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Summary

Gross-Pitaevskii equation (GPE), first derived in early 1960s, is a widely used model in

different subjects, such as quantum mechanics, condensed matter physics, nonlinear optics

etc. Since 1995, GPE has regained considerable research interests due to the experimental

success of Bose-Einstein condensates (BEC), which can be well described by GPE at

ultra-cold temperature.

The purpose of this thesis is to carry out mathematical and numerical studies for GPE.

We focus on the ground states and the dynamics of GPE. The ground state is defined as

the minimizer of the energy functional associated with the corresponding GPE, under the

constraint of total mass (L2 norm) being normalized to 1. For the dynamics, the task is

to solve the Cauchy problem for GPE.

This thesis mainly contains three parts. The first part is to investigate the dipolar GPE

modeling degenerate dipolar quantum gas. For ground states, we prove the existence and

uniqueness as well as non-existence. For dynamics, we discuss the well-posedness, possible

finite time blow-up and dimension reduction. Convergence for this dimension reduction

has been established in certain regimes. Efficient and accurate numerical methods are

proposed to compute the ground states and the dynamics. Numerical results show the

efficiency and accuracy of the numerical methods.

The second part is devoted to the coupled GPEs modeling a two component BEC. We

show the existence and uniqueness as well as non-existence and limiting behavior of the

ground states in different parameter regimes. Efficient and accurate numerical methods

vii



Summary viii

are designed to compute the ground states. Examples are shown to confirm the analytical

analysis.

The third part is to understand the convergence of the finite difference discretizations

for GPE. We prove the optimal convergence rates for the conservative Crank-Nicolson finite

difference discretizations (CNFD) and the semi-implicit finite difference discretizations

(SIFD) for rotational GPE, in two and three dimensions. We also consider the nonlinear

Schrödinger equation perturbed by the wave operator, where the small perturbation causes

high oscillation of the solution in time. This high oscillation brings significant difficulties in

proving uniform convergence rates for CNFD and SIFD, independent of the perturbation.

We overcome the difficulties and obtain uniform error bounds for both CNFD and SIFD,

in one, two and three dimensions. Numerical results confirm our theoretical analysis.



Notations

t time

i imaginary unit

x spatial variable

Rd d dimensional Euclidean space

ψ := ψ(x, t) complex wave-function

~ Planck constant

∇ gradient

∇2 = ∇ · ∇, ∆ Laplace operator

c̄ conjugate of c

Re(c) real part of c

Im(c) imaginary part of c

Lz = −i(x∂y − y∂x) z-component of angular momentum

‖u‖p := ‖u‖Lp(Rd) Lp (p ∈ [1,∞]) norm of function u(x),

where there is no confusion about d

f̂(ξ) :=
∫

Rd f(x)e−ix·ξ dx Fourier transform of f(x)
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Chapter 1
Introduction

The Gross-Pitaevskii equation (GPE), also known as the cubic nonlinear Schrödinger

equation (NLSE), has various physics applications, such as quantum mechanics, conden-

sate matter physics, nonlinear optics, water waves, etc. The equation was first developed

to describe identical bosons by Eugene P. Gross [72] and Lev Petrovich Pitaevskii [116]

in 1961, independently. Later, GPE has been found various applications in other areas,

known as the cubic NLSE. Since 1995, the Gross-Pitaevskii theory of boson particles has

regained great interest due to the successful experimental treatment of the dilute boson gas,

which resulted in the remarkable discovery of Bose-Einstein condensate (BEC) [7,36,52].

Now, BEC has become one of the hottest research topics in physics, and motivates nu-

merous mathematical and numerical studies on GPE.

1.1 The Gross-Pitaevskii equation

Many different physical applications lead to the Gross-Pitaevskii equation (GPE). For

example, in BEC experiments, near absolute zero temperature, a large portion of the dilute

atomic gas confined in an external trapping potential occupies the same lowest energy state

and forms condensate. At temperature T much lower than the critical temperature Tc,

using mean field approximation for this dilute many-body system, BEC can be described

by a macroscopic wave function ψ(x, t), governed by GPE in the dimensionless form [16,

18,117]

i∂tψ(x, t) = −1

2
∇2ψ(x, t) + Vd(x)ψ(x, t) + βd|ψ(x, t)|2ψ(x, t), x ∈ Rd, d = 1, 2, 3, (1.1)

1



1.1 The Gross-Pitaevskii equation 2

where t is time, Vd(x) represents the confining trap and βd represents the interaction

between the particles in BEC (positive for repulsive interaction and negative for attractive

interaction). The equation (1.1) can be generalized to arbitrary d dimensions, but we

restrict our interests to d = 1, 2, 3 cases, which are the typical dimensions for the physical

problems.

In nonlinear optics, GPE (1.1) describes the propagation of light in a Kerr medium

(cubic nonlinearity) [89, 141]. The equation (1.1) also describes deep water wave motion

[139]. Generally speaking, a wide range of nonlinear physical phenomenon can be modeled

by NLSE when dissipation effects can be neglected and dispersion effects become dominant.

As the cubic nonlinearity is one of the most common nonlinear effects in nature, GPE

(cubic NLSE) has shown its great importance.

For GPE (1.1), there are two important conserved quantities for (1.1), i.e. the mass

N(ψ(·, t)) :=

∫

Rd

|ψ(x, t)|2 dx ≡ N(ψ(·, 0)), t ≥ 0, (1.2)

and the energy

E(t) :=

∫

Rd

[
1

2
|∇ψ(x, t)|2 + Vd(x) |ψ(x, t)|2 +

β

2
|ψ(x, t)|4

]
dx ≡ E(0), t ≥ 0. (1.3)

In view of the mass conservation, we assume that the wave function ψ(x, t) is always

normalized such that N(ψ(·, t)) = 1, when GPE is applied to BEC system. In this case,

the normalization means that the total number of particles in BEC is unchanged during

evolution.

In the study of GPE (1.1), it is important to choose proper function space. In this

thesis, we will consider the equation (1.1) in the energy spaces defined as

Ξd =

{
u ∈ H1(Rd)

∣∣ ‖u‖2
Ξd

= ‖u‖2
2 + ‖∇u‖2

2 +

∫

Rd

Vd(x)|u(x)|2 dx <∞
}
, (1.4)

and the potential Vd(x) (d = 1, 2, 3) is assumed to be nonnegative without loss of generality.

Noticing the L2 normalization condition, it is convenient to introduce the unit sphere of

Ξd to be

Sd = Ξd
⋂{

u ∈ L2(Rd)
∣∣ ‖u‖2 = 1

}
. (1.5)



1.2 Ground state and dynamics 3

1.2 Ground state and dynamics

Concerning GPE (1.1), there are two basic issues, the ground state and the dynamics.

Mathematically speaking, the dynamics include the time dependent behavior of GPE, such

as the well-posedness of the Cauchy problem, finite time blow-up, stability of traveling

waves, etc. The ground state is usually defined as the solution of the following minimization

problem:

Find (φg ∈ Sd), such that

Eg := E (φg) = min
φ∈Sd

E (φ) , (1.6)

where Sd is a nonconvex set defined as (1.5), or equivalently as

Sd :=

{
φ |

∫

Rd

|φ(x)|2dx = 1, E(φ) <∞
}
. (1.7)

It is easy to show that the ground state φg satisfies the following Euler-Lagrange

equation,

µφ =

[
−1

2
∇2 + Vd(x) + β|φ|2

]
φ, (1.8)

under the constraint ∫

Rd

|φ(x)|2 dx = 1, (1.9)

with the eigenvalue µ being the Lagrange multiplier or chemical potential corresponding

to the constraint (1.9), which can be computed as

µ := µ(φ) =

∫

Rd

[
1

2
|∇φ|2 + Vd(x) |φ|2 + β|φ|4

]
dx = E(φ) +

β

2

∫

Rd

|φ(x)|4 dx. (1.10)

In fact, the above Euler-Lagrange equation can be obtained from GPE (1.1) by substituting

the ansatz

ψ(x, t) = e−iµtφ(x). (1.11)

Hence, equation (1.8) is also called as the time-independent Gross-Pitaevskii equation.

The eigenfunctions of the nonlinear eigenvalue problem (1.8) under the normalization

(1.9) are usually called as stationary states of GPE (1.1). Among them, the eigenfunction

with minimum energy is the ground state and those whose energy are larger than that of

the ground state are usually called as excited states.
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In nonlinear optics, unlike BEC, there is no confining potential in this case, i.e. Vd(x) =

0 or lim sup
|x|→∞

|Vd(x)| is bounded, and the eigenfunctions of the nonlinear eigenvalue problem

(1.8) without constraint (1.9) are usually called as bound states. Ground states in this

case are defined in a different way [100]. In this study, we stick to the above definition in

presence of the confining potential.

1.3 Existing results

Research on GPE has been greatly stimulated by the experimental success of BEC since

1995. For physical interest, there are two basic concerns. One is to justify when the system

can be described by GPE accurately with mathematical proof. The other is to study the

equation itself both analytically and numerically. In both cases, exploring the properties

of the ground states and dynamics have been the most important tasks. Considerable

theoretical analysis and numerical studies have been carried out in literature.

As stated before, in the derivation of GPE from BEC phenomenon, it is taken as

the mean field limit of the quantum many-body system (BEC), which is a result of the

quantum many-body theory. The quantum many-body theory was invented over fifty years

ago to describe the many-body system and BEC becomes the first testing ground for it.

Because of the coherent behavior, quantum behavior in BEC could be observed. Hence, it

is possible to examine the quantum many-body theory in experiments. From the studies

in literature, GPE has been found good agreement with experiments. Consequently, there

have been some rigorous justifications of the equation from the many-body system BEC, in

the mean field regime. For ground state, Lieb et al. [98] proved that the energy functional

(1.3) correctly describes the energy of the many-body system (BEC). For dynamics, Erdős

et al. [64] showed that GPE (1.1) can describe the dynamical behavior of BEC quite well

for a large class of initial data. Near the critical temperature Tc, GPE approximation

of the many-body BEC system becomes inaccurate. Other mean field models have been

proposed [53,111].

On the GPE itself, there have been extensive studies in recent years. For dynamics,

along the theoretical front, well-posedness, blow-up and solitons of GPE have been dis-

cussed, see [43, 139] and references therein for an overview. Along the numerical front, a
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lot of numerical methods have been applied to GPE. Succi proposed a lattice Boltzmann

method in [137, 138] and a particle-like scheme in [45]. Both schemes originated from

the kinetic theory for the gas and the fluid. Different finite difference methods (FDM)

have been adopted in numerical experiments, such as the explicit FDM [60], the leap-frog

FDM [44], and the Crank-Nicolson FDM (CNFD) [3]. In addition, a symplectic spectral

method was given in [146]. Explicit FDM is conditionally stable and has a restrict in its

step size. However, it needs less computational time than Crank-Nicolson FDM scheme,

while CNFD can conserve the mass and energy in the discretized level. Later, Adhikari et

al. [107] proposed a Runge-Kutta spectral method with spectral discretization in space and

Runge-Kutta type integration in time. Then Bao et al. proposed time-splitting spectral

methods [16, 18–20]. Each numerical method has its own advantages and disadvantages.

The most advantage of spectral method is the high accuracy with very limited grid points.

For numerical comparisons between different numerical methods for GPE, or in a more

general case, for the nonlinear Schrödinger equation (NLSE), we refer to [25,47,105,144]

and references therein.

For ground states, along the theoretical front, Lieb et al. [98] proved the existence

and uniqueness of the positive ground state in three dimensions. Along the numerical

front, various numerical methods have been proposed to compute the ground state. In

[59], based on the Euler-Lagrange equation (1.8), a Runge-Kutta method was used. The

technique involved a dimension reduction process from 3D to 2D by assuming the radial

symmetry. Dodd [56] gave an analytical expansion of the energy E(φ) using the Hermite

polynomial when the trap Vd is harmonic. By minimizing the energy in terms of the

expansion, approximate ground state results were reported in [56]. In [50], Succi et al. used

an imaginary time method to compute the ground states with centered finite-difference

discretization in space and explicit forward discretization in time. Lin et al. designed an

iterative method in [48]. After discretization in space, they transformed the problem to a

minimization problem on finite dimensional vectors. Gauss-Seidel iteration methods were

proposed to solve the corresponding problem. Bao and Tang proposed a finite element

method to compute the ground state by directly minimizing the energy functional in [24].

In [9, 12, 15], Bao et al. developed a gradient flow with discrete normalization (GFDN)

method to find the ground state, which contained a gradient flow and a projection at
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each step. Different discretizations have been discussed, including the finite difference

discretization or spectral discretization in space, explicit (forward Euler) discretization

or implicit (backward Euler) discretization in time. Among all the existing numerical

methods and algorithms, Runge-Kutta method [59] is the simplest but only valid in 1D or

3D with radial symmetry. The analytical expansion approach [56] is valid for all dimensions

(1D, 2D and 3D) but the approach relies on the spectrum of harmonic potential, which

makes it impossible to extend to the general trapping potential cases. Moreover, the

energy is modified and only an approximate problem is considered in this method. Gauss-

Seidel iteration methods [48] are based on the optimization approach and do not use the

properties of the GPE. The imaginary time method [50] is the same as the GFDN method,

while the imaginary time is preferable in the physics community. The most popular method

for computing the ground state for GPE is the GFDN method. Various numerical results

have demonstrated the efficiency and accuracy of GFDN method.

1.4 The problems

In this thesis, we focus on the following three kinds of problems.

1. Dipolar Gross-Pitaevskii equation. Since 1995, BEC of ultracold atomic and

molecular gases has attracted considerable interests. These trapped quantum gases are

very dilute and most of their properties are governed by the interactions between particles

in the condensate [117]. In the last several years, there has been a quest for realizing a

novel kind of quantum gases with the dipolar interaction, acting between particles having

a permanent magnetic or electric dipole moment. A major breakthrough has been very

recently performed at Stuttgart University, where a BEC of 52Cr atoms has been realized

in experiment and it allows the experimental investigations of the unique properties of

dipolar quantum gases [71]. In addition, recent experimental developments on cooling

and trapping of molecules [63], on photoassociation [152], and on Feshbach resonances

of binary mixtures open much more exciting perspectives towards a degenerate quantum

gas of polar molecules [123]. These success of experiments have spurred great excitement

in the atomic physics community and renewed interests in studying the ground states

[69,70,85,122,125,162] and dynamics [93,115,118,164] of dipolar BECs.
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Using the mean field approximation, when BEC system is in a rotational frame, the

dipolar BEC is well described by the dipolar Gross-Pitaevskii equation given in the di-

mensionless form (see Chapter 2 and 3 for details) as

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) − ΩLz + β|ψ|2 + λ

(
Udip ∗ |ψ|2

)]
ψ, x ∈ R3, t > 0, (1.12)

where x = (x, y, z)T ∈ R3, Ω represents the rotational speed of the laser beam, λ is a

parameter representing the dipole-dipole interaction strength and other parameters are

the same as in (1.1). Lz is the z-component of angular momentum defined as

Lz = −i(x∂y − y∂x), (1.13)

and Udip(x) is given as

Udip(x) =
3

4π

1 − 3(x · n)2/|x|2
|x|3 =

3

4π

1 − 3 cos2(θ)

|x|3 , x ∈ R3, (1.14)

with the dipolar axis n = (n1, n2, n3)
T ∈ R3 satisfying |n| =

√
n2

1 + n2
2 + n3

3 = 1 and θ

being the angle between n and x. We will investigate the properties of dipolar GPE (1.12)

both analytically and numerically.

2. Coupled Gross-Pitaevskii equations. Early experiments of BEC [7, 36, 52] have

been using the magnetic field to trap the quantum gas and the spin degrees of freedom of

the particles were frozen. Later, optical traps were used to replace the magnetic trap and

the spin degree of freedom is then activated. This leads to the multiple component BEC.

BEC with multiple species have been realized in experiments [74, 75, 100, 101, 108, 126,

133] and some interesting phenomenon absent in single-component BEC were observed in

experiments and studied in theory [9, 21,26,38,57,83,99]. The simplest multi-component

BEC is the binary mixture, which can be used as a model for producing coherent atomic

beams (also called as atomic laser) [127, 128]. The first experiment of two-component

BEC was performed in JILA with |F = 2,mf = 2〉 and |1,−1〉 spin states of 87Rb [108].

Since then, extensive experimental and theoretical studies of two-component BEC have

been carried out in the last several years [10, 40, 80, 102, 151, 167]. In the thesis, we will

consider the coupled GPEs modeling a two-component BEC in optical resonators, given
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in the dimensionless form [75,83,117,153,167]

i∂tψ1 =

[
−1

2
∇2 + V (x) + δ + (β11|ψ1|2 + β12|ψ2|2)

]
ψ1 + (λ+ γP (t))ψ2,

i∂tψ2 =

[
−1

2
∇2 + V (x) + (β21|ψ1|2 + β22|ψ2|2)

]
ψ2 + (λ+ γP̄ (t))ψ1,

i∂tP (t) =

∫

Rd

γψ̄2(x, t)ψ1(x, t) dx + νP (t), x ∈ Rd.

(1.15)

Here, Ψ(x, t) := (ψ1(x, t), ψ2(x, t))
T is the complex-valued macroscopic wave function

vector, |P (t)|2 corresponds to the total number of photons in the cavity at time t, V (x)

is the real-valued external trapping potential, ν and γ describe the effective detuning

strength and the coupling strength of the ring cavity respectively, λ is the effective Rabi

frequency to realize the internal atomic Josephson junction (JJ) by a Raman transition,

δ is the Raman transition constant, and βjl = βlj =
4πNajl

a0
(j, l = 1, 2) are interaction

constants with N being the total number of particle in the two-component BEC, a0 being

the dimensionless spatial unit and ajl = alj (j, l = 1, 2) being the s-wave scattering lengths

between the j-th and l-th component (positive for repulsive interaction and negative for

attractive interaction).

Other multiple BEC such as spin-F BEC (F integer) can be modeled similarly using

the mean field approximation. Generally speaking, a spin-F BEC has 2F + 1 spin states

and thus can be described by 2F + 1 coupled GPEs. Here, we focus on the simplest two

coupled GPEs.

3. Nonlinear Schrödinger equation with wave operator. GPE is a special NLSE

with cubic nonlinearity and NLSE appears in a wide range of physical applications. For

example, NLSE can be taken as the singular limit of the Klein-Gordon equation or the

Zakharov system. Before taking the limits, there is a nonlinear Schrödinger equation

with wave operator (NLSW) in some applications, such as the nonrelativistic limit of the

Klein-Gordon equation [104,129,150], the Langmuir wave envelope approximation [31,51]

in plasma, and the modulated planar pulse approximation of the sine-Gordon equation for

light bullets [14,159]. The NLSW in the dimensionless form reads as




i∂tu

ε(x, t) − ε2∂ttu
ε(x, t) + ∇2uε(x, t) + f(|uε|2)uε(x, t) = 0, x ∈ Rd, t > 0,

uε(x, 0) = u0(x), ∂tu
ε(x, 0) = uε1(x), x ∈ Rd,

(1.16)

where uε := uε(x, t) is a complex-valued function, 0 < ε ≤ 1 is a dimensionless parameter,
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f : [0,+∞) → R is a real-valued function. Formally, when ε → 0+, NLSW will converge

to the standard NLSE [31,129]. We will investigate the impact of the parameter ε in the

convergence rates for the finite difference discretizations of NLSW (1.16).

1.5 Purpose of study and structure of thesis

This work is devoted to the mathematical analysis and numerical investigation for GPE.

We focus on the ground states and the dynamics.

The thesis is organized as follows. In Chapter 2, 3 and 4, we consider the dipolar

GPE (1.12) for modeling degenerate dipolar quantum gas, which involves a nonlocal term

with a highly singular kernel. This highly singular kernel brings significant difficulties in

analysis and simulation of the dipolar GPE. We reformulate the dipolar GPE into a Gross-

Pitaevskii-Poisson system. Based on this new formulation, analytical results on ground

states and dynamics are presented. Accurate and efficient numerical methods are proposed

to compute the ground states and the dynamics. Then, we derive the lower dimensional

equations (one and two dimensions) for the three dimensional GPE (1.12) with anisotropic

trapping potential. Consequently, ground states and dynamics for the lower dimensional

equations are analyzed and numerical methods are proposed to compute the ground states.

On the other hand, rigorous convergence rates between the three dimensional GPE and

lower dimensional equations are established in certain parameter regimes. Lastly, GPE

(1.12) with a rotational term is considered.

In Chapter 5, we consider a system of two coupled GPEs modeling a two-component

BEC. We prove the existence and uniqueness, as well as limiting behavior of the ground

states in different parameter regimes. Furthermore, efficient and accurate numerical meth-

ods are designed for finding the ground states.

Chapter 6 is devoted to the numerical analysis for the finite difference discretizations

applied to the rotational GPE ((1.12) with λ = 0), in two and three dimensions. The

optimal convergence rates are obtained for conservative Crank-Nicolson finite difference

(CNFD) method and semi-implicit finite difference (SIFD) method for discretizing GPE

(1.12) without the nonlocal term, at the order O(h2 + τ2) with time step τ and mesh size

h, in both discrete l2 norm and discrete semi-H1 norm. Moreover, we make numerical
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comparison between CNFD and SIFD and conclude that SIFD is preferable in practical

computation.

In Chapter 7, we investigate the uniform convergence rates (resp. to ε) for finite

difference methods applied to NLSW (1.16). The solution of NLSW (1.16) oscillates in time

with O(ε2)-wavelength at O(ε2) and O(ε4) amplitudes for ill-prepared and well-prepared

initial data, respectively. This high oscillation in time brings significant difficulties in

establishing error estimates uniformly in ε of the standard finite difference methods for

NLSW, such as CNFD and SIFD. Using new technical tools, we obtain error bounds

uniformly in ε, at the order of O(h2 + τ2/3) and O(h2 + τ) with time step τ and mesh size

h for ill-prepared and well-prepared initial data, respectively, for both CNFD and SIFD

in the l2-norm and discrete semi-H1 norm. In addition, our error bounds are valid for

general nonlinearity f(·) (1.16) in one, two and three dimensions.

In Chapter 8, we draw some conclusion and discuss some future work.



Chapter 2
Gross-Pitaevskii equation for degenerate

dipolar quantum gas

In this chapter, we consider GPE modeling degenerate dipolar quantum gas. Ground

states and dynamics are analyzed rigorously. An efficient and accurate backward Euler

sine pseudospectral method is designed to compute the ground states and a time-splitting

sine pseudospectral method is proposed for dynamics.

2.1 Introduction

At temperature T much smaller than the critical temperature Tc, a dipolar BEC is well

described by the macroscopic wave function ψ = ψ(x, t) whose evolution is governed by

the three-dimensional (3D) Gross-Pitaevskii equation (GPE) [125,162]

i~∂tψ(x, t) =

[
− ~2

2m
∇2 + V (x) + U0|ψ|2 +

(
Vdip ∗ |ψ|2

)]
ψ, x ∈ R3, t > 0, (2.1)

where x = (x, y, z)T ∈ R3 is the Cartesian coordinates, m is the mass of a dipolar particle

and V (x) is an external trapping potential. When a harmonic trap potential is considered,

V (x) =
m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) (2.2)

with ωx, ωy and ωz being the trap frequencies in x-, y- and z-directions, respectively.

U0 = 4π~
2as
m describes local (or short-range) interaction between dipoles in the condensate

with as the s-wave scattering length (positive for repulsive interaction and negative for

11
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attractive interaction). The long-range dipolar interaction potential between two dipoles

is given by

Vdip(x) =
µ0µ

2
dip

4π

1 − 3(x · n)2/|x|2
|x|3 =

µ0µ
2
dip

4π

1 − 3 cos2(θ)

|x|3 , x ∈ R3, (2.3)

where µ0 is the vacuum magnetic permeability, µdip is permanent magnetic dipole moment

(e.g. µdip = 6µ
B

for 52Cr with µ
B

being the Bohr magneton), n = (n1, n2, n3)
T ∈ R3 is the

dipole axis (or dipole moment) which is a given unit vector, i.e. |n| =
√
n2

1 + n2
2 + n3

3 = 1,

and θ is the angle between the dipole axis n and the vector x. The wave function is

normalized according to

‖ψ‖2
2 :=

∫

R3

|ψ(x, t)|2 dx = N, (2.4)

where N is the total number of dipolar particles in the dipolar BEC.

By introducing the dimensionless variables, t → t
ω0

with ω0 = min{ωx, ωy, ωz}, x →
a0x with a0 =

√
~

mω0
, ψ →

√
Nψ

a
3/2
0

, we obtain the dimensionless GPE in 3D from (2.1)

as [18,117,162,163]:

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + β|ψ|2 + λ

(
Udip ∗ |ψ|2

)]
ψ, x ∈ R3, t > 0, (2.5)

where β = NU0

~ω0a30
= 4πasN

a0
, λ =

mNµ0µ2
dip

3~2a0
, V (x) = 1

2(γ2
xx

2+γ2
yy

2+γ2
zz

2) is the dimensionless

harmonic trapping potential with γx = ωx
ω0

, γy =
ωy

ω0
and γz = ωz

ω0
, and the dimensionless

long-range dipolar interaction potential Udip(x) is given as

Udip(x) =
3

4π

1 − 3(x · n)2/|x|2
|x|3 =

3

4π

1 − 3 cos2(θ)

|x|3 , x ∈ R3. (2.6)

In fact, the above nondimensionlization is obtained by adopting a unit system where the

units for length, time and energy are given by a0, 1/ω0 and ~ω0, respectively. As stated

in section 1.1, there are two important invariants of (2.5), the mass (or normalization) of

the wave function

N(ψ(·, t)) := ‖ψ(·, t)‖2 =

∫

R3

|ψ(x, t)|2 dx ≡
∫

R3

|ψ(x, 0)|2 dx = 1, t ≥ 0, (2.7)

and the energy per particle

E(ψ(·, t)) :=

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4 +

λ

2

(
Udip ∗ |ψ|2

)
|ψ|2

]
dx

≡ E(ψ(·, 0)), t ≥ 0. (2.8)
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Analogous to the case of GPE (1.1), to find the stationary states including ground and

excited states of a dipolar BEC, we take the ansatz

ψ(x, t) = e−iµtφ(x), x ∈ R3, t ≥ 0, (2.9)

where µ ∈ R is the chemical potential and φ := φ(x) is a time-independent function.

Plugging (2.9) into (2.5), we get the time-independent GPE (or a nonlinear eigenvalue

problem)

µφ(x) =

[
−1

2
∇2 + V (x) + β|φ|2 + λ

(
Udip ∗ |φ|2

)]
φ(x), x ∈ R3, (2.10)

under the constraint

‖φ‖2
2 :=

∫

R3

|φ(x)|2 dx = 1. (2.11)

The ground state of a dipolar BEC is usually defined as the minimizer of the following

nonconvex minimization problem for energy E(·) in (2.8) :

Find φg ∈ S3 and µg ∈ R such that

Eg := E(φg) = min
φ∈S3

E(φ), µg := µ(φg), (2.12)

where the nonconvex set S3 is defined in (1.5) and the chemical potential (or eigenvalue

of (2.10)) is defined as

µ(φ) :=

∫

R3

[
1

2
|∇φ|2 + V (x)|φ|2 + β|φ|4 + λ

(
Udip ∗ |φ|2

)
|φ|2

]
dx

≡ E(φ) +
1

2

∫

R3

[
β|φ|4 + λ

(
Udip ∗ |φ|2

)
|φ|2

]
dx. (2.13)

In fact, the nonlinear eigenvalue problem (2.10) under the constraint (2.11) can be viewed

as the Euler-Lagrangian equation of the nonconvex minimization problem (2.12). Any

eigenfunction of the nonlinear eigenvalue problem (2.10) under the constraint (2.11) whose

energy is larger than that of the ground state is usually called as an excited state in the

physics literatures.

The theoretical study of dipolar BECs including ground states and dynamics as well

as quantized vortices has been carried out in recent years based on the GPE (2.1). For the

study in physics, we refer to [1,58,66,68,92,92,109,112,119,157,158,163,168] and references

therein. For the mathematical studies, existence and uniqueness as well as the possible

blow-up of solutions were studied in [42], and existence of solitary waves was proved
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in [8]. In most of the numerical methods used in the literatures for theoretically and/or

numerically studying the ground states and dynamics of dipolar BECs, the way to deal with

the convolution in (2.5) is usually to use the Fourier transform [33,69,93,122,147,160,165].

However, due to the high singularity in the dipolar interaction potential (2.6), there are

two drawbacks in these numerical methods: (i) the Fourier transforms of the dipolar

interaction potential (2.6) and the density function |ψ|2 are usually carried out in the

continuous level on the whole space R3 (see (2.18) for details) and in the discrete level

on a bounded computational domain U , respectively, and due to this mismatch, there

is a locking phenomena in practical computation as observed in [122]; (ii) the second

term in the Fourier transform of the dipolar interaction potential is 0
0 -type for 0-mode, i.e

when ξ = 0 (see (2.18) for details), and it is artificially omitted when ξ = 0 in practical

computation [33, 70, 113, 122, 160, 163, 164] thus this may cause some numerical problems

too. The main aim of this chapter is to propose new numerical methods for computing

ground states and dynamics of dipolar BECs which can avoid the above two drawbacks

and thus they are more accurate than those currently used in the literatures. The key

step is to decouple the dipolar interaction potential into a short-range and a long-range

interaction (see (2.17) for details) and thus we can reformulate the GPE (2.5) into a Gross-

Pitaevskii-Poisson type system. In addition, based on the new mathematical formulation,

we can prove existence and uniqueness as well as nonexistence of the ground states and

discuss mathematically the dynamical properties of dipolar BECs in different parameter

regimes.

2.2 Analytical results for ground states and dynamics

Let r = |x| =
√
x2 + y2 + z2 and denote

∂n = n · ∇ = n1∂x + n2∂y + n3∂z, ∂nn = ∂n(∂n). (2.14)

Using the equality (see [115] and a mathematical proof in Appendix A)

1

r3

(
1 − 3(x · n)2

r2

)
= −4π

3
δ(x) − ∂nn

(
1

r

)
, x ∈ R3, (2.15)

with δ(x) being the Dirac distribution function and introducing a new function

ϕ(x, t) :=

(
1

4π|x|

)
∗ |ψ(·, t)|2 =

1

4π

∫

R3

1

|x − x′| |ψ(x′, t)|2 dx′, x ∈ R3, t ≥ 0, (2.16)
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we obtain

Udip ∗ |ψ(·, t)|2 = −|ψ(x, t)|2 − 3∂nn (ϕ(x, t)) , x ∈ R3, t ≥ 0. (2.17)

In fact, the above equality decouples the dipolar interaction potential into a short-range

and a long-range interaction which correspond to the first and second terms in the right

hand side of (2.17), respectively. In fact, from (2.14)-(2.17), it is straightforward to get

the Fourier transform of Udip(x) as

(̂Udip)(ξ) = −1 +
3 (n · ξ)2

|ξ|2 , ξ ∈ R3. (2.18)

Plugging (2.17) into (2.5) and noticing (2.16), we can reformulate the GPE (2.5) into a

Gross-Pitaevskii-Poisson type system (GPPS)

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + (β − λ)|ψ(x, t)|2 − 3λ∂nnϕ(x, t)

]
ψ(x, t), (2.19)

∇2ϕ(x, t) = −|ψ(x, t)|2, lim
|x|→∞

ϕ(x, t) = 0 x ∈ R3, t > 0. (2.20)

Note that the far-field condition in (2.20) makes the Poisson equation uniquely solvable.

Using (2.20) and integration by parts, we can reformulate the energy functional E(·) in

(2.8) as

E(ψ) =

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

1

2
(β − λ)|ψ|4 +

3λ

2
|∂n∇ϕ|2

]
dx , (2.21)

where ϕ is defined through (2.20). This immediately shows that the decoupled short-

range and long-range interactions of the dipolar interaction potential are attractive and

repulsive, respectively, when λ > 0; and are repulsive and attractive, respectively, when

λ < 0. Similarly, the nonlinear eigenvalue problem (2.10) can be reformulated as

µφ(x) =

[
−1

2
∇2 + V (x) + (β − λ) |φ|2 − 3λ∂nnϕ(x)

]
φ(x), (2.22)

∇2ϕ(x) = −|φ(x)|2, x ∈ R3, lim
|x|→∞

ϕ(x) = 0. (2.23)

2.2.1 Existence and uniqueness for ground states

Under the new formulation for the energy functional E(·) in (2.21), we have

Lemma 2.1 For the energy E(·) in (2.21), we have



2.2 Analytical results for ground states and dynamics 16

(i) For any φ ∈ S3, denote ρ(x) = |φ(x)|2 for x ∈ R3, then we have

E(φ) ≥ E(|φ|) = E (
√
ρ) , ∀φ ∈ S3, (2.24)

so the minimizer φg of (2.12) is of the form eiθ0 |φg| for some constant θ0 ∈ R.

(ii) When β ≥ 0 and −1
2β ≤ λ ≤ β, the energy E(

√
ρ) is strictly convex in ρ.

Proof: For any φ ∈ S3, denote ρ = |φ|2 and consider the Poisson equation

∇2ϕ(x) = −|φ(x)|2 := −ρ(x), x ∈ R3, lim
|x|→∞

ϕ(x) = 0. (2.25)

Noticing (2.14) with |n| = 1, we have the estimate

‖∂n∇ϕ‖2 ≤ ‖D2ϕ‖2 = ‖∇2ϕ‖2 = ‖ρ‖2 = ‖φ‖2
4, with D2 = ∇∇. (2.26)

(i) Write φ(x) = eiθ(x)|φ(x)|, noticing (2.21) with ψ = φ and (2.25), we get

E(φ) =

∫

R3

[
1

2
|∇|φ| |2 +

1

2
|φ|2|∇θ(x)|2 + V (x)|φ|2 +

1

2
(β − λ)|φ|4 +

3λ

2
|∂n∇ϕ|2

]
dx

≥
∫

R3

[
1

2
|∇|φ| |2 + V (x)|φ|2 +

1

2
(β − λ)|φ|4 +

3λ

2
|∂n∇ϕ|2

]
dx

= E(|φ|) = E (
√
ρ) , ∀φ ∈ S3, (2.27)

and the equality holds iff ∇θ(x) = 0 for x ∈ R3, which means θ(x) ≡ θ0 is a constant.

(ii) From (2.21) with ψ = φ and noticing (2.25), we can split the energy E
(√
ρ
)

into

two parts, i.e.

E(
√
ρ) = E1(

√
ρ) + E2(

√
ρ), (2.28)

where

E1(
√
ρ) =

∫

R3

[
1

2
|∇√

ρ|2 + V (x)ρ

]
dx, (2.29)

E2(
√
ρ) =

∫

R3

[
1

2
(β − λ)|ρ|2 +

3λ

2
|∂n∇ϕ|2

]
dx. (2.30)

As shown in [97], E1

(√
ρ
)

is convex (strictly) in ρ. Thus we only need to prove E2

(√
ρ
)

is convex too. In order to do so, consider
√
ρ1 ∈ S3,

√
ρ2 ∈ S3, and let ϕ1 and ϕ2 be the

solutions of the Poisson equation (2.25) with ρ = ρ1 and ρ = ρ2, respectively. For any

α ∈ [0, 1], we have
√
αρ1 + (1 − α)ρ2 ∈ S3, and

αE2(
√
ρ1) + (1 − α)E2(

√
ρ2) − E2

(√
αρ1 + (1 − α)ρ2

)

= α(1 − α)

∫

R3

[
1

2
(β − λ)(ρ1 − ρ2)

2 +
3λ

2
|∂n∇(ϕ1 − ϕ2)|2

]
dx, (2.31)
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which immediately implies that E2(
√
ρ) is convex if β ≥ 0 and 0 ≤ λ ≤ β. If β ≥ 0 and

−1
2β ≤ λ < 0, noticing that αϕ1 + (1−α)ϕ2 is the solution of the Poisson equation (2.25)

with ρ = αρ1+(1−α)ρ2, combining (2.26) with ϕ = ϕ1−ϕ2 and (2.31), we obtain E2(
√
ρ)

is convex again. Combining all the results above together, the conclusion follows.

Now, we are able to prove the existence and uniqueness as well as nonexistence results

for the ground state of a dipolar BEC in different parameter regimes.

Theorem 2.1 Assume V (x) ≥ 0 for x ∈ R3 and lim
|x|→∞

V (x) = ∞ (i.e., confining poten-

tial), then we have:

(i) If β ≥ 0 and −1
2β ≤ λ ≤ β, there exists a ground state φg ∈ S3, and the positive

ground state |φg| is unique. Moreover, φg = eiθ0 |φg| for some constant θ0 ∈ R.

(ii) If β < 0, or β ≥ 0 and λ < −1
2β or λ > β, there exists no ground state, i.e.,

inf
φ∈S3

E(φ) = −∞.

Proof: (i) Assume β ≥ 0 and −1
2β ≤ λ ≤ β, we first show E(φ) is nonnegative in S3, i.e.

E(φ) =

∫

R3

[
1

2
|∇φ|2 + V (x)|φ|2 +

1

2
(β − λ)|φ|4 +

3λ

2
|∂n∇ϕ|2

]
dx ≥ 0, ∀φ ∈ S3. (2.32)

In fact, when β ≥ 0 and 0 ≤ λ ≤ β, noticing (2.21) with ψ = φ, it is obvious that (2.32)

is valid. When β ≥ 0 and −1
2β ≤ λ < 0, combining (2.21) with ψ = φ, (2.25) and (2.26),

we obtain (2.32) again as

E(φ) ≥
∫

R3

[
1

2
|∇φ|2 + V (x)|φ|2 +

1

2
(β − λ)|φ|4 +

3λ

2
|φ|4

]
dx

=

∫

R3

[
1

2
|∇φ|2 + V (x)|φ|2 +

1

2
(β + 2λ) |φ|4

]
dx ≥ 0. (2.33)

Now, let {φn}∞n=0 ⊂ S3 be a minimizing sequence of the minimization problem (2.12).

Then there exists a constant C such that

‖∇φn‖2 ≤ C, ‖φn‖4 ≤ C,

∫

R3

V (x)|φn(x)|2dx ≤ C, n ≥ 0. (2.34)

Therefore φn belongs to a weakly compact set in L4, H1 = {φ | ‖φ‖2 + ‖∇φ‖2 < ∞},
and L2

V = {φ |
∫

R3 V (x)|φ(x)|2 dx < ∞} with a weighted L2-norm given by ‖φ‖V =

[
∫

R3 |φ(x)|2V (x)dx]1/2. Thus, there exists a φ∞ ∈ H1
⋂
L2
V

⋂
L4 and a subsequence (which

we denote as the original sequence for simplicity), such that

φn ⇀ φ∞, in L2 ∩ L4 ∩ L2
V , ∇φn ⇀ ∇φ∞, in L2. (2.35)
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Also, we can suppose that φn is nonnegative, since we can replace them with |φn| , which

also minimize the functional E. Similar as in [97], we can obtain ‖φ∞‖2 = 1 due to

the confining property of the potential V (x). So, φ∞ ∈ S3. Moreover, the L2-norm

convergence of φn and weak convergence in (2.35) would imply the strong convergence

φn → φ∞ ∈ L2. Thus, employing Hölder inequality and Sobolev inequality, we obtain

‖(φn)2 − (φ∞)2‖2 ≤ C1‖φn − φ∞‖1/2
2 (‖φn‖1/2

6 + ‖φ∞‖1/2
6 )

≤ C2(‖∇φn‖1/2
2 + ‖∇φ∞‖1/2

2 )‖φn − φ∞‖2 → 0, n→ ∞, (2.36)

which shows ρn = (φn)2 → ρ∞ = (φ∞)2 ∈ L2. Since E2(
√
ρ) in (2.30) is convex and

lower semi-continuous in ρ, thus E2(φ
∞) ≤ lim

n→∞
E2(φ

n). For E1 in (2.29), E1(φ
∞) ≤

lim
n→∞

E1(φ
n) because of the lower semi-continuity of the H1- and L2

V -norm. Combining

the results together, we know E(φ∞) ≤ lim
n→∞

E(φn), which proves that φ∞ is indeed a

minimizer of the minimization problem (2.12). The uniqueness follows from the strict

convexity of E(
√
ρ) as shown in Lemma 2.1.

(ii) Assume β < 0, or β ≥ 0 and λ < −1
2β or λ > β. Without loss of generality, we

assume n = (0, 0, 1)T and choose the function

φε1,ε2(x) =
1

(2πε1)1/2
· 1

(2πε2)1/4
exp

(
−x

2 + y2

2ε1

)
exp

(
− z2

2ε2

)
, x ∈ R3, (2.37)

with ε1 and ε2 two small positive parameters (in fact, for general n ∈ R3 satisfies |n| = 1,

we can always choose 0 6= n1 ∈ R3 and 0 6= n2 ∈ R3 such that {n1, n2, n} forms an

orthonormal basis of R3 and do the change of variables x = (x, y, z)T to y = (x · n1, x ·
n2, x·n)T on the right hand side of (2.21), the following computation is still valid). Taking

the standard Fourier transform at both sides of the Poisson equation

−∇2ϕε1,ε2(x) = |φε1,ε2(x)|2 = ρε1,ε2(x), x ∈ R3, lim
|x|→∞

ϕε1,ε2(x) = 0, (2.38)

we get

|ξ|2ϕ̂ε1,ε2(ξ) = ρ̂ε1,ε2(ξ), ξ ∈ R3. (2.39)

Using the Plancherel formula and changing of variables, we obtain

‖∂n∇ϕε1,ε2‖2
2 =

1

(2π)3
‖(n · ξ)ϕ̂ε1,ε2(ξ)‖2

2 =
1

(2π)3

∫

R3

|ξ3|2
|ξ|2

∣∣ρ̂ε1,ε2(ξ)
∣∣2 dξ

=
1

(2π)3ε1
√
ε2

∫

R3

|ξ3|2 |ρ̂1,1(ξ)|2
(|ξ1|2 + |ξ2|2) · ε2ε1 + |ξ3|2

dξ, ε1, ε2 > 0. (2.40)
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By the dominated convergence theorem, we get

‖∂n∇ϕε1,ε2‖2
2 →

{ 0, ε2/ε1 → +∞,
∫

R3

|ρ̂1,1(ξ)|2
(2π)3ε1

√
ε2
dξ = ‖ρε1,ε2‖2

2 = ‖φε1,ε2‖4
4, ε2/ε1 → 0+.

(2.41)

When fixed ε1
√
ε2, the last integral in (2.40) is continuous in ε2/ε1 > 0. Thus, for any

α ∈ (0, 1), by adjusting ε2/ε1 := Cα > 0, we could have ‖∂n∇ϕε1,ε2‖2
2 = α‖φε1,ε2‖4

4.

Substituting (2.37) into (2.29) and (2.30) with
√
ρ = φε1,ε2 under fixed ε2/ε1 > 0, we get

E1(φε1,ε2) =

∫

R3

[
|∇φε1,ε2|2 + V (x)|φε1,ε2|2

]
dx =

C1

ε1
+
C2

ε2
+ O(1), (2.42)

E2(φε1,ε2) =
1

2

∫

R3

(β − λ+ 3αλ))|φε1,ε2|4 dx =
β − λ+ 3αλ

2
· C3

ε1
√
ε2
, (2.43)

with some constants C1, C2, C3 > 0 independent of ε1 and ε2. Thus, if β < 0, choose

α = 1/3; if β ≥ 0 and λ < −1
2β, choose 1/3 − β

3λ < α < 1; and if β ≥ 0 and λ > β,

choose 0 < α < 1
3

(
1 − β

λ

)
; as ε1, ε2 → 0+, we can get inf

φ∈S3

E(φ) = lim
ε1,ε2→0+

E1(φε1,ε2) +

E2(φε1,ε2) = −∞, which implies that there exists no ground state of the minimization

problem (2.12).

By splitting the total energy E(·) in (2.21) into kinetic, potential, interaction and

dipolar energies, i.e.

E(φ) = Ekin(φ) + Epot(φ) + Eint(φ) + Edip(φ), (2.44)

where

Ekin(φ) =
1

2

∫

R3

|∇φ(x)|2dx, Epot(φ) =

∫

R3

V (x)|φ(x)|2dx, Eint(φ) =
β

2

∫

R3

|φ(x)|4dx,

Edip(φ) =
λ

2

∫

R3

(
Udip ∗ |φ|2

)
|φ(x)|2dx =

λ

2

∫

R3

|φ(x)|2
[
−|φ(x)|2 − 3∂nnϕ

]
dx (2.45)

=
λ

2

∫

R3

[
−|φ(x)|4 + 3(∇2ϕ)(∂nnϕ)

]
dx =

λ

2

∫

R3

[
−|φ(x)|4 + 3 |∂n∇ϕ|2

]
dx,

with ϕ defined in (2.23), we have the following Viral identity:

Proposition 2.1 Suppose φe is a stationary state of a dipolar BEC, i.e. an eigenfunction

of the nonlinear eigenvalue problem (2.10) under the constraint (2.11), then we have

2Ekin(φe) − 2Epot(φe) + 3Eint(φe) + 3Edip(φe) = 0. (2.46)
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Proof: Follow the analogous proof for a BEC without dipolar interaction [117] and we

omit the details here for brevity.

2.2.2 Analytical results for dynamics

The well-posedness of the Cauchy problem of (2.1) was discussed in [42] by analyzing the

convolution kernel Udip(x) with detailed Fourier transform. Under the new formulation

(2.19)-(2.20), here we present a simpler proof for the well-posedness and show finite time

blow-up for the Cauchy problem of a dipolar BEC in different parameter regimes. We

consider the energy space Ξ3 defined in (1.4).

