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Summary

Since the realization of Bose-Einstein Condensation (BEC) in di-

lute bosonic atomic gases [54, 5, 16], significant experimental and

theoretical advances have been developed in the field of research

[56, 64, 4, 3, 13, 35, 33] which permits an intriguing glimpse into

the macroscopic quantum world. Quantized vortices in rotating BEC

have been observed by several groups experimentally, e.g. the JILA

group [56], the ENS group [54], and the MIT group [64]. There are

various methods to generate quantized vortices, including imposing

a rotating laser beam with angular velocity on the magnetic trap [21]

and adding a narrow, moving Gaussian potential to the stationary

magnetic trap [45]. These observations have spurred great excite-

ment in studying superfluidity.

In this thesis, the dynamics of rotating BEC is studied analytically

and numerically based on introducing a rotating Lagrangian coordi-

nate. Based on the mean field theory, the rotating one-component

BEC is described by a single Gross-Pitaevskii equation (GPE) in

a rotating frame. By introducing a rotating Lagrangian coordinate

transform, the angular momentum term has been removed from the

original GPE and is replaced by a time-dependent potential. We

find the formulation for energy and proved its conservation. And

we study the conservation and dynamical laws of angular momen-

tum expectation and condensate width. We investigate the center

of mass with initial ground state with a shift. A numerical method,

which is explicit, stable, spectral accurate is presented. Extensive nu-

merical results are presented to demonstrate the dynamical results.



Finally, these numerical results are extended to two-component ro-

tating BEC.

The first chapter of this thesis will focus on the background of BEC

and existing numerical methods. The work in this thesis will be in-

troduced as well.

Chapter 2 will focus on the single-component BEC. We apply the

coordinate transformation methodology. The dynamical laws of the

rotating BEC under the new coordinate system will be discussed

and presented in details. We approximate the rotating BEC using

time splitting method for temporal direction and spectral discretiza-

tion method for spatial direction. Numerical results will also be pre-

sented.

Our investigation is extended to two-component rotating BEC in

Chapter 3. We apply a similar approach to the coupled GPE where

the dynamics is studied both analytically and numerically.
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Chapter 1

Introduction

1.1 Bose-Einstein condensates

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of weakly

interacting bosons which is cooled to temperatures near absolute zero and con-

fined in an external potential. Under these conditions, quantum effects become

apparent on a macroscopic scale, as a large fraction of bosons will spontaneously

occupy the lowest quantum state of the external potential [41].

The idea of BEC was first predicted by Albert Einstein in 1924. He has pre-

dicted the existence of a singular quantum state produced by the slowing of

atoms using cooling apparatus [31]. He reviewed and generalized the work of

Satyendra Nath Bose [14] on the statistical mechanics of photons. The result

of the combined efforts of Bose and Einstein forms the concept of a Bose gas,

governed by Bose-Einstein statistics, which describes the statistical distribution

of identical particles with integer spin, known as bosons. In 1938, Fritz London

proposed BEC as a mechanism for superfluidity in liquid helium and supercon-

ductivity [15, 53]. Superfluid helium has many exceptional properties, including

zero viscosity and the existence of quantized vortices. It was later discovered

that these properties also appear in the gaseous BEC, after the first experimen-

tal realization of BEC, by Eric Cornell, Carl Wieman and co-workers at JILA

on June 5, 1995 in vapours of 87Rb (cf. Fig. 1.1) [5]. About four months later,

an independent effort led by Wolfgang Ketterle at MIT created a condensate

1



1. INTRODUCTION

made of 23Na [29]. The condensate had about a hundred more atoms, allowing

him to obtain several important experimental results, such as the observation

of quantum mechanical interference between two different condensates. Cornell,

Wieman and Ketterle won the 2011 Nobel Prize in Physics for their achieve-

ments. One month after the JILA work, a group led by Randall Hulet at Rice

University announced the create of a condensate of 7Li atoms [16]. Later, it

was achieved in many other alkali gases, including 85Rb [27],41K [57], 133Cs [73],

spin-polarized hydrogen [36] and metastable triplet 4He [65, 67]. These systems

have become a subject of explosion of research.

The most striking feature of BEC is that due to the condensation of a large

Figure 1.1: Velocity-distribution data of a gas of Rubidium (Rb) atoms, confirm-
ing the discovery of a new phase of matter, the Bose-Einstein condensate. Left:
just before the appearance of a Bose-Einstein condensate. Center: just after
the appearance of the condensate. Right: after further evaporation, leaving a
sample of nearly pure condensate.

fraction of identical atoms into the same quantum state, the wave-like behaviour

is exhibited on a macroscopic scale, which is distinguishable to the behaviours of

particles following classical Newton’s second law. Another intriguing property

is the unrestricted flow of particles in the sample, such as the flow of currents

without observable viscosity and the flow of electric currents without observable

2
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resistance [75]. These properties can be explained by the macroscopic occupation

of a quantized mode which provides a stabilized mechanism. Many experiments

have been carried out to study the superfluid properties of BEC, which has a par-

ticularly interesting signature of supporting quantized vortex states [35, 48, 72].

In 1999, a vortex was first created experimentally at JILA using 87Rb containing

two different hyperfine components [56]. Soon after, the ENS group has created

vortex in elongated rotating cigar-shaped one component condensate, with small

vortex arrays of up to 11 vortices being observed [24, 26, 54, 55]. Recently, MIT

group has created larger rotating condensates with up to 130 vortices being ob-

served [1]. More recently Leanhardt et al have created a coreless vortex in a

spinor F = 1 BEC using “topological phase imprinting” [51]. It is hence of great

importance to study the quantized vortex state to better understand the above

observations as well as superfluidity [35, 48, 68, 17]. Quantized vortex states

can be detected in the experiments of rotating single-component BEC, rotating

two-component and spin F = 1 BEC. Mean-field theory is widely applied to ap-

proximate the BEC. The main idea of the theory is to replace interactions of all

particles in the system to any one body with an average or effective interaction,

sometimes called a molecular field [23]. The multi-body problem can be reduced

into a one-body problem. In this case, the interactions between particles in a

dilute atomic gas are very weak and the system can be regarded as being dom-

inated by the wave-like condensate. One can hence apply the main-field theory

and sum the interaction of all of the particles to get an effective one-body prob-

lem, which can be approximated using Gross-Pitaevskii equation (GPE) [28, 30].

1.2 The Gross-Pitaevskii equation

The Gross-Pitaevskii equation was first derived in the early 1960s and named

after Eugene P. Gross [42] and Lev Petrovich Pitaevskii [62]. According to theory,

the rotating one-component condensate can be described by a single GPE in a

rotating frame [4, 12, 21, 35, 39, 37]. At temperature T which is much smaller

3



1. INTRODUCTION

than the critical temperature Tc, a BEC could be described by the macroscopic

wave function ψ := ψ(x̃, t), whose evolution is governed by a self-consistent,

mean field nonlinear Schrödinger equation (NLSE) in a rotational frame, also

known as the GPE with the angular momentum rotation term [21, 8, 34]:























i∂tψ = −1
2∇2ψ + Vhos(x̃)ψ − ΩLz̃ψ + β|ψ|2ψ,

ψ(x̃, 0) = ψ0(x̃), x̃ ∈ Rd, d = 2, 3.

(1.1)

Here, x̃ = (x̃, ỹ)T 2D and x̃ = (x̃, ỹ, z̃)T in 3D, is the Cartesian coordinate

vector, and t is time, ψ = ψ(x̃, t) is the dimensionless wave function, Vhos(x̃)

is the dimensionless homogeneous external trapping potential, which is often

harmonic and thus can be written as 1
2(γ

2
xx̃

2+ γ2y ỹ
2) in 2D, and resp., Vhos(x̃) =

1
2(γ

2
xx̃

2 + γ2y ỹ
2 + γ2z z̃

2) in 3D, with γx > 0, γy > 0 and γz > 0. Lz̃ = −i(x̃∂y −

ỹ∂x) = iJz̃ is the z−component of the angular momentum. Ω is the dimensionless

angular momentum rotating speed. β is a constant characterizing the particle

interactions. When Ω = 0, (1.1) is the expression for single-component non-

rotating BEC. The rotating two-component condensates are governed by the

coupled GPEs [38, 40, 48, 58, 69]. The coupled GPEs for two-component BEC

will be discussed in Chapter 3.

1.3 Existing numerical methods

To study the dynamics of BEC, it is essential to have an efficient and accu-

rate numerical method to analyse the time-dependent GPE. In literature, many

numerical methods have been proposed to study the dynamics of non-rotating

single component BEC, which can be grouped into two types. One is finite dif-

ference method, such as explicit finite difference method [22], Crank-Nicolson

finite difference method [66] and alternating direction method [71]. Gener-

ally, the accuracy can be second or fourth order in space. The other method

is pseudo-spectral method, for example, Bao [13] has proposed a fourth-order

time-splitting Fourier pseudo-spectral method (TSSP) and a fourth-order time-

4



splitting Laguerre-Hermite pseudo-spectral method (TSLH) [11], Adhikari et

al. have proposed Runge-Kutta pseudospectral method [2, 59]. Researches have

demonstrated that pseudospectral method is more accurate and stable than finite

difference method. However, for a rotating BEC, due to the appearance of the

angular rotating term, the above methods can no longer be applied directly. Lim-

ited numerical methods have been proposed to study the dynamics of rotating

BEC, but they are usually low-order finite difference methods [4, 20, 19, 75, 18].

Some better performed methods were designed, for example, Bao et al. [8] has

proposed a numerical method by decoupling the nonlinearity in the GPE and

adopting the polar coordinates or cylindrical coordinates to make the angular

rotating term constant. It is of spectral accuracy in transverse direction but of

second or fourth-order accuracy in radial direction. Another leap-frog spectral

method is proposed, which is of spectral accuracy in space and second-order

accuracy in time [76]. However, it has a stability time constraint for time step

[76].

For coupled-GPEs, there have also been quite a few existing numerical methods,

such as finite difference method and pseudospectral method [6, 38, 25]. But

for rotating coupled-GPEs, due to the rotational term, difficulties have been

introduced as the case for single-component BEC.

1.4 Purpose of the study and structure of the thesis

Hence, it is of a strong interest to develop an accurate, stable and efficient nu-

merical method. In this paper, we have proposed such a numerical method and

studied the dynamics of the rotating BEC by using it. The key feature of the

method is: By taking an orthogonal time-dependent Lagrangian transformation,

the rotational term in GPE can be eliminated under the new rotating Lagrangian

coordinate. We can therefore apply previous numerical methods proposed for

non-rotating BEC on the transformed GPE. In this paper, we have studied the

rotating single component BEC and rotating two-component BEC. We have ap-

plied a second-order time splitting method and spectral method in space, which

5



1. INTRODUCTION

is very efficient and accurate. New forms of energy, angular momentum as well

as center of mass for the transformed rotating BEC are defined and presented

both analytically and numerically.

The paper is organized as follows: In Chapter 2, we analyse the rotating single

component BEC. And in Chapter 3, we extend the numerical methods to two-

component BEC. The two chapters follow the same structure. We first begin by

presenting the dynamical laws of the BEC. We proceed to apply the orthogonal

time dependent matrix transformation method and study the dynamics of the ro-

tating BEC under the new Lagrangian coordinates, we redefined and studied the

conservation of density and energy, as well as angular momentum conservation

under certain conditions. Dynamical laws for condensate width and analytical

solutions for center of mass are presented as well. We follow by presenting an

efficient and accurate numerical method for the simulation of transformed rotat-

ing BEC. Numerical results after applying the numerical method are discussed

in section 4, which include accuracy test, dynamical results and quantized vortex

interaction. Finally, some conclusion and further study directions are drawn.

6



Chapter 2

Methods and analysis for

rotating BEC

In this chapter, we study the dynamics of rotating single-component Bose-

Einstein condensation (BEC) based on the Gross-Pitaevskii equation (GPE)

with an angular momentum rotational term. We first begin by reviewing the

dynamical laws of the BEC according to previous researches. We follow by tak-

ing a rotating Lagrangian coordinate which as a result, removes the angular

rotational term in the GPE. We proceed to redefine and study the dynamical

laws of the BEC under the new coordinate system, such as density, energy, an-

gular momentum expectation, condensate width and center of mass. Finally, an

accurate and efficient numerical method is demonstrated and various numerical

results have been presented.

2.1 Dynamical laws in the Cartesian coordinate

There have been many researches done to study the dynamics of rotating BEC

[76, 8], we present a brief review of the dynamical laws of rotating BEC in the

Cartesian coordinate.

I). Energy and density.

