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Abstract

In plasma physics, streamer propagation is an interesting discharge phenomenon

which has many applications in engineering and industry. Due to the small time

scale of streamer propagation, numerical simulation becomes a more effective way

to study the streamer than experiment. The governing partial differential equa-

tions (PDEs) of streamer propagation include continuity equations for the particle

densities coupled with a Poisson’s equation for the electric potential.

In this thesis, two discontinuous Galerkin (DG) methods are proposed to solve

the continuity equations since there are large derivatives or even jumps in the pro-

file of particle densities. Meanwhile, the Poisson’s equation is solved by 4 differ-

ent methods which include finite difference method (FDM), mixed finite element

method (MFEM), least-squares finite element method (LSFEM), and symmetric in-

terior penalty Galerkin (SIPG) method. We have compared the compatibility when

these 4 methods are coupled with DG methods for continuity equations. The com-

parison results recommend that FDM is the best method for Poisson’s equations if

uniform rectangular meshes are used and SIPG method is the best choice for tri-

angular meshes. By applying the recommended methods, we have simulated many

configurations of short and long streamer propagations and successfully captured

the features of streamer.

vii



viii Abstract

In summary, this thesis work is a comprehensive study in applying DG meth-

ods to numerical simulations of streamer propagations. It supplements some early

numerical studies done by our collaborators. The gap lengths in most of the simula-

tions in our study are 5 times longer as the existing results, hence we have observed

more interesting phenomenon during simulations, for example the bifurcation of

streamer. We have considered not only the rectangular computational domain in

this thesis, but also carried out simulation in complex geometry. Our study indicates

that DG method are highly potential competitor in simulating streamer propaga-

tions. In addition, this work studies the numerical compatibility in the coupling

between hyperbolic system and elliptic equation.

Key words: streamer propagations, hyperbolic system, coupling with ellip-

tic equation, discontinuous Galerkin methods, mixed finite element method, least-

squares finite element method.
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Chapter 1
Introduction

1.1 Background

In physics, plasma is a state of matter in which a certain portion of the particles are

ionized [56]. When non-ionized or lowly ionized matter is exposed to high electric

field, non-equilibrium ionization processes, so-called discharges, occur. In recent

years, plasma discharges have been studied in industrial and technical applications

[17, 74, 91]. A particular example of plasma discharges is lightning, which is still a

big problem and needs to be aboratively studied. Another interesting experimental

example is the breakdown in air gap which is submitted to a very high, in magnitude,

voltage at atmospheric pressure [47, 65].

Consider two metal electrodes, anode and cathode, which are separated by a

gas-filled gap. Up to a certain threshold value of applied electric field, free electrons

are produced by ionizations. When the free electron forms an electron avalanche,

the so-called first corona inception occurs [34]. In a positive discharge where the gap

is submitted to a positive voltage, the electron avalanche moving towards the anode

creates a net positive charge which increases the electric field near the avalanche.

If the modified electric field is high enough, new avalanches can be generated and

developed. The discharge process then consists of a series of avalanches developing

1



2 Chapter 1. Introduction

into narrow branched plasma channels, which are called streamers. These channels

develop from a common root. On the other hand, if a negative voltage is applied to

the air gap, the first corona will disappear after some time; and then two coronas of

opposite polarity, positive corona and negative corona, develop after the extinction

of the first corona.

If the gap is long enough such that breakdown occurs after a large time scale,

a new phenomenon called leader will be observed. In positive discharge, leader

appears as a weakly luminous channel from the common root of positive streamer,

and then elongates and propagates continuously, and also pushes the streamer. On

the other hand, in negative discharge, since positive corona propagates towards

the H.V. electrode and negative corona moves in the opposite way, a new leader

channel occurs between them. This leader is called space leader and elongates bi-

directionally. Therefore, a junction of space leader and original leader will produce

a strong illumination of the whole channel.

The mechanism of streamer and leader has been studied in the past three decades

[49, 51, 59, 68, 72, 79]. Firstly, the minimum inception field of the first corona is

empirically given by the Peek’s equation [75]

E = E0δM

(
1 +

K√
δR

)
,

where E0 is the breakdown field in the range of 106V/m, δ is relative air density, R is

equivalent curvature radius of electrode, K and M are two constants. This formula

is just one of the various criteria [1, 45, 55, 66, 67] for the inception of streamer. This

inception process can continue for several microseconds during the propagation of

streamers as long as the electric field around the tip of streamers is sufficiently large.

The streamer usually propagates with velocity in the range of 107cm/s; therefore, in

the short gap (in the millimeter or centimeter range), breakdown occurs in several

nanoseconds.

On the other hand, in the elongation of leader, since the electrons and positive

ions travel in opposite direction in the leader channel, current is created. Then the
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thermal energy in the leader channel will be increased by the current due to Joule

effect. Thus, different from the mechanism of streamer, leader is governed by a

thermal process. The diameter of leader channel is proportional to the length of

the gap. It is between 0.5 and 1mm for a 1.5m gap and between 2 and 4mm for a

10m gap. The temperature in leader channel can reach several thousands of Kelvin.

This elongation process can continue for several hundred microseconds.

For a better understanding of streamer and leader, one can refer to the schematic

representation in Figure 1.1, which is cited from [33],

So far, the most common method for studying streamer discharges is still to

do the experiments [16, 34, 39, 80, 81, 82, 83, 90]. However, the above small time

scales of the discharge processes regretfully indicate that it is difficult to acquire

experimental data. Therefore, more researchers start to develop proper physical

and mathematical models and do accurate numerical simulations to study streamer

propagation.

1.2 Mathematical models

Based on experimental studies, scientists have developed many different empirical

models, for example the Critical Volume Model proposed by the Renardières Group

[81] and its modifications [4, 27, 77], some models for describing the branching

phenomenon of streamer [2, 69] and static models for space charges [23, 42, 94].

These empirical models are based on some empirical formulas; as a result, they

usually amplify some features during the streamer propagation process but neglect

some other features. For example in [2], the authors took too much care about

the randomness of streamer propagation; hence their streamer channels spread out

around the tip electrode and seldom propagated to the other electrode. Thus, some

kinetic models are developed to overcome this problem. For instant, the kinetic

model with Monte Carlo simulation [48] and particle-in-cell (PIC) model [78, 87]

use the so-called superparticle (clouds of particles) instead of as single particle.
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Figure 1.1: This figure shows the well-developed streamer and leader. The ”corona
glow” is also called streamer.

Although kinetic models can simulate the streamer propagation more exactly, it

is still difficult to implement because of the large computational cost. Therefore,

fluid models have been widely accepted and provided good descriptions of discharge

processes [38, 76, 93, 97].
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1.2.1 Three-dimensional model

The most common fluid model for streamer propagation is a three-dimensional (3D)

model which contains three continuity equations for particle densities of electron Ne,

positive ion Np and negative ion Nn, and a Poisson’s equation for electric potential

V as follows,





∂Ne

∂t
+∇ · (NeWe − D∇Ne) = (α(|E|)− η(|E|))Ne|We| − βNeNp + Sph(Ne, E),

∂Np

∂t
+∇ · (NpWp) = α(|E|)Ne|We| − βNeNp − βNnNp + Sph(Ne, E),

∂Nn

∂t
+∇ · (NnWn) = η(|E|)Ne|We| − βNnNp,

−∇2V = e
ǫ
(Np −Ne −Nn), E = −∇V.

(1.1)

In (1.1), We, Wp and Wn are the drift velocities for electron, positive ion and

negative ion respectively, which equal to the electric field E multiplied by mobility

µe, µp and µn, i.e. We,p,n = µe,p,nE ; D is the diffusion tensor; α(|E|) is an impact

ionization coefficient described with Townsend’s approximation [80], i.e., α(|E|) =
APeBP/|E|, where P is the air pressure in torr and A,B are two parameters. η(|E|) is
the electron attachment coefficient and β is the recombination coefficient. Sph(Ne, E)
is the photoionization source which can be calculated either by the integral method

of Zheleznyak et al. [100] or by solving a set of Helmholtz equations [13, 57, 73];

this source term can be neglected in negative streamer [62] or can be equivalent

to the background ionization under certain conditions [7, 96]. The constants e

and ǫ are called elementary charge and permittivity of vacuum respectively. The

physical domain in model (1.1) is the whole space between anode and cathode,

therefore we impose the Dirichlet boundary conditions for Poisson’s equation at the

electrodes. We allow the flux of particles to pass through the boundaries [62], thus

we impose homogeneous Neumann boundary conditions for continuity equations at

the electrodes.

Various modifications of (1.1) exist in the literature. For example, C. Montijn
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only considered electrons, positive ions and the impact ionization source, and ig-

nored the drift term for positive ions [62]; O. Ducasse et al. dealt with (1.1) but

with constant photoionization source Sph ≡ 1026m−3 · s−1 [29]; N. L. Aleksandrov

further introduced active particles and the reaction between active particles and

other charged particles [3]. The reason for them to keep different terms in the fluid

model can be seen from the following dimensionless analysis. For simplicity, we only

consider the minimal fluid model studied by C. Montijn et al. in 2006 [62] in the

rest part of this chapter.

Define the scaled variables

τ =
t

t0
, x̃ =

x

x0
,

and

E(x̃, τ) =
E(x, t)
E0

, σ(x̃, τ) =
Ne(x, t)

N0
, ρ(x̃, τ) =

Np(x, t)

N0
, φ(x̃, τ) =

V (x, t)

V0
.

It is natural to set x0 to be the length of gap (i.e. the shortest distance between

anode and cathode) and set V0 to be the absolute value of the applied voltage at

either anode or cathode. Plugging the above new functions into (1.1), and using the

chain rule, we can obtain





∂σ
∂τ

+∇x̃ · ( t0µeE0

x0
σE− t0D

x2
0

∇x̃σ) = t0α(E0|E|)E0|µeE|σ,
∂ρ
∂τ

+∇x̃ · ( t0µpE0

x0
ρE) = t0α(E0|E|)E0|µeE|σ,

−∇2
x̃φ =

N0x2
0

V0

e
ǫ
(ρ− σ),

E = − V0

E0x0
∇x̃φ.

(1.2)

We set
V0
E0x0

= 1,
N0x

2
0

V0

e

ǫ
= 1,

t0µeE0

x0
= −1 := µσ,

in (1.2), which means

E0 =
V0
x0
, t0 = − x0

µeE0
, N0 =

V0ǫ

x20e
, (1.3)
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and

D̃ =
t0D

x20
,

t0µpE0

x0
=
µp

µe

:= µρ,

t0α(E0|E|)E0|µeE| = x0APe
(BP/E0)/|E||E| := S|E|eK/|E|.

(1.4)

In this way, the dimensionless model becomes (we have changed the time variable

back to t) 



∂σ
∂t

+∇ · (µσσE− D̃∇σ) = S|E|eK/|E|σ,

∂ρ
∂t

+∇ · (µρρE) = S|E|eK/|E|σ,

−∇2φ = ρ− σ, E = −∇φ.

(1.5)

In nitrogen under standard atmospheric pressure, by using the data given in

[62], one can find that µρ ∼ 0.009, which is the reason why the positive ions are

considered to be immobile by some scientists [26, 62]. If the recombination coefficient

β is taken into consideration, the rescaled coefficient βN0t0 is equal to 2.9 × 10−4

[65]; therefore, the recombination coefficient could be ignored [104].

1.2.2 Quasi three-dimensional model

The model (1.5) is still a 3D model which is expensive for numerical computation.

To save the memory and computation time as well, scientists have considered some

simplifications in reducing the dimension. In this thesis, two ways are chosen to

reduce the dimension.

The first and more common way is to assume that the particles are distributed

with cylindrical symmetry and the physical domain is also symmetric. Therefore, it

is easy to apply cylindrical coordinates (r, z, θ) to simplify the 3D model (1.5) to a

quasi three-dimensional (quasi 3D) model, assuming that all the physical quantities
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are independent of angular variable θ,





∂σ
∂t

+ 1
r
∂(rµσσEr)

∂r
+ ∂(µσσEz)

∂z
− Dr

r
∂
∂r

(
r ∂σ
∂r

)
−Dz

∂2σ
∂z2

= S|E|eK/|E|σ,

∂ρ
∂t

+ 1
r
∂(rµρρEr)

∂r
+ ∂(µρρEz)

∂z
= S|E|eK/|E|σ,

−1
r

∂
∂r

(
r ∂φ
∂r

)
− ∂2φ

∂z2
= ρ− σ, E = (Er, Ez)

T =
(
−∂φ

∂r
,−∂φ

∂z

)T
.

(1.6)

Since the solutions are independent of θ, we can take any longitudinal section to

form the two-dimensional domain as shown in the following figure,

Figure 1.2: The computational domain of quasi 3D model. This figure is cited from
[47].



1.2 Mathematical models 9

From Figure 1.2, we can see that, in (1.6), the range for axial variable z is still

between the electrodes, so the boundary conditions for Poisson’s equation in the

axial direction (i.e. z-direction) are remained the same. In the physical domain,

the range for radial variable r is [0,∞]. Therefore, the quasi 3D model involves

a singularity along axis, which is the main difficulty in this model. Besides, it is

a half space problem in the radial direction (i.e. r-direction), hence we impose

homogeneous Neumann boundary condition for each equation along the z-axis,

∂σ

∂r
=
∂ρ

∂r
=
∂φ

∂r
= 0, at r = 0. (1.7)

1.2.3 Two-dimensional model

Apart from the quasi 3D model, another way to reduce dimension is to make an

assumption that the electrodes have infinite length in one direction (say z-direction)

and the anode is charged everywhere. Then the discharge will be independent of z-

variable. Thus, we can take any cross section (which means to ignore the z-variable)

to form a two-dimensional (2D) model under Cartesian coordinates [92]. Then this

model reads,





∂σ
∂t

+ ∂(µσσEx)
∂x

+ ∂(µσσEy)
∂y

−Dx
∂2σ
∂x2 −Dy

∂2σ
∂y2

= S|E|eK/|E|σ,

∂ρ
∂t

+ ∂(µρρEx)
∂x

+ ∂(µρρEy)
∂y

= S|E|eK/|E|σ,

−
(

∂2φ
∂x2 +

∂2φ
∂y2

)
= ρ− σ, E = (Ex, Ey)

T =
(
−∂φ

∂x
,−∂φ

∂y

)T
.

(1.8)

A typical example of this 2D model is a charged wire with infinite length in a

cylinder which is connected to the earth ground. Then the computational domain

is between two concentric circles.

1.2.4 Quasi two-dimensional model

To illustrate our numerical methods and to study the advantage and disadvantage of

each method, we will demonstrate the numerical tests and comparisons of different
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methods when they are applied to the quasi two-dimensional (quasi 2D) model,





∂σ
∂t

+ 1
r
∂(rµσσE)

∂r
− D

r
∂
∂r

(
r ∂σ
∂r

)
= S|E|eK/|E|σ,

∂ρ
∂t

+ 1
r
∂(rµρρE)

∂r
= S|E|eK/|E|σ,

−1
r

∂
∂r

(
r ∂φ
∂r

)
= ρ− σ, E = −∂φ

∂r
.

(1.9)

This model can be regarded as a reduction from a 2D model with central sym-

metry using polar coordinates to change the spatial variables.

1.2.5 One-dimensional model

We will also demonstrate our numerical tests and comparisons of different methods

for the one-dimensional (1D) model,





∂σ
∂t

+ ∂(µσσE)
∂z

−D ∂2σ
∂z2

= S|E|eK/|E|σ,

∂ρ
∂t

+ ∂(µρρE)
∂z

= S|E|eK/|E|σ,

−∂2φ
∂z2

= ρ− σ, E = −∂φ
∂z
,

(1.10)

This model is an extreme case under dimensionality reduction.

1.2.6 1.5-dimensional model

If one further assumes in the quasi 3D model that the particle densities only vary

in z-direction and are constant along the r-direction with a fixed radius, then the

quasi 3D model will be reduced to a 1.5-dimensional (1.5D) model [7, 28, 63]. In

this model, the continuity equations have only one dimension which makes them

easy to solve, but the Poisson’s equation still have to be solved in 2D cylindrical

coordinate system. Fortunately, due to the assumption, the Poisson’s equation can

be solved by the disc method. Suppose that the dimensionless gap length is 1. Let

us compute the modified electric field Em(z) for any position z ∈ [0, 1] in this gap.

Assume that there is a very thin disc located at z′ ∈ [0, 1] with net particle density
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n(z′), radius rd and thickness dz′, then this charged disc can generate an electric

field at z by [
0, 0,

1

2
n(z′)

(
z − z′

|z − z′| −
z − z′√

(z − z′)2 + r2d

)
dz′

]T
.

Thus, Em(z) can be obtained by direct integration over all discs,

Em(z) =

[
0, 0,

1

2

∫ 1

0

n(z′)

(
z − z′

|z − z′| −
z − z′√

(z − z′)2 + r2d

)
dz′

]T
.

Note that, only the third component of modified electric field will be used to solve

continuity equations; we will denote it by Em(z) and call it modified electric field

hereafter.

To ensure the zero potential at the ends of the gap, we have to add infinite series

of image discharges into the integration theoretically [22]. However, in fact, we only

consider the image charge up to few neighboring intervals by using the reflection

[28, 102]. Then the final formula to compute the modified electric field should be

Em(z) =
1

2

[∫ z

−L

n(z′)

(
1− z − z′√

(z − z′)2 + r2d

)
dz′

+

∫ 1+L

z

n(z′)

(
−1 − z − z′√

(z − z′)2 + r2d

)
dz′

]
,

where n(z′) for z′ ∈ [−L, 0] ∪ [1, 1 + L] is computed by reflection. The total electric

field should be a combination of modified electric field Em and applied electric field

Ea,

E = Em + Ea,

where Ea is a constant if the gap is between two parallel planar electrodes or is given

by [31] if the gap is between a pointed and a planar electrode.

As mentioned in [71], it could take at least 90 per cent of total computational

time to solve the Poisson’s equation in 2D or quasi 3D model numerically. Thus,

1.5D model certainly can simplify and speed up the simulations. Therefore, 1.5D

model is usually considered by engineers and physicists to make a balance between

engineering and numerical simulation. However, the solution to this model strongly
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depends on the values of radius rd. It is believed that this empirical value should

vary for different discharge configurations. In addition, we will see later in Chapter

5 that 1.5D model cannot correctly describe streamer propagation. Hence, we do

not want to make great effort to study 1.5D model, although we admit the simplicity

of this model. As a result, we will mainly focus on 2D and quasi 3D models in this

thesis.

1.3 Literature Review

In recent years, many different numerical methods have been developed to find

the approximated solutions of the streamer propagation models introduced in the

previous section. In this section, we will first review the results for the 1.5D model

and then those for 2D and quasi 3D models.

The earliest numerical study of 1.5D model was done by R. Morrow and J.

J. Lowke in 1981 [64]. They used finite difference method to study the negative

streamer. They studied a 3cm short gap, and chose a two-step Lax-Wendroff scheme

with CFL number 0.05 in spatial discretization. However, they only considered a

convection-diffusion system without the ionization source and other effective sources.

After Morrow’s first attempt, it became popular to seek numerical solutions of

1.5D model in streamer research. For example, D. Bessières et al. (2007) used

finite volume method to study negative streamer in a 1cm gap [7]. Although a

short gap was considered in this study, they used an adaptive mesh refinement

method, called moving mesh method [89], to save the computing time. Their method

can be 16 times faster than using uniform mesh [7]. As members of Bessières’

group, A. Bourdon et al. considered the positive streamer discharges using finite

volume method [28]. In their studies, they considered not only ionization source but

also attachment, detachment and recombination effects. They also used adaptive

refinement technique [21] in space. Besides, in time discretization, a second order

Strang operator splitting scheme together with time adaptive integration was used
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to increase the accuracy. This study has successfully simulated the propagation of

streamer in short gap under different physical configurations.

The continuity equation for electrons in 2D and quasi 3D models is convection

dominated if the source terms are not taken into consideration. At the beginning,

traditional linear finite difference schemes were used to solve the continuity equa-

tions, e.g. Morrow and Lowke’s work [64] mentioned above. However, it has been

proved in [40, 41] that the those schemes will generate too many numerical oscilla-

tions or diffusions. Consequently, Morrow and Lowke’s results became unstable in

long time simulation.

To overcome the drawback of traditional linear finite difference scheme, flux

corrected transport (FCT) technique [11, 12, 99] was applied to finite difference

method (FDM) during 1980s and 1990s [25, 26, 64, 97]. The simulation results have

shown that the FCT technique can significantly suppress the numerical oscillations

[97]. For instant, S. K. Dhali and P. F. Williams studied the discharges in a 0.5cm

gap of SF6−N2 mixtures between two parallel planar electrodes in 1987 [26]. They

attempted to change the attachment coefficient, applied voltage and initial particle

distributions to study the effects of these parameters on the discharge processes and

the features during streamer development. They have pointed out that the initial

status could seldom affect the stationary status of streamers.

However, it is hard for FDM to handle the unstructured meshes or complex

geometries. Therefore, after R. Löhner’s works in 1988 [53, 54], FCT had been

combined to finite element method (FEM) [35, 36, 37, 60, 61]. For example, in

2000, G. E. Georghiou et al. considered positive streamer modeled by (1.1) with

two dimensions [37]. In their study, they generated an unstructured grid on which

there are 4,300 unknowns. However, they only dealt with a 2mm gap, which is too

short. As an improvement of Georghiou’s work, W.-G. Min et al. [61] used the more

efficient adaptive mesh refinement method [52] in 2001. Their method can handle a

triangular mesh containing up to 8,923 elements. Meanwhile, the length of gap was

increased to 5mm. However, Min’s simulation was conducted on negative streamer
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with only the ionization source, and the refinement procedure was not very efficient.

