pseudospectral

method (BESP) and the backward-forward Euler sine-pseudospectral method (BFSP), to discretize

the NGF (3.1)–(3.3) in the next two sections.

The choice of proper initial data for the gradient flow is crucial to save the computational cost

for computing the ground state. Without loss of generality, we assume that the trapping potential

V (x) in (2.11) satisfies

V (x) = V0(x) + W (x), V0(x) =
1
2

(
γ2
1x2

1 + · · ·+ γ2
dx2

d

)
, lim
|x|→+∞

W (x)
V0(x)

= 0, (3.6)
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where x = (x1, · · · , xd)T ∈ Rd and γj > 0 for 1 ≤ j ≤ d. In this case, when |β| is not large, e.g.

|β| < 10, a possible choice of the initial data is the ground state of the GPE (2.19) with β = 0 and

V (x) = V0(x) [13, 18, 94], i.e.

φ0(x) =

(∏d
j=1 γj

)1/4

πd/4
exp

[− (
γ1x

2
1 + · · ·+ γdx

2
d

)]
, x ∈ Rd. (3.7)

On the other hand, when |β| is not small, e.g. |β| ≥ 10, a possible choice of the initial data is the

Thomas-Fermi approximation [13]:

φ0(x) =
φTF

g (x)
‖φTF

g ‖ , φTF
g (x) =





√
µTF

g −V (x)

β , V0(x) < µTF
g ,

0, otherwise,
x ∈ Rd, (3.8)

where

µTF
g =

1
2





(3βγ1)
2/3

, d = 1,

(4βγ1γ2)
1/2

, d = 2,

(15βγ1γ2γ3/4π)2/5
, d = 3.

3.1.2 Backward Euler sine-pseudospectral method (BESP)

As the trapping potential V (x) given by (3.6) is infinity at far-field, the solution φ(x, t) of (3.1)–(3.3)

decays to zero exponentially fast when |x| → ∞. Therefore, in practical computation, the problem

(3.1)–(3.3) can be truncated into a bounded computational domain with homogeneous Dirichlet

boundary conditions:

∂

∂t
φ(x, t) =

(
1
2
∇2 − V (x)− β|φ|2

)
φ(x, t), x ∈ Ω, tn ≤ t < tn+1, n ≥ 0, (3.9)

φ(x, tn+1) =
φ(x, t−n+1)
‖φ(·, t−n+1)‖

, x ∈ Ω, n ≥ 0, (3.10)

φ(x, t) = 0, x ∈ Γ = ∂Ω, t > 0, (3.11)

φ(x, 0) = φ0(x), x ∈ Ω with ‖φ0‖2 :=
∫

Ω

|φ0(x)|2 dx = 1. (3.12)

We choose Ω as an interval (a, b) in 1D, a rectangle (a, b)×(c, d) in 2D, and a box (a, b)×(c, d)×(e, f)

in 3D, with |a− b|, |c− d|, and |e− f | sufficiently large.

For simplicity of notation, we shall introduce the method in 1D, i.e. d = 1 in (3.9)–(3.12).

Generalization to d > 1 is straightforward for tensor product grids and the results remain valid
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without modifications. For 1D, we choose the spatial mesh size h = ∆x > 0 with h = (b − a)/M

where M is an even positive integer, and let the grid points be

xj := a + j h, j = 0, 1, · · · ,M.

We let φn
j be the approximation of φ(xj , tn) and φn be the solution vector with component φn

j .

In order to discretize the gradient flow (3.9) with d = 1, we use the backward Euler method for

time discretization and sine-pseudospectral method for spatial derivatives (BESP). Thus discretiza-

tion of (3.9)–(3.12) reads

φ∗j − φn
j

∆t
=

1
2

Ds
xxφ∗|x=xj

− V (xj)φ∗j − β|φn
j |2φ∗j , j = 1, 2, · · · , M − 1, (3.13)

φ∗0 = φ∗M = 0, φ0
j = φ0(xj), j = 0, 1, · · · ,M, (3.14)

φn+1
j =

φ∗j
‖φ∗‖ , j = 0, 1, · · · ,M, n = 0, 1, · · · ; (3.15)

where the norm is calculated as ‖φ∗‖2 = h
∑M−1

j=1 |φ∗j |2. Here Ds
xx, a spectral differential operator

approximation of ∂2

∂x2 , is defined as

Ds
xxU |x=xj

= − 2
M

M−1∑

l=1

µ2
l (Û)l sin(µl(xj − a)), j = 1, 2, · · · ,M − 1, (3.16)

where (Û)l (l = 1, 2, · · · ,M −1), the sine transform coefficients of the vector U = (U0, U1, · · · , UM )T

satisfying U0 = UM = 0, are defined as

µl =
πl

b− a
, (Û)l =

M−1∑

j=1

Uj sin(µl(xj − a)), l = 1, 2, · · · ,M − 1. (3.17)

In discretization (3.13), a linear system has to be solved at every time step. We present here an

efficient way to solve it iteratively by introducing a stabilization term with constant coefficient, and

by using discrete sine transform:

φ∗,m+1
j − φn

j

∆t
=

1
2

Ds
xxφ∗,m+1

∣∣
x=xj

− αφ∗,m+1
j +

(
α− V (xj)− β|φn

j |2
)
φ∗,mj , m ≥ 0, (3.18)

φ∗,0j = φn
j , j = 0, 1, · · · ,M ; (3.19)

where α ≥ 0, called stabilization parameter, is to be determined. Taking discrete sine transform at
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both sides of (3.18) yields

(φ̂∗,m+1)l − (φ̂n)l

∆t
= −

(
α +

1
2
µ2

l

)
(φ̂∗,m+1)l + (Ĝm)l, l = 1, 2, · · · ,M − 1, (3.20)

where (Ĝm)l are the sine transform coefficients of vector Gm = (Gm
0 , Gm

1 , · · · , Gm
M )T which is defined

as

Gm
j =

(
α− V (xj)− β|φn

j |2
)
φ∗,mj , j = 0, 1, · · · ,M. (3.21)

Solving (3.20), we get

(φ̂∗,m+1)l =
2

2 + ∆t(2α + µ2
l )

[
(φ̂n)l + ∆t (Ĝm)l

]
, l = 1, 2, · · · , M − 1. (3.22)

Taking the inverse discrete sine transform of (3.22) gives the solution of (3.18) immediately.

In order to find the optimal stabilization parameter α in (3.18) such that the iterative method

(3.18) for solving (3.13) converges as fast as possible, we write (3.18) in matrix form

Aφ∗,m+1 = Bφ∗,m + C, m = 0, 1, · · · , (3.23)

where

A = (1 + α∆t)I − ∆t

2
Ds

xx, C =
(
φn

1 , · · · , φn
M−1

)T
, (3.24)

B = ∆t diag
(
α− V (x1)− β|φn

1 |2, · · · , α− V (xM−1)− β|φn
M−1|2

)
, (3.25)

and I is the (M−1)×(M−1) identity matrix. Since A is a positive definite matrix, by the standard

theory of iterative methods for a linear system [62], a sufficient and necessary condition for the

convergence of the iterative method is

ρ
(
A−1B

)
< 1. (3.26)

Substituting (3.24) and (3.25) into condition (3.26), we obtain

ρ
(
A−1B

) ≤ ‖A−1B‖2 ≤ ‖A−1‖2‖B‖2 =
∆t max1≤j≤M−1

∣∣α− V (xj)− β|φn
j |2

∣∣
1 + α∆t + ∆t

2 min1≤l≤M−1 µ2
l

=
∆t max{|α− bmax|, |α− bmin|}

1 + α∆t + π2∆t
2(b−a)2

, (3.27)
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where

bmax = max
1≤j≤M−1

(
V (xj) + β|φn

j |2
)
, bmin = min

1≤j≤M−1

(
V (xj) + β|φn

j |2
)
.

Therefore, if we take the stabilization parameter α as

αopt =
1
2

(bmax + bmin) , (3.28)

we get

ρ
(
A−1B

) ≤ ∆tmax{|αopt − bmax|, |αopt − bmin|}
1 + αopt∆t + π2∆t

2(b−a)2

≤ ∆t (bmin + bmax)
2 + ∆t (bmin + bmax) + π2∆t

(b−a)2

< 1,

which guarantees the convergence of the iterative method (3.18) and the convergent rate is optimal

as given by

R
(
A−1B

)
:= − ln ρ

(
A−1B

) ≥ ln
2 + ∆t (bmin + bmax) + π2∆t

(b−a)2

∆t (bmin + bmax)
. (3.29)

3.1.3 Backward-forward Euler sine-pseudospectral method (BFSP)

Since φn+1 in (3.15), i.e. φ∗ in (3.13), is just an intermediate approximation of the ground state

solution, it is not required to solve the linear system (3.13) for φ∗ very accurately. Specifically, if

we only iterate (3.18) for one step, the algorithm is significantly simplified. This is equivalent to

using the sine-pseudospectral method for the spatial derivatives and the backward/forward Euler

scheme for linear/nonlinear terms in the time derivatives (BFSP) for discretizing the gradient flow

(3.9) with d = 1. Thus discretization of (3.9)–(3.12) reads

φ∗j − φn
j

∆t
=

1
2

Ds
xxφ∗|x=xj

− αφ∗j +
(
α− V (xj)− β|φn

j |2
)
φn

j , j = 1, 2, · · · ,M − 1, (3.30)

φ∗0 = φ∗M = 0, φ0
j = φ0(xj), j = 0, 1, · · · ,M, (3.31)

φn+1
j =

φ∗j
‖φ∗‖ , j = 0, 1, · · · ,M, n = 0, 1, · · · ; (3.32)

where α ≥ 0 is the stabilization parameter. This discretization is implicit, but it can be solved

directly via the fast sine transform. Therefore this numerical scheme is extremely efficient in practical

computation. In fact, the memory requirement is O(M) and computational cost per time step

is O(M ln(M)). Of course, there is a constraint for the time step such that the flow is energy
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diminishing. By Remark 2.13 in [12], the constraint for the time step ∆t is

∆t <
1∣∣α− V (xj)− β|φn

j |2
∣∣ =

1
max{|α− bmin|, |α− bmax|} . (3.33)

If we take α = αopt = bmax+bmin
2 , then the bound in the constraint for ∆t is optimal. In this case, it

reads

∆t <
2

bmin + bmax
. (3.34)

3.1.4 Other discretization schemes

For comparison purposes, we review alternative discretization schemes for discretizing the gradient

flow (3.9)–(3.12), which are currently used in the literature. One of them is the forward Euler

sine-pseudospectral (FESP) scheme:

φ∗j − φn
j

∆t
=

1
2

Ds
xxφn|x=xj

− V (xj)φn
j − β|φn

j |2φn
j , j = 1, 2, · · · ,M − 1. (3.35)

The constraint for the time step ∆t is

∆t <
2

2bmax + µ2
M−1

=
2

2bmax + (M − 1)2π2/(b− a)2
<

2h2

π2 + 2h2bmax
. (3.36)

Another scheme is the backward Euler finite difference (BEFD) method proposed in [12], which

is unconditionally stable,

φ∗j − φn
j

∆t
=

φ∗j−1 − 2φ∗j + φ∗j+1

2h2
− V (xj)φn

j − β|φn
j |2φn

j , j = 1, 2, · · · ,M − 1. (3.37)

This discretization is second order accurate in space as demonstrated in [12].

3.2 Numerical results

In this section, we will demonstrate the spectral accuracy in space of the numerical methods BESP

(3.13)–(3.15) and BFSP (3.30)–(3.32) for computing the ground and the first excited states of BEC.

Numerical comparison between BESP and BFSP as well as with other existing numerical methods
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e.g. FESP and BEFD, will be performed in terms of spatial accuracy and computational time. The

methods will then be applied to compute the ground and the first excited states of BEC in 1D, 2D

and 3D for different trapping potentials, in particular the optical lattice potential.

3.2.1 Comparison of spatial accuracy and results in 1D

Example 3.2.1.We take d = 1 in (2.11) and study two kinds of trapping potentials

Case I. Harmonic oscillator potential V (x) = x2

2 and β = 400;

Case II. Optical lattice potential V (x) = x2

2 + 25 sin2
(

πx
4

)
and β = 250.

The initial data (3.12) is chosen as (3.8) for computing the ground state, and as φ0(x) =
√

2x
π1/4 e−x2/2 for computing the first excited state. We solve the problem with BESP for x ∈ [−16, 16],

i.e. a = −16 and b = 16, and take the time step ∆t = 0.05 for computing the ground state, and

time step ∆t = 0.001 for computing the first excited state. In this example and in the next two

examples, the reason for smaller time step chosen in the computation of the first excited state is

to suppress the round-off error in the fast sine transform (FST) and the inverse fast sine transform

(IFST), such that the numerical solution is an odd function. The termination condition for solving

the linear system is max1≤j≤M−1 |φ∗,m+1
j − φ∗,mj | < 10−13, and the steady state solution of BESP

is reached when max1≤j≤M−1 |φn+1
j − φn

j | < 10−12. We let φg and φ1 be the ‘exact’ ground

state and the ’exact’ first excited state which are obtained numerically by applying BESP with

a very fine mesh h = 1
32 and h = 1

128 , respectively. Their energies and chemical potentials are

denoted as Eg := E(φg), E1 := E(φ1), and µg := µ(φg), µ1 := µ(φ1). We let φSP
g,h and φSP

1,h be

the computed ground state and first excited state obtained by applying BESP with mesh size h.

Similarly, φFD
g,h and φFD

1,h are obtained by applying BEFD in a similar way. Tables 3.1&3.2 list the

errors for Case I, and Tables 3.3&3.4 list the errors for Case II. We also compute the energies and

chemical potentials of the ground state and the first excited state based on our ‘exact’ solutions φg

and φ1. For Case I, we get Eg := E(φg) = 21.3601 and µg := µ(φg) = 35.5775 for the ground state,

and E1 := E(φ1) = 22.0777 and µ1 := µ(φ1) = 36.2881 for the first excited state. Similarly, for

Case II, we have Eg = 26.0838, µg = 38.0692, E1 = 27.3408 and µ1 = 38.9195. Figure 3.1 plots φg

and φ1 as well as their corresponding trapping potentials for Cases I&II.
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mesh size h = 1 h = 1/2 h = 1/4 h = 1/8
max |φg − φSP

g,h| 1.310E-3 7.037E-5 1.954E-8 <E-12
‖φg − φSP

g,h‖ 1.975E-3 7.425E-5 2.325E-8 <E-12
|Eg − E(φSP

g,h)| 5.688E-5 2.642E-6 9E-12 <E-12
|µg − µ(φSP

g,h)| 1.661E-2 8.705E-5 9.44E-10 4E-12
max |φg − φFD

g,h| 2.063E-3 1.241E-3 2.890E-4 7.542E-5
‖φg − φFD

g,h‖ 3.825E-3 1.439E-3 3.130E-4 7.705E-5
|Eg − E(φFD

g,h)| 2.726E-3 9.650E-4 2.540E-4 6.439E-5
|µg − µ(φFD

g,h)| 2.395E-2 6.040E-4 2.240E-4 5.694E-5

Table 3.1: Spatial resolution of BESP and BEFD for the ground state of Case I in
Example 3.2.1.

Mesh size h = 1/4 h = 1/8 h = 1/16 h = 1/32
max |φ1 − φSP

1,h| 2.064E-1 6.190E-4 2.099E-7 <E-12
‖φ1 − φSP

1,h‖ 1.093E-1 3.200E-4 1.403E-7 <E-12
|E1 − E(φSP

1,h)| 5.259E-2 3.510E-4 5.550E-9 <E-12
|µ1 − µ(φSP

1,h)| 1.216E-1 1.509E-3 4.762E-8 <E-12
max |φ1 − φFD

1,h| 2.348E-1 8.432E-3 2.267E-3 6.040E-4
‖φ1 − φFD

1,h‖ 1.197E-1 4.298E-3 1.215E-3 2.950E-4
|E1 − E(φFD

1,h)| 3.154E-1 5.212E-2 1.382E-2 3.449E-3
|µ1 − µ(φFD

1,h)| 4.216E-1 5.884E-2 1.609E-2 3.999E-3

Table 3.2: Spatial resolution of BESP and BEFD for the first excited state of Case I in
Example 3.2.1.

Mesh size h = 1 h = 1/2 h = 1/4 h = 1/8
max |φg − φSP

g,h| 7.982E-3 1.212E-3 2.219E-6 1.9E-11
‖φg − φSP

g,h‖ 1.304E-2 1.313E-3 2.431E-6 2.8E-11
|Eg − E(φSP

g,h)| 4.222E-4 1.957E-4 4.994E-8 <E-12
|µg − µ(φSP

g,h)| 9.761E-2 4.114E-3 5.605E-7 <E-12
max |φg − φFD

g,h| 1.019E-2 5.815E-3 1.001E-3 2.541E-4
‖φg − φFD

g,h‖ 1.967E-2 7.051E-3 1.390E-3 3.387E-4
|Eg − E(φFD

g,h)| 7.852E-2 2.961E-2 7.940E-3 2.027E-3
|µg − µ(φFD

g,h)| 1.786E-1 1.716E-2 6.730E-3 1.728E-3

Table 3.3: Spatial resolution of BESP and BEFD for the ground state of Case II in
Example 3.2.1.
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Mesh size h = 1/4 h = 1/8 h = 1/16 h = 1/32
max |φ1 − φSP

1,h| 2.793E-1 1.010E-3 4.240E-7 2E-12
‖φ1 − φSP

1,h‖ 1.477E-1 5.241E-4 2.784E-7 2E-12
|E1 − E(φSP

1,h)| 1.145E-1 8.337E-4 1.943E-8 <E-12
|µ1 − µ(φSP

1,h)| 1.593E-1 2.357E-3 1.097E-7 5E-12
max |φ1 − φFD

1,h| 3.134E-1 1.124E-2 3.231E-3 8.450E-4
‖φ1 − φFD

1,h‖ 1.599E-1 5.779E-3 1.701E-3 4.122E-4
|E1 − E(φFD

1,h)| 6.011E-1 1.002E-1 2.688E-2 6.707E-3
|µ1 − µ(φFD

1,h)| 6.315E-1 9.887E-2 2.742E-2 6.827E-3

Table 3.4: Spatial resolution of BESP and BEFD for the first excited state of Case II in
Example 3.2.1.

From Tables 3.1–3.4 and additional numerical experiments not presented here, it can be observed

that BESP, BFSP and FESP are spectrally accurate in spatial discretization; where BEFD is only

second-order accurate. The error in the ground and the first excited states is only due to the spatial

discretization. We have also found how fine the mesh size h should be for BEFD so as to achieve

very high accuracy. For Case I, we have max |φg−φFD
g,h| = 1.4×10−11 and |Eg−E(φFD

g,h)| = 8×10−12

for the mesh size h = 1/32768; and max |φ1−φFD
1,h| = 2.68×10−10 and |E1−E(φFD

1,h)| = 8.30×10−10

for the mesh size h = 1/65536. Similarly, for Case II, we have max |φg − φFD
g,h| = 2.3 × 10−11 and

|Eg − E(φFD
g,h)| = 1.23 × 10−10 for the mesh size h = 1/32768. When an optical lattice potential

is applied, multiscale structures are observed in both ground and first excited states (cf. Figure

3.1(b)). Therefore, when high accuracy is required or when the solution exhibits multiscale or

oscillatory structure, BESP and BFSP are much better than BEFD in a way that they need much

less grid points. Thus they can save plenty of memory and computational time, especially in 2D and

3D simulations.