There are two important invariants: density and energy and they are defined as

7



2. METHODS AND ANALYSIS FOR ROTATING BEC

follows:

N(ψ) =

∫

Rd

|ψ(x̃, t)|2 dx̃, t ≥ 0, (2.1)

E(ψ) =

∫

Rd

[

1

2
|∇ψ|2 + Vhos(x̃, t)|ψ|2 +

β

2
|ψ|4 − Ωψ∗Lz̃ψ

]

dx̃, (2.2)

where ψ∗ denotes the complex conjugate of ψ.

II). Angular momentum expectation.

Angular momentum expectation is defined as:

〈Lz̃〉 (t) :=
∫

Rd

ψ∗Lz̃ψ dx̃, t ≥ 0, d = 2, 3. (2.3)

Theorem 2.1.1.

d 〈Lz̃〉 (t)
dt

=
γ2x − γ2y

2
η̃(t), (2.4)

with

η̃(t) :=

∫

R2

x̃ỹ|ψ(x̃, t)|2 dx̃. (2.5)

Thus, we have the conservation of angular momentum expectation and energy

for the non-rotating part, at least in the following cases:

(i): For any given initial data, if we have γx = γy, i.e. the trapping potential is

radially symmetric.

(ii): For any given γx, γy, if we have Ω = 0 and the initial data ψ0 is even in

either x or y.

III). Condensate width

We define the condensate width as follows along the α-axis (α = x, y, z for 3D),

to quantify the dynamics of the problem (2.13):

〈δα〉 (t) =
√

δα(t), with δα =
〈

α2
〉

(t) =

∫

Rd

α2|ψ|2 dx̃, α = x̃, ỹ, z̃. (2.6)

We have the following dynamical law for the condensate width:

Theorem 2.1.2. i) Generally, for d=2,3, with any potential and initial data,

8



the condensate width satisfies:

d2δα(t)

d2t
=

∫

Rd

[

(∂ỹα− ∂x̃α)(4iΩψ
∗(x̃∂ỹ + ỹ∂x̃)ψ + 2Ω2(x̃2 − ỹ2)|ψ|2)

+2|∂αψ|2 + β|ψ|4 − 2α|ψ|2∂αVhos

]

dx̃,

with

δα(0) =: δ(0)α =

∫

Rd

α2|ψ0|2 dx̃,

δ̇α(0) =: δ(1)α = 2

∫

Rd

α
[

Im((ψ0)∗∂αψ
0)− Ω|ψ0|2(x̃∂ỹ − ỹ∂x̃)α

]

dx̃.

ii) In 2D with a radially symmetric trap, i.e. d = 2, γx = γy := γr, we have























δr(t) =
E(ψ0)+Ω〈Lz̃〉(0)

γ2r
[1− cos(2γrt)] + δ

(0)
r cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt),

δr(0) =: δ
(0)
r = δx̃(0) + δỹ(0) =

∫

Rd(x̃
2 + ỹ2)|ψ0|2 dx̃,

δ̇r(0) =: δ
(1)
r = δ̇x̃(0) + δ̇ỹ(0).

(2.7)

Moreover, if ψ0(x̃) = f(r)eimθ, with m ∈ Z and f(0) = 0 when m 6= 0, we have,

for any t ≥ 0,

δx̃(t) = δỹ(t) =
1

2
δr(t) =

E(ψ0) +mΩ

2γ2x
[1− cos(2γxt)]+δ

(0)
x̃ cos(2γxt)+

δ
(1)
x̃

2γx
sin(2γxt).

(2.8)

iii) For all other cases, we have , for t ≥ 0,

δα(t) =
E(ψ0) + Ω 〈Lz〉 (0)

γ2α
[1− cos(2γαt)]+δ

(0)
α cos(2γαt)+

δ
(1)
α

2γα
sin(2γαt)+fα(t),

(2.9)

where f̃α(t) is the solution of the following equations:

d2f̃α(t)

d2t
+ 4γ2αf̃α(t) = F̃α(t), f̃α(0) =

df̃α(0)

dt
= 0,

9
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with

F̃α(t) :=

∫

Rd

[

2(|∂αψ|2 − |∇ψ|2)− β|ψ|4 + (2γ2αα
2 − 4Vhos)|ψ|2 + 4Ω 〈Lz̃〉 (t)

+(∂yα− ∂xα)
(

4iΩψ∗(x̃∂y + ỹ∂x)ψ + 2Ω2(x̃2 − ỹ2)|ψ|2
)

]

dx̃.

IV). Center of mass.

The center of mass is defined as follows:

〈x̃〉 (t) =
∫

Rd

x̃|ψ|2 dx̃ =: (x̃c(t), ỹc(t), z̃c(t))
T . (2.10)

By [8], the center of mass satisfies a 2nd order ODE and can be solved analyti-

cally.

2.2 GPE under a rotating Lagrangian coordinate

Since the rotational term Lz is the key ‘bottle-neck’ when one derives a numer-

ical method, we now take an orthogonal rotational transformation for (1.1) in

spatial space to deduce this rotational term and waive the difficulty. Denote the

orthogonal rotational matrix as follows:

A(t) :=







cos(Ωt) − sin(Ωt)

sin(Ωt) cos(Ωt)






, (2.11)

if d = 2, and

A(t) :=













cos(Ωt) − sin(Ωt) 0

sin(Ωt) cos(Ωt) 0

0 0 1













, (2.12)

if d = 3.

Take transformation x = A(t)x̃, φ(x, t) = ψ(A(t)x̃, t), and we substitute them

into (1.1). We notice that

Lz̃ψ = Lzφ, i∂tψ = i∂tφ+ΩLzφ,
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we can therefore cancel the rotational term in (1.1) and instead solve the follow-

ing problem:










i∂tφ = −1
2∇2φ+ V (x, t)φ+ β|φ|2φ,

φ(x, 0) = φ0(x), x ∈ Rd, d = 2, 3,
(2.13)

where

V (x, t) := Vrot(x.t) + Vhos(x), (2.14)

with

Vrot(x.t) :=
(γ2x − γ2y)

[

sin2(Ωt)(y2 − x2) + sin(2Ωt)xy
]

2
,

Vhos(x) :=











γ2xx
2+γ2yy

2

2 d = 2,

γ2xx
2+γ2yy

2+γ2zz
2

2 d = 3.

2.3 Dynamical laws in the Lagrangian coordinate

In this section, we provide some analytical results on the definition and the

dynamical laws of the following quantities for the inhomogeneous GPE (2.13):

energy, density, angular momentum expectation, condensate width and the cen-

ter of mass.

I). Energy and density.

We introduce two important invariants of (2.13), which are the normalization of

the wave function:

N(φ) =

∫

Rd

|φ(x, t)|2 dx, t ≥ 0, (2.15)

and the energy

E(φ) := E1(φ) + Erot(φ), t ≥ 0, (2.16)

where

E1(φ) :=

∫

Rd

[

1

2
|∇φ(x, t)|2 + V (x, t)|φ(x, t)|2 + β

2
|φ(x, t)|4

]

dx, (2.17)

Erot(φ) := −
∫

Rd

∫ t

0
∂sV (x, s)|φ(x, s)|2ds dx. (2.18)

11
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We have the following theorem for the conservation of energy and density:

Theorem 2.3.1. Conservation law for the energy and density:

dN(φ)

dt
=
dE(φ)

dt
= 0.

Proof. Following the properties of the GPE under a rotating Lagrangian coor-

dinate, we have:

N(φ) =

∫

|φ(x)|2 dx =

∫

|ψ(x̃)|2det(A) dx̃ = N(ψ). (2.19)

Conservation of N(φ) follows directly from the conservation of N(ψ). We begin

with the equation (2.13) to show the energy conservation. Starting from

i∂tφ = −1

2
∇2φ+ V (x, t)φ+ β|φ|2φ, (2.20)

we have:











i∂tφ∂tφ
∗ =

(

−1
2∇2φ+ V (x, t)φ+ β|φ|2φ

)

∂tφ
∗,

−i∂tφ∗∂tφ =
(

−1
2∇2φ∗ + V (x, t)φ∗ + β|φ|2φ∗

)

∂tφ.

(2.21)

Sum the two equations in (2.21) together, we obtain

0 = −1

2

∫

Rd

(∇2φ∂tφ
∗ +∇2φ∗∂tφ) dx+

∫

Rd

V (x, t)∂t|φ|2 dx+
1

2
∂t

∫

Rd

β|φ|4 dx

= ∂t

[

1

2

∫

Rd

|∇φ|2 dx+
β

2

∫

Rd

|φ|4 dx
]

+ ∂t

∫

Rd

V (x, t)|φ|2 dx−
∫

Rd

∂tV (x, t)|φ|2 dx

= ∂t

∫

Rd

[

1

2
|∇φ(x, t)|2 + V (x, t)|φ(x, t)|2 + β

2
|φ(x, t)|4 −

∫ t

0
∂sV (x, s)|φ(x, s)|2ds

]

dx

=
dE(φ)

dt
.

Hence we have the energy conservation law as stated above.

II). Angular momentum expectation.

Angular momentum is another important quantity to study the dynamics of

12



rotating BEC. It is a measure of the vortex flux and is defined as follows:

〈Lz〉 (t) =
∫

Rd

φ∗Lzφdx, t ≥ 0, d = 2, 3. (2.22)

For this quantity, we have the following dynamical law:

Theorem 2.3.2.

d 〈Lz〉 (t)
dt

=

∫

Rd

|φ|2JzV dx =

∫

Rd

|φ|2∂tV dx =
γ2x − γ2y

2
η(t), (2.23)

where Jz and η(t) are respectively defined as:

Jz = y∂x − x∂y = −iLz, (2.24)

η(t) =

∫

R2

[

2 cos(2Ωt)xy + (y2 − x2) sin(2Ωt)
]

|φ(x, t)|2 dx, (2.25)

for t ≥ 0. Hence, the energy can be rewritten in another equivalent form:

E(φ) =

∫

Rd

[

1

2
|∇φ|2 + V (x, t)|φ|2 + β

2
|φ|4

]

dx− Ω 〈Lz〉 (t). (2.26)

Thus, we have the conservation of angular momentum expectation, at least in

the following cases:

(i): For any given initial data, if we have γx = γy, i.e. the trapping potential is

radially symmetric;

(ii): For any given γx, γy, if we have Ω = 0 and the initial data φ0 is even in

either x or y.

We have the following conservation laws

〈Lz〉 (t) = 〈Lz〉 (0), E1(φ(x, t)) = E1(φ
0),

where, E1 is defined in (2.17).

Proof. Differentiating (2.22) with respect to t, noticing (2.13), integrating by

13



2. METHODS AND ANALYSIS FOR ROTATING BEC

parts, and taking into account that φ decreases to 0 when |x| → ∞, we have

d 〈Lz〉 (t)
dt

=

∫

Rd

(φ∗tLzφ+ φ∗Lzφt) dx

=

∫

Rd

[−(iφt)
∗Jzφ+ φ∗Jz(iφt)] dx

= −
∫

Rd

[

(

−1

2
∇2φ+ V (x, t)φ+ β|φ|2φ

)

Jzφ
∗

+

(

−1

2
∇2φ∗ + V (x, t)φ∗ + β|φ|2φ∗

)

Jzφ

]

dx

=
1

2

∫

Rd

[

∇2φJzφ
∗ +∇2φ∗Jzφ

]

dx−
∫

Rd

V (x, t)(φJzφ
∗ + φ∗Jzφ) dx

+
β

2

∫

Rd

Jz|φ|4 dx

= −1

2

∫

Rd

[∇φ∇(Jzφ
∗)] dx− 1

2

∫

Rd

[∇φ∗∇(Jzφ)] dx

−
∫

Rd

V (x, t)φJzφ
∗ dx+

∫

Rd

φ [V (x, t)Jzφ
∗ + φ∗JzV (x, t)] dx

=
γ2x − γ2y

2
η(t),

with η(t) defined in (2.25).

For case (i), when γx = γy, we could easily arrive at the conclusion that the

angular momentum expectation 〈Lz〉 is conserved from the ODE:

d 〈Lz〉 (t)
dt

= 0, t ≥ 0.

For case (ii), we know that the solution φ(x, t) is even in first variable x or second

variable y due to the assumption of the initial data and symmetry of V (x). Then

when Ω = 0, with |φ(x, t)| even in either x or y, we easily have the conservation

of angular momentum.

Referring to (2.26), we have

dE1(t)

dt
=
dE(t)

dt
+Ω

d

dt
〈Lz〉 (t) = 0. (2.27)

III). Condensate width
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We define the condensate width as follows along the α-axis (α = x, y, z for 3D),

to quantify the dynamics of the problem (2.13):

〈δα〉 (t) =
√

δα(t), with δα =
〈

α2
〉

(t) =

∫

Rd

α2|φ|2 dx, α = x, y, z, (2.28)

we have the following dynamical law for the condensate width:

Theorem 2.3.3. i) Generally, for d=2,3, and any potential and initial data,

the condensate width satisfies:























d2δα(t)
d2t

+ 2γ2αδα(t) =
∫

Rd

[

2|∂αφ|2 + β|φ|4 − 2α|φ|2∂αVrot
]

dx,

δα(0) =: δ
(0)
α =

∫

Rdα
2|φ0|2 dx,

δ̇α(0) =: δ
(1)
α = 2

∫

Rdα Im((φ0)∗∂αφ
0) dx.