Theorem 2.2 (Well-posedness) Suppose the real-valued trap potential V (x) ∈ C∞(R3)

such that V (x) ≥ 0 for x ∈ R3 and DαV (x) ∈ L∞(R3) for all α ∈ N3
0 with |α| ≥ 2. For

any initial data ψ(x, t = 0) = ψ0(x) ∈ Ξ3, there exists Tmax ∈ (0,+∞] such that the

problem (2.19)-(2.20) has a unique maximal solution ψ ∈ C ([0, Tmax),Ξ3). It is maximal

in the sense that if Tmax <∞, then ‖ψ(·, t)‖Ξ3 → ∞ when t→ T−
max. Moreover, the mass

N(ψ(·, t)) and energy E(ψ(·, t)) defined in (2.7) and (2.8), respectively, are conserved for

t ∈ [0, Tmax). Specifically, if β ≥ 0 and −1
2β ≤ λ ≤ β, the solution to (2.19)-(2.20) is

global in time, i.e., Tmax = ∞.

Proof: For any φ ∈ Ξ3, let ϕ be the solution of the Poisson equation (2.25), denote

ρ = |φ|2 and define

G(φ, φ̄) := G(ρ) =
1

2

∫

R3

|φ(x)|2∂nnϕ(x) dx, g(φ) =
δG(φ, φ̄)

δφ̄
= φ ∂nnϕ. (2.47)

Noticing (2.26), it is easy to show that G(φ) ∈ C1(Ξ3,R), g(φ) ∈ C(Ξ3, L
p) for some

p ∈ (6/5, 2], and

‖g(u) − g(v)‖Lp ≤ C(‖u‖Ξ3 + ‖v‖Ξ3)‖u− v‖Lr , for some r ∈ [2, 6), ∀u, v ∈ Ξ3. (2.48)

Applying the standard Theorems 9.2.1, 4.12.1 and 5.7.1 in [43,139] for the well-posedness

of the nonlinear Schrödinger equation, we can obtain the results immediately.
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Theorem 2.3 (Finite time blow-up) If β < 0, or β ≥ 0 and λ < −1
2β or λ > β,

and assume V (x) satisfies 3V (x) + x · ∇V (x) ≥ 0 for x ∈ R3. For any initial data

ψ(x, t = 0) = ψ0(x) ∈ Ξ3 to the problem (2.19)-(2.20), there exists finite time blow-up,

i.e., Tmax <∞, if one of the following holds:

(i) E(ψ0) < 0;

(ii) E(ψ0) = 0 and Im
(∫

R3 ψ̄0(x) (x · ∇ψ0(x)) dx
)
< 0;

(iii) E(ψ0) > 0 and Im
(∫

R3 ψ̄0(x) (x · ∇ψ0(x)) dx
)
< −

√
3E(ψ0)‖xψ0‖L2 .

Proof: Define the variance

σV (t) := σV (ψ(·, t)) =

∫

R3

|x|2|ψ(x, t)|2 dx = δx(t) + δy(t) + δz(t), t ≥ 0, (2.49)

where

σα(t) := σα(ψ(·, t)) =

∫

R3

α2|ψ(x, t)|2 dx, α = x, y, z. (2.50)

For α = x, or y or z, differentiating (2.50) with respect to t, noticing (2.19) and (2.20),

integrating by parts, we get

d

dt
σα(t) = −i

∫

R3

[
αψ̄(x, t)∂αψ(x, t) − αψ(x, t)∂αψ̄(x, t)

]
dx, t ≥ 0. (2.51)

Similarly, we have

d2

dt2
σα(t) =

∫

R3

[
2|∂αψ|2 + (β − λ)|ψ|4 + 6λ|ψ|2α∂α∂nnϕ− 2α|ψ|2∂αV (x)

]
dx. (2.52)

Noticing (2.20) and

−
∫

R3

∇2ϕ (x · ∇∂nnϕ) dx =
3

2

∫

R3

|∂n∇ϕ|2 dx,

summing (2.52) for α = x, y and z, using (2.49) and (2.8), we get

d2

dt2
σV (t) = 2

∫

R3

(
|∇ψ|2 +

3

2
(β − λ)|ψ|4 +

9

2
λ|∂n∇ψ|2 − |ψ|2(x · ∇V (x))

)
dx

= 6E(ψ) −
∫

R3

|∇ψ(x, t)|2 − 2

∫

R3

|ψ(x, t)|2 (3V (x) + x · ∇V (x)) dx

≤ 6E(ψ) ≡ 6E(ψ0), t ≥ 0. (2.53)

Thus,

σV (t) ≤ 3E(ψ0)t
2 + σ′V (0)t+ σV (0), t ≥ 0,

and the conclusion follows in the same manner as those in [43,139] for the standard non-

linear Schrödinger equation.
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Figure 2.1: Surface plots of |φg(x, 0, z)|2 (left column) and isosurface plots of |φg(x, y, z)| =
0.01 (right column) for the ground state of a dipolar BEC with β = 401.432 and λ = 0.16β
for harmonic potential (top row), double-well potential (middle row) and optical lattice
potential (bottom row).
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Isosurface plots of the ground state (x) = 0.08 of a dipolar BEC with the harmonic potential= 0.08 of a dipolar BEC with the harmonic potential V x
1 x2 y2 z2 and = 207.16 for different

Figure 2.2: Isosurface plots of the ground state |φg(x)| = 0.08 of a dipolar BEC with the
harmonic potential V (x) = 1

2

(
x2 + y2 + z2

)
and β = 207.16 for different values of λ

β : (a)
λ
β = −0.5; (b) λ

β = 0; (c) λ
β = 0.25; (d) λ

β = 0.5; (e) λ
β = 0.75; (f) λ

β = 1.

Based on the new mathematical formulation for the energy in (2.21), we will present

an efficient and accurate backward Euler sine pseudospectral method for computing the
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Figure 2.3: Time evolution of different quantities and isosurface plots of the density func-
tion ρ(x, t) := |ψ(x, t)|2 = 0.01 at different times for a dipolar BEC when the dipolar
direction is suddenly changed from n = (0, 0, 1)T to (1, 0, 0)T at time t = 0.

ground states of a dipolar BEC.
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Figure 2.4: Time evolution of different quantities and isosurface plots of the density func-
tion ρ(x, t) := |ψ(x, t)|2 = 0.01 at different times for a dipolar BEC when the trap potential
is suddenly changed from from 1

2(x2 + y2 + 25z2) to 1
2(x2 + y2 + 25

4 z
2) at time t = 0.

In practice, the whole space problem is usually truncated into a bounded computa-

tional domain U = [a, b] × [c, d] × [e, f ] with homogeneous Dirichlet boundary condition.
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Various numerical methods have been proposed in the literatures for computing the ground

states of BEC (see [10, 15, 18, 39, 48, 50, 126] and references therein). One of the popular

and efficient techniques for dealing with the constraint (2.11) is through the following

construction [10, 12, 15]: Choose a time step ∆t > 0 and set tn = n ∆t for n = 0, 1, . . .

Applying the steepest decent method to the energy functional E(φ) in (2.21) without the

constraint (2.11), and then projecting the solution back to the unit sphere S3 at the end

of each time interval [tn, tn+1] in order to satisfy the constraint (2.11). This procedure

leads to the fact that function φ(x, t) is the solution of the following gradient flow with

discrete normalization:

∂tφ(x, t) =

[
1

2
∇2 − V (x) − (β − λ)|φ(x, t)|2 + 3λ∂nnϕ(x, t)

]
φ(x, t), (2.54)

∇2ϕ(x, t) = −|φ(x, t)|2, x ∈ U, tn ≤ t < tn+1, (2.55)

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖2
, x ∈ U, n ≥ 0, (2.56)

φ(x, t)|
x∈∂U = ϕ(x, t)|

x∈∂U = 0, t ≥ 0, (2.57)

φ(x, 0) = φ0(x), with ‖φ0‖2 = 1; (2.58)

where φ(x, t±n ) = lim
t→t±n

φ(x, t).

Let M , K and L be even positive integers and define the index sets

TMKL = {(j, k, l) | j = 1, 2, . . . ,M − 1, k = 1, 2, . . . ,K − 1, l = 1, 2, . . . , L− 1},

T 0
MKL = {(j, k, l) | j = 0, 1, . . . ,M, k = 0, 1, . . . ,K, l = 0, 1, . . . , L}.

Choose the spatial mesh sizes as hx = b−a
M , hy = d−c

K and hz = f−e
L and define

xj := a+ j hx, yk = c+ k hy, zl = e+ l hz, (j, k, l) ∈ T 0
MKL.

Denote the space

YMKL = span{Φjkl(x), (j, k, l) ∈ TMKL},

with

Φjkl(x) = sin
(
µxj (x− a)

)
sin
(
µyk(y − c)

)
sin (µzl (z − e)) , x ∈ U, (j, k, l) ∈ TMKL,

µxj =
πj

b− a
, µyk =

πk

d− c
, µzl =

πl

f − e
, (j, k, l) ∈ TMKL;
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and PMKL : Y = {ϕ ∈ C(U) | ϕ(x)|x∈∂U = 0} → YMKL be the standard project operator

[131], i.e.

(PMKLv)(x) =
M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

v̂pqs Φpqs(x), x ∈ U, ∀v ∈ Y,

with

v̂pqs =
8

(b− a)(d− c)(f − e)

∫

U
v(x) Φpqs(x) dx, (p, q, s) ∈ TMKL. (2.59)

Then a backward Euler sine spectral discretization for (2.54)-(2.58) reads:

Find φn+1(x) ∈ YMKL (i.e. φ+(x) ∈ YMKL) and ϕn(x) ∈ YMKL such that

φ+(x) − φn(x)

∆t
=

1

2
∇2φ+(x) − PMKL

{[
V (x) + (β − λ)|φn(x)|2 − 3λ∂nnϕ

n(x)
]
φ+(x)

}
,

∇2ϕn(x) = −PMKL

(
|φn(x)|2

)
, φn+1(x) =

φ+(x)

‖φ+(x)‖2
, x ∈ U, n ≥ 0;

where φ0(x) = PMKL (φ0(x)) is given.

The above discretization can be solved in phase space and it is not suitable in prac-

tice due to the difficulty of computing the integrals in (2.59). We now present an effi-

cient implementation by choosing φ0(x) as the interpolation of φ0(x) on the grid points

{(xj , yk, zl), (j, k, l) ∈ T 0
MKL}, i.e. φ0(xj , yk, zl) = φ0(xj , yk, zl) for (j, k, l) ∈ T 0

MKL, and

approximating the integrals in (2.59) by a quadrature rule on the grid points. Let φnjkl

and ϕnjkl be the approximations of φ(xj , yk, zl, tn) and ϕ(xj , yk, zl, tn), respectively, which

are the solution of (2.54)-(2.58); denote ρnjkl = |φnjkl|2 and choose φ0
jkl = φ0(xj , yk, zl) for

(j, k, l) ∈ T 0
MKL. For n = 0, 1, . . ., a backward Euler sine pseudospectral discretization for

(2.54)-(2.58) reads:

φ+
jkl − φnjkl

△t =
1

2

(
∇2
sφ

+
)∣∣
jkl

−
[
V (xj , yk, zl) + (β − λ)

∣∣φnjkl
∣∣2 − 3λ (∂s

nn
ϕn)|jkl

]
φ+
jkl , (2.60)

−
(
∇2
sϕ

n
)∣∣
jkl

= |φnj,k,l|2 = ρnjkl, φn+1
jkl =

φ+
jkl

‖φ+‖h
, (j, k, l) ∈ TMKL, (2.61)

φn+1
0kl = φn+1

Mkl = φn+1
j0l = φn+1

jKl = φn+1
jk0 = φn+1

jkL = 0, (j, k, l) ∈ T 0
MKL, (2.62)

ϕn0kl = ϕnMkl = ϕnj0l = ϕnjKl = ϕnjk0 = ϕnjkL = 0, (j, k, l) ∈ T 0
MKL; (2.63)

where ∇2
s and ∂snn are sine pseudospectral approximations of ∇2 and ∂nn, respectively,

defined as

(
∇2
sφ
n
)∣∣
jkl

= −
M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

[
(µxp)

2 + (µyq)
2 + (µzs)

2
]
(̃φn)pqs sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
,

(∂s
nn
ϕn)

∣∣∣∣
jkl

=

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

(̃ρn)pqs
(µxp)

2 + (µyq )2 + (µzs)
2

(∂nnΦpqs(x))

∣∣∣∣
(xj ,yk,zl)

, (2.64)
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for (j, k, l) ∈ TMKL with (̃φn)pqs ((p, q, s) ∈ TMKL) the discrete sine transform coefficients

of the vector φn as

(̃φn)pqs =
8

MKL

M−1∑

j=1

K−1∑

k=1

L−1∑

l=1

φnjkl sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
, (p, q, s) ∈ TMKL, (2.65)

and the discrete h-norm is defined as

‖φ+‖2
h = hxhyhz

M−1∑

j=1

N−1∑

k=1

L−1∑

l=1

|φ+
jkl|2.

Similar as those in [19], the linear system (2.60)-(2.63) can be iteratively solved in phase

space very efficiently via discrete sine transform and we omitted the details here for brevity.

2.4 A time-splitting pseudospectral method for dynamics

Similarly, based on the new Gross-Pitaevskii-Poisson type system (2.19)-(2.20), we will

present an efficient and accurate time-splitting sine pseudospectral (TSSP) method for

computing the dynamics of a dipolar BEC.

Again, in practice, the whole space problem is truncated into a bounded computational

domain U = [a, b] × [c, d] × [e, f ] with homogeneous Dirichlet boundary condition. From

time t = tn to time t = tn+1, the Gross-Pitaevskii-Poisson type system (2.19)-(2.20) is

solved in two steps. One solves first

i∂tψ(x, t) = −1

2
∇2ψ(x, t), x ∈ U, ψ(x, t)|

x∈∂U = 0, tn ≤ t ≤ tn+1, (2.66)

for the time step of length ∆t, followed by solving

i∂tψ(x, t) =
[
V (x) + (β − λ)|ψ(x, t)|2 − 3λ∂nnϕ(x, t)

]
ψ(x, t), (2.67)

∇2ϕ(x, t) = −|ψ(x, t)|2, x ∈ U, tn ≤ t ≤ tn+1; (2.68)

ϕ(x, t)|
x∈∂U = 0, ψ(x, t)|

x∈∂U = 0, tn ≤ t ≤ tn+1; (2.69)

for the same time step. Equation (2.66) will be discretized in space by sine pseudospectral

method and integrated in time exactly [23]. For t ∈ [tn, tn+1], the equations (2.67)-(2.69)

leave |ψ| and ϕ invariant in t [18, 23] and therefore they collapse to

i∂tψ(x, t) =
[
V (x) + (β − λ)|ψ(x, tn)|2 − 3λ∂nnϕ(x, tn)

]
ψ(x, t), x ∈ U, tn ≤ t ≤ tn+1, (2.70)

∇2ϕ(x, tn) = −|ψ(x, tn)|2, x ∈ U. (2.71)
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Again, equation (2.71) will be discretized in space by sine pseudospectral method [23,131]

and the linear ODE (2.70) can be integrated in time exactly [18, 23].

Let ψnjkl and ϕnjkl be the approximations of ψ(xj , yk, zl, tn) and ϕ(xj , yk, zl, tn), re-

spectively, which are the solutions of (2.19)-(2.20); and choose ψ0
jkl = ψ0(xj , yk, zl) for

(j, k, l) ∈ T 0
MKL. For n = 0, 1, . . ., a second-order TSSP method for solving (2.19)-(2.20)

via the standard Strang splitting is [18,23,135]

ψ
(1)
jkl =

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

e−i△t[(µ
x
p)2+(µy

q )2+(µz
s)2]/4 (̃ψn)pqs sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
,

ψ
(2)
jkl = e

−i△t
[
V (xj ,yk,zl)+(β−λ)|ψ

(1)
jkl

|2−3λ(∂s
nn
ϕ(1))|

jkl

]
ψ

(1)
jkl, (j, k, l) ∈ T 0

MKL, (2.72)

ψn+1
jkl =

M−1∑

p=1

K−1∑

q=1

L−1∑

s=1

e−i△t[(µ
x
p)2+(µy

q )2+(µz
s)2]/4 (̃ψ(2))pqs sin

(
jpπ

M

)
sin

(
kqπ

K

)
sin

(
lsπ

L

)
;

where (̃ψn)pqs and (̃ψ(2))pqs ((p, q, s) ∈ TMKL) are the discrete sine transform coefficients of

the vectors ψn and ψ(2), respectively (defined similar as those in (2.65)); and
(
∂snnϕ

(1)
)∣∣
jkl

can be computed as in (2.64) with ρnjkl = ρ
(1)
jkl := |ψ(1)

jkl|2 for (j, k, l) ∈ T 0
MKL.

The above method is explicit, unconditionally stable, the memory cost is O(MKL)

and the computational cost per time step is O (MKL ln(MKL)). In fact, for the stability,

we have

Lemma 2.2 The TSSP method (2.72) is normalization conservation, i.e.

‖ψn‖2
h := hxhyhz

M−1∑

j=1

K−1∑

k=1

L−1∑

l=1

|ψnjkl|2 ≡ hxhyhz

M−1∑

j=1

K−1∑

k=1

L−1∑

l=1

|ψ0
jkl|2 = ‖ψ0‖2

h, n ≥ 0.

Proof: Follow the analogous proof in [18,23] and we omit the details here for brevity.

2.5 Numerical results

In this section, we first compare our new methods and the standard method used in the

literatures [33, 147, 160, 163] to evaluate numerically the dipolar energy and then report

ground states and dynamics of dipolar BECs by using our new numerical methods.

2.5.1 Comparison for evaluating the dipolar energy

Let

φ := φ(x) = π−3/4γ1/2
x γ1/4

z e−
1
2(γx(x2+y2)+γzz2), x ∈ R3. (2.73)
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Then the dipolar energy Edip(φ) in (2.45) can be evaluated analytically as [148]

Edip(φ) = −λγx
√
γz

4π
√

2π





1+2κ2

1−κ2 − 3κ2arctan(
√
κ2−1)

(1−κ2)
√
κ2−1

, κ > 1,

0, κ = 1,

1+2κ2

1−κ2 − 1.5κ2

(1−κ2)
√

1−κ2
ln
(

1+
√

1−κ2

1−
√

1−κ2

)
, κ < 1,

(2.74)

with κ =
√

γz

γx
. This provides a perfect example to test the efficiency of different numerical

methods to deal with the dipolar potential. Based on our new formulation (2.45), the

dipolar energy can be evaluated via discrete sine transform (DST) as

Edip(φ) ≈ λhxhyhz
2

M−1∑

j=1

K−1∑

k=1

L−1∑

l=1

|φ(xj , yk, zl)|2
[
−|φ(xj , yk, zl)|2 − 3 (∂s

nn
ϕn)|jkl

]
,

where (∂snnϕ
n)|jkl is computed as in (2.64) with ρnjkl = |φ(xj , yk, zl)|2 for (j, k, l) ∈ T 0

MKL.

In the literatures [33, 147, 160, 163], this dipolar energy is usually calculated via discrete

Fourier transform (DFT) as

Edip(φ) ≈ λhxhyhz
2

M−1∑

j=0

K−1∑

k=0

L−1∑

l=0

|φ(xj , yk, zl)|2
[
F−1
jkl

(
(̂Udip)(2µ

x
p , 2µ

y
q , 2µ

z
s) · Fpqs(|φ|2)

)]
,

where F and F−1 are the discrete Fourier and inverse Fourier transforms over the grid

points {(xj , yk, zl), (j, k, l) ∈ T 0
MKL}, respectively [160]. We take λ = 24π, the bounded

computational domain U = [−16, 16]3, M = K = L and thus h = hx = hy = hz = 32
M .

Tab. 2.1 lists the errors e :=
∣∣∣Edip(φ) − Ehdip

∣∣∣ with Ehdip computed numerically via either

(2.75) or (2.75) with mesh size h for three cases:

• Case I. γx = 0.25 and γz = 1 which implies κ = 2.0 and Edip(φ) = 0.0386708614;

• Case II. γx = γz = 1 which implies κ = 1.0 and Edip(φ) = 0;

• Case III. γx = 2 and γz = 1 which implies κ =
√

0.5 and Edip(φ) = −0.1386449741.

From Tab. 2.1 and our extensive numerical results not shown here for brevity, we can

conclude that our new method via discrete sine transform based on a new formulation is

much more accurate than that of the standard method via discrete Fourier transform in

the literatures for evaluating the dipolar energy.
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Case I Case II Case III
DST DFT DST DFT DST DFT

M = 32&h = 1 2.756E-2 2.756E-2 3.555E-18 1.279E-4 0.1018 0.1020
M = 64&h = 0.5 1.629E-3 1.614E-3 9.154E-18 1.278E-4 9.788E-5 2.269E-4
M = 128&h = 0.25 1.243E-7 1.588E-5 7.454E-17 1.278E-4 6.406E-7 1.284E-4

Table 2.1: Comparison for evaluating dipolar energy under different mesh sizes h.

2.5.2 Ground states of dipolar BECs

By using our new numerical method (2.60)-(2.63), here we report the ground states of

a dipolar BEC (e.g., 52Cr [115]) with different parameters and trapping potentials. In

our computation and results, we always use the dimensionless quantities. We take M =

K = L = 128, time step ∆t = 0.01, dipolar direction n = (0, 0, 1)T and the bounded

computational domain U = [−8, 8]3 for all cases except U = [−16, 16]3 for the cases

N
1000 = 1, 5, 10 and U = [−20, 20]3 for the cases N

1000 = 50, 100 in Tab. 2.2. The

ground state φg is reached numerically when ‖φn+1−φn‖∞ := max
0≤j≤M, 0≤k≤K, 0≤l≤L

|φn+1
jkl −

φnjkl| ≤ ε := 10−6 in (2.60)-(2.63). Tab. 2.2 shows the energy Eg := E(φg), chemical

potential µg := µ(φg), kinetic energy Egkin := Ekin(φg), potential energy Egpot := Epot(φg),

interaction energy Egint := Eint(φg), dipolar energy Egdip := Edip(φg), condensate widths

σgx := σx(φg) and σgz := σz(φg) in (2.50) and central density ρg(0) := |φg(0, 0, 0)|2 with

harmonic potential V (x, y, z) = 1
2

(
x2 + y2 + 0.25z2

)
for different β = 0.20716N and λ =

0.033146N with N the total number of particles in the condensate; and Tab. 2.3 lists

similar results with β = 207.16 for different values of −0.5 ≤ λ
β ≤ 1. In addition, Fig. 2.1

depicts the ground state φg(x), e.g. surface plots of |φg(x, 0, z)|2 and isosurface plots of

|φg(x)| = 0.01, of a dipolar BEC with β = 401.432 and λ = 0.16β for harmonic potential

V (x) = 1
2

(
x2 + y2 + z2

)
, double-well potential V (x) = 1

2

(
x2 + y2 + z2

)
+ 4e−z

2/2 and

optical lattice potential V (x) = 1
2

(
x2 + y2 + z2

)
+100

[
sin2

(
π
2x
)

+ sin2
(
π
2 y
)

+ sin2
(
π
2 z
)]

;

and Fig. 2.2 depicts the ground state φg(x), e.g. isosurface plots of |φg(x)| = 0.08, of

a dipolar BEC with the harmonic potential V (x) = 1
2

(
x2 + y2 + z2

)
and β = 207.16 for

different values of −0.5 ≤ λ
β ≤ 1.

From Tabs. 2.2&2.3 and Figs. 2.1&2.2, we can draw the following conclusions: (i)

For fixed trapping potential V (x) and dipolar direction n = (0, 0, 1)T , when β and λ

increase with the ratio λ
β fixed, the energy Eg, chemical potential µg, potential energy
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N
1000 Eg µg Egkin Egpot Egint Egdip σgx σgz ρg(0)

0.1 1.567 1.813 0.477 0.844 0.262 -0.015 0.796 1.299 0.06139
0.5 2.225 2.837 0.349 1.264 0.659 -0.047 0.940 1.745 0.02675
1 2.728 3.583 0.296 1.577 0.925 -0.070 1.035 2.009 0.01779
5 4.745 6.488 0.195 2.806 1.894 -0.151 1.354 2.790 0.00673
10 6.147 8.479 0.161 3.654 2.536 -0.204 1.538 3.212 0.00442
50 11.47 15.98 0.101 6.853 4.909 -0.398 2.095 4.441 0.00168
100 15.07 21.04 0.082 9.017 6.498 -0.526 2.400 5.103 0.00111

Table 2.2: Different quantities of the ground states of a dipolar BEC for β = 0.20716N
and λ = 0.033146N with different number of particles N .

λ
β Eg µg Egkin Egpot Egint Egdip σgx σgz ρg(0)

-0.5 2.957 3.927 0.265 1.721 0.839 0.131 1.153 1.770 0.01575
-0.25 2.883 3.817 0.274 1.675 0.853 0.081 1.111 1.879 0.01605

0 2.794 3.684 0.286 1.618 0.890 0.000 1.066 1.962 0.01693
0.25 2.689 3.525 0.303 1.550 0.950 -0.114 1.017 2.030 0.01842
0.5 2.563 3.332 0.327 1.468 1.047 -0.278 0.960 2.089 0.02087
0.75 2.406 3.084 0.364 1.363 1.212 -0.534 0.889 2.141 0.02536
1.0 2.193 2.726 0.443 1.217 1.575 -1.041 0.786 2.189 0.03630

Table 2.3: Different quantities of the ground states of a dipolar BEC with different values
of λ

β with β = 207.16.

Egpot, interaction energy Egint, condensate widths σgx and σgz of the ground states increase;

and resp., the kinetic energy Egkin, dipolar energy Egdip and central density ρg(0) decrease

(cf. Tab. 2.2). (ii) For fixed trapping potential V (x), dipolar direction n = (0, 0, 1)T and

β, when the ratio λ
β increases from −0.5 to 1, the kinetic energy Egkin, interaction energy

Egint, condensate widths σgz and central density ρg(0) of the ground states increase; and

resp., the energy Eg, chemical potential µg, potential energy Egpot, dipolar energy Egdip

and condensate widths σgx decrease (cf. Tab. 2.3). (iii) Our new numerical method can

compute the ground states accurately and efficiently (cf. Figs. 2.1&2.2).

2.5.3 Dynamics of dipolar BECs

Similarly, by using our new numerical method (2.72), here we report the dynamics of a

dipolar BEC (e.g., 52Cr [115]) under different setups. Again, in our computation and

results, we always use the dimensionless quantities. We take the bounded computational
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domain U = [−8, 8]2 × [−4, 4], M = K = L = 128, i.e. h = hx = hy = 1/8, hz = 1/16,

time step ∆t = 0.001. The initial data ψ(x, 0) = ψ0(x) is chosen as the ground state

of a dipolar BEC computed numerically by our numerical method with n = (0, 0, 1)T ,

V (x) = 1
2 (x2 + y2 + 25z2), β = 103.58 and λ = 0.8β = 82.864.

The first case to study numerically is the dynamics of suddenly changing the dipolar

direction from n = (0, 0, 1)T to n = (1, 0, 0)T at t = 0 and keeping all other quan-

tities unchanged. Fig. 2.3 depicts time evolution of the energy E(t) := E(ψ(·, t)),
chemical potential µ(t) = µ(ψ(·, t), kinetic energy Ekin(t) := Ekin(ψ(·, t)), potential

energy Epot(t) := Epot(ψ(·, t)), interaction energy Eint(t) := Eint(ψ(·, t)), dipolar en-

ergy Edip(t) := Edip(ψ(·, t)), condensate widths σx(t) := σx(ψ(·, t)), σz(t) := σz(ψ(·, t)),
and central density ρ(t) := |ψ(0, t)|2, as well as the isosurface of the density function

ρ(x, t) := |ψ(x, t)|2 = 0.01 for different times. In addition, Fig. 2.4 show similar results

for the case of suddenly changing the trapping potential from V (x) = 1
2 (x2 +y2 +25z2) to

V (x) = 1
2 (x2+y2+ 25

4 z
2) at t = 0, i.e. decreasing the trapping frequency in z-direction from

5 to 5
2 , and keeping all other quantities unchanged; Fig. 2.5 show the results for the case

of suddenly changing the dipolar interaction from λ = 0.8β = 82.864 to λ = 4β = 414.32

at t = 0 while keeping all other quantities unchanged, i.e. collapse of a dipolar BEC; and

Fig. 2.6 show the results for the case of suddenly changing the interaction constant β

from β = 103.58 to β = −569.69 at t = 0 while keeping all other quantities unchanged,

i.e. another collapse of a dipolar BEC.

From Figs. 2.3, 2.4, 2.5 and 2.6, we can conclude that the dynamics of dipolar BEC can

be very interesting and complicated. In fact, global existence of the solution is observed

in the first two cases (cf. Figs. 2.3&2.4) and finite time blow-up is observed in the

last two cases (cf. Figs. 2.5&2.6). The total energy is numerically conserved very well

in our computation when there is no blow-up (cf. Figs. 2.3&2.4) and before blow-up

happens (cf. Figs. 2.5&2.6). Of course, it is not conserved numerically near or after

blow-up happens because the mesh size and time step are fixed which cannot resolve the

solution. In addition, our new numerical method can compute the dynamics of dipolar

BEC accurately and efficiently.
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Figure 2.5: Time evolution of different quantities and isosurface plots of the density func-
tion ρ(x, t) := |ψ(x, t)|2 = 0.01 at different times for a dipolar BEC when the dipolar
interaction constant is suddenly changed from λ = 0.8β = 82.864 to λ = 4β = 414.32 at
time t = 0.
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Figure 6: Time evolution of different quantities and isosurface plots of the density functionFigure 6: Time evolution of different quantities and isosurface plots of the density function

Figure 2.6: Time evolution of different quantities and isosurface plots of the density func-
tion ρ(x, t) := |ψ(x, t)|2 = 0.01 at different times for a dipolar BEC when the interaction
constant β is suddenly changed from β = 103.58 to β = −569.69 at time t = 0.



Chapter 3
Dipolar Gross-Pitaevskii equation with

anisotropic confinement

In this chapter, we continue the study of 3D dipolar GPE (2.5). With strongly anisotropic

confining potential, spatial degrees of freedom of BEC can be frozen in one or two direc-

tions. Then the corresponding 3D dipolar GPE (2.5) can be reduced to lower dimensional

equations. We derive the effective equations in lower dimensions for these cases. The corre-

sponding properties of ground states and dynamics are analyzed and the convergence rate

of such dimension reduction is proved in certain parameter regimes. Numerical methods

are proposed to compute the ground states for reduced equations.

3.1 Lower dimensional models for dipolar GPE

For the 3D dipolar GPE (2.5) which is reformulated into GPPS (2.19)-(2.20), we consider

the following two cases where V (x) (x = (x, y, z)T ∈ R3) is anisotropic:

Case I, potential is highly confined in vertical z direction, where

V (x) = V2(x, y) +
z2

2ε4
. (3.1)

Case II, potential is highly confined in horizon x− y plane, where

V (x) = V1(z) +
x2 + y2

2ε4
. (3.2)

In both cases, ε > 0 is a small parameter describing the strength of confinement.

36
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In Case I, when ε → 0+, evolution of the solution ψ(x, t) of GPPS (2.19)-(2.20)

would essentially occur in the ground state mode of −1
2∂zz + z2

2ε4
, which is spanned by

wε(z) = ε−1/2π−1/4e−
z2

2ε2 . By taking ansatz

ψ(x, t) = e−it/2ε
2
ε−1/2φ(x, y, t)wε(z), (x, y, z) ∈ R3, t ≥ 0, (3.3)

the three dimensional (3D) GPPS (2.19)-(2.20) will be formally reduced to a quasi-2D

equation I (shown in Appendix B):

i∂tφ =

[
−1

2
∆+V2 +

β − λ+ 3λn2
3

ε
√

2π
|φ|2 − 3λ

2
(∂n⊥n⊥

−n2
3∆)ϕ2D

]
φ, x ∈ R2, t ≥ 0, (3.4)

where x = (x, y)T , n⊥ = (n1, n2)
T , ∂n⊥

= n⊥ · ∇, ∂n⊥n⊥
= ∂n⊥

(∂n⊥
), ∆ = ∂xx + ∂yy and

ϕ2D(x, t) = U2D
ε ∗ |φ|2, U2D

ε (x) =
1

2
√

2π3/2

∫

R

e−s
2/2

√
x2 + y2 + ε2s2

ds, x ∈ R2, t ≥ 0. (3.5)

In addition, as ε→ 0+, ϕ2D can be approximated by

ϕ2D(x, t) = U2D
dip ∗ |φ|2, with U2D

dip (x) =
1

2π
√
x2 + y2

, x ∈ R2, t ≥ 0, (3.6)

which can be re-written as a fractional Poisson equation

(−∆)1/2ϕ2D(x, t) = |φ(x, t)|2, x ∈ R2, lim
|x|→∞

ϕ2D(x, t) = 0, t ≥ 0. (3.7)

Thus an alternative quasi-2D equation II can be obtained as :

i∂tφ =

[
−1

2
∆ + V2 +

β − λ+ 3λn2
3

ε
√

2π
|φ|2 − 3λ

2
(∂n⊥n⊥

− n2
3∆)(−∆)−1/2(|φ|2)

]
φ. (3.8)

Similarly, in Case II, evolution of the solution ψ(x, t) of GPPS (2.19)-(2.20) in x-,

y-directions would essentially occur in the ground state mode of −1
2(∂xx + ∂yy) + x2+y2

2ε4 ,

which is spanned by wε(x, y) = ε−1π−1/2e−
x2+y2

2ε2 . Again, by taking the ansatz

ψ(x, t) = e−it/ε
2
φ(z, t)wε(x, y), x = (x, y, z) ∈ R3, t ≥ 0, (3.9)

the 3D GPPS (2.19)-(2.20) will be formally reduced to a quasi-1D equation :

i∂tφ =

[
−1

2
∂zz + V1 +

2β + λ(1 − 3n2
3)

2πε2
|φ|2 − 3λ(3n2

3 − 1)

8
√

2ε2π
∂zzϕ

1D

]
φ, z ∈ R, t > 0,(3.10)

where

ϕ1D(z, t) = U1D
ε ∗ |φ|2, U1D

ε (z) =

√
2ez

2/2ε2

√
π ε

∫ ∞

|z|
e−s

2/2ε2 ds, z ∈ R, t ≥ 0. (3.11)
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The above effective lower dimensional models in 2D and 1D are very useful in the study

of dipolar BEC since the reduced equations retain the full structure information while they

are much easier and cheaper to be simulated in practical computation. In fact, for the GPE

without the dipolar term, i.e. λ = 0, there have been extensive studies on this subject.

For formal analysis and numerical simulation, the convergence rate of such dimension

reduction was investigated numerically in [17, 22] and a nonlinear Schrödinger equation

with polynomial nonlinearity in reduced dimensions was proposed in [124]. For rigorous

analysis, convergence of the dimension reduction under anisotropic confinement has been

proven in the weak interaction regime [29,30], i.e. β = O(ε) in 2D and β = O(ε2) in 1D.

However, with the dipolar term, i.e. λ 6= 0, there were few works towards the mathematical

analysis for this dimension reduction except some preliminary results in [42].

The main aim of this chapter is to establish existence and uniqueness of the ground

states and well-posedness of the Cauchy problems associated to the quasi-2D equations I

and II and the quasi-1D equation, and to analyze the convergence and convergence rate

of the dimension reduction from 3D to 2D and 1D. Another goal is to propose numerical

methods for computing the ground states of the quasi-2D equation I and the quasi-1D

equation.

We will investigate the quasi-2D equations I, II and the quasi-1D equation in the energy

space Ξd (d = 1, 2) defined in (1.4).

3.2 Results for the quasi-2D equation I

In this section, we discuss the existence, uniqueness as well as nonexistence of ground states

for the quasi-2D equation I and local (global) existence for Cauchy problem. When con-

sidering the ground state in 2D case, the following best constant Cb [155] in the following

inequality is crucial,

∫

R2

|f(x)|4 dx ≤ 1

Cb

∫

R2

|∇f |2 dx ·
∫

R2

|f |2 dx, f ∈ H1(R2). (3.12)

For simplification of notation, in this and the next section, we also denote x = (x1, x2)
T ∈

R2.
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3.2.1 Existence and uniqueness of ground state

Associated to the quasi-2D equation I (3.4)-(3.5), the energy is

E2D(φ) =
1

2

∫

R2

[
|∇φ|2 + 2V2(x)|φ|2 +

β − λ+ 3n2
3λ

ε
√

2π
|φ|4 − 3

2
λ|φ|2ϕ̃2D

]
dx, (3.13)

for φ ∈ Ξ2, where

ϕ̃2D =
(
∂n⊥n⊥

− n2
3∆
)
ϕ2D, ϕ2D = U2D

ε ∗ |φ|2. (3.14)

The ground state φg ∈ S2 of (3.4) is then the solution of the minimization problem:

Find φg ∈ S2, such that E2D(φg) = min
φ∈S2

E2D(φ). (3.15)

We have the following results on the ground state.

Theorem 3.1 (Existence and uniqueness of the ground state) Assume 0 ≤ V2(x) ∈
L∞
loc(R

2) satisfying lim
|x|→∞

V2(x) = ∞.

(i) There exists a ground state φg ∈ S2 of the system (3.4)-(3.5) if one of the following

conditions holds,

(A1) λ ≥ 0, β − λ > −ε
√

2πCb;

(A2) λ < 0, β + (1
2 + 3|n2

3 − 1
2 |)λ > −ε

√
2πCb.

(ii) The positive ground state |φg| is unique under one of the following conditions:

(A1′) λ ≥ 0, β − λ ≥ 0;

(A2′) λ < 0, β + (1
2 + 3|n2

3 − 1
2 |)λ ≥ 0.

Moreover, φg = eiθ0 |φg| for some constant θ0 ∈ R.

(iii) If β + 1
2λ(1 − 3n2

3) < −ε
√

2πCb, there exists no ground state of the equation (3.4).

In order to prove this theorem, we first study the property of the nonlocal term.

Lemma 3.1 (Kernel U2D
ε in (3.5)) For any real function f(x) in the Schwartz space

S(R2), we have

Û2D
ε ∗ f(ξ) = f̂(ξ) Û2D

ε (ξ) =
f̂(ξ)

π

∫

R

e−ε
2s2/2

|ξ|2 + s2
ds, f ∈ S(R2). (3.16)

Moreover, define the operator

Tjk(f) = ∂xjxk
(U2D

ε ∗ f), j, k = 1, 2,
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then we have

‖Tjkf‖2 ≤
√

2√
π ε

‖f‖2, ‖Tjkf‖2 ≤ ‖∇f‖2, (3.17)

hence Tjk can be extended to a bounded linear operator from L2(R2) to L2(R2).

Proof: From (3.5), we have

|U2D
ε (x)| =

∣∣∣∣∣
1

2
√

2π3/2

∫

R

e−s
2/2

√
|x|2 + ε2s2

ds

∣∣∣∣∣ ≤
1

2π|x| , |x| 6= 0. (3.18)

This immediately implies that U2D
ε ∗g is well-defined for any g ∈ L1(R2)

⋂
L2(R2) since the

right hand side in the above inequality is the singular kernel of Riesz potential. Re-write

U2D
ε (x) as

U2D
ε (x) =

1

2π

∫

R2

ε−2 w
2
0(z/ε)w

2
0(z′/ε)√

|x|2 + (z − z′)2
dzdz′,

with w0(z) = 1
π1/4 e

−z2/2, using the Plancherel formula, we get

Û2D
ε (ξ1, ξ2) =

1

π

∫

R

ŵ2
0(εξ3)ŵ

2
0(εξ3)

ξ21 + ξ22 + ξ23
dξ3 =

1

π

∫

R

e−ε
2s2/2

|ξ|2 + s2
ds, ξ = (ξ1, ξ2)

T ∈ R2,

which immediately implies (3.16). For Tjk, we have

∣∣∣T̂jkf(ξ)
∣∣∣ =

∣∣∣∣∣
f̂(ξ)

π

∫

R

e−ε
2s2/2ξjξk

|ξ|2 + s2
ds

∣∣∣∣∣ ≤

∣∣∣f̂(ξ)
∣∣∣

π

∫

R

e−ε
2s2/2ds =

√
2√
π ε

∣∣∣f̂(ξ)
∣∣∣ , ξ ∈ R2.

Thus we can get the first inequality in (3.17) and know that Tjk : L2 → L2 is bounded.

Moreover, from

∣∣∣T̂jkf(ξ)
∣∣∣ =

∣∣∣∣∣
f̂(ξ)

π

∫

R

e−ε
2s2/2ξjξk

|ξ|2 + s2
ds

∣∣∣∣∣ ≤
|f̂(ξ)| |ξjξk|

π

∫

R

1

|ξ|2 + s2
ds ≤ |ξ| |f̂(ξ)|, (3.19)

we can obtain the second inequality in (3.17) and know that Tjk : H1 → L2 is bounded

too.

Remark 3.1 In fact, Tjk is bounded from Lp → Lp, i.e., there exists Cp > 0 independent

of ε, such that

‖Tjk(f)‖Lp(R2) ≤
Cp
ε
‖f‖Lp(R2), p ∈ (1,∞). (3.20)

This can be obtained using Lp estimate for Poisson equation and Minkowski inequality.
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Lemma 3.2 For the energy E2D(·) in (3.13), we have

(i) For any φ ∈ S2, denote ρ(x) = |φ(x)|2, then we have

E2D(φ) ≥ E2D(|φ|) = E2D (
√
ρ) , ∀φ ∈ S2, (3.21)

so the ground state φg of (3.13) is of the form eiθ0 |φg| for some constant θ0 ∈ R.

(ii) Under the condition (A1) or (A2) in Theorem 3.1, E2D(
√
ρ) is bounded below.

(iii) Under the condition (A1′) or (A2′) in Theorem 3.1, E2D(
√
ρ) is strictly convex.

Proof: (i) For φ(x) ∈ S2, |φ(x)| ∈ S2. A simple calculation shows

E2D(φ(x)) − E2D(|φ(x)|) =
1

2
‖∇φ‖2

2 −
1

2
‖∇|φ|‖2

2 ≥ 0, (3.22)

where the equality holds iff [97]

|∇φ(x)| = ∇|φ(x)|, a.e. x ∈ R2, (3.23)

which is equivalent to

φ(x) = eiθ|φ(x)|, for some θ ∈ R. (3.24)

Then the conclusion follows.

(ii) For
√
ρ = φ ∈ S2, we separate the energy E2D into two parts:

E2D(φ) = E1(φ) + E2(φ) = E1(
√
ρ) + E2(

√
ρ), (3.25)

where

E1(
√
ρ) =

1

2

∫

R2

[
|∇√

ρ|2 + 2V2(x)ρ
]
dx, (3.26)

E2(
√
ρ) =

1

2

∫

R2

[
β − λ+ 3n2

3λ

ε
√

2π
|ρ|2 − 3

2
λρϕ̃2D

]
dx, (3.27)

with

ϕ̃2D =
(
∂n⊥n⊥

− n2
3∆⊥

)
U2D
ε ∗ ρ. (3.28)

Applying Plancherel formula and Lemma 3.1, there holds

∫

R2

ϕ̃2D(x)ρ(x) dx =
1

4π2

∫

R2

̂̃
ϕ2D(ξ)¯̂ρ(ξ)dξ

=
−1

4π3

∫

R3

(
(n1ξ1 + n2ξ2)

2 − n2
3|ξ|2

)
e−ε

2s2/2

|ξ|2 + s2
|ρ̂|2dsdξ. (3.29)
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Recalling Cauchy inequality and n2
1 + n2

2 + n2
3 = 1, we have

−n2
3|ξ|2 ≤ (n1ξ1 + n2ξ2)

2 − n2
3|ξ|2 ≤ (1 − 2n2

3)|ξ|2. (3.30)

Let C0 = max{|n2
3|, |1 − 2n2

3|}, we can derive that
∣∣∣∣
∫

R2

ϕ̃2D(x)ρ(x) dx

∣∣∣∣ ≤
C0

4π3

∫

R3

e−ε
2s2/2|ρ̂|2dsdξ =

√
2C0

ε
√
π

‖ρ‖2
2. (3.31)

Hence, E2(
√
ρ) could be bounded by ‖ρ‖2

2. In detail, under the condition (A1) λ ≥ 0,

β − λ ≥ −ε
√

2πCb, we have

E2(
√
ρ) ≥ β − λ+ 3n2

3λ

ε2
√

2π
‖ρ‖2

2 −
3
√

2n2
3λ

4ε
√
π

‖ρ‖2
2 ≥ −Cb

2
‖ρ‖2

2. (3.32)

Under the condition (A2), if λ < 0 and n2
3 ≥ 1

2 , then

E2(
√
ρ) ≥ β − λ+ 3n2

3λ

ε2
√

2π
‖ρ‖2

2 ≥ −Cb
2
‖ρ‖2

2; (3.33)

if λ < 0 and n2
3 <

1
2 , then

E2(
√
ρ) ≥ β − λ+ 3n2

3λ

ε2
√

2π
‖ρ‖2

2 +
3
√

2(1 − 2n2
3)λ

4ε
√
π

‖ρ‖2
2 ≥ −Cb

2
‖ρ‖2

2. (3.34)

Recalling the choice of best constant Cb, under either condition (A1) or (A2), the energy

E2D(
√
ρ) = E1(

√
ρ) + E2(

√
ρ) ≥ 1

2
‖∇√

ρ‖2
2 −

Cb
2
‖ρ‖2

2 ≥ 0. (3.35)

(iii) Again, we split the energy as (3.25). It is well known that E1(
√
ρ) is strictly

convex in ρ [97]. It remains to show that E2(
√
ρ) is convex in

√
ρ. For any real function

u ∈ L1(R2) ∩ L2(R2), let

H(u) =
1

2

∫

R2

[
β − λ+ 3n2

3λ

ε
√

2π
|u|2 − 3

2
λu
(
∂n⊥n⊥

− n2
3∆⊥

)
(U2D

ε ∗ u)
]
dx. (3.36)

Then E2(
√
ρ) = H(ρ). It suffices to show H(ρ) is convex in ρ. For this purpose, let

√
ρ1 = φ1 ∈ S2 and

√
ρ2 = φ2 ∈ S2, for any θ ∈ [0, 1], consider ρθ = θρ1 + (1 − θ)ρ2 and

√
ρθ ∈ S2, then we compute directly and get

θH(ρ1) + (1 − θ)H(ρ2) −H(ρθ) = θ(1 − θ)H(ρ1 − ρ2). (3.37)

Similar as (3.29), looking at the Fourier domain, we could obtain the lower bounds for

H(ρ1 − ρ2) under the condition (A1′) or (A2′), while replacing Cb with 0 in the above

proof of (ii), i.e.,

H(ρ1 − ρ2) ≥ 0. (3.38)
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This shows that H(ρ), i.e. E2(
√
ρ), is convex in ρ. Thus E2D(

√
ρ) is strictly convex.