3.2.2 Comparison of computational time and results in 2D

Example 3.2.2. We consider a BEC in 2D harmonic plus optical lattice potential, V (x, y) =

1
2 (x2 + y2) + κ

[
sin2

(
πx
4

)
+ sin2

(
πy
4

)]
in the GPE. The initial data (3.12) is chosen as (3.8) for

computing the ground state φg, as φ0(x, y) =
√

2x
π1/2 e−(x2+y2)/2 for the first excited state in x-direction

φ10, as φ0(x, y) =
√

2y
π1/2 e−(x2+y2)/2 for the first excited state in y-direction φ01, and as φ0(x, y) =

2xy
π1/2 e−(x2+y2)/2 for the first excited state in both x- and y-directions φ11. The problem is solved in

Ω = [−16, 16]2 with the mesh size h = 1
16 . For comparison of different methods and different time

steps, the termination condition for steady state solution is uniformly chosen as maxj,k
|φn+1

jk
−φn

jk|
∆t <



NUMERICAL STUDY OF SINGLE COMPONENT BEC GROUND STATE 74

(a)
−16 −8 0 8 16
0

0.1

0.2

0.3

0.4

φ g(x
)

−16 −8 0 8 16
0

35

70

105

140

V
(x

)

x
−16 −8 0 8 16

−0.4

−0.2

0

0.2

0.4

φ 1(x
)

x
−16 −8 0 8 16

0

35

70

105

140

V
(x

)

(b)
−16 −8 0 8 16
0

0.1

0.2

0.3

0.4

φ g(x
)

−16 −8 0 8 16
0

35

70

105

140

V
(x

)

x
−16 −8 0 8 16

−0.4

−0.2

0

0.2

0.4

φ 1(x
)

x
−16 −8 0 8 16

0

35

70

105

140

V
(x

)

Figure 3.1: Ground state φg (left column, solid lines) and first excited state φ1 (right
column, solid lines) as well as trapping potentials (dashed lines) in Example 3.2.1 for (a)
Case I; (b) Case II.

10−6. Tables 3.5&3.6 show the computational time taken to get the ground state by using different

methods and different time steps with κ = 100 for β = 100 and β = 1000 respectively. Also,

Figure 3.2 visualizes the ground and the first excited states for β = 500 and κ = 50 by using BESP

with the time step ∆t = 0.1 and ∆t = 0.001, respectively. Their energies and chemical potentials

are also computed: Eg = 32.2079, µg = 41.7854; E10 := E(φ10) = E01 := E(φ01) = 34.6044,

µ10 := µ(φ10) = µ01 := µ(φ01) = 43.8228; and E11 := E(φ11) = 37.0849, µ11 := µ(φ11) = 46.1402.

From Tables 3.5–3.6 and Figure 3.2, following observations are made:

(i) BESP and BEFD are implicit methods. Energy diminishing is observed for both linear and

nonlinear cases under any time step ∆t > 0; FESP is explicit and BFSP is implicit but it can be

implemented explicitly. For these two methods, energy diminishing is observed only when the time

step ∆t satisfies a constraint.

(ii) For BESP, the computational time is almost constant in the example for different β and

different time step 0.001 ≤ ∆t ≤ 0.5. Thus it is not important how the time step is chosen. One can

always choose ∆t = 0.5 or ∆t = 0.1 in practical computation. For FESP, only very small time step
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Numerical scheme ∆t Computational time Eg µg

0.5 597.6s 26.92580539 33.292591
0.25 622.6s 26.92580539 33.292586
0.1 637.3s 26.92580539 33.292585

BESP 0.05 661.8s 26.92580539 33.292584
0.01 805.9s 26.92580539 33.292584

0.0025 1290s 26.92580539 33.292584
0.1 52.1s 26.9357459 33.410725
0.05 56.4s 26.9348784 33.405024
0.025 63.7s 26.9334524 33.395124

BFSP 0.01 84.9s 26.9307326 33.373672
0.005 117.2s 26.9285960 33.352679
0.001 372.3s 26.9261198 33.312119
0.001 — — —
0.0005 643.9s 26.92580539 33.29258356

FESP 0.00025 1304s 26.92580539 33.29258357
0.0001 3295s 26.92580539 33.29258357

Table 3.5: Computational times for computing the ground state in Example 3.2.2 by
using different numerical schemes for β = 100.

Numerical scheme ∆t Computational time Eg µg

0.5 593.9s 51.22028604 66.249024
0.25 608.1s 51.22028604 66.249017
0.1 620.6s 51.22028604 66.249013

BESP 0.05 635.7s 51.22028604 66.249011
0.01 743.3s 51.22028604 66.249010

0.0025 1144s 51.22028604 66.249010
0.025 — — —
0.01 79.9s 51.2283083 66.376381
0.005 106.1s 51.2248581 66.344476
0.0025 165.8s 51.2223469 66.312619

BFSP 0.001 345.3s 51.2208091 66.280800
0.0005 648.6s 51.2204428 66.266346
0.00025 1251s 51.2203292 66.258089
0.001 — — —
0.0005 606.8s 51.22028604 66.2490096

FESP 0.00025 1306s 51.22028604 66.2490096
0.0001 3331s 51.22028604 66.2490094

Table 3.6: Computational times for computing the ground state in Example 3.2.2 by
using different numerical schemes for β = 1000.
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(a) (b)

(c) (d)

Figure 3.2: Top views of the (a) ground state φg; (b) first excited state in x-direction φ10;
(c) first excited state in y-direction φ01; (d) first excited state in both x- and y-directions
φ11, of BEC in Example 3.2.2 for β = 500.

is allowed. When the time step is decreased by half, the computational time is doubled. For BFSP,

a larger time step is allowed. The introduction of the stabilization term allows a larger time step

to be chosen in the computation. When the time step is chosen near to the largest allowable time

step, the computational time is much smaller than that in BESP. Furthermore, the growth rate of

computational time with respect to time step size for BFSP is faster than that for BESP.

(iii) From the numerical values of the energy and chemical potential calculated, BESP performs

better than BFSP in terms of accuracy. For BESP, the energy and chemical potential are almost

independent of the time step chosen, while for BFSP, better results are obtained when smaller time

step is used.

(iv) Interior layers are observed in the excited states when β is large (cf. Figure 3.2). Multiscale

structures are observed in both ground and first excited states. Furthermore,

E(φg) < E(φ10) = E(φ01) < E(φ11), µ(φg) < µ(φ10) = µ(φ01) < µ(φ11), β ≥ 0,
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lim
β→∞

E(φ10)
E(φg)

=
E(φ11)
E(φg)

= 1, lim
β→∞

µ(φ10)
µ(φg)

=
µ(φ11)
µ(φg)

= 1.

The relations φ10(x, y) = φ01(y, x), E(φ10) = E(φ01) and µ(φ10) = µ(φ01) are due to the symmetry

of the trapping potential, i.e. V (x, y) = V (y, x).

3.2.3 Results in 3D

Example 3.2.3. The ground state and the first excited state of a BEC in a 3D harmonic plus

optical lattice potential are computed, i.e. we take d = 3 and V (x, y, z) = 1
2 (x2 + y2 + z2) +

50
[
sin2

(
πx
4

)
+ sin2

(
πy
4

)
+ sin2

(
πz
4

)]
. The initial data (3.12) is chosen as (3.8) for computing the

ground state φg, as φ0(x, y, z) =
√

2x
π3/4 e−(x2+y2+z2)/2 for the first excited state in x-direction φ100,

as φ0(x, y, z) = 2xy
π3/4 e−(x2+y2+z2)/2 for the first excited state in x- and y-directions φ110, and as

φ0(x, y, z) = 23/2xyz
π3/4 e−(x2+y2+z2)/2 for the first excited state in x-, y- and z-directions φ111. The

problem is solved in Ω = [−8, 8]3 by using BESP with mesh size h = 1
8 . The time step is chosen

to be ∆t = 0.1 for the computation of the ground state and ∆t = 0.001 for the computation of

the excited states. Figure 3.3 plots the isosurfaces of the ground state for β = 100, 800 and 6400.

Figure 3.4 shows the isosurfaces of the excited states for β = 100. Table 3.7 lists the energies and

chemical potentials of the ground state and the excited states for different β. BFSP gives similar

results when ∆t = 0.01 in the computation of the ground state and ∆t = 0.001 in the computation

of the excited states.

From Table 3.7, Figures 3.3–3.4 and additional experiments not presented here, the following

observations are made:

(i) The BESP and BFSP are capable of computing the ground and the first excited states of

BEC in 3D when the solutions exhibit multiscale structures.

(ii) Interior layers are observed in the excited state when β is large (cf. Figure 3.4). Multiscale

structures are observed in both ground and first excited states for a condensate trapped in an optical

lattice potential. Furthermore, we also observed numerically

E(φg) < E(φ100) = E(φ010) = E(φ001) < E(φ110) = E(φ101) = E(φ011) < E(φ111),

µ(φg) < µ(φ100) = µ(φ010) = µ(φ001) < µ(φ110) = µ(φ101) = µ(φ011) < µ(φ11), β ≥ 0,

lim
β→∞

E(φ100)
E(φg)

=
E(φ110)
E(φg)

=
E(φ111)
E(φg)

= lim
β→∞

µ(φ100)
µ(φg)

=
µ(φ110)
µ(φg)

=
µ(φ111)
µ(φg)

= 1.
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(a)

(b)

(c)

Figure 3.3: Isosurfaces (left column) and their corresponding slice views (right column)
of BEC ground state in Example 3.2.3 for (a) β = 100; (b) β = 800; (c) β = 6400.

The relations E(φ100) = E(φ010) and µ(φ100) = µ(φ010) are due to the symmetry of the trapping

potential, V (x, y, z) = V (y, x, z).
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(a)

(b)

(c)

Figure 3.4: Isosurfaces (left column) and their corresponding slice views (right column)
of BEC excited states in Example 3.2.3 for β = 100. (a) First excited state in x-direction
φ100; (b) first excited state in x- and y-directions φ110; (c) first excited state in x-, y-
and z-directions φ111.

3.3 Discussion

We have presented two efficient and spectrally accurate numerical methods for computing the

ground and the first excited states in BEC. The methods are based on the application of the
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β
Eg

µg

E(φ100)
µ(φ100)

E(φ110)
µ(φ110)

E(φ111)
µ(φ111)

0
11.6439
11.6439

19.2450
19.2450

26.8462
26.8462

34.4473
34.4473

10
15.9852
19.1506

21.0720
22.5140

27.8833
28.6755

35.1742
35.7086

25
18.6574
21.3997

22.9316
25.6428

28.9665
30.6305

35.7780
36.8161

100 23.2356
27.4757

27.1939
30.4217

31.2498
34.3400

36.7368
38.4113

200 26.1956
30.6831

29.7009
33.8039

33.7883
38.0816

38.2237
40.9526

800
33.8023
40.4476

36.7106
42.9200

39.6478
45.3623

42.6474
47.8224

3200
45.2035
54.9862

47.4672
56.8902

50.3045
60.2456

52.7426
62.3855

6400
52.4955
63.7149

54.8717
66.3303

58.0720
70.5760

60.3200
72.5372

Table 3.7: Energies and chemical potentials of the ground and the excited states in
Example 3.2.3 for different β.

sine-pseudospectral discretization for spatial derivatives and the backward Euler (BESP) or the

backward/forward Euler (BFSP) discretization for linear/nonlinear terms for time derivatives in a

normalized gradient flow. Both discretization schemes are demonstrated to be spectrally accurate

in the computation of the ground and the first excited states of BEC. Furthermore, BESP is energy

diminishing for any time step ∆t > 0, while BFSP has a constraint on the time step ∆t. Therefore

larger mesh size and larger time step can be chosen in practical computation when high accuracy

is required. Thus, the computational memory and computational time can be saved significantly,

especially in 2D and 3D simulations.

Based on our extensive comparison of numerical results in terms of accuracy and computational

time, we make the following suggestions on how to choose a suitable numerical method:

(i) If high accuracy is crucial in computing the BEC ground state, e.g. in an optical lattice

potential or in a rotational frame, we always recommend to use BESP or BFSP. If one would like

to avoid the difficulty on how to choose the time step, BESP with time step ∆t = 0.5 or ∆t = 0.1

is a good choice. Of course, if one can find the largest allowable time step for BFSP, then BFSP is

a better choice since it needs much less computational time.

(ii) For computing the first excited state of BEC, in order to suppress the round-off error in the
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FST and IFST in such a way that the numerical solution is an odd function, a small time step is

required. Therefore, BFSP is recommended for computation.

(iii) We also propose here a combined method of BESP and BFSP, which gives high efficiency

of BFSP and high resolution of BESP: first apply BFSP for the gradient flow evolution to reach a

steady state solution, followed by applying BESP at a later stage to refine the solution. This scheme

gives as highly accurate solution as BESP does, but with much less computational time as compared

to applying only BESP.

Furthermore, an observation from our numerical simulation for BEC in a 1D box potential, which

was performed for the asymptotic approximation in Chapter 2 but not presented in this chapter,

is that the normalized gradient flow (NGF) and its BESP/BFSP discretization can be applied to

compute the ground state and all the excited states in a box potential provided appropriate initial

data is chosen. To compute the ground state, one can choose the initial data as φ0(x) =
√

2 sin(πx).

To compute the kth excited state, one can choose the initial data as φ0(x) =
√

2 sin((k + 1)πx).

The reason that the algorithm can be used to compute any excited state is due to the fact that the

roots of any fixed kth excited state are independent of the interaction parameter. Extension of this

observation to high dimension is straightforward by tensor product.



Chapter 4

Spin-1 BEC Ground State

In earlier BEC experiments, atoms were confined in magnetic trap, in which the spin degree of

freedom is frozen. The particles are described by the Gross-Pitaevskii equation (GPE) within the

mean field approximation, which is a scalar model. In recent years, experimental achievement in

creating spin-1 and spin-2 condensates [22, 63, 81, 103, 105] allows us to study various quantum

phenomena that are generally absent in a single component condensate. The spinor condensate is

achieved experimentally when an optical trap, instead of a magnetic trap, is used to provide equal

confinement for all hyperfine states.

The theoretical formulation was first carried out by Ho [66], Ohmi and Machida [90], and

Stamper-Kurn and Ketterle [104] for spin-1 condensate, and Ciobanu et al. [42], and Ueda and

Kaoshi [110] for spin-2 condensate. In the effort of exploring the rich properties of spinor dynamics,

various theoretical studies e.g. the coreless vortices [83], the quantum tunneling phenomena in dou-

ble well potential [88], the interactions of soliton solutions [109], the effect of finite temperature in

the context of Bogoliubov-de Gennes framework [85], etc, have been carried out to date by several

authors.

In this chapter, we will study the ground state of spin-1 BEC by proposing an efficient numerical

method to solve the coupled Gross-Pitaevskii equations (CGPEs) describing the condensate, by

extending the normalized gradient flow (NGF) method applied in Chapter 3 [15]. The method will

then be extended to spin-1 BEC in the presence of a uniform external magnetic field [16].

82
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4.1 The Coupled Gross-Pitaevskii Equations (CGPEs)

In contrast to single component condensate, a spin-F (F ∈ N) condensate is described by a gener-

alized coupled GPEs which consist of 2F + 1 equations, each governing one of the 2F + 1 hyperfine

states (mF = −F,−F + 1, ..., F − 1, F ) within the mean field approximation. For a spin-1 conden-

sate, at temperature much lower than the critical temperature Tc, the three-component wavefunction

Ψ(x, t) = (ψ1(x, t), ψ0(x, t), ψ−1(x, t))T is well described by the following coupled Gross-Pitavskii

equations (CGPEs) [44, 104, 115, 118, 119],

ih̄
∂

∂t
ψ1(x, t) =

[
− h̄2

2m
∇2 + V (x) + (c0 + c2)

(|ψ1|2 + |ψ0|2
)

+ (c0 − c2)|ψ−1|2
]

ψ1

+c2 ψ̄−1 ψ2
0 , (4.1)

ih̄
∂

∂t
ψ0(x, t) =

[
− h̄2

2m
∇2 + V (x) + (c0 + c2)

(|ψ1|2 + |ψ−1|2
)

+ c0|ψ0|2
]

ψ0

+2c2 ψ−1 ψ̄0 ψ1, (4.2)

ih̄
∂

∂t
ψ−1(x, t) =

[
− h̄2

2m
∇2 + V (x) + (c0 + c2)

(|ψ−1|2 + |ψ0|2
)

+ (c0 − c2)|ψ1|2
]

ψ−1

+c2 ψ2
0 ψ̄1. (4.3)

Here f̄ and Re(f) denote the conjugate and real part of the function f . There are two atomic collision

terms, c0 = 4πh̄2

3m (a0+2a2) and c2 = 4πh̄2

3m (a2−a0), expressed in terms of the s-wave scattering lengths,

a0 and a2, for scattering channel of total hyperfine spin 0 (anti-parallel spin collision) and spin 2

(parallel spin collision), respectively. The usual mean field interaction, c0, is positive for repulsive

interaction and negative for attractive interaction. The spin-exchange interaction, c2, is positive

for antiferromagnetic interaction and negative for ferromagnetic interaction. The three-component

wavefunction is normalized according to

‖Ψ‖2 :=
∫

R3
|Ψ(x, t)|2 dx =

∫

R3

1∑

l=−1

|ψl(x, t)|2 dx =
1∑

l=−1

‖ψl‖2 = N, (4.4)

where N is the total number of particles in the condensate. The external trapping potential is taken

to be a harmonic oscillator potential throughout this chapter, i.e.

V (x) =
m

2
(ω2

xx2 + ω2
yy2 + ω2

zz2), (4.5)

with ωx, ωy and ωz being the trapping frequencies in x-, y- and z-direction, respectively.