The good news for FEM-FCT was that FEM could maintain a comparable accu-

racy as FDM-FCT and was easy to implement on unstructured meshes or complex

geometries. But on the other hand, FEM can only conserve the total current in-

stead of the local current [101]; thus, Maxwell’s law of total currents is violated. To

enforce local current conservation, finite volume method (FVM) becomes popular

since 2000 [7, 29, 62, 71].

O. Ducasse et al. made progress based on Georghiou’s work [37] through the

FVM with MUSCL scheme in 2007 [29]. In their study, they also used FEM-FCT

method for comparison purpose. Compared with Georghiou’s work, they can deal

with more unknowns: an unstructured mesh with 16,018 grids in FEM-FCT and a

rectangular mesh with 68,769 grids in FVM-FCT. Besides, their computational do-

main was a complex region, one of whose boundaries is a hyperbola, while Georghiou

et al. only dealt with a rectangular region. However, the only problem is that they

only considered a 1.21mm gap, which was shorter than Georghiou’s.

A successful attempt for long gap simulation was made by C. Montijn et al. in

2006 [62]. They used the finite volume method for both Poisson’s equation and

continuity equations. In order to save cost, they also proposed an adaptive mesh

refinement strategy such that the Poisson’s equation had 93,584 unknowns and each

continuity equation had 657,856 unknowns in a 7.5cm gap. However, they only

focused on the minimal model (1.6) without the convection term in the continuity

equation for positive ions and did not use a precise dimensionless analysis so that

their method cannot be extended to other cases.

FVM-FCT was applied in 3D simulations as well. S. Pancheshnyi et al. used

finite volume method for both the Poisson’s equation and continuity equations to car-

ry out a pioneer 3D simulation in 2008 [71]. To save the computer cost, both an adap-

tive mesh refinement strategy [58] and multi-node parallel implementation are neces-

sary. They used 6 clusters to simulate the propagation of negative streamer modeled

by (1.6) in a cubic gap [−0.25mm, 0.25mm]× [0, 0.5mm]× [−0.25mm, 0.25mm].
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Comparing with FEM, FVM needs a wider stencil to construct high order scheme

which will make computation inefficient. This difficulty is caused by the discretiza-

tion of the diffusion term in FVM on triangular mesh. For example, R. Herbin

introduced a four-point FVM scheme to discretize the diffusion term [43]. But his

method only had first order accuracy. Therefore, we can see that the simulations

done by D. Bessières, O. Ducasse, C. Montijn, S. Pancheshnyi and et al. were all

based on rectangular meshes.

At the same time, the numerical methods for solving the Poisson’s equation

is another issue in this thesis. Scientists have made some efforts on this issue.

For example in O. Ducasse and his colleagues’ work [29], they used finite element

method with BiCGSTAB algorithm and finite volume method with Chebyshev SOR

algorithm to solve Poisson’s equation. They pointed out that the latter scheme is

easier to implement and more efficient in simple geometries and the former one

required optimization work to reduce both the computational time and memory

[29].

The author and his collaborators from Tsinghua University have also done some

research work in comparing numerical methods for Poison’s equation [44]. They

have concluded that the finite difference method (FDM) [7, 62] and discontinuous

Galerkin (DG) method [5, 95], the mixed finite element method (MFEM) [14, 15]

and least-squares finite element method (LSFEM) [8, 9] can be successfully applied

to solve Poisson’s equation for 1D model (1.10) and quasi 2D model (1.9). The

differences among these methods are as follows. The FDM and DG method directly

solve the Poisson’s equation, and use the derivative of the numerical solution to ap-

proximate the electric field. Conversely, MFEM and LSFEM regard the electric field

as an independent variable, thus these two methods can directly derive a solution

of high accuracy for electric field since it is the electric field coupled with continu-

ity equations rather than electric potential. When these methods are extended to

higher dimensions, FDM will be restricted in rectangular meshes but MFEM and

LSFEM can be applied to triangular meshes while DG method is flexible in both
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kinds of meshes.

Summarizing the above review, we can conclude that negative streamer has

been studied more than positive streamer and short gap (order of millimeters) is

considered more than long gap.

1.4 Purpose

As mentioned in Section 1.1, streamer incepts and develops in a time scale of several

nanoseconds; hence, experiments are not adequate to study the detailed mechanism

and process. Therefore, numerical simulation has begun to play a critical role in

this field.

The commonly used model is the fluid model in which the continuity equations

are convection dominated if we temporarily ignore the effect of source terms. When

solving them, traditional linear numerical schemes usually suffer from numerical dis-

sipation or dispersion or both. On one hand, we usually consider a Gaussian type

initial data with steep gradient. It has been found in [62, 104] that the solution of

streamer model has large derivatives or even has discontinuities if the gap becomes

longer. Dissipative schemes cannot capture this feature and lead to numerical dif-

fusions during simulation. Therefore, a numerical scheme which is able to capture

large derivative and discontinuity is required. On the other hand, dispersive schemes

will generate numerical oscillations which can make solution inaccurate. This dis-

advantage usually exists in some higher order schemes which are of high resolution

in space and are able to capture huge gradient. Therefore, a numerical algorithm is

required to control these oscillations.

As we have seen in Section 1.3, FD-FCT, FEM-FCT and FVM are sequentially

applied to solve continuity equations in history. But they have their own disad-

vantages, such as loss of local conservation and lack of easy extension to complex

geometries. Thus, the first purpose of our study is to develop a numerical algorithm

which can precisely resolve streamer propagation, can preserve the local conservation
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and can be easily extended to complex geometries and unstructured meshes.

To achieve our goals, the so-called Oden-Babuška-Baumann discontinuous Galerkin

(OBBDG) method [24, 70, 84] and local discontinuous Galerkin (LDG) method

[18, 19, 20, 102] will be applied to solve continuity equations. Both methods are

discontinuous Galerkin (DG) methods which use finite element space discretization

but allow the solution to have discontinuities along the interface of adjoint elements.

Consequently, both methods can capture the discontinuity of the solution, enforce

the local conservation, achieve high accuracy and handle the complex regions; in

other words, they possess the advantages of FEM and FVM simultaneously. Fur-

thermore, both methods can control the numerical oscillations with the help of a

slope limiter [18, 19, 46].

Our second purpose in this thesis is to extend our comparison study on numerical

methods for Poisson’s equation in 1D and quasi 2D models [44] to 2D and quasi 3D

models. We will study the numerical compatibility in the coupling between Poisson’s

equation and hyperbolic system.

Finally, as mentioned in Section 1.3, most existing simulations were carried out

for short gaps; thus, our third purpose is to enlarge the physical domain and elongate

the streamer propagation. We choose some typical configurations which are widely

used in many literatures and considered longer gaps. Our simulations exhibit some

interesting phenomenon and conclude more features during streamer propagation.

Moreover, this thesis could be regarded as a support in the algorithm level to

the previous works [101, 104] which lack of convergence result for the numerical

methods.

1.5 Outline

This thesis is organized as follows: numerical methods for 1D and quasi 2D models

are introduced and compared to study their feasibilities in Chapter 2 and Chapter

3 respectively. Based on the comparison results in Chapter 2 and 3, we will apply
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suitable methods to long gap simulations for 2D and quasi 3D models in Chapter 4

and Chapter 5. In particular, the relationship between quasi 3D and 1.5D models

will be discussed in Chapter 5. Finally, discussions and conclusions will be presented

in Chapter 6.



Chapter 2
Numerical Methods and Results for 1D

Model

In this chapter, let us consider the 1D model (1.10)





∂σ
∂t

+ ∂(µσσE)
∂z

−D ∂2σ
∂z2

= S|E|eK/|E|σ,

∂ρ
∂t

+ ∂(µρρE)
∂z

= S|E|eK/|E|σ,

−∂2φ
∂z2

= ρ− σ, E = −∂φ
∂z
,

(2.1)

where (z, t) ∈ (0, 1)× (0, T ), and the initial and boundary conditions are posed by

σ(z, 0) = σ0(z), ρ(z, 0) = ρ0(z), z ∈ (0, 1);

φ(0, t) = 0, φ(1, t) = 1;
∂σ

∂z
(0, t) =

∂σ

∂z
(1, t) =

∂ρ

∂z
(0, t) =

∂ρ

∂z
(1, t) = 0.

Note that there is an artificial boundary condition for ρ since the equation for ρ

is a first order advection equation. This artificial boundary condition will be used

to compute numerical flux and slope limiter later.

With the time step size τ , the numerical algorithm is as follows. Assume at any

time level tn = nτ , we have the numerical solutions for particle densities, σn and

ρn. Then we use σn and ρn to solve the Poisson’s equation numerically to obtain

φn. After that, we plug a proper numerical approximation of En into continuity

19
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equations to solve for σn+1 and ρn+1. This process will be continued until tn+1 ≥ T .

We will use this algorithm in the later chapters.

Let 0 = z0 < z1 < · · · < zN = 1 be a uniform spatial partition of the computa-

tional domain [0, 1] such that zj = jh where h = 1
N

for j = 0, 1, · · · , N . Denote the

subintervals by Ij = [zj , zj+1], j = 0, 1, · · · , N−1. Let Ni, Nd and Nn denote the sets

of labels of interior, Dirichlet boundary and Neumann boundary nodes respectively.

2.1 Numerical methods for Poisson’s equation

In this section, we apply three methods to solve Poisson’s equation in model (2.1):

finite difference method (FDM) [7, 62], discontinuous Galerkin (DG) methods [5, 95]

and least-squares finite element method (LSFEM) [8, 9].

In fact, the solution to the original Poisson’s equation contains temporal variable

t. However, in our iterative numerical algorithm, the Poisson’s equation is solved

when the right hand side ρ−σ is given. Therefore, we consider the Poisson’s equation

to be independent of temporal variable, namely,

−d
2φ

dz2
= ρn − σn, E = −dφ

dz
.

2.1.1 The finite difference method

In this method, the numerical solution for electric potential, φj is defined in the

center of element Ij. The standard second order central difference method reads,

−
φn
j−1 − 2φn

j + φn
j+1

h2
= ρnj − σn

j , for j = 0, 1, · · · , N − 1, (2.2)

where ρnj and σn
j are the approximate values of ρ and σ in element centers respec-

tively. The boundary conditions are strongly imposed by introducing ghost cells and

linear interpolation,

φn
−1 = 2φ(0, tn)− φn

0 , φ
n
N = 2φ(1, tn)− φn

N−1. (2.3)
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After obtaining the numerical electric potential φ, the numerical electric field at

each node is defined by

En|zj =
φn
j−1 − φn

j

h
, for j = 0, 1, · · · , N ; (2.4)

and the numerical electric field in each element is defined by a constant,

En|Ij =
φn
j−1 − φn

j+1

2h
, for j = 0, 1, · · · , N − 1. (2.5)

2.1.2 The discontinuous Galerkin method

Since this method allows the numerical solution to have discontinuity on the interior

nodes, we need to define the numerical solution on each subinterval. Consequently,

denote the finite element space by

Vk = {v : v|Ij ∈ Pk(Ij), for j = 0, 1, · · · , N − 1}, (2.6)

where Pk(Ij) is the space of polynomials of degree up to k on Ij.

The discontinuity also suggests us to define the average, {v}, and the jump, [v],

of the solution v at each interior node zj ,

[v(zj)] = v(z−j )− v(z+j ), {v} =
1

2
[v(z−j ) + v(z+j )], ∀j = 1, 2, · · · , N − 1, (2.7)

where v(z±) = lim
ǫ→0+

v(z ± ǫ). We need to extend the definition of average and jump

to the endpoints as well,

[v(z0)] = −v(z+0 ), {v(z0)} = v(z+0 ), [v(zN)] = v(z−N ), {v(zN)} = v(z−N). (2.8)

Define the bilinear form Bǫ : Vk × Vk → R,

Bǫ(u, v) =

N−1∑

j=0

∫

Ij

du

dz

dv

dz
−

∑

j∈Ni∪Nd

{
du

dz
(zj)

}
[v(zj)]

+ǫ
∑

j∈Ni∪Nd

{
dv

dz
(zj)

}
[u(zj)] +

∑

j∈Ni∪Nd

α

hβ
[u(zj)][v(zj)], (2.9)
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and linear functional L : Vk → R,

L(v) =

∫ 1

0

(ρn − σn)v +

(
ǫ
dv

dz
(zN ) +

α

hβ
v(zN)

)
φ(1, tn). (2.10)

Then the DG method is to find φh ∈ Vk such that

Bǫ(φ
h, v) = L(v), ∀v ∈ Vk. (2.11)

The DG method has different properties depending on the choice of parameters ǫ, α

and β in (2.9). In comparison and practice, we choose ǫ = −1 to form a symmetric

linear system which is called symmetric interior penalty Galerkin method (SIPG)

and then choose α = 2 and β = 1 to ensure optimal convergence.

Compared with the continuous Galerkin method, we introduce extra interior

terms in the scheme; therefore, the electric field is approximated by

En(zj) = −
{
dφh

dz
(zj)

}
+

α

hβ
[φh(zj)], for j = 1, 2, · · · , N − 1, (2.12)

and at the boundary

En(z0) = −dφ
h

dz
(z0) +

α

hβ
(φ(0, tn)− φh(z0)),

En(zN) = −dφ
h

dz
(zN) +

α

hβ
(φh(zN )− φ(1, tn)).

(2.13)

Remark 1. This DG scheme comes directly from the first chapter of [84] in

which the derivation of DG scheme is thoroughly introduced.

Remark 2. Note that, in this DG scheme, the jump in both artificial terms (sym-

metric and penalty terms) is used for numerical solution. Therefore, the scheme is

automatically consistent with the weak formulation of Poisson’s equation. Further-

more, both artificial terms become weaker when the mesh is finer. In other words,

the artificial terms will not affect the convergence of numerical solution for fixed

values of artificial parameters.

Remark 3. As suggested in [84] that SIPG can provide optimal convergence rate

for all degrees of approximation polynomials compared with non-symmetric interior

penalty Galerkin (NIPG, ǫ = 1) and incomplete interior penalty Galerkin (IIPG,
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ǫ = 0) methods. Besides, the penalty parameter α in SIPG should be larger than

some threshold; otherwise, the numerical solution will not converge to the exact

solution.

2.1.3 The least-squares finite element method

This method reformulates the Poisson’s equation by a first order differential equation

system, 



dE
dz

= ρn − σn,

−dφ
dz

= E,

(2.14)

then we can treat φ and E as independent variables. Usually, we call φ the scalar

variable and E the flux variable.

Denote the C0 nodal finite element space by

Wk = {v : v|Ij ∈ Pk(Ij), for j = 0, 1, · · · , N − 1, v is continuous in [0,1]}.

Let

W 0
k =Wk ∩ {v : v(0) = v(1) = 0},

W S
k =Wk ∩ {v : v(0) = φ(0, tn), v(1) = φ(1, tn)},

and W F
k = Wk be the spaces for test functions, scalar variable and flux variable

respectively.

LSFEM is to minimize a functional

J(φ,E) =

∣∣∣∣
∣∣∣∣
dE

dz
− (ρn − σn)

∣∣∣∣
∣∣∣∣
2

L2(0,1)

+

∣∣∣∣
∣∣∣∣E +

dφ

dz

∣∣∣∣
∣∣∣∣
2

L2(0,1)
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on W S
k ×W F

k . By taking the first variation of J(φ,E), we can find that

dJ(φ+ tψ, E + tw)

dt

∣∣∣∣
t=0

=
d

dt

{∫ 1

0

[
d(E + tw)

dz
− (ρn − σn)

]2
+

∫ 1

0

[
(E + tw) +

d(φ+ tψ)

dz

]2}∣∣∣∣∣
t=0

= 2

∫ 1

0

[
d(E + tw)

dz
− (ρn − σn)

]
dw

dz
+ 2

∫ 1

0

[
(E + tw) +

d(φ+ tψ)

dz

](
w +

dψ

dz

)∣∣∣∣
t=0

= 2

∫ 1

0

[
dE

dz
− (ρn − σn)

]
dw

dz
+ 2

∫ 1

0

(
E +

dφ

dz

)(
w +

dψ

dz

)
,

for all ψ ∈ W 0
k and w ∈ W F

k . Setting this first variation of J(φ,E) to be zero, we

have ∫ 1

0

dE

dz

dw

dz
+

∫ 1

0

(
E +

dφ

dz

)(
w +

dψ

dz

)
=

∫ 1

0

(ρn − σn)
dw

dz
.

Therefore, the least-squares finite element method is to find (φh, Eh) ∈ (W F
k ×

W S
k ) such that

B[(φh, Eh), (ψ,w)] = L(w), ∀(w, ψ) ∈ (W F
k ×W 0

k ), (2.15)

where the bilinear form B[(φ,E), (ψ,w)] is defined by

B[(φ,E), (ψ,w)] =

∫ 1

0

dE

dz

dw

dz
+

∫ 1

0

(
E +

dφ

dz

)(
w +

dψ

dz

)
, (2.16)

and the linear functional L(w) is defined by

L(w) =

∫ 1

0

(ρn − σn)
dw

dz
. (2.17)

Since the flux variable Eh is continuous in this method, the approximate electric

field is naturally chosen as En = Eh.

2.2 Numerical methods for continuity equations

As mentioned in Chapter 1, we apply Oden-Babuška-Baumann discontinuous Galerkin

(OBBDG) method [24, 70, 84] and local discontinuous Galerkin (LDG) method

[18, 19, 20] from the DG class to solve the continuity equations.
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In this section, we will approximate the solutions σ(t) and ρ(t) by functions σh(t)

and ρh(t) that belong to Vk for all t ≥ 0. The solutions σh(t) and ρh(t) are referred

as the semidiscrete solutions.

2.2.1 The Oden-Babuška-Baumann DG method

In the OBBDG method, firstly, the diffusion term −D ∂2σ
∂z2

will be discretized by the

bilinear form (2.9) with symmetric parameter ǫ = 1 and penalty parameter α = 0.

Due to the homogeneous Neumann boundary condition, we only consider the interior

nodes:

B(u, v) =

N−1∑

j=0

∫

Ij

D
du

dz

dv

dz
−
∑

j∈Ni

{
D
du

dz
(zj)

}
[v(zj)] +

∑

j∈Ni

{
D
dv

dz
(zj)

}
[u(zj)].

(2.18)

Secondly, the convection terms ∂(µPPE)
∂z

for P = σ or ρ will be approximated by an

upwind discretization. Denote the upwind value of P by

P̂ (z) =




P (z−), if µPE(z) ≥ 0,

P (z+), if µPE(z) < 0.

(2.19)

The dependence of the upwind discretization C on E is given by

C(P, v;E) = −
N−1∑

j=0

∫

Ij

PµPE
dv

dz

+
∑

j∈Ni

P̂ (zj)µPE(zj)[v(zj)] +
∑

j∈Nn

[P (zj)µPE(zj)v(zj)]. (2.20)

Thirdly, the source term S|E|eK/|E|σ is discretized by a linear form

L(σ, v;E) =

∫ 1

0

S|E|eK/|E|σv. (2.21)

Finally, the semidiscrete scheme of OBBDG method is to find σh(t), ρh(t) ∈ Vk such

that ∫ 1

0

(σh(0)− σ0(z))v =

∫ 1

0

(ρh(0)− ρ0(z))v = 0, ∀v ∈ Vk; (2.22)
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and
∫ 1

0

∂σh

∂t
v + C(σh(t), v;E(t)) +B(σh(t), v) = L(σh(t), v;E(t)), ∀v ∈ Vk,

∫ 1

0

∂ρh

∂t
v + C(ρh(t), v;E(t)) = L(σh(t), v;E(t)), ∀v ∈ Vk,

(2.23)

for t > 0.

2.2.2 The local discontinuous Galerkin method

The diffusion term is directly discretized in the OBBDG method. In the LDG

method, an auxiliary variable is introduced to convert diffusion term to a first order

term; and the new equation for the auxiliary variable is also of first order.

More precisely, the auxiliary variable is

q =
∂σ

∂z
.

Hence, the continuity equations are converted into





∂σ
∂t

+ ∂(µσσE−Dq)
∂z

= S|E|eK/|E|σ,

∂ρ
∂t

+ ∂(µρρE)

∂z
= S|E|eK/|E|σ,

q = ∂σ
∂z
.

(2.24)

The source term is also discretized by the same linear form in OBBDG method,

L(σ, v;E) =

∫ 1

0

S|E|eK/|E|σv.

Then the LDG method is to find σh(t), ρh(t), qh(t) ∈ Vk such that

∫ 1

0

(σh(0)− σ0(z))v =

∫ 1

0

(ρh(0)− ρ0(z))v = 0, ∀v ∈ Vk; (2.25)

and ∫ 1

0

qh(t)v =
N∑

j=0

σ̂h(zj)[v(zj)]−
N−1∑

j=0

∫

Ij

σh(t)
dv

dz
, ∀v ∈ Vk, (2.26)
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∫ 1

0

∂σh

∂t
v + S

N∑

j=0

(
µσE(zj)σ̃h(zj)−Dq̂h(zj)

)
[v(zj)]

−
N−1∑

j=0

∫

Ij

(σhµσE(t)−Dqh)
dv

dz

= L(σh(t), v;E(t)), ∀v ∈ Vk, (2.27)

∫ 1

0

∂ρh

∂t
v +

N∑

j=0

(
µρE(zj)ρ̃h(zj)

)
[v(zj)]−

N−1∑

j=0

∫

Ij

ρhµρE(t)
dv

dz

= L(σh(t), v;E(t)), ∀v ∈ Vk, (2.28)

for all t > 0.

In (2.26)-(2.28), the numerical flux in convection terms is also defined by

P̃ h(z) =




P h(z−), if µPE(z) ≥ 0,

P h(z+), if µPE(z) < 0,

for P = σ or ρ. The numerical fluxes, σ̂h and q̂h, defined in discretization of diffusion

term and auxiliary equation are chosen according to the alternating principle, i.e.,

σ̂h(z) = σh(z+), q̂h(z) = qh(z−), (2.29)

or

σ̂h(z) = σh(z−), q̂h(z) = qh(z+), (2.30)

to ensure the stability and conservation law in semidiscrete level.