Proof of Theorem 3.1: (i) We first prove the existence results. Lemma 3.2 ensures

that there exists a minimizing sequence of positive function {φn}∞n=0 ⊂ S2, such that

lim
n→∞

E2D(φn) = inf
φ∈S2

E2D(φ). Then, under condition (A1) or (A2), there exists a constant

C such that

‖∇φn‖2 + ‖φn‖4 +

∫

R2

V2(x)|φn(x)|2dx ≤ C, n ≥ 0. (3.39)

Therefore φn belongs to a weakly compact set in L4(R2), H1(R2), and L2
V2

(R2) with

a weighted L2-norm given by ‖φ‖LV2
= [

∫
R2 |φ(x)|2V2(x)dx]1/2. Thus, there exists a

φ∞ ∈ H1
⋂
L2
V2

⋂
L4 and a subsequence of {φn}∞n=0 (which we denote as the original

sequence for simplicity), such that

φn ⇀ φ∞, in L2 ∩ L4 ∩ L2
V2
, ∇φn ⇀ ∇φ∞, in L2. (3.40)

The confining condition lim
|x|→∞

V2(x) = ∞ will give that ‖φ∞‖2 = 1 [10,96]. Hence φ∞ ∈ S2

and φn → φ∞ in L2(R2) due to the L2-norm convergence and weak convergence of {φn}∞n=0.

By the lower semi-continuity of the H1- and L2
V2

-norm, for E1 in (3.26), we know

E1(φ
∞) ≤ lim inf

n→∞
E1(φ

n). (3.41)

By Sobolev inequality, there exists C(p) > 0 depending on p ≥ 2, such that ‖φn‖p ≤
C(p)(‖∇φn‖2 + ‖φn‖2) ≤ C(p)(1 + C), uniformly for n ≥ 0, applying Hölder’s inequality,

we have

‖(φn)2 − (φ∞)2‖2
2 ≤ C1(‖φn‖3

6 + ‖φn‖3
6)‖φn − φ∞‖2, (3.42)

which shows ρn = (φn)2 → ρ∞ = (φ∞)2 ∈ L2(R2). Using the Fourier transform of U2D
ε in

Lemma 3.1 and (3.31), it is easy to derive the convergence for E2 in (3.27)

E2(φ
∞) = lim

n→∞
E2(φ

n). (3.43)

Hence,

E2D(φ∞) = E1(φ
∞) + E2(φ

∞) ≤ lim inf
n→∞

E2D(φn). (3.44)

Now, we see that φ∞ is indeed a minimizer. For the uniqueness part, it is straightforward

by the strict convexity of E2D(
√
ρ) in Lemma 3.2.
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(ii) Since the nonlinear term in the equation behaviors as a cubic nonlinearity, it is

natural to consider the following. Let φ(x) ∈ S2 be a real function that attains the best

constant Cb [155], then φ(x) is radial symmetric. Choose φδ(x) = δ−1φ(δ−1x), δ > 0,

then φδ ∈ S2. Denote ϕδ =
(
∂n⊥n⊥

− n2
3∆⊥

)
(U2D

ε ∗ |φδ|2), by the same computation as

in Lemma 3.2, there holds

∫

R2

ϕδ|φδ |2 dx =
−1

4π3

∫

R3

(n1ξ1 + n2ξ2)
2 − n2

3|ξ|2
|ξ|2 + s2

e−ε
2s2/2||̂φ|2(δξ)|2 dsdξ

=
−1

4δ2π3

∫

R3

(n1ξ1 + n2ξ2)
2 − n2

3|ξ|2
|ξ|2 + δ2s2

e−ε
2s2/2||̂φ|2(ξ)|2 dsdξ,

using the fact that φ(x) is radial symmetric, |̂φ|2(ξ) is also radial symmetric. Thus, we

would obtain

∫

R2

ϕδ |φδ|2 dx = −(n2
1 + n2

2 − 2n2
3) + o(1)√

2πεδ2
‖φ‖4

4, as δ → 0+. (3.45)

Hence, let δ → 0+,

E2D(φδ) =
1

2δ2

(
‖∇φ‖2

2 + (
β + 1

2λ(1 − 3n2
3) + o(1)√

2πε
)‖φ‖4

4

)
+

∫

R2

V2(δx)|φ|2(x)dx.

Recalling that ‖∇φ‖2
2 = Cb‖φ‖4

4, we know lim
δ→0+

E2D(φδ) = −∞ if β + 1
2λ(1 − 3n2

3) <

−
√

2πεCb, i.e. there is no ground state in this case. �

3.2.2 Well-posedness for dynamics

Here, we study the well-posedness of the Cauchy problem corresponding to the quasi-

2D equation I (3.4)-(3.5). Using the Fourier transform of kernel U2D
ε in Lemma 3.1,

it is straightforward to see that the nonlinear term introduced by U2D
ε behaviors like

cubic term. Thus, those methods for classic cubic nonlinear Schrödinger equation would

apply [43, 139, 155]. In particular, we have the following theorem concerning the Cauchy

problem of (3.4)-(3.5).

Theorem 3.2 (Well-posedness of the Cauchy problem) Suppose the real-valued trap po-

tential satisfies V2(x) ≥ 0 for x ∈ R2 and

V2(x) ∈ C∞(R2) and DαV2(x) ∈ L∞(R2), for all α ∈ N2
0 with |α| ≥ 2, (3.46)

then we have
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(i) For any initial data φ(x, t = 0) = φ0(x) ∈ Ξ2, there exists a Tmax ∈ (0,+∞] such

that the problem (3.4)-(3.5) has a unique maximal solution φ ∈ C ([0, Tmax),Ξ2). It is

maximal in the sense that if Tmax <∞, then ‖φ(·, t)‖Ξ2 → ∞ when t→ T−
max.

(ii) As long as the solution φ(x, t) remains in the energy space Ξ2, the L2-norm

‖φ(·, t)‖2 and energy E2D(φ(·, t)) in (3.13) are conserved for t ∈ [0, Tmax).

(iii) Under either condition (A1) or (A2) in Theorem 3.1, the solution of (3.4)-(3.5)

is global in time, i.e., Tmax = ∞.

Proof: The proof is standard. We shall use the known results for semi-linear Schrödinger

equation [43]. For φ ∈ Ξ2, denote ρ = |φ|2 and consider the following

G(φ, φ̄) := G(ρ) =
1

2

∫

R2

|φ|2
(
∂n⊥n⊥

− n2
3∆
)
(U2D

ε ∗ |φ|2) dx,

g(φ) =
δG(φ, φ̄)

δφ̄
= φ

(
∂n⊥n⊥

− n2
3∆
)
(U2D

ε ∗ |φ|2).

Then the equations (3.4)-(3.5) read

i∂tφ = −[
1

2
∆ + V2(x)]φ+ β0|φ|2φ− 3λg(φ), x ∈ R2, t > 0, (3.47)

where β0 =
β−λ+3n2

3λ√
2πε

. Using the Lp boundedness of Tjk (cf. Lemma 3.1 and Remark 3.1)

and Sobolev inequality, for ‖u‖Ξ2 + ‖v‖Ξ2 ≤M , it is easy to prove the following

‖g(u) − g(v)‖4/3 ≤ C(M)‖u− v‖4. (3.48)

In view of the standard Theorems 9.2.1, 4.12.1 and 5.7.1 in [43] and [139] for the well-

posedness of the nonlinear Schrödinger equation, we can obtain the results (I), (II) im-

mediately. The global existence (III) comes from the uniform bound for ‖φ(·, t)‖Ξ2 which

can be derived from energy and L2 norm conservation.

When the initial data is small, there also exists global solutions [42, 43]. Otherwise,

blow-up may happen in finite time, and we have the following results.

Theorem 3.3 (Finite time blow-up) If conditions (A1) and (A2) are not satisfied and

assume V2(x) satisfies 2V2(x)+x·∇V2(x) ≥ 0, for any initial data φ(x, t = 0) = φ0(x) ∈ Ξ2

with
∫

R2 |x|2|φ0(x)|2 dx < ∞ and solution φ(x, t) to the problem (3.4), there exists finite

time blow-up, i.e., Tmax < ∞, if λ = 0, or λ > 0 and n2
3 ≥ 1

2 , and one of the following

holds:
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(i) E2D(φ0) < 0;

(ii) E2D(φ0) = 0 and Im
(∫

R2 φ̄0(x) (x · ∇φ0(x)) dx
)
< 0;

(iii) E2D(φ0) > 0 and Im
(∫

R2 φ̄0(x) (x · ∇φ0(x)) dx
)
< −

√
2E2D(φ0)‖xφ0‖2.

Proof: Similar as (2.49), define the variance

σV (t) := σV (φ(·, t)) =

∫

R2

|x|2|φ(x, t)|2 dx = σx(t) + σy(t), t ≥ 0, (3.49)

where

σα(t) := σα(φ(·, t)) =

∫

R2

α2|φ(x, t)|2 dx, α = x, y. (3.50)

For α = x, or y, differentiating (3.50) with respect to t, integrating by parts, we get

d

dt
σα(t) = −i

∫

R2

[
αφ̄(x, t)∂αφ(x, t) − αφ(x, t)∂αφ̄(x, t)

]
dx, t ≥ 0. (3.51)

Similarly, we have

d2

dt2
σα(t) =

∫

R2

[
2|∂αφ|2 + β0|φ|4 + 3λ|φ|2α∂α(∂n⊥n⊥

− n2
3∆)ϕ− 2α|φ|2∂αV2(x)

]
dx,

(3.52)

where b0 =
β−λ+λn2

3√
2π ε

, ϕ = U2D
ε ∗ |φ|2. Writing ρ = |φ|2, ϕ̃ = (∂n⊥n⊥

− n2
3∆)ϕ, nξ =

(n1ξ1 +n2ξ2)
2−n2

3|ξ|2 and noticing that ρ is real function, by Plancherel formula, we have

∫

R2

|φ|2 (x · ∇ϕ̃) dx =
−1

4π2

∫

R2

ρ̂(ξ)∇ ·
(
ξ ˆ̃ϕ
)
dξ

=
1

4π2

∫

R2

ρ̂(ξ)∇ ·
(
ξnξÛ2D

ε ρ̂
)
dξ

=
1

4π2

∫

R2

ρ̂
(
ρ̂∇(ξnξÛ2D

ε ) + nξÛ2D
ε ξ · ∇ρ̂

)
dξ

=
1

4π2

∫

R2

(
|ρ̂|2∇(ξnξÛ2D

ε ) + nξÛ2D
ε ξ · 1

2
∇|ρ̂|2

)
dξ

=
1

4π2

∫

R2

(nξÛ2D
ε +

1

2
ξ · ∇(nξÛ2D

ε ) )|ρ̂|2 dξ

= −
∫

R2

|φ|2ϕ̃ dx +
1

4π3

∫

R3

nξs
2e−ε

2s2/2|ρ̂|2
(|ξ|2 + s2)2

dsdξ.

Denote

I(t) := I(φ(·, t)) =
1

4π3

∫

R3

nξs
2e−ε

2s2/2|ρ̂|2
(|ξ|2 + s2)2

dsdξ, (3.53)

using nξ ∈ [−n2
3|ξ|2, (1 − 2n2

3)|ξ|2], we obtain

−
√

2n2
3√

π ε
‖φ(t)‖4

4 ≤ I(t) ≤
√

2(1 − 2n2
3)√

π ε
‖φ(t)‖4

4. (3.54)
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If λ = 0, or λ > 0 and n3 ≥ 1
2 , noticing λI(t) ≤ 0 in these cases, summing (3.52) for

α = x, y, and using energy conservation, we have

d2

dt2
σV (t) = 2

∫

R2

[
|∇φ|2 + β0|φ|4 +

3

2
λ|φ|2 (x · ∇ϕ̃) − |φ|2x · ∇V2(x)

]
dx

= 4E2D(φ(·, t)) + 3λI(t) − 2

∫

R2

|φ|2(2V2(x) + x · ∇V2(x)) dx

≤ 4E2D(φ(·, t)) ≡ 4E2D(φ0).

Thus,

σV (t) ≤ 2E2D(φ0)t
2 + σ′V (0)t+ σV (0), t ≥ 0,

and the conclusion follows in the same manner as those in [43,139] for the standard non-

linear Schrödinger equation.

3.3 Results for the quasi-2D equation II

In this section, we investigate the existence, uniqueness as well as nonexistence of ground

state of the quasi-2D equation II (3.8) and the well-posedness of the corresponding Cauchy

problem.

3.3.1 Existence and uniqueness of ground state

Associated to the quasi-2D equation (3.8), the energy is

Ẽ2D(φ) =

∫

R2

[
1

2
|∇φ|2 + V2(x)|φ|2 +

β − λ+ 3n2
3λ

2
√

2π ε
|φ|4 − 3λ

4
|φ|2ϕ

]
dx, φ ∈ Ξ2,

(3.55)

where

ϕ(x) =
(
∂n⊥n⊥

− n2
3∆
)
((−∆)−1/2|φ|2). (3.56)

The ground state φg ∈ S2 of the equation (3.8) is defined as the minimizer of the nonconvex

minimization problem:

Find φg ∈ S2, such that Ẽ2D(φg) = min
φ∈S2

Ẽ2D(φ). (3.57)

For the above ground state, we have the following results.
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Theorem 3.4 (Existence and uniqueness of ground state) Assume 0 ≤ V2(x) ∈ L∞
loc(R

2)

and lim
|x|→∞

V2(x) = ∞, then we have

(i) There exists a ground state φg ∈ S2 of the equation (3.8) if one of the following

conditions holds

(B1) λ = 0 and β > −
√

2πCb ε;

(B2) λ > 0, n3 = 0 and β − λ > −
√

2πCb ε;

(B3) λ < 0, n2
3 ≥ 1

2 and β − (1 − 3n2
3)λ > −

√
2πCb ε.

(ii) The positive ground state |φg| is unique under one of the following conditions

(B1′) λ = 0 and β ≥ 0;

(B2′) λ > 0, n3 = 0 and β ≥ λ;

(B3′)λ < 0, n2
3 ≥ 1

2 and β − (1 − 3n2
3)λ ≥ 0.

Moreover, any ground state φg = eiθ0 |φg| for some constant θ0 ∈ R.

(iii) There exists no ground state of the equation (3.8) if one of the following conditions

holds

(B1′′) λ > 0 and n3 6= 0;

(B2′′) λ < 0 and n2
3 <

1
2 ;

(B3′′) λ = 0 and β < −
√

2πCb ε.

Again, in order to prove this theorem, we first analyze the nonlocal part in the equation

(3.8). In fact, following the standard proof in [134], we can get

Lemma 3.3 (Property of fractional Poisson equation (3.6)) Assume f(x) is a real valued

function good enough, for the fractional Poisson equation

(−∆)−1/2ϕ(x) = f(x), x ∈ R2, lim
|x|→∞

ϕ(x) = 0,

we have

ϕ(x) =

∫

R2

f(x′)
2π|x − x′|dx

′ =

(
1

2π|x|

)
∗ f, x ∈ R2,

and the Hardy-Littlewood-Sobolev inequality implies

‖ϕ‖p∗ ≤ Cp‖f‖p, p∗ =
2p

2 − p
, p ∈ (1, 2). (3.58)
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Moreover, the first order derivatives of ϕ are the Riesz transforms of f and satisfy

‖∂xjϕ‖q ≤ Cq‖f‖q, q ∈ (1,∞), j = 1, 2, (3.59)

and the second order derivatives satisfy

‖∂xjxk
ϕ‖q = ‖∂xj

(
(−∆)−1/2∂xk

f
)
‖q ≤ Cq‖∂xk

f‖q, q ∈ (1,∞), j, k = 1, 2. (3.60)

Remark 3.2 Similar results hold for Tjk defined in Lemma 3.1, i.e.

‖Tjkf‖p ≤ Cp‖∇f‖p, for p ∈ (1,∞). (3.61)

Since (−∆)−1/2 is taken as an approximation of U2D
ε (3.5), we consider the convergence

regarding with the derivatives.

Lemma 3.4 Let U2D
ε (x) (x = (x1, x2)) be given in (3.5), suppose real-valued function

f ∈ Lp(R2), let

T εj (f) = ∂xj (U
2D
ε ∗ f), Rj(f) = ∂xj (−∆)−1/2f, j = 1, 2, (3.62)

we have T εj is bounded from Lp to Lp (1 < p < ∞) with the bounds independent of ε.

Specially, for any fixed f ∈ Lp(R2), (p ∈ (1,∞)),

lim
ε→0+

‖T εj (f) −Rj(f)‖p = 0, p ∈ (1,∞). (3.63)

Proof: We can write Rj and T εj as

Rj(f) = Kj ∗ f, T εj (f) = Kε
j ∗ f, (3.64)

where Rj is Riesz transform and

Kj(x) =
xj

2π|x|3 , Kε
j (x) =

1

2
√

2π3/2

∫

R

xje
−s2/2

(|x|2 + ε2s2)3/2
ds, j = 1, 2. (3.65)

Kε
j obviously satisfies the following condition

|Kε
j (x)| ≤ B|x|−2, |∇Kε

j (x)| ≤ B|x|−3, |x| > 0,∫

R1<|x|<R2

Kε
j (x)dx = 0, 0 < R1 < R2 <∞,

for some ε-independent constant B. Then standard theorem on singular integrals [134]

implies that T εj is well defined for Lp function and is bounded from Lp to Lp with ε-

independent bound.
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Thus, we only need to prove the convergence in L2 , other cases can be derived by an

approximation argument and interpolation. For L2 convergence, looking at the Fourier

domain, we find that

‖T εj (f) −Rj(f)‖2
2 =

1

4π2

∫

R2

|f̂ |2(ξ)
[
ξj
|ξ| −

ξj
π

∫

R

e−ε
2s2/2

|ξ|2 + s2
ds

]2

dξ

≤ 1

4π2

∫

R2

|f̂ |2(ξ)
[

1

π

∫

R

(1 − e−ε
2s2/2)|ξ|

|ξ|2 + s2
ds

]2

dξ.

Notice that for fixed ξ 6= 0, dominated convergence theorem suggests that

lim
ε→0+

1

π

∣∣∣∣∣

∫

R

(1 − e−ε
2s2/2)|ξ|

|ξ|2 + s2
ds

∣∣∣∣∣ = 0, (3.66)

hence, the conclusion in L2 case is obvious by dominated convergence theorem again. Us-

ing approximation and noticing that L2 ∩ Lq is dense in Lp (q ∈ (1,∞)), combined with

uniform bound on T εj : Lp → Lp (p ∈ (1,∞)), we can complete the proof.

Lemma 3.5 For the energy Ẽ2D(·) in (3.55), the following properties hold

(i) For any φ ∈ S2, denote ρ(x) = |φ(x)|2, then we have

Ẽ2D(φ) ≥ Ẽ2D(|φ|) = Ẽ2D (
√
ρ) , ∀φ ∈ S2, (3.67)

so the ground state φg of (3.55) is of the form eiθ0 |φg| for some constant θ0 ∈ R.

(ii) If condition (B1) or (B2) or (B3) in Theorem 3.4 holds, then Ẽ2D is bounded

below.

(iii) If condition (B1′) or (B2′) or (B3′) in Theorem 3.4 holds, then Ẽ2D(
√
ρ) is strictly

convex.

Proof: (i) It is similar to the case of Lemma 3.2.

(ii) Similar as Lemma 3.2, for φ ∈ S2, denote ρ = |φ|2, we only need to consider the

following functional,

H̃(ρ) = −λ
∫

R2

ρ
(
∂n⊥n⊥

− n2
3∆
)
[(−∆)−1/2ρ] dx. (3.68)

Using Plancherel formula and Cauchy inequality, we have for λ < 0 and n2
3 ≥ 1

2 ,

H̃(ρ) =
λ

4π2

∫

R2

(n1ξ1 + n2ξ2)
2 − n2

3|ξ3|2
|ξ| |ρ̂(ξ)|2 dξ

≥ λ

4π2

∫

R2

(1 − 2n2
3)|ξ||ρ̂(ξ)|2 dξ ≥ 0. (3.69)
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For λ > 0 and n3 = 0, it is easy to see H̃(ρ) ≥ 0. Hence, assertion (ii) is proved.

(iii) Similar as Lemma 3.2, it is sufficient to prove the convexity of H̃(ρ) (3.68) in ρ.

For
√
ρ1 ∈ S2,

√
ρ2 ∈ S2 and any θ ∈ [0, 1], denote ρθ = θρ1 + (1 − θ)ρ2,

θH̃(ρ1) + (1 − θ)H̃(ρ2) − H̃(ρθ) = θ(1 − θ)H̃(ρ1 − ρ2), (3.70)

where the RHS is nonnegative with the given condition, i.e., H̃(ρ) is convex.

Proof of Theorem 3.4: (i) We only need to consider the existence since the uniqueness

is a consequence of convexity of Ẽ2D(
√
ρ) in Lemma 3.5. For existence, we may apply

the same arguments in Theorem 3.1, where instead, we have to show that for sequence

ρn = (φn)2,

lim inf
n→∞

H̃(ρn) ≥ H̃(ρ∞), with ρ∞ = (φ∞)2. (3.71)

Denote

ϕn =
(
∂n⊥n⊥

− n2
3∆
)
[(−∆)−1/2ρn], n = 0, 1, . . . , or n = ∞.

Using φn → φ∞ in L2(R2) and φn ⇀ φ∞ in H1(R2), then ρn → ρ∞ in Lp(R2) p > 1, and

Lemma 3.3 shows that ϕn → ϕ∞ in W−1,p(R2)( dual space of W 1,p′ , p′ = p/(p−1)). Thus

(3.71) is true and the existence of ground state follows.

(ii) To prove the nonexistence results, we try to find the case where Ẽ2D doesn’t have

lower bound. For any φ(x) ∈ S2 and ρ(x) = |φ(x)|2, x = (x1, x2), let θ ∈ R such that

(cos θ, sin θ) = 1√
n2

1+n
2
2

(n1, n2) when n2
1 + n2

2 6= 0 and θ = 0 if n1 = n2 = 0, for any

ε1, ε2 > 0, consider the following function

φε1,ε2(x1, x2) = ε
−1/2
1 ε

−1/2
2 φ(ε−1

1 (x1 cos θ + x2 sin θ), ε−1
2 (−x1 sin θ + x2 cos θ)), (3.72)

let ρε1,ε2 = |φε1,ε2|2, then

ρ̂ε1,ε2(ξ1, ξ2) = ρ̂(ε1(ξ1 cos θ + ξ2 sin θ), ε2(−ξ1 sin θ + ξ2 cos θ)), (3.73)

and by Plancherel formula, after changing variables,

H̃(ρε1,ε2) =
λ

4π2

∫

R2

(n1ξ1 + n2ξ2)
2 − n2

3|ξ2|
|ξ| |ρ̂ε1,ε2|2dξ

=
λ

4π2

∫

R2

(n2
1 + n2

2)η
2
1 − n2

3|η|2
|η| |ρ̂|2(ε1η1, ε2η2)dη

=
λ

4ε21ε2π
2

∫

R2

(n2
1 + n2

2)η
2
1 − n2

3(η
2
1 +

ε22
ε21
η2
2)√

η2
1 +

ε22
ε21
η2
2

|ρ̂|2(η1, η2)dη.
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Let κ = ε2
ε1

, then the dominated convergence theorem implies

H̃(ρε1,ε2) =





n2
1+n

2
2−n2

3+o(1)

4ε21ε2
λ
∫

R2 |η1||ρ̂|2(η1, η2)dη, κ→ 0+,

−n2
3+o(1)

4ε21ε2
λ
∫

R2 |η1||ρ̂|2(η1, η2)dη, κ→ +∞.
(3.74)

For fixed κ and letting ε1 → 0+, we have
∫

R2 V2(x)|φε1,ε2|2 dx = O(1) and

‖∇φε1,ε2‖2
2 =

1

ε21
‖∂x1φ‖2

2 +
1

ε22
‖∂x2φ‖2

2, ‖φε1,ε2‖4
4 =

1

ε1ε2
‖φ‖4

4. (3.75)

Thus under the condition (B1′′), i.e n3 6= 0 and λ > 0, choosing κ large enough, we get

Ẽ2D(φε1,ε2) =
C1

ε21
+

C2

κ2ε21
+
C3

κε21
+ C4λ

−n2
3 + o(1)

κε31
+O(1), (3.76)

where Ck (k = 1, 2, 3, 4) are constants independent of κ, ε1 and C4 > 0. Since n3 6=
0, the last term is negative for κ large, sending ε1 → 0+, one immediately finds that

lim
ε1→0+,ε2=κε1

Ẽ2D(φε1,ε2) = −∞, which justifies the nonexistence. Under the condition

(B2′′), i.e. n2
3 ≤ 1

2 and λ < 0, by choosing κ small enough in (3.74), sending ε1 to 0+, we

will have the same results. Case (B3′′) will reduce to Theorem 3.1. �

3.3.2 Existence results for dynamics

Let us consider the Cauchy problem of equation (3.8), noticing the nonlinearity φ(∂n⊥n⊥
−

n2
3∆)((−∆)−1/2|φ|2) is actually a derivative nonlinearity, and it would bring significant dif-

ficulty in analyzing the dynamical behavior. The common approach to solve the Schrödinger

equation is trying to solve the corresponding integral equation by fixed point theorem.

However, the loss of order 1 derivative due to the nonlocal term will cause trouble. This

can be overcome by the smoothing effect of inhomogeneous problem iut + ∆u = g(x, t),

which provides a gain of one derivative [35,90]. To implement the idea in our case, it is con-

venient to consider the case V2(x) = 0. By configuring that (∂n⊥n⊥
−n2

3∆)((−∆)−1/2|φ|2)
is almost a first order derivative, we are able to discuss the well-posedness of (3.8) with

above technical tool.

Cauchy problem of Schrödinger equation with derivative nonlinearity has been inves-

tigated extensively [80, 91] in the literature. Here, we present an existence results in

the energy space with the special structure of our nonlinearity, which will show that the

approximation (3.8) of (3.4) is reasonable in suitable sense.
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Theorem 3.5 (Existence for Cauchy problem) Suppose the real potential V2(x) = 1
2 |x|2,

and initial value φ0(x) ∈ Ξ2, one of the condition (1′), (2′) (3′) in Theorem 3.4 holds,

then there exists a solution φ ∈ L∞([0,∞); Ξ2)∩W 1,∞([0,∞); Ξ∗
2) for the Cauchy problem

of (3.8). Moreover, there holds for L2 norm and energy Ẽ2D (3.55),

‖φ(·, t)‖L2(R2) = ‖φ0‖L2(R2), Ẽ2D(φ(t)) ≤ Ẽ2D(φ0), ∀t ≥ 0. (3.77)

Proof: We first consider the Cauchy problem for the following equation,

i∂tφ
δ = Hxφ

δ + g1(φ
δ) + g2(φ

δ), (3.78)

with initial value φ0, where β0 =
β−λ+λn2

3

ε
√

2π
, ϕδ = U2D

δ ∗ |φδ |2 (3.5) and

Hx = −1

2
∆ + V2(x), g1(φ

δ) = β0|φδ|2φδ, g2(φ
δ) = −3λ

2
φδ(∂n⊥n⊥

− n2
3∆)ϕδ . (3.79)

Then our quasi-2D equation II (3.4) can be written as

i∂tφ = Hxφ+ g1(φ) + g̃2(φ), (3.80)

where

g̃2(φ) = −3λ

2
φ(∂n⊥n⊥

− n2
3∆)(−∆)−1/2(|φ|2). (3.81)

We denote the pairing of Ξ2 and its dual Ξ∗
2 by 〈, 〉Ξ2,Ξ∗

2
as

〈f1, f2〉Ξ2,Ξ∗
2

= Re

∫

R2

f1(x)f̄2(x) dx. (3.82)

Using the results in [43] and Theorem 3.2, we see there exists a unique maximal solution

ϕδ ∈ C([−T δmin, T δmax],Ξ2)∩C1([−T δmin, T δmax],Ξ∗
2). Maximal means that if either t ↑ T δmax

or t ↓ −T δmin, ‖φδ(t)‖Ξ2 → ∞. We want to show that as δ → 0+, φδ will converge to a

solution of equation (3.8).

Existence. First, we show that T δmin = −∞, T δmax = +∞. The energy conservation for

(3.78) is

Eδ(t) :=
1

2
‖∇φδ‖2

2 +
1

2
β0‖φδ‖4

4 +

∫

R2

V2(x)|φδ |2dx + Eδdip(t) = Eδ(0), (3.83)

where

Eδdip(t) = −3λ

4

∫

R2

|φδ|2(∂n⊥n⊥
− n2

3∆)ϕδdx. (3.84)
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Similar computation as in Lemma 3.5 confirms that Eδdip ≥ 0, β0 ≥ 0. Hence energy

conservation will imply that ‖φδ(t)‖Ξ2 <∞ for all t, i.e. T δmax = T δmin = ∞.

We notice that

Ξ2 →֒ H1 →֒ L2 →֒ H−1 →֒ Ξ∗
2, (3.85)

where H−1 is viewed as the dual of H1. Consider a bounded time interval I = [−T, T ]. It

follows from energy conservation that there exists a constant C1(φ0) > 0 such that

‖φδ‖C([−T,T ];Ξ2) ≤ C1(φ0). (3.86)

Moreover, Lemma 3.1 and Remark 3.2 would imply

‖φδ(∂n⊥n⊥
− n2

3∆)ϕδ‖q ≤ C‖φδ‖q∗‖∇|φδ |2‖p ≤ C‖φδ‖q∗‖φδ‖2p/(2−p)‖∇φδ‖2, (3.87)

for q, p ∈ (1, 2), 1
q∗ + 1

p = 1
q . Then we have

‖φδ‖C1([−T,T ];Ξ∗
2)

≤ C2(φ0). (3.88)

Thus, from (3.86) and (3.88), there exist a sequence δn → 0+ (n = 1, 2, . . . ,) and a function

φ ∈ L∞([−T, T ]; Ξ2) ∩W 1,∞([−T, T ]; Ξ∗
2), such that

φδn(t) ⇀ φ(t) in Ξ2, for all t ∈ [−T, T ]. (3.89)

For each t ∈ [−T, T ], due to the mass conservation of equation (3.78), we know ‖φδn(t)‖2 =

‖φ0‖2, by a similar proof in Theorem 3.1, the weak convergence of φδn(t) in Ξ2 would imply

that φδn(t) converges strongly in L2, which is a consequence of the fact that V2(x) = 1
2 |x|2

is a confining potential. So, lim
n→∞

‖φδn(t)‖2 = ‖φ(t)‖2, and it turns out that [43]

φδn → φ, in C([−T, T ];L2(R2)). (3.90)

In view of (3.89), (3.90) and Gagliardo-Nirenberg’s inequality, we obtain

φδn → φ, in C([−T, T ];Lp(R2)), for all p ∈ [2,∞). (3.91)

We now try to say that φ actually solves equation (3.8). For any function ψ(x) ∈ Ξ2 and

f(t) ∈ C∞
c ([−T, T ]), from equation (3.78), we have

∫ T

−T

[
〈iφδn , ψ〉Ξ2,Ξ∗

2
f ′(t) + 〈Hxφ

δn + g1(φ
δn) + g2(φ

δn), ψ〉Ξ2,Ξ∗
2
f(t)

]
dt = 0. (3.92)
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Recalling |g1(u)− g1(v)| ≤ C(|u|2 + |v|2)|u− v|, (3.91) implies that [43] for all t ∈ [−T, T ]

g1(φ
δn(t)) → g1(φ(t)), in Lρ(R2) for some ρ ∈ [1,∞), (3.93)

〈g1(φδn(t)), ψ(t)〉Ξ2 ,Ξ∗
2
→ 〈g1(φ(t)), ψ(t)〉Ξ2 ,Ξ∗

2
. (3.94)

For g2(φ
δn), consider ϕδn(x, t), x = (x1, x2), noticing the ∂xjϕ

δn = T δnj (|φδn |2) (j = 1, 2)

(defined in Lemma 3.4), we have proven in Lemma 3.4 T δnj is uniformly bounded from Lp

to Lp and as δn → 0+,

T δnj (|φ(t)|2) → Rj(|φ(t)|2) = ∂xj (−∆)−1/2(|φ(t)|2) in Lp(R2), p ∈ (1,∞), (3.95)

thus by rewriting

T δnj (|φδn(t)|2) = T δnj (|φδn(t)|2 − |φ(t)|2) + T δnj (|φ(t)|2), (3.96)

recalling the fact (3.91), we immediately have

T δnj (|φδn(t)|2) → Rj(|φ(t)|2) in Lp(R2), for some p ∈ (1,∞), (3.97)

which is actually

∂xjϕ
δn(t) → ∂xj (−∆)−1/2(|φ(t)|2), in Lp(R2), for some p ∈ (1,∞). (3.98)

Hence, integration by parts,

〈φδn(t)∂xjxk
ϕδn(t), ψ(t)〉Ξ2 ,Ξ∗

2
= Re

∫

R2

φδn(t)∂xjxk
ϕδn(t)ψ̄(t)dx

= −Re

∫

R2

∂xjϕ
δn(t)(∂xk

φδn(t)ψ̄(t) + φδn(t)∂xk
ψ(t))dx,

passing to the limit as n→ ∞,

lim
n→∞

〈φδn(t)∂xjxk
ϕδn(t), ψ(t)〉Ξ2 ,Ξ∗

2
= −Re

∫

R2

Rj(|φ(t)|2)(∂xk
φ(t)ψ̄(t) + φ(t)∂xk

ψ(t))dx

= 〈φ(t)∂xjxk
(−∆)−1/2(|φ(t)|2), ψ(t)〉Ξ2 ,Ξ∗

2
,

in view of (3.98) and (3.89), we obtain

lim
n→∞

〈g2(ϕδn(t)), ψ(t)〉Ξ2 ,Ξ∗
2

= 〈g̃2(φ(t)), ψ(t)〉Ξ2 ,Ξ∗
2
. (3.99)

Combining the above results and (3.94) together, sending n→ ∞, dominated convergence

theorem will yield
∫ T

−T

[
〈iφ, ψ〉Ξ2 ,Ξ∗

2
f ′(t) + 〈Hxφ+ g1(φ) + g̃2(φ), ψ〉Ξ2,Ξ∗

2
f(t)

]
dt = 0,
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which proves that

i∂tφ = Hxφ+ g1(φ) + g̃2(φ), in Ξ∗
2, a.a. t ∈ [−T, T ], (3.100)

with φ(t = 0) = φ0, and φ ∈ L∞([−T, T ]; Ξ2) ∩W 1,∞([−T, T ]; Ξ∗
2). Moreover, by lower

semi-continuity of Ξ2 norm, (3.93) and (3.99), the energy Ẽ2D (3.55) satisfies

Ẽ2D(φ(t)) ≤ Ẽ2D(φ0). (3.101)

It is easy to see that we can choose T = ∞.

If the uniqueness of the L∞([−T, T ]; Ξ2) ∩ W 1,∞([−T, T ]; Ξ∗
2) solution to the quasi-

2D equation II (3.8) is known, we can prove that the solution constructed above in the

Theorem 3.5 is actually C([−T, T ]; Ξ2) ∩ C1([−T, T ]; Ξ∗
2) and conserves the energy.

Next, we discuss possible blow-up for continuous solutions of the quasi-2D equation II

(3.8). To this purpose, the following assumptions are introduced:

(A) Assumption on the trap and coefficient of the cubic term, i.e. V2(x) satisfies

3V2(x) + x · ∇V2(x) ≥ 0,
β−λ+λn2

3√
2π ε

≥ − Cb

‖ψ0‖2
2
, with ψ0 being the initial data of equation

(3.8);

(B) Assumption on the trap and coefficient of the nonlocal term, i.e. V2(x) satisfies

2V2(x) + x · ∇V2(x) ≥ 0, λ = 0 or λ > 0 and n2
3 ≥ 1

2 .

Theorem 3.6 (Finite time blow-up) If conditions (B1), (B2) and (B3) are not satis-

fied, for any initial data φ(x, t = 0) = φ0(x) ∈ Ξ2 with
∫

R2 |x|2|φ0(x)|2 dx < ∞ and

C([0, Tmax),Ξ2) solution φ(x, t) to the problem (3.8) with L2 norm and energy conserva-

tion, there exists finite time blow-up, i.e., Tmax < ∞, if one of the following condition

holds:

(i) Ẽ2D(φ0) < 0, and either assumption (A) or (B) holds;

(ii) Ẽ2D(φ0) = 0 and Im
(∫

R2 φ̄0(x) (x · ∇φ0(x)) dx
)
< 0, and either assumption (A)

or (B) holds;

(iii) Ẽ2D(φ0) > 0, and Im
(∫

R2 φ̄0(x) (x · ∇φ0(x)) dx
)
< −

√
3Ẽ2D(φ0)‖xφ0‖2 if as-

sumption (A) holds, or Im
(∫

R2 φ̄0(x) (x · ∇φ0(x)) dx
)
< −

√
2Ẽ2D(φ0)‖xφ0‖2 if assump-

tion (B) holds.
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Proof: Calculating the derivative of variance defined in (3.49), for α = x, y, we have

d

dt
σα(t) = 2 Im

(∫

R2

φ̄(x, t) α∂αφ(x, t) dx

)
, (3.102)

and

d2

dt2
σα(t) =

∫

R2

[
2|∂αφ|2 + β0|φ|4 + 3λ|φ|2α∂α(∂n⊥n⊥

− n2
3∆)ϕ− 2α|φ|2∂αV2(x)

]
dx,

(3.103)

where β0 =
β−λ+λn2

3√
2πε

, (−∆)1/2ϕ = |φ|2. Writing ρ = |φ|2, ϕ̃ = (∂n⊥n⊥
− n2

3∆)ϕ and

noticing that ρ is real function, by Plancherel formula, similarly as Theorem 3.3, we get
∫

R2

|φ|2 (x · ∇ϕ̃) dx = −3

2

∫

R2

|φ|2ϕ̃ dx. (3.104)

Hence, summing (3.103) for α = x, y, and using energy conservation, if assumption (A)

holds, we have

d2

dt2
σV (t) = 2

∫

R2

(
|∇φ|2 + β0|φ|4 −

9

4
λ|φ|2

(
∂n⊥n⊥

− n2
3∆
)
ϕ− |φ|2(x · ∇V2(x))

)
dx

= 6E(φ) −
∫

R2

(|∇φ|2 + β0|φ|4) dx − 2

∫

R2

|φ(x, t)|2 (3V2(x) + x · ∇V2(x)) dx

≤ 6E(φ(·, t)) ≡ 6E(φ0), t ≥ 0. (3.105)

Thus,

σV (t) ≤ 3E(φ0)t
2 + σ′V (0)t+ σV (0), t ≥ 0,

and the conclusion follows as in Theorem 3.3. If assumption (B) holds, the energy contri-

bution of the nonlocal part is non-positive and we have

d2

dt2
σV (t) = 2

∫

R2

(
|∇φ|2 + β0|φ|4 −

9

4
λ|φ|2

(
∂n⊥n⊥

− n2
3∆
)
ϕ− |φ|2(x · ∇V2(x))

)
dx

= 4E(φ) − 3λ

2

∫

R2

|φ|2ϕ̃ dx − 2

∫

R2

|φ(x, t)|2 (2V2(x) + x · ∇V2(x)) dx

≤ 4E(φ(·, t)) ≡ 4E(φ0), t ≥ 0, (3.106)

and the conclusion follows in a similar way as the assumption (A) case.

3.4 Results for the quasi-1D equation

In this section, we prove the existence and uniqueness of the ground state for the quasi-1D

equation (3.10) and establish the well-posedness for dynamics.
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3.4.1 Existence and uniqueness of ground state

Associated to the quasi-1D equation (3.10), the energy is

E1D(φ) =
1

2

∫

R

[
|∂xφ|2 + 2V1(x)|φ|2 + β1D|φ|4 +

3λ(1 − 3n2
3)

8
√

2ε2π
|φ|2ϕ

]
dx, (3.107)

where β1D =
β+λ(1−3n2

3)/2
2ε2π

and

ϕ(x) = ∂xx(U
1D
ε ∗ |φ|2), U1D

ε (x) =
2e

x2

2ε2

√
π

∫ ∞

|x|
e−

s2

2ε2 ds. (3.108)

Theorem 3.7 (Existence and uniqueness of ground state)Assume 0 ≤ V1(x) ∈ L∞
loc(R)

and lim
|x|→∞

V1(x) = ∞, for any parameter β, λ and ε, there exists a ground state φg ∈ S1

of the quasi-1D equation (3.10)-(3.11), and the positive ground state |φg| is unique under

one of the following condition:

(C1) λ(1 − 3n2
3) ≥ 0, β − (1 − 3n2

3)λ ≥ 0;

(C2) λ(1 − 3n2
3) < 0, β + λ

2 (1 − 3n2
3) ≥ 0.

Moreover, φg = eiθ0 |φg| for some constant θ0 ∈ R.

To complete the proof, we first study the property of the convolution kernel U1D
ε (3.11).

Lemma 3.6 (Kernel U1D
ε (3.11)) For any f(x) in the Schwartz space S(R), we have

Û1D
ε ∗ f(ξ) = f̂(ξ)Û1D

ε (ξ) =

√
2 εf̂(ξ)√
π

∫ ∞

0

e−ε
2s/2

|ξ|2 + s
ds. (3.109)

Hence

‖∂xx(U1D
ε ∗ f)‖2 ≤ 2

√
2√
π ε

‖f‖2. (3.110)

Proof: For any f(x) ∈ S, rewrite the kernel

U1D
ε (x) =

√
2 ε√
π

∫

R4

ε−4 w
2(y′/ε, z′/ε)w2(y/ε, z/ε)√
x2 + (y − y′)2 + (z − z′)2

dydzdy′dz′,

where w(y, z) = 1
π1/2 e

−(y2+z2)/2, applying Fourier transform to both sides and using

Plancherel formula as in Lemma 3.1,

Û1D
ε (ξ) =

√
2 ε

π3/2

∫

R2

|ŵ2(εξ1, εξ2)|2
ξ2 + ξ21 + ξ22

dξ1 dξ2, (3.111)

direct computation would yield the conclusion.
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Lemma 3.7 For the energy E1D(·) in (3.107), we have

(i) For any φ ∈ S1, denote ρ(x) = |φ(x)|2 for x ∈ R, then we have

E1D(φ) ≥ E1D(|φ|) = E1D (
√
ρ) , ∀φ ∈ S1, (3.112)

so the ground state φg of (3.107) is of the form eiθ0 |φg| for some constant θ0 ∈ R.

(ii) E1D is bounded below.

(iii) If condition (C1) or (C2) in Theorem 3.7 holds, E1D(
√
ρ) is strictly convex in ρ.

Proof: Part (i) is similar to that in Lemma 3.1. Part (ii) is well-known, once we notice

the property of kernel U1D
ε (Lemma 3.6) and the Sobolev inequality in one dimension,

‖f‖2
∞ ≤ ‖f‖2‖f ′‖2. (3.113)

(iii) We come to the convexity of E1D(
√
ρ). Following Lemma 3.2, we only need to

consider the functional

H1D(ρ) =

∫

R

[
β + λ(1 − 3n2

3)/2

2ε2π
ρ2 +

3λ(1 − 3n2
3)

8
√

2ε2π
ρ(∂xx(U

1D
ε ∗ ρ))

]
dx. (3.114)

Then under condition (C1) or (C2), using Plancherel formula and Lemma 3.6, after similar

computation as in Lemma 3.1, we would have H1D(ρ) ≥ 0. For arbitrary
√
ρ1,

√
ρ2 ∈ S1

and θ ∈ [0, 1], denote ρθ = θρ1 + (1 − θ)ρ2, then
√
ρθ ∈ S1 and

θH1D(ρ1) + (1 − θ)H1D(ρ2) −H1D(ρθ) = θ(1 − θ)H1D(ρ1 − ρ2) ≥ 0, (3.115)

which proves the convexity.

Proof of Theorem 3.7: The uniqueness follows from the strict convexity in Lemma 3.7.