By introducing dimensionless variables similar to a single component BEC: t → t/ωx, x → x as
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with as =
√

h̄
mωx

, ψl →
√

Nψl/a
3/2
s (l = −1, 0, 1), we get the dimensionless CGPEs from (4.1)–(4.3)

as [19, 118, 120]:

i
∂

∂t
ψ1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(|ψ1|2 + |ψ0|2
)

+ (βn − βs)|ψ−1|2
]

ψ1

+βs ψ̄−1 ψ2
0 , (4.6)

i
∂

∂t
ψ0(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(|ψ1|2 + |ψ−1|2
)

+ βn|ψ0|2
]

ψ0

+2βs ψ−1 ψ̄0 ψ1, (4.7)

i
∂

∂t
ψ−1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(|ψ−1|2 + |ψ0|2
)

+ (βn − βs)|ψ1|2
]

ψ−1

+βs ψ2
0 ψ̄1, (4.8)

where βn = N c0
a3

sh̄ωx
= 4πN(a0+2a2)

3as
, βs = N c2

a3
sh̄ωm

= 4πN(a2−a0)
3as

and V (x) = 1
2 (x2 +γ2

yy2 + γ2
zz2)

with γy = ωy

ωm
and γz = ωz

ωm
. Similarly to those in a single component BEC, in a disk-shaped

condensation (ωy ≈ ωx, ωz À ωx), the 3D CGPEs can be reduced to 2D CGPEs; while in a cigar-

shaped condensation (ωy À ωx, ωz À ωx) they can be reduced to 1D CGPEs. Thus, we consider

here the dimensionless CGPEs in d dimensions (d = 1, 2, 3), which take exactly the same form as

(4.6)–(4.8), with

V (x) =
1
2





x2, d = 1,

x2 + γ2
yy2, d = 2,

x2 + γ2
yy2 + γ2

zz2, d = 3,

(4.9)

being the harmonic oscillator trap in d dimensions, and

βn =





2N(a0+2a2)
3as

√
ωyωz

ωx
,

2
√

2πN(a0+2a2)
3as

√
ωz

ωx
,

4πN(a0+2a2)
3as

,

βs =





2N(a2−a0)
3as

√
ωyωz

ωx
, d = 1,

2
√

2πN(a2−a0)
3as

√
ωz

ωx
, d = 2,

4πN(a2−a0)
3as

, d = 3,

(4.10)

being the mean field interaction (spin-independent) and spin-exchange interaction (spin-dependent)

in d dimensions. Three important invariants associated with (4.6)–(4.8) are the total mass (or

normalization) of the wavefunction,

N(Ψ(·, t)) := ‖Ψ(·, t)‖2 :=
∫

Rd

1∑

l=−1

|ψl(x, t)|2 dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0, (4.11)
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the total magnetization (or total spin) (with −1 ≤ M ≤ 1),

M(Ψ(·, t)) :=
∫

Rd

[|ψ1(x, t)|2 − |ψ−1(x, t)|2] dx ≡ M(Ψ(·, 0)) = M, t ≥ 0, (4.12)

and the energy per particle,

E(Ψ(·, t)) =
∫

Rd

{ 1∑

l=−1

(
1
2
|∇ψl|2 + V (x)|ψl|2

)
+ (βn − βs)|ψ1|2|ψ−1|2

+
βn

2
|ψ0|4 +

βn + βs

2

[
|ψ1|4 + |ψ−1|4 + 2|ψ0|2

(|ψ1|2 + |ψ−1|2
)]

+βs

(
ψ̄−1ψ

2
0ψ̄1 + ψ−1ψ̄

2
0ψ1

)}
dx ≡ E(Ψ(·, 0)), t ≥ 0. (4.13)

We are interested to find the ground state of the condensate, Φg(x), which is obtained from

the minimization of the energy functional (4.13) subjected to the conservation of total mass and

magnetization:

Find (Φg ∈ S) such that

Eg := E (Φg) = min
Φ∈S

E (Φ) , (4.14)

where the nonconvex set S is defined as

S =
{

Φ = (φ1, φ0, φ−1)T | ‖Φ‖ = 1,

∫

Rd

[|φ1(x)|2 − |φ−1(x)|2] dx = M, E(Φ) < ∞
}

. (4.15)

This is a nonconvex minimization problem. When βn ≥ 0, βn ≥ |βs| and lim|x|→∞ V (x) = ∞,

the existence of a solution of the nonconvex minimization problem (4.14) follows the standard

theory [102]. Concerning uniqueness of the ground state, note that E(α · Φg) = E(Φg) for all

α =
(
eiθ1 , eiθ0 , eiθ−1

)T with θ1 + θ−1 = 2θ0. Therefore additional constraints have to be introduced

to ensure the uniqueness.

As derived in [19], by defining the Lagrangian

L(Φ, µ, λ) := E(Φ)− µ
(‖φ1‖2 + ‖φ0‖2 + ‖φ−1‖2 − 1

)− λ
(‖φ1‖2 − ‖φ−1‖2 −M

)
, (4.16)

we get the Euler-Lagrange equations associated with the minimization problem (4.14):

(µ + λ) φ1(x) =
[
−1

2
∇2 + V (x) + (βn + βs)

(|φ1|2 + |φ0|2
)

+ (βn − βs)|φ−1|2
]

φ1
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+βs φ̄−1 φ2
0 := H1 φ1, (4.17)

µ φ0(x) =
[
−1

2
∇2 + V (x) + (βn + βs)

(|φ1|2 + |φ−1|2
)

+ βn|φ0|2
]

φ0

+2βs φ−1 φ̄0 φ1 := H0 φ0, (4.18)

(µ− λ) φ−1(x) =
[
−1

2
∇2 + V (x) + (βn + βs)

(|φ−1|2 + |φ0|2
)

+ (βn − βs)|φ1|2
]

φ−1

+βs φ2
0 φ̄1 := H−1 φ−1, (4.19)

where µ and λ are the Lagrange multipliers of the CGPEs (4.6)–(4.8). Equations (4.17)–(4.19) form

a nonlinear eigenvalue problem under the two constraints

‖Φ‖2 :=
∫

Rd

|Φ(x)|2 dx =
∫

Rd

1∑

l=−1

|φl(x)|2 dx :=
1∑

l=−1

‖φl‖2 = 1, (4.20)

‖φ1‖2 − ‖φ−1‖2 :=
∫

Rd

[|φ1(x)|2 − |φ−1(x)|2] dx = M. (4.21)

The nonlinear eigenvalue problem can also be obtained from the CGPEs (4.6)–(4.8) by substituting

ψl(x, t) = e−iµltφl(x) (l = 1, 0,−1) with

µ1 = µ + λ, µ0 = µ, µ−1 = µ− λ ⇐⇒ µ1 + µ−1 = 2µ0. (4.22)

Since φ is independent of time, (4.17)–(4.19) are also called the time-independent CGPEs and µl is

the chemical potential of the l-component. Any eigenfucntion Φ of the nonlinear eigenvalue problem

(4.17)–(4.19) under constraints (4.20) and (4.21), whose energy is larger than the energy of the

ground state is called the excited state of the condensate.

It is not obvious that the normalized gradient flow for solving the single component BEC ground

state could be directly extended to compute the ground state of spin-1 BEC. The difficulty is that

we only have two normalization conditions (i.e. the two constraints: conservation of total mass

and magnetization) which are insufficient to determine the three projection constants for the three

components of the wavefunction used in the normalization step. In the literature, the imaginary

time method is applied to compute the ground state of spin-1 BEC through the introduction of a

random variable to choose the three projection parameters in the projection step [118, 120]. This is

not a determinate and efficient way to compute the ground state of spin-1 BEC due to the choice

of the random variable. Bao and Wang [19] have proposed a continuous normalized gradient flow

(CNGF) to compute the spin-1 BEC ground state. The CNGF is discretized by the Crank-Nicolson

finite difference method with a special treatment of the nonlinear terms and thus the discretization
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scheme can be proved to be mass and magnetization conserved, and energy diminishing in the

discretized level. However, at each time step, a fully nonlinear system must be solved which is

tedious from computational point of view since the CNGF consists of integral-differential equations

(see details in (4.32)–(4.40)) which involve implicitly the Lagrange multipliers in the normalized

gradient flow evolution. The aim of this chapter is to introduce a third normalization condition

based on the relation between the chemical potentials of a spin-1 BEC, in addition to the two

existing normalization conditions given by the conservation of the total mass and the conservation

of total magnetization. Thus the three projection constants used in the normalization step for the

normalized gradient flow can be completely determined. This allows us to develop the normalized

gradient flow method to compute the ground state of a spin-1 BEC.

4.2 Numerical Method

4.2.1 Normalized gradient flow (NGF) revisited

In order to compute the minimizer of the nonconvex minimization problem (4.14), an efficient

technique for dealing with the normalization constraints in (4.15) is proposed based on the following

construction: choose a time step size k = ∆t > 0, discretize the time as tn = nk for n = 0, 1, 2, · · ·,
and apply the imaginary time method, i.e. through a change of variable t → −it, to form a normalized

gradient flow with the following splitting scheme:

∂

∂t
φ1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ0|2
)− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ2
0, (4.23)

∂

∂t
φ0(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ−1|2
)− βn|φ0|2

]
φ0

−2βs φ−1 φ̄0 φ1, x ∈ Rd, tn−1 ≤ t < tn, n ≥ 1, (4.24)

∂

∂t
φ−1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ−1|2 + |φ0|2
)− (βn − βs)|φ1|2

]
φ−1

−βs φ2
0 φ̄1; (4.25)

followed by a projection step as

φ1(x, tn) := φ1(x, t+n ) = σn
1 φ1(x, t−n ), (4.26)

φ0(x, tn) := φ0(x, t+n ) = σn
0 φ0(x, t−n ), x ∈ Rd, n ≥ 1, (4.27)
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φ−1(x, tn) := φ−1(x, t+n ) = σn
−1 φ−1(x, t−n ); (4.28)

where φl(x, t±n ) = limt→t±n
φl(x, t) (l = −1, 0, 1) and σn

l (l = −1, 0, 1) are the projection constants

chosen such that

‖Φ(·, tn)‖2 =
1∑

l=−1

‖φl(·, tn)‖2 = 1, ‖φ1(·, tn)‖2 − ‖φ−1(·, tn)‖2 = M. (4.29)

The gradient flow (4.23)–(4.25) can also be viewed as a result of applying the steepest decent method

to the energy functional E(Φ) in (4.13) without constraints, and (4.26)–(4.28) project the solution

back to the unit sphere S to satisfy the constraints in (4.15).

Substituting (4.26)–(4.28) into (4.29) yields

1∑

l=−1

(σn
l )2 ‖φl(·, t−n )‖2 = 1, (4.30)

(σn
1 )2 ‖φ1(·, t−n )‖2 − (

σn
−1

)2 ‖φ−1(·, t−n )‖2 = M. (4.31)

There are three unknowns and only two equations in the above nonlinear system, so the solution is

undetermined. In order to determine the projection constants σn
l (l = −1, 0, 1), we need to find an

additional equation which will be addressed in following section.

4.2.2 The third normalization condition

In order to find the third normalization equation to be used in the projection step of the normalized

gradient flow, we first review the continuous normalized gradient flow (CNGF) constructed in [19]

for computing the ground state of a spin-1 BEC in (4.14):

∂

∂t
φ1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ0|2
)− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ2
0 + [µΦ(t) + λΦ(t)] φ1, (4.32)

∂

∂t
φ0(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ−1|2
)− βn|φ0|2

]
φ0

−2βs φ−1 φ̄0 φ1 + µΦ(t) φ0, (4.33)

∂

∂t
φ−1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ−1|2 + |φ0|2
)− (βn − βs)|φ1|2

]
φ−1

−βs φ2
0 φ̄1 + [µΦ(t)− λΦ(t)] φ−1. (4.34)
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Here µΦ(t) and λΦ(t) are chosen in a way that the above CNGF is mass (or normalization) and

magnetization conserved. µΦ(t) and λΦ(t) are given by [19]

µΦ(t) =
RΦ(t)DΦ(t)−MΦ(t)FΦ(t)

NΦ(t)RΦ(t)−M2
Φ(t)

, λΦ(t) =
NΦ(t)FΦ(t)−MΦ(t)DΦ(t)

NΦ(t)RΦ(t)−M2
Φ(t)

, (4.35)

with

NΦ(t) =
∫

Rd

[|φ−1(x, t)|2 + |φ0(x, t)|2 + |φ1(x, t)|2] dx, (4.36)

MΦ(t) =
∫

Rd

[|φ1(x, t)|2 − |φ−1(x, t)|2] dx, (4.37)

RΦ(t) =
∫

Rd

[|φ1(x, t)|2 + |φ−1(x, t)|2] dx, (4.38)

DΦ(t) =
∫

Rd

{ 1∑

l=−1

(
1
2
|∇φl|2 + V (x)|φl|2

)
+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+(βn + βs)
[
|φ1|4 + |φ−1|4 + 2|φ0|2

(|φ1|2 + |φ−1|2
)]

+2βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)}
dx, (4.39)

FΦ(t) =
∫

Rd

{
1
2

(|∇φ1|2 − |∇φ−1|2
)

+ V (x)
(|φ1|2 − |φ−1|2

)

+(βn + βs)
[
|φ1|4 − |φ−1|4 + |φ0|2

(|φ1|2 − |φ−1|2
)]}

dx. (4.40)

For any given initial data

Φ(x, 0) = (φ1(x, 0), φ0(x, 0), φ−1(x, 0))T := Φ(0)(x), x ∈ Rd, (4.41)

satisfying

NΦ(t = 0) := NΦ(0) = 1, MΦ(t = 0) := MΦ(0) = M, (4.42)

it was proven that the total mass and total magnetization are conserved in the CNGF (4.32)–(4.34),

and at the same time the energy is diminishing [19], i.e.

NΦ(t) ≡ 1, MΦ(t) ≡ M, E (Φ(·, t) ≤ E (Φ(·, s)) , for any t ≥ s ≥ 0.
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The normalized gradient flow (4.23)–(4.28) can be viewed as a result of applying a first order

time-splitting scheme to the CNGF (4.32)–(4.34) and the projection step (4.26)–(4.28) is equivalent

to solving the following nonlinear ordinary differential equations (ODEs):

∂

∂t
φ1(x, t) = [µΦ(t) + λΦ(t)] φ1, (4.43)

∂

∂t
φ0(x, t) = µΦ(t) φ0, tn−1 ≤ t ≤ tn, n ≥ 1, (4.44)

∂

∂t
φ−1(x, t) = [µΦ(t)− λΦ(t)] φ−1. (4.45)

The solution of the above ODEs can be expressed as

φ1(x, tn) = exp

(∫ tn

tn−1

[µΦ(τ) + λΦ(τ)] dτ

)
φ1(x, tn−1), (4.46)

φ0(x, tn) = exp

(∫ tn

tn−1

µΦ(τ) dτ

)
φ0(x, tn−1), (4.47)

φ−1(x, tn) = exp

(∫ tn

tn−1

[µΦ(τ)− λΦ(τ)] dτ

)
φ−1(x, tn−1). (4.48)

This solution gives the following relation between the coefficients

exp

(∫ tn

tn−1

[µΦ(τ) + λΦ(τ)] dτ

)
exp

(∫ tn

tn−1

[µΦ(τ)− λΦ(τ)] dτ

)

= exp

(∫ tn

tn−1

2µΦ(τ) dτ

)
=

[
exp

(∫ tn

tn−1

µΦ(τ) dτ

)]2

. (4.49)

This immediately suggests us to propose the third normalization equation,

σn
1 σn

−1 = (σn
0 )2 , (4.50)

to determine the projection parameters. In fact, equation (4.50) can be also obtained from the

relation between the chemical potentials in (4.22) by physical intuition.

4.2.3 Normalization constants

The three normalization conditions (4.30), (4.31) and (4.50) form a nonlinear system of equations.

They have to be solved to get an explicit expression for the normalization constants, σ1, σ0 and σ−1.
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Summing (4.30) and (4.31), we get

2(σn
1 )2‖φ1(·, t−n )‖2 = 1 + M − (σn

0 )2‖φ0(·, t−n )‖2. (4.51)

This immediately implies

σn
1 =

√
1 + M − (σn

0 )2‖φ0(·, t−n )‖2
√

2 ‖φ1(·, t−n )‖ . (4.52)

Subtracting (4.31) from (4.30) yields

2(σn
−1)

2‖φ−1(·, t−n )‖2 = 1−M − (σn
0 )2‖φ0(·, t−n )‖2. (4.53)

Again, this immediately implies

σn
−1 =

√
1−M − (σn

0 )2‖φ0(·, t−n )‖2
√

2 ‖φ−1(·, t−n )‖ . (4.54)

Multiplying (4.52) and (4.54) and noticing (4.50), we get

[
1 + M − (σn

0 )2‖φ0(·, t−n )‖2] [
1−M − (σn

0 )2‖φ0(·, t−n )‖2]

= 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2 (σn
0 )4. (4.55)

The equation above can be simplified into

[‖φ0(·, t−n )‖4 − 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2] (σn
0 )4 − 2‖φ0(·, t−n )‖2 (σn

0 )2

+(1−M2) = 0. (4.56)

Solving the above equation and noticing (σn
0 )2 ‖φ0(·, t−n )‖2 ≤ (1−M2), we get

(σn
0 )2 =

‖φ0(·, t−n )‖2 −
√

4(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4
‖φ0(·, t−n )‖4 − 4‖φ−1(·, t−n )‖2 ‖φ1(·, t−n )‖2

=
1−M2

‖φ0(·, t−n )‖2 +
√

4(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4
, (4.57)
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as the only physical solution. It immediately implies that the normalization constant

σn
0 =

√
1−M2

[
‖φ0(·, t−n )‖2 +

√
4(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4

]1/2
. (4.58)

4.2.4 Backward-forward Euler sine-pseudospectral method

From numerical point of view, gradient flow (4.23)–(4.25) can be solved via any traditional tech-

nique, and the normalization of the gradient flow is simply achieved by a projection through the

normalization constants (4.58), (4.52), and (4.54), at the end of each time step. Among all existing

numerical schemes for solving the GPE for the BEC ground state, we choose the backward-forward

Euler sine-pseudospectral method (BFSP) introduced in Chapter 2, and extend it to discretize the

normalized gradient flow (4.23)–(4.25) and (4.26)–(4.28). The choice of the BFSP method is due to

its efficiency in terms of spatial accuracy and computational time.

As the trapping potential V (x) given by (4.5) is infinity at far-field, the solution Φ(x, t) decays

to zero exponentially fast when |x| → ∞. Therefore the domain can be truncated into a bounded

computational domain Ω with homogeneous Dirichlet boundary conditions. For simplicity of nota-

tion, we shall introduce the method for the case of one spatial dimension (d = 1) defined over the

interval (a, b) with homogeneous Dirichlet boundary conditions. Generalization to higher dimension

is straightforward for tensor product grids, and the results remain valid without modifications. For

d = 1, we choose the spatial mesh size h = ∆x > 0 with h = (b− a)/L where L is an even positive

integer, and let the grid points be

xl := a + j h, j = 0, 1, · · · , L.