(2.29)

ii) In 2D with a radially symmetric trap, i.e. d = 2, γx = γy := γr, we have























δr(t) =
E(φ0)+Ω〈Lz〉(0)

γ2r
[1− cos(2γrt)] + δ

(0)
r cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt),

δr(0) =: δ
(0)
r = δx(0) + δy(0) =

∫

Rd(x
2 + y2)|φ0|2 dx,

δ̇r(0) =: δ
(1)
r = δ̇x(0) + δ̇y(0).

(2.30)

Moreover, if the φ0(x) = f(r)eimθ, with m ∈ Z and f(0) = 0 when m 6= 0, we

have, for any t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t) =

E(φ0) +mΩ

2γ2x
[1− cos(2γxt)]+δ

(0)
x cos(2γxt)+

δ
(1)
x

2γx
sin(2γxt).

(2.31)

iii) For all other cases, we have , for t ≥ 0,

δα(t) =
E(φ0) + Ω 〈Lz〉 (0)

γ2α
[1− cos(2γαt)]+δ

(0)
α cos(2γαt)+

δ
(1)
α

2γα
sin(2γαt)+fα(t),

(2.32)

where fα(t) is the solution of the following equations:

d2fα(t)

d2t
+ 4γ2αfα(t) = Fα(t), fα(0) =

dfα(0)

dt
= 0,
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with

Fα(t) =

∫

Rd

[

2(|∂αφ|2 − |∇φ|2)− (2α∂αVrot(x, t)− 4V (x, t))|φ|2 + 4Ω 〈Lz〉 (t)
]

dx.

Proof. i). Differentiate (2.28) directly with respect to t, noticing (2.13), integrate

by parts, we have:

dδα(t)

dt
=

d

dt

∫

Rd

α2|φ|2 dx =

∫

Rd

α2(φ∂tφ
∗ + φ∗∂tφ) dx

= i

∫

Rd

α2 [φ(i∂tφ)
∗ − φ∗(i∂tφ)] dx

=
i

2

∫

Rd

α2 [φ(i∂tφ)
∗ − φ∗(i∂tφ)] dx

=
i

2

∫

Rd

[

∇φ∗(α2∇φ+ φ∇α2)−∇φ(α2∇φ∗ + φ∗∇α2)
]

dx

= i

∫

Rd

α(φφ∗α − φ∗φα) dx. (2.33)

And we differentiate (2.33) with respect to t:

d2δα(t)

dt2
= i

∫

Rd

α(φtφ
∗
α + φφ∗tα − φ∗tφα − φ∗φtα) dx

= i

∫

Rd

α(φtφ
∗
α − φ∗tφα) dx− i

∫

Rd

[φ∗t (αφα + φ)− φt(αφ
∗
α + φ∗)] dx

=

∫

Rd

[

2|∂αφ|2 + β|φ|4 − 2α|φ|2∂αV
]

dx

= −2γ2αδα(t) +

∫

Rd

[

2|∂αφ|2 + β|φ|4 − 2α|φ|2∂αVrot
]

dx.

(ii). If d = 2, we have:











d2δx(t)
d2t

+ 2γ2xδx(t) =
∫

Rd

[

2|∂xφ|2 + β|φ|4 − 2x|φ|2∂xVrot
]

dx,

d2δy(t)
d2t

+ 2γ2yδy(t) =
∫

Rd

[

2|∂yφ|2 + β|φ|4 − 2y|φ|2∂yVrot
]

dx.
(2.34)

Add (2.34) and with γx = γy = γr, we have the ODE for δr(t):

d2δr(t)

d2t
= −2γ2r δr(t) + 4

∫

Rd

[

1

2
|∇φ|2 + V (x, t)|φ|2 + β

2
|φ|4 −ΩRe 〈Lz〉 (t)

]

dx

−4

∫

Rd

V (x, t)|φ|2 dx+ 4Ω 〈Lz〉 (t)− 2

∫

Rd

(x∂xVrot + y∂yVrot)|φ|2 dx.
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Noticing that when γx = γy = γr, we have:

d

dt
E(φ) =

d

dt
〈Lz〉 (t) = Vrot ≡ 0. (2.35)

We substitute (2.35) and (2.27) into (2.35), and using the energy conservation

law, we get:

d2δr(t)

d2t
= −4γ2r δr(t) + 4E(φ0) + 4Ω 〈Lz〉 (0). (2.36)

The initial condition now is:











δr(0) =: δ
(0)
r = δx(0) + δy(0) =

∫

Rd(x
2 + y2)|φ0|2 dx,

δ̇r(0) =: δ
(1)
r = δ̇x(0) + δ̇y(0).

(2.37)

We solve the ODE (2.36) with the initial data given in (2.37), we could find the

following unique solution:

δr(t) =
E(φ0) + Ω 〈Lz〉 (0)

γ2r
[1− cos(2γrt)]+δ

(0)
r cos(2γrt)+

δ
(1)
r

2γr
sin(2γrt). (2.38)

In addition, if the initial data has radial symmetric structure:

φ0(x, 0) = f(r)eimθ,

with m ∈ Z and f(0) = 0 when m 6= 0, then, since V (x, t) = Vhos, which ensures

the radial symmetric property of the solution φ(x, t) if the initial condition is

assumed to be radially symmetric, we have, for any t ≥ 0,

δx(t) =

∫

Rd

x2|φ|2 dx =

∫ ∞

0

∫ 2π

0
r2 cos2 θ|f(r, t)|2rdθdr

= π

∫ ∞

0
r2|f(r, t)|2rdr =

∫ ∞

0

∫ 2π

0
r2 sin2 θ|f(r, t)|2rdθdr

=

∫

Rd

y2|φ|2 dx = δy(t) =
1

2
δr(t).

Thus we could show the result above in (2.31).

(iii). In general, we take a similar approach as what we have done in (2.35) and
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(2.36), by combining energy expression as in (2.27), we have:

d2δα(t)

d2t
= −4γ2αδα(t) + 4E(φ0) + fα(t), (2.39)

where fα(t) satisfying the 2nd-order ODE:

d2fα(t)

d2t
+ 4γ2αfα(t) = Fα(t), fα =

dfα
dt

= 0,

with

Fα(t) =

∫

Rd

[

2(|∂αφ|2 − |∇φ|2)− (2α∂αVrot(x, t)− 4V (x, t))|φ|2 + 4ΩRe 〈Lz〉 (t)
]

dx.

We solve the second-order ODE and could get a unique solution as defined in

(2.32).

IV). Center of mass.

In this section, we would like to study the analytical solutions for the center of

mass. Denote φ as the solution of GPE, the center of mass is defined as:

〈x〉 (t) =
∫

Rd

x|φ|2 dx =: (xc(t), yc(t), zc(t))
T . (2.40)

Then, for any given initial data, we have:

Lemma 2.3.4.






















d2〈x〉(t)
dt2

+B(t) 〈x〉 (t) = 0,

〈x〉 (0) = x0,

˙〈x〉(0) = 0,

(2.41)

with B(t) = AT (t)ΛA(t), where Λ = diag(γx, γy) in 2-d and diag(γx, γy, γz) in

3-d, i.e.

B(t) =
1

2







γ2x + γ2y 0

0 γ2x + γ2y






+
γ2x − γ2y

2







cos(2Ωt) sin(2Ωt)

sin(2Ωt) − cos(2Ωt)






, (2.42)
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if d = 2, and

B(t) =
1

2













γ2x + γ2y 0 0

0 γ2x + γ2y 0

0 0 2γ2z













+
γ2x − γ2y

2













cos(2Ωt) sin(2Ωt) 0

sin(2Ωt) − cos(2Ωt) 0

0 0 0













,

(2.43)

for d = 3.

Proof. By differentiating (2.40) with respect to t, we have

d 〈x〉 (t)
dt

=

∫

Rd

x(φ∗tφ+ φ∗φt) dx = i

∫

Rd

x [(−iφ∗t )φ− φ∗(iφt)] dx

= i

∫

Rd

x

[

−1

2
∇2φ∗φ+

1

2
∇2φφ∗

]

dx =
i

2

∫

Rd

(∇φ∗φ−∇φφ∗) dx

= −i
∫

Rd

φ∗∇φdx. (2.44)

Furthermore, differentiate (2.44) with respect to t again, we get

d2 〈x〉 (t)
dt2

= −i
∫

Rd

(φ∗t∇φ+ φ∗∇φt) dx = i

∫

Rd

(φt∇φ∗ − φ∗t∇φ) dx

=

∫

Rd

V (x, t)∇|φ|2 dx = −
∫

Rd

∇V (x, t)|φ|2 dx.

Substitute the expression for V (x, t) as in (2.14) and we define B(t) as

B(t) := ∇V (x, t).

which is stated explicitly in (2.42) for 2D and (2.43) for 3D. Hence we have

d2 〈x〉 (t)
d2t

+B(t) 〈x〉 (t) = 0. (2.45)

We proceed to solve the second-order ODE (2.41) and the analytical solutions

are as follows:

Case I: γx = γy = γr or Ω = 0, we have B(t) = diag(γ2x, γ
2
y , γ

2
z ), and the solution
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2. METHODS AND ANALYSIS FOR ROTATING BEC

should be of the form:

αc(t) = aα cos(γαt) + bα sin(γαt), α = x, y, z. (2.46)

With the initial condition defined in (2.41), we have the explicit solution as:

αc(t) = α0 cos(γαt), α = x, y, z. (2.47)

Case II: γx 6= γy and Ω 6= 0. Actually, if we take the inverse transformation

x = A(t)x̃,

where we use x to represent the transformed variable and x̃ the original one,

which implies that

〈x〉 (t) = A(t) 〈x̃〉 (t),

and plug into equation (2.41), we have

d2

d2t
A(t) 〈x̃〉 (t) + 2

d

dt
A(t)

d

dt
〈x̃〉 (t) +A(t)

d2

d2t
〈x̃〉 (t) +AΛ 〈x̃〉 (t) = 0, (2.48)

by noticing that d2

d2t
A(t) = −Ω2Ĩ2A(t) with

Ĩ = I2, if d=2, and Ĩ =













1 0 0

0 1 0

0 0 0













, if d=3,

and

A(t)T
d

dt
A(t) = Ω







0 −1

1 0






=: C, if d = 2,

A(t)T
d

dt
A(t) = Ω













0 −1 0

1 0 0

0 0 0













=: C, if d = 3.
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By multipling (2.48) to the orthogonal matrix A(t), we have:

d2

d2t
〈x̃〉 (t) + 2ΩC

d

dt
〈x̃〉 (t) + (Λ−Ω2Ĩ) 〈x̃〉 (t) = 0,

which is now the orignial form of the dynamical law of the center mass of the

original non-transformed equation. Now, we can solve equation (2.41) by the old

method proposed in previous research [76] and take transformation back again.

Different cases and their respected results will be presented in section 2.5.

2.4 Numerical methods

In this section, we present an accurate and efficient numerical method which

solves the transformed rotating GPE under a rotating Lagrangian coordinate as

shown in (2.13). Without loss of generality, we take d = 2.

Different from other studies to solve the rotating BEC, by introducing an orthog-

onal transformation, we have reduced the rotational term in the GPE. We finally

have a standard GPE with inhomogeneous potential, which could be solved by

standard numerical methods in a more stable way, compared to previous re-

searches done in this area.

We begin by applying the time splitting method, and then proceed with Fourier

spectral method in x and y direction.