The existence part is similar as Theorem 3.1 and we omit it here for brevity. . �

3.4.2 Well-posedness for dynamics

Concerning the Cauchy problem, Lemma 3.6 shows that the nonlinearity in the quasi-

1D equation (3.10) is almost like a cubic nonlinearity, while the same property has been

observed in the quasi-2D equation (3.4)-(3.5). Hence similar results as Theorem 3.2 can

be obtained for equation (3.10) and we omit the proof here.
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Theorem 3.8 (Well-posedness for Cauchy problem) Suppose the real-valued trap potential

V1(x) ∈ C∞(R) such that V1(x) ≥ 0 for x ∈ R and DαV1(x) ∈ L∞(R) for all integers

α ≥ 2. For any initial data φ(x, t = 0) = φ0(x) ∈ Ξ1, there exists a unique solution

φ ∈ C ([0,∞),Ξ1) ∩ C1 ([0,∞),Ξ∗
1) to the Cauchy problem of equation (3.10).

3.5 Convergence rate of dimension reduction

In this section, we discuss the dimension reduction of 3D GPPS to lower dimensions.

Inspired by the formal work of Ben Abdallah et al. [29, 30] for GPE without the dipolar

term (i.e. λ = 0), we are going to find a limiting ε-independent equation as ε→ 0+. Thus

in the quasi-2D equation I (3.4), II (3.8) and the quasi-1D equation (3.10), we have to

consider the coefficients to be O(1). [10,42] have shown that the global solution exists for

the full 3D system (2.19)-(2.20) for λ ∈ [−1
2β, β] with β ≥ 0, hence we would expect the

limiting equation in lower dimensions valid in a similar regime. Thus in lower dimensions,

we require that in the quasi-2D case, β = O(ε), λ = O(ε), and in the quasi-1D case,

β = O(ε2), λ = O(ε2), i.e., we are considering the weak interaction regime, then we would

get an ε-independent limiting equation. In this regime, we will see that GPPS will reduce

to regular GPE in lower dimensions.

3.5.1 Reduction to 2D

We consider the weak regime, i.e., β → β/ε, λ → λ/ε. In Case I (3.1), for full 3D

GPPS (2.19)-(2.20), introducing the scaling z → z/ε, ψ → ε1/2ψε which preserves the

normalization, then

i∂tψ
ε(x, t) =

[
H⊥ +

1

ε2
Hz + (β − λ)|ψε|2 − 3ελ∂nεnεϕ

ε

]
ψε, x = (x, y, z)T ∈ R3,

(3.116)

where

H⊥ = −1

2
(∂xx + ∂yy) + V2(x, y), Hz = −1

2
∂zz +

z2

2
, (3.117)

nε = (n1, n2, n3/ε), ∂nε = nε · ∇, ∂nεnε = ∂nε(∂nε), (3.118)

(−∂xx − ∂yy −
1

ε2
∂zz)ϕ

ε =
1

ε
|ψε|2, lim

|x|→∞
ϕε(x) = 0. (3.119)



3.5 Convergence rate of dimension reduction 61

It is well-known that Hz has eigenvalues µk = k + 1/2 with corresponding eigenfunction

wk(z) (k = 0, 1, . . . ,), where {wk}∞k=0 forms an orthornormal basis of L2(R) [65, 140],

specially, w0(z) = 1
π1/4 e

−z2/2. Following [29], it is convenient to consider the initial data

polarized on the ground state mode of Hz, i.e.,

ψε(x, 0) = φ0(x, y)w0(z), φ0 ∈ Ξ2 and ‖φ0‖L2(R2) = 1. (3.120)

In Case I (3.1), when ε → 0+, quasi-2D equation I (3.4), II (3.8) will yield an ε-

independent equation in the weak regime,

i∂tφ(x, y, t) = H⊥φ+
β − (1 − 3n2

3)λ√
2π

|φ|2φ, (x, y) ∈ R2, (3.121)

with initial condition φ(x, y, 0) = φ0(x, y). We will show the convergence from the full 3D

model to 2D. We follow the ideas in [29, 30] to show the convergence from the 3D GPPS

to the 2D approximation. First, let us state the main result.

Theorem 3.9 (Dimension reduction) Suppose V2 satisfies condition (3.46), and −β
2 ≤

λ ≤ β, β ≥ 0, let ψε ∈ C([0,∞); Ξ3), φ ∈ C([0,∞); Ξ2) be the unique solution of equation

(3.116)-(3.120) and (3.121) respectively, then for any T > 0, there exists CT > 0 such

that

‖ψε(x, y, z, t) − e−i
µ0t

ε2 φ(x, y, t)w0(z)‖2 ≤ CT ε, ∀t ∈ [0, T ]. (3.122)

Under the assumption, we have the global existence of ψε [10,42] as well as φ [29,43].

Define the projection operator onto the ground state mode of Hz by

Πψε(x, t) = e−iµ0t/ε2φε(x, y, t)w0(z), (3.123)

where

φε(x, y, t) = eiµ0t/ε2
∫

R

ψε(x, t)w0(z)dz. (3.124)

Since the space (x, y, z) is anisotropic, we introduce the LpzL
q
x,y space by the norm

‖f‖(p,q) := ‖f‖Lp
zL

q
x,y

= ‖ ‖f(·, z)‖Lq
x,y

‖Lp
z
, p, q ∈ [1,∞]. (3.125)

The corresponding anisotropic Sobolev inequalities are available [29].
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Lemma 3.8 (Uniform bound) Let ψε, φ be the solution of (3.116) and (3.121) respec-

tively, λ ∈ [−β
2 , β], β ≥ 0, we have

ψε ∈ L∞((0,∞),H1(R3)), φ, φε ∈ L∞((0, T ),H1(R2)), (3.126)

with uniform bound in ε. Moreover, for p ∈ [2,∞],

‖ψε − Πψε‖2
L2(R3) + ‖∂z(ψε − Πψε)‖2

L2(R3) ≤ Cε2, ‖ψε − Πψε‖(p,2) ≤ Cε, (3.127)

with C depending on ‖φ0‖Ξ2 , uniform in time t.

Proof: From energy conservation for equation (3.116), we have

E(t) := (H⊥ψ
ε(t), ψε(t))+

1

ε2
(Hzψ

ε(t), ψε(t))+
β − λ

2
‖ψε‖4

4 +
3ε2λ

2
‖∂nε∇ϕε(t)‖2

2 = E(0),

where (·, ·) denotes the standard L2 inner product. Using estimates for rescaled Poisson

equation (3.119), we have ‖∂nε∇ϕε(t)‖2 ≤ 1
ε‖ψε(t)‖2

4, which follows

β − λ

2
‖ψε‖4

4 +
3ε2λ

2
‖∂nε∇ϕε(t)‖2

2 ≥ 0, and E(0) =
µ0

ε2
+ C0, (3.128)

where C0 depends on ‖φ0‖Ξ2 . Writing ψε(t) =
∞∑
k=0

φk(x, y, t)wk(z), and using the L2

conservation
∞∑
k=0

‖φk(t)‖2
L2(R2) = 1, we can deduce from energy conservation that

µ0

ε2
+ C0 ≥ (H⊥ψ

ε(t), ψε(t)) +
1

ε2
(Hzψ

ε(t), ψε(t))

= (H⊥ψ
ε(t), ψε(t)) +

1

ε2

∞∑

k=0

µk‖φk(t)‖2
L2(R2)

= (H⊥ψ
ε(t), ψε(t)) +

1

ε2

∞∑

k=1

(µk − µ0)‖φk(t)‖2
L2(R2) +

µ0

ε2
.

Hence,

‖∂xψε‖2
L2(R3) + ‖∂yψε‖2

L2(R3) ≤ (H⊥ψ
ε(t), ψε(t)) ≤ C0, (3.129)

‖∂zψε‖2
L2(R3) ≤ (Hzψ

ε, ψε) ≤ µ0 + C0ε
2, (3.130)

‖ψε − Πψε‖2
L2(R3) ≤

1

µ1 − µ0

∞∑

k=1

(µk − µ0)‖φk(t)‖2
L2(R2) ≤ 2C0ε

2, (3.131)

‖∂z(ψε − Πψε)‖2
L2(R3) ≤

∞∑

k=1

µk
µk − µ0

(µk − µ0)‖φk(t)‖2
L2(R2) ≤

3

2
C0ε

2. (3.132)
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Estimates on ‖ψε − Πψε‖(p,2) follows from Sobolev embedding.

We also need the following Strichartz estimates for the unitary group eitH⊥ , which is

valid when V2 satisfies condition (3.46) [43].

Definition. In two dimensions, let q′, r′ be the conjugate index of q and r (1 ≤ q, r ≤
∞) respectively, i.e. 1 = 1/q′ + 1/q = 1/r′ + 1/r, we call the pair (q, r) admissible and

(q′, r′) conjugate admissible if

2

q
= 2(

1

2
− 1

r
), 2 ≤ r <∞. (3.133)

Following [42,43,136], the following estimates can be established.

Lemma 3.9 (Strichartz’s estimates) Let (q, r) be an admissible pair and (γ, ρ) be a con-

jugate admissible pair, I be a bounded interval of R, and 0 ∈ I.

(i) There exists constant a C depending on I and q such that

‖e−itH⊥ϕ‖Lq(I,Lr(R2)) ≤ C(I, q)‖ϕ‖L2(R2). (3.134)

(ii) If f ∈ Lγ(I, Lρ(R2)), there exists C depending on I, q, ρ, such that

‖
∫

I
⋂
s≤t

ei(t−s)H⊥f(s) ds‖Lq(I,Lr(R2)) ≤ C(I, q, ρ)‖f‖Lγ (I,Lρ(R2)). (3.135)

Now, we are able to prove the theorem.

Proof of Theorem 3.9: In view of Lemma 3.8, we can derive

‖ψε − e−i
tµ0
ε2 φw0(z)‖L2(R3) ≤ ‖ψε − Πψε‖L2(R3) + ‖Πψε − e−i

tµ0
ε2 φw0(z)‖L2(R3)

≤ Cε+ ‖φε(t) − φ(t)‖L2(R2). (3.136)

Hence, we need to estimate the difference between φε and φ. By (3.116) and (3.119), we

know φε(x, y, t) (3.124) solves the following equation

i∂tφ
ε = H⊥φ

ε + (β − λ+ 3n3
3λ)eiµ0t/ε2

∫

R

|ψε|2ψεw0(z)dz + εgε,

gε = eiµ0tε2
∫

R

Pε(ϕ
ε)ψεw0(z)dz,

with Pε(ϕ
ε) = −3λ((n2

1 − n2
3)∂xx + (n2

2 − n2
3)∂yy + 2n1n2∂xy +

2

ε
(∂xz + ∂yz))ϕ

ε.



3.5 Convergence rate of dimension reduction 64

Denote χε(x, y, t) = φε − φ, noticing that ‖w0‖4
4 = 1/

√
2π, χε satisfies the following

equation

i∂tχ
ε = H⊥χ

ε + f ε1 + f ε2 + εgε, χε(t = 0) = 0,

f ε1 =
β − λ+ 3n3

3λ√
2π

(|φε|2φε − |φ|2φ),

f ε2 = (β − λ+ 3n3
3λ)eiµ0t/ε2

∫

R

(
|ψε|2ψε − e−iµ0t/ε2 |φεw0|2φεw0

)
w0(z)dz.

Applying Strichartz estimates on bounded interval [0, T ] and recalling that (∞, 2) is an

admissible pair, we can obtain

‖χε‖L∞([0,T ];L2(R2)) ≤ C(‖f ε1‖Lρ∗ ([0,T ];Lρ(R2)) + ‖f ε2‖Lγ∗ ([0,T ];Lγ(R2)) + ε‖gε‖Lq∗ ([0,T ];Lq(R2))),

where (ρ∗, ρ), (γ∗, γ) and (q∗, q) are some conjugate admissible pairs. By a similar argu-

ment in [29], we have the estimates for f ε1 and f ε2 which comes from the cubic nonlinearity,

for appropriate ρ ∈ (1, 2) and γ ∈ (1, 2),

‖f ε1‖Lρ∗ ([0,T ];Lρ(R2)) ≤ C‖χε‖Lρ∗([0,T ];L2(R2)), ‖f ε2‖Lγ∗ ([0,T ];Lγ(R2)) ≤ Cε. (3.137)

The basic tools involved are Hölder’s inequality, Sobolev inequalities and the estimates in

Lemma 3.9, and we omit the proof of this part here for brevity. So,

‖χε‖L∞([0,T ];L2(R2)) ≤ C(‖χε‖Lρ∗([0,T ];Lρ(R2)) + ε‖gε‖Lq∗ ([0,T ];Lq(R2)) + ε), (3.138)

Next, we shall estimate gε. Let ϕε1, ϕ
ε
2 to be the solution of rescaled Poisson equation

(3.119) with |ψε|2 replaced by |Πψε|2 and |ψε|2 − |Πψε|2 respectively, then rewrite

gε = Jε1 + Jε2 + Jε3 , (3.139)

where

Jε1 =

∫

R

Pε(ϕ
ε
1)φ

εw2
0dz, J

ε
2 = e

iµ0t

ε2

∫

R

Pε(ϕ
ε)(ψε−Πψε)w0dz, J

ε
3 = e

iµ0t

ε2

∫

R

Pε(ϕ
ε
2)Πψ

εw0dz.

For Jε1 , this one reduces to the quasi-2D equation I (3.4), where we have that

Jε1 = −3λ(∂n⊥n⊥
− n2

3∆⊥)ϕε2Dφ
ε, and ϕε2D = U2D

ε ∗ |φε|2, (3.140)

with U2D
ε given in (3.5). In view of the property of U2D

ε in Lemma 3.1 and Remark 3.2,

recalling φε ∈ L∞([0,∞);H1(R2)), using Hölder’s inequality and Sobolev inequality, we

obtain

‖Jε1‖p ≤ ‖Pε(ϕε2D)‖p1‖φε‖p2 ≤ C‖∇|φε|2‖p1‖φε‖p2 ≤ C, (3.141)
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where 1 < p < p1 < 2, 1
p = 1

p1
+ 1

p2
.

For Jε2 , applying Minkowski inequality, Hölder’s inequality and Sobolev inequality, as

well as estimates for Poisson equation, noticing ψε ∈ L∞([0,∞);H1(R3)) and Lemma 3.8,

we estimate

‖Jε2‖p ≤ ‖Pε(ϕε)(ψε − Πψε)w0‖(1,p) ≤ C‖Pε(ϕε)‖Lp∗ (R3)‖ψε − Πψε‖(∞,2)

≤ Cε

∥∥∥∥
|ψε|2
ε

∥∥∥∥
Lp∗(R3)

≤ C,

where p∗ = 2p/(2 − p) ≤ 3.

For Jε3 , similar as J1
ε , J

2
ε , we have

‖Jε3‖p ≤ ‖Pε(ϕε2)Πψεw0‖(1,p) ≤ C‖Pε(ϕε2)‖Lp1 (R3)‖φε‖Lp2 (R2)

≤ C

ε
‖|ψε|2 − |Πψε|2‖Lp1 (R3)

≤ C

ε
‖ψε − Πψε‖L2(R3)(‖ψε‖Lp3 (R3) + ‖Πψε‖Lp3 (R3)) ≤ C,

where p3 = 2p2
1/(2 − p1) ≤ 6. Hence, by choosing p = 6/5, and p1 = 4/3 would satisfy all

the conditions for Jεk (k=1,2,3), where we shall derive that uniformly in t,

‖gε‖Lp(R2) ≤ ‖Jε1‖Lp(R2) + ‖Jε2‖Lp(R2) + ‖Jε3‖Lp(R2) ≤ C. (3.142)

Then choose q = p in (3.138), we have

‖χε‖L∞([0,T ];L2(R2)) ≤ C(‖χε‖Lρ∗ ([0,T ];L2(R2)) + ε). (3.143)

Applying the results for all t ∈ [0, T ], we find

‖χε(t)‖ρ∗2 ≤ C

(∫ t

0
‖χε(s)‖ρ∗2 ds+ ερ

∗

)
, t ∈ [0, T ], (3.144)

and Gronwal’s inequality will give that ‖χε(t)‖2 ≤ Cε for all t ∈ [0, T ]. Combined with

(3.136), we can draw the desired conclusion. �

3.5.2 Reduction to 1D

In this case, we also consider the weak regime β → ε−2β, λ→ ε−2λ. In Case II (3.2), for

full 3D GPPS (2.19)-(2.20), introducing the scaling x → x/ε, y → y/ε, ψ → εψε which

preserves the normalization, then for x = (x, y, z)T ∈ R3,

i∂tψ
ε(x, t) =

[
Hz +

1

ε2
Hx,y + (β − λ)|ψε|2 − 3ελ∂ñεñεϕ

ε

]
ψε, (3.145)
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where

Hz = −1

2
∂zz + V1(z), Hx,y = −1

2
(∂xx + ∂yy + x2 + y2), (3.146)

ñε = (n1/ε, n2/ε, n3), ∂ñε = ñε · ∇, ∂ñεñε = ∂ñε(∂ñε), (3.147)

(− 1

ε2
∂xx −

1

ε2
∂yy − ∂zz)ϕ

ε =
1

ε2
|ψε|2, lim

|x|→∞
ϕε(x) = 0. (3.148)

Note that the ground mode of Hx,y would be given by w0(x)w0(y) with eigenvalue 1, and

the initial data is then assumed to be

ψε(x, 0) = φ0(z)w0(x)w0(y), φ0 ∈ Ξ1 and ‖φ0‖L2(R) = 1. (3.149)

In Case II (3.2), when ε→ 0+, quasi-1D equation (3.10) will lead to an ε-independent

equation in the weak regime,

i∂tφ(z, t) = Hzφ+
β + 1

2λ(1 − 3n2
3)

2π
|φ|2φ, z ∈ R, (3.150)

with initial condition φ(z, 0) = φ0(z).

Following the steps in the last subsection, we can prove the following results.

Theorem 3.10 (Dimension reduction) Suppose the real-valued trap potential V1(z) ∈
C∞(R) such that V1(z) ≥ 0 for z ∈ R and DαV1(z) ∈ L∞(R) for all α ≥ 2. Assume

−β
2 ≤ λ ≤ β, β ≥ 0, let ψε ∈ C([0,∞); Ξ3), φ ∈ C([0,∞); Ξ1) be the unique solution of

equation (3.145)-(3.149) and (3.150) respectively, then for any T > 0, there exists CT > 0

such that

‖ψε(x, y, z, t) − e−it/ε
2
φ(z, t)w0(x)w0(y)‖2 ≤ CT ε, ∀t ∈ [0, T ]. (3.151)

3.6 Numerical methods

In this section, we consider the numerical methods for computing ground states of the

reduced models. In physical experiments, ε is usually not sufficiently close to 0. In such

cases, quasi 2D equation II would not be a good approximation of the quasi-2D equation

I (3.4)-(3.5). Hence, we will only consider the quasi-2D equation I (3.4)-(3.5) and the

quasi-1D equation (3.10). In practical computation, the problem is usually truncated on a

bounded interval [a, b] in 1D or a bounded rectangle [a, b]× [c, d] in 2D, with zero Dirichlet

boundary conditions. We adopt the method of gradient flow with discrete normalization,
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widely used in the literature: choose a time step ∆t > 0 and set tn = n ∆t for n = 0, 1, . . ..

Applying the steepest decent method to the energy functional E2D(φ) (3.13) or E1D(φ)

(3.107) without the constraint φ ∈ Sd, and then projecting the solution back to the unit

sphere Sd at the end of each time interval [tn, tn+1] in order to satisfy the constraint φ ∈ Sd.

3.6.1 Numerical method for the quasi-2D equation I

After truncation, the gradient flow with discrete normalization for the quasi-2D equation

I (3.4)-(3.5) for φ := φ(x, y, t) reads as

∂tφ =

[
1

2
∆ − V2 −

β − λ+ 3λn2
3

ε
√

2π
|φ|2 +

3λ

2
(∂n⊥n⊥

− n2
3∆)ϕ

]
φ, (3.152)

ϕ(x, y, t) = U2D
ε ∗ |φ|2, (x, y) ∈ U = [a, b] × [c, d], tn ≤ t < tn+1, (3.153)

φ(x, y, tn+1) := φ(x, y, t+n+1) =
φ(x, y, t−n+1)

‖φ(·, t−n+1)‖2
, (x, y) ∈ U, n ≥ 0, (3.154)

φ(x, y, t)|∂U = ϕ(x, y, t)|∂U = 0, t ≥ 0, (3.155)

φ(x, y, 0) = φ0(x, y), with ‖φ0‖2 = 1, (3.156)

where φ(x, y, t±n ) = lim
t→t±n

φ(x, y, t).

Let J and K be two even positive integers, choose the mesh size ∆x = b−a
J and

∆y = d−c
K , define the grid points xj = a + j∆x, yk = c + k∆y for 0 ≤ j ≤ J and

0 ≤ k ≤ K, let φnjk be the numerical approximation of φ(xj , yk, tn) and denote

λxp =
2pπ

b− a
, λyq =

2qπ

d− c
, p = −J/2, . . . , J/2 − 1, q = −K/2, . . . ,K/2 − 1. (3.157)

Then a backward Euler Fourier pseudospectral (BEFP) discretization for (3.152) read as

φ∗jk − φnjk
∆t

=
1

2
(∆sφ∗)

∣∣∣∣
jk

−
[
V2(xj , yk) +

β − λ+ 3λn2
3

ε
√

2π
|φnjk|2

− 3λ

2

(
(∂s

n⊥n⊥
ϕn)

∣∣∣∣
jk

− n2
3(∆

sϕn)

∣∣∣∣
jk

)]
φnjk, (3.158)

ϕnjk =
1

JK

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

(
ϕ̂n
)
pq
ei

2jpπ
J ei

2kqπ
K , (3.159)

ϕ̂npq =
(
|̂φn|2

)
pq
Û2D
ε (λxp , λ

y
q), −J/2 ≤ p ≤ J/2 − 1, −K/2 ≤ q ≤ K/2 − 1,

φn+1
jk =

φ∗jk
‖φ∗jk‖

, φ0
jk = φ0(xj , yk), 0 ≤ j ≤ J, 0 ≤ k ≤ K, (3.160)
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where Û2D
ε is given by (3.16), φ̂pq denotes the Fourier coefficients of φjk defined by

φ̂pq =

J−1∑

j=0

K−1∑

k=0

φjke
−i 2jpπ

J e−i
2kqπ

K =

J−1∑

j=0

K−1∑

k=0

φjke
−iλx

p(xj−a)e−iλ
y
q (yk−c), (3.161)

‖φ∗‖ denotes the discrete l2 norm of φ∗ defined as

‖φ∗‖ :=

√√√√∆x∆y

J−1∑

j=0

K−1∑

k=0

|φ∗jk|2 , (3.162)

and ∆s and ∂s
n⊥n⊥

are pseudospectral approximations of ∆ and ∂n⊥n⊥
respectively, defined

as follows:

(∆sφ)jk =
−1

JK

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

[
(λxp)

2 + (λyq)
2
]
φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c) (3.163)

(
∂s
n⊥n⊥

φ
)
jk

=
−1

JK

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

(
n1λ

x
p + n2λ

y
q

)2
φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c), (3.164)

for −J/2 ≤ p ≤ J/2 − 1, −K/2 ≤ q ≤ K/2 − 1. Similar as [12, 21], one can introduce

stabilization parameter to the BEFP discretization. Above method is implicit and can

be solved explicitly via Fast Fourier Transform (FFT). Actually, taking discrete Fourier

transform of (3.158), we have

(
1 +

∆t

2
(λxp)

2 +
∆t

2
(λyq)

2

)(
φ̂∗
)
pq

=
(
φ̂n
)
pq

+ ∆t
(
Ŝn
)
pq
, (3.165)

with the mesh function Sn for 0 ≤ j ≤ J and 0 ≤ k ≤ K given by

Snjk = −
[
V2(xj , yk) +

β − λ+ 3λn2
3

ε
√

2π
|φnjk|2 −

3λ

2

(
(∂sn⊥n⊥

ϕn)

∣∣∣∣
jk

− n2
3(∆

sϕn)

∣∣∣∣
jk

)]
φnjk.

Equation (3.165) can be solved explicitly and then BEFP (3.158) is solved.
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3.6.2 Numerical method for the quasi-1D equation

Similar as the quasi-2D equation I case, we have the gradient flow with discrete normal-

ization associated to the quasi-1D equation (3.10)-(3.11) for φ := φ(z, t) as

∂tφ =

[
1

2
∂zz − V1 −

(
β +

λ

2
(1 − 3n2

3)

)
1

2πε2
|φ|2 +

3λ

8
√

2ε2π
(3n2

3 − 1)∂zzϕ

]
φ, (3.166)

ϕ(z, t) = U1D
ε ∗ |φ|2, z ∈ U = [a, b], tn ≤ t < tn+1, (3.167)

φ(z, tn+1) := φ(z, t+n+1) =
φ(z, t−n+1)

‖φ(·, t−n+1)‖2
, z ∈ U, n ≥ 0, (3.168)

φ(z, t)|∂U = ϕ(z, t)|∂U = 0, t ≥ 0, (3.169)

φ(z, 0) = φ0(z), with ‖φ0‖2 = 1, (3.170)

where φ(z, t±n ) = lim
t→t±n

φ(z, t). Let L be an even positive integer, choose the mesh size

∆z = b−a
L , define the grid points zl = a + l∆z for 0 ≤ l ≤ L, let φnl be the numerical

approximation of φ(zl, tn) and denote

λzr =
2rπ

b− a
, r = −L/2,−L/2 + 1, . . . , L/2 − 1. (3.171)

Then a backward Euler Fourier pseudospectral (BEFP) discretization for (3.166) reads as

φ∗l − φnl
∆t

=
1

2
(∂szzφ

∗)

∣∣∣∣
l

−
[
V1(zl) +

(
β +

λ

2
(1 − 3n2

3)

)
1

2πε2
|φnl |2

− 3λ

8
√

2ε2π
(3n2

3 − 1) (∂szzϕ
n)

∣∣∣∣
l

]
φnl , (3.172)

ϕnr =
1

L

L/2−1∑

r=−L/2

(
ϕ̂n
)
r
ei

2lrπ
L , ϕ̂nl =

(
|̂φn|2

)
r
Û1D
ε (λzr), −L/2 ≤ r ≤ L/2 − 1,

φn+1
l =

φ∗l
‖φ∗l ‖

, φ0
l = φ0(zl), 0 ≤ l ≤ L, (3.173)

where Û1D
ε is given by (3.109), φ̂r denotes the Fourier coefficients of φl defined by

φ̂r =

L−1∑

l=0

φle
−i 2lpπ

L =

L−1∑

l=0

φle
−iλz

r(zl−a), (3.174)

‖φ∗‖ denotes the discrete l2 norm of φ∗ defined as

‖φ∗‖ :=

√√√√∆z

L−1∑

l=0

|φ∗l |2 , (3.175)
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Figure 3.1: Comparison between the aspect ratios calculated by 3D and 2D models for
different γ = 1/10, 1/80, β and V (x, y, z) are chosen as Example 1. (a) λ/β increase
from 0 to 1 with n = (1, 0, 0)T ; (b) λ = 90, n = (

√
1 − n2

3, 0, n3) , n3 increase from 0 to 1.

and ∂szz is the pseudospectral approximation of ∂zz defined as

(∂szzφ)l =
−1

L

L/2−1∑

r=−L/2
(λzr)

2
(
φ̂
)
r
eiλ

z
r(zl−a), −L/2 ≤ r ≤ L/2 − 1. (3.176)

Taking discrete Fourier transform of (3.172), we have
(

1 +
∆t

2
(λzr)

2

)(
φ̂∗
)
r

=
(
φ̂n
)
r
+ ∆t

(
F̂n
)
r
, (3.177)

with the mesh function Fn for 0 ≤ l ≤ L given by

Fnl = −
[
V1(zl) +

(
β +

λ

2
(1 − 3n2

3)

)
1

2πε2
|φnl |2 −

3λ

8
√

2ε2π
(3n2

3 − 1) (∂szzϕ
n)

∣∣∣∣
l

]
φnl .

Thus BEFP discretization (3.172) can be solved explicitly.

3.7 Numerical results

In this section, we report numerical results for ground states of the quasi-2D equation I

(3.4) and the quasi-1D equation (3.10). We compare the ground states of the reduced

models with the ground states of the 3D model. Let φ3D(x, y, z) be the ground states of

3D GPPS (2.19)-(2.20), define the projection of φ3D over the 2D x− y plane as

(
Π⊥φ

3D
)
(x, y) =

√∫

R

|φ3D(x, y, z)|2 dz, (3.178)

and the projection of φ3D over the 1D z direction as

(
Πzφ

3D
)
(z) =

√∫

R

|φ3D(x, y, z)|2 dxdy, (3.179)



3.7 Numerical results 71

(a1)
−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

x

|φ|
2

 

 
Π

z
 Φ3D

φ1D

(a2)
−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

x

|φ|
2

 

 
Π

z
 Φ3D

φ1D

(b1)
−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

|φ|
2

 

 

Π
z
 Φ3D

φ1D

(b2)
−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

|φ|
2

 

 

Π
z
 Φ3D

φ1D

Figure 3.2: Comparison between the density |φ(z)|2, calculated by 3D and 1 D models
for different γ = 1/10, 1/80, with λ = 90, β and V (x, y, z) are chosen as Example 2.
γ = 1/10 on the left ((a1) and (b1)); γ = 1/80 on the right ((a2) and (b2)); n = (0, 0, 1)T

for (a1) and (a2); n = (1, 0, 0)T for (b1) and (b2).

and let φ2D(x, y) and φ1D(z) be the ground states of the quasi-2D equation I (3.4) and

the quasi-1D equation (3.10) respectively. We measure the difference between Π⊥φ3D and

φ2D for the quasi-2D approximation, and the difference between Πzφ
3D and φ1D for the

quasi-1D approximation. In order to investigate the anisotropic properties of the ground

states in x, y directions, induced by the dipolar interaction, we use the aspect ratio given

by

σx
σy

=

√∫
R3 x2|φ3D(x, y, z)|2 dxdydz

√∫
R3 y2|φ3D(x, y, z)|2 dxdydz

, (3.180)

and we can define the aspect ratio for the quasi-2D model as

σx
σy

=

√∫
R2 x2|φ2D(x, y)|2 dxdy

√∫
R2 y2|φ2D(x, y)|2 dxdy

. (3.181)

We will also compare the aspect ratios calculated by the full model and the reduced model.
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(a1) (a2)

(b1) (b2)

Figure 3.3: Surface plots for ground states φ(x, y) computed by the quasi-2D equation I,
V (x, y, z) and β = 100 are given in Example 1, λ = 90; γ = 10 for (a1) and (a2); γ = 80
(b1) and (b2); n = (1, 0, 0)T for (a1) and (b1); n = (0, 0, 1)T for (a2) and (b2).

Example 1. (Quasi-2D case) For GPPS (2.19)-(2.20) and corresponding quasi-2D I

equation, chooses β = 100, λ = 90 and

V (x, y, z) =
1

2
(x2 + y2) +

1

2γ2
z2, γ = ε2, γ = 1/10 or1/80. (3.182)

Example 2. (Quasi-1D case) For GPPS (2.19)-(2.20) and corresponding quasi-1D

equation, chooses β = 100, λ = 90 and

V (x, y, z) =
1

2γ2
(x2 + y2) +

1

2
z2, γ = ε2, γ = 1/10 or1/80. (3.183)

Fig. 3.2 implies that the quasi 1D approximation (3.10) is fairly good. From Figs. 3.5

& 3.1, we see that the quasi 2D I approximation (3.4) is a quite good approximation. Figs.

3.3 & 3.4 show the rich phenomenon behind the dipolar BEC. Our extensive numerical

results confirm that our numerical methods can compute the ground states accurately

and efficiently. The results also confirm that our approximate equations: the quasi 2D

equation I and the quasi 1D equation are accurate.
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Figure 3.4: Contour plots for density ρ(x, y) := |φ(x, y)|2 of ground state computed by the
quasi-2D equation I , V (x, y, z) and β = 100 are given in Example 1, λ = 90; γ = 10 for
(a1) and (a2); γ = 80 (b1) and (b2); n = (1, 0, 0)T for (a1) and (b1); n = (1/

√
2, 1/

√
2, 0)T

for (a2) and (b2).
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Figure 3.5: Difference between the density ρ(x, y) := |φ(x, y)|2 of ground state computed
by the 3D GPPS and that computed by the quasi-2D equation I , V (x, y, z) and β = 100
are given in Example 1, λ = 90; γ = 10 for (a1) and (a2); γ = 80 (b1) and (b2);
n = (1, 0, 0)T for (a1) and (b1); n = (1/
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Chapter 4
Dipolar Gross-Pitaevskii equation with

rotational frame

In this chapter, we discuss the 3D dipolar GPE with rotational frame and its reduced 2D

model.

4.1 Introduction

At temperature T much smaller than the critical temperature Tc, a dipolar BEC in a

rotating frame can be well described by the following dipolar GPE [92,113,161]:

i~∂tψ(x, t) =

[
− ~2

2m
∇2 + V (x) + U0|ψ|2 +

(
Vdip ∗ |ψ|2

)
− ΩLz

]
ψ, x ∈ R3, t > 0, (4.1)

where x = (x, y, z)T ∈ R3 is the Cartesian coordinates, Ω is the angular velocity of the

laser beam, V (x) is the harmonic trap described in (2.2), Lz is the z-component of angular

momentum (1.13) and other terms can be found in equation (2.1). Again the wave function

ψ satisfies the normalization condition (2.4).

Introducing the dimensionless variables as in Chapter 2, t → t
ω0

, Ω → Ω/ω0 with

ω0 = min{ωx, ωy, ωz}, x → a0x with a0 =
√

~

mω0
, ψ →

√
Nψ

a
3/2
0

, we obtain the dimensionless

rotational dipolar GPE as

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) − ΩLz + β|ψ|2 + λ

(
Udip ∗ |ψ|2

)]
ψ, x ∈ R3, t > 0. (4.2)

where β = NU0

~ω0a30
= 4πasN

a0
, λ =

mNµ0µ2
dip

3~2a0
, V (x) = 1

2(γ2
xx

2+γ2
yy

2+γ2
zz

2) is the dimensionless

75
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harmonic trapping potential with γx = ωx
ω0

, γy =
ωy

ω0
and γz = ωz

ω0
, and the dimensionless

long-range dipolar interaction potential Udip(x) is given by (2.6).

Similar to the non-rotational case (2.1), (4.2) conserves the mass

N(ψ(·, t)) =

∫

R3

|ψ(x, t)| dx ≡ N(ψ(·, 0)) = 1 (4.3)

and the energy per particle

Erot(ψ(·, t)) :=

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4 − ΩRe(ψLzψ) +

λ

2

(
Udip ∗ |ψ|2

)
|ψ|2

]
dx

≡Erot(ψ(·, 0)), t ≥ 0. (4.4)

Quantized vortices have been observed in BEC experiments [2, 41] when a rotating laser

beam is applied to rotate the condensate. Quantized vortices are quite related to the

superfluidity. Hence, it is important to understand the vortex properties. In addition,

the current experiments of rotating BEC are performed at ultra-cold temperature and the

system is on its ground state. As a result, ground state of rotational dipolar GPE (4.2)

plays an important role in understanding quantized vortices in dipolar BEC. So, for the

rotational dipolar GPE (4.2), we are more interested in the ground states. In Chapter 6,

we will consider Cauchy problem of rotational GPE (4.2) with λ = 0, i.e. without dipolar

interaction term. Here, we focus on the ground states. Again, the ground state is defined

as the solution of the following minimization problem:

Find φg ∈ S3 such that

Egrot := Erot(φg) = min
φ∈S3

Erot(φ). (4.5)

In view of the identity (2.17), we can reformulate the above rotational dipolar GPE

into the following rotational Gross-Pitaevskii-Poisson system (see Chapter 2):

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) − ΩLz + (β − λ)|ψ(x, t)|2 − 3λ∂nnϕ(x, t)

]
ψ(x, t), (4.6)

∇2ϕ(x, t) = −|ψ(x, t)|2, lim
|x|→∞

ϕ(x, t) = 0 x ∈ R3, t > 0, (4.7)

and the energy can be rewritten as

Erot(ψ) =

∫

R3

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β − λ

2
|ψ|4 +

3λ

2
|∂n∇ϕ|2 − Ω Re(ψ̄Lzψ)

]
dx , (4.8)

where ϕ is defined through (4.7).
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Two dimensional model. With the same setup of the anisotropic external trap V (x)

as Chapter 3, effective lower dimensional equations can be derived. In particular, consider

the Case I in Chapter 3 where

V (x) = V2(x, y) +
z2

2ε4
, (4.9)

then for small ε, evolution of the solution ψ(x, t) of rotational GPPS (4.6)-(4.7) would

be confined in the ground mode of −1
2∂zz + z2

2ε4
, which is spanned by ε−1/2π−1/4e−

z2

2ε2 .

Thus the three dimensional (3D) rotational GPPS (4.6)-(4.7) will reduce to a quasi two-

dimensional (2D) equation. Due to the normalization condition ‖ψ‖2 = 1, taking ansatz

ψ(x, t) = e−iµ0t/ε2ε−1/2φ(x, y, t)w0(z/ε),where µ0 =
1

2
, w0(z) =

1

π1/4
e−

z2

2 , (4.10)

we have the quasi-2D rotational dipolar GPE for rotational GPPS (4.6)-(4.7) as (see

Chapter 3)

i∂tφ =

[
−1

2
∆ + V2 +

β − λ+ 3λn2
3

ε
√

2π
|φ|2 − 3λ

2
(∂n⊥n⊥

− n2
3∆)ϕ2D − ΩLz

]
φ, (4.11)

where

n⊥ = (n1, n2)
T , ∂n⊥

= n⊥ · (∂x, ∂y)T , ∂n⊥n⊥
= ∂n⊥

(∂n⊥
), ∆ = ∂xx + ∂yy,

and

ϕ2D(x, y, t) = U2D
ε ∗ |φ|2, U2D

ε (x, y) =
1

2
√

2π3/2

∫

R

e−s
2/2

√
x2 + y2 + ε2s2

ds. (4.12)

The energy of quasi-2D rotational dipolar GPE (4.11) is

E2D(φ) =

∫

R2

(
1

2
|∇φ|2 +V2|φ|2 +

β − λ+ 3n2
3λ

2ε
√

2π
|φ|4− 3

4
λ|φ|2ϕ̃2D−Ω Re(φ̄Lzφ)) dx, (4.13)

where

ϕ̃2D =
(
∂n⊥n⊥

− n2
3∆
)
ϕ2D. (4.14)

The ground state of equation (4.11) is defined as the solution to the following minimization

problem:

Find φg ∈ S2 such that

Eg2D := E2D(φg) = min
φ∈S2

E2D(φ). (4.15)
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4.2 Analytical results for ground states

In this section, we report some fundamental results concerning the ground states of the

3D rotational GPPS and the quasi-2D rotational dipolar GPE (4.11).

In the model case where the external trap V (x) is harmonic

V (x, y, z) =
1

2
(γ2
xx

2 + γ2
yy

2 + γ2
zz

2), γx, γy, γz > 0, (4.16)

from physical intuition, when rotational speed 0 ≤ Ω < min{γx, γy}, there exists ground

state of rotational GPPS (4.6)-(4.7); when Ω > min{γx, γy}, there exists no ground state

of rotational GPPS (4.6)-(4.7). Actually, we can justify this intuition and obtain the

following results.

Theorem 4.1 (Three dimensional case) Assume the trap V (x, y, z) is given by (4.16),

then there exists ground state of 3D rotational GPPS (4.6)-(4.7) , if β ≥ 0, −β
2 ≤ λ ≤ β

and |Ω| < min{γx, γy}. In contrast, there exists no ground state of (4.6)-(4.7) if one of

the following condition holds:

(1) β < 0;

(2) β ≥ 0 and λ < −β
2 or λ > β;

(3) Ω > min{γx, γy}.

Proof: Under the condition |Ω| < min{γx, γy}, Cauchy inequality implies for any φ ∈ Ξ3∣∣∣∣Ω
∫

R3

φ̄Lzφdx

∣∣∣∣ ≤
1

2

(
|∂xψ|2 + |∂yψ|2 + Ω2(x2 + y2)|ψ|2

)
. (4.17)

Hence, in the case |Ω| < min{γx, γy}, β ≥ 0 and−β
2 ≤ λ ≤ β, energy Erot is bounded

below in S3 ⊂ Ξ3. Similar arguments as those in Theorem 2.1 will yield the existence for

the minimizer of the energy Erot (4.8) in S3, i.e. the ground state.

Next, we show the nonexistence if the conditions are not satisfied. First, let us notice

that for real-valued function φ ∈ Ξ3,
∫

R3 φ̄Lzφdx = 0. Hence, if either β < 0 or β ≥ 0

and λ < −β
2 or λ > β, choose the same test functions as in Theorem 2.1, then it is easy to

obtain inf
φ∈S3

Erot(φ) = −∞, i.e. there is no ground state. In order to prove the assertion,

we only need to check the case |Ω| > min{γx, γy}.
Without loss of generality, we assume that γx ≤ γy and Ω > γx. Choose a nonnegative

C∞
0 (R2; [0,∞)) function ρ(x, y) satisfying

∫

R2

ρ2(x, y)dxdy = 1, supp(ρ) ⊂ {(x, y) ∈ R2
∣∣1 ≤

√
x2 + y2 ≤ 2} (4.18)
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and ∫

R2

V2(x, y)ρ
2(x, y) dxdy =

(γx + ǫ)2

2
, 0 < ǫ <

Ω − γx
2

, (4.19)

then introduce the cylindric coordinate (r, θ, z) (r ≥ 0, θ ∈ [0, 2π)) with x = r cos θ, y =

r sin θ, and denote

fn(r, θ, z) = e−inθρ(x, y)w0(z), w0(z) = π−1/4e−z
2/2, n ∈ Z+. (4.20)

Such ρ exists as we can take ρ2 to be a Dirac distribution concentrated on point (1, 0)T

in the limit sense. Then, using the property ρ = 0 for r ≤ 1, we have

∫

R3

1

2

(
|∂xfn|2 + |∂yfn|2

)
dx = π

∫ ∞

0
|∂rρ|2r dr + n2π

∫ ∞

0

|ρ|2
r2

r dr

≤ C1 + n2π

∫ ∞

0
|ρ|2r dr = C1 +

n2

2
.

Furthermore, noticing the proof in Theorem 2.1 and the property of ρ, we get

− Ω

∫

R3

fnLz(fn) dx = −Ω

∫

R3

ifn∂θ(fn) dx = −nΩ,

∫

R3

V2(x, y)|fn|2 dx =
(γx + ǫ)2

2
,

∫

R3

(
(β − λ)|fn|4 +

3λ

2

)
|∂n∇(−∇2)−1|fn|2|2 dx ≤ 2β‖ρ‖2

L4(R2).

Set f δn = δ−1fn(r/δ, θ, z) = δ−1fn(x/δ, y/δ, z) for δ > 0, then the energy Erot(f
δ
n) (4.8)

satisfies

Erot(f
δ
n) ≤ (C1 +

n2

2
)δ−2 + δ2

(γx + ǫ)2

2
+ C3δ

−2 − nΩ + C4, C1, C3 ≥ 0. (4.21)

Choose

δ2n =

√
2C1 + n2

(γx + ǫ)2
, (4.22)

then

δn ≥ n/Ω, for sufficient large n, (4.23)

and we have

Erot(f
δn
n ) ≤ (γx+ǫ)(

√
2C1 + n2)−nΩ+C4+ΩC3/n ≤ (γx+ǫ)

2C1√
2C1 + n2

−nǫ+C4+ΩC3/n.

Let n→ +∞, it is obvious that Erot(f
δn
n ) → −∞, i.e. there exists no ground state.

Similarly, we can obtain the following results for two dimensional equation (4.11).
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Theorem 4.2 (Two dimensional results) Assume V2(x, y) = 1
2(γ2

xx
2 +γ2

yy
2) (γx, γy > 0).

(i) If |Ω| < min{γx, γy} and one of the following condition holds,

(1) λ ≥ 0, β − λ > −ε
√

2πCb;

(2) λ < 0, β + (1
2 + 3|n2

3 − 1
2 |)λ > −ε

√
2πCb;

where Cb is given by (3.12), there exists a ground state φg ∈ S2 of equation (4.11).

(ii) If β + 1
2λ(1 − 3n2

3) < −ε
√

2πCb or |Ω| > min{γx, γy}, there exists no ground state of

equation (4.11).

Proof: The proof combines Theorem 3.1 and Theorem 4.1. It is quite straightforward

and we omit it here for brevity.