Let Φn
j = (φn

1,j , φ
n
0,j , φ

n
−1,j)

T be the approximation of Φ(xj , tn) = (φ1(xj , tn), φ0(xj , tn), φ−1(xj , tn))T

and Φn be the solution vector with component Φn
j . The sine-pseudospectral method is applied in

the spatial discretization and the backward/forward Euler scheme is applied to the linear/nonlinear

terms in the time discretization. The gradient flow (4.23)–(4.25) is discretized, for j = 1, 2, . . . , L−1

and n ≥ 1, as

φ∗1,j − φn−1
1,j

∆t
=

1
2
Ds

xxφ∗1|x=xj − α1φ
∗
1,j + Gn−1

1,j , (4.59)

φ∗0,j − φn−1
0,j

∆t
=

1
2
Ds

xxφ∗0|x=xj − α0φ
∗
0,j + Gn−1

0,j , (4.60)
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φ∗−1,j − φn−1
−1,j

∆t
=

1
2
Ds

xxφ∗−1|x=xj
− α−1φ

∗
−1,j + Gn−1

−1,j ; (4.61)

where

Gn−1
1,j =

[
α1 − V (xj)− (βn + βs)

(|φn−1
1,j |2 + |φn−1

0,j |2
)− (βn − βs)|φn−1

−1,j |2
]
φn−1

1,j

−βs φ̄n−1
−1,j

(
φn−1

0,j

)2
, (4.62)

Gn−1
0,j =

[
α0 − V (xj)− (βn + βs)

(|φn−1
1,j |2 + |φn−1

−1,j |2
)− βn|φn−1

0,j |2
]
φn−1

0,j

−2βs φn−1
−1,j φ̄n−1

0,j φn−1
1,j , (4.63)

Gn−1
−1,j =

[
α−1 − V (xj)− (βn + βs)

(|φn−1
−1,j |2 + |φn−1

0,j |2
)− (βn − βs)|φn−1

1,j |2
]
φn−1
−1,j

−βs

(
φn−1

0,j

)2
φ̄n−1

1,j . (4.64)

Here, Ds
xx, the pseudospectral differential operator approximation of ∂2

∂x2 , is defined as

Ds
xxU |x=xj

= −
L−1∑
m=1

µ2
m(Û)m sin(µm(xj − a)), j = 1, 2, · · · , L− 1, (4.65)

where (Û)m (m = 1, 2, · · · , L−1), the sine transform coefficients of the vector U = (U0, U1, · · · , UL)T

satisfying U0 = UL = 0, are defined as

µm =
πm

b− a
, (Û)m =

2
L

L−1∑

j=1

Uj sin(µm(xj − a)), m = 1, 2, · · · , L− 1; (4.66)

and αl (l = −1, 0, 1) are the stabilization parameters, chosen in the optimal form (such that the

time step can be taken as large as possible).

α1 =
1
2

(
bmax
1 + bmin

1

)
, α0 =

1
2

(
bmax
0 + bmin

0

)
, α−1 =

1
2

(
bmax
−1 + bmin

−1

)
; (4.67)

with

bmax
1 = max

1≤j≤L−1

[
V (xj) + (βn + βs)

(|φn−1
1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
−1,j |2

]
,

bmin
1 = min

1≤j≤L−1

[
V (xj) + (βn + βs)

(|φn−1
1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
−1,j |2

]
,

bmax
0 = max

1≤j≤L−1

[
V (xj) + (βn + βs)

(|φn−1
1,j |2 + |φn−1

−1,j |2
)

+ βn|φn−1
0,j |2

]
,

bmin
0 = min

1≤j≤L−1

[
V (xj) + (βn + βs)

(|φn−1
1,j |2 + |φn−1

−1,j |2
)

+ βn|φn−1
0,j |2

]
,

bmax
−1 = max

1≤j≤L−1

[
V (xj) + (βn + βs)

(|φn−1
−1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
1,j |2

]
,
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bmin
−1 = min

1≤j≤L−1

[
V (xj) + (βn + βs)

(|φn−1
−1,j |2 + |φn−1

0,j |2
)

+ (βn − βs)|φn−1
1,j |2

]
.

The homogeneous Dirichlet boundary conditions are discretized as

φ∗1,0 = φ∗1,L = φ∗0,0 = φ∗0,L = φ∗−1,0 = φ∗−1,L = 0. (4.68)

The projection step (4.26)–(4.28) is discretized, for 0 ≤ j ≤ L and n ≥ 1, as

φn
1,j = σn

1 φ∗1,j , φn
0,j = σn

0 φ∗0,j , φn
−1,j = σn

−1 φ∗−1,j , (4.69)

where

σn
0 =

√
1−M2

[‖φ∗0‖2 +
√

4(1−M2)‖φ∗1‖2‖φ∗−1‖2 + M2‖φ∗0‖4
]1/2

, (4.70)

σn
1 =

√
1 + M − α2

0‖φ∗0‖2√
2 ‖φ∗1‖

, σn
−1 =

√
1−M − α2

0‖φ∗0‖2√
2 ‖φ∗−1‖

; (4.71)

with

‖φ∗1‖2 = h

L−1∑

j=1

|φ∗1,j |2, ‖φ∗0‖2 = h

L−1∑

j=1

|φ∗0,j |2, ‖φ∗−1‖2 = h

L−1∑

j=1

|φ∗−1,j |2.

The initial data (4.41) is given by

φ0
l,j = φl(xj , 0), j = 0, 1, 2, · · · , L, l = −1, 0, 1.

The linear system (4.59)–(4.61) can be solved efficiently by making use of the fast sine transform.

Taking discrete sine transform at both sides, we get

1
∆t

[
(φ̂∗1)m − (φ̂n−1

1 )m

]
= −

[
1
2
µ2

m + α1

]
(φ̂∗1)m + (Ĝn−1

1 )m, (4.72)

1
∆t

[
(φ̂∗0)m − (φ̂n−1

0 )m

]
= −

[
1
2
µ2

m + α0

]
(φ̂∗0)m + (Ĝn−1

0 )m, 1 ≤ m < L, (4.73)

1
∆t

[
(φ̂∗−1)m − (φ̂n−1

−1 )m

]
= −

[
1
2
µ2

m + α−1

]
(φ̂∗−1)m + (Ĝn−1

−1 )m. (4.74)

Solving the above system in the phase space, we obtain

(φ̂∗1)m =
1

1 + ∆t [α1 + µ2
m/2]

[
(φ̂n−1

1 )m + (Ĝn−1
1 )m

]
, (4.75)

(φ̂∗0)m =
1

1 + ∆t [α0 + µ2
m/2]

[
(φ̂n−1

0 )m + (Ĝn−1
0 )m

]
, 1 ≤ m < L, (4.76)
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(φ̂∗−1)m =
1

1 + ∆t [α−1 + µ2
m/2]

[
(φ̂n−1
−1 )m + (Ĝn−1

−1 )m

]
. (4.77)

An inverse fast sine transform followed by the projection (4.69) yields the solution Φn.

4.2.5 Chemical potentials

After getting the ground state Φ numerically, the energy of the ground state can be computed from

the discretization of (4.13) immediately. In order to compute the chemical potentials numerically,

different formulations can be applied. We propose here a reliable way to compute them. Multiplying

both sides of (4.17) by φ̄1 and integrating over Rd, we get

(µ + λ)‖φ1‖2 =
∫

Rd

φ̄1 H1φ1 dx := (φ1,H1φ1). (4.78)

Similarly, applying the same procedure to (4.18) and (4.19) by multiplying φ̄0 and φ̄−1, respectively,

we obtain

µ‖φ0‖2 =
∫

Rd

φ̄0 H0φ0 dx := (φ0,H0φ0), (4.79)

(µ− λ)‖φ−1‖2 =
∫

Rd

φ̄−1 H−1φ−1 dx := (φ−1,H−1φ−1). (4.80)

Summing (4.78)–(4.80), noticing that the ground state Φ satisfy the constraints (4.15), we get

µ + M λ = (φ1, H1φ1) + (φ0,H0φ0) + (φ−1,H−1φ−1). (4.81)

Subtracting (4.80) from (4.78) yields

M µ +
(‖φ1‖2 + ‖φ−1‖2

)
λ = (φ1,H1φ1)− (φ−1,H−1φ−1). (4.82)

Solving the linear system (4.81) and (4.82) for the chemical potentials µ and λ as unknowns and

applying integration by parts to the right hand sides of the linear system, we get

µ =

(‖φ1‖2 + ‖φ−1‖2
)
D(Φ)−M F (Φ)

‖φ1‖2 + ‖φ−1‖2 −M2
, λ =

F (Φ)−M D(Φ)
‖φ1‖2 + ‖φ−1‖2 −M2

, (4.83)
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where

D(Φ) =
∫

Rd

{ 1∑

l=−1

(
1
2
|∇φl|2 + V (x)|φl|2

)
+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+(βn + βs)
[
|φ1|4 + |φ−1|4 + 2|φ0|2

(|φ1|2 + |φ−1|2
)]

+2βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)}
dx, (4.84)

F (Φ) =
∫

Rd

{
1
2

(|∇φ1|2 − |∇φ−1|2
)

+ V (x)
(|φ1|2 − |φ−1|2

)

+(βn + βs)
[
|φ1|4 − |φ−1|4 + |φ0|2

(|φ1|2 − |φ−1|2
)]}

dx. (4.85)

The chemical potentials µ and λ can then be computed numerically from the discretization of (4.83)–

(4.85). Note that the expressions (4.83) are the same as (4.35) in which the Lagrange multipliers

are chosen in such a way that the CNGF is normalization and magnetization conserved, and energy

diminishing.

4.3 Numerical Results

In this section, we will first show that the spin-1 BEC ground state computed by our numerical

method is independent of the choice of initial data in (4.41) and verify numerically the energy

diminishing property of the method. Finally, we will apply the method to compute the ground state

of spin-1 BECs with different interactions, in different trapping potentials. In the computations, the

ground state is reached by using the numerical method (4.59)–(4.61), (4.69)–(4.71) when ‖Φn+1
h −

Φn
h‖ ≤ ε := 10−7. In addition, for the ground state of spin-1 BEC, we have M ↔ −M ⇐⇒ φ1 ↔

φ−1, thus we present only the results for 0 ≤ M ≤ 1.

4.3.1 Choice of initial data

In our tests, two typical physical experiments in harmonic potential are considered:

• Case I. Condensate with ferromagnetic interaction, e.g. 87Rb confined in a cigar-shaped trap-

ping potential with parameters: m = 1.443 × 10−25[kg], a0 = 5.387[nm], a2 = 5.313[nm],
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ωx = 2π×20[Hz], ωy = ωz = 2π×400[Hz]. These parameters give the dimensionless quantities

in (4.6)–(4.8) for the computations as: d = 1, V (x) = x2/2, βn ≈ 4π(a0+2a2)N
3as

√
ωyωz

2πωx
= 0.0885N

and βs ≈ 4π(a2−a0)N
3as

√
ωyωz

2πωx
= −0.00041N with N being the total number of atoms in the con-

densate, the dimensionless length unit as =
√

h̄/mωx = 2.4116 × 10−6 [m] and time unit

ts = 1/ωx = 0.007958[s].

• Case II. Condensate with antiferromagnetic interaction, e.g. 23Na confined in a cigar-shaped

trapping potential with parameters: m = 3.816 × 10−26[kg], a0 = 2.646[nm], a2 = 2.911[nm],

ωx = 2π× 20[Hz], ωy = ωz = 2π× 400[Hz]. These parameters give the following dimensionless

quantities in the computations: d = 1, V (x) = x2/2, βn ≈ 0.0241N and βs ≈ 0.00075N with

the dimensionless length unit as = 4.6896× 10−6 [m] and time unit ts = 0.007958[s].

We first verify that the converged solution is independent of different choices of the initial data

in (4.41), and that the normalized gradient flow is energy diminishing. In order to do so, we choose

the initial data in (4.41) as

• Gaussian profiles satisfying the constraints in (4.15) initially, i.e.

φ1(x, 0) =

√
0.5(1 + M − κ)

π1/4
e−x2/2, (4.86)

φ0(x, 0) =
√

κ

π1/4
e−x2/2, −∞ < x < ∞, (4.87)

φ−1(x, 0) =

√
0.5(1−M − κ)

π1/4
e−x2/2, (4.88)

where κ is a constant satisfying 0 < κ < 1− |M |.

• Unnormalized Gaussian profiles, i.e.

φ1(x, 0) = φ0(x, 0) = φ−1(x, 0) = e−x2/2, ∞ < x < ∞. (4.89)

The problem (4.14) is solved by the numerical method in the domain [−16, 16] with time step

∆t = 0.005 and mesh size h = 1/64. Figure 4.1 plots the time evolution of Nl(t) := ‖φl(·, t)‖2

(l = 1, 0,−1) for 87Rb in Case I with M = 0.5 and N = 104 for different initial data (4.86)–(4.89),

and Figure 4.2 shows similar results for 23Na in Case II. Figure 4.3 depicts the time evolution of the

energy for the two cases with M = 0.5 and N = 104 for different choices of initial data.
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Figure 4.1: Time evolution of N1 = ‖φ1(·, t)‖2 (left), N0 = ‖φ0(·, t)‖2 (middle) and
N−1 = ‖φ−1(·, t)‖2 (right) described by normalized gradient flow (4.26)–(4.28) for 87Rb
in Case I with M = 0.5 and N = 104 , with different initial data (4.89) (solid line) and
(4.86)–(4.88) with κ = 0.1 (dotted line), κ = 0.2 (dash-dot line) and κ = 0.4 (dashed
line), respectively.
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Figure 4.2: Time evolution of N1 = ‖φ1(·, t)‖2 (left), N0 = ‖φ0(·, t)‖2 (middle) and
N−1 = ‖φ−1(·, t)‖2 (right) described by normalized gradient flow (4.26)–(4.28) for 23Na
in Case II with M = 0.5 and N = 104, with different initial data (4.89) (solid line) and
(4.86)–(4.88) with κ = 0.1 (dotted line), κ = 0.2 (dash-dot line) and κ = 0.4 (dashed
line), respectively.

From Figures 4.1&4.2, we can see that the converged ground state is independent of the choice

of initial data. In addition to that, based on our extensive numerical experiments on other types

of initial data (not presented here for brevity), the numerical method always gives the ground

state if all three components in the initial data are chosen as nonnegative functions. Furthermore,

Figure 4.3 demonstrates the energy diminishing property of the normalized gradient flow and its full

discretization when the time step ∆t is small. Based on the numerical experiments, for 0 ≤ M ≤ 1,

we suggest the initial data in (4.41) to be chosen as: i) with ferromagnetic interaction (βs ≤ 0),

φ1(x) =
1
2

√
1 + 3Mφap

g (x), φ0(x) =

√
1−M

2
φap

g (x), φ1(x) =
1
2

√
1−Mφap

g (x);
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Figure 4.3: Time evolution of the energy of normalized gradient flow (4.26)–(4.28) with
M = 0.5, and N = 104 for (a) 87Rb in case I and (b) 23Na in case II with different initial
data (4.89) (solid line) and (4.86)–(4.88) with κ = 0.1 (dotted line), κ = 0.2 (dash-dot
line) and κ = 0.4 (dashed line), respectively.

and ii) with antiferromagnetic interaction, (βs > 0),

φ1(x) =

√
1 + M

2
φap

g (x), φ0(x) = 0, φ1(x) =

√
1−M

2
φap

g (x);

where φap
g (x) can be taken as the approximated ground state solution of a single component BEC,

e.g. the harmonic oscillator approximation when βn is small and the Thomas-Fermi approximation

when βn À 1 as discussed in Chapter 2. Based on these choices of initial data, we report the spin-1

BEC ground state solution computed by our numerical method.

Figure 4.4 shows the ground state solution of 87Rb in Case I with N = 104 for different magneti-

zation M and Table 4.1 lists the corresponding ground state energy and their Lagrange multipliers,

as well as the weighted error defined as

e = ‖φ1‖2 [(µ + λ)− µ1]
2 + ‖φ0‖2 [µ− µ0]

2 + ‖φ−1‖2 [(µ− λ)− µ−1]
2
, (4.90)

where µl (l = 1, 0,−1) are obtained from the numerical integration

µ1 =
h

‖φ1‖2





L−1∑

j=1

1
L

µ2
j (φ̂1)2j +

L−1∑

j=1

[(
V (xj) + βn(|φ1,j |2 + |φ0,j |2 + |φ−1,j |2)

+ βs

(|φ1,j |2 + |φ0,j |2 − |φ−1,j |2
)) |φ1,j |2 + βsφ

2
0,j φ̄1,j φ̄−1,j

]}
,

µ0 =
h

‖φ0‖2





L−1∑

j=1

1
L

µ2
j (φ̂0)2j +

L−1∑

j=1

[(
V (xj) + βn(|φ1,j |2 + |φ0,j |2 + |φ−1,j |2)

+ βs

(|φ1,j |2 + |φ−1,j |2
)) |φ0,j |2 + 2βsφ1,jφ−1,j φ̄

2
0,j

]}
,
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µ−1 =
h

‖φ−1‖2





L−1∑

j=1

1
L

µ2
j (φ̂−1)2j +

L−1∑

j=1

[(
V (xj) + βn(|φ1,j |2 + |φ0,j |2 + |φ−1,j |2)

+ βs

(|φ−1,j |2 + |φ0,j |2 − |φ1,j |2
)) |φ−1,j |2 + βsφ

2
0,j φ̄1,j φ̄−1,j

]}
.

Figure 4.5 shows the results with M = 0.5 for different particle number N .
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Figure 4.4: Wavefunctions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 87Rb in Case I with N = 104 and M = 0, 0.2, 0.5, 0.9 in
harmonic potential V (x) = x2

2 .

Similarly, Figure 4.6 shows the ground state solution of 23Na in Case II with N = 104 for

different magnetization M and Table 4.2 lists the corresponding ground state energy, their Lagrange

multipliers, and the weighted error. In addition, Figure 4.7 shows the results with M = 0.5 for

different particle number N .

Figure 4.8 plots the fractional mass of the three components in the spin-1 BEC ground state with

N = 104 for different magnetization M , and Figure 4.9 depicts the energy and chemical potentials

with M = 0.5 for different particle number N .

From Figures 4.4–4.9 as well as Tables 4.1–4.2, we can draw the following conclusions:
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M E µ λ(×10−5)
√

e(×10−4)
0 36.1365 60.2139 0 0.4262

0.1 36.1365 60.2139 1.574 0.1456
0.2 36.1365 60.2139 1.621 0.5059
0.3 36.1365 60.2139 1.702 1.0432
0.4 36.1365 60.2139 1.827 1.6642
0.5 36.1365 60.2139 2.014 2.2853
0.6 36.1365 60.2139 2.218 2.7799
0.7 36.1365 60.2139 2.062 2.9815
0.8 36.1365 60.2139 2.081 2.7317
0.9 36.1365 60.2139 2.521 1.8199

Table 4.1: Ground state energy E and their chemical potentials µ and λ as well as the
square root of weighted error e for 87Rb in Case I with N = 104 in harmonic potential
V (x) = x2

2 .

M E µ λ
√

e(×10−5)
0 15.2485 25.3857 0 4.882

0.1 15.2514 25.3847 0.0569 4.892
0.2 15.2599 25.3815 0.1142 4.913
0.3 15.2743 25.3762 0.1725 4.950
0.4 15.2945 25.3682 0.2325 5.019
0.5 15.3209 25.3572 0.2950 5.119
0.6 15.3537 25.3423 0.3611 5.270
0.7 15.3933 25.3220 0.4326 5.458
0.8 15.4405 25.2939 0.5121 5.720
0.9 15.4962 25.2527 0.6049 6.173

Table 4.2: Ground state energy E and their chemical potentials µ and λ as well as the
square root of weighted error e for 23Na in Case II with N = 104 in harmonic potential
V (x) = x2

2 .
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Figure 4.5: Wavefunctions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 87Rb in Case I with M = 0.5 and N = 102, 103, 104, 105 in
harmonic potential V (x) = x2

2 .

(i) For a spin-1 BEC with ferromagnetic interaction (βs ≤ 0), the three components in the

ground state solution are all positive functions (c.f. Figures 4.4&4.5); while for a spin-1 BEC with

antiferromagnetic interaction, i.e. βs ≥ 0, φ1 and φ−1 are positive functions and φ0 ≡ 0 (c.f. Figures

4.6&4.7).