2.4.1 Time splitting method

We take ∆t > 0 as a time step. For n = 0, 1, 2, . . . , N from time t = tn = n∆t to

t = tn+1 = tn +∆t, we could solve the transformed GPE (2.13) in the following

two steps:

Step I:










i∂tφ = −1
2∇2φ,

φ(x, 0) = φ0(x), x ∈ Rd, d = 2, 3.
(2.49)
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Step II:










i∂tφ = V (x, t)φ+ β|φ|2φ,

φ(x, 0) = φ0(x), x ∈ Rd, d = 2, 3.
(2.50)

These two steps are solved for the same time step of length ∆t. A point need to

be noted that compared to the non-rotating BEC, the time step has not been

much affected with a small Ω. For a very big Ω, a smaller time step is required

to well capture the rotation. For step I (2.49), we will discuss in details in the

following two subsections. Step II (2.50) can be solved analytically. We first

demonstrate that the ODE is linear by showing:

d|φ(x, t)|2
dt

= (φ∗tφ+ φ∗φt) = −i [−(iφt)
∗φ+ φ∗(iφt)]

= −i
[

(

−1

2
∇2φ+ V (x, t)φ+ β|φ|2φ

)

φ∗

−φ
(

−1

2
∇2φ∗ + V (x, t)φ∗ + β|φ|2φ∗

)

]

= 0.

which gives us

|φ(x, t)|2 = |φ(x, tn)|2, t ∈ [tn, tn+1]. (2.51)

Then solve the ODE in (2.50) directly which gives us:

φ(x, t) = exp

[

−i
(
∫ t

tn

V (x, s)ds+ β|φ(x, tn)|2
)

(t− tn)

]

. (2.52)

Take d = 2 and substitute (2.14) in (2.52) and integrate, we have the exact

analytical solution given by:

For γx = γy = γr,

∫ t

tn

V (x, s)ds =
1

2
γ2r (x

2 + y2)(t− tn). (2.53)
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For γx 6= γy,

∫ t

tn

V (x, s)ds =
1

2
(γ2xx

2 + γ2yy
2)(t− tn) +

γ2x − γ2y
4

[

(y2 − x2)

(

t− tn

− 1

2Ω
(sin 2Ωt− sin 2Ωtn)

)

+
xy

Ω
(cos 2Ωt− cos 2Ωtn)

]

.(2.54)

We can also apply numerical quadrature method, e.g. Simposon rule to approx-

imate
∫ tn+1

tn
V (x, s)ds.

2.4.2 Discretization in 2D

We apply the Fourier spectral method to discretize (2.49). We suppose that

φ(x, y, t) is defined in domain [a, b] × [c, d].

Let

φ(x, y, t) =

Nx
2

−1
∑

l=−Nx
2

Ny

2
−1

∑

k=−
Ny

2

φ̂lk(t)e
iµx

l
(x−a)eiµ

y
k
(y−c), (2.55)

with

µxl =
2πl

b− a
, µyk =

2πk

d− c
,

l = −Nx

2
,−Nx

2
+ 1, . . . ,

Nx

2
− 1, k = −Ny

2
,−Ny

2
+ 1, . . . ,

Ny

2
− 1.

φ̂lk(t) is the Fourier coefficient for the lth mode in x and kth mode in y.

Differentiate (2.55) with respect to t, and noticing the orthogonality of the

Fourier functions, we obtain:

∂tφ̂lk(t) = − i

2

[

(µxl )
2 + (µyk)

2
]

φ̂lk(t),

which can be solved analytically to have

φ̂lk(t) = e−
i
2 [(µ

x
l
)2+(µy

k
)2](t−tn)φ̂lk(tn),

for t ∈ [tn, tn+1]. Starting from tn, φ(tn) is known. We take a Fast Fourier

Transform to obtain φ̂lk(tn). And then by applying the above equation, we get

φ̂lk(tn+1). We take an Inverse Fourier Transform to get φ̂lk(tn+1).
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In practice, we often apply the second order Strang splitting [70, 76].

2.4.3 Discretization in 3D

When d = 3, for a defined domain [a, b]× [c, d]× [e, f ], we use a similar approach

as what we have discussed above in (2.55). We take:

φ(x, y, t) =

Nx
2

−1
∑

l=−Nx
2

Ny

2
−1

∑

k=−
Ny

2

Nz
2

−1
∑

m=−Nz
2

φ̂lkm(t)e
iµx

l
(x−a)eiµ

y
k
(y−c)eiµ

z
m(y−e), (2.56)

with

µxl =
2πl

b− a
, µyk =

2πk

d− c
, µzm =

2πm

f − e
,

l = −Nx

2
,−Nx

2
+ 1, . . . ,

Nx

2
− 1, k = −Ny

2
,−Ny

2
+ 1, . . . ,

Ny

2
− 1,

m = −Nz

2
,−Nz

2
+ 1, . . . ,

Nz

2
− 1,

here, φ̂lkm(t) is the Fourier coefficient for the lth mode in x, kth mode in y and

mth mode in z.

2.5 Numerical results

Without loss of generality, we have taken d = 2 for numerical computations. The

3D case is quite similar. In this section, we first test the numerical accuracy of

the method proposed in section 2. Then we proceed to study the dynamics of the

quantities discussed above, by choosing a gaussian initial data φ0(x) which is a

stationary state with its center shifted. We will look at the conservation of energy

and density, as well as the dynamical laws of angular momentum expectation,

condensate width. For center of mass, we will compare the numerical solutions

with the exact analytical solutions that we obtained by solving related ODE.

We will also discuss the interaction between a few central vortices by looking at

their trajectories.
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2.5.1 Accuracy test

In this subsection, we will present the numerical results obtained to show a

spectral accuracy in space and second order accuracy in time. To this end, we

take the initial data as:

φ0(x, y) =
(γxγy)

1/4

(π)1/2
e−

γx(x−x0)
2+γy(y−y0)

2

2 . (2.57)

We take γx = 1, γy = 2,Ω = 1, and solve on the interval [−16, 16]×[−16, 16] with

homogeneous Dirichlet boundary condition. Our numerical solution is computed

using TSSP2 with a very fine mesh, e.g h := dx = dy = 1
32 , and a small time

step k := dt = 0.0001. As we treat it as the ‘exact’ solution, denoted by φe(t).

And we use φh,k(t) to represent the numerical solution obtained with mesh size

h and time step k.

First, we test the spectral accuracy of TSSP2 in space. We have three different

β, and for each one, we solve the numerical solution with a very small time step

k = 0.0001 and different mesh sizes h, as shown in Table 2.1. Since the time

step is chosen as small as our ‘exact’ solution, we could neglige the truncation

error resulted from time discretization compared to space discretization.

Then we use a similar approach to test the time accuracy, as in Table 2.2. In

Table 2.1: Spatial error analysis: Error ||φe(t) − φh,k(t)||l2 at t = 2.0 with
k = 1E − 4.

Mesh h=1/2 h=1/4 h=1/8 h=1/16

β = 10 1.114E-2 9.932E-7 9.6613E-13 <E-13

β = 20
√
2 0.236 5.371E-4 6.903E-10 <E-13

β = 80 1.894 6.528E-2 2.556E-5 2.362E-12

a strong repulsive interaction regime or semi-classical regime, where β ≫ 1, we

are interested to find how to choose the “correct” mesh size h and time step △t.

After a rescaling of equation (2.13) under normalization, we get:

iǫ∂tφ(x, t) = −ǫ
2

2
∇2φ+ Vd(x, t)φ+ |φ|2φ, x ∈ R

d, (2.58)
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Table 2.2: Temporal error analysis: Error ||φe(t) − φh,k(t)||l2 at t = 2.0 with
h = 1/32.

Time step k=1/20 k=1/40 k=1/80 k=1/160 k=1/320

β = 10 1.002E-3 2.582E-4 5.661E-5 1.153E-5 3.528E-6

β = 20
√
2 4.132E-3 1.341E-3 3.513E-4 9.382E-5 2.496E-5

β = 80 2.154E-2 5.381E-3 1.463E-3 3.652E-4 9.563E-5

with x → ǫ−1/2x, φ→ ǫd/4.φ, ǫ = β
−2/(d+2)
d .

As also demonstrated in [8, 9, 10], the suitable meshing strategy which best

approximates the “correct” solution should be:

h = O(ǫ), k = O(ǫ).

Thus for a strong repulsive interaction, we take:

h = O(ǫ) = O(1/β
2/(d+2)
d ), k = O(ǫ) = O(1/β

2/(d+2)
d ), with d = 2, 3.

2.5.2 Dynamical results in 2D

To verify the analytical solutions obtained in section II like the density and

mass conservation, and to study the dynamical laws of a rotating BEC under a

Lagrangian coordinate, we take a Gaussian initial condition as stated in (2.57).

(I). Dynamics of density and energy

As defined in (2.16), the energy is expressed as:

E(φ) =

∫

Rd

[

1

2
|∇φ(x, t)|2 + V (x, t)|φ(x, t)|2 + β

2
|φ(x, t)|4 (2.59)

−
∫ t

0
∂sV (x, s)|φ(x, s)|2ds

]

dx

:= Ek(φ) + Eint(φ) + Ep(φ) + Erot(φ), (2.60)

where Ek(φ) is the kinetic energy, Eint(φ) stands for interaction energy, Ep(φ)

is the potential energy and Erot(φ) is the rotating energy.

We have energy and density conservation for any given initial state as discussed
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above. We take β = 10, T = 10, x0 = y0 = 1. We have listed four cases as

follows with different Ω and γx, γy: As we could see, in all the four cases, and

also the other examples that we have not listed here, the energy and density are

well conserved.

And when Ω = 0 or γx = γy, as shown in Figure 2.1, Figure 2.2 and Figure 2.3,

the rotating energy equals zero. This could be explained by our analytical results

in (2.53), (2.54) and (2.16). By comparing Figure 2.1 and Figure 2.2 which are

different by the value of γy, we could see that the period becomes smaller with

an increasing γy. The same follows when we change γx.

(II). Dynamics of condensate width and angular momentum

We solve the problem on the domain [−10, 10] × [−10, 10] under a mesh size

h = 1/8 and time step 0.001, with homogeneous Dirichlet boundary condition

and initial condition defined in (2.57). We take β = 100 and T = 10, set different

values for Ω, γx, γy and the starting point x0, y0 to show the dynamical laws of

condensate width and angular momentum.

As discussed in Theorem 2.3.2, under the rotating Lagrangian coordinate, we

have the angular momentum conservation law in two cases:

(i) γx = γy, for any initial data and Ω given. This is shown in Figure 2.5, where

Ω = 1, γx = γy = 1, x0 = 1, y0 = 1.

(ii) Ω = 0 and the initial data φ0(t) is symmetric in either x or y direction.

We could find that in Figure 2.7, where Ω = 0, γx = 1, γy = 2, x0 = 0, y0 = 1,

initial data is symmetric in x direction, the angular momentum is conserved. To

compare, Figure 2.8 has almost the same quantities except that x0 = 1, y0 = 1,

where the initial data does not have any symmetric property, and the angular

momentum is not conserved in this case. And in Figure 2.6, where Ω = 1, γx =

1, γy = 2, x0 = 0, y0 = 1, we have a symmetric initial data but with a nonzero

Ω, the angular momentum is not conserved.

For condensate width, as we have discussed in Theorem 2.3.3, when γx = γy = γr,

δx and δy are periodic with period T = 2π
δr
. This is shown in Figure 2.5. For

other Figures, although the condensate width are not periodic, due to γy = 2γx,

the oscillation frequency for δy is roughly double that of δx, and the amplitudes
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Figure 2.1: Dynamics of mass and energies under Ω = 0, γx = γy = 1.
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Figure 2.2: Dynamics of mass and energies under Ω = 0, γx = 1, γy = 8.

of δx are in general larger than that of δy (cf. Fig. 2.7).

(III). Center of mass under new coordinate and original coordinate
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Figure 2.3: Dynamics of mass and energies under Ω = 1, γx = γy = 1.
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Figure 2.4: Dynamics of mass and energies under Ω = 4, γx = 1, γy = 2.

As we have discussed in Theorem 2.3.4, the center of mass could be solved

analytically. We are interested in comparing the numerical results obtained
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Figure 2.5: Dynamics of condensate width and angular momentum under Ω =
1, γx = γy = 1, x0 = 1, y0 = 1.
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Figure 2.6: Dynamics of condensate width and angular momentum under Ω =
1, γx = 1, γy = 2, x0 = 0, y0 = 1.
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Figure 2.7: Dynamics of condensate width and angular momentum under Ω =
0, γx = 1, γy = 2, x0 = 0, y0 = 1.
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Figure 2.8: Dynamics of condensate width and angular momentum under Ω =
0, γx = 1, γy = 2, x0 = 1, y0 = 1.
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by the method proposed above with the analytical solution, and studying the

motion of the center x(t) under the new coordinate as well as in the original

ones. As far as we know, no previous studies are done for the motion of center of

mass under a rotating Lagrangian coordinate. In the following figures, the red

dash line represents the analytical solution and the blue solid line represents the

numerical solution for the motion of center. As we could notice, the numerical

solutions approximate quite well.

As we have discussed, we could categorize the motion of center of mass into five

different cases, by different Ω, γx and γy.

Case(I): Non-rotating BEC.

For a non-rotating BEC, i.e. Ω = 0, as we have discussed above in (2.47),

αc(t) = α0 cos(γαt) α = x, y.

We take x0 = (1, 1). As shown in Figure 2.9, Figure 2.10 and Figure 2.11,

the motion in each direction is a periodic function with period Tα = 2π
γα

. (i)If

γx = γy, the trajectory is the straight line y = x (cf. Fig. 2.9). (ii). If γx/γy

is a rational number, then the center moves periodically (cf. Fig. 2.10). (iii).