Remark 1. One may refer to [18] for the detailed derivation of LDG scheme

and the proof of stability.

Remark 2. Because the boundary conditions for the equation of σ are

∂σ

∂z
(0, t) =

∂σ

∂z
(1, t) = 0,

the boundary conditions for the auxiliary equation q = ∂σ
∂z

should be

q(0, t) = q(1, t) = 0.

However, this auxiliary equation is a first order equation. Thus, we only use one

boundary condition according to the choice of q̂h.
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2.2.3 Fully discrete formulation

We choose some local basis functions of Pk(Ij) such that

Pk(Ij) = span{P0, P1, · · · , Pk},

for all subintervals Ij . Then the global basis functions {Φj,l} for finite element space

Vk are defined by extending the local basis functions in the following way:

Φj,l(z) =




Pl(z), if z ∈ Ij,

0, otherwise.

Therefore, the DG solutions can be expanded by

P h(z, t) =
N−1∑

j=0

k∑

l=0

cj,l(t)Φj,l(z),

for P h(t) = σh(t), ρh(t) and qh(t). Generally speaking, plugging this expansion into

OBBDG or LDG scheme and setting test functions to be Φm,n form = 0, 1, · · · , N−1

and n = 0, 1, · · · , k can yield a linear system of ordinary differential equations with

unknown vector c = (cj,l):

M
dc(t)

dt
= F(c, t),

where the matrix M = (Mj,l;m,n) with

Mj,l;m,n =

∫ 1

0

Φj,lΦm,n,

is called the mass matrix.

Next, we will discretize the time derivatives in above schemes by using finite

differences in time.

In the semidiscrete scheme of OBBDG or LDG method, the equations defining

the approximate solution σh(t) and ρh(t) can be rewritten in ODE form





d
dt
σh(t) = Sh(σ

h(t), E(t)),

d
dt
ρh(t) = Rh(ρ

h(t), σh(t), E(t)),

(2.31)
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after inverting the mass matrix [19].

Since DG methods are suited for high order approximation in space [84], we can

combine them with high order time discretization such as Runge-Kutta method-

s. In this thesis, we apply a third order total variation diminishing Runge-Kutta

(TVDRK3) method [86].

Suppose at each time level tn = nτ , we have already approximated E(tn) by En.

Let σn = σh(tn), ρn = ρh(th) and qn = qh(tn) for all n ≥ 0. Then the fully discrete

formulation from tn to tn+1 is as follows.

• Set σ(0) = σn and ρ(0) = ρn.

• Stage 1. Compute σ(1) = σ(0)+τSh(σ
(0), En) and ρ(1) = ρ(0)+τRh(ρ

(0), σ(0), En).

• Stage 2. Compute σ(2) = 3
4
σ(0) + 1

4
σ(1) + 1

4
τSh(σ

(1), En) and ρ(2) = 3
4
ρ(0) +

1
4
ρ(1) + 1

4
τRh(ρ

(1), σ(1), En).

• Stage 3. Compute σ(3) = 1
3
σ(0) + 2

3
σ(2) + 2

3
τSh(σ

(2), En) and ρ(3) = 1
3
ρ(0) +

2
3
ρ(2) + 2

3
τRh(ρ

(2), σ(2), En).

• Set σn+1 = σ(3) and ρn+1 = ρ(3).

Note that in LDG method, we need to solve (2.26) before Stage ν by using σ(ν−1)

then plug the solution of qh into Sh.

We will omit this part in the later chapters since the same temporal discrete

scheme is used for the other models.

2.2.4 The slope limiter

As mentioned in Chapter 1, a slope limiter is desired to avoid nonphysical solutions.

The slope limiter proposed by Krivodonova [46] will be applied in our work. To

explain this slope limiter, we firstly assume the numerical solution in the element Ij

can be presented by

Uj =

p∑

l=0

cj,lPl(ξ), (2.32)
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where Pl is the l-th order Legendre polynomial and ξ = z−(j+1/2)h
h/2

.

The slope limiter works from the highest order coefficient in (3.37) by recon-

structing cj,l with

ĉj,l = minmod(cj,l, αl(cj+1,l−1 − cj,l−1), αl(cj,l−1 − cj−1,l−1)), (2.33)

where the parameter αl should statisfy

1

2(2l − 1)
≤ αl ≤ 1, (2.34)

and the minmod function is defined by

minmod(a, b, c) =




smin{|a|, |b|, |c|}, if s = sign(a) = sign(b) = sign(c),

0, otherwise.

In practice, the parameter αl is set to be 1 to make the numerical solution least

diffusive. If ĉj,l = cj,l for all j at some level l, then the slope limiter stops [46].

Note that the lowest order coefficient does not need to be limited because of the

orthogonality of Legendre polynomials.

This slope limiter should be applied after each stage in TVDRK3 method. In

addition, this slope limiter is also necessary for the auxiliary variable qh in LDG

method.

2.3 Numerical comparisons and application

To make our methods comparable, we choose linear polynomial approximation in

DG method and LSFEM method so that they are expected to have second order of

accuracy. Assume the number of element in each method is N , then the number of

unknowns in one single time step are given in the following table. Suppose the com-

binatorial algorithm is denoted by A+B where Method A and B are applied to solve

Poisson’s equation and continuity equation respectively. In the view of efficiency,

we only consider four combinations: FDM+LDG, FDM+OBBDG, SIPG+OBBDG

and LSFEM+OBBDG.
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Continuity equations Poisson’s equation

OBBDG LDG FDM SIPG LSFEM

3 · 2 · 2N 3 · 3 · 2N N 2N 2N + 2

Table 2.1: Number of unknowns in one single time step for different methods. Note
that there are three stages in TVDRK3 method and on each stage we have to
solve two (three) equations for the OBBDG method (LDG method) respectively.
Additionally, the Poisson’s equation is only solved once in one single time step.

The comparisons are carried on a double-headed streamer propagation example

with experiment data [97]. The gap length is 1cm and the applied voltage is 52kV.

The gas between electrodes are nitrogen at 300K under standard atmospheric pres-

sure P = 760 torr. After nondimensionlization, the coefficients in model (2.1) are

µρ = 0.009, D = 9.0716E − 5, S = 4332, K = −3.9315, and initial data is set to be

σ(z, 0) = ρ(z, 0) = 0.0035 + 3.4752× 103 × exp{−[(z − 0.5)/0.027]2}.

The terminal time is set to be T = 0.1 which corresponds to 5ns. To compare

the convergence rate in space for each coupled method, the time step is taken to

be very small. The ‘exact’ solutions are numerically defined by using very fine

mesh, namely h = 1
2048

, and tiny time step size τ = 10−5. In order to compare the

convergence rate in space for each coupled method, the time step is chosen as small

enough. The results from Table 2.2 - 2.5 show that if the mesh size is smaller than

some threshold, all the four methods are acceptable since the physical quantities can

obtain their desired convergence rate in each method. Besides, the errors for particle

densities in FDM+LDG method is much less than the other methods. Therefore,

this comparison indicates that all the four methods can be used to simulate the 1D

streamer propagation and FDM+LDG method is the best one among them.

From the previous comparison, it can be found that all of the four numerical

methods are competitive candidates for solving the streamer propagation models

in terms of accuracy. If the discharge region has a simple geometry, e.g. the gap



32 Chapter 2. Numerical Methods and Results for 1D Model

h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0135 0.0123 0.0035 4.7084E-4 4.1914E-5

+LDG rate - 0.1322 1.7976 2.9115 3.4898

FDM error 0.0538 0.0293 0.0086 0.0022 4.5700E-4

+OBBDG rate - 0.8787 1.7688 1.9855 2.2463

SIPG error 0.0851 0.0457 0.0134 0.0034 7.0012E-4

+OBBDG rate - 0.8986 1.7708 1.9825 2.2739

LSFEM error 0.0626 0.0347 0.0098 0.0024 4.9211E-4

+OBBDG rate - 0.8497 1.8301 2.0254 2.2847

Table 2.2: Error and convergence rate for σ in 1D comparison.

h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0137 0.0123 0.0035 4.7227E-4 4.5860E-5

+LDG rate - 0.1571 1.7973 2.9076 3.3643

FDM error 0.0540 0.0293 0.0086 0.0022 4.5739E-4

+OBBDG rate - 0.8827 1.7688 1.9853 2.2453

SIPG error 0.0851 0.0457 0.0134 0.0034 7.0030E-4

+OBBDG rate - 0.8987 1.7708 1.9825 2.2736

LSFEM error 0.0627 0.0347 0.0098 0.0024 4.9212E-4

+OBBDG rate - 0.8521 1.8302 2.0254 2.2847

Table 2.3: Error and convergence rate for ρ in 1D comparison.
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h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 8.4380E-4 5.3150E-5 1.4045E-5 3.3630E-6 6.0467E-7

+LDG rate - 3.9887 1.9200 2.0622 2.4756

FDM error 8.2013E-4 5.8894E-5 9.3893E-6 1.9641E-6 3.7919E-7

+OBBDG rate - 3.7996 2.6490 2.2571 2.3729

SIPG error 2.2345E-4 3.4253E-5 4.9606E-6 1.9926E-6 5.1926E-7

+OBBDG rate - 2.7057 2.7876 1.3159 1.9401

LSFEM error 1.8601E-4 1.3564E-5 3.0023E-6 7.1625E-7 1.4327E-7

+OBBDG rate - 3.7775 2.1757 2.0676 2.3217

Table 2.4: Error and convergence rate for φ in 1D comparison.

h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

SIPG error 0.0029 8.1787E-4 1.5831E-4 8.8592E-5 3.4534E-5

+OBBDG rate - 1.7121 2.4613 0.8375 1.3592

LSFEM error 0.0116 0.0010 1.0819E-4 1.8186E-5 3.2629E-6

+OBBDG rate - 3.5392 3.2113 2.5727 2.4786

Table 2.5: Error and convergence rate for E in 1D comparison.



34 Chapter 2. Numerical Methods and Results for 1D Model

between two parallel plates, FDM+LDG or FDM+OBBDG will be applied because

of its easy implementation. On the other hand, if the geometry is complex, e.g. the

point-to-plate gap, one must choose SIPG+OBBDG or LSFEM+OBBDG.

In this Chapter, since we are dealing with 1D model, we choose FDM+LDG

to simulate the streamer propagation in a 1cm gap of nitrogen. The mesh size is

△z = 1
1024

and △t = 2× 10−5.

The dynamics is shown in Figure 2.1. From this figure, we can see that the

electron density increases very fast (see the left top one) and the net charge density

is significantly less than the electron density (see the left bottom one), which mean

that ionization plays a leading role in the discharge process. This is consistent with

discharge mechanism. However, particle densities tend to infinity before the particles

arrive the boundary which is contrary to the experimental observation. Therefore,

1D model is not suitable to describe the streamer propagation.

2.4 A study of effects of parameters in source

terms

Since ionization source term is dominant, we want to study the effects of parameter

S and K in this term. To make the effects observable, we consider a milder case:

µσ = −1, µρ = 0.5, D = 10−4,

and

σ(z, 0) = ρ(z, 0) = exp{−100(z − 0.5)2}.

We are going to change the values of S or K successively to demonstrate the influ-

ence.

We firstly focus on the number densities of particles. Fix S = 100 and let K

decrease, which means the gap length is fixed but the background electric field is

decreased; then from Figure 2.2, we can see that the maximum density of electrons
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Figure 2.1: The profiles of a double headed streamer propagation in 1D simulation
at different time. The left top figure shows the number density of electron, in which
the rectangular box is zoomed in and shown in the right top figure. The left bottom
figure shows the number density of net charge. The right bottom figure shows the
electric field.

or positive ions decreases rapidly and the drift velocity of particles is also decreased.

In addition, if the electric field is small enough, positive ions move in the opposite

direction with electrons, which means the convection term starts to dominate. If

we fix K = −5 and increase S, which means the background electric field is kept

the same but the gap length is enlarged; we can observe from Figure 2.3 that the

maximum density of electrons or positive ions increase slowly and the drift velocity is

almost unaffected. This result indicates that background electric field is the essential

factor in streamer propagation and long streamer propagation is more stable than

short streamer propagation.
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Figure 2.2: Effects of different K on particle densities. The first row shows the
maximum number density of electrons and positive ions and the second row shows
the maximum points.

Then we simply study the effect of different S and K on electric potential and

field in Figure 2.4. It can be concluded that both larger background electric field

and shorter gap can speed up and amplify the modification of space electric field.

However, the effect on electric potential is not so obvious.
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Figure 2.3: Effects of different S on particle densities. The first row shows the
maximum number density of electrons and positive ions and the second row shows
the maximum points.
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Figure 2.4: Effects of different S and K on electric potential (left column) and
field (right column). Since there is no apparent characteristics for electric field and
potential, we simply present the profiles at different time.



Chapter 3
Numerical Methods and Results for Quasi

2D Model

In this chapter, we focus on the behavior of the solution in quasi 2D model (1.9),




∂σ
∂t

+ 1
r
∂(rµσσE)

∂r
− D

r
∂
∂r

(
r ∂σ
∂r

)
= S|E|eK/|E|σ,

∂ρ
∂t

+ 1
r

∂(rµρρE)

∂r
= S|E|eK/|E|σ,

−1
r

∂
∂r

(
r ∂φ
∂r

)
= ρ− σ, E = −∂φ

∂r
.

(3.1)

The computational domain can generally be assumed as Ω = [r0, 1]. The initial

condition is posed by

σ(r, 0) = σ0(r), ρ(r, 0) = ρ0(r), r ∈ Ω.

The boundary conditions for continuity equations are still the homogeneous Neu-

mann type. But the boundary conditions for Poisson’s equation are set up dis-

tinctively in two different cases. Similar with the previous chapter, the boundary

condition at inflow boundary for the equation of ρ is the true boundary condition;

the other one is the artificial boundary condition.

Case 1, r0 = 0. In this case, the computational domain before changing of

variable is a disc which includes the origin r = 0. Thus, the boundary conditions

for Poisson’s equation are given by the follows. At r = 0, we impose Neumann

39
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boundary condition ∂φ
∂r

= 0 to avoid irregularity; and at r = 1, a Dirichlet boundary

condition is imposed to assure the well-poseness. In fact, there is no truly physical

application in such case. In this work, this case is used to test and compare our

algorithms and to study the extensions of our method to quasi three-dimensional

model [104].

Case 2, r0 > 0. In this case, the former domain is a ring which excludes the

origin. So it is possible to impose Dirichlet boundary conditions, φ(r0, t) = 0 and

φ(1, t) = 1 or − 1.

Generally speaking, let r0 = r0 < r1 < · · · < rN = 1 be a uniform spatial

partition of computational domain [r0, 1] such that rj = r0 + jh where h = 1−r0

N
for

j = 0, 1, · · · , N . Denote the subintervals by Ij = [rj , rj+1], j = 0, 1, · · · , N − 1. The

definitions of other notations are inherited from Chapter 2.

The main difficulty in quasi 2D model is the factor 1
r
. When r0 is closed to 0,

this factor becomes singular. Suppose there is a function u(x, y) ≡ u(
√
x2 + y2)

defined on a 2D domain Ω = {(x, y) : R2
0 < x2 + y2 < R2

1} with central symmtry

and the test function is denoted by v. By applying polar coordinate to change the

variable, i.e., r =
√
x2 + y2, we can obtain

∫

Ω

(△u)vdxdy = 2π

∫ R1

R0

1

r

d

dr

(
r
du

dr

)
vrdr = 2π

∫ R1

R0

1

r

d

dr

(
r
du

dr

)
· (rv)dr.

Therefore, to overcome the singularity caused by 1
r
, new test function rv, where v

is the test function in the previous chapter, is applied in Galerkin-type schemes in

this chapter. By using integration by part, we can have

∫

Ω

(△u)vdxdy = 2π

[
r
du

dr

∣∣∣∣
R1

R0

−
∫ R1

R0

r
du

dr

dv

dr

]
.

This will help us to establish the numerical schemes. Note that the factor 2π will

be canceled during derivation.
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3.1 Numerical methods for Poisson’s equation

Similar to Chapter 2, finite difference method (FDM) and discontinuous Galerkin

(DG) method will be applied to solve Poisson’s equation in quasi 2D model. The

only difference is that mixed finite element method [14, 15] will replace least-squares

finite element method to participate in comparisons.

Similarly, we consider the Poisson’s equation in (3.1) to be independent of tem-

poral variable t,

−1

r

d

dr

(
r
dφ

dr

)
= ρn − σn.

3.1.1 The finite difference method

In this method, the numerical solution for electric potential, φj is defined in the

center of element Ij. Let rCj be the center of subinterval Ij . We use the standard

second order central difference to approximate −1
r

d
dr

(
r dφ
dr

)
:

−1

r

d

dr

(
r
dφ

dr

)∣∣∣∣
r=rCj

≈ − 1

rCj

(
r dφ
dr

)
j+ 1

2

−
(
r dφ
dr

)
j− 1

2

h

≈ − 1

rCj

rj+ 1

2

φj+1−φj

h
− rj− 1

2

φj−φj−1

h

h

= − 1

rCj

(
rCj + 1

2
h
)
(φj+1 − φj)−

(
rCj − 1

2
h
)
(φj − φj−1)

h2

= −φj+1 − 2φj + φj−1

h2
− φj+1 − φj−1

2hrCj
.

Therefore, the FDM reads,

−
φn
j−1 − 2φn

j + φn
j+1

h2
−
φn
j+1 − φn

j−1

2hrCj
= ρnj − σn

j , for j = 0, 1, · · · , N − 1, (3.2)

where ρnj and σn
j are the approximate values of ρ and σ in element centers. The

boundary conditions are strongly imposed by introducing ghost cells. If the bound-

ary condition is imposed by Dirichlet type, then a linear interpolation will be used.
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If the boundary condition is given by Neumann type, then we use reflection. After

obtaining the numerical electric potential φ, the numerical electric field at each node

is defined by

En|rj =
φn
j−1 − φn

j

h
, for j = 0, 1, · · · , N ; (3.3)

and the numerical electric field in each element is defined by a constant,

En|Ij =
φn
j−1 − φn

j+1

2h
, for j = 0, 1, · · · , N − 1. (3.4)

3.1.2 The discontinuous Galerkin method

We apply the ideas in [6] to derive the numerical scheme for this method. Firstly,

we reformulate the Poisson’s equation by a first order system




1
r
d(rE)
dr

= ρn − σn,

−dφ
dr

= E.

(3.5)

Multiplying the first and second equation by our new test functions rv and rF

respectively, integrating over one single subinterval Ij , and using integration by

parts, we can obtain

rEv|rj+1

rj
−
∫
Ij
rE dv

dr
=
∫
Ij
(ρn − σn)rv,

∫
Ij
E · rF = − φrF |rj+1

rj
+
∫
Ij
φd(rF )

dr
.

Thus, we consider a general formulation: to find φh ∈ Vk and Eh ∈ Vk such that for

all subintervals Ij , we have

rÊv
∣∣∣
rj+1

rj
−
∫
Ij
rEh dv

dr
=
∫
Ij
(ρn − σn)rv, ∀v ∈ Vk, (3.6)

∫
Ij
Eh · rF = − φ̂rF

∣∣∣
rj+1

rj
+
∫
Ij
φh d(rF )

dr
, ∀F ∈ Vk, (3.7)

where Ê and φ̂ are called numerical fluxes which will be defined properly later. If

we add over all subintervals Ij , then we can get

N−1∑

j=0

rÊv
∣∣∣
rj+1

rj
−

N−1∑

j=0

∫

Ij

rEhdv

dr
=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk, (3.8)
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and ∫

Ω

Eh · rF = −
N−1∑

j=0

φ̂rF
∣∣∣
rj+1

rj
+

N−1∑

j=0

∫

Ij

φhd(rF )

dr
, ∀F ∈ Vk. (3.9)

By using the definition of jump and average (which are defined in Chapter 2), it

is not difficult to prove that

N−1∑

j=0

ra(r)B(r)|rj+1

rj
=

N∑

j=0

rj [a(rj)B(rj)]

=
N−1∑

j=1

rj({a(rj)}[B(rj)] + [a(rj)]{B(rj)})

+
∑

j=0,N

rj{a(rj)}[B(rj)], (3.10)

for two piecewise continuously differentiable functions a(r) and B(r).