(ii) For a spin-1 BEC with ferromagnetic interaction (βs ≤ 0), for fixed number of particles N in

the condensate, when the magnetization M increases from 0 to 1, the mass N1 increases from 0.25

to 1, the mass N−1 decreases from 0.25 to 0 and the mass N0 decreases from 0.5 to 0 (c.f. Figure

4.9(a)); while for a spin-1 BEC with antiferromagnetic interaction (βs ≥ 0), N1 increases from 0.5

to 1, N−1 decreases from 0.5 to 0 and N0 = 0 (c.f. Figure 4.9(b)).

(iii) For a spin-1 BEC with ferromagnetic interaction (βs ≤ 0), for fixed number of particles

N in the condensate, the energy and chemical potentials are independent of the magnetization

and the second chemical potential λ = 0 (c.f. Table 4.1, see [115] for detailed physical reasons);

while for a spin-1 BEC with antiferromagnetic interaction (βs ≥ 0), when the magnetization M

increases from 0 to 1, the energy E increases, the main chemical potential µ decreases and the
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Figure 4.6: Wavefunctions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 23Na in Case II with N = 104 and M = 0, 0.2, 0.5, 0.9 in
harmonic potential V (x) = x2

2 .

second chemical potential λ increases (c.f. Table 4.2). In both cases, for fixed magnetization M ,

when the number of particles N increases, the energy and chemical potentials increase (c.f. Figure

4.8). These observations agree with those obtained in [19] and [118] by different numerical methods.

4.3.2 Application in 1D with optical lattice potential

The numerical method is applied to compute the ground state of spin-1 BEC in one dimension (1D)

with an optical lattice potential. Again, two different interactions are considered:

• Case I. 87Rb with the following dimensionless quantities: d = 1, V (x) = x2/2 + 25 sin2
(

πx
4

)
,

βn = 0.0885N and βs = −0.00041N , with N being the total number of atoms in the conden-

sate. The dimensionless length unit as = 2.4116× 10−6 [m] and time unit ts = 0.007958[s].

• Case II. 23Na with the following dimensionless quantities: d = 1, V (x) = x2/2 + 25 sin2
(

πx
4

)
,

βn = 0.0241N and βs = 0.00075N , with N being the total number of atoms in the condensate.

The dimensionless length unit as = 4.6896× 10−6 [m] and time unit ts = 0.007958[s].
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Figure 4.7: Wavefunctions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid line)
and φ−1(x) (dotted line), of 23Na in Case II with M = 0.5 and N = 102, 103, 104, 105 in
harmonic potential V (x) = x2

2 .

Figure 4.10 shows the ground state solution of 87Rb in Case I with N = 104 for different

magnetization M and Table 4.3 lists the corresponding ground state energy and their Lagrange

multipliers. Figure 4.11 and Table 4.4 show similar results for 23Na in Case II. From Figures

4.10&4.11 and Tables 4.3&4.4, it can be seen that our method can be used in computing the ground

state of a spin-1 BEC in a general potential. In addition to that, similar conclusions as those in the

end of Section 4.3.1 can also be observed in the BEC ground state in the optical lattice potential.

4.3.3 Application in 3D with optical lattice potential

In this section, we apply the numerical method to compute the ground state of a spin-1 BEC in

three dimensions (3D) with an optical lattice potential. Two different interactions are considered:

• Case I. 87Rb with the following dimensionless quantities: d = 3, V (x) = 1
2

(
x2 + y2 + z2

)
+

100
[
sin2

(
πx
2

)
+ sin2

(
πy
2

)
+ sin2

(
πz
2

)]
, βn = 0.0880N and βs = −0.00041N , with N being the

total number of atoms in the condensate. The dimensionless length unit as =
√

h̄/mωx =
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M E µ λ(×10−4)
0 47.6944 73.0199 0

0.1 47.6944 73.0199 0.711
0.2 47.6944 73.0199 0.788
0.3 47.6944 73.0199 0.859
0.4 47.6944 73.0199 0.948
0.5 47.6944 73.0199 1.072
0.6 47.6944 73.0199 1.178
0.7 47.6944 73.0199 1.164
0.8 47.6944 73.0199 1.200
0.9 47.6944 73.0199 1.477

Table 4.3: Ground state energy E and their chemical potentials µ and λ for 87Rb in
Case I with N = 104 in optical lattice potential V (x) = x2

2 + 25 sin2
(

πx
4

)
.

M E µ λ
0 25.6480 37.4489 0

0.1 25.6509 37.4476 0.0593
0.2 25.6597 37.4400 0.1197
0.3 25.6753 37.4248 0.1931
0.4 25.6983 37.4025 0.2687
0.5 25.7291 37.3775 0.3458
0.6 25.7676 37.3492 0.4252
0.7 25.8144 37.3167 0.5079
0.8 25.8696 37.2305 0.6920
0.9 25.9340 37.2305 0.6920

Table 4.4: Ground state energy E and their chemical potentials µ and λ for 23Na in Case
II with N = 104 in optical lattice potential V (x) = x2

2 + 25 sin2
(

πx
4

)
.
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Figure 4.8: Masses of the three components of the ground state, i.e. Nl = ‖φl‖2 (l =
1, 0,−1), of spin-1 BEC with N = 104 and different magnetization 0 ≤ M < 1, for (a)
87Rb in Case I and (b) 23Na in Case II.

(a)
10

1
10

2
10

3
10

4
10

5
10

−1

10
0

10
1

10
2

10
3

N

E
µ

(b)
10

1
10

2
10

3
10

4
10

5
10

6
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

E
µ
λ

Figure 4.9: Energy E and chemical potentials µ and λ of spin-1 BEC with M = 0.5 and
different number of particles N , for (a) 87Rb in Case I and (b) 23Na in Case II.

7.6262 × 10−7 [m] and time unit ts = 1/ωx = 7.9577 × 10−4[s] (corresponding to physical

trapping frequencies ωx = ωy = ωz = 2π × 200[Hz]).

• Case II. 23Na with the following dimensionless quantities: d = 3, V (x) = 1
2

(
x2 + y2 + z2

)
+

100
[
sin2

(
πx
2

)
+ sin2

(
πy
2

)
+ sin2

(
πz
2

)]
, βn = 0.0239N and βs = 0.00075N with N being the

total number of atoms in the condensate. The dimensionless length unit as = 1.4830 × 10−6

[m] and time unit ts = 7.9577 × 10−4[s](corresponding to physical trapping frequencies ωx =

ωy = ωz = 2π × 200[Hz]).

Figure 4.12 shows the ground state solution with N = 104 and M = 0.5 for the two cases. From

Figure 4.12, we can see that our numerical method can be used to compute the ground state of a

spin-1 BEC in 3D with general trapping potential.
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Figure 4.10: Wavefunctions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid
line) and φ−1(x) (dotted line), of 87Rb in Case I with N = 104 and M = 0, 0.2, 0.5, 0.9
in optical lattice potential V (x) = x2

2 + 25 sin2
(

πx
4

)
.

4.4 Spin-1 BEC in Uniform Magnetic Field

While reporting the observation of equilibrium states of 23Na spinor condensates in an optical trap,

Ketterle et al. [105] had reported the ground state phase diagram of a uniform spin-1 condensate in

the Thomas-Fermi regime, with the existence of external magnetic field. Recently, Murata et al. [86]

also studied the broken axisymmetry phase of spin-1 ferromagnetic condensate subject to certain

magnetic field. In numerical studies of spin-1 BEC, You et al. [118] had reported the ground state

phase diagram for both 87Rb and 23Na confined in a harmonic oscillator trap subject to uniform

magnetic field. In [118], the imaginary time method with several adjustable parameters was applied

to solve the three-component coupled Gross-Pitaevskii equations (CGPEs) under the conservation

of total mass and total magnetization.

In this section, we will first review the three-component CGPEs for spin-1 BEC in uniform

magnetic field, followed by modifying the normalized gradient flow (NGF) method in section 4.2 to

solve for the condensate ground state. Two different ways of incorporating the magnetic field in the

normalized gradient flow will be presented. In order to identify the best scheme, comparison between
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Figure 4.11: Wavefunctions of the ground state, i.e. φ1(x) (dashed line), φ0(x) (solid
line) and φ−1(x) (dotted line), of 23Na in Case II with N = 104 and M = 0, 0.2, 0.5, 0.9
in optical lattice potential V (x) = x2

2 + 25 sin2
(

πx
4

)
.

different numerical treatments will be made. Richer properties are expected for spin-1 condensate

in magnetic field and they will be reported via our numerical simulation [16].

4.4.1 Coupled Gross-Pitaevskii equations (CGPEs) in uniform magnetic

field

At temperature much lower than the critical temperature Tc, the three-component wavefunction,

Ψ(x, t) = (ψ1(x, t), ψ0(x, t), ψ−1(x, t))T, that gives the states of a spin-1 BEC subjected to a uniform

external magnetic field B can be described by the following coupled Gross-Pitaevskii equations

(CGPEs) [66, 90, 118]:

ih̄
∂

∂t
ψ1(x, t) =

[
− h̄2

2m
∇2 + V (x) + E1 + (c0 + c2)

(|ψ1|2 + |ψ0|2
)

+ (c0 − c2)|ψ−1|2
]

ψ1

+c2 ψ̄−1 ψ2
0 , (4.91)
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ih̄
∂

∂t
ψ0(x, t) =

[
− h̄2

2m
∇2 + V (x) + E0 + (c0 + c2)

(|ψ1|2 + |ψ−1|2
)

+ c0|ψ0|2
]

ψ0

+2c2 ψ−1 ψ̄0 ψ1, (4.92)

ih̄
∂

∂t
ψ−1(x, t) =

[
− h̄2

2m
∇2 + V (x) + E−1 + (c0 + c2)

(|ψ−1|2 + |ψ0|2
)

+ (c0 − c2)|ψ1|2
]

ψ−1

+c2 ψ2
0 ψ̄1. (4.93)

We consider here a harmonic oscillator potential in the form of (4.5). El (l = −1, 0, 1) is the Zeeman

energy of the spin component mF = l in the uniform magnetic field. Two parameters which play

important roles in the ground state phase diagram as well as the dynamics of the spin-1 BEC are

the linear Zeeman energy

p0 =
1
2
(E1 − E−1) ≈ −µBB

2
, (4.94)

and the quadratic Zeeman energy

q0 =
1
2
(E1 + E−1 − 2E0) ≈ µ2

BB2

4Ehfs
(4.95)

[70, 98, 105]. The right hand sides of (4.94)–(4.95) are obtained when the Breit-Rabi formula is

applied. µB is the Bohr magneton and Ehfs is the hyperfine splitting.

In order to minimize any possible numerical error that can be caused by large Zeeman energy

when (4.91)–(4.93) are solved numerically, we shift the energy level and set the zero energy to be E0,

which is equivalent to replacing ψl → ψl exp(− iE0t
h̄ ) (l = 1, 0,−1) in (4.91)–(4.93). Furthermore,

by introducing dimensionless variables: t → t/ωx , x → xas with as =
√

h̄
mωx

, ψl →
√

Nψl/a
3/2
s

(l = −1, 0, 1) with N being the total number of particles in the system, the dimensionless CGPEs

are obtained from (4.91)–(4.93) as

i
∂

∂t
ψ1(x, t) =

[
−1

2
∇2 + V (x) + q + p + (βn + βs)

(|ψ1|2 + |ψ0|2
)

+ (βn − βs)|ψ−1|2
]

ψ1

+βs ψ̄−1 ψ2
0 , (4.96)

i
∂

∂t
ψ0(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(|ψ1|2 + |ψ−1|2
)

+ βn|ψ0|2
]

ψ0

+2βs ψ−1 ψ̄0 ψ1, (4.97)

i
∂

∂t
ψ−1(x, t) =

[
−1

2
∇2 + V (x) + q − p + (βn + βs)

(|ψ−1|2 + |ψ0|2
)

+ (βn − βs)|ψ1|2
]

ψ−1

+βs ψ2
0 ψ̄1, (4.98)

where the dimensionless harmonic trapping potential V (x) = 1
2

(
x2 + γ2

yy2 + γ2
zz2

)
with γy = ωy

ωx
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and γz = ωz

ωx
. The dimensionless mean field and spin-exchange interaction terms are given by the

same form as in Section 4.1, i.e. βn = Nc0
a3

sh̄ωx
= 4πN(a0+2a2)

as
and βs = Nc2

a3
sh̄ωx

= 4πN(a2−a0)
as

, while the

linear and quadratic Zeeman terms are scaled according to

p =
p0

h̄ωx
, q =

q0

h̄ωx
. (4.99)

For a trapping potential which is tightly confined in 1 or 2 directions, the excitation energy along

these tightly confined directions is very high and the BEC can be assumed to be in its ground state

along these directions at all time. The problem can thus be effectively described by CGPEs in lower

dimensions. We consider here dimensionless CGPEs in d dimensions, taking exactly the same form

as (4.96)–(4.98), with effective trapping potential (4.9) and effective interaction parameters (4.10).

The dimensionless Zeeman energies remain the same as (4.99) for 1D/2D CGPEs. Three conserved

quantities associated with (4.96)–(4.98) are the normalization of the wavefunction

N(Ψ(·, t)) := ‖Ψ(·, t)‖2 =
∫

Rd

1∑

l=−1

|ψl(x, t)|2 dx = 1, t ≥ 0, (4.100)

the total magnetization

M(Ψ(·, t)) :=
∫

Rd

[|ψ1(x, t)|2 − |ψ−1(x, t)|2] dx = M, t ≥ 0, (4.101)

and the energy per particle

E(Ψ(·, t)) =
∫

Rd

{ 1∑

l=−1

(
1
2
|∇ψl|2 + V (x)|ψl|2

)
+ (βn − βs)|ψ1|2|ψ−1|2

+
βn

2
|ψ0|4 +

βn + βs

2

[
|ψ1|4 + |ψ−1|4 + 2|ψ0|2

(|ψ1|2 + |ψ−1|2
)]

+βs

(
ψ̄−1ψ

2
0ψ̄1 + ψ−1ψ̄

2
0ψ1

)

+(q + p)|ψ1|2 + (q − p)|ψ−1|2
}

dx ≡ E(Ψ(·, 0)), t ≥ 0. (4.102)

The ground state of a spin-1 BEC Φg(x) is given by the minimizer of the energy functional

(4.102) subjected to constraints (4.100) and (4.101). By defining a Lagrangian in a similar way as

in Section 4.1, it is easy to show that the ground state is also the lowest energy solution of the
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time-independent CGPEs,

(µ + λ)φ1(x) =
[
−1

2
∇2 + V (x) + q + p + (βn + βs)

(|φ1|2 + |φ0|2
)

+ (βn − βs)|φ−1|2
]

φ1

+βs φ̄−1 φ2
0, (4.103)

µφ0(x) =
[
−1

2
∇2 + V (x) + (βn + βs)

(|φ1|2 + |φ−1|2
)

+ βn|φ0|2
]

φ0

+2βs φ−1 φ̄0 φ1, (4.104)

(µ− λ)φ−1(x, t) =
[
−1

2
∇2 + V (x) + q − p + (βn + βs)

(|φ−1|2 + |φ0|2
)

+ (βn − βs)|φ1|2
]

φ−1

+βs φ2
0 φ̄1, (4.105)

with µ and λ the Lagrange multipliers of the minimization problem.

4.4.2 Numerical methods

Since p and q in (4.96)–(4.98) are constants, it is straightforward to apply the normalized gradient

flow (4.23)–(4.28) to solve for the spin-1 BEC ground state in a uniform magnetic field. However,

the linear Zeeman effect term is always much greater than the quadratic Zeeman term, i.e. p À q,

and it causes high instability in the numerical scheme. The numerical scheme does not converge for

almost all physically realistic parameter values. For this reason, we have to modify the numerical

scheme (4.23)–(4.28) for the computation.

We first construct the continuous normalized gradient flow (CNGF) for the spin-1 BEC in

uniform magnetic field:

∂

∂t
φ1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ0|2
)− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ2
0 [µΦ(t) + (λΦ(t)− p)] φ1 − qφ1, (4.106)

∂

∂t
φ0(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ−1|2
)− βn|φ0|2

]
φ0

−2βs φ−1 φ̄0 φ1 + µΦ(t) φ0, (4.107)

∂

∂t
φ−1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ−1|2 + |φ0|2
)− (βn − βs)|φ1|2

]
φ−1

−βs φ2
0 φ̄1 + [µΦ(t)− (λΦ(t)− p)] φ−1 − qφ−1. (4.108)

where µΦ(t) and λΦ(t) are functionals of Φ = (φ1, φ0, φ−1)
T. Similarly to (4.32)–(4.34), they can

be chosen such that the above CNGF is normalization and magnetization conserved, and can be
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proved to be energy diminishing for any given initial data. The linear Zeeman term p is grouped

together with λΦ, acting as a Lagrange multiplier in the energy minimization process. A first order

time-splitting scheme will be applied to the CNGF (4.106)–(4.108), to form the standard normalized

gradient flow for ground state computation, as well as to find the third normalization condition.

There are two ways to deal with the quadratic Zeeman energy q during the time-splitting procedure

and we call the two numerical treatments as projection with magnetic field (PWMF) and projection

without magnetic field (POMF), respectively.