If γx/γy is irrational, then the center has a chaotic motion in the rectangle

[−|x0|, |x0|]× [−|y0|, |y0|] (cf. Fig. 2.10).

Case(II): Rotating BEC with an isotropic potential.

For Ω 6= 0, γx = γy, taking x0 = (1, 1), the center of mass follows the same

solution as Case (I), which is (2.47). And as a result, regardless of the value of

Ω, the motion of transformed center of mass always follows the one in Figure 2.9.

By taking a reverse transformation which is given by x̃ = A(t)Tx, we could get

the motion of center under the original coordinate system, which is dependent

of Ω. As we could see from Figure 2.12 to Figure 2.17, Ω takes the value of

1/5, 4/5, 1, 3/2, 6, π respectively. When Ω is a rational number, i.e. Ω = m/n

with m,n positive integers with no common factor, as shown from Figure 2.12

to Figure 2.16, the center moves periodically with a period T = nπ for m,n

being odd and T = 2nπ if not [76]. And when Ω is irrational, then the center
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has a chaotic motion in a circle with radius of |x0| and centered at origin (cf.

Fig. 2.17).

Case(III): Anisotropic potential: 0 < |Ω| = γx or |Ω| = γy.

These figures show that in the case Ω = 1, γx = 1, γy = 2, the time evolution of

the center for x0 = (1, 1). As we can see in Figure 2.19, in the original frame,

the trajectory of the center is a spiral coil going to infinity in x-direction.

Case(IV): Anisotropic potential: γx < γy, 0 < |Ω| < γx or |Ω| > γy or

γx < |Ω| < γy.

The Figure 2.20 to Figure 2.26 show the motion of center x(t) with different Ω, γx

and γy, where γx < γy and |Ω| < γx or |Ω| > γy. We could draw a conclusion

that the center follows a chaotic motion in a bounded domain.

2.5.3 Quantized vortex interaction in 2D

In this subsection, we study the interaction between central vortices. In order

to do so, we have defined the initial data in the following way:

φ(x, 0) =

∏M
j=1 φ

mj (x− x0
j)

‖∏M
j=1 φ

mj (x− x0
j) ‖

, (2.61)

where

φmj (x, y) = (x+ imjy)φe(x, y), mj ∈ {1,−1},

and φe(x) takes the form as in (2.57). M is the total number of interacting

vortices.

We will take various cases to study the time evolution of the density. We set

β = 50,Ω = 1, γx = γy = 1 and M = 2.
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We consider the following cases with different times:

(I) x0
1 = (0.5, 0),x0

2 = (−0.5, 0), (m1,m2) = (1, 1),

(II) x0
1 = (0.5, 0),x0

2 = (0, 0), (m1,m2) = (1, 1),

(III) x0
1 = (0.5, 0),x0

2 = (−0.5, 0), (m1,m2) = (1,−1),

(IV ) x0
1 = (0.5, 0),x0

2 = (0, 0), (m1,m2) = (1,−1).

Figures 2.28-2.31 shows the contour plot of the density at different time in dif-

ferent cases. As also discussed in [8], we can draw the following conclusions:

if m1 = m2, the centers of the two vortices rotate symmetrically around the

trap center if x0
1 and x0

2 are symmetric, as shown in Case I (c.f. Fig. 2.28) and

nonsymmetrically if not as shown in Case II (c.f. Fig. 2.29). The two vortices

do not collide at any time. For two central vortices with different indices, e.g.

m1 = 1 and m2 = −1, the two vortices centers will always collide and merge, as

shown in Case III (c.f. Fig. 2.30) and Case IV (c.f. Fig. 2.31).
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Figure 2.9: Trajectory of center of mass under original and transformed frame
when γx = γy.
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Figure 2.10: Trajectory of center of mass under original and transformed frame
when Ω = 0, γx = 1, γy = 8.
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Figure 2.11: Trajectory of center of mass under original and transformed frame
when Ω = 0, γx = 1, γy = 2π.
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Figure 2.12: Trajectory of center of mass under original frame when Ω =
1/5, γx = γy = 1.
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Figure 2.13: Trajectory of center of mass under original frame when Ω =
4/5, γx = γy = 1.
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Figure 2.14: Trajectory of center of mass under original frame when Ω = 1, γx =
γy = 1.
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Figure 2.15: Trajectory of center of mass under original frame when Ω =
3/2, γx = γy = 1.
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Figure 2.16: Trajectory of center of mass under original frame when Ω = 6, γx =
γy = 1.
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Figure 2.17: Trajectory of center of mass under original frame when Ω = π, γx =
γy = 1.
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Figure 2.18: Trajectory of center of mass under transformed frame when Ω =
1, γx = 1, γy = 2, (x0, y0) = (1, 1).
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Figure 2.19: Trajectory of center of mass under original frame when Ω = 1, γx =
1, γy = 2, (x0, y0) = (1, 1).
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Figure 2.20: Trajectory of center of mass under transformed frame when Ω =
1/2, γx = 1, γy = 2.
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Figure 2.21: Trajectory of center of mass under original frame when Ω =
1/2, γx = 1, γy = 2.
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Figure 2.22: Trajectory of center of mass under transformed frame when Ω =
4, γx = 1, γy = 2.
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Figure 2.23: Trajectory of center of mass under original frame when Ω = 4, γx =
1, γy = 2.
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Figure 2.24: Trajectory of center of mass under transformed frame when Ω =
1/2, γx = 1, γy = π.
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Figure 2.25: Trajectory of center of mass under original frame when Ω =
1/2, γx = 1, γy = π.
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Figure 2.26: Trajectory of center of mass under transformed frame when Ω =
4, γx = 1, γy = π.
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Figure 2.27: Trajectory of center of mass under original frame when Ω = 4, γx =
1, γy = π.
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(a) t = 0 (b) t = 1

(c) t = 2.4 (d) t = 3.2

Figure 2.28: Case I density contour plot, x0
1 = (0.5, 0),x0

2 =
(−0.5, 0), (m1,m2) = (1, 1).

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 2.29: Case II density contour plot, x0
1 = (0.5, 0),x0

2 = (0, 0), (m1,m2) =
(1, 1).
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(a) t = 0 (b) t = 2

(c) t = 3.2 (d) t = 4

Figure 2.30: Case III density contour plot, x0
1 = (0.5, 0),x0

2 =
(−0.5, 0), (m1,m2) = (1,−1).

(a) t = 0 (b) t = 2

(c) t = 3.2 (d) t = 4

Figure 2.31: Case IV density contour plot, x0
1 = (0.5, 0),x0

2 = (0, 0), (m1,m2) =
(1,−1).
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Chapter 3

Extention to rotating

two-component BEC

In this chapter, we extend the results obtained previously for rotating single-

component BEC to rotating two-component BEC. We base the analysis on the

coupled Gross-Pitaevskii equations (CGPEs) with an angular momentum rota-

tional term. We follow the previous approach by applying a Lagrangian transfor-

mation to investigate the dynamical laws and propose an efficient and accurate

method for numerical simulations. Finally, numerical results have been presented

and discussed in details.

3.1 Introduction

After the study of single rotational BEC, attentions have been broadened to

the system of two or more condensates [43, 46] to better understand super-

fluidity [1, 54]. The first experiment involving multi-component BEC interac-

tion was realized with atoms evaporatively cooled in the |F = 2,mf = 2〉 and

|F = 1,mf = −1〉 spin states of 87Rb [60]. The possibility of producing long-

lived multiple condensate systems has hence been well demonstrated and the

existence of inter-component interactions dramatically affect the condensate’s

dynamics. Great excitement has been spurred in the atomic physics community

to study the static and dynamic phenomena occurred in a system of rotating
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two-component BEC.

Theoretical treatment first began for super fluid helium mixtures and spin polar-

ized hydrogen. It has been extended to Bose condensates of alkalis atoms[32, 44,

49, 63]. The realization of BEC experimentally has dramatically advanced the

theoretical study in this area since the theoretical predictions of multi-component

condensates can now be compared to the experimental results.

3.2 Coupled Gross-Pitaevskii equations

Similar to a single component BEC, at temperature T which is much smaller

than the critical temperature Tc, a two-component BEC can be described by

the macroscopic wave function Ψ(x̃, t) = (ψ1(x̃, t), ψ2(x̃, t)), with x̃ ∈ Rd, d =

2, 3, whose evolution is governed by two self-consistent, mean field nonlinear

Schrödinger equations (NLSEs) in a rotational frame, also known as the coupled

Gross-Pitaevkii equation (CGPEs) with the angular momentum rotation term

[40, 47, 52, 50]:

i∂tψj(x̃, t) =

[

−1

2
∇2 + V j

hos(x̃)− ΩLz +

2
∑

l=1

βjl|ψl|2
]

ψj − λψkj , j = 1, 2,

(3.1)

Here, ψj(x̃, t) is the dimensionless wave function of the jth (j = 1, 2) com-

ponent. V j
hos(x̃) is the dimensionless external trapping potential, which is of-

ten harmonic and thus can be written as 1
2(γ

2
x,jx

2 + γ2y,jy
2) in 2D, and resp.,

V j
hos(x̃) =

1
2(γ

2
x,j x̃

2 + γ2y,j ỹ
2 + γ2z,j z̃

2) in 3D with γx,j > 0, γy,j > 0 and γz,j > 0

constants. Lz̃ = −i(x̃∂y − ỹ∂x) = iJz̃ is the z̃−component of the angular mo-

mentum, and Ω is the dimensionless angular momentum rotating speed. βjl is

a constant characterizing the interactions between the jth and lth component,

with βjl = βlj . The integers kj in (3.1) are chosen as

kj =











2, j = 1,

1, j = 2.
(3.2)
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3.3 Dynamical laws in the Cartesian coordinate

Many researches have been done to study the dynamical laws of rotating two-

component BEC [77, 7]. We will briefly present the analytical results for rotating

two-component BECs in the Cartesian coordinate without given further proofs.

I). Energy and density.

We have two important invariants: density and energy and they are defined as

follows:

N(t) = N1(t) +N2(t) ≡‖ ψ1 ‖2 + ‖ ψ2 ‖2= 1, t ≥ 0, (3.3)

with

Nj(t) =‖ ψj(x̃, t) ‖2:=
∫

Rd

|ψj(x̃, t)|2 dx̃, t ≥ 0, j = 1, 2, (3.4)

and the energy

E(ψ1, ψ2) =

∫

Rd

[

2
∑

j=1

(

1

2
|∇ψj|2 + V j

hos(x̃)|ψj |2 +
2
∑

j=1

βjl
2
|ψj |2|ψl|2

−ΩRe(ψ∗
jLz̃ψj)

)

− 2λRe(ψ∗
1ψ2)

]

dx̃.

We have the following lemma for density of each component:

Lemma 3.3.1. Suppose (ψ1(x̃, t), ψ2(x̃, t)) is the solution of the CGPEs (3.1);

then we have, for j = 1, 2,

N
′′

j (t) = −2λ2 [2Nj(t)− 1] + F̃j(t), t ≥ 0, (3.5)

with initial conditions:

Nj(0) = N
(0)
j =

∫

Rd

|ψ0
j (x̃)|2 dx̃ =

N0
j

N
, (3.6)

N
′(0)
j = N

(1)
j = 2λ

∫

Rd

Im
[

ψ0
j (x̃)(ψ

0
kj (x̃))

∗
]

dx̃; (3.7)
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

where for t ≥ 0,

F̃j(t) = λ

∫

Rd

(ψ∗
jψkj + ψjψ

∗
kj)

[

V
kj
hos(x̃)− V j

hos(x̃)− (βjj − βkjj)|ψj |2

+(βkjkj − βjkj)|ψkj |2
]

dx̃, t ≥ 0. (3.8)

II). Angular momentum expectation.

The angular momentum is defined as:

〈Lz̃〉 (t) = 〈Lz̃〉1 (t) + 〈Lz̃〉2 (t), t ≥ 0, (3.9)

where

〈Lz̃〉j (t) =
∫

Rd

ψ∗
jLz̃ψj dx̃, j = 1, 2, t ≥ 0, d = 2, 3. (3.10)

It satisfies the following theorem:

Theorem 3.3.2. Suppose (ψ1(x̃, t), ψ2(x̃, t)) is the solution of the CGPE (3.1),

we have:

d 〈Lz̃〉j (t)
dt

=
γ2x,j − γ2y,j

2

∫

Rd

x̃ỹ|ψj |2 dx̃− i

∫

Rd

βjkj |ψj |2Lz̃|ψkj |2 dx̃

−2λRe

[
∫

Rd

ψ∗
kjLz̃ψj dx̃

]

. (3.11)

We have the conservation of angular momentum expectation, at least in the fol-

lowing cases, when γx,j = γy,j for j = 1, 2, i.e. the trapping potential is radially

symmetric:

(i): For any given initial data, we have the conservation of total angular mo-

mentum expectation and the energy for non-rotating part. (ii) Moreover if the

initial data (ψ0
1(x̃), ψ

0
2(x̃)) is further chosen as

ψ0
j (x̃) = fj(r)e

imjθ, with mj ∈ Z and fj(0) = 0 when mj 6= 0. (3.12)

If λ = 0, then 〈Lz̃〉1 (t) and 〈Lz̃〉2 (t) are conserved.
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On the other hand, if m1 = m2 := m in (3.42), then for any given λ,
〈

L̃z̃
〉

1
(t)

and
〈

L̃z̃
〉

2
(t) are conserved, i.e.