If we set a = v, B = Ê and a = φ̂, B = F respectively in (3.10), and insert the

results into (3.8) and (3.9), then we can find that

N−1∑

j=1

rj({v(rj)}[Ê(rj)] + [v(rj)]{Ê(rj)}) +
∑

j=0,N

rj{v(rj)}[Ê(rj)]

−
N−1∑

j=0

∫

Ij

rEhdv

dr
=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk, (3.11)

and

−
N−1∑

j=1

rj({φ̂(rj)}[F (rj)] + [φ̂(rj)]{F (rj)})−
∑

j=0,N

rj{φ̂(rj)}[F (rj)]

+
N−1∑

j=0

∫

Ij

φhd(rF )

dr
=

∫

Ω

Eh · rF, ∀F ∈ Vk. (3.12)

Therefore, by setting a = φh, B = F in (3.10), using (3.12) and noticing

N−1∑

j=0

ra(r)B(r)|rj+1

rj
=

N−1∑

j=0

∫

Ij

d(raB)

dr
,
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we have

N−1∑

j=1

rj({φh(rj)}[F (rj)] + [φh(rj)]{F (rj)}) +
∑

j=0,N

rj{φh(rj)}[F (rj)]

=

N−1∑

j=0

∫

Ij

d(rφhF )

dr
=

N−1∑

j=0

∫

Ij

(
rF

dφh

dr
+ φhd(rF )

dr

)

=

N−1∑

j=0

∫

Ij

(
Eh +

dφh

dr

)
rF +

N−1∑

j=1

rj({φ̂(rj)}[F (rj)] + [φ̂(rj)]{F (rj)})

+
∑

j=0,N

rj{φ̂(rj)}[F (rj)],

or equivalently,

N−1∑

j=0

∫

Ij

(
E +

dφh

dr

)
rF =

N−1∑

j=1

rj({φh(rj)− φ̂(rj)}[F (rj)] + [φh(rj)− φ̂(rj)]{F (rj)})

+
∑

j=0,N

rj{φh(rj)− φ̂(rj)}[F (rj)]. (3.13)

If we take F = dv
dr

in each subinterval in (3.13) and combine the resulting equation

with (3.11), we can obtain

N−1∑

j=0

∫

Ij

r
dφh

dr

dv

dr
+

N−1∑

j=1

rj({v(rj)}[Ê(rj)] + [v(rj)]{Ê(rj)}) +
∑

j=0,N

rj{v(rj)}[Ê(rj)]

−
N−1∑

j=1

rj

(
{φ(rj)− φ̂(rj)}

[
dv

dr
(rj)

]
+ [φ(rj)− φ̂(rj)]

{
dv

dr
(rj)

})

−
∑

j=0,N

rj{φ(rj)− φ̂(rj)}
[
dv

dr
(rj)

]
=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk. (3.14)

Different choices for the numerical fluxes φ̂ and Ê in (3.14) can lead to different

DG methods proposed in literature. In this thesis, the numerical flux Ê is defined

by





Ê(r+j ) = Ê(r−j ) = −
{

dφh

dr
(rj)
}
+ α

hβ [φ
h(rj)], if j = 1, · · · , N − 1,

Ê(r±j ) = −dφ
dr
(r±j , t

n) = 0, if rj is Neumann node,

Ê(r±j ) = −dφh

dr
(r±j )∓ α

hβ (φ
h(r±j )− φ(rj, t

n)), if rj is Dirichlet node,

(3.15)
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where α ≥ 0 and β > 0; and the numerical flux φ̂ is defined by




φ̂(r±j ) = {φh(rj)} ± c[φh(rj)], if j = 1, · · · , N − 1,

φ̂(r±j ) = φh(r±j ), if rj is Neumann node,

φ̂(r±j ) = φh(r±j )− (2c+ 1)(φh(r±j )− φ(rj, t
n)), if rj is Dirichlet node,

(3.16)

for any real number c.

By inserting the numerical fluxes into (3.14) and letting ǫ = −(2c + 1), we can

get

N−1∑

j=0

∫

Ij

r
dφh

dr

dv

dr
+

N−1∑

j=1

rj

(
−
{
dφh

dr
(rj)

}
+

α

hβ
[φh(rj)]

)
[v(rj)]

+
∑

j∈Nd

rj

(
−
{
dφh

dr
(rj)

}
[vj ] +

α

hβ
(φh(rj)− φ(rj, t

n))v(rj)

)

+ ǫ

N−1∑

j=1

rj[φ
h(rj)]

{
dv

dr
(rj)

}
+ ǫ

∑

j∈Nd

rj

(
[φh(rj)]

{
dv

dr
(rj)

}
− φ(rj, t

n)

[
dv

dr
(rj)

])

=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk. (3.17)

Therefore, if we define the bilinear form Bǫ : Vk × Vk → R,

Bǫ(u, v) =
N−1∑

j=0

∫

Ij

r
du

dr

dv

dr
−

∑

j∈Ni∪Nd

rj

{
du

dr
(rj)

}
[v(rj)]

+ ǫ
∑

j∈Ni∪Nd

rj

{
dv

dr
(rj)

}
[u(rj)] +

∑

j∈Ni∪Nd

rj
α

hβ
[u(rj)][v(rj)], (3.18)

and linear form L : Vk → R,

L(v) =

∫

Ω

(ρ− σ)rv +
∑

j∈Nd

rj

(
ǫ

[
dv

dr
(rj)

]
+

α

hβ
v(rj)

)
φ(rj, t

n), (3.19)

then the DG method is to find φh ∈ Vk such that

Bǫ(φ
h, v) = L(v), ∀v ∈ Vk. (3.20)

We choose SIPG method (ǫ = −1) in practice and choose α = 2 and β = 1 to ensure

optimal convergence.
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The electric field is approximated by

En(rj) = −
{
dφh

dr
(rj)

}
+

α

hβ
[φh(rj)], for j = 1, 2, · · · , N − 1. (3.21)

At the boundary, if it is Case 1 on Page 37, we set

En(r0) = −dφ
h

dr
(r0),

En(rN) = −dφ
h

dr
(rN ) +

α

hβ
(φh(rN )− φ(1, tn));

(3.22)

if it is Case 2 on Page 38, then we set

En(r0) = −dφ
h

dr
(r0) +

α

hβ
(φ(r0, tn)− φh(r0)),

En(rN) = −dφ
h

dr
(rN ) +

α

hβ
(φh(rN )− φ(1, tn)).

(3.23)

Remark. Similar with the traditional DG scheme in previous chapter, the jump

in both artificial terms (symmetric and penalty terms) is used for numerical solution.

Therefore, the artificial terms will still not affect the convergence of numerical so-

lution for fixed values of artificial parameters. Besides, the requirement for optimal

convergence is the same as that in traditional DG scheme.

3.1.3 The mixed finite element method

This method also reformulates the Poisson’s equation by a first order system [15],




1
r
d(rE)
dr

= ρn − σn,

−dφ
dr

= E,

(3.24)

then we can treat φ and E as independent variables. Usually, we call φ the scalar

variable and E the flux variable.

Denote the C0 nodal finite element space by

Wk = {v : v|Ij ∈ Pk(Ij), for j = 0, 1, · · · , N − 1, v is continuous in [r0, 1]}.

Let W 1
k = Wk ∩{v : v(r0) = 0} or W 2

k =Wk be the space for flux variable in Case 1

or Case 2. Due to stability, the space for scalar variable should satisfy the so-called
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inf-sup condition [14, 15]. For example if we choose k = 1, then the space for scalar

variable is identically equal to the piecewise constant finite element space V0 defined

in Chapter 2 for continuity equations. More generally, the finite element space for

scalar variable is defined by

V = {v : v =
dw

dr
for some w ∈ Wk} = Vk−1.

By multiplying the equations in (3.24) by the test functions rψ and rw for

ψ ∈ Vk−1 and w ∈ W i
k respectively, applying integration by parts to the second

equation and using the boundary conditions, the weak formulation for MFEM is to

find (Eh, φh) ∈ W 1
k × Vk−1 such that




−
∫
Ω
ψ d(rEh)

dr
= −

∫
Ω
(ρ− σ)rψ, ∀ψ ∈ Vk−1,

∫
Ω
rEhw + φ(1, tn)w(1)−

∫
Ω
φh d(rw)

dr
= 0, ∀w ∈ W 1

k ;

(3.25)

or to find (Eh, φh) ∈ W 2
k × Vk−1 such that




−
∫
Ω
ψ d(rEh)

dr
= −

∫
Ω
(ρn − σn)rψ, ∀ψ ∈ Vk−1,

∫
Ω
rEhw + φ(1, tn)w(1)− r0φ(r0, tn)w(r0)−

∫
Ω
φh d(rw)

dr
= 0, ∀w ∈ W 2

k .

(3.26)

Since the flux variable Eh is continuous in this method, the approximate electric

field is naturally chosen as En = Eh.

The reason why we use MFE rather than LSFEM comes from two simple nu-

merical tests. In these two tests, we compare the results from continuous Galerkin

method (CG), MFEM and LSFEM with linear polynomial approximation.

Example 1. Consider





1
r

d
dr

(
r dφ
dr

)
= 1, in (0, 1)

φ′(0) = 0, φ(1) = 1,

whose exact solution is

φ =
3

4
+

1

4
r2.
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h0 = 1/16 h0/2 h0/2
2 h0/2

3

CG error 9.6305E-5 2.4079E-5 6.0190E-6 1.5046E-6

order - 1.9998 2.0002 2.0001

MFE error 0.0045 0.0023 0.0011 5.6381E-4

order - 0.9993 0.9998 1.0000

LS error 9.8487E-5 2.4628E-5 6.1566E-6 1.5390E-6

order - 1.9996 2.0001 2.0001

Table 3.1: Error and convergence rate for φ in Example 1 of quasi 2D test.

h0 = 1/16 h0/2 h0/2
2 h0/2

3

CG error 0.0064 0.0032 0.0016 7.9733E-4

order - 0.9984 0.9995 0.9999

MFE error 7.0705E-18 7.6120E-18 1.4591E-17 1.0693E-17

order - - - -

LS error 1.4365E-5 3.5952E-6 8.9905E-7 2.2478E-7

order - 1.9984 1.9996 1.9999

Table 3.2: Error and convergence rate for E = −φ′ in Example 1 of quasi 2D test.
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This is an example for Case 1. The comparisons are shown in Tables 3.1 and 3.2.

Example 2. Consider





1
r

d
dr

(
r dφ
dr

)
= 0, in (0.05, 1)

φ(0.05) = 0, φ(1) = 1,

whose exact solution is

φ = 1− ln r

ln 0.05
.

This is an example for Case 2. The comparisons are shown in Tables 3.3 and 3.4.

h0 = 1/16 h0/2 h0/2
2 h0/2

3

CG error 0.0032 8.8972E-4 2.3011E-4 5.8079E-5

order - 1.8555 1.9510 1.9862

MFE error 0.0143 0.0057 0.0026 0.0013

order - 1.3264 1.1446 1.0442

LS error 0.0132 0.0047 0.0013 3.4884E-4

order - 1.4942 1.8046 1.9426

Table 3.3: Error and convergence rate for φ in Example 2 of quasi 2D test.

Tables 3.1 - 3.4 suggest that MFEM is the best method for both of Example 1

and Example 2 if we want an accurate E = −dφ
dr
. Although LSFEM has the same

order of accuracy for E as MFE, it requires a finer partition.

3.2 Numerical methods for continuity equations

The same numerical methods as in Chapter 2 will be applied in this model.
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h0 = 1/16 h0/2 h0/2
2 h0/2

3

CG error 0.0746 0.0394 0.0201 0.0101

order - 0.9216 0.9737 0.9926

MFE error 0.0158 0.0043 0.0011 2.7835E-4

order - 1.8729 1.9624 1.9900

LS error 0.0542 0.0195 0.0056 0.0014

order - 1.4757 1.8122 1.9475

Table 3.4: Error and convergence rate for E = −φ′ in Example 2 of quasi 2D test.

3.2.1 The Oden-Babuška-Baumann DG method

In this method, firstly, the diffusion term −D
r

∂
∂r

(
r ∂σ
∂r

)
will be discretized by the

bilinear form (3.18) with symmetric parameter ǫ = 1 and penalty parameter α = 0.

Because of the homogeneous Neumann boundary condition, we only consider interior

nodes:

B(u, v) =

N−1∑

j=0

∫

Ij

rD
du

dz

dv

dz
−
∑

j∈Ni

rj

{
D
du

dr
(rj)

}
[v(rj)]

+
∑

j∈Ni

rj

{
D
dv

dr
(rj)

}
[u(rj)]. (3.27)

Secondly, the convection terms 1
r
∂(rµPPE)

∂r
for P = σ or ρ will be discretized by

C(P, v;E) = −
N−1∑

j=0

∫

Ij

rPµPE
dv

dr
+
∑

j∈Ni

rjP̂ (rj)µPE(rj)[v(rj)]

+
∑

n∈Nn

rj [P (rj)µPE(rj)v(rj)], (3.28)

where the numerical flux is defined by

P̂ (r) =




P (r−), if µPE(r) ≥ 0,

P (r+), if µPE(r) < 0.
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Finally, the source term S|E|eK/|E|σ is discretized by a linear form

L(σ, v;E) =

∫

Ω

S|E|eK/|E|σrv. (3.29)

Thus, the OBBDG method is to find σh(t), ρh(t) ∈ Vk such that,

∫

Ω

(σh(0)− σ0(r))rv =

∫

Ω

(ρh(0)− ρ0(r))rv = 0, ∀v ∈ Vk; (3.30)

and
∫

Ω

∂σh

∂t
rv + C(σh(t), v;E(t)) +B(σh(t), v) = L(σh(t), v;E(t)), ∀v ∈ Vk,

∫

Ω

∂ρh

∂t
rv + C(ρh(t), v;E(t)) = L(σh(t), v;E(t)), ∀v ∈ Vk,

(3.31)

for all t > 0.

3.2.2 The local discontinuous Galerkin method

Defining an auxiliary variable

q =
∂σ

∂r
,

then the continuity equations become




∂σ
∂t

+ 1
r
∂[r(µσσE−Dq)]

∂r
= S|E|eK/|E|σ,

∂ρ
∂t

+ 1
r
∂(rµρρE)

∂r
= S|E|eK/|E|σ,

q = ∂σ
∂r
.

(3.32)

Multiplying each equation by our new test functions rv, integrating over subin-

terval Ij and using integration by parts, we can obtain

∫

Ij

qrv = [σrv]|rj+1

rj
−
∫

Ij

σ
d(rv)

dr
,

∫

Ij

∂σ

∂t
rv + [r(µσσE −Dq)v]|rj+1

rj
−
∫

Ij

r(µσσE −Dq)
dv

dr
=

∫

Ij

S|E|eK/|E|σrv,

and ∫

Ij

∂ρ

∂t
rv + [rµρρEv]|rj+1

rj
−
∫

Ij

rµρρE
dv

dr
=

∫

Ij

S|E|eK/|E|σrv.
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We shall replace the boundary terms by some proper fluxes to get
∫

Ij

qrv = [σ̂rv]|rj+1

rj
−
∫

Ij

σ
d(rv)

dr
,

∫

Ij

∂σ

∂t
rv + [r(µσσ̃E −Dq̂)v]|rj+1

rj
−
∫

Ij

r(µσσE −Dq)
dv

dr
=

∫

Ij

S|E|eK/|E|σrv,

and ∫

Ij

∂ρ

∂t
rv + [rµρρ̃Ev]|rj+1

rj
−
∫

Ij

rµρρE
dv

dr
=

∫

Ij

S|E|eK/|E|σrv.

The weak formulation is obtained by adding over all subintervals, using the definition

of jump, ∫

Ω

qrv =

N∑

j=0

rj σ̂(rj)[v(rj)]−
N−1∑

j=0

∫

Ij

σ
d(rv)

dr
,

∫

Ω

∂σ

∂t
rv +

N∑

j=0

rj(µσσ̃(rj)E(rj)−Dq̂(rj))[v(rj)]−
N−1∑

j=0

∫

Ij

r(µσσE −Dq)
dv

dr

=

∫

Ω

S|E|eK/|E|σrv,

and
∫

Ω

∂ρ

∂t
rv +

N∑

j=0

rjµρρ̃(rj)E(rj)[v(rj)]−
N−1∑

j=0

∫

Ij

rµρρE
dv

dr
=

∫

Ω

S|E|eK/|E|σrv,

for all test functions v.

In the discretization level, the LDG method is to find σh(t), ρh(t), qh(t) ∈ Vk

such that
∫

Ω

(σh(0)− σ0(r))rv =

∫

Ω

(ρh(0)− ρ0(r))rv = 0, ∀v ∈ Vk; (3.33)

and
∫

Ω

qh(t)rv =

N∑

j=0

rj σ̂h(rj)[v(rj)]−
N−1∑

j=0

∫

Ij

σh(t)
d(rv)

dr
, ∀v ∈ Vk, (3.34)

∫

Ω

∂σh

∂t
rv +

N∑

j=0

rj
(
µσE(rj)σ̃h(rj)−Dq̂h(rj)

)
[v(rj)]

−
N−1∑

j=0

∫

Ij

r(σh(t)µσE(t)−Dqh(t))
dv

dr

= L(σh(t), v;E(t)), ∀v ∈ Vk, (3.35)
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∫

Ω

∂ρh

∂t
rv +

N∑

j=0

rj
(
µρE(rj)ρ̃h(rj)

)
[v(rj)]−

N−1∑

j=0

∫

Ij

rρhµρE
ndv

dr

= L(σh(t), v;E(t)), ∀v ∈ Vk, (3.36)

for all t > 0, where the linear form L has the same definition as (3.29). And the

definition of numerical fluxes is the same as that in Section 2.2.2:

P̃ h(r) =




P h(r−), if µPE(r) ≥ 0,

P h(r+), if µPE(r) < 0,

for P = σ or ρ is the convective flux;

σ̂h(r) = σh(r+), q̂h(r) = qh(r−),

or

σ̂h(r) = σh(r−), q̂h(r) = qh(r+),

is the diffusive flux.

Remark. Because the boundary conditions for the equation of σ are

∂σ

∂r
(r0, t) =

∂σ

∂r
(1, t) = 0,

the boundary conditions for the auxiliary equation q = ∂σ
∂r

should be

q(r0, t) = q(1, t) = 0.

However, this auxiliary equation is a first order equation. Thus, we only use one

boundary condition according to the choice of q̂h.

3.2.3 The slope limiter

It is expected that the cell average of numerical solution would not be changed by

the slope limiter [19]. Due to the orthogonality of Legendre polynomials, the cell

average is automatically preserved in 1D model. However, since the test function in

the quasi 2D model is rv instead of v, the cell average is computed by a weight r
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in the integration. Thus, compared with the slope limiter in 1D model, there is one

more step in the slope limiter for quasi 2D model: to limit the lowest order coefficient

to preserve the cell average. More precisely, suppose the numerical solution in the

element Ij is still presented by

Uj =

p∑

l=0

cj,lPl(ξ), (3.37)

where Pl is the l-th order Legendre polynomial and ξ = r−(j+1/2)h
h/2

. After reconstruct-

ing the coefficients {cj,l} for j = 0, 1, · · · , N − 1 and l = 1, 2, · · · , p, we reconstruct

cj,0 by ∫

Ij

p∑

l=0

ĉj,lPl(ξ)rdr =

∫

Ij

p∑

l=0

cj,lPl(ξ)rdr. (3.38)

3.3 Numerical comparisons and applications

In the view of efficiency, by regarding Table 2.1 again, we only consider four com-

binations: FDM+LDG, FDM+OBBDG, SIPG+OBBDG and MFEM+OBBDG as

well.

Accuracy test 1. r0 = 0.

Under this configuration, the initial data for continuity equations is well separat-

ed to avoid constant initial solution to Poisson’s equation; otherwise, the solutions

of continuity equations remain the same as initial data. Therefore, there is no real

experiment to satisfy this requirement. Only accuracy test for different methods is

shown. Note that, this test is used to compare different strategies and study the

extensions to quasi three-dimensional model [104].

The dimensionless parameters are set by [97],

µσ = −2, µρ = −1, D = 10−4, S = 1000, K = −5;

the initial data is

σ(r, 0) = exp{−100r2}, ρ(r, 0) = exp{−100(r − 1)2};
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and the Dirichlet boundary condition at the right endpoint is

φ(1, t) = 0.

The terminal time is T = 0.5. The ‘exact’ solutions are numerically defined by

using very fine mesh, namely h = 1
1024

, and tiny time step size τ = 10−5. In order

to compare the convergence rate in space for each coupled method, the time step is

chosen as small enough. The comparisons from Tables 3.5 - 3.8 indicate that if the

mesh size is small enough, all the four methods are acceptable since all the physical

quantities can obtain their desired convergence rate in each method. Hence, all the

four methods can be used to simulate the quasi 2D streamer propagation when the

computational domain contains the origin. In addition, none of them is particularly

prominent.

h0 =
1
32

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0010 2.7767E-4 8.2409E-5 2.4836E-5 6.5115E-6

+LDG rate - 1.9098 1.7525 1.7304 1.9314

FDM error 9.5691E-4 2.0306E-4 5.0001E-5 1.2706E-5 2.9361E-6

+OBBDG rate - 2.2365 2.0219 1.9764 2.1136

SIPG error 9.2227E-4 1.8626E-4 4.5483E-5 1.1488E-5 2.7061E-6

+OBBDG rate - 2.3079 2.0339 1.9852 2.0859

MFEM error 9.2247E-4 1.8617E-4 4.4937E-5 1.1317E-5 2.6420E-6

+OBBDG rate - 2.3089 2.0506 1.9895 2.0987

Table 3.5: Error and convergence rate for σ in Accuracy test 1 of quasi 2D compar-
ison.

Accuracy test 2 and application. r0 > 0

The numerical comparisons are carried out for a streamer propagation between

coaxial circles which have been used in [85] for semiconductor mateiral. In the
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h0 =
1
32

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0182 0.0049 0.0014 3.5623E-4 8.0545E-5

+LDG rate - 1.8878 1.8092 1.9764 2.1449

FDM error 0.0182 0.0049 0.0014 3.5623E-4 8.0545E-5

+OBBDG rate - 1.8877 1.8093 1.9764 2.1449

SIPG error 0.0185 0.0049 0.0014 3.4212E-4 7.8791E-5

+OBBDG rate - 1.9302 1.8151 2.0137 2.1184

MFEM error 0.0174 0.0048 0.0013 3.3525E-4 7.6774E-5

+OBBDG rate - 1.8663 1.8267 2.0078 2.1266

Table 3.6: Error and convergence rate for ρ in Accuracy test 1 of quasi 2D compar-
ison.

h0 =
1
32

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 1.4470E-4 4.5521E-5 1.2672E-5 3.3403E-6 8.6001E-7

+LDG rate - 1.6684 1.8449 1.9236 1.9576

FDM error 1.4469E-4 4.5524E-5 1.2672E-5 3.3403E-6 8.6001E-7

+OBBDG rate - 1.6683 1.8449 1.9236 1.9576

SIPG error 0.0130 0.0029 7.0998E-4 1.7816E-4 4.0111E-5

+OBBDG rate - 2.1495 2.0500 1.9946 2.1511

MFEM error 0.0347 0.0171 0.0085 0.0041 0.0018

+OBBDG rate - 1.0223 1.0138 1.0362 1.1611

Table 3.7: Error and convergence rate for φ in Accuracy test 1 of quasi 2D compar-
ison.
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h0 =
1
32

h0/2 h0/2
2 h0/2

3 h0/2
4

SIPG error 0.0551 0.0225 0.0092 0.0039 0.0016

+OBB rate - 1.2934 1.2861 1.2309 1.2898

MFEM error 0.0057 0.0015 3.7874E-4 9.1864E-5 1.9365E-5

+OBBDG rate - 1.9133 1.9929 2.0437 2.2461

Table 3.8: Error and convergence rate for E in Accuracy test 1 of quasi 2D compar-
ison.

experiment, the material is a solid, but here we consider the discharge be in nitrogen.