4.4.2.1 Projection with magnetic field (PWMF)

The first way to deal with the Zeeman energy is to apply a first order time-splitting to the CNGF

(4.106)–(4.108) in discrete time interval tn−1 ≤ t ≤ tn, where tn = n∆t with time step ∆t, in the

following way:

Step 1:

∂

∂t
φ1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ0|2
)− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ2
0, (4.109)

∂

∂t
φ0(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ−1|2
)− βn|φ0|2

]
φ0

−2βs φ−1 φ̄0 φ1, x ∈ Rd, tn−1 ≤ t < tn, n ≥ 1, (4.110)

∂

∂t
φ−1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ−1|2 + |φ0|2
)− (βn − βs)|φ1|2

]
φ−1

−βs φ2
0 φ̄1; (4.111)

Step 2:

∂

∂t
φ1(x, t) = [µΦ(t) + (λΦ(t)− p)] φ1 − qφ1, (4.112)

∂

∂t
φ0(x, t) = µΦ(t)φ0, tn−1 ≤ t ≤ tn, n ≥ 1, (4.113)

∂

∂t
φ−1(x, t) = [µΦ(t)− (λΦ(t)− p)] φ−1 − qφ−1. (4.114)

The nonlinear ordinary differential equations (ODEs) (4.112)–(4.114) are equivalent to the projection

step (4.26)–(4.28). Following the similar procedures in Section 4.2.2 and 4.2.3, a third normalization

condition for the normalization constants can be derived from the solution of the nonlinear ODEs
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(4.112)–(4.114), as

σn
1 σn

−1 = e−2q∆t(σn
0 )2. (4.115)

The normalization condition (4.115), together with the two physical conditions of the conservation

of mass and conservation of magnetization, determines the three normalization constants as

σn
0 =

√
1−M2

[
‖φ0(·, t−n )‖2 +

√
4e−4q∆t(1−M2)‖φ1(·, t−n )‖2‖φ−1(·, t−n )‖2 + M2‖φ0(·, t−n )‖4

]1/2
, (4.116)

σn
1 =

√
1 + M − (σn

0 )2‖φ0(·, t−n )‖2
√

2 ‖φ1(·, t−n )‖ , (4.117)

σn
−1 =

√
1−M − (σn

0 )2‖φ0(·, t−n )‖2
√

2 ‖φ−1(·, t−n )‖ . (4.118)

4.4.2.2 Projection without magnetic field (POMF)

Another approach to deal with the magnetic field is to retain q in the gradient flow equations instead

of including it in the normalization step. This yields the gradient flow (Step 1),

∂

∂t
φ1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ0|2
)− (βn − βs)|φ−1|2

]
φ1

−βs φ̄−1 φ2
0 − qφ1, (4.119)

∂

∂t
φ0(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ1|2 + |φ−1|2
)− βn|φ0|2

]
φ0

−2βs φ−1 φ̄0 φ1, x ∈ Rd, tn−1 ≤ t < tn, n ≥ 1, (4.120)

∂

∂t
φ−1(x, t) =

[
1
2
∇2 − V (x)− (βn + βs)

(|φ−1|2 + |φ0|2
)− (βn − βs)|φ1|2

]
φ−1

−βs φ2
0 φ̄1 − qφ−1; (4.121)

and the ODEs (Step 2),

∂

∂t
φ1(x, t) = [µΦ(t) + (λΦ(t)− p)] φ1, (4.122)

∂

∂t
φ0(x, t) = µΦ(t)φ0, tn−1 ≤ t ≤ tn, n ≥ 1, (4.123)

∂

∂t
φ−1(x, t) = [µΦ(t)− (λΦ(t)− p)] φ−1, (4.124)

which are equivalent to projection step (4.26)–(4.28). The normalization constants in this case are,

of course, given by (4.58), (4.52) and (4.54).
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4.4.3 Numerical comparison

In this section, we will compute the ground state of a spin-1 BEC confined in a cigar-shaped harmonic

oscillator potential and perform comparison between the accuracy of the ground state solution

obtained via the PWMF and POMF methods. The atoms are tightly confined in two directions and

can be effectively described by 1D CGPEs. Both gradient flows (4.109)–(4.111) and (4.119)–(4.121)

can be discretized by the backward-forward Euler sine-pseudospectral method (BFSP). However,

in order to perform a complete comparison between different numerical schemes, we apply also

the backward Euler sine-pseudospectral (BESP) discretization to the two gradient flows. Thus two

different projections, i.e. PWMF&POMF, and two different discretizations, i.e. BFSP&BESP, give

four combinations of numerical schemes:

1. PWMF + BFSP

2. PWMF + BESP

3. POMF + BFSP

4. POMF + BESP

In the following, we will compare the accuracy and the efficiency of the four schemes. Numerical

results obtained using different time steps are compared to the estimated exact solutions, which are

obtained using the time step ∆t = 5 × 10−5. For the parameter sets we used, all four numerical

schemes give the same results under this time step. In studying the numerical accuracy, we use the

following notations to indicate the numerical errors:

ε∆t
N1

: error in the fractional mass of component mF = 1 computed with time step ∆t;

ε∆t
E : error in the total energy computed with time step ∆t.

4.4.3.1 Ferromagnetic interaction

For the case of condensate with ferromagnetic interaction, we consider 104 87Rb atoms in a cigar-

shaped harmonic potential with trapping frequencies ωx = 2π×20[Hz], and ωy = ωz = 2π×400[Hz].

The atomic parameters are given by m = 1.443 × 10−25[kg], a0 = 5.387[nm], a2 = 5.313[nm], and
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Method ε0.01
N1

ε0.01
E ε0.001

N1
ε0.001
E

M = 0.2 PWMF+BFSP 0.018 0.0006 0.002 0.0001
PWMF+BESP 0.007 0 0.001 0.0001

N1 = 0.306 POMF+BFSP 0.015 0.0005 0.003 0
E = −1132.9770 POMF+BESP 0.015 0.0005 0.002 0

M = 0.5 PWMF+BFSP 0.007 0.0002 0.001 0.0001
PWMF+BESP 0.004 0.0001 0 0.0001

N1 = 0.535 POMF+BFSP 0.007 0.0004 0.001 0.0001
E = −2886.7040 POMF+BESP 0.015 0.0013 0.002 0.0001

M = 0.8 PWMF+BFSP 0.001 0.0002 0 0.0001
PWMF+BESP 0.003 0.0001 0 0.0001

N1 = 0.805 POMF+BFSP 0.001 0.0002 0 0.0001
E = −4640.4221 POMF+BESP 0.005 0.0009 0 0.0001

Table 4.5: Comparison of numerical schemes for computing the spin-1 87Rb ground state
in uniform magnetic field with Zeeman energies p = 5845.80 and q = 0.5 (the smallest
error is underlined).

Method ε0.01
N1

ε0.01
E ε0.001

N1
ε0.001
E

M = 0.2 PWMF+BFSP 0.006 0.0009 0.001 0
PWMF+BESP 0.002 0.0001 0 0

N1 = 0.211 POMF+BFSP 0.014 0.0025 0.002 0
E = −2578.0254 POMF+BESP 0.014 0.0024 0.001 0

M = 0.5 PWMF+BFSP 0.002 0.0005 0 0.0001
PWMF+BESP 0 0.0001 0 0

N1 = 0.505 POMF+BFSP 0.004 0.0008 0.001 0.0001
E = −6499.3979 POMF+BESP 0.007 0.0017 0.001 0.0001

M = 0.8 PWMF+BFSP 0 0.0002 0 0
PWMF+BESP 0 0.0001 0 0

N1 = 0.801 POMF+BFSP 0 0.0002 0 0
E = −10420.7489 POMF+BESP 0.001 0.0005 0 0

Table 4.6: Comparison of numerical schemes for computing the spin-1 87Rb ground state
in uniform magnetic field with Zeeman energies p = 13071.61 and q = 0.5 (the smallest
error is underlined).
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Ehfs = 4.5287×10−24[J]. The uniform magnetic field B[G] is applied in the z-direction and the effec-

tive one-dimensional potential and parameters are found to be V (x) = 1
2x2, βn = 2(a0+2a2)N

3as

√
ωyωz

ωx
=

885.4, βs = 2(a2−a0)N
3as

√
ωyωz

ωx
= −4.1, p = −34990.6346B and q = 3.5827B2, where the dimensionless

length scaling unit as = 2.4116[µm] and time scaling unit ts = 7.958[ms].

Tables 4.5&4.6 compare the accuracy of different numerical schemes in computing the spin-

1 87Rb ground state in uniform magnetic field B = 1.6707 × 10−1[G] (p = 5845.80, q = 0.5) and

B = 3.7357×10−1[G] (p = 13071.61, q = 0.5), respectively. As shown in the two tables, scheme 2, i.e.

PWMF with BESP discretization, gives the most accurate results under large time step ∆t ∼ 0.01.

When a smaller time step, e.g. ∆t ∼ 0.001, is used, all four numerical schemes give good results. In

term of efficiency, the BFSP method is preferable in the case of smaller time step since it is explicit.

4.4.3.2 Antiferromagnetic interaction

Method ε0.01
N1

ε0.01
E ε0.001

N1
ε0.001
E

M = 0.2 PWMF+BFSP 0.022 0.0008 0.003 0
PWMF+BESP 0.03 0.0012 0.005 0

N1 = 0.277 POMF+BFSP 0.007 0.0002 0.001 0
E = −579.9371 POMF+BESP 0.046 0.0022 0.007 0

M = 0.55 PWMF+BFSP 0.072 0.0032 0.034 0.0002
PWMF+BESP 0.092 0.0057 0.026 0.0005

N1 = 0.760 POMF+BFSP 0.007 0.0001 0 0
E = −1621.5122 POMF+BESP 0.081 0.0042 0.022 0.0003

M = 0.6 PWMF+BFSP 0.052 0.0033 0.020 0.0009
PWMF+BESP 0.085 0.0077 0.060 0.0042

N1 = 0.800 POMF+BFSP 0 0.0001 0 0
E = −1770.3084 POMF+BESP 0.074 0.0060 0.051 0.0031

M = 0.8 PWMF+BFSP 0 0.0002 0 0.0001
PWMF+BESP 0.004 0.0013 0 0.0001

N1 = 0.900 POMF+BFSP 0 0.0001 0 0
E = −2365.4656 POMF+BESP 0 0.0100 0 0.0100

Table 4.7: Comparison of numerical schemes for computing the spin-1 23Na ground state
in uniform magnetic field with Zeeman energies p = 2976.27 and q = 0.1 (the smallest
error is underlined).
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Method ε0.01
N1

ε0.01
E ε0.001

N1
ε0.001
E

M = 0.2 PWMF+BFSP 0.004 0.0008 0 0
PWMF+BESP 0.005 0.0011 0 0

N1 = 0.209 POMF+BFSP 0.001 0.0003 0 0
E = −1315.6122 POMF+BESP 0.012 0.0037 0.001 0

M = 0.5 PWMF+BFSP 0.009 0.0019 0.001 0.0001
PWMF+BESP 0.003 0.0003 0 0

N1 = 0.522 POMF+BFSP 0.003 0.0004 0 0
E = −3311.9032 POMF+BESP 0.013 0.0020 0.001 0

M = 0.95 PWMF+BFSP 0.012 0.0017 0.002 0
PWMF+BESP 0.010 0.0012 0.002 0

N1 = 0.966 POMF+BFSP 0.006 0.0002 0.001 0
E = −6306.3645 POMF+BESP 0.004 0.0002 0 0

M = 0.99 PWMF+BFSP 0.002 0.0006 0 0
PWMF+BESP 0.001 0.0004 0 0

N1 = 0.995 POMF+BFSP 0 0.0001 0 0
E = −6572.5433 POMF+BESP 0 0 0 0

Table 4.8: Comparison of numerical schemes for computing the spin-1 23Na ground state
in uniform magnetic field with Zeeman energies p = 6655.15 and q = 0.5 (the smallest
error is underlined).
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For the case of condensate with antiferromagnetic interaction, we consider 104 23Na atoms in

the cigar-shaped harmonic potential with trapping frequencies ωx = 2π × 20[Hz], and ωy = ωz =

2π × 400[Hz]. The atomic parameters are m = 3.816 × 10−26[kg], a0 = 2.646[nm], a2 = 2.911[nm],

and Ehfs = 1.1739×10−24[J]. The effective one-dimensional potential and parameters are found to be

V (x) = 1
2x2, βn = 240.8, βs = 7.5, p = 34990.6346B, and q = 13.8216B2, where the dimensionless

length scaling unit as = 4.6896[µm] and time scaling unit ts = 7.958[ms].

Tables 4.7&4.8 compare the accuracy of different numerical schemes in computing the spin-1

23Na ground state in uniform magnetic field B = 8.5059 × 10−2[G] (p = 2976.27, q = 0.5) and

B = 1.9020 × 10−1[G] (p = 13071.61, q = 0.5), respectively. From the two tables, numerical

scheme 3, i.e. POMF with BFSP discretization always gives the results with the smallest error, in

particular for the case when the total magnetization is close to the critical magnetization, which

will be discussed later. Therefore, we conclude that POMF with BFSP discretization is the best for

computing antiferromagnetic condensate ground state, for its high accuracy and efficiency in terms

of computational time.

4.4.4 Application

The numerical solution of spin-1 BEC ground state in a harmonic potential have been discussed

in literature [118]. In this section, we will apply the POMF method with BFSP discretization to

compute the spin-1 BEC ground state in a harmonic plus optical lattice potential. The ground state

solution in a harmonic potential is used as a reference frame to investigate the influence of periodic

potential, as well as the effect of interatomic interaction in the mean field ground state solution.

4.4.4.1 Ferromagnetic interaction

Simulations for 87Rb, with the same set of parameters as in Section 4.4.3.1, are carried out for a

harmonic plus optical lattice potential,

V (x) =
1
2
x2 + V0 sin2(

πx

2
), (4.125)

where V0 is the depth of the optical lattice. Figures 4.13(a)&(b) show the ground state solutions

of spin-1 87Rb (M = 0.3) in the harmonic potential, while Figures 4.13(c) &(d) show the ground
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state solutions when the periodic potential with V0 = 50 is added. The ground state in the potential

(4.125) can be viewed as the ground state in a harmonic potential modulated by a periodic function.

Figure 4.14 shows a few 87Rb ground states in potential (4.125) with V0 = 50 for the fixed q = 0.1

and different M . The relative population of each spinor component, as shown in Figure 4.15, is

found to be almost unaffected by the existence of the optical lattice except for the case of small

magnetization.

We investigated also the effect of spin-independent mean field interaction βn on the ground

state phase diagram. Figure 4.20 (right column) shows the relative population of each component

for several βn. The interaction is repulsive and increasing βn has the similar effect as increasing the

magnitude of magnetic field, or equivalently, increasing the quadratic Zeeman energy q.

4.4.4.2 Antiferromagnetic interaction

Simulations for 23Na, with the same set of parameters as in Section 4.4.3.2, are carried out for

harmonic plus optical lattice potential (4.125) with V0 = 50. Figures 4.16(a)&(b) show the ground

state solutions of spin-1 23Na (M = 0.3) in a harmonic potential, while Figures 4.16(c)&(d) show the

solutions when the periodic potential exists. For both potentials, φ0 is immiscible with φ1 and φ−1.

For constant M , the immiscibility property is better defined for larger q, with thinner overlapping

layer. When a periodic potential exists, the immiscibility property of the three components is further

enhanced. Figure 4.17 shows a few 23Na ground states in potential (4.125) with V0 = 50 for fixed

q = 0.1 and different M .

Figure 4.18 depicts the relative population of each hyperfine component as function of M and

as function of q. In the ground state phase diagram of BEC with antiferromagnetic interaction

subjected to weak magnetic field, there exists a critical value for magnetization (Mc) such that

when M < Mc, all three hyperfine components co-exist, and when M > Mc, only components

mF = ±1 exist. At M = Mc, the ground state is not unique and two stationary solutions, one

with the three co-existing components and the other one with zero particle in component mF = 0,

share the same energy level. As shown in Figure 4.18, the existence of optical lattice has the effect

of shifting Mc to a smaller value, or equivalently, shifting the critical value of magnetic field qc to

a larger value when M is held as constant. Computations are also carried out for optical lattice

of different depths V0 in (4.125) and Mc as a function of q is plotted in Figure 4.19. The critical

magnetization Mc is found to decrease when the lattice depth increases.
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The effect of spin-independent mean field interaction on the ground state phase diagram is also

investigated for the antiferromagnetic interaction case. Figure 4.20(left column) shows the relative

population of each component for several βn. Similarly to the ferromagnetic case, increasing βn has

the similar effect as increasing the magnitude of the magnetic field. Large βn gives larger critical

magnetization. The relation between Mc and βn is depicted in Fig. 4.21

4.5 Discussion

We have proposed an efficient and accurate normalized gradient flow method to compute the ground

state of spin-1 Bose-Einstein condensates, through the introduction of a third normalization con-

dition, in addition to the conservation of total particle number and the conservation of total mag-

netization. The condition is derived from the relations between the chemical potentials of the

three spinor components together with a first-order time splitting scheme applied to the continuous

normalized gradient flow used in the computation of the spin-1 BEC ground state. The backward-

forward sine-pseudospectral method is applied to discretize the normalized gradient flow for practical

computation.

Based on our extensive numerical results, we conjecture that when βn ≥ 0, βn ≥ |βs|, V (x) ≥ 0,

and lim|x|→∞ V (x) →∞, there exists a solution of the nonconvex minimization problem (4.14). In

addition, when βs < 0, the positive minimizer (the three wavefunctions are positive functions) is

unique; when βs > 0, the nonnegative minimizer (φ1 and φ−1 are positive and φ0 ≡ 0) is unique.

The method was then extended to compute the ground state of spin-1 BEC in uniform magnetic

field. Using a similar kind of approach, we found two ways to incorporate the Zeeman energies with

the coupled Gross-Pitaevskii equations numerically: (i) PWMF method: both linear and quadratic

Zeeman terms are treated in the normalization step, and (ii) POMF method: the quadratic Zeeman

term is retained in the gradient flow while the linear Zeeman term is included in the normalization

step. In both treatments, the effect of the linear Zeeman term will be finally canceled out in the

third normalization condition and it has no effect on the ground state solution. Numerical results

show that the POMF approach with the backward-forward Euler sine-pseudospectral method is the

best numerical scheme for the ground state computation, in terms of accuracy and efficiency.

The condensate ground state in harmonic plus optical lattice potential, for the cases of different

quadratic Zeeman energy, was also studied. For a condensate with ferromagnetic interaction, the
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existence of optical lattice makes no significant difference in the ground state phase diagram except

for small M , as compared to the condensate ground state in a harmonic trap. For a condensate with

antiferromagnetic interaction, the optical lattice tends to reduce the critical value of magnetization

and Mc can be further reduced by increasing lattice depth.
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Figure 4.12: Contour plots of the wavefunctions of the ground state, i.e. φ1(x, y, 0) (top
row), φ0(x, y, 0) (middle row) and φ−1(x, y, 0) (bottom row) with N = 104 and M = 0.5
in an optical lattice potential for 87Rb in Case I (left column), and for 23Na in Case II
(right column).



SPIN-1 BEC GROUND STATE 123

−16 −8 0 8 16
0

0.02

0.04

0.06

x

−16 −8 0 8 16
0

0.02

0.04

0.06

−16 −8 0 8 16
0

0.02

0.04

0.06

−16 −8 0 8 16
0

0.02

0.04

0.06

x

|φ
1
|2

|φ
0
|2

|φ
−1

|2

(a) (c) 

(b)  (d)

Figure 4.13: Ground state of 87Rb with M = 0.3 in harmonic potential (left column)
and harmonic plus optical lattice potential (right column), subjected to magnetic field
(a,c) q = 0.1 and (b,d) q = 0.5.
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Figure 4.14: Ground state of 87Rb in harmonic plus optical lattice potential with (a)
M = 0.1, (b) M = 0.4, (c) M = 0.7, and (d) M = 0.9 subjected to q = 0.1.
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Figure 4.15: Relative population of each hyperfine component of 87Rb in a harmonic
potential (dotted line) and a harmonic plus optical lattice potential (solid line), (left
column) with respect to magnetization, for (a) q = 0.05, (b) q = 0.2, and (c) q = 1.0;
(right column) with respect to quadratic Zeeman energy for (i) M = 0, (ii) M = 0.1,
(iii) M = 0.3, (iv) M = 0.5, (v) M = 0.7, and (vi) M = 0.9.
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Figure 4.16: Ground state of 23Na with M = 0.3 in harmonic potential (left column)
and harmonic plus optical lattice potential (right colunm), subjected to magnetic field
(a,c) q = 0.1, and (b,d) q = 0.5.
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Figure 4.17: Ground state of 23Na in harmonic plus optical lattice potential with (a)
M = 0.1, (b) M = 0.4, (c) M = 0.5, and (d) M = 0.7 subjected to q = 0.1.
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Figure 4.18: Relative population of each hyperfine component of 23Na in a harmonic
potential (dotted line) and a harmonic plus optical lattice potential (solid line), (left
column) with respect to magnetization for (a) q = 0.02, (b) q = 0.1, and (c) q = 1.0;
(right column) with respect to quadratic Zeeman energy for (i) M = 0, (ii) M = 0.1,
(iii) M = 0.3, (iv) M = 0.5, (v) M = 0.7, and (vi) M = 0.9.
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Figure 4.21: Critical magnetization Mc with respect to the spin-independent mean-field
interaction βn for spin-1 23Na atoms with spin-exchange interaction βs = 7.5.