4.3 A numerical method for computing ground states of

(4.11)

In the study of the quantized vortices in rotating BEC, two dimensional model is a starting

point, because vortex structure in two dimensions is relative simpler compared to the three

dimensions case. In this section, we study the quasi-2D equation (4.11). To compute the

ground states, we use a backward Euler Fourier pseudospectral method, which has been

used for computing rotating GPE without dipolar term in literature [166]. The idea is

to use the gradient flow with discrete normalization as the non-rotating case (Chapter

3). After truncation, the gradient flow method with discrete normalization for quasi-2D

equation(4.11) for φ := φ(x, y, t) reads as

∂tφ =

[
1

2
∆ − V2 + ΩLz −

β − λ+ 3λn2
3

ε
√

2π
|φ|2 +

3λ

2
(∂n⊥n⊥

− n2
3∆)ϕ

]
φ, (4.24)

ϕ(x, y, t) = U2D
ε ∗ |φ|2, (x, y) ∈ U = [a, b] × [c, d], tn ≤ t < tn+1, (4.25)

φ(x, y, tn+1) := φ(x, y, t+n+1) =
φ(x, y, t−n+1)

‖φ(·, t−n+1)‖2
, (x, y) ∈ U, n ≥ 0, (4.26)

φ(x, y, t)|∂U = ϕ(x, y, t)|∂U = 0, t ≥ 0, (4.27)

φ(x, y, 0) = φ0(x, y), with ‖φ0‖2 = 1, (4.28)

where φ(x, y, t±n ) = lim
t→t±n

φ(x, y, t).
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Hereafter, we use the same notations as in subsection 3.6.1. Then a backward Euler

Fourier pseudospectral (BEFP) discretization for (3.152) read as

φ∗jk − φnjk
∆t

=
1

2
(∆sφ∗)

∣∣∣∣
jk

+ iΩ

(
yk (∂sxφ

n)

∣∣∣∣
jk

− xj
(
∂syφ

n
) ∣∣∣∣
jk

)
−
[
β − λ+ 3λn2

3

ε
√

2π
|φnjk|2

+ V2(xj , yk) −
3λ

2

(
(∂sn⊥n⊥

ϕn)

∣∣∣∣
jk

− n2
3(∆

sϕn)

∣∣∣∣
jk

)]
φnjk, (4.29)

ϕnjk =
1

JK

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2

(
ϕ̂n
)
pq
ei

2jpπ
J ei

2kqπ
K , (4.30)

ϕ̂npq =
(
|̂φn|2

)
pq
Û2D
ε (λxp , λ

y
q), −J/2 ≤ p ≤ J/2 − 1, −K/2 ≤ q ≤ K/2 − 1,

φn+1
jk =

φ∗jk
‖φ∗jk‖

, φ0
jk = φ0(xj , yk), 0 ≤ j ≤ J, 0 ≤ k ≤ K, (4.31)

where Û2D
ε is given by (3.16), φ̂pq denotes the Fourier coefficients of φjk, ‖φ∗‖ denotes the

discrete l2 norm of φ∗ and ∆s and ∂s
n⊥n⊥

are pseudospectral approximations of ∆ and

∂n⊥n⊥
respectively (see subsection 3.6.1). ∂sx and ∂sy are pseudospectral approximations

of ∂x and ∂y respectively, defined as

(∂sxφ)jk =
i

JK

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2
λxp φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c) (4.32)

(
∂syφ

)
jk

=
i

JK

J/2−1∑

p=−J/2

K/2−1∑

q=−K/2
λyq φ̂pqe

iλx
p(xj−a)eiλ

y
q (yk−c), (4.33)

for −J/2 ≤ p ≤ J/2 − 1, −K/2 ≤ q ≤ K/2 − 1. Again, we can introduce stabilization

parameter to the BEFP discretization [12, 21]. The above numerical method is implicit

and can be solved explicitly via Fast Fourier transform (FFT). Actually, taking discrete

Fourier transform of (4.29), we have

(
1 +

∆t

2
(λxp)

2 +
∆t

2
(λyq)

2

)(
φ̂∗
)
pq

=
(
φ̂n
)
pq

+ ∆t
(
Ŝn
)
pq
, (4.34)

with the mesh function Sn for 0 ≤ j ≤ J and 0 ≤ k ≤ K given by

Snjk = −
[
V2(xj , yk) +

β − λ+ 3λn2
3

ε
√

2π
|φnjk|2 −

3λ

2

(
(∂sn⊥n⊥

ϕn)

∣∣∣∣
jk

− n2
3(∆

sϕn)

∣∣∣∣
jk

)]
φnjk

+ iΩ

(
yk (∂sxφ

n)

∣∣∣∣
jk

− xj
(
∂syφ

n
) ∣∣∣∣
jk

)
.

Equation (4.34) can be solved explicitly and then BEFP (4.29) is solved.
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4.4 Numerical results

To test the BEFP method for computing the ground states of the quasi-2D equation (4.11),
we report some numerical results in this section.

Example 1. In quasi-2D equation (4.11), we choose V2(x, y) = 1
2(x2 +y2), ε = 1/

√
10,

(n1, n2) = (0.58, 0), β = 135, λ = 125.

Example 2. In quasi-2D equation (4.11), we choose V2(x, y) = 1
2(x2 +y2), ε = 1/

√
10,

(n1, n2) = (
√

0.5,
√

0.5), β = 135, λ = 90.

We choose the computational domain as [−8, 8] × [−8, 8] with 257 grid points in each

direction, time step ∆t = 0.005. Ground state is numerically achieved if max
jk

|φn+1
jk −φnjk| <

10−6. To find the ground state, we test different initial data. In the current study, we

choose the ground state of equation (4.11) with λ = 0 and same β, ε, or the central vortex

state of it with single vortex, or a linear combination of them.

From Figs. 4.1 & 4.2, we can see that when the rotational speed Ω is small, there is

no vortex. When Ω becomes larger and larger above a critical value, there are vortices

in the ground state. The critical value of Ω for the existence of vortex depends on the

trap V2, parameter β and λ. There are also critical values for n vortices appearing in

the ground state. In the case of 2D equation (4.11) with λ = 0 and a radial trap V2,

there have been estimates [130] for such critical value. For our case with λ 6= 0, it is

also interesting to estimate the critical value of Ω. Further mathematical analysis and

numerical investigation will be carried out in future.
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Figure 4.1: Contour plots for ground states in Example 1, for different Ω.
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Figure 4.2: Contour plots for ground states in Example 2, for different Ω.



Chapter 5
Ground states of coupled Gross-Pitaevskii

equations

In this chapter, we investigate ground state properties of the coupled GPEs modeling a

two component BEC in optical resonators. We analyze the existence, uniqueness as well

as non-uniqueness of the ground states. Efficient and accurate numerical methods are

presented to compute the ground states of the coupled GPEs modeling a two component

BEC with Josephson junction.

5.1 The model

At temperature T much smaller than the critical temperature Tc and after proper nondi-

mensionalization and dimension reduction [117,167], we recall that a two-component BEC

with an internal atomic Josephson junction in optical resonators can be well described by

the coupled Gross-Pitaevskii equations (CGPE) (1.15) in d (d = 1, 2, 3) dimensions:

i∂tψ1 =

[
−1

2
∇2 + V (x) + δ + (β11|ψ1|2 + β12|ψ2|2)

]
ψ1 + (λ+ γP (t))ψ2,

i∂tψ2 =

[
−1

2
∇2 + V (x) + (β12|ψ1|2 + β22|ψ2|2)

]
ψ2 + (λ+ γP̄ (t))ψ1,

i∂tP (t) =

∫

Rd

γψ̄2(x, t)ψ1(x, t) dx + νP (t), x ∈ Rd.

(5.1)

85
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It is necessary to ensure that the wave function is properly normalized. Especially, we

require

‖Ψ‖2 := ‖Ψ‖2
2 =

∫

Rd

[
|ψ1(x, t)|2 + |ψ2(x, t)|2

]
dx = 1. (5.2)

The dimensionless CGPEs (5.1) conserve the total mass or normalization, i.e.

N(t) := ‖Ψ(·, t)‖2 = N1(t) +N2(t) ≡ ‖Ψ(·, 0)‖2 = 1, t ≥ 0, (5.3)

with

Nj(t) = ‖ψj(x, t)‖2 := ‖ψj(x, t)‖2
2 =

∫

Rd

|ψj(x, t)|2 dx, t ≥ 0, j = 1, 2, (5.4)

and the energy

E(Ψ) =

∫

Rd

[
1

2

(
|∇ψ1|2 + |∇ψ2|2

)
+ V (x)(|ψ1|2 + |ψ2|2) + δ|ψ1|2 + β12|ψ1|2|ψ2|2

+
β11

2
|ψ1|4 +

β22

2
|ψ2|4 + 2λRe(ψ1ψ̄2) + 2ν Re(ψ1P (t)ψ2)

]
dx + ν |P (t)|2 . (5.5)

In addition, if there is no internal atomic Josephson junction and no photons in (5.1) , i.e.

λ = ν = 0, the mass of each component is also conserved, i.e.

N1(t) ≡
∫

Rd

|ψ1(x, 0)|2 dx := α, N2(t) ≡
∫

Rd

|ψ2(x, 0)|2 dx := 1 − α, t ≥ 0, (5.6)

with 0 ≤ α ≤ 1 a given constant.

In order to study the ground states (stationary states) of (5.1), we substitute the

following ansatz into CGPE (5.1)

ψ1(x, t) = e−iµtφ1(x), ψ2(x, t) = e−iµtφ2(x), P (t) = p0 ∈ C. (5.7)

Then we obtain the time independent CGPE as

µφ1 =

[
−1

2
∇2 + V (x) + δ + (β11|φ1|2 + β12|φ2|2)

]
φ1 + (λ+ γp0)φ2,

µ φ2 =

[
−1

2
∇2 + V (x) + (β12|φ1|2 + β22|φ2|2)

]
φ2 + (λ+ γp̄0)φ1,

νp0 = −γ
∫

Rd

φ̄2(x)φ1(x) dx, x ∈ Rd,

(5.8)

under the constraint

‖Φ‖2 := ‖Φ‖2
2 =

∫

Rd

[
|φ1(x)|2 + |φ2(x)|2

]
dx = 1, (5.9)
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with the eigenvalue µ being the Lagrange multiplier or chemical potential corresponding

to the constraint (5.9), which can be computed as

µ = µ(Φ) =

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2 + β11|φ1|4

+β22|φ2|4 + 2β12|φ1|2|φ2|2 + (λ+ γp0)φ̄1φ2 + (λ+ γp̄0)φ1φ̄2

]
dx. (5.10)

The eigenfunctions of the nonlinear eigenvalue problem (5.8) under the normalization (5.9)

are usually called as stationary states of the two-component BEC (5.1). Among them, the

eigenfunction with minimum energy is the ground state and those whose energy are larger

than that of the ground state are usually called as excited states.

Similar as dipolar GPE in Chapter 2 and 3, we will formulate the ground state as a

minimization problem. From the nonlinear eigenvalue problem (5.8), in convenience of

studying the ground state, we introduce the energy for stationary states Φ = (φ1, φ2)
T of

CGPE (5.1) as

Es(Φ) =

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2 + β12|φ1|2|φ2|2

+
β11

2
|φ1|4 +

β22

2
|φ2|4 + 2λ · Re(φ1φ̄2)

]
dx − σ

∣∣∣∣
∫

Rd

φ1(x)φ2(x) dx

∣∣∣∣
2

, (5.11)

where we denote σ = γ2/ν (when ν = 0, γ = 0 and σ = 0). In the case of CGPE (5.1)

without optical resonator, Es collapses to E.

Hence, the ground state Φg(x) = (φg1(x), φg2(x))T of the two-component BEC with an

internal atomic Josephson junction in optical resonators (5.1) is defined as the minimizer

of the following nonconvex minimization problem:

Find (Φg ∈ S), such that

Eg := Es (Φg) = min
Φ∈S

Es (Φ) , (5.12)

where S is a nonconvex set defined as

S :=
{
Φ = (φ1, φ2)

T | ‖Φ‖2 = 1, Es(Φ) <∞
}
. (5.13)

If there is no internal atomic Josephson junction and optical resonator in (5.1), i.e. λ =

γ = ν = 0, for any given α ∈ [0, 1], another type ground state Φα
g (x) = (φα1 (x), φα2 (x))T

of the two-component BEC is defined as the minimizer of the following nonconvex mini-

mization problem:
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Find
(
Φα
g ∈ Sα

)
, such that

Eαg := E0

(
Φα
g

)
= min

Φ∈Sα

E0 (Φ) , (5.14)

where Sα is a nonconvex set defined as

Sα :=
{
Φ = (φ1, φ2)

T | ‖φ1‖2 = α, ‖φ2‖2 = 1 − α, E0(Φ) <∞
}
, (5.15)

and the energy functional E0(Φ) is defined as

E0(Φ) =

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2 +

1

2
β11|φ1|4

+
1

2
β22|φ2|4 + β12|φ1|2|φ2|2

]
dx. (5.16)

Again, it is easy to see that the ground state Φα
g satisfies the following Euler-Lagrange

equations,

µ1 φ1 =

[
−1

2
∇2 + V (x) + δ + (β11|φ1|2 + β12|φ2|2)

]
φ1,

µ2 φ2 =

[
−1

2
∇2 + V (x) + (β12|φ1|2 + β22|φ2|2)

]
φ2, x ∈ Rd,

(5.17)

under the two constraints

‖φ1‖2 :=

∫

Rd

|φ1(x)|2 dx = α, ‖φ2‖2 :=

∫

Rd

|φ2(x)|2 dx = 1 − α, (5.18)

with µ1 and µ2 being the Lagrange multipliers or chemical potentials corresponding to

the two constraints (5.18). Again, the above time-independent CGPEs (5.17) can also be

obtained from the CGPEs (5.1) with λ = 0 by substituting the ansatz

ψ1(x, t) = e−iµ1tφ1(x), ψ2(x, t) = e−iµ2tφ2(x). (5.19)

It is easy to see that the ground state Φg defined in (5.12) is equivalent to the following

minimization problem

Find (Φg ∈ S), such that

Es (Φg) = min
Φ∈S

Es (Φ) = min
α∈[0,1]

Es(α), Es(α) = min
Φ∈Sα

Es(Φ). (5.20)

There are some analytical and numerical studies for the ground states of two-component

BEC without internal atomic Josephson junction or optical resonator, i.e. based on the
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definition of (5.14), in the literatures [9, 48, 49, 99]. To the author’s knowledge, there

are no analytical results for the ground states of two-component BEC with an internal

atomic Josephson junction, i.e. based on the definition of (5.12). We are going to estab-

lish existence and uniqueness results for the ground states of two-component BEC with

an internal atomic Josephson junction and optical resonator and to propose efficient and

accurate numerical methods for computing these ground states.

5.2 Existence and uniqueness results for the ground states

In this section, we will establish existence and uniqueness results for the ground states of

two-component BEC with and without an internal atomic Josephson junction and optical

resonator, i.e. the nonconvex minimization problems (5.12) and (5.14), respectively. Let

B =


β11 β12

β12 β22


 , (5.21)

we say B is positive semi-definite iff β11 ≥ 0 and β11β22 − β2
12 ≥ 0; and B is nonnegative

iff β11 ≥ 0, β12 ≥ 0 and β22 ≥ 0. Without loss of generality, throughout the paper, we

assume β11 ≥ β22. In two dimensions (2D), i.e. d = 2, let Cb be the best constant defined

in (3.12). The best constant Cb can be attained at some H1 function [155] and it is crucial

in considering the existence of ground states in 2D.

5.2.1 For the case with optical resonator, i.e. problem (5.12)

Denote

D =
{
Φ = (φ1, φ2)

T |V |φj |2 ∈ L1(Rd), φj ∈ H1(Rd) ∩ L4(Rd), j = 1, 2
}
, (5.22)

then the ground state Φg of (5.12) is also given by

Find (Φg ∈ D1), such that

Eg := Es (Φg) = min
Φ∈D1

Es (Φ) , (5.23)

where

D1 = D ∩
{

Φ = (φ1, φ2)
T | ‖Φ‖2

2 =

∫

Rd

(|φ1(x)|2 + |φ2(x)|2) dx = 1

}
. (5.24)
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In addition, we introduce the auxiliary energy functional

Ẽ(Φ) =

∫

Rd

{
1

2

(
|∇φ1|2 + |∇φ2|2

)
+
[
V (x)

(
|φ1|2 + |φ2|2

)
+ δ|φ1|2

]
+ β12|φ1|2|φ2|2

+
β11

2
|φ1|4 +

β22

2
|φ2|4 − 2|λ| · |φ1| · |φ2|

}
dx − σ

(∫

Rd

|φ1| |φ2| dx
)2

, (5.25)

and the auxiliary nonconvex minimization problem

Find (Φg ∈ D1), such that

Ẽ (Φg) = min
Φ∈D1

Ẽ (Φ) . (5.26)

For Φ = (φ1, φ2)
T , we write Es(φ1, φ2) = Es(Φ) and Ẽ(φ1, φ2) = Ẽ(Φ). Then we have the

following lemmas:

Lemma 5.1 For the minimizers Φg(x) = (φg1(x), φg2(x))T of the nonconvex minimization

problems (5.23) and (5.26), if −2|λ| ≤ σ, we have

(i) If Φg is a minimizer of (5.23), then φg1(x) = eiθ1 |φg1(x)| and φg2(x) = eiθ2 |φg2(x)|
with θ1 and θ2 two constants satisfying θ1 = θ2 if λ < 0; and θ1 = θ2 ± π if λ > 0. In

addition, Φ̃g =
(
eiθ3φg1, e

iθ4φg2
)T

with θ3 and θ4 two constants satisfying θ3 = θ4 if λ < 0;

and θ3 = θ4 ± π if λ > 0 is also a minimizer of (5.23).

(ii) If Φg is a minimizer of (5.26), then φg1(x) = eiθ1 |φg1(x)| and φg2(x) = eiθ2 |φg2(x)|
with θ1 and θ2 two constants. In addition, Φ̃g =

(
eiθ3φg1, e

iθ4φg2
)T

with θ3 and θ4 two

constants is also a minimizer of (5.26).

(iii) If Φg is a minimizer of (5.23), then Φg is also a minimizer of (5.26).

(iv) If Φg is a minimizer of (5.26), then Φ̃g = (|φg1|,−sign(λ)|φg2|)
T

is a minimizer of

(5.23).

Proof: For any Φ(x) = (φ1(x), φ2(x))T ∈ D1, we write it as

φ1(x) = eiθ1(x)|φ1(x)|, φ2(x) = eiθ2(x)|φ2(x)|, x ∈ Rd. (5.27)

Then we have

∇φ1(x) = eiθ1(x) [∇|φ1(x)| + i|φ1(x)|∇θ1(x)] ,

∇φ2(x) = eiθ2(x) [∇|φ2(x)| + i|φ2(x)|∇θ2(x)] .
(5.28)
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Noticing in the case of σ ≥ −2|λ|, function h(s) = −2|λ|s− σs2 (s ∈ [0, s0], 0 ≤ s0 ≤ 1/2)

reaches its minimal at s0, in view of
∫

R
|φ1| |φ2| dx ≤ 1/2, we have

2λ

∫

Rd

Re(φ1φ̄2) dx − σ

∣∣∣∣
∫

R

φ1φ̄2 dx

∣∣∣∣
2

≥ −2|λ|
∫

Rd

|φ1| |φ2| dx − σ

(∫

R

|φ1| |φ2| dx
)2

,

where the equality can be attained. Plugging (5.28) into (5.11) with Φ and (5.25), we

obtain

Es(φ1, φ2) = Es(|φ1|,−sign(λ)|φ2|) +

∫

Rd

1

2

[
|φ1|2|∇θ1|2 + |φ2|2|∇θ2|2

+4|λ| [1 + sign(λ) cos(θ1 − θ2)] |φ1||φ2|
]
dx, (5.29)

Ẽ(φ1, φ2) = Ẽ(|φ1|, |φ2|) +

∫

Rd

1

2

[
|φ1|2|∇θ1|2 + |φ2|2|∇θ2|2

]
dx, (5.30)

Es(|φ1|,−sign(λ)|φ2|) = Ẽ(|φ1|, |φ2|) ≤ Ẽ(φ1, φ2), (5.31)

Ẽ(φ1, φ2) ≤ Es(φ1, φ2), Φ ∈ D1. (5.32)

(i) If Φg is a minimizer of (5.23), then we have

Es(φ
g
1, φ

g
2) ≤ Es(|φg1|,−sign(λ)|φg2|). (5.33)

Plugging (5.33) into (5.29) with Φ = Φg, we get

∫

Rd

1

2

[
|φg1|2|∇θ

g
1|2 + |φg2|2|∇θ

g
2 |2 + 4|λ| [1 + sign(λ) cos(θg1 − θg2)] |φ

g
1||φ

g
2|
]
dx = 0.

This immediately implies that

∇θg1 = 0, ∇θg2 = 0, 1 + sign(λ) cos(θg1 − θg2) = 0, (5.34)

and thus

θg1(x) ≡ θ1, θg2(x) ≡ θ2, θ1 =




θ2 λ < 0,

θ2 ± π λ > 0.

(5.35)

In addition, we have

Es(Φg) = Es(|φg1|,−sign(λ)|φg2|) = Es(Φ̃g), (5.36)

which immediately implies that Φ̃g is also a minimizer of (5.23).

(ii) Follows the analogue proof as those in part i) and we omitted the details here.
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(iii) If Φg is a minimizer of (5.23), noticing (5.29)-(5.31), we have

Ẽ(φg1, φ
g
2) = Ẽ(|φg1|, |φ

g
2|) = Es(|φg1|,−sign(λ)|φg2|) = Es(φ

g
1, φ

g
2)

≤ Es(|φ1|,−sign(λ)|φ2|) ≤ Ẽ(φ1, φ2) = Ẽ(Φ), Φ ∈ D1, (5.37)

which immediately implies that Φg is a minimizer of (5.26).

(iv) If Φg is a minimizer of (5.26), noticing (5.30) and (5.32), we have

Es(Φ̃g) = Es(|φg1|,−sign(λ)|φg2|) = Ẽ(|φg1|, |φ
g
2|) = Ẽ(φg1, φ

g
2)

≤ Ẽ(φ1, φ2) ≤ Es(φ1, φ2) = Es(Φ), Φ ∈ D1, (5.38)

which immediately implies that Φ̃g is a minimizer of (5.23).

Lemma 5.2 (strict convexity of Ẽ) Assume that the matrix B is positive semi-definite

and at least one of the parameters λ, γ1 := β11 − β22 and γ2 := β11 − β12 is nonzero,

−2|λ| ≤ σ ≤ 0, for (ρ1, ρ2)
T with ρ1, ρ2 ≥ 0,

√
ρ1,

√
ρ2 ∈ D1, then Ẽ[

√
ρ1,

√
ρ2] is strictly

convex in (ρ1, ρ2).

Proof: Similar to [98] for single-component BEC, the first term in Ẽ is convex. The second

and third terms in Ẽ are linear and quadratic forms, respectively, since we assume that B

is positive semi-definite, thus these two terms are convex. Now we just need to verify the

convexity of remaining terms. Let Φ1 = (
√
ρ1,

√
ρ2)

T ∈ D1 and Φ2 = (
√
ρ′1,
√
ρ′2)

T ∈ D1,

for α ∈ (0, 1), then Φ(α) = ([αρ1 + (1 − α)ρ′1]
1/2, [αρ2 + (1 − α)ρ′2]

1/2)T ∈ D1. Denote

g(α) =

∫

Rd

[αρ1 + (1 − α)ρ′1]
1/2 × [αρ2 + (1 − α)ρ′2]

1/2 dx, (5.39)

then consider the remaining terms in Ẽ as

R(α) = −2|λ|g(α) − σ (g(α))2 . (5.40)

By Cauchy inequality, we have

α
√
ρ1
√
ρ2 + (1 − α)

√
ρ′1

√
ρ′2 ≤

√
αρ1 + (1 − α)ρ′1 ×

√
αρ2 + (1 − α)ρ′2. (5.41)

Thus g(α) is concave, i.e. g′′ ≤ 0. Hence, we get

R′′(α) = −2σ
(
g′(α)

)2 − (2σg(α) + 2|λ|) g′′(α). (5.42)
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Noticing that g(α) ∈ [0, 1/2], under the condition that σ ≤ 0 and |λ| + σ
2 ≥ 0, we have

R′′(α) ≥ 0, α ∈ [0, 1], (5.43)

which shows the remaining terms in Ẽ is convex. The proof is complete.

Theorem 5.1 (Existence and uniqueness of (5.26) ) Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) =

∞, then there exists a minimizer Φ∞ = (φ∞1 , φ
∞
2 )T ∈ D1 of (5.26) if one of the following

conditions holds,

(i) d = 1;

(ii) d = 2 and β11 ≥ −Cb, β22 ≥ −Cb, β12 ≥ −Cb −
√
Cb + β11

√
Cb + β22;

(iii) d = 3 and B is either positive semi-definite or nonnegative.

In addition, if the matrix B is positive semi-definite and at least one of the parameters δ,

λ, γ1 and γ2 is nonzero, −2|λ| ≤ σ ≤ 0, then the minimizer (|φ∞1 |, |φ∞2 |)T is unique.

Proof: First, we claim that Ẽ is bounded below under the assumption. Case (iii) is clear.

For case (i), using the constraint ‖Φ‖2
2 = 1 and Sobolev inequality, for any ε > 0, there

exists Cε > 0 such that

‖φj‖4
4 ≤ ‖φj‖2

∞‖φj‖2
2 ≤ ‖φj‖2

∞ ≤ ‖∇φj‖2‖φj‖2 ≤ ε‖∇φj‖2
2 + Cε, j = 1, 2,

which yields the claim. For case (ii), using Cauchy inequality and Gagliardo-Nirenberg

inequality, we have

∫

R2

(
β11|φ1|4 + β22|φ2|4 + 2β12|φ1|2|φ2|2

)
dx ≥ −Cb

∫

R2

(√
|φ1|2 + |φ2|2

)4
dx

≥ −
∫

R2

(√
|φ1|2 + |φ2|2

)2
dx

∫

R2

(
∇
√

|φ1|2 + |φ2|2
)2

dx

≥ −
∫

R2

(
|∇φ1|2 + |∇φ2|2

)
dx,

which also leads to the claim. Thus, in all the cases, we can take a minimizing sequence

Φn = (φn1 , φ
n
2 )T in D1. Then there exists a constant C such that ‖∇φn1‖ + ‖∇φn2‖ < C,

‖φn1‖4 + ‖φn2‖4 < C and
∫

Rd V (x)(|φn1 (x)|2 + |φn2 (x)|2)dx < C for all n ≥ 0. Therefore

φn1 and φn2 belong to a weakly compact set in L4, H1 = {φ | ‖φ‖2 + ‖∇φ‖2 < ∞},
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and L2
V = {φ |

∫
Rd V (x)|φ(x)|2 dx < ∞} with a weighted L2-norm given by ‖φ‖V =

[
∫

Rd |φ(x)|2V (x)dx]1/2. Thus, there exists a Φ∞ = (φ∞1 , φ
∞
2 )T ∈ D and a subsequence

(which we denote as the original sequence for simplicity), such that

φn1 ⇀ φ∞1 , φn2 ⇀ φ∞2 , in L2 ∩ L4 ∩ L2
V ,

∇φn1 ⇀ ∇φ∞1 , ∇φn2 ⇀ ∇φ∞2 , in L2.
(5.44)

Also, we can suppose that φn1 and φn2 are nonnegative, since we can replace them with

|φn1 | and |φn2 |, which also minimize the functional Ẽ. To show that Ẽ attains its minimal

at Φ∞, we recall the constraint ‖Φn‖2 = 1, then the functional Ẽ can be re-written as

Ẽ(φn1 , φ
n
2 ) =

∫

Rd

[
1

2

(
|∇φn1 |2 + |∇φn2 |2

)
+ V (x)

(
|φn1 |2 + |φn2 |2

)
+ δ|φn1 |2 + β12|φn1 |2|φn2 |2

+
β11

2
|φn1 |4 +

β22

2
|φn2 |4 + |λ| |φn1 − φn2 |2

]
dx − |λ| − σ

(∫

Rd

φn1φ
n
2 dx

)2

.

First, we show that for any given ε > 0,

∫

Rd

β12 |φ∞1 |2|φ∞2 |2dx ≤ lim inf
n→∞

∫

Rd

β12 |φn1 |2|φn2 |2dx + ε. (5.45)

When β12 ≥ 0, this is obviously true. For general β12, we decompose Rd into two parts,

a bounded region BR = {|x| ≤ R} and Bc
R := Rd \ B, such that V (x) ≥ 1/η on Bc

R,

where η > 0 sufficiently small, using the assumption lim
|x|→∞

V (x) = ∞. Then
∫
Bc

R
(|φn1 |2 +

|φn2 |2)dx ≤ Cη. In Bc
R, using the Sobolev-Gagliardo inequality, for d = 3 and 2∗ = 6, we

have

∫

Bc
R

|φn1 |4dx ≤ ‖φn1‖12
2∗

(∫

Bc
R

|φn1 |2dx
)2

≤MCη2‖∇φn1‖12
2 ≤MC13η2, (5.46)

where M is a constant. Thus, by choosing R sufficiently large, we have

∫

Bc
R

|φn1 |4dx ≤ ε

2(1 + |β12|)
, for all n. (5.47)

In the case of d = 1, using the Sobolev inequality

‖f‖∞ ≤ ‖f ′‖2 ‖f‖2, for all f ∈ H1(R1), (5.48)

and in the case of d = 2, using the Sobolev type inequality

‖f‖2
6 ≤ C(‖∇f‖2

2 + ‖f‖2
2), for all f ∈ H1(R2), (5.49)
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we can get the same result.

The same conclusion holds for φn2 . Notice that for φ∞1 and φ∞2 , by the weak lower

semicontinuous property of L4(Rd)-norm, H1(Rd)-norm and L2
V (Rd)-norm, we can have

‖∇φ∞1 ‖2 + ‖∇φ∞2 ‖2 < C, ‖φ∞1 ‖4 + ‖φ∞2 ‖4 < C and
∫

Rd V (x)(|φ∞1 |2 + |φ∞2 |2)dx < C.

Following the above arguments, the same conclusion holds for φ∞1 and φ∞2 , i.e., we have

∫

Bc
R

|φnj |4 dx ≤ ε

2(1 + |β12|)
,

∫

Bc
R

|φ∞j |4 dx ≤ ε

2(1 + |β12|)
, j = 1, 2, n ≥ 0. (5.50)

Then, by the Cauchy-Schwartz inequality, we have

∣∣∣∣∣

∫

Bc
R

β12|φn1 |2|φn2 |2 dx
∣∣∣∣∣ ≤ |β12|

(∫

Bc
R

|φn1 |4 dx
)1/2(∫

Bc
R

|φn2 |4 dx
)1/2

≤ ε

2
, n ≥ 0, (5.51)

and ∣∣∣∣∣

∫

Bc
R

β12 |φ∞1 |2 |φ∞2 |2 dx
∣∣∣∣∣ ≤

ε

2
. (5.52)

Next, in the ball BR, applying the Sobolev embedding theorem, the strong convergence

holds,

φn1 −→ φ∞1 , φn2 −→ φ∞2 , in L2(BR) ∩ L4(BR). (5.53)

By writing

∣∣∣∣
∫

BR

β12|φn1 |2|φn2 |2 dx−
∫

BR

β12|φ∞1 |2|φ∞2 |2 dx
∣∣∣∣

≤ |β12|
[∣∣∣∣
∫

BR

(
|φn1 |2 − |φ∞1 |2

)
|φn2 |2 dx

∣∣∣∣+
∣∣∣∣
∫

BR

(
|φn2 |2 − |φ∞2 |2

)
|φ∞1 |2 dx

∣∣∣∣
]

≤ C
(
‖φn1 − φ∞1 ‖L4(BR) + ‖φn2 − φ∞2 ‖L4(BR)

)
, (5.54)

we have

∫

BR

β12 |φ∞1 (x)|2 |φ∞2 (x)|2 dx = lim
n→∞

∫

BR

β12|φn1 (x)|2|φn2 (x)|2 dx. (5.55)

Hence, the inequality (5.45) holds by combining the above results.

By a similar argument, we can prove that φnj → φ∞j in L2
⋂
L4 (j = 1, 2),

lim sup
n→∞

∣∣∣∣
∫

Rd

(|φn1 |2 + |φn2 |2)dx −
∫

Rd

(|φ∞1 |2 + |φ∞2 |2)dx
∣∣∣∣ ≤ ε. (5.56)
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Since L4(Rd)-norm, H1(Rd)-norm and L2
V (Rd)-norm are all weakly lower semicontinuous,

we have

Ẽ(φ∞1 , φ
∞
2 ) ≤ lim inf

n→∞
Ẽ(φn1 , φ

n
2 ) + ε, ε > 0, (5.57)

which immediately implies that Ẽ(Φ∞) ≤ lim inf
n→∞

Ẽ(Φn). Moreover, Φ∞ ∈ D1 by (5.56)

which implies the existence of minimizer of the problem (5.26).

If the matrix B is positive semi-definite and at least one of the parameters λ, γ1 and

γ2 is nonzero, −2|λ| ≤ σ ≤ 0, the uniqueness of (|φ∞1 |, |φ∞2 |)T follows from the strict

convexity of Ẽ. For the case δ 6= 0 and λ = γ1 = γ2 = σ = 0, the uniqueness is easy to

derive.

Remark 5.1 Under the same conditions, we can prove the existence of the minimization

problem (5.12). The proof is straightforward.

Notice that the the results in Lemma 5.1, Remark 5.1 and Theorem 5.1, we immediately

have the following existence and uniqueness results for the ground states of (5.12):

Theorem 5.2 (Existence and uniqueness of (5.12)) Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) =

∞ and at least one of the following condition holds,

(i) d = 1;

(ii) d = 2 and β11 ≥ −Cb, β22 ≥ −Cb, and β12 ≥ −Cb −
√
Cb + β11

√
Cb + β22;

(iii) d = 3 and B is either positive semi-definite or nonnegative,

there exists a ground state Φg = (φg1, φ
g
2)
T of (5.12). In addition, if σ ≥ −2|λ|, Φ̃g :=

(eiθ1 |φg1|, eiθ2 |φ
g
2|) is also a ground state of (5.12) with θ1 and θ2 two constants satisfying

θ1 − θ2 = ±π when λ > 0 and θ1 − θ2 = 0 when λ < 0, respectively. Furthermore, if the

matrix B is positive semi-definite and at least one of the parameters δ, λ, γ1 and γ2 is

nonzero, −2|λ| ≤ σ ≤ 0, then the ground state (|φg1|,−sign(λ)|φg2|)T is unique. In contrast,

if one of the following conditions holds,

(i) d = 2 and β11 < −Cb or β22 < −Cb or β12 < −Cb −
√
Cb + β11

√
Cb + β22 ;

(ii) d = 3 and β11 < 0 or β22 < 0 or β12 < 0 with β2
12 > β11β22.
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there exists no ground state of (5.12).

Proof: The first part of the theorem follows from Theorem 5.1. We are going to prove

the nonexistence results.

In 2D case, i.e. d = 2, let ϕ(x) ∈ H1(R2) such that ‖ϕ‖2 = 1 and Cb = ‖∇ϕ‖2
2/‖ϕ‖4

4

[155]. Consider Φε = (φε1, φ
ε
2)
T , where φε1(x) =

√
θε−1ϕ(x/ε), φε2(x) =

√
1 − θε−1ϕ(x/ε),

θ ∈ [0, 1], ε > 0. When β11 < −Cb, choose θ = 1, we have

Es(Φ
ε) =

1

2ε2
‖∇ϕ‖2

2 +
β11

2ε2
‖ϕ‖4

4 + O(1) =
1 + β11

Cb

2ε2
‖∇ϕ‖2

2 + O(1), ε→ 0+,

thus lim
ε→0+

Es(Φ
ε) = −∞. When β22 < −Cb, choose θ = 0, similarly we can draw the same

conclusion. When β11 ≥ −Cb, β22 ≥ −Cb and β12 < −Cb −
√
Cb + β11

√
Cb + β22, choose

θ = β22−β12

β11+β22−2β12
, then

βθ := θ2β11 + 2β12θ(1 − θ) + β22(1 − θ)2 =
β11β22 − β2

12

β11 + β22 − 2β12
< −Cb,

and

Es(Φ
ε) =

1 + βθ
Cb

2ε2
‖∇ϕ‖2

2 + O(1), ε→ 0+,

then lim
ε→0

Es(Φ
ε) = −∞. Thus there exists no ground state in these cases.

In three dimensions (3D) case, i.e. d = 3, choose Φε = (φε1, φ
ε
2)
T , where φε1(x) =

√
θ

(επ)3/4 exp(−|x|2/2ε), φε2(x) =
√

1−θ
(επ)3/4 exp(−|x|2/2ε), θ ∈ [0, 1], ε > 0. When β11 < 0,

choosing θ = 1, we obtain

Es(Φ
ε) = C1ε

−1 +
β11

2
(2πε)−3/2 + O(1), ε→ 0+,

which shows lim
ε→0+

E(Φε) = −∞. When β22 < 0, choose θ = 0, the same conclusion holds.

When β11 ≥ 0, β22 ≥ 0, β12 < 0 and β2
12 > β11β22, choose θ = β22−β12

β11+β22−2β12
∈ (0, 1), then

βθ := θ2β11 + 2β12θ(1 − θ) + β22(1 − θ)2 =
β11β22 − β2

12

β11 + β22 − 2β12
< 0,

and

Es(Φ
ε) = C1ε

−1 +
βθ
2

(2πε)−3/2 + O(1), ε→ 0+,

thus lim
ε→0+

Es(Φ
ε) = −∞. The above results imply that there exists no ground state in

such cases.

When B is nonnegative, we have the following uniqueness results for the ground states

of (5.12):
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Theorem 5.3 Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞, the matrix B is nonnegative

satisfying β11 = β22 ≥ 0, at least one of the parameters δ, λ, γ1 and γ2 is nonzero,

−2|λ| ≤ σ ≤ 0, and δ 6= 0 if β12−β11 > 0, then the ground state Φg = (|φg1|,−sign(λ)|φg2|)T

of (5.12) is unique.

Proof: If B is nonnegative and β11 = β22 ≥ β12 ≥ 0 which immediately implies that B

is positive semi-definite, since at least one of the parameters δ, λ, γ1 and γ2 is nonzero,

σ ≤ 0 and |λ| + σ
2 ≥ 0, the uniqueness of the ground state Φg follows immediately from

Theorem 5.1.

If β12 > β11 = β22 ≥ 0, for any Φ = (φ1, φ2)
T ∈ D1, let

ϕ1 =
1√
2
(φ1 + φ2), ϕ2 =

1√
2
(φ1 − φ2). (5.58)

Suppose that Φg = (φg1, φ
g
2)
T is a nonnegative minimizer of (5.26), then the corresponding

(ϕg1, ϕ
g
2)
T is a minimizer of the following energy functional

Ê(ϕ1, ϕ2)

=

∫

Rd

[
1

2

(
|∇ϕ1|2 + |∇ϕ2|2

)
+ V (x)

(
|ϕ1|2 + |ϕ2|2

)
+ (3β11 − β12)|ϕ1|2|ϕ2|2 + δRe(ϕ1ϕ̄2)

+ (σ − 2|λ|) |ϕ1|2 +
β11 + β12

2

[
|ϕ1|4 + |ϕ2|4

]]
dx − σ

(∫

Rd

ϕ2
1(x) dx

)2

, (5.59)

under the constraint
∫

Rd(|ϕ1(x)|2 + |ϕ2(x)|2) dx = 1.

Noticing that the matrix


 β11 + β12 3β11 − β12

3β11 − β12 β11 + β12


 is positive semi-definite in this

case and δ is nonzero, using the results in the Theorem 5.1, we can obtain the uniqueness

of the ground state (ϕg1, ϕ
g
2)
T to the problem (5.59) with ϕg1 ≥ 0. Thus the uniqueness of

the ground state Φg = (|φg1|,−sign(λ)|φg2|)T of (5.12) follows immediately.

Theorem 5.4 Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞ and λ = σ = 0.

(i) If δ ≥ 0, β12 ≥ β22 and β11 > β22 ≥ 0, then the ground state Φg = (φg1, φ
g
2)
T of

(5.12) must satisfy φg1 = 0 and |φg2| is unique.

(ii) If δ ≤ 0, β12 ≥ β11 and β22 > β11 ≥ 0, then the ground state Φg = (φg1, φ
g
2)
T of

(5.12) must satisfy φg2 = 0 and |φg1| is unique.
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Proof: (i) Suppose Φg = (φg1, φ
g
2)
T be a nonnegative minimizer of (5.12). Consider

φ1(x) = 0, φ2(x) =
√

|φg1(x)|2 + |φg2(x)|2, x ∈ Rd. (5.60)

Then, Φ = (φ1, φ2)
T ∈ D1 and satisfies

∫

Rd

|∇φ2(x)|2dx ≤
∫

Rd

[
|∇φg1(x)|2 + |∇φg2(x)|2

]
dx,

∫

Rd

V (x)
(
|φ1(x)|2 + |φ2(x)|2

)
dx =

∫

Rd

V (x)
(
|φg1(x)|2 + |φg2(x)|2

)
dx,

∫

Rd

β22

2
|φ2(x)|4dx ≤

∫

Rd

1

2

[
β11|φg1|4 + β22|φg2|4 + 2β12|φg1|2|φ

g
2|2
]
dx.

(5.61)

Thus,

Es(Φ) = Es(φ1, φ2) ≤ Es(φ
g
1, φ

g
2) = Es(Φg) ≤ Es(Φ). (5.62)

So, the above inequalities must be equalities, which leads to our conclusion. The unique-

ness of |φg2| is also easy to see.

(ii) Follow the analogous arguments as in part (i) and the details are omitted.

Lastly, we stress that, if B is not positive semi-definite, the uniqueness of the ground

state of (5.12) may not hold. Actually, we have the following result in contrast with

Theorem 5.3.

Theorem 5.5 Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞, δ = σ = 0 and β12 > β11 =

β22 ≥ 0, then there exists a constant Λ0 > 0, such that for λ ∈ (−Λ0,Λ0), the ground state

Φg = (|φg1|,−sign(λ)|φg2|)T of (5.12) is not unique.

Proof: Let Φ1 = (φg, φg)T be the nonnegative minimizer of (5.25) in the subset of D1
{
Φ = (φ1, φ2)

T ∈, φ1 = φ2

}
and Φ2 = (0, φ)T be the nonnegative minimizer of (5.25) in

the set
{
Φ = (φ1, φ2)

T ∈ D1, φ1 = 0
}
, then we know

Ẽ(Φ1) = min
Φ=(φ1,φ1)T ∈D1

Ẽ(Φ) (5.63)

= min
‖φ‖2=1

∫

Rd

{
1

2
|∇φ|2 + V (x)|φ|2 +

β11 + β12

4
|φ|4

}
dx− |λ|,

and

Ẽ(Φ2) = min
‖φ‖2=1

∫

Rd

{
1

2
|∇φ|2 + V (x)|φ|2 +

β11

2
|φ|4

}
dx. (5.64)
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Since β12 > β11, we have

Λ0 = min
‖φ‖2=1

∫

Rd

{
1

2
|∇φ|2 + V (x)|φ|2 +

β11 + β12

4
|φ|4

}
dx

− min
‖φ‖2=1

∫

Rd

{
1

2
|∇φ|2 + V (x)|φ|2 +

β11

2
|φ|4

}
dx

> 0.

Thus, for λ ∈ (−Λ0,Λ0), Ẽ(Φ1) > Ẽ(Φ2), which implies that for ground state Φg =

(φg1, φ
g
2)
T of (5.12), |φg1| 6= |φg2|. But under the assumption, we can see that if Φg = (φg1, φ

g
2)
T

is a ground state of (5.12), then (φg2, φ
g
1)
T is also a ground state. So, the minimizer

Φg = (|φg1|,−sign(λ)|φg2|)T of (5.12) can not be unique.

Remark 5.2 In the above theorem, for ground state Φg = (φg1, φ
g
2)
T , we have (|φg1|, |φ

g
2|)

is unique under the permutation of subindex.

Remark 5.3 When δ = λ = σ = 0 and β11 = β12 = β22 ≥ 0, the nonnegative ground

state Φg of (5.12) is not unique.

Remark 5.4 Similar to the results in [38, 40, 57], for any fixed β11 ≥ 0 and β22 ≥ 0,

the phase of two components of the ground state Φg = (φg1, φ
g
2)
T will be segregated when

β12 → ∞, i.e. Φg will converge to a state such that φg1 · φ
g
2 = 0.

Remark 5.5 If the potential V (x) in the two equations in (5.1) is chosen different in

different equations, i.e. Vj(x) in the jth (j = 1, 2) equation, if they satisfy Vj(x) ≥ 0,

lim
|x|→∞

Vj(x) = ∞ (j = 1, 2), then the conclusions in the above Lemmas and Theorem

5.1-5.2 are still valid under the similar conditions.

5.2.2 For the case without optical resonator and Josephson junction, i.e.

problem (5.14)

If α = 0 or 1 in the nonconvex minimization problem (5.14), it reduces to a single com-

ponent problem and the results were established in [98]. Thus here we assume α ∈ (0, 1).

Denote

β′11 := αβ11, β′22 := (1 − α)β22, β′12 :=
√
α(1 − α)β12, α′ := α(1 − α).

Then the following conclusions can be drawn.
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Theorem 5.6 (Existence and uniqueness of (5.14)) Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) =

∞ and at least one of the following condition holds,

(i) d = 1;

(ii) d = 2 and β′11 ≥ −Cb, β′22 ≥ −Cb, and β′12 ≥ −
√

(Cb + β′11)(Cb + β′22);

(iii) d = 3 and B is either positive semi-definite or nonnegative,

then there exists a ground state Φg = (φg1, φ
g
2)
T of (5.14). In addition, Φ̃g := (eiθ1 |φg1|, eiθ2 |φ

g
2|)

is also a ground state of (5.14) with two constants θ1 and θ2. Furthermore, if the matrix

B is positive semi-definite, the ground state (|φg1|, |φ
g
2|)T of (5.14) is unique. In contrast,

if one of the following conditions holds,

(i) d = 2 and β′11 < −Cb or β′22 < −Cb or β′12 < − 1
2
√
α′

(αβ′11 + (1 − α)β′22 + Cb));

(ii) d = 3 and β11 < 0 or β22 < 0 or β12 < − 1
2α′ (α2β11 + (1 − α)2β22).

there exists no ground states of (5.14).