The radius of outer circle is 1 cm and the radius of inner circle is 1 mm. A high

negative voltage, −6.6 kV is applied to the wire to generate discharge. Thus, the

boundary conditions for Poisson’s equation are imposed by,

φ(0.1, t) = −1, φ(1, t) = 0.

The other dimensionless parameters are from [97] and

Dr = 2190
cm2

s
.

The initial data is concentrated around the inner circle,

Ne(r, 0) = Np(r, 0) = 108 + 1014 exp{−[(r − 0.1)/0.021]2} cm−3.

The terminal time is T = 0.1 which is corresponding to 10 ns. The ‘exact’

solutions are numerically defined by using very fine mesh, namely h = 1
2048

, and tiny

time step size τ = 10−5. In order to compare the convergence rate in space for each

coupled method, the time step is chosen as small enough. The comparisons from

Tables 3.9 - 3.12 indicate that σ, φ and E can obtain their desired convergence rate

in all of the four methods if the mesh size is small enough. However, from Table

3.10, FDM+LDG and FDM+OBBDG is suboptimal for ρ. This result indicates

that FDM is not very suitable in simulating the quasi 2D streamer propagation.
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Therefore, we recommend that SIPG+OBBDG is the best method for quasi 2D

model. In addition, in this case, the mesh size should be smaller than that in

previous test.

h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0047 0.0011 2.6046E-4 6.0794E-5 1.2759E-5

+LDG rate - 2.0452 2.1217 2.0991 2.2524

FDM error 0.0047 0.0013 2.5982E-4 5.5842E-5 1.7109E-5

+OBBDG rate - 1.8396 2.3270 2.2181 1.7066

SIPG error 0.0048 0.0012 2.9612E-4 7.4108E-5 1.8088E-5

+OBBDG rate - 1.9757 2.0412 1.9985 2.0346

MFEM error 0.0047 0.0013 2.6153E-4 5.5835E-5 1.7103E-5

+OBBDG rate - 1.8569 2.3248 2.2277 1.7069

Table 3.9: Error and convergence rate for σ in Accuracy test 2 of quasi 2D compar-
ison.

From the previous comparisons, we pick up SIPG+OBBDG to simulate the

streamer propagation between coaxial circles. The mesh size is △r = 0.9
1024

and

△t = 1 × 10−5. The dynamics are shown in Figure 3.1. From this figure, we can

observe that the net charge density is significantly less than electron density by

two orders which again proves the ionization source is dominant. From the right

top figure, the gap is filled with negatively charged particles which form a negative

streamer moving towards the right anode because the electric field is negative (see

the right bottom one). From the dynamics of electric potential and field, we can see

that there is an obvious difference in the trend between T = 0 and T > 0.
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h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0045 0.0012 3.8231E-4 1.5344E-4 5.7398E-5

+LDG rate - 1.9324 1.6327 1.3171 1.4186

FDM error 0.0045 0.0012 3.7991E-4 1.5315E-4 5.8506E-5

+OBBDG rate - 1.9388 1.6349 1.3107 1.3883

SIPG error 0.0047 0.0012 3.0958E-4 8.3709E-5 2.1456E-5

+OBBDG rate - 1.9590 1.9773 1.8869 1.9640

MFEM error 0.0045 0.0010 2.2878E-4 5.2578E-5 1.6734E-5

+OBBDG rate - 2.1088 2.1889 2.1214 1.6516

Table 3.10: Error and convergence rate for ρ in Accuracy test 2 of quasi 2D com-
parison.

h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

FDM error 0.0221 0.0067 0.0012 9.6402E-5 1.9800E-5

+LDG rate - 1.7219 2.5164 3.5993 2.2836

FDM error 0.0236 0.0068 0.0013 1.3337E-4 2.7401E-5

+OBBDG rate - 1.8050 2.4268 3.2377 2.2831

SIPG error 0.0134 0.0039 8.7572E-4 1.4746E-5 2.5383E-5

+OBBDG rate - 1.7614 2.1721 2.5701 2.5384

MFEM error 0.0100 0.0035 0.0013 5.4734E-4 2.4045E-4

+OBBDG rate - 1.5293 1.4667 1.2006 1.1867

Table 3.11: Error and convergence rate for φ in Accuracy test 2 of quasi 2D com-
parison.
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h0 =
1
64

h0/2 h0/2
2 h0/2

3 h0/2
4

SIPG error 0.0498 0.0166 0.0042 0.0010 3.8263E-4

+OBBDG rate - 1.5875 1.9940 1.9895 1.4536

MFEM error 0.0341 0.0112 0.0027 5.2027E-4 1.0154E-4

+OBBDG rate - 1.6056 2.0431 2.3865 2.3573

Table 3.12: Error and convergence rate for E in Accuracy test 2 of quasi 2D com-
parison.
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Figure 3.1: The dynamics results of a quasi 2D simulation for streamer propagation
between coaxial circles at different time. The left top figure shows the number
density of electron and the right top figure shows the number density of net charge.
The bottom figures show the electric potential and field.
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3.4 A study of effects of parameters in source

terms

Similar to Chapter 2, we want to study the effects of parameters S and K in the

ionization source term. To make the effects observable, we consider a milder case:

µσ = −1, µρ = 0.5, D = 10−4,

and

σ(r, 0) = ρ(r, 0) = exp{−100(r − 0.1)2}.

Figure 3.2 shows effects of different S or K on maximum particle densities. It

can be seen that the maximum particle densities increase rapidly when K becomes

larger but slowly when S increases. This coincides the conclusion in Chapter 2.

Figure 3.3 shows effects of different S or K on the maximum and maximum

points of net charge density. It is indicated that both larger K and larger S can

amplify the maximum of net charge density and speed up the propagation of the

negative streamer.

Figure 3.4 shows the effects of different S or K on the electric potential and field.

It can be concluded again that both larger background electric field and shorter gap

can speed up and amplify the modification of space electric field.
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Figure 3.2: Effects of different S or K on maximum particle densities. The first row
shows the situations of number density of electron or positive ion when S is fixed.
The second row shows the same situations when K is fixed.
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Figure 3.3: Effects of different S or K on net charge density. The first row shows
the situations of number density of electron or positive ion when S is fixed. The
second row shows the same situations when K is fixed.
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Figure 3.4: Effects of different S or K on the electric potential and field.



Chapter 4
Numerical Methods and Results for 2D

Model

Let us consider 2D model (1.8). To facilitate the interpretation of numerical schemes,

the 2D model is rewritten by





∂σ
∂t

+∇ · (µσσE− D∇σ) = S|E|eK/|E|σ, (x, y) ∈ Ω, t > 0,

∂ρ
∂t

+∇ · (µρρE) = S|E|eK/|E|σ, (x, y) ∈ Ω, t > 0,

−∇2φ = ρ− σ, E = −∇φ, (x, y) ∈ Ω, t > 0,

(4.1)

where we consider a rectangular domain Ω = (0, Lx) × (0, Ly) for simplicity and

D =


Dx 0

0 Dy


 is the diffusion coefficient matrix.

The initial and boundary conditions are posed by

σ(x, y, 0) = σ0(x, y), ρ(x, y, 0) = ρ0(x, y), (x, y) ∈ Ω;

∂σ

∂n
=
∂ρ

∂n
= 0 on ∂Ω;

φ(x, 0, t) = 0, φ(x, Ly, t) = 1,
∂φ

∂x
(0, y, t) =

∂φ

∂x
(Lx, y, t) = 0,

where ∂Ω is the boundary of the domain Ω and n is the unit normal vector to the

boundary exterior to Ω. Please refer to the following figure.

65
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Figure 4.1: Boundary conditions for 2D model.

Note again that only the boundary conditions at inflow boundary of equation

for ρ is the true boundary condition. The rest are used to compute numerical flux

and slope limiter.

Let Eh be a partition of Ω such that Eh = ∪N
i=1Ki, where Ki is called element and

h is the maximum element diameter. Assume the edges are denoted by e. Denote

the sets of edges which belong to the Dirichlet boundary, the Neumann boundary

and the interior of Ω by ΓD, ΓN and ΓI respectively.

4.1 Numerical methods for Poisson’s equation

If the computational domain has a simple geometry, for instant, the double-headed

streamer propagation between two parallel planar electrodes, the finite difference
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method (FDM) introduced by U. Ebert et al. [62] will be applied based on a uni-

form rectangular partition. However, if the geometry is complex, for example the

Corbino disk [85, 92], rectangular partition will not work. In this case, we have

to use a triangular partition on which the above FDM cannot be applied, but the

discontinuous Galerkin (DG) methods [5, 95], the mixed finite element method (M-

FEM) [14, 15] and the least-squares finite element method (LSFEM) [8, 9] could do

a good job. Besides, DG method can be also implemented on rectangular partition,

therefore it will compete with FDM in simple geometries.

Before introducing the numerical methods, we suppose the computational do-

main is always Ω = (0, Lx)×(0, Ly) for simplicity and rewrite the boundary condition

on the Dirichlet boundary as

φ(x, y) = φD(x, y), on ΓD.

4.1.1 The finite difference method

In this method, the numerical solution for Poisson’s equation is defined in the center

of elements. Suppose that there are Nx rectangles in x-direction and Ny rectangles

in y-direction in a uniform mesh. Let △x = Lx

Nx
and △y = Ly

Ny
. Let the coordinates

of the center of element Ki,j be xi = (i − 1
2
)△x and yj = (j − 1

2
)△y and let φi,j

approximate φ(xi, yj). The standard second order central approximation reads,

−
φn
i−1,j − 2φn

i,j + φn
i+1,j

(△x)2 −
φn
i,j−1 − 2φn

i,j + φn
i,j+1

(△y)2 = ρni,j − σn
i,j, (4.2)

for i = 1, 2, · · · , Nx and j = 1, 2, · · · , Ny, where ρ
n
i,j and σ

n
i,j are the values of ρ and

σ in element centers respectively. The boundary conditions are strongly imposed by

introducing ghost cells. If the boundary condition is imposed by Dirichlet type, then

a linear interpolation will be used. If the boundary condition is given by Neumann

type, then we use reflection.

φn
0,j = φn

1,j, φ
n
Nx+1,j = φn

Nx,j, j = 1, 2, · · · , Ny;

φn
i,0 = 2φD(xi, 0)− φn

i,1, φ
n
i,Ny+1 = 2φD(xi, 1)− φn

i,Ny
, i = 1, 2, · · · , Nx.
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Next, we need to define the numerical approximation of En. Since the geometry

is very simple, we can directly define En · n along the edge of any element Kij .

On the top edge: En · n =
φn
i,j − φn

i,j+1

△y ;

on the bottom edge: En · n =
φn
i,j−1 − φn

i,j

△y ;

on the left edge: En · n =
φn
i−1,j − φn

i,j

△x ;

on the right edge: En · n =
φn
i,j − φn

i+1,j

△x .

(4.3)

And we define En in the interior as

En =

(
φn
i−1,j − φn

i+1,j

2△x ,
φn
i,j−1 − φn

i,j+1

2△y

)T

. (4.4)

4.1.2 The discontinuous Galerkin method

Denote the finite element space by

Vk = {v : v|Ki
∈ Pk(Ki), for i = 1, 2, · · · , N},

where Pk(Ki) is the space of polynomials of degree up to k on Ki.

Suppose e ∈ ΓI is shared by two adjacent elements Ki and Kj , we define the

average {·} and the jump [·] for scalar-valued function v and vector-valued function

u as follows. Firstly, let

vi = lim
x∈Ki,x→∂Ki

v(x), ui = lim
x∈Ki,x→∂Ki

u(x).

Then we define

{v} =
1

2
(vi + vj), {u} =

1

2
(ui + uj), (4.5)

and

[v] = vini + vjnj , [u] = ui · ni + uj · nj , (4.6)

where ni (nj) is the unit outer normal of element Ki (Kj).
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If e ∈ ΓD ∪ ΓN is the edge of some element Ki, then the average and jump are

defined only from one side,

{v} = vi, {u} = ui; [v] = vini, [u] = ui · ni. (4.7)

Define the symmetric bilinear form Bǫ : Vk × Vk → R,

Bǫ(u, v) =
∑

Ki

∫

Ki

∇u · ∇v −
∑

e∈ΓI∪ΓD

∫

e

{∇u} · [v]

+ ǫ
∑

e∈ΓI∪ΓD

∫

e

{∇v} · [u] +
∑

e∈ΓI∪ΓD

αe

|e|β
∫

e

[u] · [v], (4.8)

and linear form L : Vk → R,

L(v) =

∫

Ω

(ρn − σn)v +
∑

e∈ΓD

∫

e

(
ǫ∇v · n+

αe

|e|β v
)
φD. (4.9)

Then the DG method is to find φh ∈ Vk such that

Bǫ(φ
h, v) = L(v), ∀v ∈ Vk. (4.10)

The DG method has different properties depending on the choice of parameters

ǫ, αe and β. Here we choose ǫ = −1 to form a symmetric linear system which leads

to symmetric interior penalty Galerkin (SIPG) method and choose

β = 1, αe =




3k(k + 1), if e ∈ ΓI ,

6k(k + 1), if e ∈ ΓD ∪ ΓN ,

to ensure optimal convergence.

The numerical approximation of electric field is derived from φh by the following

way. In each element,

En = −∇φh. (4.11)

Along the edge, since φh is allowed to be discontinuous, there is a penalty term in

the above scheme,

En =





−{∇φh}+ αe

|e|β
[φh], if e ∈ ΓI ,

−∇φh, if e ∈ ΓN ,

−∇φh + αe

|e|β
(φh − φD)n, if e ∈ ΓD.

(4.12)
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Remark 1. One can refer to [5] for the derivation of DG scheme for elliptic

problem. The different choices of ǫ, αe and β comes from different settings of

numerical fluxes (see Table 3.1 and 3.2 in [5]). For the proof of optimal convergence

of a variety of DG methods, one can refer to [84].

Remark 2. Note that, in this DG scheme, the jump in both artificial terms (sym-

metric and penalty terms) is used for numerical solution. Therefore, the scheme is

automatically consistent with the weak formulation of Poisson’s equation. Further-

more, both artificial terms become weaker when the mesh is finer. In other words,

the artificial terms will not affect the convergence of numerical solution for fixed

values of artificial parameters.

Remark 3. As suggested in [84] that SIPG can provide optimal convergence rate

for all degrees of approximation polynomials compared with non-symmetric interior

penalty Galerkin (NIPG, ǫ = 1) and incomplete interior penalty Galerkin (IIPG,

ǫ = 0) methods. The convergence rate for the later two methods are suboptimal

for even degrees. To ensure the optimal convergence, β should be larger than some

critical value (this value only depends on dimension) for superpenalization. Besides,

the penalty parameter α in SIPG should be larger than some threshold; otherwise,

the numerical solution will not converge to the exact solution.

4.1.3 The mixed finite element method

In this method, the Poisson’s equation is reformulated by a first order differential

equation system, 


∇ · E = ρn − σn,

−∇φ = E,

(4.13)

then we can treat φ and E as independent variables which means E can be directly

solved instead of being derived from approximation of φ. Usually, we call φ the

scalar variable and E the flux variable. Define the space

HN(Ω, div) = {v ∈ H(Ω, div) : v · n = 0 on ΓN},
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where

H(Ω, div) = {v ∈ L2 : ∇ · v ∈ L2}.

By multiplying the equations in (4.13) by test functions in L2 and HN(Ω, div)

respectively, applying integration by parts to the second equation and using the

boundary conditions, the MFEM is to seek a pair (φ,E) ∈ L2 × HN(Ω, div) such

that 



∫
Ω
E · v −

∫
Ω
φ∇ · v = −

∫
ΓD
φDv · n, ∀v ∈ HN(Ω, div),

−
∫
Ω
ψ∇ · E = −

∫
Ω
(ρn − σn)ψ, ∀ψ ∈ L2.

(4.14)

Define the conforming, finite dimensional subspace of HN(Ω, div) in the discretiza-

tion level [30],

Wmfem
F = {v ∈ HN (Ω, div) : v|Ki

∈ Wk(Ki), for i = 1, · · · , N ;

v · n is continuous across all the edges.} . (4.15)

There are two kinds of approximating space Wk(K). One is called Raviart-Thomas

(RTk) space, the other is called Brezzi-Douglas-Marini (BDMk) space;

RTk(K) ≡ (Pk(K))2 + xPk(K), BDMk ≡ (Pk(K))2.

Although φ and E are independent variables in MFEM, we still have to define the

subspace of L2 for scalar variable according to the definition of Wmfem
F such that

the so-called inf-sup (stability) condition is satisfied; more precisely,

Wmfem
S = ∇ ·Wmfem

F . (4.16)

Therefore, the discretization scheme for MFEM is to find (φh,Eh) ∈ Wmfem
S ×Wmfem

F

such that




∫
Ω
Eh · v −

∫
Ω
φh∇ · v = −

∫
ΓD
φDv · n, ∀v ∈ Wmfem

F ,

−
∫
Ω
ψ∇ · Eh = −

∫
Ω
(ρn − σn)ψ, ∀ψ ∈ Wmfem

S .

(4.17)

Since Eh · n is continuous across the edges by the definition of subspace. Thus,

the approximate electric field is naturally chosen as En = Eh.
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4.1.4 The least-squares finite element method

The LSFEM starts from (4.13). But the difference is that we want to minimize a

functional

J(φ,E) = ||∇ · E− (ρn − σn)||2L2(Ω) + ||E+∇φ||2
L2(Ω)

on H1
D × HN (Ω, div), where H

1
D = {ψ ∈ H1 : ψ = φD on ΓD} and HN(Ω, div) is

given in MFEM.

The choices of finite dimensional subspaces in LSFEM are not required to satisfy

the inf-sup condition, thus it is relatively easier to define some simple conforming

subspaces. Denote the C0 nodal finite element subspace by

Wk = {v : v|Ki
∈ Pk(Ki), for i = 1, 2, · · · , N, v in continuous in Ω}.

Let

W lsfem
S = Wk ∩ {v : v|ΓD

= φD} (4.18)

and

W lsfem
F = (Wk)

2 ∩ {v : v · n = 0, on ΓN} (4.19)

be the subspace for scalar variable and flux variable respectively. LetW 0
k =Wk∩{v :

v|ΓD
= 0} be the space for test functions.

By taking the first variation of the functional J(φ,E), we can obtain

dJ(φ+ tψ,E+ tv)

dt

∣∣∣∣
t=0

=
d

dt

{∫

Ω

[∇ · (E+ tv)− (ρn − σn)]2 +

∫

Ω

|(E+ tv) +∇(φ+ tψ)|2
}∣∣∣∣

t=0

= 2

∫

Ω

[∇ · (E+ tv)− (ρn − σn)](∇ · v) + 2

∫

Ω

[(E+ tv) +∇(φ+ tψ)] · (v +∇ψ)
∣∣∣∣
t=0

= 2

∫

Ω

[∇ · E− (ρn − σn)](∇ · v) + 2

∫

Ω

(E+∇φ) · (v +∇ψ),

for all ψ ∈ H1
0 and v ∈ HN(Ω, div). Letting the first variation be equal to zero, we

can have

∫

Ω

(∇ ·E)(∇ · v) +
∫

Ω

(E+∇φ) · (v +∇ψ) =
∫

Ω

(ρn − σn)(∇ · v).
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Therefore, we define the bilinear form

B[(φ,E); (ψ,v)] =

∫

Ω

(∇ · E)(∇ · v) +
∫

Ω

(E+∇φ) · (v +∇ψ), (4.20)

and a linear functional

L(v) =

∫

Ω

(∇ · v)(ρn − σn). (4.21)

Then the LSFEM is to find the pair (φh,Eh) ∈ W lsfem
S ×W lsfem

F such that

B[(φh,Eh); (ψ,v)] = L(v), ∀(ψ,v) ∈ W 0
k ×W lsfem

F . (4.22)

Since the flux variable Eh is continuous in LSFEM, Eh · n is automatically con-

tinuous across the edges. Thus, the approximate electric field is naturally chosen as

En = Eh.

Remark 1: Here we use the C0 nodal finite element subspace; however, other

subspaces such as RTk or BDMk are feasible as well. If we want to make the

accuracy comparable for different methods, we should apply RT0 or BDM1.

Remark 2: C0 nodal finite element subspace is relatively easier for implemen-

tation than RTk and BDMk. However, it is suggested in [9] that the use of nodal

subspace for flux variable will degrade the accuracy while the use of RTk or BDMk

subspace can result in the local conservation and optimal L2-convergence of the flux

variable. The only nodal subspace that can derive the optimal L2 error estimate is

the piecewise linear subspace defined on a uniform criss-cross grid [32].