〈

L̃z̃

〉

j
(t) ≡

〈

L̃z̃

〉

j
(t) = m, t ≥ 0, j = 1, 2. (3.13)

III). Condensate width

With the condensate width defined as:

〈σα〉 (t) =
√

δα(t) =
√

δα,1(t) + δα,2(t), (3.14)

where

δα,j =
〈

α2
〉

(t) =

∫

Rd

α2|ψj |2 dx̃, α = x̃, ỹ, z̃. (3.15)

we have the following dynamical laws:

Theorem 3.3.3. i). Generally, for d=2,3, and any potential and initial data,

the condensate width satisfies:



























































d2δα(t)

d2t
=

∫

Rd

2
∑

j=1

[

(∂yα− ∂xα)(4iΩψ
∗
j (x̃∂y + ỹ∂x)ψj + 2Ω2(x̃2 − ỹ2)|ψj |2

+2|∂αψj |2 − 2α|ψj |2∂αV j
hos + |ψj |2

2
∑

l=1

βjl|ψl|2
]

dx̃,

δα(0) =: δ
(0)
α =

∫

Rdα
2(|ψ0

1 |2 + |ψ0
1 |2) dx̃,

δ̇α(0) =: δ
(1)
α = 2

2
∑

j=1

∫

RdαIm((ψ0
j )

∗∂αψ
0
j )− Ω|ψ0

j |2(x̃∂y − ỹ∂x)α dx̃.

(3.16)

IV). Center of mass.

The center of mass is defined as follows:

〈x̃〉j (t) =
∫

Rd

x̃|ψj |2 dx̃ =: (x̃cj(t), ỹ
c
j(t), z̃

c
j (t))

T . (3.17)

By [77], the center of mass satisfies a 2nd order ODE and can be solved analyt-

ically.
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

3.4 The Lagragian transformation

Similar to single component BEC discussed in Chapter 2, we apply the orthogo-

nal transition matrix A(t) (2.11) for 2D and (2.12) for 3D. Take transformation

x = A(t)x̃, Φ(x, t) = Ψ(A(t)x̃, t), and we substitute them into (3.1). We notice

that

Lz̃Ψ = LzΦ, i∂tΨ = i∂tΦ+ ΩLzΦ,

we can therefore cancel the rotational term in (3.1) and instead solve the follow-

ing problem:











i∂tφj(x, t) =

[

−1
2∇2 + Vj(x, t) +

2
∑

l=1

βjl|φl|2
]

φj − λφkj ,

φj(x, 0) = φ0j (x), j = 1, 2,x ∈ Rd, d = 2, 3,

(3.18)

where the external potentials are given as:

Vj(x, t) := V j
rot(x.t) + V j

hos(x), (3.19)

with

V j
rot(x.t) :=

(γ2x,j − γ2j,y)
[

sin2(Ωt)(y2 − x2) + sin(2Ωt)xy
]

2
,

V j
hos(x) :=











γ2x,jx
2+γ2j,yy

2

2 , d = 2,

γ2x,jx
2+γ2j,yy

2+γ2j,zz
2

2 , d = 3,

and the initial data are normalized as:

‖ φ01 ‖2 + ‖ φ02 ‖2:=
∫

Rd

(|φ1(x)|2 + |φ2(x)|2) dx = 1. (3.20)

The two important invariants of (3.18), which are the total density and energy

are now respectively of the following forms:

N(t) = N1(t) +N2(t) ≡‖ φ1 ‖2 + ‖ φ2 ‖2= 1, t ≥ 0, (3.21)
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with

Nj(t) =‖ φj(x, t) ‖2:=
∫

Rd

|φj(x, t)|2 dx, t ≥ 0, j = 1, 2, (3.22)

and

E(φ1, φ2) := En(φ1, φ2) + Erot(φ1, φ2), (3.23)

where

En(φ1, φ2) =

∫

Rd

[

2
∑

j=1

(

1

2
|∇φj |2 + Vj(x)|φj |2 +

2
∑

l=1

βjl
2
|φj |2|φl|2

)

−2λRe(φ∗1φ2)

]

dx, (3.24)

Erot(φ1, φ2) = −
∫

Rd





2
∑

j=1

(
∫ t

0
∂sV (x, s)|φj |2ds

)



 dx. (3.25)

3.5 Dynamical laws in the Lagrangian coordinate

In this section, we provide some analytical results on the definition and the dy-

namical laws of the following quantities for the inhomogeneous CGPEs (3.18):

energy, density, angular momentum expectation, condensate width and the cen-

ter of mass.

I). Dynamics of the density

As we know, when λ = 0 in (3.18), the density of each component is conserved

as specified in (3.22). While when λ 6= 0, we have the following lemmas for the

dynamics of each component:

Lemma 3.5.1. Suppose (φ1(x, t), φ2(x, t)) is the solution of the CGPEs (3.18);

then we have, for j = 1, 2,

N
′

j(t) = 2λRe

[
∫

Rd

(iφ∗jφkj ) dx

]

, t ≥ 0, (3.26)

N
′′

j (t) = −2λ2 [2Nj(t)− 1] + Fj(t), t ≥ 0, (3.27)
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

with initial conditions:

Nj(0) = N
(0)
j =

∫

Rd

|φ0j (x)|2 dx, (3.28)

N
′(0)
j = N

(1)
j = 2λ

∫

Rd

Im
[

φ0j (x)(φ
0
kj (x))

∗
]

dx, (3.29)

where for t ≥ 0,

Fj(t) = λ

∫

Rd

(φ∗jφkj + φjφ
∗
kj
)

[

Vkj (x)− Vj(x)− (βjj − βkjj)|φj |2

+(βkjkj − βjkj )|φkj |2
]

dx, t ≥ 0. (3.30)

Proof. By differentiating (3.22) with respect to t and apply integration by parts,

we obtain for j = 1, 2:

N
′

j(t) =
d

dt
‖ φj(x, t) ‖2=

d

dt

∫

Rd

|φj(x, t)|2 dx

=

∫

Rd

(∂tφjφ
∗
j + φj∂tφ

∗
j) dx

= −i
∫

Rd

[

(i∂tφj)φ
∗
j − φj(i∂tφj)

∗
]

dx

=

∫

Rd

iλ(φ∗jφkj − φjφ
∗
kj ) dx

= 2λRe

[
∫

Rd

iφ∗jφkj dx

]

, t ≥ 0.

Similarly, we apply the same approach to compute N
′′

j (t).

Lemma 3.5.2. (i) If the inter/intra-component s-wave scattering lengths are

the same and so are the external trapping potentials, i.e.

V1(x) = V2(x),x ∈ Rd, β11 = β12 = β22, (3.31)

for any initial condition, for j = 1, 2, we have:

Nj(t) = |φj(x, t)|2 =

(

N
(0)
j − 1

2

)

cos(2λt) +
N

(1)
j

2λ
sin(2λt) +

1

2
, t ≥ 0. (3.32)
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In this special case, the density of each component is a periodic function with

period T = π
|λ| , which is only dependent on λ.

When λ = 0,

Nj(t) ≡ N
(0)
j .

(ii) For more general cases, for j = 1, 2, t ≥ 0, we have

Nj(t) = |φj(x, t)|2 =
(

N
(0)
j − 1

2

)

cos(2λt) +
N

(1)
j

2λ
sin(2λt) +

1

2
+ fj(t), (3.33)

where fj(t) satisfies the following second-order ODE:











f
′′

j (t) + 4λ2fj(t) = Fj(t),

fj(0) = f
′

j(0) = 0. t ≥ 0.
(3.34)

Proof. (i) By Lemma 3.5.1, when the special equalities (3.31) are satisfied, we

have Fj(t) = 0, and

N
′′

j (t) = −2λ2 [2Nj(t)− 1] , t ≥ 0,

which gives us the unique solution (3.32). (ii) Based on the result in (i), we

apply superposition principle and get the unique ODE solution stated above for

(3.27) in Lemma 3.5.1.

II). Angular momentum expectation.

Angular momentum is another important quantity to study the dynamics of

rotating BEC. It is a measure of the vortex flux and is defined as follows:

〈Lz〉 (t) = 〈Lz〉1 (t) + 〈Lz〉2 (t), t ≥ 0, (3.35)

where

〈Lz〉j (t) =
∫

Rd

φ∗jLzφj dx, j = 1, 2, t ≥ 0, d = 2, 3. (3.36)

We denote

Jz = y∂x − x∂y = −iLz. (3.37)
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

For any t,x, we have the following equalities:

∂tVj(x, t) = ΩJzVj(x, t)

= Ω(y∂x − x∂y)Vj(x, t)

= Ω
γ2x,j − γ2j,y

2

[

2 cos(2Ωt)xy + (y2 − x2) sin(2Ωt)
]

. (3.38)

We define ηj(t) as

ηj(t) =

∫

R2

[

2 cos(2Ωt)xy + (y2 − x2) sin(2Ωt)
]

|φj(x, t)|2 dx

=
2

γ2x,j − γ2j,y

∫

Rd

JzV |φj |2 dx, t ≥ 0. (3.39)

The dynamical law of angular momentum expectation in rotating BEC is shown

as follows:

Theorem 3.5.3. Suppose (φ1(x, t), φ2(x, t)) is the solution of the CGPE (3.18),

we have:

d 〈Lz〉j (t)
dt

=
γ2x,j − γ2y,j

2
ηx,y,j(t) +

∫

Rd

βjkj |φj |2Jz|φkj |2 dx

+2λRe

[
∫

Rd

φ∗kjJzφj dx

]

, (3.40)

with Jz defined as in (3.37).

Hence, we can define the energy in another equivalent form:

E(φ1, φ2) =

∫

Rd

[

2
∑

j=1

(

1

2
|∇φj|2 + Vj(x)|φj |2 − ΩRe(φ∗jLzφj)

+
2
∑

l=1

βjl
2
|φj |2|φl|2

)

− 2λRe(φ∗1φ2)

]

dx. (3.41)

Thus, we have the conservation of angular momentum expectation, at least in

the following cases:

(i): For any given initial data, if we have γx,j = γy,j for j = 1, 2, i.e. the

trapping potential is radially symmetric;

(ii): For any given γx,j, γy,j , if we have Ω = 0 and the initial data φ0j is even in
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either x or y for j = 1, 2.

We have the following conservation laws

〈Lz〉 (t) = 〈Lz〉 (0), En(φ1, φ2) = En(φ
0
1, φ

0
2),

where En is defined in (3.25).

Moreover, when the traps are radially symmetric as defined in (i), if the initial

data (φ01(x), φ
0
2(x)) is further chosen as

φ0j (x) = fj(r)e
imjθ, with mj ∈ Z and fj(0) = 0 when mj 6= 0. (3.42)

If λ = 0, then
〈

L̃z

〉

1
(t) and

〈

L̃z

〉

2
(t) are conserved.

On the other hand, if m1 = m2 := m in (3.42), then for any given λ,
〈

L̃z

〉

1
(t)

and
〈

L̃z

〉

2
(t) are conserved, i.e.

〈

L̃z

〉

j
(t) ≡

〈

L̃z

〉

j
(0) = m, t ≥ 0, j = 1, 2. (3.43)

Proof. Differentiating (3.36) with respect to t, noticing (3.18), integrating by

parts, and taking into account that φj decreases to 0 when |x| → ∞, we have

d 〈Lz〉j (t)
dt

=

∫

Rd

(∂tφ
∗
jLzφj + φ∗jLz∂tφj) dx

= −
∫

Rd

[

−(i∂tφj)
∗Jzφj + φ∗jJz(i∂tφj)

]

dx

= −
∫

Rd

[(

−1

2
∇2φj + Vj(x, t)φj + φj

2
∑

l=1

βjl|φl|2 − λφkj

)

Jzφ
∗
j

+

(

−1

2
∇2φ∗ + V (x, t)φ∗ + φ∗j

2
∑

l=1

βjl|φl|2 − λφ∗kj

)

Jzφj

]

dx

=
1

2

∫

Rd

[

∇2φjJzφ
∗
j +∇2φ∗jJzφj

]

dx

−
∫

Rd

Vj(x, t)(φjJzφ
∗
j + φ∗jJzφj) dx

−
∫

Rd

(φ∗jJzφj + φjJzφ
∗
j )(βjj|φj |2 + βjkj |φkj |2) dx

+

∫

Rd

λ(φ∗kjJzφj + φkjJzφ
∗
j ) dx
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= −1

2

∫

Rd

[∇φ∇(Jzφ
∗)] dx− 1

2

∫

Rd

[∇φ∗∇(Jzφ)] dx

−
∫

Rd

V (x, t)φJzφ
∗ dx

+

∫

Rd

φ [V (x, t)Jzφ
∗ + φ∗JzV (x, t)] dx

=
γ2x,j − γ2y,j

2
ηj(t) +

∫

Rd

βjkj |φj |2Jz|φkj |2 dx

+ 2λRe

[
∫

Rd

φ∗kjJzφj dx

]

,

where ηj(t) is defined above in (3.39).