Proof: The proof is similar to those of Theorems 5.1 and 5.2 and it is omitted here for

brevity.

5.3 Properties of the ground states

In this section, we will show some properties of the stationary states and find the limiting

behavior of the ground states when either |λ| → ∞ or |δ| → ∞.

Theorem 5.7 Suppose that V (x) ≥ 0 and β11 = β12 = β22 = σ = 0, for the stationary

states of (5.8) under the constraint (5.9), we have

(i) The ground state Φg = (φg1, φ
g
2)
T is the global minimizer of E(Φ) over the unit

sphere S.

(ii) Any excited state Φj = (φj1, φ
j
2)
T (j = 1, 2, . . .) is a saddle point of E(Φ) over the

unit sphere S.
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Proof: Let Φe = (φe1, φ
e
2)
T be the solution of (5.8) under the constraint (5.9) with β11 =

β12 = β22 = 0 and µe be the corresponding eigenvalue. Obviously, ‖Φe‖2 = 1 and

µe = E(Φe). For any function Φ = (φ1, φ2)
T with E(Φ) <∞ and ‖Φe + Φ‖2 = 1, we have

‖Φ‖2
2 = ‖(Φe + Φ) − Φe‖2

2 = ‖(φe1 + φ1) − φe1‖2
2 + ‖(φe2 + φ2) − φe2‖2

2

= ‖Φe + Φ‖2
2 − ‖Φe‖2

2 −
∫

Rd

[
φe1φ̄1 + φ̄e1φ1 + φe2φ̄2 + φ̄e2φ2

]
dx

= −
∫

Rd

[
φe1φ̄1 + φ̄e1φ1 + φe2φ̄2 + φ̄e2φ2

]
dx. (5.65)

From (5.11) with Ψ = Φe + Φ, noticing (5.8) and (5.65) and integration by parts, we

get

E(Φe + Φ) = E(Φe) + E(Φ) + 2 Re

∫

Rd

[
−1

2
∇2φe1 + (V (x) + δ)φe1 + λφe2

]
φ̄1 dx

+2 Re

∫

Rd

[
−1

2
∇2φe2 + V (x)φe2 + λφe1

]
φ̄2 dx

= E(Φe) + E(Φ) + µe

∫

Rd

[
φe1φ̄1 + φ̄e1φ1 + φe2φ̄2 + φ̄e2φ2

]
dx

= E(Φe) + E(Φ) − µe‖Φ‖2
2

= E(Φe) + [E(Φ/‖Φ‖2) − µe] ‖Φ‖2
2. (5.66)

(i) Taking Φe = Φg and µe = µg in (5.66) and noticing E(Φ/‖Φ‖2) ≥ µg for any Φ 6= 0,

we get immediately that Φg is a global minimizer of E(Φ) over S.

(ii) Taking Φe = Φj and µe = µj in (5.66), since E(Φg) < E(Φj) and it is easy to find

an eigenfunction Φ of (5.8) satisfying ‖Φ‖ = 1 such that E(Φ) > E(Φj), we get immedi-

ately that Φj is a saddle point of the energy functional E(Φ) over S.

When |λ| → ∞ or |δ| → ∞, we have the following limiting behavior of the ground

states of (5.12).

Theorem 5.8 Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞ and B is either positive

semi-definite or nonnegative. For fixed V (x), B, σ and δ, let Φλ = (φλ1 , φ
λ
2 )T be a ground

state of (5.12) with respect to λ. Then when |λ| → ∞, we have

‖ |φλj | − φg‖2 → 0, j = 1, 2, E(Φλ) ≈ 2E1(φ
g) − |λ|, (5.67)

where φg is the unique positive minimizer [98] of

E1(φ) =

∫

Rd

[
1

2
|∇φ|2 + V1(x)|φ|2 +

β

2
|φ|4

]
dx (5.68)
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under the constraint

‖φ‖2 = ‖φ‖2
2 =

∫

Rd

|φ(x)|2 dx =
1

2
, (5.69)

with

V1(x) = V (x) +
δ

2
, β =

β11 + β22 + 2β12

2
. (5.70)

Proof: Without loss of generality, we assume λ < 0. In the case of |λ| sufficient large,

we can assume that the ground states Φλ = (φλ1 , φ
λ
2 )T satisfy φλj ≥ 0, j = 1, 2. Since

(φg, φg)T ∈ D1, we have

Ẽ(φλ1 , φ
λ
2 ) ≤ Ẽ(φg, φg). (5.71)

Noticing

∫

Rd

−2|λ| · |φ1| · |φ2| dx = |λ|
∫

Rd

(|φ1| − |φ2|)2 − |λ|, (5.72)

we have

Ẽ(φg, φg) = 2E1(φ
g) − |λ| − σ

4
. (5.73)

Plugging (5.73) into (5.71) and noticing (5.72), there exists a constant C > 0 such that

‖φλ1‖H1 + ‖φλ2‖H1 ≤ C, ‖φλ1 − φλ2 ‖2 ≤ C

|λ| , |λ| > 0, (5.74)

this immediately implies

φλ1 − φλ2 −→ 0 in L2, as |λ| → ∞. (5.75)

Using the similar arguments as in the proof of Theorem 5.1, we can see that there exists

Φ∞ = (φ∞1 , φ
∞
2 )T ∈ D1 such that

φλ1 ⇀ φ∞1 , φλ2 ⇀ φ∞2 , in L2 ∩ L4 ∩ L2
V ,

∇φλ1 ⇀ ∇φ∞1 , ∇φλ2 ⇀ ∇φ∞2 , in L2,
(5.76)

and

Ẽ(φ∞1 , φ
∞
2 ) ≤ lim inf

|λ|→∞
Ẽ(φλ1 , φ

λ
2 ). (5.77)

These together with (5.75) imply that

φ∞1 = φ∞2 := φ∞. (5.78)
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Plugging (5.78) into (5.25), we obtain

Ẽ(φ∞, φ∞) = 2E1(φ
∞) − |λ| − σ

4
≤ lim inf

|λ|→∞
Ẽ(φλ1 , φ

λ
2 ) ≤ lim sup

|λ|→∞
Ẽ(φλ1 , φ

λ
2 )

≤ 2E1(φ
g) − |λ| − σ

4
, (5.79)

and

E1(φ
∞) ≤ E1(φ

g). (5.80)

Since φλ1 and φλ2 are nonnegative and φλ1 converges weakly to φ∞ in H1, there exists

a subsequence such that φλn
1 converges to φ∞ a.e. in any compact subset, which shows

φ∞ is nonnegative. Recalling that ‖φ∞‖2 = ‖Φλ‖2/2 = 1/2 and φg is the unique positive

minimizer of (5.68) under the constraint (5.69), we conclude that φ∞ must be equal to φg.

Therefore, all inequalities above must hold as equalities. Thus, with (5.75), we can obtain

the norm convergence,

‖φλ1‖2 → ‖φg‖2, ‖φλ2‖2 → ‖φg‖2,

‖∇φλ1‖2 → ‖∇φg‖2, ‖∇φλ2‖2 → ‖∇φg‖2.
(5.81)

Now, the weak convergence and the norm convergence would imply the conclusion since

H1 is a Hilbert space.

Theorem 5.9 Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞ and B is either positive

semi-definite or nonnegative. For fixed V (x), B, σ and λ, let Φδ = (φδ1, φ
δ
2)
T be a ground

state of (5.12) with respect to δ. Then when δ → +∞, we have

‖φδ1‖2 → 0, ‖ |φδ2| − φg‖2 → 0, E(Φδ) ≈ E2(φ
g), (5.82)

and when δ → −∞, we have

‖ |φδ1| − φg‖2 → 0, ‖φδ2‖2 → 0, E(Φδ) ≈ E2(φ
g) + δ, (5.83)

where φg is the unique positive minimizer [98] of

E2(φ) =

∫

Rd

[
1

2
|∇φ|2 + V (x)|φ|2 +

β

2
|φ|4

]
dx (5.84)

under the constraint

‖φ‖2 = ‖φ‖2
2 =

∫

Rd

|φ|2 dx = 1, (5.85)

with β = β22 when δ > 0, and β = β11 when δ < 0.
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Proof: Using the fact (0, φg)T ∈ D1 when δ > 0 and (φg, 0)T ∈ D1 when δ < 0, the results

can be established by a similar argument as in Theorem 5.8.

5.4 Numerical methods

In this section, we will propose and analyze efficient and accurate numerical methods for

computing the ground states of (5.12) without optical resonator, i.e. γ = ν = σ = 0. This

is motivated by the research of atomic laser, produced by a two-component BEC without

optical resonator. In this section and the following sections, we will always assume that

there is no optical resonator in (5.1).

5.4.1 Continuous normalized gradient flow and its discretization

In order to compute the ground state of two-component BEC with an internal atomic

Josephson junction (5.12), we construct the following continuous normalized gradient flow

(CNGF):

∂φ1(x, t)

∂t
=

[
1

2
∇2 − V (x) − δ − (β11|φ1|2 + β12|φ2|2)

]
φ1 − λφ2 + µΦ(t)φ1,

∂φ2(x, t)

∂t
=

[
1

2
∇2 − V (x) − (β12|φ1|2 + β22|φ2|2)

]
φ2 − λφ1 + µΦ(t)φ2,

(5.86)

where Φ(x, t) = (φ1(x, t), φ2(x, t))
T and µΦ(t) is chosen such that the above CNGF is

mass or normalization conservative and it is given as

µΦ(t) =
1

‖Φ(·, t)‖2

∫

Rd

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)(|φ1|2 + |φ2|2) + δ|φ1|2

+β11|φ1|4 + β22|φ2|4 + 2β12|φ1|2|φ2|2 + 2λ Re(φ1φ̄2)

]
dx

=
µ(Φ(·, t))
‖Φ(·, t)‖2

, t ≥ 0. (5.87)

For the above CNGF, we have

Theorem 5.10 For any given initial data

Φ(x, 0) = (φ0
1(x), φ0

2(x))T := Φ(0)(x), x ∈ Rd, (5.88)
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satisfying ‖Φ(0)‖2 = 1, the CNGF (5.86) is mass or normalization conservative and energy

diminishing, i.e.

‖Φ(·, t)‖2 ≡ ‖Φ(0)‖2 = 1, E(Φ(·, t)) ≤ E(Φ(·, s)), 0 ≤ s ≤ t. (5.89)

Proof: Follow the analogue proofs in [15] for single-component BEC and in [26] for spin-1

BEC. We omitted the details here.

Using an argument similar to that in [132], when V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞,

B is either positive semi-definite or nonnegative, and ‖Φ(0)‖ = 1, we may get as t →
∞, Φ(x, t) approaches to a steady state solution, which is a critical point of the energy

functional E(Φ) over the unit sphere S or an eigenfunction of the nonlinear eigenvalue

problem (5.8) under the constraint (5.9). In addition, when the initial data in (5.88) is

chosen properly, e.g. its energy is less than that of the first excited state, the ground state

Φg can be obtained from the steady state solution of (5.86), i.e.

Φg(x) = lim
t→∞

Φ(x, t), x ∈ Rd. (5.90)

For practical computation, here we also present a second-order in both space and time

full discretization for the above CNGF (5.86). For simplicity of notation, we introduce the

method for the case of one spatial dimension (1D) in a bounded domain U = (a, b) with

homogeneous Dirichlet boundary condition

Φ(a, t) = Φ(b, t) = 0, t ≥ 0. (5.91)

Generalizations to higher dimensions are straightforward for tensor product grids.

Choose time step k = ∆t > 0 and let time steps be tn = n k = n ∆t for n = 0, 1, 2, . . .;

and choose spatial mesh size h = ∆x > 0 with h = (b − a)/M for M a positive integer

and let the grid points be xj = a + j h, j = 0, 1, 2, . . . ,M . Let Φn
j = (φn1,j , φ

n
2,j)

T be the

numerical approximation of Φ(xj, tn) and Φn be the solution vector with component Φn
j .

In addition, denote Φ
n+1/2
j = (φ

n+1/2
1,j , φ

n+1/2
2,j )T with

φ
n+1/2
l,j =

1

2

(
φn+1
l,j + φnl,j

)
, j = 0, 1, 2, . . . ,M, l = 1, 2. (5.92)

Then a second-order full discretization for the CNGF (5.86) is given, for j = 1, 2, . . . ,M−1
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and n ≥ 0, as

φn+1
1,j − φn1,j

k
=

φ
n+1/2
1,j+1 − 2φ

n+1/2
1,j + φ

n+1/2
1,j−1

2h2
−
[
V (xj) + δ − µ

n+1/2
Φ,h

]
φ
n+1/2
1,j − λφ

n+1/2
2,j

−1

2

[
β11

(
|φn+1

1,j |2 + |φn1,j |2
)

+ β12

(
|φn+1

2,j |2 + |φn2,j |2
)]
φ
n+1/2
1,j , (5.93)

φn+1
2,j − φn2,j

k
=

φ
n+1/2
2,j+1 − 2φ

n+1/2
2,j + φ

n+1/2
2,j−1

2h2
−
[
V (xj) − µ

n+1/2
Φ,h

]
φ
n+1/2
2,j − λφ

n+1/2
1,j

−1

2

[
β12

(
|φn+1

1,j |2 + |φn1,j |2
)

+ β22

(
|φn+1

2,j |2 + |φn2,j |2
)]
φ
n+1/2
2,j , (5.94)

where

µ
n+1/2
Φ,h =

D
n+1/2
Φ,h

h
M−1∑
j=0

(
|φn+1/2

1,j |2 + |φn+1/2
2,j |2

) , n ≥ 0, (5.95)

with

D
n+1/2
Φ,h = h

M−1∑

j=0

{ 2∑

l=1

(
1

2h2
|φn+1/2
l,j+1 − φ

n+1/2
l,j |2 + V (xj)|φn+1/2

l,j |2
)

+ δ|φn+1/2
1,j |2

+
1

2
β11(|φn+1

1,j |2| + |φn1,j|2)|φ
n+1/2
1,j |2 +

1

2
β22(|φn+1

2,j |2 + |φn2,j|2)|φ
n+1/2
2,j |2

+
1

2
β12

[
(|φn+1

2,j |2 + |φn2,j |2)|φ
n+1/2
1,j |2 + (|φn+1

1,j |2| + |φn1,j |2)|φ
n+1/2
2,j |2

]

+2λ Re
(
φ
n+1/2
1,j φ̄

n+1/2
2,j

)}
. (5.96)

The boundary condition (5.91) is discretized as

φn+1
1,0 = φn+1

1,M = φn+1
2,0 = φn+1

2,M = 0, n = 0, 1, 2, . . . . (5.97)

The initial data (5.88) is discretized as

φ0
1,j = φ0

1(xj), φ0
2,j = φ0

2(xj), j = 0, 1, . . . ,M. (5.98)

Similarly, for the above full discretization for the CNGF, we have

Theorem 5.11 For any given time step k > 0 and mesh size h > 0 as well as initial data

Φ(0) in (5.88) satisfying ‖Φ0‖ = 1, the full discretization (5.93)-(5.98) for CNGF (5.86)

is mass or normalization conservative and energy diminishing, i.e.

Nn
Φ,h := h

M−1∑

j=0

2∑

l=1

|φnl,j|2 ≡ N0
Φ,h := h

M−1∑

j=0

2∑

l=1

|φ0
l (xj)|2, n ≥ 0, (5.99)

EnΦ,h ≤ En−1
Φ,h ≤ · · · ≤ E0

Φ,h, n ≥ 0, (5.100)
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where the discretized energy EnΦ,h is defined as

EnΦ,h = h
M−1∑

j=0

{ 2∑

l=1

(
1

2h2
|φnl,j+1 − φnl,j|2 + V (xj)|φnl,j |2

)
+ δ|φn1,j |2

+
1

2
β11|φn1,j |4 +

1

2
β22|φn2,j |4 + β12|φn1,j |2|φn2,j |2 + 2λ Re

(
φn1,j φ̄

n
2,j

)}
.(5.101)

Proof: Follow the analogous arguments in [26] for spin-1 BEC and we omitted the details

here.

In the above full discretization, at every time step, we need to solve a fully nonlinear

system which is very tedious in practical computation. Below we present a more efficient

discretization for the CNGF (5.86) for computing the ground states.

5.4.2 Gradient flow with discrete normalization and its discretization

Another more efficient way to discretize the CNGF (5.86) is through the construction of

the following gradient flow with discrete normalization (GFDN):

∂φ1

∂t
=

[
1

2
∇2 − V (x) − δ − (β11|φ1|2 + β12|φ2|2)

]
φ1 − λφ2,

∂φ2

∂t
=

[
1

2
∇2 − V (x) − (β12|φ1|2 + β22|φ2|2)

]
φ2 − λφ1, tn ≤ t < tn+1,

(5.102)

followed by a projection step as

φl(x, tn+1) := φl(x, t
+
n+1) = σn+1

l φl(x , t
−
n+1), l = 1, 2, n ≥ 0, (5.103)

where φl(x, t
±
n+1) = lim

t→t±n+1

φl(x, t) (l = 1, 2) and σn+1
l (l = 1, 2) are chosen such that

‖Φ(x, tn+1)‖2 = ‖φ1(x, tn+1)‖2 + ‖φ2(x, tn+1)‖2 = 1, n ≥ 0. (5.104)

The above GFDN (5.102)-(5.103) can be viewed as applying the first-order splitting

method to the CNGF (5.86) and the projection step (5.103) is equivalent to solve the

following ordinary differential equations (ODEs)

∂φ1(x, t)

∂t
= µΦ(t)φ1,

∂φ2(x, t)

∂t
= µΦ(t)φ2, tn ≤ t ≤ tn+1, (5.105)
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which immediately suggests that the projection constants in (5.103) are chosen as

σn+1
1 = σn+1

2 , n ≥ 0. (5.106)

Plugging (5.106) and (5.103) into (5.104), we obtain

σn+1
1 = σn+1

2 =
1

‖Φ(·, t−n+1)‖
=

1√
‖φ1(·, t−n+1)‖2 + ‖φ2(·, t−n+1)‖2

, n ≥ 0. (5.107)

In fact, the gradient flow (5.102) can be viewed as applying the steepest decent method to

the energy functional E(Φ) in (5.12) without constraints, and (5.103) project the solution

back to the unit sphere S. In addition, (5.102) can also be obtained from the CGPEs

(5.1) by the change of variable t → −i t, that is why this kind of algorithm is usually

called as the imaginary time method in physics literatures [9,15,50,126]. From numerical

point of view, the GFDN is much easier to discretize since the gradient flow (5.102) can

be solved via traditional techniques and the normalization (5.104) is simply achieved by

a projection (5.103) at the end of each time step.

For the above GFDN, we have

Theorem 5.12 Suppose V (x) ≥ 0 and β11 = β12 = β22 = 0, then for any time step k > 0

and initial data Φ(0) in (5.88) satisfying ‖Φ(0)‖ = 1, the GFDN (5.102)-(5.103) is energy

diminishing, i.e.

E(Φ(·, tn+1)) ≤ E(Φ(·, tn) ≤ · · · ≤ E(Φ(·, 0)) = E(Φ0), n = 0, 1, 2, . . . . (5.108)

Proof: Follow the analogous arguments in [15] for single-component BEC and we omit

the details here.

Again, for practical computation, here we also present a modified backward Euler

finite difference (MBEFD) discretization for the above GFDN (5.102)-(5.103) in a bounded
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domain U = (a, b) with homogeneous Dirichlet boundary condition (5.91):

φ∗1,j − φn1,j
k

=
1

2h2

[
φ∗1,j+1 − 2φ∗1,j + φ∗1,j−1

]
− [(V (xj) + δ + α]φ∗1,j − λφ∗2,j

−
(
β11|φn1,j |2 + β12|φn2,j |2

)
φ∗1,j + αφn1,j , 1 ≤ j ≤M − 1,

φ∗2,j − φn2,j
k

=
1

2h2

[
φ∗2,j+1 − 2φn2,j + φ∗2,j−1

]
− [V (xj) + α]φ∗1,j − λφ∗1,j

−
(
β12|φn1,j |2 + β22|φn2,j |2

)
φ∗2,j + αφn2,j , 1 ≤ j ≤M − 1,

φn+1
l,j =

φ∗l,j
‖Φ∗‖h

, j = 0, 1, . . . ,M, n ≥ 0, l = 1, 2;

(5.109)

where α ≥ 0 is a stabilization parameter chosen such that the time step k is independent

of the internal atomic Josephson junction λ and

‖Φ∗‖h :=

√√√√h

M−1∑

j=1

[
|φ∗1,j|2 + |φ∗2,j |2

]
. (5.110)

The initial and boundary conditions are discretized similarly as those for CNGF.

For the above full discretization for the GFDN, we have

Theorem 5.13 Suppose V (x) ≥ 0 and β11 = β12 = β22 = 0, if α ≥ |λ| + max(0,−δ),
then the MBEFD discretization (5.109) is energy diminishing for any time step k > 0 and

initial data Φ(0) satisfying ‖Φ(0)‖h = 1, i.e.

En+1
Φ,h ≤ EnΦ,h ≤ · · · ≤ E0

Φ,h = EΦ(0),h, n ≥ 0, (5.111)

where the discretized energy EnΦ,h is defined in (5.101) with β11 = β12 = β22 = 0.

Proof: Denote

Φn = (φn1,1, φ
n
1,2, . . . , φ

n
1,M−1, φ

n
2,1, φ

n
2,2, . . . , φ

n
2,M−1)

T ,

F = diag(V (x1), V (x2), . . . , V (xM−1), V (x1), V (x2), . . . , V (xM−1)),

D =


 G 0

0 G


 , D1 =


δIM−1 λIM−1

λIM−1 0


 , D2 =


(α+ δ)IM−1 λIM−1

λIM−1 αIM−1


 ,

where IM−1 is the (M − 1) × (M − 1) identity matrix and G is an (M − 1) × (M − 1)

tridiagonal matrix with 1/h2 at the diagonal entries and −1/2h2 at the off-diagonal entries.

Let

T = D + F +D2 = D + F +D1 + αI2M−2. (5.112)
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When β11 = β12 = β22 = 0, the MBEFD discretization (5.109) reads

Φ∗ − Φn

k
= −(D + F +D2)Φ

∗ + αΦn = −TΦ∗ + αΦn,

Φn+1 =
Φ∗

‖Φ∗‖h
, n ≥ 0,

(5.113)

and the discretized energy EnΦ,h in (5.101) with β11 = β12 = β22 = 0 can be written as

EnΦ,h = h(Φn)T (D + F +D1)Φ̄
n = h (Φn, TΦn) − α‖Φn‖2

h, (5.114)

where (·, ·) is the standard inner product. From (5.113), we have

(I + k T )Φ∗ = (1 + αk)Φn, n ≥ 0. (5.115)

If α ≥ |λ|+ max(0,−δ), then T is positive semi-definite, notice (5.114) and (5.115), using

Lemma 2.8 in [15], we get

En+1
Φ,h − α‖Φn+1‖2

h = h(Φn+1, TΦn+1) =
(Φ∗, TΦ∗)
(Φ∗,Φ∗)

≤ ((1 + kα)Φn, (1 + kα)TΦn)

((1 + kα)Φn, (1 + kα)Φn)

= h(Φn, TΦn) = EnΦ,h − α‖Φn‖2
h, n ≥ 0. (5.116)

Thus the conclusion follows immediately from the above inequality and the fact that‖Φn‖h =

‖Φn+1‖h = 1.

In fact, when α = 0, the MBEFD discretization (5.109) collapses to the standard

backward Euler finite difference scheme [15]. In addition, from the proof in the above

Theorem, in practical computation, we can choose α = |λ| + max(0,−δ).

5.5 Numerical results

In this section, we will report the ground states of (5.12) in 1D computed by our numerical

method MBEFD (5.109). In our computation, the ground state is reached when ‖Φn+1 −
Φn‖ ≤ ε := 10−7. In addition, for ground state of two-component BEC with an internal

atomic Josephson junction (5.12), we have λ ↔ −λ ⇐⇒ φg2 ↔ −φg2, and thus we only

present results for λ ≤ 0.

Example 1. Ground states of two-component BEC with an internal atomic Josephson

junction when B is positive definite, i.e. we take d = 1, V (x) = 1
2x

2 and β11 : β12 : β22 =



5.5 Numerical results 112

(1 : 0.94 : 0.97)β in (5.12) [9, 87, 88]. In this case, since λ ≤ 0 and B is positive definite

when β > 0, thus we know that the positive ground state Φg = (φ1, φ2)
T is unique. In our

computations, we take the computational domain U = [−16, 16] with mesh size h = 1
32

and time step k = 0.1. The initial data in (5.88) is chosen as

φ0
1(x) = φ0

2(x) =
1

π1/4
√

2
e−x

2/2, x ∈ R. (5.117)

In fact, we have checked with other types of initial data in (5.88) and the computed ground

state is the same.

Fig. 5.1 plots the ground states Φg when δ = 0 and λ = −1 for different β, and Fig.

5.2 depicts similar results when δ = 0 and β = 100 for different λ ≤ 0. Fig. 5.3 shows mass

of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and chemical potential

µ := µ(Φg) of the ground states when δ = 0 for different λ and β. Fig. 5.4 shows similar

results when β = 100 and δ = 0, 1 for different λ, and Fig. 5.5 for results when β = 100

and λ = 0,−5 for different δ.

From Figs. 5.1-5.5 and additional numerical results not shown here for brevity, we can

draw the following conclusions for the ground states in this case: (i) the positive ground

state is unique when at least one of the parameters β, λ and δ is nonzero which confirm

the results in Theorem 5.1 (cf. Figs. 5.1 & 5.2); (ii) when β = 0 and δ = 0, φ1 = φ2 when

λ < 0, and φ1 = −φ2 when λ > 0 (cf. Fig. 5.1); (iii) for fixed β and δ, when λ → −∞,

φ1 − φ2 → 0 and when λ→ +∞, φ1 + φ2 → 0 (cf. Fig. 5.2) which confirm the analytical

results in Theorem 5.8; (iv) when δ = 0, N(φ1) decreases and N(φ2) increases when λ 6= 0

(cf. Fig. 5.3) which is due to β11 > β22; (v) for fixed δ and λ, when β ≫ 1, E = O(β1/3)

and µ = O(β1/3) which can be confirmed by a re-scaling x → ε1/2x and Φ → ε−d/4Φ with

ε = β−d/(d+2) in the energy functional E(Φ) in (5.11) and the chemical potential µ(Φ)

in (5.10) [10, 167]; (vi) for fixed β > 0 and δ, when |λ| → ∞, then N(φ1) − N(φ2) → 0,

E ≈ −|λ|+C1 and µ ≈ −|λ|+C2 with C1 and C2 two constants independent of λ (cf. Fig.

5.4) which confirm the analytical results in Theorem 5.8; (vii) for fixed β > 0 and λ, when

δ → +∞, N(φ1) → 0, N(φ2) → 1, E ≈ C3 and µ ≈ C4 with C3 and C4 two constants

independent of δ; and when δ → −∞, N(φ1) → 1, N(φ2) → 0, E ≈ δ+C5 and µ ≈ δ+C6

with C5 and C6 two constants independent of δ (cf. Fig. 5.5) which confirm the results in

Theorem 5.9. In addition, when δ = 0 and λ = 0, N(φ1) = 1/3 and N(φ2) = 2/3 which

are independent of β (cf. Fig. 5.3). In fact, in this case, the energy functional can be



5.5 Numerical results 113

written as

E(Φ) =

∫

U

[
1

2

(
|∇φ1|2 + |∇φ2|2

)
+ V (x)

(
|φ1|2 + |φ2|2

)

+
β

2

(
|φ1|4 + 0.97|φ2|4 + 2 × 0.94|φ1|2|φ2|2

) ]
dx. (5.118)

Denote ρ(x) =
√

|φ1(x)|2 + |φ2(x)|2, using the Cauchy inequality, we have

E(Φ) ≥
∫

U

[
1

2
|∇ρ|2 + V (x)|ρ|2 +

0.94β

2
|ρ|4 +

β

2

(
0.06|φ1|4 + 0.03|φ2|4

)]
dx

≥
∫

U

[
1

2
|∇ρ|2 + V (x)|ρ|2 +

0.94β

2
|ρ|4 +

0.02β

2
|ρ|4
]
dx,

and the above equality holds only if 2|φ1|2 = |φ2|2. Notice that the functional E2(ρ) =
∫
U

(
1
2 |∇ρ|2 + V (x)|ρ|2 + 0.96β

2 |ρ|4
)
dx admits a unique positive minimizer ρg under con-

straint ‖ρ‖2 = 1 [98], then Φg = (
√

1/3ρg,
√

2/3ρg)
T is a ground state of the original

problem, which justifies our numerical observation in Fig. 2.4.

Example 2. Ground states of two-component BEC with an internal atomic Josephson

junction when B is nonnegative, i.e. we take d = 1, V (x) = 1
2x

2 + 24 cos2(x) and β11 :

β12 : β22 = (1.03 : 1 : 0.97)β in (5.12) [9, 74, 75]. In our computations, we take the

computational domain U = [−16, 16] with mesh size h = 1
32 and time step k = 0.1.

Fig. 5.6 plots the ground states Φg when δ = 0 and λ = −1 for different β, and Fig.

5.7 depicts similar results when δ = 0 and β = 100 for different λ. Fig. 5.8 shows mass

of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and chemical potential

µ := µ(Φg) of the ground states when δ = 0 for different λ and β.

From Figs. 5.6-5.8 and additional numerical results not shown here for brevity, same

conclusions as those in (ii)-(vii) in Example 1 can be drawn. Moreover, the numerical

results show that the positive ground state is unique in this case. Due to the appearance

of the optical lattice potential 24 cos2(x) in the trapping potential V (x), there are several

peaks in the ground state and the distance between two nearby peaks is roughly as π

which is the period of the optical lattice potential (cf. Figs. 5.6-5.7). In addition, when

δ = 0, λ = 0, N(φ1) = 0 and N(φ2) = 1 are independent of β (cf. Fig. 5.8), which can be

explained by Theorem 5.4.
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Figure 5.1: Ground states Φg = (φ1, φ2)
T in Example 1 when δ = 0 and λ = −1 for

different β.
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Figure 5.2: Ground states Φg = (φ1, φ2)
T in Example 1 when δ = 0 and β = 100 for

different λ.
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Figure 5.3: Mass of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and
chemical potential µ := µ(Φg) of the ground states in Example 1 when δ = 0 for different
λ and β.
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Figure 5.4: Mass of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and
chemical potential µ := µ(Φg) of the ground states in Example 1 when β = 100 and
δ = 0, 1 for different λ.



5.5 Numerical results 118

−2 −1 0 1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

λ=0

 

 

N(φ
1
)

N(φ
2
)

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

δ

λ=0

 

 

E

µ

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

λ=−5

 

 

N(φ
1
)

N(φ
2
)

−50 0 50
−50

−40

−30

−20

−10

0

10

20

δ

λ=−5

 

 

E

µ

Figure 5.5: Mass of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and
chemical potential µ := µ(Φg) of the ground states in Example 1 when β = 100 and
λ = 0,−5 for different δ.
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Figure 5.6: Ground states Φg = (φ1, φ2)
T in Example 2 when δ = 0 and λ = −1 for

different β.



5.5 Numerical results 120

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
λ=0

 

 
φ

1

φ
2

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
λ=−1

 

 
φ

1

φ
2

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
λ=−5

 

 
φ

1

φ
2

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
λ=−20

 

 
φ

1

φ
2

Figure 5.7: Ground states Φg = (φ1, φ2)
T in Example 2 when δ = 0 and β = 100 for

different λ.
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Figure 5.8: Mass of each component N(φj) = ‖φj‖2 (j = 1, 2), energy E := E(Φg) and
chemical potential µ := µ(Φg) of the ground states in Example 2 when δ = 0 for different
λ and β.



Chapter 6
Optimal error estimates of finite difference

methods for the Gross-Pitaevskii equation

with angular momentum rotation

In this chapter, we prove the convergence rates of finite difference methods applied to the

GPE with rotational frame in two and three dimensions (2D and 3D). Optimal convergence

rates will be established for both the conservative Crank-Nicolson finite difference method

and the nonconservative semi-implicit finite difference method.

6.1 The equation

Recalling equation (1.12), the Gross-Pitaevskii equation (GPE) with an angular momen-

tum rotation term in d-dimensions (d = 2, 3) for modeling a rotating Bose-Einstein con-

densate (BEC) [4,20,117] reads as

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) − ΩLz + β|ψ(x, t)|2

]
ψ(x, t), x ∈ U ⊂ Rd, t > 0, (6.1)

with the homogeneous Dirichlet boundary condition

ψ(x, t) = 0, x ∈ Γ = ∂U, t ≥ 0, (6.2)

and initial condition

ψ(x, 0) = ψ0(x), x ∈ U. (6.3)

122
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Here x = (x, y) in two dimensions (2D), i.e. d = 2, and resp. x = (x, y, z) in three

dimensions (3D), i.e. d = 3, are the cartesian coordinates, U is a bounded computational

domain, ψ := ψ(x, t) is the complex-valued wave function, Ω is a dimensionless constant

corresponding to the angular speed of the laser beam in experiments, β is a dimensionless

constant characterizing the interaction between particles in the rotating BEC. V (x) is

a real-valued function corresponding to the external trap potential and it is chosen as

a harmonic potential, i.e. a quadratic polynomial, in most experiments. Lz is the z-

component of the angular momentum defined as (1.13) or equivalently as

Lz = −i∂θ, (6.4)

where (r, θ) and (r, θ, z) are the polar coordinates in 2D and cylindrical coordinates in 3D,

respectively. In fact, GPE (6.1) conserves the total mass

N(ψ(·, t)) :=

∫

U
|ψ(x, t)|2 dx ≡ N(ψ(·, 0)) = N(ψ0), t ≥ 0, (6.5)

and the energy

E(ψ(·, t)) :=

∫

U

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

1

2
β|ψ|4 − Ωψ̄Lzψ

]
dx ≡ E(ψ0), t ≥ 0. (6.6)

Because of the observation of quantized vortices in rotating BEC [2, 41, 106] which is

related to superfluidity, theoretical studies of BEC and quantized vortices based on the

above GPE have stimulated great research interests in quantum physics and computational

mathematics communities. For mathematical analysis of the above GPE, well-posedness

of the equation can be found in [43, 76, 77, 97] and references therein. For the numerical

methods, as introduced in chapter 1, different efficient and accurate numerical meth-

ods including the time-splitting pseudospectral method [23, 78, 121, 142], finite difference

method [3, 5], and Runge-Kutta or Crank-Nicolson pseudospectral method [41, 55] have

been developed for the GPE without the angular momentum rotation term, i.e. Ω = 0.

For Ω 6= 0, efficient numerical methods also have been developed [16,25,27].

Error estimates for different numerical methods of NLSE, e.g. the GPE (6.1) without

the angular momentum rotation (Ω = 0) and/or d = 1, have been established in the

literatures. For the analysis of splitting error of the time-splitting or split-step method

for NLSE, we refer to [32,54,103,110,143] and references therein. For the error estimates

of the implicit Runge-Kutta finite element method for NLSE, we refer to [6, 114]. Error
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bounds of conservative Crank-Nicolson finite difference (CNFD) method for NLSE in 1D

was established in [46,67]. In fact, their proofs for CNFD rely strongly on the conservative

property of the method and the discrete version of the Sobolev inequality in 1D

‖f‖2
L∞ ≤ ‖∇f‖L2 · ‖f‖L2 , ∀f ∈ H1(U) with U ⊂ R,

which immediately imply a priori uniform bound for ‖f‖L∞ . However, the extension of

the discrete version of the above Sobolev inequality is no longer valid in 2D and 3D. Thus

the techniques used in [46, 67] for obtaining error bounds of CNFD for NLSE only work

for conservative schemes in 1D and they cannot be extended to either high dimensions

or non-conservative finite difference schemes. To our knowledge, no error estimates are

available in the literatures of finite difference methods for NLSE either in high dimensions

or for non-conservative scheme. However, the GPE with the angular momentum rotation

is either in 2D or 3D [16, 20, 25, 117]. Here, we are going to use different techniques to

establish optimal error bounds of CNFD and semi-implicit finite difference (SIFD) method

for the GPE (6.1) with the angular momentum rotation in 2D and 3D. Based on our results,

both CNFD and SIFD have the same second-order convergence rate in space and time. In

our analysis, besides the standard techniques of the energy method, for SIFD, we adopt

the mathematical induction; for CNFD, we first derive the l2-norm error estimate and

then obtain a priori bound of the numerical solution in the l∞-norm by using the inverse

inequality.

In this chapter and the next chapter, we denote C a generic constant which is inde-

pendent of mesh size h and time step τ , and use the notation p . q to represent that there

exists a generic constant C which is independent of time step τ and mesh size h such that

|p| ≤ C q.

6.2 Finite difference methods and main results

In this section, we introduce SIFD and CNFD methods for the GPE (6.1) in 2D on a

rectangle U = [a, b]× [c, d], and resp. in 3D on a cube U = [a, b] × [c, d] × [e, f ], and state

our main error estimate results.
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6.2.1 Numerical methods

For the simplicity of notation, we only present the methods in 2D, i.e. d = 2 and U =

[a, b] × [c, d] in (6.1). Extensions to 3D are straightforward, and the error estimates in

l2-norm and discrete H1-norm are the same in 2D and 3D. Choose time step τ := ∆t

and denote time steps as tn := n τ for n = 0, 1, 2, . . .; choose mesh sizes ∆x := b−a
M and

∆y := d−c
K with M and K two positive integers and denote h := hmax = max{∆x, ∆y}

and grid points as

xj := a+ j∆x, j = 0, 1, . . . ,M ; yk := c+ k∆y, k = 0, 1, . . . ,K.

Define the index sets

TMK = {(j, k) | j = 1, 2, . . . ,M − 1, k = 1, 2, . . . ,K − 1},

T 0
MK = {(j, k) | j = 0, 1, 2 . . . ,M, k = 0, 1, 2 . . . ,K}.

Let ψnjk be the numerical approximation of ψ(xj , yk, tn) for (j, k) ∈ T 0
MK and n ≥ 0 and

denote ψn ∈ C(M+1)×(K+1) be the numerical solution at time t = tn. Introduce the

following finite difference operators:

δ+x ψ
n
jk =

1

∆x
(ψnj+1 k − ψnjk), δ+y ψ

n
jk =

1

∆y
(ψnj k+1 − ψnjk), δ+t ψ

n
jk =

1

τ
(ψn+1

jk − ψnjk),

δ−x ψ
n
jk =

1

∆x
(ψnjk − ψnj−1k), δ−y ψ

n
jk =

1

∆y
(ψnjk − ψnj k−1), δ−t ψ

n
jk =

1

τ
(ψnjk − ψn−1

jk ),

δxψ
n
jk =

ψnj+1k − ψnj−1 k

2∆x
, δyψ

n
jk =

ψnj k+1 − ψnj k−1

2∆y
, δtψ

n
jk =

ψn+1
jk − ψn−1

jk

2τ
,

δ2xψ
n
jk =

ψnj+1k − 2ψnjk + ψnj−1k

(∆x)2
, δ2yψ

n
jk =

ψnj k+1 − 2ψnjk + ψnj k−1

(∆y)2
, (j, k) ∈ TMK,

δ+∇ψ
n
jk = (δ+x ψ

n
jk, δ

+
y ψ

n
jk), δ2∇ψ

n
jk = δ2xψ

n
jk + δ2yψ

n
jk, Lhzψ

n
jk = −i(xjδyψnjk − ykδxψ

n
jk).

Then the conservative Crank-Nicolson finite difference (CNFD) discretization of the

GPE (6.1) reads

iδ+t ψ
n
jk =

[
− 1

2
δ2∇ + Vjk − ΩLhz +

β

2
(|ψn+1

jk |2 + |ψnjk|2)
]
ψ
n+1/2
jk , (j, k) ∈ TMK , n ≥ 0, (6.7)

where

Vjk = V (xj , yk), ψ
n+1/2
jk =

1

2

(
ψn+1
jk + ψnjk

)
, (j, k) ∈ T 0

MK , n = 0, 1, 2, . . . .
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The boundary condition (6.2) is discretized as

ψn0k = ψnMk = 0, ψnj0 = ψnjK = 0, (j, k) ∈ T 0
MK , n = 0, 1, . . . , (6.8)

and the initial condition (6.3) is discretizaed as

ψ0
jk = ψ0(xj , yk), (j, k) ∈ T 0

MK . (6.9)

As proved in section 6.4, the above CNFD method conserves the mass and energy in the

discretized level. However, it is a fully implicit method, i.e. at each time step, a fully

nonlinear system must be solved, which may be very expensive, especially in 2D and 3D.

In fact, if the fully nonlinear system is not solved numerically to extremely high accuracy,

e.g. at machine accuracy, then the mass and energy of the numerical solution obtained

in practical computation are no longer conserved. This motivates us also consider the

following discretization for the GPE.

The semi-implicit finite difference (SIFD) discretization for the GPE (6.1) is to use

Crank-Nicolson/leap-frog schemes for discretizing linear/nonlinear terms, respectively, as

iδtψ
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ψn+1
jk + ψn−1

jk

2
+ β|ψnjk|2ψnjk, (j, k) ∈ TMK , n ≥ 1. (6.10)

Again, the boundary condition (6.2) and initial condition (6.3) are discretized in (6.8) and

(6.9), respectively. In addition, the first step can be computed by any explicit second or

higher order time integrator, e.g. the second-order modified Euler method, as

ψ1
jk = ψ0

jk − iτ

[(
−1

2
δ2∇ + Vjk − ΩLhz

)
ψ

(1)
jk + β|ψ(1)

jk |2ψ
(1)
jk

]
, (j, k) ∈ TMK ,(6.11)

ψ
(1)
jk = ψ0

jk − i
τ

2

[(
−1

2
δ2∇ + Vjk − ΩLhz

)
ψ0
jk + β|ψ0

jk|2ψ0
jk

]
.

For this SIFD method, at each time step, only a linear system is to be solved, which is

much more cheaper than that of the CNFD method in practical computation.

6.2.2 Main error estimate results

Before we state our main error estimate results, we denote the space

XMK =
{
u = (ujk)(j,k)∈T 0

MK
| u0k = uMk = uj0 = ujK = 0, (j, k) ∈ T 0

MK

}
⊂ C(M+1)×(K+1),
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and define norms and inner product over XMK as

‖u‖2
2 = ∆x ∆y

M−1∑

j=0

K−1∑

k=0

|ujk|2, ‖δ+∇u‖2
2 = ∆x ∆y

M−1∑

j=0

K−1∑

k=0

(∣∣δ+x ujk
∣∣2 +

∣∣δ+y ujk
∣∣2
)
, (6.12)

‖u‖∞ = sup
(j,k)∈T 0

MK

|ujk|, ‖u‖pp = ∆x ∆y

M−1∑

j=0

K−1∑

k=0

|ujk|p, 0 < p <∞, (6.13)

E(u) =
1

2
‖δ+∇u‖2

2 + ∆x ∆y

M−1∑

j=1

K−1∑

k=1

[
Vjk|ujk|2 − Ω ūjk L

h
zujk

]
, ∀u ∈ XMK , (6.14)

Eh(u) =
1

2
‖δ+∇u‖2

2 +
β

2
‖u‖4

4 + ∆x ∆y
M−1∑

j=1

K−1∑

k=1

[
Vjk|ujk|2 − Ω ūjk L

h
zujk

]
, (6.15)

(u, v) = ∆x ∆y

M−1∑

j=0

K−1∑

k=0

ujkv̄jk, 〈u, v〉 = ∆x ∆y

M−1∑

j=1

K−1∑

k=1

ujkv̄jk, ∀u, v ∈ XMK . (6.16)

We also make the following assumptions:

(A) Assumption on the trapping potential V (x) and rotation speed Ω, i.e. there exists

a constant γ > 0 such that

V (x) ∈ C1(U), V (x) ≥ 1

2
γ2(x2 + y2), ∀x ∈ U, |Ω| < γ;

Assumption on the exact solution ψ, i.e. let 0 < T < Tmax with Tmax the maximal

existing time of the solution [43,76]:

(B) ψ ∈ C4([0, T ];L∞(U)) ∩ C3([0, T ];W 2,∞(U)) ∩ C2([0, T ];W 3,∞(U)) ∩

C1([0, T ];W 4,∞(U)) ∩ C0([0, T ];W 5,∞(U) ∩H1
0 (U)).