4.2 Numerical method for continuity equations

As we know, an auxiliary equation has to be solved in every single time step in

LDG method. As a result, LDG method requires more computational time than

OBBDG method. Therefore, we only choose OBBDG method for solving continuity

equations in 2D and quasi 3D simulations.
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4.2.1 The Oden-Babuška-Baumann DG method

By the derivation in [84], the diffusion term −∇·(D∇σ) is discretized by the bilinear

form (4.8) with symmetric parameter ǫ = 1 and penalty parameter αe = 0. Due to

the homogeneous Neumann boundary condition, we only consider the interior edges:

B(u, v) =

N∑

i=1

∫

Ki

D∇u · ∇v −
∑

e∈ΓI

∫

e

{D∇u} · [v] +
∑

e∈ΓI

∫

e

{D∇v} · [u]. (4.23)

The convection terms ∇ · (µPPE) for P = σ or ρ is discretized by

C(P, v;E) = −
N∑

i=1

∫

Ki

P (µPE · ∇v) +
∑

e∈ΓI

∫

e

P̂ (µPE · [v])

+
∑

e∈ΓN

∫

e

P (µPE · n)v, (4.24)

with numerical flux

P̂ =




Pi, if µPE · ni ≥ 0,

Pj, if µPE · ni < 0,

(4.25)

for any interior edge e = Ki ∩Kj . And the source term S|E|eK/|E|σ is discretized

by a linear form,

L(σ, v;E) =

∫

Ω

S|E|eK/|E|σv. (4.26)

Therefore, the OBBDG method is to find σh(t), ρh(t) ∈ Vk such that

∫

Ω

(σh(0)− σ0)v =

∫

Ω

(ρh(0)− ρ0)v = 0, ∀v ∈ Vk; (4.27)

and
∫

Ω

∂σh

∂t
v + C(σh(t), v;E(t)) +B(σh(t), v) = L(σh(t), v;E(t)), ∀v ∈ Vk,

∫

Ω

∂ρh

∂t
v + C(ρh(t), v;E(t)) = L(σh(t), v;E(t)), ∀v ∈ Vk,

(4.28)

for all t > 0.
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4.2.2 The slope limiter

In contrast to 1D simulation, one may construct rectangular or triangular mesh for

2D simulation according to the computational domain. Although the slope limiters

used in the rectangular and triangular element cases will have some difference, their

essential motivation is same: (1) to preserve the cell average, (2) to lessen the

gradient of numerical solutions.

The slope limiter on rectangular mesh. If the partition is based on rectangular

elements, we assume that the partition Eh is uniform with mesh size △x and △y,
the element centered at (xi, yj) is denoted by Ki,j = [xi −△x/2, xi +△x/2]× [yj −
△y/2, yj + △y/2]. One can construct a tensor-product basis, then the numerical

solution in element Ki,j can be presented by

Ui,j =

p+q=k∑

p,q=0

up,qi,j φp(ξ)ψq(η), (4.29)

where ξ = x−xi

△x/2
, η =

y−yj
△y/2

. One can still use Legendre polynomials.

If k = 1 (piecewise linear approximation), the limiter is exactly the same as in

[19]. The reconstructed coefficients ũ1,0i,j and ũ0,1i,j are given by

ũ1,0i,j = minmod(u1,0i,j , u
0,0
i+1,j − u0,0i,j , u

0,0
i,j − u0,0i−1,j),

and

ũ0,1i,j = minmod(u0,1i,j , u
0,0
i,j+1 − u0,0i,j , u

0,0
i,j − u0,0i,j−1),

where the minmod function is defined by

minmod(a, b, c) =




smin{|a|, |b|, |c|}, if s = sign(a) = sign(b) = sign(c),

0, otherwise.

Here, we do not apply the total variation bounded (TVB) minmod function since it

requires a TVB constant which is an empirical value differs from case to case.

If k > 1, the limiter becomes more complicated. To reconstruct the coefficients

up,0i,j and u0,qi,j , we directly apply the one-dimensional limiter [46] in corresponding
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direction (refer to (2.33) and (2.34)). When both p and q are positive, which means

the coefficient up,qi,j corresponds to the mixed partial derivatives, we have to use the

coefficients in both x- and y-directions at the previous level to reconstruct up,qi,j . This

reconstruction is given by [46]

ũp,qi,j = minmod
(
up,qi,j , αq(u

p,q−1
i,j+1 − up,q−1

i,j ), αq(u
p,q−1
i,j − up,q−1

i,j−1 ),

αp(u
p−1,q
i+1,j − up−1,q

i,j ), αp(u
p−1,q
i,j − up−1,q

i−1,j )
)
, (4.30)

where
1

2
√
4n2 − 1

≤ αn ≤
√

2n− 1

2n+ 1
. (4.31)

The upper bound for αn leads to the least diffusive solution, thus it will be used in

practice.

The slope limiter on triangular mesh. If the partition is based on triangular

meshes, we apply the hierarchical reconstruction (HR) technique proposed by Y-

ingjie Liu, Chi-Wang Shu and et. al. [50, 98]. The idea of HR is to use a series

of first order reconstructions to reconstruct a high order polynomial hierarchically

such that the cell averages of various orders of derivatives of the polynomial are

unchanged during the reconstruction process. Here, we explain the reconstruction

process for linear approximation.

Suppose the numerical solution on element Ki can be represented by

ui(x− xi, y − yi) = ui(0, 0) + ∂xui(0, 0)(x− xi) + ∂yui(0, 0)(y − yi), (4.32)

where (xi, yi) is the centroid of Ki. Let {Ki, Ki1, Ki2 , Ki3} be a set of element Ki

and its adjacent elements. Our job is to find a new linear polynomial

Li(x− xi, y − yi) = ũi(0, 0) + ∂xũi(0, 0)(x− xi) + ∂yũi(0, 0)(y − yi) (4.33)

to replace ui(x− xi, y − yi) by preserving the cell averages.

Since there are three unknowns in the reconstruction polynomial, we can preserve

the cell averages on Ki itself and its two different adjacent cells. Therefore, it is able

to form three different stencils: {Ki, Ki2, Ki3}, {Ki, Ki3, Ki1} and {Ki, Ki1, Ki2};
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and we are able to find three reconstructions based on each of these stencils. Take

the first stencil for example, denote the reconstructed polynomial by Li1 . Preserving

cell averages implies

1

|Kj|

∫

Kj

Li1(x− xi, y − yi)dxdy =
1

|Kj|

∫

Kj

uj(x− xj , y − yj)dxdy (4.34)

for j = i, i2, i3. There are three equations so that the coefficients in (4.33) are

uniquely determined.

Once we obtain all the three linear polynomials Li1 , Li2 and Li3 (they are called

candidates in [98].), the reconstructed linear polynomial for element Ki is a convex

combination of these polynomials,

Li(x− xi, y − yi) =

3∑

j=1

wjLij (x− xi, y − yi). (4.35)

The weights are designed such that the reconstructed polynomial is free of discon-

tinuity [98]. Set

wj =
αj∑3
k=1 αk

, (4.36)

where

αj =
dj

[ǫ+ (∂xũij(0, 0))
2 + (∂yũij(0, 0))

2]2
(4.37)

with

dj =
1/θj∑3
k=1 1/θk

(4.38)

and θj is the condition number of the coefficient matrix in solving the linear equations

(4.34) on the j-th stencil.

If the approximated polynomial ui(x−xi, y−yi) is of degree n which is larger than

one, then for m = n, n− 1, · · · , 2 we take all possible combinations of the (m− 1)th

order partial derivatives of ui(x − xi, y − yi) to find all the possible candidates for

reconstructing the coefficients in the mth degree term. After that, we apply the

above procedure to reconstruct the coefficients in first and zero-th degree term.

Readers can find more details in [50, 98].
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4.3 Numerical tests and comparisons

Since we use nodal and piecewise linear subspace in LSFEM, we have to choose

linear polynomial approximation in OBBDG method and SIPG method and choose

RT0 and BDM1 subspaces in MFEM to make our methods comparable.

The method for solving continuity equations is fixed by OBBDG method, thus in

Table 4.1 we want to analyze the number of unknowns in one single time step for each

method to solve Poisson’s equation. For simplicity, the tests and comparisons will be

carried out in a rectangular domain. Firstly, we generate a uniform rectangular mesh

to compare FDM and SIPG method. Then based on this rectangular partition, we

apply the criss-cross grid to compare MFEM, LSFEM and SIPG method. Suppose

there are Nx rectangles in x-direction and Ny rectangles in y-direction. Dirichlet

boundary conditions are posed on two horizontal boundaries and the other two are

posed by Neumann boundary conditions. From this table, it can be concluded that

FDM is more efficient than SIPG on rectangular mesh. On triangular mesh, the

efficiency can be ranged by: RT0 > LSFEM > SIPG > BDM1, where ”>” means

more efficient.

Method No. of unknowns

FDM NxNy

Rectangular SIPG 3NxNy

Triangular SIPG 12NxNy

RT0 MFEM 6NxNy +Nx −Ny

BDM1 MFEM 2(6NxNy +Nx −Ny)

LSFEM 6NxNy +Nx +Ny − 1

Table 4.1: Number of unknowns in one single time step for different methods to
solve Poisson’s equation.

Test 1. Rectangular mesh. In this test, we only compare FDM+OBBDG method
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and SIPG+OBBDG method. Consider Model (1.5) on a rectangular domain Ω =

[0, 1]×[0, 2] with toy parameters: S = 1000,K = −5, µσ = −1, µρ = 0.5, D = 10−4I.

The background electric field is given by E|t=0 = (0,−1)T . The initial data of

continuity equations is

σ|t=0 = ρ|t=0 = exp{−25[(z − 0.5)2 + (y − 0.5)2]}.

The terminal time is set to be T = 0.5. The ‘exact’ solutions are numerically defined

by using very fine mesh, namely h = 1
128

, and tiny time step size τ = 10−4. In order

to compare the convergence rate in space for each coupled method, the time step is

chosen as small enough. The results from Tables 4.2 - 4.4 indicate that both methods

can converge and have the same order of accuracy. This means FDM+OBBDG

method is on a par with SIPG+OBBDG method from accuracy point of view. But

we recommend FDM+OBBDG method in simulation by considering efficiency.

h0 =
1
8

h0/2 h0/2
2 h0/2

3

FDM error 0.0838 0.0274 0.0080 0.0023

+OBBDG rate - 1.6121 1.7683 1.7842

SIPG error 0.0763 0.0248 0.0080 0.0023

+OBBDG rate - 1.6189 1.6366 1.7647

Table 4.2: Error and convergence rate for σ in 2D comparison based on rectangular
mesh.

Test 2. Triangular mesh. In this test, we compare SIPG+OBBDG, LSFEM+OBBDG,

RT0+OBBDG and BDM1+OBBDG methods. For simplicity, we consider the simi-

lar toy model with Test 1, except that the computational domain is Ω = [0, 1]× [0, 1]

and terminal time is T = 0.1. The ‘exact’ solutions are numerically defined by using

very fine mesh, namely h = 1
128

, and tiny time step size τ = 10−4. In order to com-

pare the convergence rate in space for each coupled method, the time step is chosen

as small enough. From Tables 4.5 - 4.8, we can observe that (1) the convergence
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h0 =
1
8

h0/2 h0/2
2 h0/2

3

FDM error 0.0872 0.0276 0.0095 0.0029

+OBBDG rate - 1.6592 1.5382 1.7202

SIPG error 0.0781 0.0261 0.0095 0.0029

+OBBDG rate - 1.5817 1.4562 1.7196

Table 4.3: Error and convergence rate for ρ in 2D comparison based on rectangular
mesh.

h0 =
1
8

h0/2 h0/2
2 h0/2

3

FDM error 0.0068 0.0022 7.5749E-4 2.3246E-4

+OBBDG rate - 1.6595 1.5755 1.7043

SIPG error 0.0055 0.0018 6.2495E-4 1.8246E-4

+OBBDG rate - 1.5739 1.5511 1.7762

Table 4.4: Error and convergence rate for φ in 2D comparison based on rectangular
mesh.
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rate for particle density is only 1 in RT0+OBBDG method while it is closed to 2

in the rest three methods; (2) the convergence rate for electric potential is about 1

in RT0 or BDM1+OBBDG method while it is about 2 in the other two methods;

(3) the convergence rate for electric field is 1 in SIPG and RT0+OBBDG methods

while it is nearly 2 in the other two methods. These observations coincide with the

expected theoretical results. From the accuracy point of view, one can simply con-

clude that LSFEM+OBBDG method should be the best choices if all the physical

quantities are expected to have the highest accuracy. If we relax this requirement,

SIPG+OBBDG or BDM1+OBBDG could be taken into consideration. From the

efficiency point of view, we would like to take a look at the memory cost in each

method. It is found from Table 4.9 that (1) RT0+OBBDG method is the worst one

since it is of low resolution and cost much memory; (2) SIPG+OBBDG is actually

more suitable to be applied into simulation than LSFEM+OBBDG method since

the former method costs much less memory than the latter. In addition, Figure

4.2 shows the average time cost (unit: second) in a single step in each method.

This result also recommends that SIPG+OBBDG method is more efficient than

LSFEM/BDM1+OBBDG method.

4.4 Numerical simulation

Example 1. Streamer bifurcation in a double-headed propagation.

This example is used to illustrate the bifurcation phenomenon in streamer propa-

gation. In this simulation, we not only consider electrons and positive ions, but also

take care of negative ions. We ignore the effects due to photoionization and diffu-

sion of electrons. In addition, we assume that particle mobilities, impact ionization

coefficient, attachment coefficient and recombination coefficient are all dependent
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h0 =
1
8

h0/2 h0/2
2 h0/2

3

SIPG error 0.0252 0.0073 0.0019 5.2221E-4

+OBBDG rate - 1.7947 1.9002 1.8962

LSFEM error 0.0248 0.0071 0.0019 5.0995E-4

+OBBDG rate - 1.7945 1.9084 1.8992

RT0 error 0.1739 0.0978 0.0527 0.0269

+OBBDG rate - 0.8305 0.8909 0.9733

BDM1 error 0.0248 0.0071 0.0019 5.0999E-4

+OBBDG rate - 1.7952 1.9081 1.8988

Table 4.5: Error and convergence rate for σ in 2D comparison based on triangular
mesh.

h0 =
1
8

h0/2 h0/2
2 h0/2

3

SIPG error 0.0204 0.0062 0.0018 4.7288E-4

+OBBDG rate - 1.7164 1.7677 1.9466

LSFEM error 0.0198 0.0060 0.0018 4.5522E-4

+OBBDG rate - 1.7301 1.7679 1.9473

RT0 error 0.1554 0.0862 0.0484 0.0260

+OBBDG rate - 0.8509 0.8321 0.8986

BDM1 error 0.0199 0.0060 0.0018 4.5529E-4

+OBBDG rate - 1.7306 1.7684 1.9479

Table 4.6: Error and convergence rate for ρ in 2D comparison based on triangular
mesh.
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h0 =
1
8

h0/2 h0/2
2 h0/2

3

SIPG error 8.4389E-5 2.1507E-5 5.1824E-6 1.1109E-6

+OBBDG rate - 1.9722 2.0531 2.2219

LSFEM error 2.0042E-4 5.2748E-5 1.3348E-5 3.1536E-6

+OBBDG rate - 1.9259 1.9825 2.0815

RT0 error 0.0361 0.0181 0.0090 0.0045

+OBBDG rate - 1.0000 1.0000 1.0000

BDM1 error 0.0361 0.0181 0.0090 0.0045

+OBBDG rate - 1.0000 1.0000 1.0000

Table 4.7: Error and convergence rate for φ in 2D comparison based on triangular
mesh.

h0 =
1
8

h0/2 h0/2
2 h0/2

3

SIPG error 0.0024 0.0012 5.8485E-4 2.6160E-4

+OBBDG rate - 1.0058 1.0346 1.1607

LSFEM error 5.8821E-4 1.5971E-4 4.2639E-5 1.1274E-5

+OBBDG rate - 1.8809 1.9052 1.9192

RT0 error 0.0026 0.0013 6.3681E-4 3.3134E-4

+OBBDG rate - 1.0144 1.0010 0.9466

BDM1 error 4.8136E-4 1.2151E-4 3.0509E-5 7.6432E-6

+OBBDG rate - 1.9861 1.9937 1.9970

Table 4.8: Error and convergence rate for E in 2D comparison based on triangular
mesh.
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Method Memory cost

SIPG+OBBDG 511.855M

RT0+OBBDG 4.061G

BDM1+OBBDG 9.886G

LSFEM+OBBDG 6.659G

Table 4.9: The memory cost for each method in the numerical tests under triangular
mesh when h = 1
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Figure 4.2: The average time cost in one single step for each method in the numerical
tests under triangular mesh.

on electric field. Thus, we consider the following model,




∂Ne

∂t
+∇ · (NeWe) = (α(|E|)− η(|E|))Ne|We| − βNeNp,

∂Np

∂t
+∇ · (NpWp) = α(|E|)Ne|We| − βNeNp − βNnNp,

∂Nn

∂t
+∇ · (NnWn) = η(|E|)Ne|We| − βNnNp,

−∇2V = e
ǫ
(Np −Ne −Nn), E = −∇V,

(4.39)
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where the drift velocities We,p,n, ionization coefficient α(|E|), electron attachment

coefficient η(|E|) and recombination coefficient β are taken from [65].

Consider a 5m gap between two parallel planar electrodes and a background

electric field [0, 3000] kV/m. The truncated domain is [0, 1m]× [0, 5m]. The initial

data is given by [92],

Ne(x, y, 0) = Np(x, y, 0) = 1020 exp

{
−
(
x− 0.5m

0.05m

)2

−
(
y − 2.5m

0.05m

)2
}

+ 106 m−3,

and Nn(x, y, 0) = 0. The gas pressure is set to be atmospheric pressure.

By letting x0 = 5m, V0 = 1.5× 107 V, t0 = 10−7 s and denoting x̃ = x
x0
, ỹ = y

x0
,

τ = t
t0
, N0 =

V0ǫ
ex2

0

,

σ(x̃, ỹ, τ) =
Ne(x, y, t)

N0

, ρ(x̃, ỹ, τ) =
Np(x, y, t)

N0

, δ(x̃, ỹ, τ) =
Nn(x, y, t)

N0

,

φ(x̃, ỹ, τ) =
V (x, y, t)

V0
, E =

E
V0/x0

,

ve,p,n(E) =
We,p,n(E)
x0/t0

, α̃(|E|) = x0α(|E|), η̃(|E|) = x0η(|E|), β̃ = N0t0β,

we can obtain the following dimensionless model,





∂σ
∂τ

+∇ · (σve) = (α̃(|E|)− η̃(|E|))σ|ve| − β̃σρ,

∂ρ
∂τ

+∇ · (ρvp) = α̃(|E|)σ|ve| − β̃σρ− β̃ρδ,

∂δ
∂τ

+∇ · (δvn) = η̃(|E|)σ|ve| − β̃ρδ,

−∇2φ = (ρ− σ − δ), E = −∇φ,

(4.40)

in the computational domain Ω = (0, 0.2)× (0, 1) with boundary conditions,

φ(x, 0, t) = 0, φ(x, 1, t) = 1,
∂φ

∂x
(0, y, t) =

∂φ

∂x
(0.2, y, t) = 0;

∇σ · n = ∇ρ · n = ∇δ · n = 0 on ∂Ω.

In this simulation, the mesh size is chosen to be △x = △y = 1
2000

; the time step

size is △t = 10−5 which corresponds to 10−3ns. Totally, there are 800,000 elements.
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Firstly, we show the dynamics of electron density. Figure 4.3 shows that the first

corona expands at the beginning then two new electron avalanches incept and move

towards the electrodes after some time. We can clearly observe these two avalanches

at 15ns. From Figure 4.4, one can observe that the upper electron avalanche keeps

moving towards the anode but the lower avalanche begins to bifurcate. Later on,

more and more branches forms in the lower avalanche from 25ns to 30ns as shown

in Figure 4.5. Especially, from the right figure in Figure 4.5, it is shown that the

electron density in the first corona becomes less and less which means the discharge

in the first corona gradually terminates; meanwhile, more and more electrons gather

in the two lowest branches so that two new streamer channels form there. If we

track these new streamer channels, we can see from Figure 4.6 that they ceaselessly

elongate and move towards the cathode with some angle.

Next, we show that the net charge density and electric field together. From

Figure 4.7, we can see that there are two streamers with different polarities shortly

after the beginning of discharge. The upper one is a negative streamer and the

lower one is positive. These two streamers move in opposite direction but modify

the background electric field in the same way: strengthening the electric field around

their fronts and weakening the electric field behind them. In addition, the negative

streamer has a larger area than the negative streamer. This shows the situation

before the occurrence of bifurcation.

In Figure 4.8, it can be seen that the bifurcation phenomenon occurs at about

30ns. Compared with the profile at 10ns, the positive streamer is wider but shorter

than the negative streamer. This change of shape is because of that the negative

streamer propagates faster than the negative streamer. The modified electric field

due to the positive streamer can attract electrons and negative ions so that the

positive streamer develops. But the positive streamer propagates slowly, hence,

there is enough time for particles to gather. After bifurcation occurs, more and

more particles continue gathering around the positive streamer as shown in Figure

4.9. Then one single positive streamer splits into two new streamers. There two new
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positive streamers develop and move towards the cathode, driven by the modified

electric field around their heads. Moreover, the gathering of particles will enhance

the recombination effect so that the positive streamer has lower charged particle

density than negative streamer.