Chapter 5

Dynamical Self-Trapping of BEC

in Shallow Optical Lattices

The transport properties of BECs through optical lattices have sparked interest in recent years

after a series of experiments revealed dissipative dynamics and instabilities [24, 32, 84, 100]. Early

experiments with BECs in optical lattices showed characteristic effects of such a periodic potential

on atoms, namely, Bloch oscillations [46] and Josephson junctions [7, 36]. In later years the research

focus shifted towards the study of nonlinear effects arising due to the interaction of the atoms [43].

In a deep lattice it was found that increasing the nonlinearity leads to a self-trapped state within the

lattice [9]. A theoretical framework of this self-trapping was derived in [5]. In this chapter, we study

the transport of a strongly interacting, one-dimensional BEC partially exposed to a shallow optical

lattice of finite width. A sudden breakdown of the transport of atoms is observed for high enough

interaction strength and we attribute this behaviour to the development of a self-trapped state. An

analytical description of the self-trapped states will be provided in terms of nonlinear Bloch waves

[96].

5.1 The Model

A typical experiment in this field is conducted by trapping the atoms in a parabolic trap, i.e. a

harmonic oscillator trap, and then switching on a moving optical lattice. Alternatively, one can

128
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displace the parabolic trap in a stationary lattice, which leads to acceleration of the atoms through

the lattice. We model these experiments by a simplified setup where two flat-bottom potentials are

connected via the optical lattice as shown in Figure 5.1. Instead of a moving lattice, we make use

of the inherent expansion of the BEC. In contrast to experiments such as [9], in the present work

we focus on the very shallow lattice regime, where the lattice depth is strictly less than the photon

recoil energy. The theoretical study in [5] suggests that self-trapping is possible even at lower lattice

depths, but it does not take into account a short, finite optical lattice. We extend previous works

in this field by assuming a finite optical lattice connecting two reservoirs.

A B 

x 
0 L L + L

B
−L

A

V
opt

(x)

Figure 5.1: Schematic setup of the system. The BEC is initially located in the flat-
bottom box reservoir A. The shutter to its right (dashed vertical line) can be removed
instantaneously so that the atoms expand into the optical lattice Vopt(x) of size L. A
wide potential-free region B serves as a second reservoir for the atoms. In our numerical
calculations, we used the dimensionless lengths LA = 160π, LB = 326π and L = 10π.

The full setup is sketched in Figure 5.1. The flat-bottom reservoirs A and B serve as a source and

a sink of the BEC, respectively. The BEC is initially confined in a potential-free box A. We use the

flat-bottom trap geometry as a model to describe experiments with harmonic oscillator potentials,

but it can also be realized more precisely as demonstrated, for example, in the experiment by

Meyrath et al. [80]. The difference in the chemical potentials on the left- and right-hand side of the

lattice leads to an expansion of the atoms into the lattice and eventually into reservoir B.

We consider a BEC at zero temperature in the elongated trap V (x) = 1
2m

[
Vax(x) + ω⊥(y2 + z2)

]
.

The radial frequency ω⊥ is chosen to be h̄ω⊥ À gn0, where g is the interaction strength of the atoms

and n0 is the average density of the BEC. In this chapter, we assume g > 0, which corresponds to

repulsive atomic interaction. The above choice of the frequency ω⊥ results in freezing of the atomic

motion in the radial directions. Hence, the BEC can be treated as an effectively one-dimensional

condensate with a trapping potential Vax(x) along the axial direction. In our model, this potential
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has the form

Vax(x) =





0 for − LA ≤ x < 0,

Vopt(x) for 0 ≤ x ≤ L,

0 for L < x ≤ L + LB ,

(5.1)

which is illustrated in Figure 5.1. The condensate is initialized in its ground state in the box potential

of size LA. After the initialization of the BEC in reservoir A, the shutter confining the BEC (dashed

line in Figure 5.1) is removed. The BEC then penetrates a short optical lattice

Vopt(x) = V0 + V1 cos(2κx), (5.2)

of size L ¿ LA. The periodicity κ is given by the geometry and the wavenumber of the lasers

producing the standing wave, and determines the number of lattice sites Lκ/π. The lattice height

V1 and the constant bias V0 are assumed to be independently adjustable. The size of the sink

reservoir B is LB À L.

In order to obtain the dimensionless 1D GPE we introduce the following dimensionless quantities.

Times are rescaled according to t̃ = t2ER/h̄ and lengths according to x̃ = κx, where ER = h̄2κ2/2m

is the photon recoil energy. Furthermore, the wavefunction yields ψ̃(x̃, t̃) = κ−1/2ψ(x, t). For the

convenience of the analysis in the later part of this chapter, the scaling units are chosen to be

different from those introduced in Chapter 2. In the experimental setup, potential (5.1) is scaled

into

υax(x) =





0 for − LA ≤ x < 0,

υopt(x) = υ + s cos(2x) for 0 ≤ x ≤ L,

0 for L < x ≤ L + LB ,

(5.3)

where the tildes have been removed for clarity. The dimensionless constant offset is υ = V0/2ER

and the lattice depth s = V1/2ER. At T = 0, the BEC can then be described by the dimensionless

1D GPE

i
∂

∂t
ψ(x, t) =

[
−1

2
∂2

∂x2
+ υax(x) + β|ψ(x, t)|2

]
ψ(x, t), −LA < x < L + LB , (5.4)

ψ(x, t = 0) = ψ0(x), −LA ≤ x ≤ L + LB , (5.5)

ψ(−LA, t) = ψ(L + LB , t) = 0, t ≥ 0. (5.6)

The dimensionless interaction strength is β = Naskh̄ω⊥/ER, which is expressed in terms of the

number of atoms N and the s-wave scattering length as. The wavefunction ψ = ψ(x, t) is normalized
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according to
∫ L+LB

−LA
|ψ(x, t)|2 dx = 1 for all times t. As an indicator of the dynamics of the system,

we define the dimensionless current

j(x, t) =
1
2i

[
ψ̄(x, t)

∂

∂x
ψ(x, t)− ψ(x, t)

∂

∂x
ψ̄(x, t)

]
, (5.7)

where ψ̄ denotes the complex conjugate of the wavefunction ψ. As the sizes of both reservoir A

and reservoir B are much larger than the lattice length, the current within the lattice is expected

to stay more or less constant throughout a finite simulation time. As will become apparent in the

numerical analysis, it is advantageous to define a more qualitative quantity, namely, the stationary

current within the lattice. The stationary current is computed by taking the time derivative of the

particle number in reservoir B, NB , at times where the particle number within the lattice, Nopt, is

nearly constant. Given at time t0 with such a nearly constant particle number in the lattice, we

define the stationary current as

j0 =
dNB

dt

∣∣∣∣
t0

. (5.8)

In general, the stationary current will depend on all parameters of the system such as the lattice

depth s or the interaction strength β.

5.2 Numerical Method

The BEC in reservoir A is initialized in its ground state, which can be computed with the normalized

gradient flow with backward/backward-forward Euler sine-pseudospectral method. For the numer-

ical treatment of the dynamics of the condensate passing through the optical lattice into reservoir

B, we simulate the 1D GPE (5.4) by the time-splitting sine-pseudospectral (TSSP) method [13, 14].

We choose the spatial mesh size h = ∆x > 0 with h = (L + LA + LB)/M for M being an even

positive integer, the time step size k = ∆t > 0, and let the spatial and temporal grid points be

xj = LA + jh, j = 0, 1, 2, ..., M, tn = nk, n = 0, 1, 2, ...

Let ψn
j be the approximation of ψ(xj , tn) and ψn be the solution vector with components ψn

j .

From time t = tn to t = tn+1, the GPE (5.4) is solved in two splitting steps. The first step

consists in solving

i
∂

∂t
ψ(x, t) = −1

2
∂2

∂x2
ψ(x, t), (5.9)
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for t = tn to t = tn+1, followed by solving

i
∂

∂t
ψ(x, t) = υax(x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), (5.10)

for the same time step. The diffusion equation (5.9) subject to zero boundary conditions (5.6) can

be discretized in space by the sine-spectral method and integrated in time exactly. For t ∈ [tn, tn+1],

the ODE (5.10) leaves the density invariant in time, i.e.

∂

∂t
|ψ(x, t)|2 = 0, tn ≤ t ≤ tn+1.

Therefore, (5.10) is reduced to

i
∂

∂t
ψ(x, t) = υax(x)ψ(x, t) + β|ψ(x, tn)|2ψ(x, t), tn ≤ t ≤ tn+1, (5.11)

which can be integrated in time exactly. A second order Strang splitting is applied to combine the

splitting steps (5.9) and (5.11) as follows

ψ∗j = exp
[
− i

2
(
υax(xj) + β|ψn

j |2
)
k

]
ψn

j , (5.12)

ψ∗∗j =
2
M

M−1∑
m=1

exp
(
− i

2
µ2

mk

)
ψ̂∗m sin (µm(xj + LA)) , j = 1, 2, · · · ,M − 1, (5.13)

ψn+1
j = exp

[
− i

2
(
υax(xj) + β|ψn

j |2
)
k

]
ψ∗∗j , (5.14)

where (Û)m (m = 1, 2, · · · ,M−1), the sine transform coefficients of the vector U = (U0, U1, · · · , UM )T

satisfying U0 = UM = 0, are defined as

µm =
πm

b− a
, (Û)m =

M−1∑

j=1

Uj sin(µm(xj + LA)), m = 1, 2, · · · ,M − 1. (5.15)

The overall time discretization error comes from the time-splitting error, which in this case is O(k2)

while the spatial discretization is of spectral accuracy. The fast sine transform is applied in order to

reduce the computational time.
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5.3 Dynamical Self-Trapped States

In this section we will numerically investigate the transport of the BEC initially trapped in region A

through the optical lattice. Various numerical findings, in particular the development of self-trapped

states with finite life time, will be illustrated and explanation in terms of nonlinear band structure

will be given.

5.3.1 Nonlinear band structure

If we assume a stationary state ψ(x, t) = exp(−iµt)φq(x) and ignore the finite width of the optical

lattice, the GPE (5.4) leads to the well-known Mathieu equation

d2

dx2
φqx + (−2v − 2s cos(2x))φq = 0, (5.16)

in the limit of vanishing interaction (β = 0). Here, µ is the chemical potential. The chemical

potential of a BEC in the strongly repulsively interacting limit can be determined by utilizing the

Thomas-Fermi approximation, which results in µ = β/LA. Our numerical calculations of the chem-

ical potential of the initial 1D BEC are in good agreement with the Thomas-Fermi approximation

for the parameters used in this chapter. In this limit, the energy eigenvalues of (5.16) develop

the characteristic linear band structure of periodic potentials. The solutions φq(x) are the Bloch

functions

φq(x) = exp(iqx)
∞∑

l=1

cl exp(i2lx). (5.17)

The parameter q is the quasi-momentum of the condensate.

Inclusion of the nonlinear term β|φq|2 with β > 0 in the GPE introduces a new energy scale

into the system and thereby modifies the band structure of the Mathieu eigenvalues. To model the

resulting wavefunction of the interacting case, we similarly assume a Bloch function representation

of the state. In order to simplify the analytical model, we further truncate the Bloch waves according

to [78]

φq(x) =
√

neiqx
(
c0 + c−1e

−2ix + c1e
2ix

)
. (5.18)

The density n is defined as the averaged relative density of the BEC within the lattice, i.e.

n =
Nopt

L
. (5.19)
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The normalization of the full wavefunction ψ(x) requires the coefficients to satisfy

|c0|2 + |c−1|2 + |c1|2 = 1. (5.20)

The normalization condition allows us to parameterize the coefficients in terms of two angles η and

θ according to the spherical coordinates, as pointed out in [78],

c0 = cos θ, (5.21)

c−1 = sin θ sin η, (5.22)

c1 = sin θ cos η. (5.23)

Stationary states can be found by plugging the ansatz (5.18) together with (5.21)–(5.23) into the

energy functional

εd(η, θ)
n

=
1

nπ

∫ π

0

(
1
2
| d

dx
φq(x)|2 + s cos(2x)|φq(x)|2 +

β

2
|φq(x)|4

)
dx, (5.24)

which represents the energy density within the lattice. Solving the integral analytically yields

εd(η, θ)
n

=
q2

2
+ 2 sin2 θ[1 + q cos(2η)]

+
s

2
sin(2θ)(cos η + sin η)

+
nβ

64
{43− cos(4η)[3 + cos(4η)]− cos(4θ)[7 + 8 sin(2η)]

+ 8 sin(2η)[1− cos(2θ) sin(2η)]} . (5.25)

The first line of (5.25) represents the kinetic energy, the second line represents the potential energy

and the last two lines represent the interaction energy. Minimizing the energy density (5.25) with

respect to η and θ, we get

0 =
∂ε

n∂η
= −4q sin2 θ sin(2η) +

s

2
sin(2θ) (cos η − sin η)

+
nβ

16
[
3 + sin(8η)− 4 cos(2θ) sin(4η) + 8 sin2(2θ) cos(2η)

]
, (5.26)

0 =
∂ε

n∂θ
= 2 sin(2θ) (1 + q cos(2η)) + s cos(2θ) (cos η + sin η)

+
nβ

16
[
4 sin2(2η) sin(2θ) + 7 sin(4θ) + 8 sin(2η) sin(4θ)

]
. (5.27)

By fixing different values of quasi-momentum q and solve (5.26)–(5.27) numerically, we obtain the



DYNAMICAL SELF-TRAPPING OF BEC IN SHALLOW OPTICAL LATTICES 135

band structure for given parameters nβ and s.

A net effect of the interparticle interaction in the energy spectrum is an overall mean field shift

of the energies by nβ. This effect is shown in Figure 5.2(a) for typical parameters used in our

simulations. For nβ > s the band structure additionally develops a loop at the band edge, which

gradually decreases the width of the first band gap [53, 78, 114]. These loops can be observed in

Figure 5.2(b). The insets show a close-up of the band edges, where a loop has developed. Note

that we only plot |q| in a reduced zone scheme, which means that the loop closes symmetrically at

|q| > 1. The relative position of the chemical potential (dashed line in the figure) and the band gap

will be important for the explanation of the self-trapped state given in the next section.

Figure 5.3 shows a few energy contour plots of (5.25) for nβ > s, where a loop is developed at

the band edge. The band structures (Figure 5.2) are obtained by first identifying the stationary

points in the energy contour plots, followed by solving (5.26)–(5.27) via Newton’s method with an

initial guess to the stationary points.
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Figure 5.2: Band structure for four sets of parameters µ, s, and nβ. The vertical line
separates two sets with the same chemical potential (dashed line) but different s and nβ.
Each set is symmetric around q = 0, hence we plot |q|. The offset υ is kept at zero. The
other parameters are (a) µ = 0.16, β = 79.58 with s = 0.13, nβ = 0.05 (left part) and
s = 0.25, nβ = 0.04 (right part); (b) µ = 0.795, β = 397.89 with s = 0.095, nβ = 0.329
(left part) and s = 0.127, nβ = 0.393 (right part). The left and right insets in (b) show
a zoom of the loops near the left and right band edges, respectively.

5.3.2 Numerical results

Applying the TSSP method, we calculate the stationary current (5.8) numerically. Figures 5.4(a)&(b)

show two typical time-dependent plots of the particle number within the lattice and within reservoir

B, for two sets of parameters with fixed interaction strength β but different optical lattice depth
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Figure 5.3: Contour plots of energy density with parameters s = 0.127, nβ = 0.393, for
(a) q = 0, (b) q = 0.3, (c) q = 0.8 and (d) q = 0.99. Black dots shown in the plots
correspond to the stationary points, whose energies correspond to the band structure
shown in Figure 5.2 (b) (right part).

s. From the particle number plots within the lattice, we can recognize plateaux at different times,

which can be used to compute the stationary current. For example, in Figure 5.4(b) such plateaux

exist at the three time intervals [80,190], [210,400] and [400,1100]. The stationary current is then

computed according to (5.8). In Figure 5.4(c)&(d), two typical results for the time-dependent cur-

rent (5.7) are shown at different positions within the lattice. The dashed horizontal line indicates

the stationary current. It can be seen in the figure that the stationary current coincides well with

the actual current within the lattice for an extended amount of time. The actual current undergoes

small oscillations around the value of the stationary current. Figure 5.5 shows similar plots for an-

other two sets of parameters, with the same lattice depth s but different interaction strength β. The

stationary current indicates the gross expansion speed of the BEC. We will analyze its dependence

on the parameters s and β below.

Intuitively one would expect the BEC in the setup of Figure 5.1 to expand into the optical

lattice where its transport properties are subjected to the modified band structure discussed in

Section 5.3.1. Numerical calculations are conducted in the regime of weak lattices (s ¿ 1) and
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Figure 5.4: (a,b) Time-dependent particle number within the lattice (upper panel) and
within reservoir B (lower panel). The gradient of the dotted line gives the stationary
current. (c,d) Time-dependent currents at the first lattice site (upper panel) and the last
lattice site (lower panel). The dashed horizontal line indicates the stationary current.
The parameters are β = 397.89, υ = 0 for all plots and (a,c) s = 0.095 and (b,d)
s = 0.127. The vertical bars in (b) indicates the analytical results for the particle
number difference ∆N (see text and Table 5.1).

strong interaction (β À 1). If we plot the stationary current for different interaction strengths β as

function of the optical lattice depth s, we notice a sharp drop in the curves for large β. In Figure

5.6(a) this drop is clearly visible, whereas for the lower interactions in Figure 5.6(c) it is absent in

the shallow lattice regime. The value of stationary current at s = 0 increases with increasing β.

This behaviour is expected since a higher repulsive interaction leads to a higher potential difference

between the reservoirs, which drives more atoms through the lattice region. An increase of the lattice

depth s does not influence the stationary current in Figure 5.6(a) at first, instead it stays constant

up to the drop. After the drop it decreases when the lattice depth increases.