Define the ‘error’ function en ∈ XMK as

enjk = ψ(xj , yk, tn) − ψnjk, (j, k) ∈ T 0
MK , n ≥ 0. (6.17)

Then for the SIFD method, we have

Theorem 6.1 Assume h . hmin := min{∆x,∆y} and τ . h, under Assumption (A) and

(B), there exist h0 > 0 and 0 < τ0 <
1
4 sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0,

we have the following optimal error estimate for the SIFD method (6.10) with (6.8), (6.9)

and (6.11)

‖en‖2 . h2 + τ2, ‖δ+∇en‖2 . h3/2 + τ3/2, 0 ≤ n ≤ T

τ
. (6.18)
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In addition, if either Ω = 0 and ∂nV (x)|∂U = 0 or ψ ∈ C0([0, T ];H2
0 (U)), where ∂n = ∇·n

denotes the normal derivative with n being the unit outer normal vector on the boundary,

we have the optimal error estimates

‖en‖2 + ‖δ+∇en‖2 . h2 + τ2, 0 ≤ n ≤ T

τ
. (6.19)

Similarly, for the CNFD method, we have

Theorem 6.2 Suppose h . hmin := min{∆x,∆y}, τ . h and either β ≥ 0 or β < 0

with ‖ψ0‖2
2 <

1
|β|

(
1 − Ω2

γ2

)
, under Assumption (A), there exists h0 > 0 sufficiently small,

when 0 < h ≤ h0, the discretization (6.7) with (6.8) and (6.9) admits a unique solution

ψn (0 ≤ n ≤ T
τ ). Furthermore, under Assumption (B), there exist h0 > 0 and τ0 > 0

sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following error estimate

‖en‖2 . h2 + τ2, ‖δ+∇en‖2 . h3/2 + τ3/2, 0 ≤ n ≤ T

τ
. (6.20)

In addition, if either Ω = 0 and ∂nV (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have the optimal

error estimates

‖en‖2 + ‖δ+∇en‖2 . h2 + τ2, 0 ≤ n ≤ T

τ
. (6.21)

6.3 Error estimates for the SIFD method

In this section, we establish optimal error estimates for the SIFD method (6.10) with

(6.8), (6.9) and (6.11) in l2-norm, discrete H1-norm and l∞-norm. Let ψn ∈ XMK be the

numerical solution of the SIFD method and en ∈ XMK be the error function.

From (6.14) and (6.16), we have

Lemma 6.1 The following equalities hold

〈δxu, v〉 = −〈u, δxv〉 ,
〈
δ2xu, v

〉
= −

(
δ+x u, δ

+
x v
)
, (6.22)

〈δyu, v〉 = −〈u, δyv〉 ,
〈
δ2yu, v

〉
= −

(
δ+y u, δ

+
y v
)
, ∀u, v ∈ XMK , (6.23)

‖u‖2
2 . ‖δ+∇u‖2

2, ‖u‖4
4 ≤ ‖u‖2

2 · ‖δ+∇u‖2
2, ∀u ∈ XMK . (6.24)

In addition, under the assumption (A), we have

1

2

(
1 − Ω2

γ2

)
‖δ+∇u‖2

2 ≤ E(u) . ‖δ+∇u‖2
2 + ‖u‖2

2 . ‖δ+∇u‖2
2, ∀u ∈ XMK . (6.25)
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Proof: The equality (6.22) follows from (6.16) by using summation by parts as

〈δxu, v〉 = ∆x∆y
M−1∑

j=1

K−1∑

k=1

uj+1 k − uj−1 k

2∆x
v̄jk

= ∆x∆y

M−1∑

j=1

K−1∑

k=1

ujk
v̄j−1k − v̄j+1k

2∆x
= −〈u, δxv〉 ,

〈
δ2xu, v

〉
= ∆x∆y

M−1∑

j=1

K−1∑

k=1

uj+1 k − 2ujk + uj−1k

(∆x)2
v̄jk

= ∆x∆y

M−1∑

j=0

K−1∑

k=0

uj+1 k − ujk
∆x

v̄j,k − v̄j+1k

∆x

= −
(
δ+x u, δ

+
x v
)
, ∀u, v ∈ XMK .

Similarly, we can get (6.23). For u ∈ XMK , we have

∣∣∣(ujk)2
∣∣∣ =

∣∣∣∣∣

j−1∑

l=0

[
(ul+1 k)

2 − (ulk)
2
]∣∣∣∣∣ = ∆x

∣∣∣∣∣

j−1∑

l=0

[ul+1 k + ulk]δ
+
x ulk

∣∣∣∣∣

≤ ∆x

j−1∑

l=0

|ul+1 k + ulk| ·
∣∣δ+x ulk

∣∣

≤
√

2∆x

√√√√
M−1∑

l=0

|δ+x ulk|2
√√√√

M−1∑

l=0

|ulk|2, (j, k) ∈ TMK . (6.26)

Similarly, we have

∣∣∣(ujk)2
∣∣∣ ≤

√
2∆y

√√√√
K−1∑

m=0

|δ+y ujm|2
√√√√

K−1∑

m=0

|ujm|2, (j, k) ∈ TMK. (6.27)

Combining (6.26) and (6.27), using the Cauchy inequality, we get

‖u‖4
4 = ∆x∆y

M−1∑

j=0

K−1∑

k=0

|ujk|4 = ∆x∆y
M−1∑

j=0

K−1∑

k=0

|ujk|2 · |ujk|2

≤ 2(∆x∆y)2
M−1∑

j=0

K−1∑

k=0



√√√√

M−1∑

l=0

|δ+x ulk|2
√√√√

M−1∑

l=0

|ulk|2
√√√√

K−1∑

m=0

|δ+y ujm|2
√√√√
K−1∑

m=0

|ujm|2



= 2(∆x∆y)2
K−1∑

k=0



√√√√
M−1∑

l=0

|δ+x ulk|2
√√√√

M−1∑

l=0

|ulk|2


M−1∑

j=0



√√√√

K−1∑

m=0

|δ+y ujm|2
√√√√
K−1∑

m=0

|ujm|2



≤ 2(∆x∆y)2

√√√√
K−1∑

k=0

M−1∑

l=0

|δ+x ulk|2
√√√√

K−1∑

k=0

M−1∑

l=0

|ulk|2
√√√√

M−1∑

j=0

K−1∑

m=0

|δ+y ujm|2
√√√√
M−1∑

j=0

K−1∑

m=0

|ujm|2

≤ ‖δ+∇u‖2
2 · ‖u‖2

2, u ∈ XMK .



6.3 Error estimates for the SIFD method 130

The first inequality in (6.24) can be proved in a similar way. From (6.14), summation by

parts, we get

M−1∑

j=1

K−1∑

k=1

ūjk L
h
zujk = −i

M−1∑

j=1

K−1∑

k=1

ūjk (xjδyujk − ykδxujk)

= −i
M−1∑

j=1

K−1∑

k=1

ujk (xjδyūjk − ykδxūjk)

=
M−1∑

j=1

K−1∑

k=1

ujk L̄
h
z ūjk ∈ R, ∀u ∈ XMK , (6.28)

which immediately implies that E(u) ∈ R for all u ∈ XMK . In addition, using the Cauchy

inequality and triangular inequality, noticing Assumption (A), we get for u ∈ XMK

−Ω

M−1∑

j=1

K−1∑

k=1

ūjk L
h
zujk =

Ω

2

M−1∑

j=1

K−1∑

k=1

iūjk
[
xj
(
δ+y ujk + δ+y uj,k−1

)
− yk

(
δ+x ujk + δ+x uj−1,k

)]

≥−
M−1∑

j=0

K−1∑

k=0

[
Vjk|ujk|2 +

Ω2

2γ2

(
|δ+x ujk|2 + |δ+y ujk|2

)]
. (6.29)

Plugging (6.29) into (6.14) and noticing (6.12), we get (6.25) immediately.

From now on, without loss of generality, we assume that ∆x = ∆y = h. From (6.25)

in Lemma 6.1, we have

Lemma 6.2 (Solvability of the difference equations) Under the Assumption (A), for any

given initial data ψ0 ∈ XMK , there exists a unique solution ψn ∈ XMK of (6.11) for n = 1

and (6.10) for n > 1.

Proof: The assertion for n = 1 is obviously true. In SIFD (6.11), for given ψn−1, ψn ∈
XMK (n ≥ 1), we first prove the uniqueness. Suppose there exist two solutions ψ(1), ψ(2) ∈
XMK satisfying the SIFD scheme (6.10), i.e. for (j, k) ∈ TMK,

i
ψ

(1)
jk − ψn−1

jk

2τ
=

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ψ

(1)
jk + ψn−1

jk

2
+ β|ψnjk|2ψnjk, (6.30)

i
ψ

(2)
jk − ψn−1

jk

2τ
=

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ψ

(2)
jk + ψn−1

jk

2
+ β|ψnjk|2ψnjk. (6.31)

Denote u = ψ(1) − ψ(2) ∈ XMK and subtract (6.31) from (6.30), we have

i
ujk
τ

=

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ujk, (j, k) ∈ TMK . (6.32)
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Multiplying both sides of (6.32) by ūjk and summing together for (j, k) ∈ TMK , using the

summation by parts formula and taking imaginary parts, using (6.25) from Lemma 6.1,

we obtain ‖u‖2
2 = 0, which implies u = 0. Hence ψ(1) = ψ(2), i.e. the solution of (6.10) is

unique.

Next, we prove the existence. For (j, k) ∈ TMK, rewrite equation (6.10) as

iψn+1
jk + τ

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ψn+1
jk + Pjk = 0, (6.33)

where P ∈ XMK is defined as

Pjk = −iψn−1
jk + 2τβ|ψnjk|2ψnjk + τ

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ψn−1
jk . (6.34)

Consider the map G : ψ∗ ∈ XMK → G(ψ∗) ∈ XMK defined as

G(ψ∗)jk = iψ∗
jk + τ

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ψ∗
jk + Pjk, (j, k) ∈ TMK . (6.35)

We know that G is continuous from XMK to XMK . Noticing (6.25) in Lemma 6.1, we

have

Im(G(ψ∗), ψ∗) = ‖ψ∗‖2
2 + Im(P,ψ∗) ≥ ‖ψ∗‖2

2 − ‖P‖2‖ψ∗‖2, (6.36)

which immediately implies

lim
‖ψ∗‖2→∞

|(P (ψ∗), ψ∗)|
‖ψ∗‖2

= ∞. (6.37)

Hence G : XMK → XMK is surjective [94] and there exists a solution ψn+1 ∈ XMK satis-

fying G(ψn+1) = 0. Then ψn+1 satisfies the equation (6.10). The proof is complete.

Define the local truncation error ηn ∈ XMK of the SIFD method (6.10) with (6.8),

(6.9) and (6.11) for n ≥ 1 as

ηnjk := iδtψ(xj , yk, tn) −
[
−1

2
δ2∇ − ΩLhz + Vjk

]
ψ(xj , yk, tn−1) + ψ(xj , yk, tn+1)

2

−β|ψ(xj , yk, tn)|2ψ(xj , yk, tn), (j, k) ∈ TMK , (6.38)

and by noticing (6.9) for n = 0 as

η0
jk := iδ+t ψ(xj , yk, 0) −

(
−1

2
δ2∇ + Vjk − ΩLhz

)
ψ

(1)
jk − β|ψ(1)

jk |2ψ
(1)
jk , (j, k) ∈ TMK , (6.39)

ψ
(1)
jk = ψ0(xj, yk) − i

τ

2

[(
−1

2
δ2∇ + Vjk − ΩLhz

)
ψ0(xj, yk) + β|ψ0(xj , yk)|2ψ0(xj , yk)

]
.

Then we have
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Lemma 6.3 (Local truncation error) Assuming V (x) ∈ C(U), under the Assumption

(B), we have

‖ηn‖∞ . τ2 + h2, 0 ≤ n ≤ T

τ
− 1, and ‖δ+∇η0‖∞ . τ + h. (6.40)

In addition, assuming V (x) ∈ C1(U) and τ . h, we have for 1 ≤ n ≤ T
τ − 1

|δ+∇ηnjk| .




τ2 + h2, 1 ≤ j ≤M − 2, 1 ≤ k ≤ K − 2,

τ + h, j = 0,M − 1, or k = 0,K − 1.

(6.41)

Furthermore, assuming either Ω = 0 and ∂nV (x) = 0 or u ∈ C([0, T ];H2
0 (U)), we have

‖δ+∇ηn‖∞ . τ2 + h2, 1 ≤ n ≤ T

τ
− 1. (6.42)

Proof: First, we prove (6.40) and (6.42) when n = 0. Rewriting ψ
(1)
jk and then using

Taylor’s expansion at (xj , yk, 0), noticing (6.1) and (6.3), we get

ψ
(1)
jk = ψ

(
xj, yk,

τ

2

)
+ i

τ

2

[(
1

2
δ2∇ − Vjk + ΩLhz

)
ψ0(xj , yk) − β|ψ0(xj , yk)|2ψ0(xj , yk)

+i
ψ
(
xj , yk,

τ
2

)
− ψ0(xj , yk)

τ/2

]

= ψ
(
xj, yk,

τ

2

)
+ i

τ

2

[
h

6

[
∂xxxψ0

(
xj + hθ

(2)
jk , yk

)
+ ∂yyyψ0

(
xj, yk + hθ

(3)
jk

)

−3iΩ
(
xj∂yyψ0

(
xj , yk + hθ

(4)
jk

)
− yk∂xxψ0

(
xj + hθ

(2)
jk , yk

))]

+i
τ

4
∂ttψ

(
xj , yk, τθ

(1)
jk

)]
= ψ

(
xj, yk,

τ

2

)
+O

(
τ2 + τh

)
, (j, k) ∈ TMK ,(6.43)

where θ
(1)
jk ∈ [0, 1/2] and θ

(2)
jk , θ

(3)
jk , θ

(4)
jk , θ

(5)
jk ∈ [−1, 1] are constants. Similarly, using Tay-

lor’s expansion at (xj , yk, τ/2) in (6.39), noticing (6.1) and (6.43), using triangle inequality

and the Assumption (B), we get

|η0
jk| . τ2‖∂tttψ‖L∞ + h2 [‖∂xxxxψ‖L∞ + ‖∂yyyyψ‖L∞ + ‖∂xxxψ‖L∞ + ‖∂yyyψ‖L∞ ]

+τ2
[
‖∂ttxxψ‖L∞ + ‖∂ttyyψ‖L∞ + ‖∂ttxψ‖L∞ + ‖∂ttyψ‖L∞ + ‖∂ttψ‖L∞ ‖ψ‖2

L∞

]

+τh
[
‖ψ0‖W 5,∞(U) + ‖ψ‖2

L∞ ‖ψ0‖W 3,∞(U)

]
+O

(
h4 + τ4

)

. τ2 + h2, (j, k) ∈ TMK ,

where the L∞-norm means ‖f‖L∞ := sup0≤t≤T supx∈U |f(x, t)|. This immediately implies

(6.40) when n = 0 as

‖η0‖∞ = max
(j,k)∈T 0

MK

|η0
jk| . τ2 + h2.
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Similarly, noticing τ . h,

|δ+∇η0
jk| .

1

h
|η0
jk| . τ + h, (j, k) ∈ TMK ,

which immediately implies (6.42) when n = 0. Now we prove (6.40), (6.41) and (6.42)

when n ≥ 1. Using Taylor’s expansion at (xj , yk, tn) in (6.38), noticing (6.1), using triangle

inequality and the Assumption (B), we have

|ηnjk| . h2 [‖∂xxxxψ‖L∞ + ‖∂yyyyψ‖L∞ + ‖∂yyyψ‖L∞ + ‖∂xxxψ‖L∞ ]

+τ2 [‖∂tttψ‖L∞ + ‖∂ttxxψ‖L∞ + ‖∂ttyyψ‖L∞ + ‖∂yttψ‖L∞ + ‖∂xttψ‖L∞ ]

. τ2 + h2, (j, k) ∈ TMK , 1 ≤ n ≤ T

τ
− 1,

which implies (6.40) for n ≥ 1 and (6.41) for j = 0,M − 1 or k = 0,K − 1. Similarly, we

have

|δ+∇ηnjk| . h2 [‖∂xxxx∇ψ‖L∞ + ‖∂yyyy∇ψ‖L∞ + ‖∂yyy∇ψ‖L∞ + ‖∂xxx∇ψ‖L∞ ]

+τ2 [‖∂ttt∇ψ‖L∞ + ‖∂ttxx∇ψ‖L∞ + ‖∂ttyy∇ψ‖L∞

+‖∂ytt∇ψ‖L∞ + ‖∂xtt∇ψ‖L∞ ]

. τ2 + h2, 1 ≤ j ≤M − 2, 1 ≤ k ≤ K − 2, 1 ≤ n ≤ T

τ
− 1, (6.44)

which immediately implies (6.41) for n ≥ 1. In addition, if Ω = 0 and ∂nV (x) = 0, using

the equation (6.1), we obtain the following derivatives of ψ on the boundary are 0, i.e.

∂xxψ
∣∣
∂U

= ∂yyψ
∣∣
∂U

= ∂xxxxψ
∣∣
∂U

= ∂yyyyψ
∣∣
∂U

= 0. (6.45)

Hence (6.44) holds for the boundary case, i.e. j = 0,M − 1 or k = 0,K − 1, and we could

obtain (6.42) for n ≥ 1. If ψ ∈ C0([0, T ];H2
0 (U)), using the equation (6.1), we obtain that

∂mx ∂
n
yψ
∣∣
∂U

= 0, m ≥ 0, n ≥ 0, m+ n ≤ 4, (6.46)

and similarly (6.44) holds for j = 0,M − 1 or k = 0,K − 1, then we could obtain (6.42)

for n ≥ 1. Thus, the proof is complete.

Theorem 6.3 (l2-norm estimate) Assume τ . h, under the Assumptions (A) and (B),

there exist h0 > 0 and 0 < τ0 <
1
4 sufficiently small, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we

have

‖en‖2 . τ2 + h2, ‖ψn‖∞ ≤ 1 +M1, 0 ≤ n ≤ T

τ
, (6.47)
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where M1 = max0≤t≤T ‖ψ(·, t)‖L∞(U).

Proof: We will prove this theorem by the method of mathematical induction. From (6.3)

and (6.9), it is straightforward to see that (6.47) is valid when n = 0. From (6.11) and

(6.39), noticing (6.40), we get

|e1jk| =
∣∣ψ(xj , yk, t1) − ψ1

jk

∣∣ =
∣∣−iτη0

jk

∣∣ . τ
(
τ2 + h2

)
. τ2 +h2, (j, k) ∈ TMK, (6.48)

which immediately implies the first inequality in (6.47) when n = 1. This, together with

the triangle inequality, when τ and h are sufficiently small, we obtain

|ψ1
jk| ≤ |ψ(xj , yk, t1)| + |e1jk| ≤M1 +C

(
τ2 + h2

)
≤ 1 +M1, (j, k) ∈ TMK ,

which immediately implies the second inequality in (6.47) when n = 1. Now we assume

that (6.47) is valid for all 0 ≤ n ≤ m − 1 ≤ T
τ − 1, then we need to show that it is still

valid when n = m. In order to do so, subtracting (6.38) from (6.10), noticing (6.2) and

(6.8), we obtain the following equation for the ‘error’ function en ∈ XMK :

iδte
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLhz

]
en+1
jk + en−1

jk

2
+ξnjk+ηnjk, (j, k) ∈ TMK , n ≥ 1, (6.49)

where ξn ∈ XMK (n ≥ 1) is defined as

ξnjk = β|ψ(xj , yk, tn)|2ψ(xj , yk, tn) − β|ψnjk|2ψnjk

= β|ψ(xj , yk, tn)|2enjk + β(enjkψ
n
jk + ψ(xj , yk, tn)e

n
jk)ψ

n
jk, (j, k) ∈ TMK . (6.50)

Noticing (6.47), we have the following estimate

‖ξn‖2
2 ≤ 9β2(1 +M1)

4‖en‖2
2, ‖δ+∇ξn‖2

2 . ‖δ+∇en‖2
2 + ‖en‖2

2, 1 ≤ n ≤ m− 1. (6.51)

Multiplying both sides of (6.49) by en+1
jk + en−1

jk and summing all together for (j, k) ∈ TMK ,

taking imaginary parts, using the triangular and Cauchy inequalities, noticing (6.40) and

(6.51) , we have for 1 ≤ n ≤ m− 1

‖en+1‖2
2 − ‖en−1‖2

2 = 2τ Im
(
ξn + ηn, en+1 + en−1

)

≤ 2τ
[
‖en+1‖2

2 + ‖en−1‖2
2 + ‖ηn‖2

2 + ‖ξn‖2
2

]

≤ Cτ(h2 + τ2)2 + 2τ
(
‖en+1‖2

2 + ‖en−1‖2
2

)
+ 18τβ2(1 +M1)

4‖en‖2
2.
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When τ ≤ 1
4 , we have

‖en+1‖2
2 − ‖en−1‖2

2 ≤ Cτ
[
(h2 + τ2)2 + ‖en−1‖2

2 + β2(1 +M1)
4‖en‖2

2

]
.

Summing the above inequality for n = 1, 2, . . . ,m− 1, we get

‖em‖2
2 + ‖em−1‖2

2 ≤ CT (h2 + τ2)2 +Cτ
[
1 + β2(M1 + 1)4

]m−1∑

l=1

‖el‖2
2, 1 ≤ m ≤ T

τ
. (6.52)

Using the discrete Gronwall inequality [46, 67, 95] and noticing ‖e0‖2 = 0 and ‖e1‖2 .

h2 + τ2, we immediately obtain the first inequality in (6.47) for n = m. Using the inverse

inequality, triangle inequality and l2-norm estimate, noticing τ . h, we obtain

|ψmjk| ≤ |ψ(xj , yk, tm)| + |emjk| ≤M1 + ‖em‖∞ ≤M1 +
C

h
‖em‖2

≤ M1 +
C

h

(
h2 + τ2

)
≤M1 + Ch, (j, k) ∈ T 0

MK.

Thus there exists a constant h0 > 0 sufficiently small, when 0 < h ≤ h0 and 0 < τ . h,

we have

‖ψm‖∞ ≤ 1 +M1, 1 ≤ m ≤ T

τ
,

which is the second inequality in (6.47) when n = m. Therefore the proof of the theorem

is completed by the method of mathematical induction.

Combining Theorem 6.3 and Lemmas 6.1, 6.2 and 6.3, we are now ready to prove the

main Theorem 6.1.

Proof of Theorem 6.1: We first prove the optimal discrete semi-H1 norm convergence

rate in the case of either Ω = 0 and ∂nV (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)). From (6.9), we

know e0 = 0 and thus (6.18) is valid for n = 0. From (6.11) and (6.39), noticing (6.40),

we get

|δ+∇e1jk| =
∣∣δ+∇

(
ψ(xj , yk, t1) − ψ1

jk

)∣∣ =
∣∣−iτδ+∇η0

jk

∣∣

. τ (τ + h) . τ2 + h2, (j, k) ∈ TMK , (6.53)

which immediately implies (6.18) when n = 1. Multiplying both sides of (6.49) by

en+1
jk − en−1

jk , summing over index (j, k) ∈ TMK and summation by parts, taking real

part and noticing (6.13), we have

E(en+1) − E(en−1) = −2 Re
〈
ξn + ηn, en+1 − en−1

〉
, n ≥ 1. (6.54)
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Rewriting (6.49) as

en+1
jk − en−1

jk = −2iτ
[
ξnjk + ηnjk + χnjk

]
, (j, k) ∈ TMK , (6.55)

where χn ∈ XMK is defined as

χnjk =

[
−1

2
δ2∇ + Vjk − ΩLzh

]
en+1
jk + en−1

jk

2
, (j, k) ∈ TMK , (6.56)

then plugging (6.55) into (6.54), we obtain

E(en+1) − E(en−1) = −4τ Im 〈ξn + ηn, ξn + ηn + χn〉

= −4τ Im 〈ξn + ηn, χn〉 , n ≥ 1. (6.57)

From (6.56) and (6.50), noticing (6.22), (6.23) and (6.25), we have

|〈ξn, χn〉| =
1

2

∣∣∣∣
〈
ξn,

(
−1

2
δ2∇ + V − ΩLhz

)(
en+1 + en−1

)〉∣∣∣∣
.

∣∣〈δ+∇ξn, δ+∇
(
en+1 + en−1

)〉∣∣+
∣∣〈ξn, V

(
en+1 + en−1

)〉∣∣

+
∣∣∣
〈
ξn,ΩLhz

(
en+1 + en−1

)〉∣∣∣

. ‖δ+∇en+1‖2
2 + ‖δ+∇en‖2

2 + ‖δ+∇en−1‖2
2 + ‖en+1‖2

2 + ‖en‖2
2 + ‖en−1‖2

2

+‖δ+∇ξn‖2
2 + ‖ξn‖2

2

. ‖δ+∇en+1‖2
2 + ‖δ+∇en‖2

2 + ‖δ+∇en−1‖2
2, 1 ≤ n ≤ T

τ
− 1. (6.58)

Similarly, noticing (6.51), (6.40) and (6.42), we have

|〈ηn, χn〉| =
1

2

∣∣∣∣
〈
ηn,

(
−1

2
δ2∇ + V − ΩLhz

)(
en+1 + en−1

)〉∣∣∣∣
.

∣∣〈δ+∇ηn, δ+∇
(
en+1 + en−1

)〉∣∣+
∣∣〈ηn, V

(
en+1 + en−1

)〉∣∣

+
∣∣∣
〈
ηn,ΩLhz

(
en+1 + en−1

)〉∣∣∣

. ‖δ+∇en+1‖2
2 + ‖δ+∇en‖2

2 + ‖δ+∇en−1‖2
2 + ‖en+1‖2

2 + ‖en‖2
2 + ‖en−1‖2

2

+‖δ+∇ηn+1‖2
2 + ‖ηn‖2

2

. ‖δ+∇en+1‖2
2 + ‖δ+∇en‖2

2 + ‖δ+∇en−1‖2
2 + (τ2 + h2)2, 1 ≤ n ≤ T

τ
− 1. (6.59)

Plugging (6.58) and (6.59) into (6.57), using (6.25) and the triangle inequality, we get

E(en+1) − E(en−1) . τ(τ2 + h2)2 + τ
[
‖δ+∇en+1‖2

2 + ‖δ+∇en‖2
2 + ‖δ+∇en−1‖2

2

]

. τ(τ2 + h2)2 + τ
[
E(en+1) + E(en) + E(en−1)

]
, 1 ≤ n ≤ T

τ
− 1.
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There exists τ0 > 0 sufficiently small, when 0 < τ ≤ τ0, we have

E(en+1) − E(en−1) . τ(τ2 + h2)2 + τ
[
E(en) + E(en−1)

]
, 1 ≤ n ≤ T

τ
− 1. (6.60)

Summing the above inequality for 1 ≤ n ≤ m− 1 ≤ T
τ − 1, we get

E(em) + E(em−1) . T (τ2 + h2)2 + E(e1) + E(e0) + τ

m−1∑

l=1

E(el), 1 ≤ m ≤ T

τ
.

Using the discrete Gronwall inequality [95], noticing (6.47) and (6.53), we have

‖δ+∇em‖2
2 . E(em) ≤ E(em) + E(em−1) . (τ2 + h2)2 + E(e1) + E(e0)

. (τ2 + h2)2 + ‖e1‖2
2 + ‖δ+∇e1‖2

2 . (τ2 + h2)2, 1 ≤ m ≤ T

τ
.

This together with (6.47) imply (6.18). For the case of the Assumption (A) and (B) without

further assumptions, we will lose half order convergence rate because of the boundary

(6.41). Notice that the reminder term is O(h2 + τ2)3/2 instead of O(h2 + τ2) in (6.59),

and the the remaining proof is the same. Hence, we will have the 3/2 order convergence

rate for discrete semi-H1 norm. The proof is complete. �

Similar as the proof of Theorem 6.1, we can get error estimate for the mass and energy

in the discretized level as

Lemma 6.4 (Estimates on mass and energy) Under the same conditions of Theorem 6.1,

with only Assumption (A) and (B), we have for 0 ≤ n ≤ T
τ

∣∣ ‖ψn‖2
2 −N(ψ0)

∣∣ =
∣∣ ‖ψn‖2

2 −N(ψ(·, tn))
∣∣

≤
∣∣ ‖ψn‖2

2 − ‖Πhψ(tn)‖2
2

∣∣+
∣∣‖Πhψ(tn)‖2

2 −N(ψ(·, tn))
∣∣ . h3/2 + τ3/2,

|Eh(ψn) − E(ψ0)| = |Eh(ψn) − E(ψ(·, tn))|

≤ |Eh(ψn) − Eh(Πψ(tn))| + |Eh(Πψ(tn)) − E(ψ(·, tn))| . h3/2 + τ3/2,

where Πh : X := {f ∈ C(Ū) | f |∂U = 0} → XMK is the standard project operator defined

as

(Πhf)jk = f(xj, yk), f ∈ X, (Πhψ(tn))jk = ψ(xj , yk, tn), (j, k) ∈ T 0
MK. (6.61)

In addition, assume either Ω = 0 and ∂nV (x) = 0 or ψ ∈ C([0, T ];H2
0 (U)), then we have

∣∣ ‖ψn‖2
2 −N(ψ0)

∣∣+ |Eh(ψn) −E(ψ0)| . h2 + τ2, 0 ≤ n ≤ T

τ
. (6.62)
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In addition, from Theorem 6.1 and using the inverse inequality [145], we get immedi-

ately the error estimate in l∞-norm for the SIFD method as

Lemma 6.5 (l∞-norm estimate) Under the same conditions of Theorem 6.1 and assume

h < 1, we have the following error estimate for the SIFD with Assumption (A) and (B)

‖en‖∞ .

{
(h3/2 + τ3/2)| ln(h)|, d = 2,

h+ τ, d = 3.

In addition, if either Ω = 0 and ∂nV (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

‖en‖∞ .

{
(h2 + τ2)| ln(h)|, d = 2,

h3/2 + τ3/2, d = 3.

Remark 6.1 If the cubic nonlinear term β|ψ|2ψ in (6.1) is replaced by a general non-

linearity f(|ψ|2)ψ, the numerical discretization SIFD and its error estimates in l2-norm,

l∞-norm and discrete H1-norm are still valid provided that the nonlinear real-valued func-

tion f(ρ) ∈ C2([0,∞)).

6.4 Error estimates for the CNFD method

In this section, we prove optimal error estimate for the CNFD method (6.7) with (6.8)

and (6.9) in l2-norm, discrete H1-norm and l∞-norm. Let ψn ∈ XMK be the numerical

solution of the CNFD method and en ∈ XMK be the error function.

Lemma 6.6 (Conservation of mass and energy) For the CNFD scheme (6.7) with (6.8)

and (6.9), for any mesh size h > 0, time step τ > 0 and initial data ψ0, it conserves the

mass and energy in the discretized level, i.e.

‖ψn‖2
2 ≡ ‖ψ0‖2

2, Eh(ψ
n) ≡ Eh(ψ

0), n = 0, 1, 2, . . . . (6.63)

Proof: Follow the analogous arguments of the CNFD method for the NLSE [46, 67] and

we omit the details here for brevity.

Lemma 6.7 (Solvability of the difference equations) For any given ψn, there exists a

solution ψn+1 of the CNFD discretization (6.7) with (6.8) and (6.9). In addition, assume
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τ . h and either β ≥ 0 or β < 0 with ‖ψ0‖2
2 <

1
|β|

(
1 − Ω2

γ2

)
, under the Assumption (A),

there exists h0 > 0 sufficiently small, when 0 < h ≤ h0, the solution is unique.

Proof: First, we prove the existence of a solution of the CNFD discretization (6.7). In

order to do so, for any given ψn ∈ XMK , we rewrite the equation (6.7) as

ψn+1/2 = ψn + i
τ

2
Fn(ψn+1/2), n = 0, 1, . . . , (6.64)

where Fn : XMK → XMK defined as

(Fn(u))jk =

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ujk +

β

2
(|2ujk − ψnj,k|2 + |ψnj,k|2)ujk, (j, k) ∈ TMK .

Define the map Gn : XMK → XMK as

Gn(u) = u− ψn − i
τ

2
Fn(u), u ∈ XMK ,

and it is easy to see that Gn is continuous from XMK to XMK . Moreover,

Re (Gn(u), u) = ‖u‖2
2 − Re(ψn, u) ≥ ‖u‖2(‖u‖2 − ‖ψn‖2), u ∈ XMK ,

which immediately implies

lim
‖u‖2→∞

| (Gn(u), u) |
‖u‖2

= ∞.

Thus Gn is surjective. By using the Brouwer fixed point theorem (cf. [94]), it is easy to

show that there exists a solution u∗ with Gn(u∗) = 0, which implies that there exists a

solution ψn+1/2 to the problem (6.64) and thus the CNFD discretization (6.7) is solvable

for any given ψn. In addition, for the solution ψn+1 to (6.7), using (6.63), we have

‖δ+∇ψn+1‖2
2 ≤ C Eh(ψ

n+1) = C Eh(ψ
0), n = 0, 1, . . . ; (6.65)

where when β ≥ 0, we have C = 2; and when β < 0 with ‖ψ0‖2
2 <

1
|β|(1 − Ω2

γ2 ), it comes

from

Eh(ψ
0) = Eh(ψ

n+1) ≥ 1

2

(
1 − Ω2

γ2

)
‖δ+∇ψn+1‖2

2 −
|β|
2

‖δ+∇ψn+1‖2
2 · ‖ψn+1‖2

2

=
1

2

(
1 − Ω2

γ2

)
‖δ+∇ψn+1‖2

2 −
|β|
2

‖δ+∇ψn+1‖2
2 · ‖ψ0‖2

2

=
|β|
2

[
1

|β|

(
1 − Ω2

γ2

)
− ‖ψ0‖2

2

]
‖δ+∇ψn+1‖2

2.
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Thus assume h < 1, when β ≥ 0 or β < 0 with ‖ψ0‖2
2 <

1
|β|

(
1 − Ω2

γ2

)
, using (6.65) and the

inverse inequality [145], we obtain

‖ψn+1‖∞ ≤ C| lnh| ‖δ+∇ψn+1‖2 ≤ C| lnh|Eh(ψ0), n = 0, 1, . . . . (6.66)

Next, we show the uniqueness of the solution of the CNFD scheme (6.7). For given

ψn ∈ XMK , suppose that there are two solutions un+1 ∈ XMK and vn+1 ∈ XMK to (6.7).

From (6.66), we get

‖un+1‖∞ ≤ C Eh(ψ
0) | ln h|, ‖vn+1‖∞ ≤ C Eh(ψ

0) | ln h|. (6.67)

Denoting w := un+1 − vn+1 ∈ XMK , from (6.7), we have

i
wjk
τ

=

(
−1

2
δ2∇ + Vjk − ΩLhz

)
wjk + R̂jk, (j, k) ∈ TMK , (6.68)

where

R̂jk =
β

2
(|un+1

ij |2 + |ψnjk|2)wjk +
β

2
(vn+1
jk + ψnjk)(|un+1

jk |2 − |vn+1
jk |2), (j, k) ∈ TMK .

Multiplying both sides of (6.68) with w̄jk, summing for (j, k) ∈ TMK , and then taking

imaginary parts, using (6.66) and (6.67), we have

‖w‖2
2 ≤ τC

[
‖un+1‖2

∞ + ‖vn+1‖2
∞ + ‖ψn‖2

∞
]
‖w‖2

2 ≤ Cτ
[
Eh(ψ

0) lnh
]2 ‖w‖2

2.

Thus under the assumption τ . h, there exists h0 > 0, when 0 < h ≤ h0, we have

Cτ(lnhEh(ψ
0))2 < 1 which immediately implies

‖w‖2 = ‖un+1 − vn+1‖2 = 0 =⇒ un+1 = vn+1,

i.e. the solution of CNFD (6.7) is unique.

Denote the local truncation error η̃n ∈ XMK (n ≥ 0) of the CNFD scheme (6.7) with

(6.8) and (6.9) as

η̃njk : = iδ+t ψ(xj , yk, tn) −
[
−1

2
δ2∇ − ΩLhz + Vjk +

β

2

(
|ψ(xj , yk, tn+1)|2

+|ψ(xj , yk, tn)|2
) ]

×ψ(xj , yk, tn) + ψ(xj , yk, tn+1)

2
, (j, k) ∈ TMK . (6.69)

Then we have
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Lemma 6.8 (Local truncation error) Assume V (x) ∈ L∞(U) and under the Assumption

(B), we have

‖η̃n‖∞ . τ2 + h2, 0 ≤ n ≤ T

τ
− 1. (6.70)

In addition, assuming V (x) ∈ C1(U) and τ . h, we have for 1 ≤ n ≤ T
τ − 1

|δ+∇η̃njk| .




τ2 + h2, 1 ≤ j ≤M − 2, 1 ≤ k ≤ K − 2,

τ + h, j = 0,M − 1, or k = 0,K − 1.

(6.71)

In addition, if either Ω = 0 and ∂nV (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

‖δ+∇η̃n‖∞ . τ2 + h2, 1 ≤ n ≤ T

τ
− 1. (6.72)

Proof: Follow the analogous line for Lemma 6.3 and we omit it here for brevity.

Theorem 6.4 (l2-norm estimate) Assume τ . h and either β ≥ 0 or β < 0 with ‖ψ0‖2
2 <

1
|β|

(
1 − Ω2

γ2

)
, under the Assumption (A) and (B), there exist h0 > 0 and τ0 > 0 sufficiently

small, when 0 < h ≤ h0 and 0 < τ ≤ τ0, we have

‖en‖2 . τ2 + h2, ‖ψn‖∞ ≤
√

2(1 +M1), 0 ≤ n ≤ T

τ
. (6.73)

Proof: Choose a smooth function α(ρ) (ρ ≥ 0)∈ C∞([0,∞)) defined as

α(ρ) =





1, 0 ≤ ρ ≤ 1,

∈ [0, 1], 1 ≤ ρ ≤ 2,

0, ρ ≥ 2.

(6.74)

Denote M0 = 2(1 +M1)
2 > 0 and define

FM0(ρ) = α

(
ρ

M0

)
ρ, 0 ≤ ρ <∞,

then FM0(ρ) ∈ C∞([0,∞)) and it is global Lipschitz, i.e.

|FM0(ρ1) − FM0(ρ2)| ≤ CM0 |
√
ρ1 −

√
ρ2| , 0 ≤ ρ1, ρ2 <∞. (6.75)

Choose φ0 = ψ0 ∈ XMK and define φn ∈ XMK (n = 0, 1, . . .) as for (j, k) ∈ TMK

iδ+t φ
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLhz +

β

2

(
FM0(|φn+1

jk |2) + FM0

(
|φnjk|2

))]
φ
n+1/2
jk , (6.76)
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where

φ
n+1/2
jk =

1

2
(φn+1
jk + φnjk), (j, k) ∈ T 0

MK , n ≥ 0.

In fact, φn can be viewed as another approximation of ψ(x, tn). Define the ‘error’ function

ên ∈ XMK

ênjk := ψ(xj , yk, tn) − φnjk, (j, k) ∈ T 0
MK , n ≥ 0,

and the local truncation error η̂n ∈ XMK of the scheme (6.76) as

η̂njk := iδ+t ψ(xj , yk, tn) −
[
−1

2
δ2∇ − ΩLhz + Vjk +

β

2

(
FM0(|ψ(xj , yk, tn+1)|2) (6.77)

+FM0(|ψ(xj , yk, tn)|2)
)]

×ψ(xj , yk, tn) + ψ(xj , yk, tn+1)

2
, (j, k) ∈ TMK , n ≥ 0.

Similar as Lemma 6.8, we can prove

‖η̂n‖∞ . τ2 + h2, 0 ≤ n ≤ T

τ
.

Subtracting (6.77) from (6.76), we obtain

iδ+t ê
n
j,k =

[
−1

2
δ2∇ + Vjk − ΩLhz

]
ê
n+1/2
jk +

β

2

(
FM0(|φn+1

jk |2) + FM0(|φnjk|2)
)
ê
n+1/2
jk

+
β

4
(ψ(xj , yk, tn+1) + ψ(xj , yk, tn)) ξ̂

n
jk + η̂njk, (j, k) ∈ TMK , n ≥ 0,(6.78)

where ξ̂n ∈ XMK defined as

ξ̂njk = FM0(|φn+1
jk |2)+FM0(|φnjk|2)−FM0(|ψ(xj , yk, tn+1)|2)−FM0(|ψ(xj , yk, tn)|2), (j, k) ∈ T 0

MK .

This together with (6.75) implies
∣∣∣∣
β

4
(ψ(xj , yk, tn+1) + ψ(xj , yk, tn)) ξ̂

n
jk

∣∣∣∣ . C
(
|ên+1
jk | + |ênjk|

)
, (j, k) ∈ T 0

MK.

Multiplying both sides of (6.78) with ên+1
jk + ênjk, summing for (j, k) ∈ TMK , taking imag-

inary part and applying the Cauchy inequality, we obtain

‖ên+1‖2
2 − ‖ên‖2

2 . τ
(
|η̂n|2∞ + C(‖ên+1‖2

2 + ‖ên‖2
2)
)

. τ
[
(h2 + τ2)2 + (‖ên+1‖2

2 + ‖ên‖2
2)
]
, 0 ≤ n ≤ T

τ
− 1.

Then there exists τ0 > 0 sufficiently small, when 0 < τ ≤ τ0, applying the discrete

Gronwall inequality [46,67,95], we get

‖ên‖2 . τ2 + h2, 0 ≤ n ≤ T

τ
.
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Applying the inverse inequality in 2D, we have

‖ên‖∞ .
1

h
‖ên‖2 . h+

τ2

h
. h, 0 ≤ n ≤ T

τ
, (6.79)

which implies

‖φn‖∞ ≤ ‖Πhψ(tn)‖∞ + ‖ên‖∞ ≤
√
M0

2
+ Ch, 0 ≤ n ≤ T

τ
.

Thus under the assumption τ . h, there exists h0 > 0, when 0 < h ≤ h0, we have

‖φn‖∞ ≤
√
M0

2
+

√
M0

2
=
√
M0 =⇒ ‖φn‖2

∞ ≤M0, 0 ≤ n ≤ T

τ
. (6.80)

Therefore, the discretization (6.76) collapses exactly to the CNFD discretization (6.7) with

(6.8) and (6.9), i.e.

ψn = φn, en = ên, 0 ≤ n ≤ T

τ
.

This together with (6.79) and (6.80) complete the proof.

Again, combining Theorem 6.4 and Lemmas 6.7 and 6.8, we are now ready to prove

the main Theorem 6.2.

Proof of Theorem 6.2: As in the proof of Theorem 6.1, we only prove the optimal

convergence under the Assumption (A) and (B) with either Ω = 0 and ∂nV (x) = 0 or

ψ ∈ C0([0, T ];H2
0 (U)). Subtracting (6.69) from (6.7), we get

iδ+t e
n
jk =

[
−1

2
δ2∇ + Vjk − ΩLhz

]
e
n+1/2
jk + ξ̃njk + η̃njk, (j, k) ∈ TMK , n ≥ 0, (6.81)

where ξ̃n ∈ XMK defined as

ξ̃njk =
β

2

[
enjkψ(xj , yk, tn) + ψnjke

n
jk + en+1

jk ψ(xj , yk, tn+1) + ψn+1
jk en+1

jk

]
ψ
n+1/2
jk

+
β

2
(|ψ(xj , yk, tn)|2 + |ψ(xj , yk, tn+1)|2)en+1/2

jk , (j, k) ∈ TMK .

Again, rewrite (6.81) as

en+1 − en = −iτ
(
χ̃n + ξ̃n + η̃n

)
, n ≥ 0, (6.82)

where χ̃n ∈ XMK defined as

χ̃njk =

[
−1

2
δ2∇ + Vjk − ΩLhz

]
e
n+1/2
jk , (j, k) ∈ TMK , n ≥ 0.
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Multiplying both sides of (6.81) with en+1
jk − enjk, summing for (j, k) ∈ TMK , noticing

(6.22), (6.23) and (6.82), taking real parts, we obtain

E(en+1) − E(en) = −2Re
〈
ξ̃n + η̃n, en+1 − en

〉

= −2Re
〈
ξ̃n + η̃n,−iτ(χ̃n + ξ̃n + η̃n)

〉

= 2τ Im
〈
ξ̃n + η̃n, χ̃n

〉
, 0 ≤ n ≤ T

τ
− 1.

Similar as those in the proof of Theorem 6.1, we can prove
∣∣∣∣Im

〈
ξ̃n + η̃n, χ̃n

〉 ∣∣∣∣ . (h2 + τ2)2 + E(en+1) + E(en), 0 ≤ n ≤ T

τ
− 1.

Combining the above two inequalities, we get

E(en+1) − E(en) . τ
[
(τ2 + h2)2 + E(en+1) + E(en)

]
, 0 ≤ n ≤ T

τ
− 1. (6.83)

Then there exists τ0 > 0 sufficiently small, when 0 < τ ≤ τ0, using the discrete Gronwall

inequality [46,67,95] and noticing e0 = 0 and E(e0) = 0, we get

E(en) . (τ2 + h2)2, 0 ≤ n ≤ T

τ
,

which immediately implies (6.20). If we only have Assumption (A) and (B) without

further assumption, the convergence rate will be O(h3/2 + τ3/2). The proof is the same as

in Theorem 6.1, and we omit it here. �

Similarly, from Theorem 6.2 and using the inverse inequality [145], we get immediately

the error estimate in l∞-norm for the CNFD method as

Lemma 6.9 (l∞-norm estimate) Under the same conditions of Theorem 6.2 and assume

h < 1, with Assumption (A) and (B), we have the following error estimate for the CNFD

‖en‖∞ .

{
(h3/2 + τ3/2)| ln(h)|, d = 2,

h+ τ, d = 3.

In addition, if either Ω = 0 and ∂nV (x) = 0 or ψ ∈ C0([0, T ];H2
0 (U)), we have

‖en‖∞ .

{
(h2 + τ2)| ln(h)|, d = 2,

h3/2 + τ3/2, d = 3.

Remark 6.2 If the cubic nonlinear term β|ψ|2ψ in (6.1) is replaced by a general nonlin-

earity f(|ψ|2)ψ, the numerical discretization CNFD and its error estimates in l2-norm,

l∞-norm and discrete H1-norm are still valid provided that the nonlinear real-valued func-

tion f(ρ) ∈ C3([0,∞)).
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6.5 Extension to other cases

In this section, we will discuss a discretization of the GPE with an angular momentum

rotation (6.1) when U is a disk in 2D, and resp. a cylinder in 3D and its error estimates.