As for the negative streamer, it always moves away rapidly before plenty of

particles gather around it, although it also develops. Therefore, negative streamer

keeps shape and its channel is elongated during propagation. From Figure 4.10 and

Figure 4.11, it can be estimated that the negative streamer propagates with velocity

about 6.9 × 107 m/s which coincides with experimental data. Compared with the

positive streamers, the negative streamer is more stable and is affected mainly by

the background electric field.
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Figure 4.3: The distribution of electron density (m−3) at 10ns (left) and 15ns (right).
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Figure 4.4: The distribution of electron density (m−3) at 20ns.
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Figure 4.5: The distribution of electron density (m−3) at 25ns (left) and 30ns (right).
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Figure 4.6: The distribution of electron density (m−3) at 35ns (left) and 40ns (right).
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Figure 4.7: The distribution of net charge density (m−3, left) and electric field |E|
(kV/m, right) at 10ns.
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Figure 4.8: The distribution of net charge density (m−3, left) and electric field |E|
(kV/m, right) at 30ns.
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Figure 4.9: The distribution of net charge density (m−3, left) and electric field |E|
(kV/m, right) at 35ns.
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Figure 4.10: The distribution of net charge density (m−3) at 25, 30, 35 and 40ns
(from left to right).
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Figure 4.11: The distribution of electric field |E| (V/m) at 25, 30, 35 and 40ns (from
left to right).



Chapter 5
Numerical Methods and Results for Quasi

3D Model

In this chapter, we will consider quasi 3D Model (1.6). To facilitate the interpreta-

tion of numerical schemes, this model is rewritten by





∂σ
∂t

+ 1
r
∇ · (rµσσE− rD∇σ) = S|E|eK/|E|σ, (r, z) ∈ Ω, t > 0;

∂ρ
∂t

+ 1
r
∇ · (rµρρE) = S|E|eK/|E|σ, (r, z) ∈ Ω, t > 0;

−1
r
∇ · (r∇φ) = ρ− σ, E = −∇φ, (r, z) ∈ Ω, t > 0.

(5.1)

The computational domain is generally defined by

Ω = {(r, z) : 0 < r < R, 0 < z < f(r)};

the initial and boundary conditions are posed by

σ(r, z, 0) = σ0(r, z), ρ(r, z, 0) = ρ0(r, z), (r, z) ∈ Ω;

∂σ

∂n
=
∂ρ

∂n
= 0 on ∂Ω;

φ(r, 0, t) = 0, φ(r, f(r), t) = 1,
∂φ

∂r
(0, z, t) =

∂φ

∂r
(R, z, t) = 0.

Please refer to the following figure.

97
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Figure 5.1: Boundary conditions for quasi 3D model.

We have pointed out in Chapter 3 that the main difficulty in this model is that

it involves of the singular factor 1
r
. To overcome the singularity, we apply new test

function rv, where v is the test function in Chapter 4, in Galerkin-type schemes.

The definitions for finite element spaces and other notations are all inherited from

Chapter 4.

5.1 Numerical methods for Poisson’s equation

Similar with 2D model, we consider the finite difference method (FDM) and dis-

continuous Galerkin (DG) methods if the computational domain is a rectangle and

consider DG methods, mixed finite element method (MFEM) and least-squares finite

element method (LSFEM) if the geometry is complex. Suppose the computational
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domain is always Ω = (0, R) × (0, Lz) and rewrite the boundary condition on the

Dirichlet boundary as

φ(r, z) = φD(r, z), on ΓD.

5.1.1 The finite difference method

In this method, the numerical solution for Poisson’s equation is defined in the center

of elements. Suppose there are Nr rectangles in r-direction and Nz rectangles in z-

direction in a uniform mesh. Let △r = R
Nr

and △z = Lz

Nz
. Let ri = (i − 1

2
)△r and

zj = (j− 1
2
)△z be the coordinates of the center of element Ki,j. Let φi,j approximate

φ(ri, zj), then the standard second order approximation reads,

−
φn
i−1,j − 2φn

i,j + φn
i+1,j

(△r)2 −
φn
i+1,j − φn

i−1,j

2ri△r
−
φn
i,j−1 − 2φn

i,j + φn
i,j+1

(△z)2 = ρni,j−σn
i,j , (5.2)

for i = 1, 2, · · · , Nr and j = 1, 2, · · · , Nz, where ρ
n
i,j and σ

n
i,j are the values of ρ and

σ in element centers respectively. The boundary conditions are strongly imposed by

introducing ghost cells. If the boundary condition is imposed by Dirichlet type, then

a linear interpolation will be used. If the boundary condition is given by Neumann

type, then we use reflection.

φn
0,j = φn

1,j, φ
n
Nr+1,j = φn

Nr,j , j = 1, 2, · · · , Nz;

φn
i,0 = 2φD(ri, 0)− φn

i,1, φ
n
i,Nz+1 = 2φD(ri, Lz)− φn

i,Nz
, i = 1, 2, · · · , Nr.

Next, we need to define the numerical approximation of En. Since the geometry

is very simple, we can directly define En · n along the edge of any element Ki,j.

On the top edge: En · n =
φn
i,j − φn

i,j+1

△z ;

on the bottom edge: En · n =
φn
i,j−1 − φn

i,j

△z ;

on the left edge: En · n =
φn
i−1,j − φn

i,j

△r ;

on the right edge: En · n =
φn
i,j − φn

i+1,j

△r .

(5.3)
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And we define En in the interior as

En =

(
φn
i−1,j − φn

i+1,j

2△r ,
φn
i,j−1 − φn

i,j+1

2△z

)T

. (5.4)

5.1.2 The discontinuous Galerkin methods

We still follow the ideas in [6] to derive the DG scheme for the Poisson’s equation

in quasi 3D model. Firstly, we reformulate the equation by a first order system,





1
r
∇ · (rE) = ρn − σn,

−∇φ = E.

(5.5)

Multiplying the first and second equation by new test functions rv and rF respec-

tively, integration over one single element K and using integration by parts, we can

obtain ∫

∂K

r(E · nK)v −
∫

K

rE · ∇v =
∫

K

(ρn − σn)rv, (5.6)

and

−
∫

∂K

rφ(F · nK) +

∫

K

φ∇ · (rF) =
∫

K

E · (rF), (5.7)

where nK is the unit outer normal vector of the boundary of element K. Replacing

E and φ in the edge integrations in (5.6) and (5.7) by numerical fluxes ÊK and φ̂K

respectively, we consider a general weak formulation: to find φh ∈ Vk and Eh ∈ (Vk)
2

such that for all element K in the partition Eh, we have

∫

∂K

r(ÊK · nK)v −
∫

K

rEh · ∇v =
∫

K

(ρn − σn)rv, ∀v ∈ Vk, (5.8)

and

−
∫

∂K

rφ̂K(F · nK) +

∫

K

φh∇ · (rF) =
∫

K

Eh · (rF), ∀F ∈ (Vk)
2. (5.9)

Adding over all elements for (5.8) and (5.9), we get

∑

K

∫

∂K

r(ÊK · nK)v −
∑

K

∫

K

rEh · ∇v =

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk, (5.10)
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and

−
∑

K

∫

∂K

rφ̂K(F · nK) +
∑

K

∫

K

φh∇ · (rF) =
∫

Ω

Eh · (rF), ∀F ∈ (Vk)
2. (5.11)

It is easy to show that

∑

K

∫

∂K

raB · nK =
∑

e∈ΓI

∫

e

r({a}[B] + [a] · {B}) +
∑

e∈ΓD∪ΓN

∫

e

r{a}[B], (5.12)

if the scalar function a and vector-valued function B both belongs to C(K̄)∩C1(K)

for all elements K. Here the notations ΓI ,ΓD,ΓN and definitions for jump [·] and
average {·} are all inherited from Chapter 4.

If we set a = v,B = ÊK and a = φ̂K , B = F respectively in (5.12), and insert

the results into (5.10) and (5.11), then we can find that

∑

e∈ΓI

∫

e

r({v}[ÊK] + [v] · {ÊK}) +
∑

e∈ΓD∪ΓN

∫

e

r{v}[ÊK]−
∑

K

∫

K

rEh · ∇v

=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk, (5.13)

and

−
∑

e∈ΓI

∫

e

r({φ̂K}[F] + [φ̂K ] · {F})−
∑

e∈ΓD∪ΓN

∫

e

r{φ̂K}[F] +
∑

K

∫

K

φh∇ · (rF)

=

∫

Ω

Eh · (rF), ∀F ∈ (Vk)
2. (5.14)

Next, by setting a = φh,B = F in (5.12), using (5.14) and noticing

∑

K

∫

∂K

raB · nK =
∑

K

∫

K

∇ · (raB),

we can obtain

∑

e∈ΓI

∫

e

r({φh}[F] + [φh] · {F}) +
∑

e∈ΓD∪ΓN

∫

e

r{φh}[F]

=
∑

K

∫

K

∇ · (rφhF) =
∑

K

∫

K

(φh∇ · (rF) + rF · ∇φh)

=
∑

K

∫

K

(Eh +∇φh) · (rF) +
∑

e∈ΓI

∫

e

r({φ̂K}[F] + [φ̂K ] · {F}) +
∑

e∈ΓD∪ΓN

∫

e

r{φ̂K}[F],
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or equivalently,

∑

K

∫

K

(Eh +∇φh) · (rF) =
∑

e∈ΓI

∫

e

r({φh − φ̂K}[F] + [φh − φ̂K ] · {F})

+
∑

e∈ΓD∪ΓN

∫

e

r{φh − φ̂K}[F]. (5.15)

If we take F = ∇v in each element in (5.15) and combine the resulting equation

with (5.13), we can obtain

∑

K

∫

K

r∇φh · ∇v

−
∑

e∈ΓI

∫

e

r({φh − φ̂K}[∇v] + [φh − φ̂K ] · {∇v})−
∑

e∈ΓD∪ΓN

∫

e

r{φh − φ̂K}[∇v]

+
∑

e∈ΓI

∫

e

r({v}[ÊK] + [v] · {ÊK}) +
∑

e∈ΓD∪ΓN

∫

e

r{v}[ÊK]

=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk. (5.16)

We define the numerical fluxes φ̂K and ÊK as follows:




φ̂K = {φh}+ 1+ǫ
2
[φh] · nK , if ∂K ⊃ e ∈ ΓI ,

φ̂K = φh, if ∂K ⊃ e ∈ ΓN ,

φ̂K = φh + ǫ(φh − φD), if ∂K ⊃ e ∈ ΓD,

(5.17)

where ǫ is any real number; and




ÊK = −{∇φh}+ αe

|e|β
[φh], if ∂K ⊃ e ∈ ΓI ,

ÊK = −∇φ(r, z), if ∂K ⊃ e ∈ ΓN ,

ÊK = −∇φh + αe

|e|β
(φh − φD(r, z))nK , if ∂K ⊃ e ∈ ΓD,

(5.18)

where αe ≥ 0, β > 0 and |e| is the length of edge. From these definitions, one can

directly prove that

{φh − φ̂K} = 0, [φh − φ̂K ] = −ǫ[φh],

and

{ÊK} = −{∇φh}+ αe

|e|β [φ
h], [ÊK ] = 0,
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along the interior edges.

Thus, by inserting the numerical fluxes into (5.16) and using the boundary con-

ditions, we can find that

∑

K

∫

K

r∇φh · ∇v

+
∑

e∈ΓI

∫

e

r

(
−{∇φh}+ αe

|e|β [φ
h]

)
· [v] +

∑

e∈ΓD

∫

e

r

(
−∇φh · n+

αe

|e|β (φ
h − φD)

)
v

+ ǫ
∑

e∈ΓI

∫

e

r{∇v} · [φh] + ǫ
∑

e∈ΓD

∫

e

r(φh − φD)(∇v · n)

=

∫

Ω

(ρn − σn)rv, ∀v ∈ Vk.

Therefore, if we define the symmetric bilinear form Bǫ : Vk × Vk → R,

Bǫ(u, v) =
∑

K

∫

K

r∇u · ∇v −
∑

e∈ΓI∪ΓD

∫

e

r {∇u} · [v]

+ ǫ
∑

e∈ΓI∪ΓD

∫

e

r {∇v} · [u] +
∑

e∈ΓI∪ΓD

αe

|e|β
∫

e

r[u] · [v], (5.19)

and linear form L : Vk → R,

L(v) =

∫

Ω

(ρn − σn)rv +
∑

e∈ΓD

∫

e

r

(
ǫ∇v · n+

αe

|e|β v
)
φD, (5.20)

then the DG method is to find φh ∈ Vk such that

Bǫ(φ
h, v) = L(v), ∀v ∈ Vk. (5.21)

The DG method has different properties depending on the choice of parameters

ǫ, α and β. Here we choose ǫ = −1 to form a symmetric linear system which leads

to symmetric interior penalty Galerkin method (SIPG) and choose

β = 1, αe =




3k(k + 1), if e ∈ ΓI ,

6k(k + 1), if e ∈ ΓD ∪ ΓN ,

to ensure optimal convergence.



104 Chapter 5. Numerical Methods and Results for Quasi 3D Model

The numerical approximation of electric field is derived from φh by the following

way. In each element,

En = −∇φh. (5.22)

Along the edge, since φh is allowed to be discontinuous, there is a penalty term in

the above scheme,

En =





−{∇φh}+ αe

|e|β
[φh], if e ∈ ΓI ,

−∇φh, if e ∈ ΓN ,

−∇φh + αe

|e|β
(φh − φD)n, if e ∈ ΓD,

(5.23)

which is almost the same with the numerical flux Ê.

Remark 1. Similar with the traditional DG scheme in previous chapter, the

jump in both artificial terms (symmetric and penalty terms) is used for numerical

solution. Therefore, the artificial terms will still not affect the convergence of nu-

merical solution for fixed values of artificial parameters. Besides, the requirement

for optimal convergence is the same as that in traditional DG scheme.

Remark 2. Due to some of our numerical studies not shown in this thesis,

there seems to be still some critical values for artificial parameters αe and β for

optimal convergence rate when ǫ is fixed (especially for NIPG and IIPG). More

careful studies can be done to solve this problem.

5.1.3 The mixed finite element method

This method also reformulates the Poisson’s equation by a first order differential

equation system, 



1
r
∇ · (rE) = ρn − σn,

−∇φ = E.

(5.24)

We still call φ the scalar variable and E the flux variable and use the definitions of

subspaces introduced in the previous chapter.
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By multiplying the first and second equation with rψ and rv respectively, apply-

ing integration by parts to the second equation and using the boundary conditions,

the MFEM is to find (φh,Eh) ∈ Wmfem
S ×Wmfem

F such that




∫
Ω
Eh · (rv)−

∫
Ω
φh[∇ · (rv)] = −

∫
ΓD
rφD(v · n), ∀v ∈ Wmfem

F ,

−
∫
Ω
ψ[∇ · (rEh)] = −

∫
Ω
(ρn − σn)rψ, ∀ψ ∈ Wmfem

S ,

(5.25)

where the finite element spaces Wmfem
F and Wmfem

S are defined by (4.15) and (4.16)

respectively.

Since Eh · n is continuous across the edges by the definition of subspace. Thus,

the approximate electric field is naturally chosen as En = Eh.

5.1.4 The least-squares finite element method

The LSFEM starts from (5.24) as well. But the difference is that we want to

minimize a functional on H1
D ×HN(Ω, div),

J(φ,E) = ||∇ · (rE)− r(ρn − σn)||2L2(Ω;r) + ||E+∇φ||2
L2(Ω;r),

where the weighted L2− and L2− norm are defined by

||f ||L2(Ω;r) =

(∫

Ω

rf 2

)1/2

,

and

||f ||L2(Ω;r) =

(∫

Ω

r|f |2
)1/2

.

The LSFEM is to find (φh,Eh) ∈ W lsfem
S ×W lsfem

F such that

B[(φh,Eh), (ψ,v)] = L(v), ∀(ψ,v) ∈ (W 0
k ×W lsfem

F ), (5.26)

where the finite element spaces W lsfem
S and W lsfem

F are defined by (4.18) and (4.19)

respectively; the bilinear form B and linear functional L are derived from the vari-

ation of the above functional J(φ,E),

B[(φ,E), (ψ,v)] =

∫

Ω

r[∇ · (rE)][∇ · (rv)] +
∫

Ω

r (E+∇φ) · (v +∇ψ) , (5.27)
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and

L(v) =

∫

Ω

r2[∇ · (rv)](ρn − σn). (5.28)

Since the flux variable Eh is continuous in this method, then Eh · n is automat-

ically continuous along the edges. Thus, the approximate electric field is naturally

chosen as En = Eh.

5.2 Numerical method for continuity equations

5.2.1 The Oden-Babuška-Baumann DG method

In this method, firstly, the diffusion term −1
r
∇·(rD∇σ) is discretized by the bilinear

form (5.19) with symmetric parameter ǫ = 1 and penalty parameter αe = 0. Because

of the homogeneous Neumann boundary condition, we only consider interior edges:

B(u, v) =
N∑

i=1

∫

Ki

rD∇u · ∇v −
∑

e∈ΓI

∫

e

r {D∇u} · [v] +
∑

e∈ΓI

∫

e

r {D∇v} · [u]. (5.29)

Secondly, the convection terms 1
r
∇ · (rµPPE for P = σ or ρ is discretized by

C(P, v;E) = −
N∑

i=1

∫

Ki

rP (µPE · ∇v) +
∑

e∈ΓI

∫

e

rP̂ (µPE · [v])

+
∑

e∈ΓN

∫

e

rP (µPE · n)v, (5.30)

with numerical flux

P̂ =




Pi, if µPE · ni ≥ 0,

Pj, if µPE · ni < 0,

for any interior edge e = Ki ∩ Kj. Finally, the source term S|E|eK/|E|σ is still

discretized by a linear form,

L(σ, v;E) =

∫

Ω

S|E|eK/|E|σrv. (5.31)

Therefore, OBBDG method is to find σh(t), ρh(t) ∈ Vk such that
∫

Ω

(σh(0)− σ0)rv =

∫

Ω

(ρh(0)− ρ0)rv = 0, ∀v ∈ Vk; (5.32)
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and
∫

Ω

∂tσ
hrv + C(σh(t), v;E(t)) +B(σh(t), v) = L(σh(t), v;E(t)), ∀v ∈ Vk,

∫

Ω

∂tρ
hrv + C(ρh(t), v;E(t)) = L(σh(t), v;E(t)), ∀v ∈ Vk.

(5.33)

5.2.2 The slope limiter

As pointed out in Chapter 3, the slope limiter for quasi 3D model is slightly different

from 2D slope limiter due to the 1
r
singularity.

For rectangular mesh, one more step needs to be add into the slope limiter such

that the cell average can be preserved. Suppose that the solution in the element

Ki,j = [ri −△r/2, ri +△r/2]× [zj −△z/2, zj +△z/2] (△r and △z are mesh sizes)

by

Ui,j =

p+q=k∑

p,q=0

up,qi,j φp(ξ)ψq(η), (5.34)

where ξ = r−ri
△r/2

, η =
z−zj
△z/2

. By using the 2D slope limiter, we end up with

Ũi,j = u0,0i,j +

p+q=k∑

p2+q2>0

ũp,qi,j φp(ξ)ψq(η),

then we reconstruct u0,0i,j by ũ0,0i,j such that

1

|Ki,j|

∫

Ki,j


ũ0,0i,j +

p+q=k∑

p2+q2>0

ũp,qi,j φp(ξ)ψq(η)


 rdrdz =

1

|Ki,j|

∫

Ki,j

Ui,jrdrdz. (5.35)

For triangular mesh, the integrals for seeking reconstructed polynomials (i.e.,

(4.34)) should be changed by

1

|Kj|

∫

Kj

Li1(r − ri, z − zi)rdrdz =
1

|Kj |

∫

Kj

uj(r − rj , z − zj)rdrdz, (5.36)

where the cell average in both rectangular case and triangular case should be weight-

ed average,

|Kj| =
∫

Kj

1 · rdrdz.
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5.3 Numerical tests and comparisons

Test 1. Rectangular mesh.

Consider Model (1.6) on a rectangular domain Ω = [0, 1] × [0, 1.5] with toy

parameters: S = 1000, K = −5, µσ = −1, µρ = 0.5, D = 10−4I. The background

electric field is given as E|t=0 = (0,−1)T . The initial data of continuity equations is

σ|t=0 = ρ|t=0 = exp{−25r2 − 100(z − 0.5)2}.

The terminal time is set to be T = 0.5. The ‘exact’ solutions are numerically de-

fined by using very fine mesh, namely h = 1
128

, and tiny time step size τ = 10−4.

In order to compare the convergence rate in space for each coupled method, the

time step is chosen as small enough. The results from Tables 5.1 - 5.3 indicate

that FDM+OBBDG and SIPG+OBBDG can both be used to simulate the stream-

er propagation since they are both convergent. Besides, the convergence rate for

particles in SIPG+OBBDG method is more regular than that in FDM+OBBDG

method.

h0 =
1
8

h0/2 h0/2
2 h0/2

3

FDM error 0.0128 0.0038 7.1756E-4 3.9337E-4

+OBBDG rate - 1.7430 2.4104 0.8672

SIPG error 0.0112 0.0035 9.8836E-4 2.6910E-4

+OBBDG rate - 1.6855 1.8163 1.8769

Table 5.1: Error and convergence rate for σ in quasi 3D comparison based on rect-
angular mesh.

Test 2. Triangular mesh.

Before testing and comparing different methods, we would like to review the

performance of those methods in 2D model. It is concluded that RT0 MFEM is less

accurate than the others and BDM1 MFEM and LSFEM requires more memory
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h0 =
1
8

h0/2 h0/2
2 h0/2

3

FDM error 0.0100 0.0020 3.5590E-4 1.9363E-4

+OBBDG rate - 2.3120 2.4959 0.8782

SIPG error 0.0090 0.0027 0.0012 3.7448E-4

+OBBDG rate - 1.7419 1.1738 1.6681

Table 5.2: Error and convergence rate for ρ in quasi 3D comparison based on rect-
angular mesh.

h0 =
1
8

h0/2 h0/2
2 h0/2

3

FDM error 0.0017 5.9839E-4 1.5889E-4 4.3398E-5

+OBBDG rate - 1.5221 1.9130 1.8723

SIPG error 2.5821E-4 5.6058E-5 1.4493E-5 3.5810E-6

+OBBDG rate - 2.2036 1.9515 2.0170

Table 5.3: Error and convergence rate for φ in quasi 3D comparison based on rect-
angular mesh.
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and computational time in Chapter 4. In addition, it can be predicted that the

structure of mass and stiff matrix in quasi 3D model is more complicated than that

in 2D model. Thus, it is expected that SIPG+OBBDG method should be the best

choice in this case. However, we still want to point out that the accuracy order

will be reduced when MFEM and LSFEM are applied to solve a single Poisson’s

equation.