For case (i), when γx,j = γy,j for j = 1, 2, we can easily arrive at the conclusion

that the total angular momentum expectation 〈Lz〉 is conserved from the ODE:

d 〈Lz〉 (t)
dt

= 0, t ≥ 0.

For case (ii), we know that the solution φj(x, t) is even in first variable x or

second variable y due to the assumption of the initial data and symmetry of

Vj(x), for j = 1, 2. Then when Ω = 0, with |φj(x, t)| even in either x or y, we

easily have the conservation of angular momentum.

By (3.41), we have:

E(φ1, φ2) = En(φ1, φ2)−Ω 〈Lz〉 (t),

hence

dEn(t)

dt
=
dE(t)

dt
+Ω

d

dt
〈Lz〉 (t) = 0. (3.44)

III). Condensate width

We define the condensate width as follows along the α-axis (α = x, y, z for 3D),

to quantify the dynamics of the problem (3.18):

〈σα〉 (t) =
√

δα(t) =
√

δα,1(t) + δα,2(t), (3.45)
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where

δα,j =
〈

α2
〉

(t) =

∫

Rd

α2|φj |2 dx, α = x, y, z, (3.46)

we have the following dynamical law for the condensate width:

Theorem 3.5.4. i). Generally, for d=2,3, and any potential and initial data,

the condensate width satisfies:



























































d2δα(t)

d2t
+ 2γ2αδα(t) =

∫

Rd

2
∑

j=1

[

2|∂αφj|2 − 2α|φj |2∂αVj,rot

+|φj |2
2
∑

l=1

βjl|φl|2
]

dx,

δα(0) =: δ
(0)
α =

∫

Rdα
2(|φ01|2 + |φ01|2) dx,

δ̇α(0) =: δ
(1)
α = 2

2
∑

j=1

∫

RdαIm
[

(φ0j )
∗∂αφ

0
j

]

dx.

(3.47)

ii). In 2D with a radially symmetric trap, i.e. d = 2, and γx,j = γy,j := γr, if

there is no external driving field, i.e. λ = 0, for any initial data (φ01, φ
0
2), we

have:























δr(t) =
E(φ01,φ

0
2)+Ω〈Lz〉(0)
γ2r

[1− cos(2γrt)] + δ
(0)
r cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt),

δr(0) =: δ
(0)
r = δx(0) + δy(0) =

∫

Rd(x
2 + y2)|φ0|2 dx,

δ̇r(0) =: δ
(1)
r = δ̇x(0) + δ̇y(0).

(3.48)

Moreover, if the initial data (φ01(x), φ
0
2(x)) is chosen as in (3.42), we have, for

any t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t)

=
E(φ01, φ

0
2) + Ω 〈Lz〉 (0)
2γ2r

[1− cos(2γrt)]

+δ(0)x cos(2γrt) +
δ
(1)
x

2γr
sin(2γrt). (3.49)

Thus the condensate widths are periodic functions with frequency equals to two

times of the trapping frequency.
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

iii). For the other cases with a radially symmetric trap, we have , for t ≥ 0,

δr(t) =
E(φ01, φ

0
2) + Ω 〈Lz〉 (0)
γ2r

[1− cos(2γrt)]

+δ(0)r cos(2γrt) +
δ
(1)
r

2γr
sin(2γrt) + gr(t), (3.50)

where gr(t) is the solution of the following equations:

d2gr(t)

d2t
+ 4γ2r gr(t) = Gr(t), gr(0) =

dgr(0)

dt
= 0,

with Gr(t) = 8λ
∫

RdRe(φ∗1φ2) dx.

Proof. i). Differentiate (3.46) directly with respect to t, noticing (3.18), integrate

by parts, we have:

dδα,j(t)

dt
=

d

dt

∫

Rd

α2|φj |2 dx =

∫

Rd

α2(φj∂tφ
∗
j + φ∗j∂tφj) dx

= i

∫

Rd

α2
[

φj(i∂tφj)
∗ − φ∗j (i∂tφj)

]

dx

=
i

2

∫

Rd

[

∇φ∗(α2∇φ+ φ∇α2)−∇φ(α2∇φ∗ + φ∗∇α2)

+2λα2(φ∗jφkj − φjφ
∗
kj )

]

dx

=

∫

Rd

[

iα(φj∂αφ
∗
j − φ∗j∂αφj) + iλα2(φ∗jφkj − φjφ

∗
kj )
]

dx.

And we differentiate again with respect to t:

d2δα,j(t)

dt2
= i

∫

Rd

α(φtφ
∗
α + φφ∗tα − φ∗tφα − φ∗φtα) dx

= i

∫

Rd

[

2iα(∂tφj∂αφ
∗
j − ∂tφ

∗
j∂αφj) + i(φ∗j∂tφj − φj∂tφ

∗
j)

+iλα2(∂tφ
∗
jφkj − ∂tφjφ

∗
kj + φ∗j∂tφkj + φj∂tφ

∗
kj)

]

dx

:= I + II + III.
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Applying integration by parts, we have:

I :=

∫

Rd

2α
[

(i∂tφj)∂αφj + (−i∂tφ∗j)∂αφj)
]

dx

=

∫

Rd

[

−α(∂αφ∗j∇2φj + ∂αφj∇2φ∗j)

+2α(Vj(x) +

2
∑

l=1

βjl|φl|2)(φj∂αφ∗j + φ∗j∂αφj)

−4λαRe(φkj∂αφ
∗
j )

]

dx

=

∫

Rd

[

−|∇φj |2 + 2|∂αφj|2 − 2Vj(x)|φj |2 − 2α|φj |2∂α(Vj(x))− βjj |φj |4

+2βjkjα|φkj |2∂α|φj |2 − 2λα(φkj∂αφ
∗
j + φ∗kj∂αφj)

]

dx.

II :=

∫

Rd

[

(φ∗j (i∂tφj) + (−i∂tφ∗j )φj
]

dx

= 2

∫

Rd

[

1

2
|∇φj |2 + Vj(x)|φj |2 +

2
∑

l=1

βjl|φl|2|φj |2 − λRe(φ∗jφkj )

]

dx

III := iλ

∫

Rd

α2(∂tφ
∗
jφkj − ∂tφjφ

∗
kj + φ∗j∂tφkj − φj∂tφ

∗
kj ) dx

Hence we have, for j = 1, 2:

d2δα,j(t)

d2t
=

∫

Rd

[

2|∂αφj |2 − 2α|φj |2∂α(Vj(x)) + βjj|φj |4 − 2βjkjα|φj |2∂α|φkj |2
]

dx

−2λ

∫

Rd

[

Re(φ∗jφkj ) + 2αRe(φ∗kj∂αφj)
]

dx

+iλ

∫

Rd

α2(∂tφ
∗
jφkj − ∂tφjφ

∗
kj + φ∗j∂tφkj − φj∂tφ

∗
kj ) dx. (3.51)

Hence we have:

d2δα(t)

d2t
+2γ2αδα(t) =

∫

Rd

2
∑

j=1

[

2|∂αφj|2 − 2α|φj |2∂αVj,rot + |φj |2
2
∑

l=1

βjl|φl|2
]

dx.
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

(ii). If d = 2, and γx,j = γy,j := γr for j = 1, 2, we have:



















d2δx(t)
d2t + 2γ2r δx(t) =

∫

Rd

2
∑

j=1

[

2|∂xφj|2 − 2x|φj |2∂xVj,rot + |φj |2
2
∑

l=1

βjl|φl|2
]

dx,

d2δy(t)
d2t + 2γ2r δy(t) =

∫

Rd

2
∑

j=1

[

2|∂yφj |2 − 2y|φj |2∂yVj,rot + |φj |2
2
∑

l=1

βjl|φl|2
]

dx.

(3.52)

Add (3.52) and we have the ODE for δr(t):

d2δr(t)

d2t
= −4γ2r δr(t) + 4E(φ1(x, t), φ2(x, t)) + 4Ω 〈Lz〉 (t)

+8λ

∫

Rd

Re(φ∗1φ2) dx

= −4γ2r δr(t) + 4E(φ01, φ
0
2) + 4Ω 〈Lz〉 (0) + 8λ

∫

Rd

Re(φ∗1φ2) dx.

When λ = 0, the above ODE collapses to

d2δr(t)

d2t
= −4γ2r δr(t) + 4E(φ01, φ

0
2) + 4Ω 〈Lz〉 (0), t ≥ 0, (3.53)

with the initial condition as:











δr(0) =: δ
(0)
r = δx(0) + δy(0),

δ̇r(0) =: δ
(1)
r = δ̇x(0) + δ̇y(0).

(3.54)

We solve the ODE (3.46) with the initial data given in (3.54), we could find the

following unique solution:

δr(t) =
E(φ01, φ

0
2) + Ω 〈Lz〉 (0)
γ2r

[1− cos(2γrt)] + δ(0)r cos(2γrt) +
δ
(1)
r

2γr
sin(2γrt).

(3.55)

In addition, if the initial data has radially symmetric structure as shown in

(3.42), then Vj(x) = Vj,hos(x). we have, for any t ≥ 0,

δx(t) =

∫

Rd

x2|φ|2 dx =

∫ ∞

0

∫ 2π

0
r2 cos2 θ|f(r, t)|2rdθdr

= π

∫ ∞

0
r2|f(r, t)|2rdr =

∫ ∞

0

∫ 2π

0
r2 sin2 θ|f(r, t)|2rdθdr

=

∫

Rd

y2|φ|2 dx = δy(t) =
1

2
δr(t).
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Thus we could show the result above in (3.49).

(iii). In general, when λ 6= 0, the second-order ODE has the following form:

d2δr(t)

d2t
= −4γ2r δr(t) + 4E(φ01, φ

0
2) + 4Ω 〈Lz〉 (0) +Gr(t). (3.56)

We solve the second-order ODE and could get a unique solution as defined in

(3.50).

IV). Center of mass.

In this section, we would like to study the analytical solutions for the center of

mass. Let (φ1(x), φ2(x)) be a solution of the transformed CGPEs (3.18). For

any initial data given, we then define the center of mass as follows:

〈x〉j (t) =
∫

Rd

x|φj |2 dx =: (xcj(t), y
c
j(t), z

c
j (t))

T . (3.57)

By this definition, we have:

Lemma 3.5.5. When λ = 0, we have the following equations:























d2〈x〉j(t)

dt2
+B(t) 〈x〉j (t) = 0,

〈x〉j (0) = x
0
j ,

˙〈x〉j(0) = 0,

(3.58)

with B(t) = AT (t)ΛA(t), where Λ = diag(γx,j , γj,y) in 2-d and diag(γx,j, γj,y, γj,z)

in 3-d, i.e.

B(t) =
1

2







γ2x,j + γ2j,y 0

0 γ2x,j + γ2j,y






+
γ2x,j − γ2j,y

2







cos(2Ωt) sin(2Ωt)

sin(2Ωt) − cos(2Ωt)






,

(3.59)

if d = 2, and

B(t) =
1

2













γ2x,j + γ2j,y 0 0

0 γ2x,j + γ2j,y 0

0 0 2γ2j,z













+
γ2x,j − γ2j,y

2













cos(2Ωt) sin(2Ωt) 0

sin(2Ωt) − cos(2Ωt) 0

0 0 0













,

(3.60)
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

for d = 3.

Proof. We can follow exactly the same proof as in rotational BEC in Lemma

2.3.4.

The ODE system (3.58) governing the motion of center of mass for rotating

two-component BEC is the same as the one for single-component BEC, which

as been discussed in Lemma 2.3.4. And the ODE system was solved analytically

and classified in details based on parameters Ω, γx,j, γy,j , γz,j.

Different cases and their respected results will be presented in section 3.7.

3.6 Numerical methods

Similar to the section 2.4 for single-component BEC, we present an accurate and

efficient numerical method which solves the transformed rotating CGPEs under

a rotating Lagrangian coordinate as shown in (3.18). Without loss of generality,

we take d = 2.

We begin by applying the second order time splitting method, and then proceed

with Fourier spectral method in xj and yj direction.