We can relate the sudden drop in the stationary current to the development of an extended



DYNAMICAL SELF-TRAPPING OF BEC IN SHALLOW OPTICAL LATTICES 138

(a)
0 500 1000 1500

0

0.2

0.4

t

N
B

0 500 1000 1500
0

0.02

0.04

N

(b)
0 500 1000 1500

0

0.05

0.1

t

N
B

0 500 1000 1500
0

0.02

0.04

N 3 
4 

5 

(c)

0 500 1000 1500
0

2

4

x 10
−4

j

0 500 1000 1500
0

2

4

x 10
−4

j

t (d)

0 500 1000 1500
0

1

2

x 10
−4

j

0 500 1000 1500
0

1

2

x 10
−4

t

j

Figure 5.5: (a,b) Time-dependent particle number within the lattice (upper panel) and
within reservoir B (lower panel). The gradient of the dotted line gives the stationary
current. (c,d) Time-dependent currents at the first lattice site (upper panel) and the last
lattice site (lower panel). The dashed horizontal line indicates the stationary current.
The parameters are s = 0.253, υ = 0 for all plots and (a,c) β = 251.46 and (b,d)
β = 318.31. The vertical bars in (b) indicates the analytical results for the particle
number difference ∆N (see text and Table 5.1).

plateau in the time-dependent particle density within the lattice. In Figure 5.4(b) upper panel, we

clearly recognize such a plateau for times from 400 to 1100, as well as shorter plateaux at earlier

times. For the parameters of this plot, β = 397.89 and s = 0.127, a drop in the stationary current has

occurred (cf. Figure 5.6(a)). The drop can also be observed in the time dependent current plotted

in Figure 5.4(d), which is lower than the current in Figure 5.4(c) with s = 0.095. The existence of

the plateau indicates that after the drop, the BEC density within the lattice stays constant for an

extended amount of time and there is only a small residual current flowing through the lattice. The

BEC has effectively stopped its expansion despite its high repulsion and despite the lattice being

very shallow. Similar phenomenon is observed in Figure 5.5(b)&(d), when the interaction is strong.
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Figure 5.6: Stationary current for varying s at υ = 0 (a,b) and varying constant offset
υ at fixed s (c,d). The parameters are (a) β = 251.46 (solid line), β = 318.31 (dashed
line), and β = 397.89 (dotted line); (b) β = 31.83 (solid line) and β = 79.58 (dashed
line); (c) β = 397.31 for fixed s = 0.095 (solid line) and s = 0.19 (dashed line); (d)
β = 318.31 with s = 0.095 (solid line) and s = 0.253 (dashed line). The values for the
lattice amplitude s used in (c,d) are marked in (a) on the curves with the respective
interaction strengths.

For a fixed optical lattice depth s but a weaker interaction case, e.g. Figure 5.5(a)&(c), the stopping

of BEC expansion is absent.

This fact can also be observed in a density plot of |ψ(x, t)|2. Figure 5.7(a) shows the density of a

BEC with an interaction strength which does not show a drop in the stationary current. In contrast,

the density for a higher β which features a drop in the stationary current is plotted in Figure 5.7(b).

The value of s in this plot is chosen to be larger than the value for the drop (cf. Figure 5.6(a)). By

comparing Figure 5.7(b) with the particle number in Figure 5.4(b), we also relate the steps in the

plateau structure of the particle number within the lattice to the tunneling of the BEC across the

lattice sites as a lump of atoms. Every time a lump of atoms tunnels to the next lattice site, the

average particle density increases by a fixed amount ∆N until it reaches a final lattice site where the

expansion stops and a quasi-stationary state develops. For a fixed lattice height υ, the final lattice

site is determined by the values of nβ and s.

Compare the chemical potential in Figure 5.2 (dashed horizontal line) with the position of the

first band gap for a given set of parameters. For β = 79.58, where the stationary current does not
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exhibit a drop, the chemical potential lies deep in the first energy band (cf. Figure 5.2(a)). The

atoms can populate the first band when being injected into the lattice region and move through the

lattice. For very high β, however, the chemical potential initially lies above the first band gap (cf.

Figure 5.2(b) (left part)). As s is increased, the local chemical potential within the lattice nβ also

increases slightly and shifts the band structure in such a way that the overall chemical potential µ

falls into the first band gap (cf. Figure 5.2(b) (right part)). With its chemical potential lying inside

the band gap, the wavefunction cannot expand anymore because there is no state available. This

causes the BEC to manifest itself in the development of the quasi-stationary state in Figure 5.7(b).

Increasing s further broadens the gap and the stationary current decreases steadily. Alexander et al.

[5] showed that such a gap wave in a different setup remains stable. However, due to the shortness

of the lattice in our setup, there is still a small current flowing through the lattice. This current

leakage eventually causes the self-trapped state to disappear after a finite time. In Figure 5.7(b),

this breakdown can be observed for t > 1300, when the BEC dissipates over the whole lattice. Such

phenomenon of a finite life-time of the self-trapped state has also been observed in a different optical

lattice setup [112].

More numerical results are shown in Figure 5.8, demonstrating similar phenomenon for a fixed

parameter β but different lattice depth s. For s = 0.127, the chemical potential lies within an energy

band and the atoms flow through the lattice quite smoothly. For s = 0.253 the chemical potential

falls within the energy band gap and self-trapping is developed in the transport of BEC through the

lattice. The expansion of the condensate stops at the sixth lattice site for an extended amount of

time.

We further study the case of a fixed lattice depth s with a varying offset potential υ confined to

the optical lattice region. The two curves in each of Figure 5.6(b)&(d) depict the results obtained for

two fixed values of β. The solid and dashed lines in each plot correspond to two different values of s.

The lattice depths are chosen to lie before and after the drop in the stationary current. As expected,

for a system whose chemical potential is located below the first band gap at υ = 0, the stationary

current decreases with increasing offset potential (solid lines). In this case the offset shifts the whole

band structure by a constant value. However, if the lattice depth is chosen in such a way that the

chemical potential lies in a band gap at υ = 0, a sudden jump is observed in the stationary current

(dashed lines). This counter-intuitive behaviour, an increasing current for a higher potential barrier,

can again be explained by noting that the constant offset υ shifts the band structure. Increasing the

offset will eventually result in a band structure in which the chemical potential does not lie in a gap
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Figure 5.7: Density plots of the BEC near the optical lattice. (Upper panel) Time evolu-
tion of the condensate density. Red color indicates high density and blue color indicates
low density. (Lower panel) Profile of the BEC at times indicated by the corresponding
horizontal lines in the upper panel. The solid blue line in (d) indicates the analytical
result (5.33) for the corresponding nonlinear Bloch wave and the thin solid gray line
indicates the position of the optical lattice. For both plots s = 0.127, υ = 0 and (a,c)
β = 79.58, (b,d) β = 397.89.

anymore. Therefore the jump in the stationary current occurs when the chemical potential rejoins

a band.

5.3.3 Nonlinear Bloch waves

In order to understand the quasi-stationary nature of the state after the drop in Figure 5.6, we

consider truncated Bloch waves (5.18) with parameters
√

nc−1 =
√

nc1 =: d1/2 and d0 :=
√

nc0,

with n being the average particle density within the lattice, given by (5.19). For the ground state

with q = 0, this results in the state

φ(x) = d0 + d1 cos(2x). (5.28)
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Figure 5.8: Density plots of the BEC near the optical lattice. (Upper panel) Time
evolution of the condensate density. (Lower panel) Profile of the BEC at times indicated
by the corresponding horizontal lines in the upper panel. The solid blue line in (d)
indicates the analytical result (5.33) for the corresponding nonlinear Bloch wave and
the thin solid gray line indicates the position of the optical lattice. For both plots
β = 318.31, υ = 0 and (a,c) s = 0.127, (b,d) s = 0.253.

The normalization condition (5.20) has to be rewritten as

|d0|2 +
1
2
|d1|2 = n. (5.29)

The coefficients d0 and d1 can be determined by minimizing the energy functional under the con-

straint (5.29). Minimizing the Lagrangian

L(φ, µ) =
1
π

∫ π

0

[
1
2
| d

dx
φ|2 + s cos(2x)|φ|2 +

β

2
|φ|4

]
dx− µ(d2

0 +
1
2
d2
1 − n) (5.30)

yields two algebraic equations

2βd3
0 + d0(3βd2

1 − 2µ) + sd1 = 0, (5.31)
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3βd3
1 + 4d1(2 + 3βd2

0 − µ) + 4sd0 = 0, (5.32)

which can be solved analytically. Here µ is the chemical potential. The real-valued solution of equa-

tions (5.31)–(5.32) describes a nonlinear Bloch wave [5, 30]. For the case of q = 0, this wavefunction

describes an oscillation of |φ(x)|2 with the period of the lattice around a finite value. To see this,

we assume a real-valued solution of equations (5.31)–(5.32) and calculate the density |φ(x)|2 from

(5.28) as follows

|φ(x)|2 = d2
0 +

d2
1

2
+ 2d0d1 cos(2x) +

d2
1

2
sin(4x). (5.33)

The constant offset in the solution (5.33) is the particle density n given in (5.29). The oscillation

with the double period 4x can be neglected since for our parameter range d2
1/2 ¿ 2|d0d1|.

In our numerical simulations, we observe that for s above the threshold of the drop in the

stationary current, a quasi-stationary state develops. Figures 5.7(b) and 5.8(b) show the development

of such a nonlinear Bloch wave and its disappearance over time for high interaction strength. As

an example, in Figure 5.7(d), this behaviour is demonstrated at two time slices. At early times the

BEC tunnels across the lattice sites as it expands into the lattice. At time t ≈ 700, we recognize the

nonlinear Bloch wave in Figure 5.7(d). The line overlapping with the numerically calculated density

is the analytical density (5.33) with the parameters same as in the numerical result. To obtain the

analytical solution, we use the reduced chemical potential of the BEC that is still left in reservoir

A and the lattice. The analytical description of a nonlinear Bloch wave is found to coincide well

with the numerical results. At a later time t ≈ 1400, the BEC is spread uniformly with a periodic

modulation. In Figure 5.8(d), at t ≈ 1000 the analytical solution (5.33) is again shown to agree well

with the numerical solution.

In contrast, for values of s and β where the stationary current does not show a drop, the BEC

spreads almost uniformly with time. In Figure 5.7(c) at t ≈ 45 and in Figure 5.8(c) at t ≈ 60, the

BEC has expanded into the optical lattice but the atomic density is only slightly modulated within

the lattice region and otherwise is uniformly distributed. A quasi-stationary nonlinear Bloch wave

is not developed.

We further calculate the size of the steps between the plateaux in the particle number plot in

Figures 5.4(b) and 5.5(b). Integrating the particle density (5.29) over one lattice site yields

∆N = π

(
|d0|2 +

1
2
|d1|2

)
. (5.34)
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When the BEC advances by one lattice site, the particle number within the lattice should grow by

∆N . The vertical bars in Figure 5.4(b) and Figure 5.5(b) indicate the particle difference between

the plateaux. Table 5.1 shows the analytically calculated particle number difference (5.34) for the

parameters used in the plots with a reduced chemical potential as discussed above. These results

agree with the difference of the numerically obtained particle number plateaux. Given the above

agreements of analytical and numerical results, we conclude that indeed the formation of a nonlinear

Bloch wave causes the breakdown of the stationary current.

Label ∆Nanalysis ∆Nnumerical

1 0.0058 0.0048
2 0.0055 0.0044
3 0.0067 0.0058
4 0.0066 0.0056
5 0.0065 0.0052

Table 5.1: Analytically and numerically computed particle difference between plateaux
shown in Figure 5.4(b) and Figure 5.5(b), each corresponds to the growth in particle
number within the lattice when a lump of BEC advances by one lattice site.

5.3.4 Dark solitons

The GPE supports soliton solutions for non-zero interaction β. These solutions are shape-preserving

notches or peaks in the density, which do not disperse over time. In the case of repulsive interaction

without an optical lattice, solitons are typically of the dark type [31, 34] but both dark and bright

solitons can exist in BECs in optical lattices [6, 107, 122]. Our numerical results of the condensate

density in Figure 5.7(b) and Figure 5.8(b) show the creation of moving dark solitons when the

condensate jumps to a neighboring lattice site. For example, in Figure 5.7(b), dark notches can be

seen moving to the left, away from the lattice region. These excitations move slower than the local

speed of sound (c =
√

β|ψ|2) and do not change their shape considerably over the simulation time.

Other typical features of solitons such as the repulsion of two solitons approaching each other or

the phase shift across a soliton, are also observed in the numerical results. Furthermore, we notice

that the solitons emit sound waves traveling at the speed of sound. This happens when the center

of mass of the solitons enters a region of different mean density, which causes a change in speed. A

detailed analysis of soliton trajectories and their deformations in a non-uniform potential has been

presented in [91]. It is worth noting that their exact dynamics and stability also depends on the ratio

υ/ω⊥ [87]. In our simulation, we do not take into account the radial confinement, assuming that it
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is very tight and the overall BEC dynamics can be described by an effective 1D model. Hence, we

do not undertake a thorough analysis of the soliton dynamics in our system as their creation can be

considered as a side product of the development of the quasi-stationary state in the lattice, which is

the main focus of this work.

5.4 Discussion

We have investigated the effects of a finite width lattice on the transport properties of a strongly

interacting BEC. The corresponding 1D GPE was solved numerically and relevant quantities such

as the atomic current and density were extracted. We also compared the numerical results with

the analytical results in terms of nonlinear Bloch waves. We found that even for low lattice depths,

a quasi-stationary state may develop after an initial expansion of the BEC into the lattice. This

results in a sharp drop of the current in the lattice when the lattice depth and interaction reaches

a critical value. However, the atoms can tunnel out of this state due to the finiteness of the lattice,

which eventually leads to the breakdown of the stationarity. The development of such a self-trapped

state can be explained with partial nonlinear Bloch waves, which builds up over only a few lattice

sites and blocks further atomic flow through the optical lattice. When a constant offset potential

was introduced into the system, increasing the offset can trigger the previously suppressed flow of

the atoms again and eventually destroy the self-trapped state. Finally, we reported on the creation

of moving dark solitons during the development of the nonlinear Bloch waves. Every time when a

lump of condensate particles advances to a neighboring lattice site, a soliton is emitted. Therefore,

the number of solitons present in the BEC indicates the number of occupied lattice sites.



Chapter 6

Conclusion

The ground state solutions of single component Bose-Einstein condensates (BECs) in traps have

been studied both analytically and numerically. For analytical studies, asymptotic approximations

were derived for strongly repulsively interacting system by neglecting the kinetic energy term in

the Gross-Pitaevskii equation (GPE), and for strongly attractively interacting system by neglecting

the potential energy term. Good agreements with numerical solutions were obtained. One dimen-

sional weakly attractively interacting BEC system in double well potential was also studied through

variational approach and a Gaussian approximation to the wavefunction. The ground state in this

case is not unique for certain interaction strength, when a symmetry breaking state, in which the

BEC is strongly localized only in one well, starts to possess lower energy than the usual symmetric

state. The Gaussian approximation was shown to provide a good prediction to the solution when

the double well is deep. The studies for attractively interacting BEC system have been limited

to one dimensional case in which the condensate described by the GPE does not collapse even in

a strongly interacting regime, which does occur in higher dimensions. For numerical studies, two

efficient numerical schemes were developed on the basis of the widely used imaginary time method

and the normalized gradient flow. Sine-pseudospectral method is utilized for the discretization in

space to achieve a spectral accuracy in the solutions. The introduction of the stabilization para-

meter greatly improves the overall convergence rate of solving linear system in the backward Euler

sine-pseudospectral method (BESP) and greatly increases the upper bound for the time step con-

straint in the backward-forward Euler sine-pseudospectral method (BFSP). The numerical schemes

were shown to be effective even in 3D modelling of the BEC ground state that exhibits multiscale

structures.

146



CONCLUSION 147

The normalized gradient flow method developed for computing the single component BEC

ground state was extended to three-component spin-1 BECs. The two available physical constraints

for a spin-1 BEC, the conservation of total particle number and the conservation of total magneti-

zation, are not enough to normalize the three wavefunctions for applying the normalized gradient

flow method directly to the three-component coupled GPEs. For the reason, a third normalization

condition was introduced into the numerical scheme. The third condition was derived from the

continuous normalized gradient flow, which is total mass conserved and total magnetization con-

served, via a first order time-splitting scheme. The method was further modified to be applied to a

spin-1 BEC subjected to uniform magnetic field. Due to the additional Zeeman energy terms, the

stability and accuracy of the method vary with different treatments of the Zeeman energies as well

as with different discretization schemes. The projection without magnetic field (POMF) approach

discretized by the BFSP method was found to be more effective than other numerical schemes.

Finally, the dynamics of BEC, in particular the transport of a strongly repulsively interacting

condensate through a shallow optical lattice of finite width, was studied. The study was first carried

out via solving the time-dependent GPE numerically with the time-splitting sine-pseudospectral

method (TSSP). Self-trapped states were observed for some sets of parameters, indicated by stopping

in the expansion of BEC at certain lattice site. The finiteness of the lattice is found to result in

the dissipation of the self-trapping after a finite time. The self-trapped state was then studied

analytically in terms of nonlinear Bloch waves, approximated by a truncated Bloch function. The

approximation gave a good qualitative agreement with the numerical observation.

Despite the fact that all of the present study is based on the simplest zero temperature mean field

model, the numerical methods developed for the model are applicable to the finite temperature mean

field equations to yield efficient numerical schemes, provided that an efficient numerical method is

also developed for solving the Bogoliubov-de-Gennes (BdG) equations. The BdG equations coupled

with the GPE at finite temperature are solved via a self-consistent iterative scheme in literature.

The convergence of the self-consistent scheme remains an open question up to date. Solving the BdG

equations, in particular in three dimensions, involves solving a large scale eigenvalue problem. Similar

type of eigenvalue problems have been widely studied in electronic structure calculation as well as in

condensed matter physics. Those methods developed for such large scale eigenvalue problems could

be applied to the BdG equations with an appropriate modification to attain a desired efficiency.

Other than these problems, BEC with long-range interaction, e.g. dipolar BEC gases, is also a

recent interest in the research. The numerical methods developed here can also be applied to the
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corresponding nonlinear Schrödinger equation by taking the long-range dipolar interacting potential

into account, in which the nonlocal interaction presents a certain difficulty in the computational

implementation. As a conclusion, this thesis presented part of the zero temperature BEC study

within the mean field theory which is itself part of the studies of the Bose-Einstein condensation.

Researchers are exploring for more interesting properties of BECs as well as the applications of

BECs for example in quantum computation. Numerical modelling plays an important role in the

exploration of the condensate properties, and plenty of challenges are still existing in terms of

numerical modelling of the Bose-Einstein condensation. Further studies beyond the context of this

thesis are expected to be done in the future.
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[121] P. Źın, E. Infeld, M. Matuszewski, G. Rowlands, and M. Trippenbach. Method for obtaining

exact solutions of the nonlinear Schrödinger equation for a double-square-well potential. Phys.

Rev. A, 73, 022105, 2006.

[122] O. Zobay, S. Pötting, P. Meystre, and E. M. Wright. Creation of gap solitons in Bose-Einstein

condensates. Phys. Rev. A, 59, 643, 1999.



List of Publications

1. Efficient and spectrally accurate numerical methods for computing ground and first excited

states in Bose-Einstein condensates (with W. Bao and I-L. Chern), J. Comput. Phys., 219,

836, 2006.

2. Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in

the semiclassical regime (with W. Bao and Y. Zhang), Bulletin of the Institute of Mathematics,

Academia Sinica, 2, 495, 2007.

3. Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow

(with W. Bao), SIAM J. Sci. Comput., 30, 1925, 2008.

4. Self-trapping of Bose-Einstein condensates expanding into shallow optical lattices (with M.

Rosenkranz, D. Jaksch and W. Bao), Phys. Rev. A, 77, 063607, 2008.

5. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in

uniform magnetic field (with W. Bao), Phys. Rev. E, 78, 066704, 2008.

159