Consider the following Poisson’s equation





−1
r

∂
∂r

(
r ∂φ
∂r

)
= f(r, z), (r, z) ∈ Ω = (0, 1)× (0, 1),

∂φ
∂r

= 0, (r, z) ∈ Γ = {0} × (0, 1),

φ(r, z) = g(r, z), (r, z) ∈ ∂Ω\Γ.

The exact solution is given by

φ(r, z) = cos(πr2z).

The error and order of accuracy are shown in Table 5.4 - 5.6. The results indicate

that BDM1 performs worse - its accuracy is lower and cost more memory and

computational time - than RT0. This should be due to the incompatibility between

the singularity and the definition of finite element space Wmfem
F . It can be also

found that the convergence rate for −∂φ
∂r

is suboptimal in LSFEM. Hence, these

method will not be taken into consideration in simulation.

We still need to take a look at the error and convergence rate of SIPG+OBBDG

method in this case. We use the same toy system in Test 1 but the terminal time

is T = 0.1. The ‘exact’ solutions are numerically defined by using very fine mesh,

namely h = 1
128

, and tiny time step size τ = 10−4. In order to compare the con-

vergence rate in space for each coupled method, the time step is chosen as small

enough. Table 5.7 shows the error and convergence rate of SIPG+OBBDG method.

It is indicated that SIPG+OBBDG method converges optimally and consequently

can be applied into simulations.
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h0 =
1
16

h0/2 h0/2
2 h0/2

3

LSFEM error 0.0015 3.8404E-4 9.6090E-5 2.4025E-5

rate - 1.9943 1.9988 1.9998

RT0 error 0.0181 0.0091 0.0045 0.0023

rate - 1.0000 1.0000 1.0000

BDM1 error 0.0202 0.0101 0.0050 0.0025

rate - 1.0009 1.0002 1.0001

Table 5.4: Error and convergence rate for φ in quasi 3D comparison based on trian-
gular mesh.

h0 =
1
16

h0/2 h0/2
2 h0/2

3

LSFEM error 0.0385 0.0125 0.0042 0.0014

rate - 1.6274 1.5861 1.5516

RT0 error 0.0631 0.0317 0.0159 0.0079

rate - 0.9952 0.9986 0.9996

BDM1 error 0.0139 0.0066 0.0033 0.0016

rate - 1.0660 1.0177 1.0045

Table 5.5: Error and convergence rate for −∂φ
∂r

in quasi 3D comparison based on
triangular mesh.
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h0 =
1
16

h0/2 h0/2
2 h0/2

3

LSFEM error 0.0201 0.0051 0.0013 3.2956E-4

rate - 1.9949 1.9728 1.9653

RT0 error 0.0630 0.0317 0.0158 0.0079

rate - 0.9931 0.9981 0.9995

BDM1 error 0.0113 0.0054 0.0027 0.0013

rate - 1.0586 1.0157 1.0040

Table 5.6: Error and convergence rate for −∂φ
∂z

in quasi 3D comparison based on
triangular mesh.

h0 =
1
16

h0/2 h0/2
2 h0/2

3

σ error 0.0316 0.0083 0.0020 4.5711E-4

rate - 1.9210 2.0789 2.1109

ρ error 0.0267 0.0079 0.0020 4.6124E-4

rate - 1.7594 1.9896 2.1070

φ error 2.2324E-5 5.6113E-6 1.3945E-6 3.0716E-7

rate - 1.9922 2.0086 2.1827

Table 5.7: Error and convergence rate for SIPG+OBBDG method in quasi 3D test
on triangular mesh.
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5.4 Numerical simulation

Example 1. A double-headed streamer propagation in nitrogen.

This application is widely used in many literatures, such as [7, 101, 104]. Since

nitrogen is a non-attaching gas, we directly consider Model (5.1). In the early

studies, this simulation was always carried out in a 1cm gap. In this thesis, we

would like to use the same background field and enlarge the gap length to 5cm. The

physical coefficients are cited from [62]; hence, the parameter S in the source term

will be proportional to the gap length so that we need much smaller temporal step

size to complete this simulation.

The background electric field is imposed by [0,−52] kV/cm as in [7, 101, 104].

The initial data is concentrated at the middle of the z-axis,

Ne = Np = 108 + 1014 exp

{
−
( r

0.025cm

)2
−
(
z − 2.5cm

0.027cm

)2
}
cm3.

The mesh size is chosen to be △r = △z = 1
2000

so that there are totally 400,000

elements. The time step size is △t = 10−5 which corresponds to 2.5× 10−3ns.

Firstly, we show the consistency between our simulation and the existing simula-

tions by Figure 5.2. Compared with the results in [7, 101, 104], it can be concluded

that our result is correct up to their terminal time. Since our gap length is 5 times

as others’, we can try to figure out what will happen after 2ns. Figure 5.3 shows

the evolution of electric field along z-axis from 2ns to 5ns. From this figure, we can

observe that electric field possesses two local maxima in magnitude. Due to the

mechanical research, e.g. [34], there are two streamer heads with opposite polarities

around the local maximum points; and they move in the opposite directions. Figure

5.4 shows the important properties of these two streamers. From this figure, we

can conclude that (1) negative streamer moves faster than positive streamer; (2)

both of them will firstly slow down for a while then speed up towards their own

destination; (3) the average speed for both streamers is of order 107 ∼ 108 cm/s

which is closed to the experimental result [34]; (4) the maximum particle density
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in positive streamer is higher than that in negative streamer, but both have order

1013 cm−3; (5) both streamers develop very fast within 1ns, then they become stable

after 1.75ns; (6) streamers have a period of rapid growth in the first nanosecond,

which is the effect of the first corona; then the electric field tends to be stable for

about 0.5-0.75ns; once the electric field becomes stable, the streamers propagate

with a nearly constant acceleration driven by the background ionization.

For the distribution of electric field and net charge in the whole domain, one

can refer to Figure 5.5 (2ns) and 5.6 (4ns). It can be clearly seen from both figures

that the streamer heads indeed have the same position as the local maxima of

electric field. The sharp change of net charge and electric field only concentrate in

a tiny area, especially there is one net charge layer with width about 0.1mm in each

streamer head. This is the evidence that we need to apply discontinuous Galerkin

method in the streamer propagation simulations.
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Figure 5.2: The z-component of electric field (V/cm) along z-axis at 1ns and 2ns in
the simulation for nitrogen.

Example 2. Streamer propagation in SF6.

This example is used to indicate the availability of SIPG+OBBDG method on

non-uniform mesh.

SF6 is an attaching gas, thus negative ions and attachment effect must be taken

into consideration. In this case, the movements of the heavy ions are neglected [103].

Then the model becomes




∂Ne

∂t
+ 1

r
∇ · (rNeWe − rD∇Ne) = (α(|E|)− η(|E|))Ne|We|,

∂Np

∂t
= α(|E|)Ne|We|,

∂Nn

∂t
= η(|E|)Ne|We|,

−1
r
∇ · (r∇V ) = e

ǫ
(Np −Ne −Nn), E = −∇V,

(5.37)

where the ionization coefficient α(|E|), attachment coefficient η(|E|)) and the drift
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Figure 5.3: The evolution of z-component of electric field (V/cm) along z-axis from
2ns to 5ns in the simulation for nitrogen.

velocity of electron We are all taken from [63]; and the diffusion coefficient is taken

D = 1900I cm
s2
. The physical domain is [0, 0.4cm]× [0, 0.5cm] and the applied voltage

is 50 kV. The initial data is concentrated on the bottom of z-axis,

Ne = Np = 104 + 1014 exp

{
−
( r

0.021cm

)2
−
( z

0.027cm

)2}
cm3, Nn = 0cm−3.

Since the particles will mainly move along the axial direction, the mesh size is

uniform in z-direction, say △z = 1
400

. In the r-direction, there are 80 cells between 0

and 0.1cm, 40 cells between 0.1cm and 0.2cm and 40 cells in the rest interval. Totally,

there are 64,000 elements. The time step size is △t = 10−5 which corresponds to

10−3ns.

Figure 5.7 shows the distribution of different particles along axial direction at

1ns. It can be observed that the density of electrons is lower than that of ions by
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about one to two orders. This means the attaching effect is much important than

ionization in SF6. From Figure 5.8, it is found that electric field performs differently

with that in Example 1. In nitrogen, the electric field has two isolated valleys; but

in SF6, there is one valley just next to one peak.

The net charge density also has different performance. Take 1ns for example.

Combine Figures 5.9 and 5.10, we can find that the negative net charge is concen-

trated around the sharp change of electric field and formed a thin layer whose width

is only about 40 µm. The positive net charge follows closely behind the negative

net charge. The area of positive net charge is much larger than that of negative net

charge. Due to the attaching effect, the maximum of negative net charge density is

about 8 times larger than that of positive net charge density, say 5.3246 µC/cm3

and 0.7063 µC/cm3 respectively. Our results are very closed to those in [103]. This

proves that SIPG+OBBDG is a successful choice for non-uniform mesh.
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Example 3. A point-to-plane streamer propagation in nitrogen.

We turn back to consider Model (5.1) in nitrogen. But the computational domain

is not rectangular any longer. The upper boundary of the computational domain is

given by a hyperbola

z2

(1cm)2
− r2

(0.14cm)2
= 1, for 0 ≤ r ≤ 0.1cm.

Therefore, the gap length in this example is from 1cm (at r = 0) to 1.23cm (at

r = 0.4cm). Let

f(r) =





√
1 + r2

0.142
, 0 ≤ r ≤ 0.1,

1.23, 0.1 < r ≤ 0.4,

and the computational domain be

Ω = {(r, z) : 0 < r < 0.4, 0 < z < f(r)}.

Since the domain has complex geometry is this case, we consider triangular mesh

and SIPG+OBBDG method. From the last example, we can construct non-uniform

mesh to reduce the number of unknowns. In this simulation, we totally construct

81,920 triangles. △t is chosen to be 10−6 which corresponds to 10−4ns.

Similar domain configuration appears in some literatures. For example the work

of O. Ducasse et al. [29]. In their work, FEM+FEM-FCT and FVM+FVM-FCT

methods are applied. However, the gap length is only 1.21mm, which means our

gap is about 8 times longer than theirs.

Another examples are Morrow’s [65] and Kulikovsky’s [47] studies. Morrow used

a longer gap, which is 5cm. Kulikovsky’s gap is as long as ours. However, in

their studies, the continuity equations and Poisson’s equation are solved in different

domains. Namely, suppose their computational domain is Ω = {(r, z) : 0 < r <

R, 0 < z < f(r)}, then the Poisson’s equation is solved in Ω meanwhile the continuity

equations are solved in a rectangular subdomain Ω′ = (0, R′) × (0, f(0)) where R′

is much less than R. Moreover, they assume the particle densities vanish in Ω \ Ω′,

therefore, the Poisson’s equation actually is numerically solved in Ω′ and analytically
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solved in Ω \Ω′ by using [31]. To ensure that all particles cannot move out Ω′, they

only use the z-component of electric field, instead of electric field itself, to solve

continuity equations. This treatment is not so appropriate that their results are not

so reliable as O. Ducasse’s.

Therefore, in our simulation, all the equations are solved in Ω just like O. Ducasse

et al. did.

Suppose the applied voltage is −60kV and the other physical coefficients are

same as in Example 1 (cited from [62]). The initial data is given by

Ne = Np = 108 + 1014 exp

{
−
( r

0.02cm

)2
−
(
z − 1cm

0.05cm

)2
}
cm−3.

Figure 5.11 shows the evolution of electron density and electric field along the

z-axis within 1ns. Due to ionization, more and more electrons are produced. The

streamer propagates toward the planar electrode (z = 0) with the electric field which

provides electron density about 1014cm−3 around the streamer head. Similar to

Example 1, the electric field in nitrogen has one isolated maximum and its maximum

value is slowly decreasing.

Figures 5.12 and 5.13 show the evolution of net charge density and electric field

in the whole domain within 1ns. The applied voltage is negative, therefore, only

one negative streamer should be generated. From both figures, we can estimate that

negative streamer propagates with average speed about 5.8× 108 cm/s in 1ns. This

speed is much faster than that in Example 1 since the background field is higher in

this case. The maximum of net charge density in the streamer head is decreased from

3.6375 µC/cm3 (0.25ns) to 1.1571 µC/cm3 (1ns). Besides, the width of streamer

head is about 0.1-0.2mm which is also similar to Example 1.

Compared with a similar numerical simulation in [96], our simulation result has

a same tendency in the evolution of discharge region. Note that, the gap length in

[96] is only 1mm.
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5.5 Quasi 3D model v.s. 1.5D model

As mentioned in Chapter 1, the quasi 3D model can be reduced to 1.5D model if it

is assumed that the distribution of particles is constant along radial direction with a

fixed radius rd. Then, in 1.5D model, the continuity equations are one-dimensional

and Poisson’s equation will be solved by disc method. We still apply OBBDG

method to solve continuity equations. The electric field can be computed by

E = Ea + Em,

where Ea is the applied background field and Em is the modified electric field given

by formula

Em(z) =
1

2

[∫ z

−L

n(z′)

(
1− z − z′√

(z − z′)2 + r2d

)
dz′

+

∫ 1+L

z

n(z′)

(
−1 − z − z′√

(z − z′)2 + r2d

)
dz′

]
, (5.38)

In (5.38), the net charge n(z′) for z′ ∈ [−L, 0] ∪ [1, 1+L] is computed by reflection.

In this section, we are going to show how successfully the 1.5D model is able

to simplify quasi 3D model. First of all, in (5.38), there are two parameters which

can affect the solution, L and rd. Thanks to some early works [7, 28, 102], it is

concluded that L plays a very small role in disc method. It is enough to use one

order of image charge, i.e., L = 1.

Now, the issue is rd. Usually, rd is given by an empirical value; for example

rd = 0.02cm in [7] and rd = 0.05cm in [28]. However, different rd will lead to totally

different results. Hence, in rest of this section, we will show the effect of rd in disc

method.

For simplicity, we consider the simulation in nitrogen. The benchmark is given

by the first example in quasi 3D simulation but we only consider a 1cm gap between

two parallel planar electrodes. The background field is still set by 52 kV/cm.

We sketch out the electric field along axial direction at 2ns for different values

of rd. From Figure 5.14, we can see that different choices of rd will indeed lead to
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different results. It can also be found that the intensity of electric field around the

streamer heads becomes smaller under larger rd. The propagation speed is positively

related to rd when rd is lower than some threshold. When rd becomes larger, the

locations of streamer heads will not change. This suggests that there should be a

limiting solution when rd tends to infinity, see Figure 5.15. This limit actually is

the solution to the 1D model which has been seen in Chapter 2.

However, through this simulation, it can be concluded that there does not exist

a proper rd such that 1.5D model is able to replace quasi 3D model. In other words,

it should be better for scientists to study 2D, quasi 3D and 3D models.
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Figure 5.4: The evolution of average speed (cm/s, top) and maximum density (cm−3,
bottom) of positive and negative streamer along z-axis in the simulation for nitrogen.
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Figure 5.5: The distribution of electric field |E| (V/cm) and net charge density
(cm−3) at 2ns in the simulation within nitrogen.
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Figure 5.6: The distribution of electric field |E| (V/cm) and net charge density
(cm−3) at 4ns in the simulation within nitrogen.
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simulation in SF6.
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the simulation in SF6.
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Figure 5.9: The distribution of net charge density (µC/cm3) at 1ns in the simulation
in SF6.
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Figure 5.10: The distribution of electric field |E| (kV/cm) at 1ns in the simulation
in SF6.
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Figure 5.11: The evolution of electron density (cm−3, top) and z-component of elec-
tric field (kV/cm, bottom) along the z-axis in point-to-plane streamer propagation
simulation.
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Figure 5.12: The evolution of net particle density (cm−3) in point-to-plane streamer
propagation simulation.
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Figure 5.13: The evolution of electric field |E| (kV/cm) in point-to-plane streamer
propagation simulation.
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of rd. The benchmark is given by quasi 3D simulation.
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of rd. This figure is used to show the limiting solution when rd → ∞.





Chapter 6
Conclusions

In this thesis, we have studied a variety of numerical methods in simulating different

streamer propagation models which include 1D, quasi 2D, 2D and quasi 3D model.

Each model is a coupling between hyperbolic system and Poisson’s equation. We

applied DG methods (in particular, the LDG and OBBDG method) to solve the

hyperbolic system. The Poisson’s equation was solved by four different methods:

FDM, SIPG, LSFEM and MFEM. In Chapter 2 and Chapter 4, we directly apply the

traditional schemes. However, the equations in Chapter 3 and Chapter 5 contain

a 1
r
singularity, which is derived from polar/cylindrical coordinates under certain

symmetric assumption. Therefore, we have re-derived the weak formulations by

choosing new test function which is the multiplication between r and traditional

test function. From mathematical point of view, this work can be regarded as

an extension of traditional numerical method (especially DG method, LSFEM and

MFEM) applied to partial differential equation with singularity.

Through the numerical tests in quasi 2D model (Chapter 3), it has been found

that the extended numerical methods preserve the same order of accuracy as the

traditional ones. However, in quasi 3D model (Chapter 5), we can only preserve

the convergence rate for FDM, DG methods and RT0 MFEM; LSFEM and BDM1

MFEM become suboptimal for flux variable. Hence, it could be a future work to

design a more suitable scheme for LSFEM and BDM1 MFEM in this singular case.

135
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The new schemes should be based on some properly-defined finite element subspace

which satisfies the grid decomposition property (GDP) [8] for flux variable.

The numerical tests and comparisons in Chapter 2 and Chapter 3 have shown

that every method possesses the same desired convergence rate if the spatial dimen-

sion is only one. But in 2D or quasi 3D tests, the results are more complicated.

First of all, as suggested by Shuyu Sun and Jiangguo Liu in [88], the numerical

method for solving Poisson’s equation should be compatible with that for hyper-

bolic equation. It has been concluded that all the methods for Poisson’s equation

introduced in Chapters 4 and 5 are compatible with OBBDG method for hyperbolic

system, since all the numerical schemes can converge in the coupling, which is the

basic requirement of compatibility. If it is further required not to degenerate the

convergence rate, it can be found that FDM and SIPG are compatible with OBBDG

method on rectangular mesh (SIPG is compatible with OBBDG method on triangu-

lar mesh as well.); however, LSFEM and MFEM are not compatible because either

they degenerates the convergence rate of OBBDG method or they are suboptimal

for Poisson’s equation.

Therefore, it is recommended that (1) FDM+OBBDG method is the best choice

for rectangular mesh because it is easy to implement; (2) SIPG+OBBDG method

is the best one for triangular mesh.

The numerical simulations of long streamer propagation have been performed in

Chapter 4 and Chapter 5. The simplest simulation is carried out in the 5cm gap

filled with nitrogen in Chapter 5. During the propagation, the average drift velocity

of positive and negative streamer is of the order 107 ∼ 108 cm/s. The particle

density is of the order 1012 ∼ 1013 cm/s. Through our long time simulation, we

have found that there are two periods during the streamer propagation. In the first

period, streamers develop rapidly due to the applied voltage and first corona. In the

second period, after the drastic change of electric field is over, the modified electric

field gently accelerate the propagation of streamers. In the profile of the density of

net charge in positive or negative streamer, there is a thin layer with width about
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0.1mm, in which the particles mainly concentrated. Overall, our results are nearly

the same as those of D. Bessieres et al. [7], which used finite volume method; but the

gap length in our simulation is 5 times longer than in their work. This comparison

between DG methods and finite volume method suggests that DG methods are

highly potential competitors for streamer simulations and they work well in long

time simulations.

We have carried out simulations not only for electropositive gas (such as ni-

trogen) but also for electronegative gas (e.g., SF6 in Chapter 5). Compared with

the simulation in nitrogen, some different features have been found during streamer

propagation in SF6. For example, the electric field attains its local minimum and

maximum around the streamer head; positive net charge follows just behind the

negative net charge; the density of negative net charge is much higher than that

of positive streamer. Those are due to the attaching effect. During the discharge,

part of electrons will attach on neutral particles to form negative ions. But ions are

nearly immobile so that they can help modify the electric field when electrons move

away.

Besides, from the simulation for SF6 gas using the 2D model, we have observed

an interesting phenomenon, which is called streamer bifurcation. It is found that

the new streamer heads are formed some time after the inception of first streamer

corona. The electric field around those streamer heads are different such that the

positive streamer is speeded up and two symmetric negative streamer heads keep

a much lower velocity. It can be a future work to modify the models to allow the

random effects during streamer propagation such that more interesting phenomenon

could be observed.

Actually, the most interesting part of this thesis is that SIPG+OBBDG method

has been applied to a complex region. In the third example in Chapter 5, we

consider a simulation of point-to-plane streamer propagation. In this simulation, a

non-uniform triangular mesh is generated and the simulation result indicates again

that DG methods are very competitive in this field.



138 Chapter 6. Conclusions

Despite the many advantages of DG methods, they suffer from some disadvan-

tages. For example, they use more unknowns to achieve higher order of accuracy,

and thus, their implementation is not efficient enough. Therefore, further studies

are probably needed to derive an acceleration algorithm to increase the efficiency.
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