We take ∆t > 0 as a time step. For n = 0, 1, 2, . . . , N from time t = tn = n∆t

to t = tn+1 = tn + ∆t, we could solve the transformed CGPEs (3.18) in the

following three steps:

Step I:










i∂tφj = −1
2∇2φj,

φj(x, 0) = φ0j (x), x ∈ Rd, d = 2, 3.
(3.61)

Step II:










i∂tφj = Vj(x, t)φj +
∑2

l=1 βjl|φl|2φj ,

φj(x, 0) = φ0j (x), x ∈ Rd, d = 2, 3.
(3.62)

Step III:










i∂tφj = −λφkj ,

φj(x, 0) = φ0j (x), x ∈ Rd, d = 2, 3.
(3.63)
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These three steps are solved for the same time of length ∆t. For step I (3.61),

we will apply Fourier spectral methods which are the same as single-component

BEC, as discussed in subsection 2.4.2 and 2.4.3. Step II (3.62) and Step III

(3.62) can be solved analytically. For Step II, similar to single-component BEC,

we have

|φj(x, t)|2 = |φj(x, tn)|2, t ∈ [tn, tn+1] . (3.64)

Then solve the ODE in (3.62) directly which gives us:

φj(x, t) = φj(x, tn)exp

[

−i
(

∫ t

tn

Vj(x, s)ds +
2
∑

l=1

βjl|φl(x, tn)|2
)

(t− tn)

]

.

(3.65)

Take d = 2 and substitute (3.19) in (2.52) and integrate, we have the exact

analytical solution given by:

For γx,j = γj,y = γj,r,

∫ t

tn

Vj(x, s)ds =
1

2
γ2j,r(x

2 + y2)(t− tn). (3.66)

For γx,j 6= γj,y,

∫ t

tn

Vj(x, s)ds =
1

2
(γ2x,jx

2 + γ2j,yy
2)(t− tn) (3.67)

+
1

4
(γ2x,j − γ2j,y)

[

(y2 − x2)

(

t− tn

− 1

2Ω
(sin 2Ωt− sin 2Ωtn)

)

+
xy

Ω
(cos 2Ωt− cos 2Ωtn)

]

.

As discussed in the single-component BEC, we can also apply numerical quadra-

ture method to approximate Vj(x, t).

For Step III (3.63), we can rewrite it as

i∂tφ = −λAφ, A :=







0 1

1 0






, φ :=







φ1

φ2






. (3.68)
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3. EXTENTION TO ROTATING TWO-COMPONENT BEC

Since A is real and diagonalizable, we can solve (3.68) analytically and obtain:

φ(x, t) = eiλA(t−tn)φ(x, tn) =







cos(λ(t− tn)) i sin(λ(t− tn))

i sin(λ(t− tn)) cos(λ(t− tn))






φ(x, tn).

(3.69)

In practice, we often apply the second order Strang splitting method [70, 76].

3.7 Numerical results

3.7.1 Dynamics of energy and density

To verify the dynamics of the densities Nj(t) =‖ φj(x, t) ‖2, for j = 1, 2, we take

λ = 1, Ω = 0.6, γx,j = γy,j = 1. The initial data in (3.18) is chosen as

φ01(x) =
x+ iy√

π
exp(−x

2 + y2

2
), φ02(x) ≡ 0, x ∈ R

2. (3.70)

We take the following two cases to compare the dynamics of total density and

density of each component:

i β11 = β12 = β22 = 500,

ii β11 = 500, β12 = 300 and β22 = 400.
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Figure 3.1: Dynamics of total density and density of each component for case i.
(left) and case ii. (right).
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Fig . 3.1 shows the time evolution of the total density as well as densities of

each component for case i. and case ii. We can conclude that: (i) the total

density is always conserved; (ii) When β11 = β12 = β22, the densities of both

components are periodic functions with period T = π/|λ|; (iii) otherwise when

β11 6= β12 6= β22, the densities of both components are quasiperiodic1 and oscil-

late at period T = π with a perturbation.

3.7.2 Conservation of angular momentum expectation

According to Lemma 3.5.3, we take the initial data as shown in (3.42), with

Ω = 0.6, β11 = 400, β12 = 388 and β22 = 376. We are interested in the following

cases, for j = 1, 2,

i. λ 6= 0, m1 = m2 and γx,j = γy,j ,

ii. λ 6= 0, m1 = m2 and γx,j 6= γy,j ,

iii. λ = 0, m1 = m2 and γx,j 6= γy,j .

We take Following the Fig. 3.2-3.4, we can see that γx,j = γy,j , i.e. both of the

external trapping energy being symmetric is a sufficient condition for the total

expectation of angular momentum to be conserved and is necessary for angular

momentum expectation conservation of each component.

3.7.3 Center of mass

In this subsection, we study the time evolution of center of mass as well as how

the density evolves.

φ0j (x) = φvj (x− x0
j), x ∈ R

d. (3.71)

where φvj is the central vortex state with winding number +1 in the two compo-

nent BEC with parameters of Ω = 1, β11 = 200, β12 = 194 and β22 = 188, and

x0
j is a given point in R

d. We study the time evolution of the density and center

of mass for three different cases:
1A function f is said to be quasiperiodic with quasiperiod ω if there exists a function g

such that f(x+ ω) = g(x)f(x). When g is identically equal to 1, we call f a periodic function.
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Figure 3.2: Dynamics of angular momentum expectation 〈Lz〉 (t) (solid line),
〈

L̃z

〉

1
(t) (‘-*’) and

〈

L̃z

〉

2
(t) (‘-o’) when λ 6= 0 and γx,j = γy,j for j = 1, 2.
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Figure 3.3: Dynamics of angular momentum expectation 〈Lz〉 (t) (solid line),
〈

L̃z

〉

1
(t) (‘-*’) and

〈

L̃z

〉

2
(t) (‘-o’) when λ 6= 0 and γx,j 6= γy,j for j = 1, 2.
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Figure 3.4: Dynamics of angular momentum expectation 〈Lz〉 (t) (solid line),
〈

L̃z

〉

1
(t) (‘-*’) and

〈

L̃z

〉

2
(t) (‘-o’) when λ = 0 and γx,j 6= γy,j for j = 1, 2.
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i. Traps and centers shifted are the same: i.e. x0
1 = x0

2 = x0 = (2, 2)T , and

γx,j = γy,j = 1, for j = 1, 2.

ii. Traps are the same but centers shifted are different: i.e. x0
1 = −x0

2 = x0 =

(2, 2)T , and γx,j = γy,j = 1, for j = 1, 2.

iii. Centers shifted are the same but traps are different: i.e. x0
1 = x0

2 = x0 =

(2, 2)T , and γx,1 = γy,1 = 1, γx,2 = γy,2 = 2.

Fig. 3.5-3.7 depicts the density surface of |φ1|2 and |φ2|2 at different times for

case (i)-(iii). And Fig. 3.8 shows the dynamics of total center of mass as well

as center of mass for each component under the new coordinate system for case

(i). Fig. 3.9 transforms the movement of center of mass back to the original

coordinate system. We can conclude that in case (i), when x0
1 = x0

2, and γx,j =

γy,j, the density functions of the two components move like solitary waves in 2D

and their shapes do not change throughout time (c.f. Fig. 3.5). While in other

cases, their shapes change dramatically (c.f. Figs. 3.6 and3.7).

3.7.4 Condensate width

To verify the dynamical laws of condensate width presented in Theorem 3.5.4,

we take initial data as (3.71), with γx,j = γy,j for j = 1, 2,

i λ = 0 and V1(x) = V2(x),

ii λ 6= 0 and V1(x) = V2(x),

iii λ = 0 and V1(x) 6= V2(x).

We take Ω = 0.6, λ = 0, β11 = 400, β12 = 388 and β22 = 376. Fig. 3.10-3.12 show

the time evolution of condensate width corresponding the above three cases: (i).

λ = 0 and γx,j = γy,j = 1, for j = 1, 2; (ii). λ = 1 and γx,j = γy,j = 1, for

j = 1, 2; (iii). λ = 0 and γx,1 = γy,2 = 1, γx,2 = γy,1 = 1.2.

We can see that in case (i) (c.f. Fig 3.10), σr(t), σx(t), σy(t) are periodic functions

with σx(t) = σy(t) = 1
2σr(t), and period T = π/γx,1 = π. In case (ii), with

γx,j = γy,j = 1, for j = 1, 2, we still have σx(t) = σy(t) = 1
2σr(t), but they
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oscillate with a perturbation and are quasi-periodic functions. In case (iii), we

can observe that σx(t) 6= σy(t) and as case (ii), they oscillate with a perturbation.

3.7.5 Dynamics of vortex lattices

We are interested in the time evolution of vortex lattices. We take the initial

data as:

φ01(x) =

M
∏

l=1

x+ imly√
π

exp(−x
2 + y2

2
), φ02(x) ≡ 0, x ∈ R2, (3.72)

where M is the total number of interacting vortices. We take M = 4 and 9 to

analyse separately. For M = 4, we take Ω = 0.6, γx,j = γy,j = 1, for j = 1, 2,

x0
1 = x0

2 = (0, 0), λ = 1, β11 = β12 = β22 = 100 (c.f. Fig. 3.13). For M = 9,

we take Ω = 01, γx,j = γy,j = 5, for j = 1, 2, x0
1 = x0

2 = (0, 0), λ = 1,

β11 = β12 = β22 = 500 (c.f. Fig. 3.14).

According to dynamics of mass, for both cases, N1(t) and N2(t) are periodic

functions with T = π. We notice that for both cases, initially the density is only

observed in component one, as given in initial condition (3.72), gradually, at

t = T/4, the densities are equally distributed into two components; at t = T/2,

the densities are totally transformed to component two; at t = 3T/4, the densities

redistribute to both two components; and at t = T = π, the densities are almost

transformed back to component one (c.f. Fig 3.13 and Fig. 3.14).
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Figure 3.5: Time evolution of density surfaces for component one (left) and
component two (right) at different times for case I. From top to bottom: t =
0, 5, 10, 15.
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Figure 3.6: Time evolution of density surfaces for component one (left) and
component two (right) at different times for case II. From top to bottom: t =
0, 2.5, 5, 7.5.
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Figure 3.7: Time evolution of density surfaces for component one (left) and
component two (right) at different times for case III. From top to bottom: t =
0, 2.5, 5, 7.5.
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Figure 3.8: Dynamics of center of mass. Left: trajectory of total center of
mass. Right: the time evolution of center of mass of component one (top), time
evolution of center of mass of component two (bottom).
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Figure 3.9: Dynamics of center of mass. Left: trajectory of total center of
mass. Right: the time evolution of center of mass of component one (top), time
evolution of center of mass of component two (bottom).
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Figure 3.10: Dynamics of condensate widths σx(t), σy(t) and σr(t) when λ = 0
and V1(x) = V2(x).
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Figure 3.11: Dynamics of condensate widths σx(t), σy(t) and σr(t) when λ 6= 0
and V1(x) = V2(x).
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Figure 3.12: Dynamics of condensate widths σx(t), σy(t) and σr(t) when λ = 0
and V1(x) 6= V2(x).
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Figure 3.13: Dynamics of vortex lattices when N = 4 for component one (left)
and component two (right); From top to bottom, t = 0, 0.7, π/2, 2.3, π.
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Figure 3.14: Dynamics of vortex lattices when N = 9 for component one (left)
and component two (right); From top to bottom, t = 0, 0.7, π/2, 2.3, π.
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Chapter 4

Conclusion and future studies

In this thesis, we have proposed a new method to study the dynamics of rotat-

ing single component Bose-Einstein condensates (BEC) both analytically and

numerically and extend our results to rotating two-component BEC. Under the

new Lagrangian coordinate system, on the analytical side, we have redefined the

analytical form of density, energy, angular momentum expectation, condensate

width as well as center of mass. We proved the conservation of density and en-

ergy, as well as the angular momentum expectation when the trapping potential

is radially symmetric in 2D, and cylindrically symmetric in 3D. We presented an

ODE system for the motion of center of mass, and solved it analytically. Along

the numerical front, we have applied a second order time splitting method and

Fourier pseudo spectral method in space to study numerically the dynamics of

condensate, including the energy, angular momentum, condensate width, the

motion of center of mass as well as the interaction of central vortices.

We then proceed to extend the numerical methods and results to the rotating

coupled-Gross-Pitaevskii equation. We follow the same approach by first pre-

senting the existing dynamical laws. Then applying the Lagrangian coordinate

transformation and redefine dynamical laws and analyse their properties. In the

end, we present the numerical results.

The dynamics of rotating BEC and rotating two-component BEC have been in-

vestigated in the thesis. A further extension can be the case for rotating spin-1
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and dipolar BEC. We can apply the orthogonal time dependent matrix transfor-

mation method to study the dynamics. We could also include the collision terms

in the kinetic equation for mean field to treat finite temperature effects [61, 74].
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