As noticed in [16], the angular momentum rotation is constant coefficient in 2D with

polar coordinates and 3D with cylindrical coordinates. Thus the original problem of GPE

with an angular momentum rotation term defined in Rd (d = 2, 3) for rotating BEC

is usually truncated onto a disk in 2D and a cylinder in 3D as bounded computational

domain. Again, for simplicity of notation, we only consider SIFD in 2D, i.e. d = 2 and

U = {x | |x| < R} with R > 0 fixed. Extension to 3D are straightforward. In 2D with

polar coordinate, the problem collapses

i∂tψ =

[
−1

2

(
1

r
∂r (r∂r) +

1

r2
∂θθ

)
+ V0(r) +W (r, θ) + iΩ∂θ + β|ψ|2

]
ψ, (r, θ) ∈ U, (6.84)

with boundary condition

ψ(R, θ) = 0, ψ(r, θ) = ψ(r, θ + 2π), 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R, (6.85)

and initial condition

ψ(r, θ, 0) = ψ0(r, θ), 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π; (6.86)

where ψ = ψ(r, θ, t) and here we split the external trapping potential V (x) into a radial

symmetry part V0(r) and a left-over part W (x), i.e.

V (x) = V0(r) +W (r, θ), x ∈ U.

Let M, K > 0 be two positive integers, and ∆r := 2R
2M+1 , ∆θ := 2π

K , define the grid points

rj = j∆r, rj+ 1
2

=

(
j +

1

2

)
∆r, j = 0, 1, . . . ,M ; θk = k∆θ, k = 0, 1, . . . ,K.

Let ψn
j+ 1

2
k

be the approximation of ψ(rj+ 1
2
, θk, tn) and ψn be the numerical solution at

time t = tn. We adopt the similar notations as those in section 6.2.
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Then a semi-implicit finite difference (SIFD) discretization reads for n ≥ 1

iδtψ
n
j+ 1

2 k
=
−r−1

j+ 1
2

4(∆r)2
[
rj+1(ψ

n+1
j+ 3

2 k
+ ψn−1

j+ 3
2 k

) − (rj+1 + rj)(ψ
n+1
j+ 1

2 k
+ ψn−1

j+ 1
2 k

) + rj(ψ
n+1
j− 1

2 k
+ ψn−1

j− 1
2 k

)
]

− 1

4r2
j+ 1

2

(∆θ)2

[
ψn+1
j+ 1

2 k+1
− 2ψn+1

j+ 1
2 k

+ ψn+1
j+ 1

2 k−1
+ ψn−1

j+ 1
2 k+1

− 2ψn−1
j+ 1

2 k
+ ψn−1

j+ 1
2 k−1

]

+
V0(rj+ 1

2
)

2

(
ψn+1
j+ 1

2 k
+ ψn−1

j+ 1
2 k

)
+

iΩ

2∆θ

[
ψn+1
j+ 1

2 k+1
− ψn+1

j+ 1
2 k−1

+ ψn−1
j+ 1

2 k+1
− ψn−1

j+ 1
2 k−1

]

+ β|ψnj+ 1
2 k

|2ψnj+ 1
2 k

+W (rj+ 1
2
, θk)ψ

n
j+ 1

2 k
, 0 ≤ j ≤M − 1, 0 < k ≤ K. (6.87)

The boundary condition (6.85) is discretized as

ψM+ 1
2
k = 0, 0 ≤ k ≤ K; ψj+ 1

2
0 = ψj+ 1

2
K , ψj+ 1

2
K+1 = ψj+ 1

2
1, 0 ≤ j ≤M ; (6.88)

and the initial condition (6.86) is discretized as

ψ0
j+ 1

2
k

= ψ0(rj+ 1
2
, θk), 0 ≤ j ≤M, 0 ≤ k ≤ K. (6.89)

The first step ψ1 can be obtained by using the same spatial discretization combining with

any explicit second-order time integrator.

For this SIFD method, although it is implicit, however, at each time step, the lin-

ear system can be solved directly via fast direct Poisson solver via fast discrete Fourier

transform in θ-direction with computational cost at O (MK lnK), i.e. it is very effi-

cient in practical computation [16]. In fact, this method is also widely used in simulating

quantized vortex dynamics of rotating Bose-Einstein condensate [16]. In addition, let

enj+1/2 k = ψnj+1/2 k − ψ(rj+ 1
2
, θk, tn), similar as those in section 6.3, we can prove the

following error estimate.

Theorem 6.5 Assume hmin := min{∆r,∆θ} . h := hmax = max{∆r,∆θ} and τ . h,

under Assumption (A) and (B), there exist h0 > 0 and 0 < τ0 <
1
4 sufficiently small, when

0 < h ≤ h0 and 0 < τ ≤ τ0, we have the following optimal error estimate for the SIFD

method (6.87) with (6.88), (6.89)

‖en‖2 . h2 + τ2, ‖δ+∇en‖2 . h3/2 + τ3/2, 0 ≤ n ≤ T

τ
, (6.90)

where

‖en‖2
2 = ∆r∆θ

M−1∑

j=0

K−1∑

k=0

rj+ 1
2

∣∣∣enj+ 1
2
k

∣∣∣
2
, n = 0, 1, . . . ,

‖δ+∇en‖2
2 = ∆r∆θ

M−1∑

j=0

K−1∑

k=0


rj+1

∣∣∣∣∣
en
j+ 3

2
k
− en

j+ 1
2
k

∆r

∣∣∣∣∣

2

+
1

rj+ 1
2

∣∣∣∣∣
en
j+ 1

2
k+1

− en
j+ 1

2
k

∆θ

∣∣∣∣∣

2

 .
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In addition, assuming ψ ∈ C0([0, T ];H2
0 (U)), we have

‖en‖2 + ‖δ+∇en‖2 . h2 + τ2, 0 ≤ n ≤ T

τ
. (6.91)

The CNFD method and its error estimate can be extended to this case directly and

we omit the details for brevity. Again, it is implicit and at every time step, a nonlinear

system must be solved.

6.6 Numerical results

In this section, we report numerical results of the SIFD (6.10) and CNFD (6.7) discretiza-

tions of the GPE (6.1) to confirm the error estimates.

We take d = 2, U = [−8, 8] × [−8, 8], V (x) = 1
2(x2 + y2), β = 10 in (6.1) and

ψ0(x) = 2√
π
(x + iy)e−(x2+y2) in (6.3). For comparison, the numerical ’exact’ solution ψe

is obtained by the CNFD with a very fine mesh and a small time step, e.g. h = 1/64 and

τ = 0.0001. For SIFD scheme, at each time step, we use Gauss-Seidel iteration method to

solve the linear system. For CNFD scheme, to solve the fully nonlinear system, at each

iteration, the system is linearized, i.e. the CNFD (6.7) is linearized as

i
ψ

(m)
jk − ψnjk

τ
=

[
−1

2
δ2∇ + Vjk − ΩLhz +

β

2
(|ψnjk|2 + |ψ(m−1)

jk |2)
]

1

2
(ψ

(m)
jk + ψnjk), m ≥ 1,

and we solve this inner problem to get ψ
(m)
jk by Gauss-Seidel iteration method. Then the

solution ψn+1
jk is numerically reached once ψ

(m)
jk converges.

Let ψh,τ be the numerical solution corresponding to mesh size h and time step τ and

define the error function as e := ψe − ψh,τ . The convergence rates are calculated as

log2(‖e(h, τ)‖/‖e(h/2, τ/2)‖) with the corresponding norms. Tab. 6.1 shows the errors

‖e‖2, ‖δ+∇e‖2 and ‖e‖∞ for the CNFD method (6.7) with different Ω, h and τ ; and Tab.

6.2 displays similar results for SIFD method (6.10). Figs. 6.1 & 6.2 depict time evolution

of the errors between the discretized mass and energy with their continuous counter-parts,

respectively, i.e.
∣∣ ‖ψn‖2

2 −N(ψ0)
∣∣ and |Eh(ψn) − E(ψ0)| of the SIFD method (6.10) for

different Ω, h and τ . Fig. 3 displays similar results of the CNFD method (6.7) when the

nonlinear system is iteratively solved up to a given accuracy ε > 0.

From Tabs. 6.1&6.2, they demonstrate the second-order convergence rate of both SIFD

and CNFD methods in l2-norm, l∞-norm and discrete H1-norm. From Figs. 6.1, 6.2 and
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h = 1/4
τ = 2−5

h = 1/8
τ = 2−6

h = 1/16
τ = 2−7

h = 1/32
τ = 2−8

‖e‖2 5.424E-2 1.574E-2 3.907E-3 8.268E-4
Rate 1.78 2.01 2.24

Ω = 0 ‖δ+∇e‖2 2.257E-1 8.008E-2 2.066E-2 4.448E-3
Rate 1.50 1.95 2.22
‖e‖∞ 1.521E-2 3.273E-3 7.676E-3 1.585E-4
Rate 2.22 2.09 2.28
‖e‖2 4.758E-2 1.408E-2 3.502E-3 7.425E-4
Rate 1.76 2.01 2.24

Ω = 0.5 ‖δ+∇e‖2 2.097E-1 7.535E-2 1.943E-2 4.186E-3
Rate 1.48 1.96 2.21
‖e‖∞ 1.259E-2 3.081E-3 7.233E-4 1.489E-4
Rate 2.03 2.09 2.28
‖e‖2 4.406E-2 1.315E-2 3.272E-3 6.934E-4
Rate 1.74 2.01 2.24

Ω = 0.9 ‖δ+∇e‖2 2.007E-1 7.240E-2 1.863E-2 4.011E-3
Rate 1.47 1.96 2.22
‖e‖∞ 1.196E-2 3.105E-3 7.284E-4 1.494E-4
Rate 1.95 2.09 2.29

Table 6.1: Error analysis of the CNFD method (6.7) for the GPE (6.1) at time t = 0.5 for
different Ω, mesh size h and time step τ .

6.3, we can draw the following conclusions: (i) the SIFD discretization approximates the

mass very well (up to 4 significant digits, cf. Fig. 6.1) and the energy at second order

accurate in practical computation when τ = O(h) are not too big (cf. Fig. 6.1). When the

final computational time t increases, the errors in mass or energy are either oscillating or

slightly increasing (cf. Figs. 6.1&6.2). An interesting observation is that, for fixed h > 0

small, when τ > 0 very small, the errors in mass and energy increase with time, especially

in long time (cf. Fig. 6.2). (ii) For the CNFD discretization, when the fully nonlinear

system is iteratively solved at every time step to extremely high accuracy, e.g. machine

accuracy, the solution obtained in practical computation conserves the mass and energy

very well (cf. Fig. 6.3). However, if the nonlinear system is solved accurately but not

extremely accurately, the solution obtained in practical computation doesn’t conserve the

mass and energy very well, especially in long time (cf. Fig. 6.3). (iii) From the accuracy

point of view, SIFD method is the same accurate as CNFD method and it approximates

the mass very well and the energy in the same order as the numerical solution in the
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h = 1/4
τ = 2−7

h = 1/8
τ = 2−8

h = 1/16
τ = 2−9

h = 1/32
τ = 2−10

‖e‖2 4.943E-2 1.360E-2 3.285E-3 6.661E-4
Rate 1.92 1.99 2.30

Ω = 0 ‖δ+∇e‖2 2.084E-1 6.726E-2 1.663E-2 3.399E-3
Rate 1.63 2.02 2.29
‖e‖∞ 1.298E-2 2.867E-3 6.709E-4 1.346E-4
Rate 2.18 2.10 2.32
‖e‖2 4.350E-2 1.212E-2 2.927E-3 5.938E-4
Rate 1.84 2.05 2.30

Ω = 0.5 ‖δ+∇e‖2 1.940E-1 6.319E-2 1.561E-2 3.191E-3
Rate 1.62 2.02 2.29
‖e‖∞ 1.165E-2 2.748E-3 6.449E-4 1.295E-4
Rate 2.08 2.09 2.32
‖e‖2 4.060E-2 1.136E-2 2.741E-3 5.557E-4
Rate 1.84 2.05 2.30

Ω = 0.9 ‖δ+∇e‖2 1.863E-1 6.085E-2 1.499E-2 3.062E-3
Rate 1.61 2.02 2.29
‖e‖∞ 1.101E-2 2.726E-3 6.339E-4 1.271E-4
Rate 2.01 2.10 2.32

Table 6.2: Error analysis of the SIFD method (6.10) for the GPE (6.1) at time t = 0.5 for
different Ω, mesh size h and time step τ .

discretized level. It is much cheaper than CNFD method, especially in high dimensions

and/or when fast Poisson solver is applied in practical computation.
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Figure 6.1: Time evolution of the errors between the discretized mass and energy with
their continuous counter-parts, i.e.

∣∣ ‖ψn‖2
2 −N(ψ0)

∣∣ and |Eh(ψn) − E(ψ0)|, of the SIFD
scheme (6.10) for different Ω and τ = O(h).
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Figure 6.2: Time evolution of the errors between the discretized mass and energy with
their continuous counter-parts, i.e.

∣∣ ‖ψn‖2
2 −N(ψ0)

∣∣ and |Eh(ψn) − E(ψ0)|, of the SIFD
scheme (6.10) with h = 1/32 for different Ω and time steps τ .
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Figure 6.3: Time evolution of the errors between the discretized mass and energy with
their continuous counter-parts, i.e.

∣∣ ‖ψn‖2
2 −N(ψ0)

∣∣ and |Eh(ψn) − E(ψ0)|, of the CNFD
scheme (6.7) with mesh h = 1/16 and time step τ = 2−9 when the nonlinear system is
iteratively solved up to the accuracy ε for different Ω and ε.



Chapter 7
Uniform error estimates of finite difference

methods for the nonlinear Schrödinger

equation with wave operator

GPE (cubic NLSE) can be obtained by taking the nonrelativistic limit of Klein-Gorden

equation (KG), or singular limit of the Zakharov system. In such case, we will need to

consider a nonlinear Schrödinger equation perturbed by the wave operator (NLSW) in

the case of KG, where the solution highly oscillates in time in small perturbation regime.

Here, we are going to analyze the uniform convergence rates of finite difference methods

for NLSW, independent of the perturbation.

7.1 Introduction

Let us recall the nonlinear Schrödinger equation with wave operator (NLSW) in d (d =

1, 2, 3) dimensions (1.16):




i∂tu

ε(x, t) − ε2∂ttu
ε(x, t) + ∇2uε(x, t) + f(|uε|2)uε(x, t) = 0, x ∈ Rd, t > 0,

uε(x, 0) = u0(x), ∂tu
ε(x, 0) = uε1(x), x ∈ Rd,

(7.1)

where 0 < ε ≤ 1 is a dimensionless parameter, f : [0,+∞) → R is a real-valued function.

It is easy to see that NLSW has the following two important conserved quantities, i.e. the

153
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mass

N ε(t) :=

∫

Rd

|uε(x, t)|2 dx− 2ε2
∫

Rd

Im
(
uε(x, t)∂tu

ε(x, t)
)
dx ≡ N ε(0), t ≥ 0, (7.2)

and the energy

Eε(t) :=

∫

Rd

[
ε2|∂tuε(x, t)|2 + |∇uε(x, t)|2 − F (|uε(x, t)|2)

]
dx ≡ Eε(0), t ≥ 0, (7.3)

and F is the primitive function of f defined as

F (s) =

∫ s

0
f(ρ) dρ, s ≥ 0. (7.4)

In the nonrelativistic limit of the Klein-Gordon equation and the singular limit of

the Langmuir wave envelope approximation, i.e. ε → 0+, NLSW (7.1) collapses to the

standard nonlinear Schrödinger equation (NLSE) [31,104,129,150]




i∂tu(x, t) + ∇2u(x, t) + f(|u|2)u(x, t) = 0, x ∈ Rd, t > 0,

u(x, 0) = u0(x), x ∈ Rd,

(7.5)

and the corresponding conservation laws (7.2) and (7.3) hold for NLSE with ε = 0. In

particular, it is proved in [31] that, if the nonlinearity satisfies

|∂kf(ρ)| ≤ Kρσ−k, for some constant K > 0 and σ ≥ 1, k = 0, 1, 2,

then for the initial data (u0, u
ε
1) ∈ H2×H2 with ‖uε1‖H2 uniformly bounded, there exists a

constant T > 0 independent of ε, such that the solution uε of NLSW (7.1) and the solution

u of NLSE (7.5) exist on [0, T ] [104,129,150]. Furthermore, the following convergence rate

can be obtained (see Appendix D)

‖uε − u‖L∞([0,T ];H2) ≤ Cε2. (7.6)

Formally, as ε → 0+, the solution of NLSW (7.1) exhibits oscillation in time t with

wavelength O(ε2) due to the wave operator and/or the initial data uε1. Actually, suppose

the initial data uε1 satisfies the condition

uε1(x) = i
(
∆u0(x) + f(|u0(x)|2)u0(x)

)
+ εαw(x), x ∈ Rd, α ≥ 0, (7.7)
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we would have the following asymptotic expansion for the solution uε(x, t) of NLSW

(7.1) as

uε(x, t) = u(x, t) + ε2{terms without oscillation} (7.8)

+ε2+min{α,2}v(x, t/ε2) + higher order terms with oscillation, x ∈ Rd, t ≥ 0,

where u := u(x, t) satisfies NLS (7.5). The expansion (7.8) can be verified in the spirit
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Figure 7.1: Temporal profile of |uε(0, t)|2 and |u(0, t)|2 (left) and spatial profile of |uε(x, t =
1.5)|2 (right), for different ε, with α = 0 and u0, w, f being given in section 7.5.

of [31], and we plot the densities |uε(0, t)|2 and |uε(x, t = 1.5)|2 in the case of α = 0 and

d = 1 (cf. Fig. 7.1).

Based on this asymptotic expansion, we can make assumptions (A) and (B) (cf. section

7.2) on the solution of NLSW. Furthermore, from (7.8), we can classify the initial data

into ill-prepared (0 ≤ α < 2) and well-prepared (α ≥ 2) cases. In fact, when 0 ≤ α < 2,

the leading order oscillation term comes from the initial data; and resp., when α > 2, it

comes from the perturbation of the wave operator.

As stated in Chapter 1, there have been different kinds of numerical methods proposed

for GPE, or for more general NLSE, such as the time-splitting pseudospectral method

[18, 78, 121, 142] and the finite difference methods [5]. However, few numerical methods

have been considered for NLSW in the literature, and most of them are the conservative

finite difference methods [51,73,154]. For NLSW in 1D with ε = O(1), the error estimates

of conservative finite difference schemes have been obtained in [154]. However, the proofs
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in [154] rely strongly on the conservative properties of the schemes and the discrete version

of the Sobolev inequality in 1D while the corresponding Sobolev inequality is unavailable

in two (2D) and three (3D) dimensions (similar as Chapter 6 for the NLSE case). Thus

their proof can not be extended to either higher dimensions (2D or 3D) or nonconservative

schemes. Noticing the above asymptotic expansion results for NLSW, there exists high

oscillation in time for small ε, which would cause trouble in analyzing the discretizations

for NLSW (7.1), especially in the regime 0 < ε ≪ 1. Our aim is to develop a unified

approach for establishing uniform error estimates in terms of ε ∈ (0, 1], of conservative

CNFD and SIFD for NLSW (7.1) in d-dimensions (d = 1, 2, 3). Our approach combines

the techniques used in Chapter 6, which include the energy method, cut-off technique

for dealing with general nonlinearity and the inverse inequality for obtaining a uniform

posterior bound of the numerical solution.

Throughout this chapter, we adopt the standard Sobolev spaces and their correspond-

ing norms, let C denote a generic constant independent of ε, mesh size h and time step

τ , and use the notation p . q to mean that there exists a generic constant C which is

independent of ε, τ and h such that |q| ≤ C q.

7.2 Finite difference schemes and main results

In practical computation, NLSW (7.1) is usually truncated on a bounded interval U =

(a, b) in 1D, or a bounded rectangle U = (a, b) × (c, d) in 2D or a bounded box U =

(a, b) × (c, d) × (e, f) in 3D, with zero Dirichlet boundary condition. For the simplicity of

notation, we only deal with the case in 1D, i.e. d = 1 and U = (a, b). Extensions to 2D

and 3D are straightforward, and the error estimates in l2-norm and discrete semi-H1 norm

are the same in 2D and 3D. In 1D, NLSW (7.1) is truncated on an interval U = (a, b) as





i∂tu
ε(x, t) − ε2∂ttu

ε + ∂xxu
ε + f(|uε|2)uε = 0, x ∈ U ⊂ R, t > 0,

uε(x, 0) = u0(x), ∂tu
ε(x, 0) = uε1(x), x ∈ U = [a, b],

uε(x, t)
∣∣
∂U

= 0, t > 0.

(7.9)
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Formally, as ε→ 0+, the equation (7.9) collapses to the standard NLSE [31,129,150]





i∂tu(x, t) + ∂xxu(x, t) + f(|u|2)u(x, t) = 0, x ∈ U ⊂ R, t > 0,

u(x, 0) = u0(x), x ∈ U,

u(x, t)
∣∣
∂U

= 0, t > 0.

(7.10)

We assume that the initial data uε1 satisfies the condition

uε1(x) = u1(x)+ε
αwε(x), u1(x) := ∂tu(x, t)|t=0 = i

[
∂xxu0(x) + f(|u0(x)|2)u0(x)

]
, (7.11)

where x ∈ U , wε is uniformly bounded in H2 (w.r.t. ε) with lim inf
ε→0+

‖wε‖H2 > 0 and α ≥ 0

is a parameter describing the consistency of the initial data with respect to NLSE (7.10).

7.2.1 Numerical methods

Choose time step τ := ∆t and denote time steps as tn := n τ for n = 0, 1, 2, . . .; choose

mesh size ∆x := b−a
M with M being a positive integer and denote h := ∆x and grid points

as xj := a+ j∆x, j = 0, 1, . . . ,M . Define the index sets

TM = {j | j = 1, 2, . . . ,M − 1}, T 0
M = {j | j = 0, 1, 2, . . . ,M}.

Let uε,nj and unj be the numerical approximations of uε(xj , tn) and u(xj , tn), respectively,

for j ∈ T 0
M and n ≥ 0, and denote uε,n, un ∈ C(M+1) to be the numerical solutions at time

t = tn. We adopt notations of the finite difference operators as in Chapter 6.

The conservative Crank-Nicolson finite difference (CNFD) discretization of NLSW

(7.9) reads as

(iδt − ε2δ2t )u
ε,n
j = −1

2

[
δ2xu

ε,n+1
j + δ2xu

ε,n−1
j

]
−G(uε,n+1

j , uε,n−1
j ), j ∈ TM , n ≥ 1, (7.12)

where G(z1, z2) is defined for z1, z2 ∈ C as

G(z1, z2) :=

∫ 1

0
f(θ|z1|2 +(1− θ)|z2|2) dθ ·

z1 + z2
2

=
F (|z1|2) − F (|z2|2)

|z1|2 − |z2|2
· z1 + z2

2
. (7.13)

The same as GPE case (Chapter 6), although conservative CNFD type method can

keep the mass and energy conservation in the discretized level which are analogous to the

conservation in the continuous level, a fully nonlinear system has to be solved very accu-

rately at each time step which may be very time consuming, especially in 2D and 3D. So
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we also consider the semi-implicit finite difference (SIFD) discretization for NLSW anal-

ogous to the GPE case (Chapter 6). The SIFD discretization for NLSW (7.9) is to apply

Crank-Nicolson/leap-frog schemes for discretizing linear/nonlinear terms, respectively, as

iδtu
ε,n
j = ε2δ2t u

ε,n
j − 1

2

[
δ2xu

ε,n+1
j + δ2xu

ε,n−1
j

]
− f(|uε,nj |2)uε,nj , j ∈ TM , n ≥ 1. (7.14)

For both schemes, the boundary and initial conditions are discretized as

uε,n0 = uε,nM = 0, n ≥ 0; uε,0j = u0(xj), j ∈ T 0
M . (7.15)

Since CNFD (7.12) and SIFD (7.14) are three-level schemes, value at time step n = 1

should be assigned.

Choice of the first step value: Under the hypothesis of suitable regularity of uε(x, t),

one may use the Taylor expansion to have

uε,1j ≈ uε0(xj) + τuεt (xj , 0) +
τ2

2
uεtt(xj , 0), uεt (xj , 0) = uε1(xj), j ∈ TM , (7.16)

uεtt(xj , 0) =
1

ε2
[iuε1(xj) + ∂xxu0(xj) + f(|u0|2)u0(xj)] = iεα−2wε(xj), j ∈ TM . (7.17)

Due to the oscillation in time especially for the ill-prepared initial data case (0 ≤ α < 2),

approximation (7.16) is not appropriate if ε ≪ 1. In such case, τ has to be very small to

resolve the error from the Taylor expansion (7.16). Our aim is to obtain a suitable choice

of the first step value uε,1j which is uniformly accurate for all ε ∈ (0, 1]. Denote

Θ(v) = ∂xxv + f(|v|2)v, v ∈ H2(U), (7.18)

then by integrating NLSW (7.9) with respect to t, we can write the solution uε(x, t) as

uε(x, t) = u0(x) − iε2(eit/ε
2 − 1)uε1(x) − i

∫ t

0
(ei(t−s)/ε

2 − 1)Θ(uε(x, s)) ds. (7.19)

Rewriting the integral term as

∫ t

0
(ei(t−s)/ε

2 − 1)Θ(uε(s)) ds =

∫ t

0
(ei(t−s)/ε

2 − 1) [Θ(uε(s)) − Θ(uε(0)) + Θ(uε(0))] ds

=
[
−iε2(eit/ε2 − 1) − t

]
Θ(uε(0)) +

∫ t

0

(
ei(t−s)/ε

2 − 1
)

[Θ(uε(s)) − Θ(uε(0))] ds,

then applying the trapezoidal rule to the integral in the RHS, we could obtain a second

order approximation of uε(x, τ) as

uε(x, τ) ≈ u0(x) − ε2(eiτ/ε
2 − 1)(iuε1(x) + Θ(uε(x, 0))) + iτΘ(uε(x, 0)). (7.20)
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Hence, we propose the first step as

uε,1j = u0(xj) − iε2+α(eiτ/ε
2 − 1)wε(xj) + iτΘj , j ∈ TM . (7.21)

where Θj is given by

Θj = δ2xu0(xj) + f(|u0(xj)|2)u0(xj), j ∈ TM . (7.22)

Now (7.12) or (7.14), together with (7.15) and (7.21) complete the scheme CNFD or

SIFD for NLSW (7.9). For both CNFD and SIFD schemes, we can prove the uniform

convergence rates at the order of O(h2 + τ2/3) and O(h2 + τ) for ill-prepared and well-

prepared initial data, respectively.

7.2.2 Main results

Before introducing our main results, denote

XM =
{
v = (vj)j∈T 0

M
| v0 = vM = 0

}
⊂ CM+1,

and define the norms and inner product over XM analogous to Chapter 6 as

‖v‖2
2 = h

M−1∑

j=0

|vj|2, ‖δ+x v‖2
2 = h

M−1∑

j=0

∣∣δ+x vj
∣∣2 , ‖δ2xv‖2

2 = h

M−1∑

j=1

∣∣δ2xvj
∣∣2 , ‖v‖∞ = sup

j∈T 0
M

|vj |,

(u, v) = h

M−1∑

j=0

uj v̄j , 〈u, v〉 = h

M−1∑

j=1

uj v̄j, ∀u, v ∈ XM . (7.23)

For simplicity of notations, we also define

α∗ = min{α, 2}. (7.24)

According to the known results in [31, 104, 129, 150] and the asymptotic expansion in

section 7.1, we can make the following assumptions, i.e. assumptions on the initial data

(7.11) for (7.9)

(A) 1 . ‖wε(x)‖L∞(U)+‖∂xwε(x)‖L∞(U)+‖∂xxwε(x)‖L∞(U) . 1;
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and assumptions on uε(·, t) and u(·, t) for 0 < T < Tmax with Tmax being the maximal

common existing time and UT = U × [0, T ],

(B) u, uε ∈ C4
(
[0, T ];W 1,∞(U)

)
∩ C2

(
[0, T ];W 3,∞(U)

)
∩ C0

(
[0, T ];W 5,∞(U) ∩H1

0 (U)
)
,

‖uε‖L∞(UT ) + ‖∂tuε‖L∞(UT ) +

5∑

m=1

∥∥∥∥
∂m

∂xm
uε
∥∥∥∥
L∞(UT )

. 1,

and

∥∥∥∥
∂m+n

∂tm∂xn
uε
∥∥∥∥
L∞(UT )

.
1

ε2m−2−α∗ , 2 ≤ m ≤ 4, m+ n ≤ 5.

Under assumptions (A) and (B), the following convergence rate holds,

‖u(t) − uε(t)‖W 2,∞(U) . ε2, t ∈ [0, T ]. (7.25)

Define the ’error’ function eε,n ∈ XM for n ≥ 0 as

eε,nj = uε(xj , tn) − uε,nj , j ∈ TM , (7.26)

then we have the following estimates:

Theorem 7.1 (Convergence of CNFD) Assume f(s) ∈ C3([0,+∞)), under assumptions

(A) and (B), there exist h0 > 0 and τ0 > 0 sufficiently small, when 0 < h ≤ h0 and

0 < τ ≤ τ0, we have the following optimal error estimates for the CNFD method (7.14)

with (7.15) and (7.21) for ε ∈ (0, 1]

‖eε,n‖2 + ‖δ+x eε,n‖2 . h2 +
τ2

ε4−α∗ , 0 ≤ n ≤ T

τ
, (7.27)

‖eε,n‖2 + ‖δ+x eε,n‖2 . h2 + τ2 + ε2, 0 ≤ n ≤ T

τ
. (7.28)

Thus, by taking the minimum, we have the ε-independent convergence rate as

‖eε,n‖2 + ‖δ+x eε,n‖2 . h2 + τ4/(6−α∗), 0 ≤ n ≤ T

τ
. (7.29)

Similarly, for the SIFD method, we have

Theorem 7.2 (Convergence of SIFD) Assume f(s) ∈ C2([0,+∞)), under assumptions

(A) and (B), there exists h0 > 0 and τ0 > 0 sufficiently small, when 0 < h ≤ h0 and

0 < τ ≤ τ0, the discretization (7.14) with (7.15) and (7.21) admits a unique solution

uε,n ∈ XM such that the following optimal error estimates hold,

‖eε,n‖2 + ‖δ+x eε,n‖2 . h2 +
τ2

ε4−α∗ , 0 ≤ n ≤ T

τ
, (7.30)

‖eε,n‖2 + ‖δ+x eε,n‖2 . h2 + τ2 + ε2, 0 ≤ n ≤ T

τ
. (7.31)
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Thus, by taking the minimum, we have the ε-independent convergence rate as

‖eε,n‖2 + ‖δ+x eε,n‖2 . h2 + τ4/(6−α∗), 0 ≤ n ≤ T

τ
. (7.32)

7.3 Convergence of the SIFD scheme

In order to prove Theorem 7.2 for SIFD, we first establish the following lemmas.

Lemma 7.1 (Solvability of SIFD) For any given uε,0, uε,1 ∈ XM , there exists a unique

solution uε,n ∈ XM of (7.14) with (7.15) for n > 1.

Proof: Standard fixed point arguments would apply (see [11]) and we omit the proof for

brevity.

Denote the local truncation error ηε,n ∈ XM of SIFD (7.14) with (7.15) and (7.21) for

n ≥ 1 and j ∈ TM as

ηε,nj := (iδt−ε2δ2t )uε(xj, tn)+
1

2
(δ2xu

ε(xj , tn+1)+δ
2
xu

ε(xj , tn−1))+f(|uε(xj, tn)|2)uε(xj , tn).

Lemma 7.2 (Local truncation error for SIFD) Under assumption (B), assume that f ∈
C1([0,∞)), we have

‖ηε,n‖2 + ‖δ+x ηε,n‖2 . h2 +
τ2

ε4−α∗ , 1 ≤ n ≤ T

τ
− 1. (7.33)

Proof: Using the Taylor expansion and NLSW (7.9), we obtain for j ∈ TM and n ≥ 1,

ηε,nj =
iτ2

2

∫ 1

0

∫ θ

0

∫ s

−s
uεttt(xj , στ + tn) dσdsdθ +

τ2

2

∫ 1

0

∫ θ

−θ
uεxxtt(xj, sτ + tn)dsdθ

+
h2

2

∫ 1

0

∫ θ

0

∫ s

0

∫ σ

−σ

∑

k=±1

uεxxxx(xj + s1h, tn + kτ)ds1dσdsdθ

− ε2τ2

∫ 1

0

∫ θ

0

∫ s

0

∫ σ

−σ
uεtttt(xj , s1τ + tn) ds1dσdsdθ.

Under assumption (B), using the triangle inequality, for j ∈ TM and n ≥ 1, we get

|ηε,nj | . h2‖∂xxxxuε‖L∞ + τ2

(
‖∂tttuε‖L∞ + ε2‖∂ttttuε‖L∞ + ‖∂xxttuε‖L∞

)
. h2 +

τ2

ε4−α∗ ,
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where the L∞-norm means ‖u‖L∞ := sup0≤t≤T supx∈U |u(x, t)|. The first conclusion of

the lemma then follows. For 1 ≤ j ≤ M − 2, applying δ+x to ηε,nj and using the formula

above, noticing f ∈ C1([0,∞)), it is easy to check that

|δ+x ηε,nj | .h2‖∂xxxxxuε‖L∞ + τ2

(
‖∂tttxuε‖L∞ + ε2‖∂ttttxuε‖L∞ + ‖∂xxxttuε‖L∞

)

.h2 +
τ2

ε4−α∗ .

For j = 0 and M−1, we apply the boundary condition to deduce that ∂k

∂tk
uε(x, t)|x∈∂U = 0

for k ≥ 0, and the equation (7.9) shows that uxx(x, t)|x∈∂U = 0 and uxxxx(x, t)|x∈∂U = 0.

Similar as above, we can get

|δ+x ηε,n0 | . h2 +
τ2

ε4−α∗ , |δ+x ηε,nM−1| . h2 +
τ2

ε4−α∗ . (7.34)

Thus, we complete the proof.

Since uε,0 and uε,1 are known, we have the error estimates at the first step.

Lemma 7.3 (Error bounds at n = 1) Under assumptions (A) and (B), we have

‖eε,1‖2 + ‖δ+x eε,1‖2 + ‖δ2xeε,1‖2 . h2 +
τ2

ε4−α∗ , ‖δ+t eε,0‖2 + ‖δ+t δ+x eε,0‖2 . h2 +
τ2

ε4−α∗ ,

(7.35)

and also

‖eε,1‖2 + ‖δ+x eε,1‖2 + ‖δ2xeε,1‖2 . h2 + τ2 + ε2, ‖δ+t eε,0‖2 + ‖δ+t δ+x eε,0‖2 . 1. (7.36)

Proof: By definition, eε,0 = 0 ∈ CM+1. For n = 1, recalling NLSW (7.9) and the choice

of uε,1 (7.21), using the Taylor expansion, we see that for j ∈ TM

uε(xj , τ) =u0(xj) + τ(i
(
∂xxu0(xj) + f(|u0(xj)|2)u0(xj)

)
+ εαwε(xj))

+
iτ2

2
εα−2wε(xj) +

1

2

∫ τ

0
uεttt(xj , s) · (τ − s)2 ds,

uε,1j =u0(xj) + τ
[
i
(
∂xxu0(xj) + f(|u0(xj)|2)u0(xj)

)
+ εαwε(xj)

]

+

[
−τ − iε2

(
i
τ

ε2
− τ2

2ε4
+O(τ3ε−6)

)]
εαwε(xj) +

iτh2

12
∂xxxxu0(xj + θ

(1)
j h),

eε,1j = − iτh2

12
∂xxxxu0(xj + θ

(1)
j h) +

τ3

6
∂tttu

ε(xj, θ
(2)
j τ) +O(

τ3

ε4−α
)wε(xj),
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where θ
(1)
j ∈ [−1, 1], θ

(2)
j ∈ [0, 1] are constants. Noticing that for ε ∈ (0, 1], 1

ε4−α ≤ 1
ε4−α∗ ,

it is easy to get the conclusion in (7.35) for ‖eε,1‖2 + ‖δ+x eε,1‖2 (the boundary case is the

same as that in Lemma 7.2) and ‖δ+t eε,0‖2. For 1 ≤ j ≤M − 1, we get

|δ2xeε,1j | .O

(
τ3

ε4−α

)
· ‖∂xxwε‖L∞(U) + τh‖∂xxxxxu0‖L∞(U) +

∫ τ

0
s2ds‖∂tttxxuε‖L∞(UT )

.h2 +
τ2

ε4−α∗ ,

|δ+t δ+x eε,0| .O

(
τ2

ε4−α

)
‖∂xwε‖L∞(U) + h2‖∂xxxxxu0‖L∞(U) + τ2‖∂tttxuε‖L∞(UT )

.h2 +
τ2

ε4−α∗ ,

which implies the results for ‖δ+t δ+x eε,0‖2 (the boundary case is similar as above) and

‖δ2xeε,1‖2 in (7.35).

For the assertion (7.36), we use the relation between u(x, t) and uε(x, t). Taylor ex-

pansion would give for 1 ≤ j ≤M − 1

u(xj , τ) − uε,1j

= − iτh
2

24
∂xxxxu0(xj + θ2

jh) +

∫ τ

0
utt(xj , s)(τ − s) ds+ iε2+α(eiτ/ε

2 − 1)wε(xj),

and

|δ+x
(
u(xj , τ) − uε,1j

)
| . τh2‖∂xxxxxu0‖L∞ + τ2‖∂ttxu‖L∞ + ε2‖∂xwε‖L∞ ,

|δ2x
(
u(xj, τ) − uε,1j

)
| . τh‖∂xxxxxu0‖L∞ + τ2‖∂ttxxu‖L∞ + ε2‖∂xxwε‖L∞ ,

it is convenient to use the boundary condition as before to find that

‖u(xj , τ) − uε,1j ‖2 + ‖δ+x
(
u(xj , τ) − uε,1j

)
‖2 + ‖δ2x

(
u(xj , τ) − uε,1j

)
‖2 . h2 + τ2 + ε2.

Recalling the convergence |uε(xj , τ) − u(xj , τ)| . ε2 and

∣∣δ+x [uε(xj, τ) − u(xj , τ)]
∣∣ . ε2 + h2(‖uxxx‖L∞(UT ) + ‖uεxxx‖L∞(UT )), j = 0, 1, . . . ,M − 1,

∣∣δ2x [uε(xj , τ) − u(xj , τ)]
∣∣ . ε2 + h2(‖uxxxx‖L∞(UT ) + ‖uεxxxx‖L∞(UT )), j = 1, . . . ,M − 1,

the triangular inequality then gives the conclusion for ‖eε,1‖2 + ‖δ+x eε,1‖2 + ‖δ2xeε,1‖2 in

(7.36).
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Similarly, for 0 ≤ j ≤M − 1

∣∣∣δ+t
(
u(xj , 0) − uε,0j

)∣∣∣ . h2‖∂xxxxu0‖L∞(U) + τ‖∂ttu‖L∞(UT ) + εα‖wε‖L∞(U),
∣∣∣δ+t δ+x

(
u(xj, 0) − uε,0j

)∣∣∣ . h2‖∂xxxxxu0‖L∞(U) + τ‖∂ttxu‖L∞(UT ) + εα‖∂xwε‖L∞(U),

combined with the triangle inequality and assumption (B) which implies

∣∣δ+t uε(xj , 0) − δ+t u(xj , 0)
∣∣ +
∣∣δ+t δ+x uε(xj , 0) − δ+t δ

+
x u(xj , 0)

∣∣ . 1, (7.37)

we draw conclusion (7.36) for ‖δ+t eε,0‖2 + ‖δ+t δ+x eε,0‖2.

One main difficulty in deriving error bounds for SIFD and/or in high dimensions is the

l∞ bounds for the finite difference solutions. In [6, 13, 145], this difficulty was overcome

by truncating the nonlinearity f to a global Lipschitz function with compact support in

d-dimensions (d = 1, 2, 3). This is guaranteed if the continuous solution is bounded and

the numerical solution is not far away from the analytical solution. Here, we could apply

the same idea. Choose a smooth function ρ(s) ∈ C∞(R1) such that

ρ(s) =





1, 0 ≤ |s| ≤ 1 ,

∈ [0, 1], 1 ≤ |s| ≤ 2 ,

0, |s| ≥ 2 .

(7.38)

By assumption (B), we can define

M0 = max

{
‖u(x, t)‖L∞(UT ), sup

ε∈(0,1]
‖uε(x, t)‖L∞(UT )

}
(7.39)

and choose a positive number B = (M0 + 1)2. For s ≥ 0 and z ∈ C, define

fB(s) = f(s)ρ(s/B), FB(s) =

∫ s

0
fB(σ)dσ, ρB (s) = ρ(s/B), gB (z) = zρB (|z|2). (7.40)

Then fB(s) and g
B
(z) are global Lipschitz and

|fB(s1) − fB(s2)| ≤ CB|
√
s1 −

√
s2|, ∀s1, s2 ≥ 0. (7.41)

Choose vε,0 = uε,0, vε,1 = uε,1, and define vε,n ∈ XM (n ≥ 1) for j ∈ TM as

(
iδt − ε2δ2t

)
vε,nj +

1

2
(δ2xv

ε,n+1
j + δ2xv

ε,n−1
j ) + fB(|vε,nj |2)vε,nj = 0. (7.42)

In fact, vε,n can be viewed as another approximation of uε(x, tn).
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Define the ‘error’ function êε,n ∈ XM as

êε,nj := uε(xj , tn) − vε,nj , j ∈ T 0
M , n ≥ 0, (7.43)

and the local truncation error η̂ε,n ∈ XM for n ≥ 1 and j ∈ TM as

η̂ε,nj := (iδt−ε2δ2t +fB(|uε(xj , tn)|2))uε(xj, tn)+
1

2
(δ2xu

ε(xj , tn+1)+δ
2
xu

ε(xj , tn−1)). (7.44)

Similar as Lemma 7.2, we have the bounds for η̂ε,n (n ≥ 1) as

‖η̂ε,n‖2 + ‖δ+x η̂ε,n‖2 . h2 +
τ2

ε4−α∗ . (7.45)

Subtracting (7.42) from (7.44), we obtain the ’error’ equation for êε,n ∈ XM as

(
iδt − ε2δ2t

)
êε,nj +

1

2
(δ2xê

ε,n+1
j + δ2xê

ε,n−1
j ) − η̂ε,nj + ξε,nj = 0, (7.46)

where ξε,n ∈ XM (n ≥ 1) is defined for j ∈ TM as

ξε,nj = fB(|vε,nj |2)êε,nj + uε(xj , tn)
(
fB(|uε(xj, tn)|2) − fB(|vε,nj |2)

)
. (7.47)

For ξε,n, we have the following properties.

Lemma 7.4 Under the assumptions in Theorem 7.2, for ξε,n ∈ XM (n ≥ 1) in (7.47),

we have

|ξε,nj | . |êε,nj |, |δ+x ξε,nj | . |êε,nj |+|êε,nj+1|+|δ+x êε,nj |, 0 ≤ j ≤M−1, 1 ≤ n ≤ T

τ
. (7.48)

Proof: Using the properties of fB(s), it is easy to obtain

|ξε,nj | . |êε,nj |, j ∈ T 0
M , n ≥ 1. (7.49)

For 0 ≤ j ≤M − 1, n ≥ 1 and θ ∈ [0, 1], denote

uεj,θ = θuε(xj+1, tn) + (1 − θ)uε(xj, tn), vεj,θ = θvε,nj+1 + (1 − θ)vε,nj , (7.50)

then we have

δ+x ξ
ε,n
j = δ+x

(
f(|uε(xj , tn)|2)uε(xj , tn)

)
− δ+x

(
f(|vε,nj |2)vε,nj

)
= I1 − I2 with

I1 =

∫ 1

0

[ (
fB(|uεj,θ|2) + f ′B(|uεj,θ|2)|uεj,θ|2

)
δ+x u

ε(xj, tn) + f ′B(|uεj,θ|2)(uεj,θ)2δ+x uε(xj , tn)
]
dθ,

I2 =

∫ 1

0

[ (
fB(|vεj,θ|2) + f ′B(|vεj,θ|2)|vεj,θ|2

)
δ+x v

ε,n
j + f ′B(|vεj,θ|2)(vεj,θ)2δ+x vε,nj

]
dθ.
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Using the definition of fB, it is easy to see fB ∈ C2
0 (R) and the following holds

∣∣∣∣
[(
fB(|uεj,θ|2) + f ′B(|uεj,θ|2)|uεj,θ|2

)
−
(
fB(|vεj,θ|2) + f ′B(|vεj,θ|2)|vεj,θ|2

)]
δ+x u

ε(xj , tn)

∣∣∣∣

.
∣∣ |uεj,θ| − |vεj,θ|

∣∣ . |êε,nj | + |êε,nj+1|,∣∣∣∣
[
f ′B(|uεj,θ|2)(uεj,θ)2 − f ′B(|vεj,θ|2)(vεj,θ)2

]
δ+x uε(xj , tn)

∣∣∣∣ .
∣∣|uεj,θ| − |vεj,θ|

∣∣ . |êε,nj | + |êε,nj+1|,
∣∣∣∣
[
fB(|vεj,θ|2) + f ′B(|vεj,θ|2)|vεj,θ|2

]
(δ+x u

ε(xj , tn) − δ+x v
ε,n
j )

∣∣∣∣ . |δ+x êε,nj |,
∣∣∣f ′B(|vεj,θ|2)(vεj,θ)2

(
δ+x uε(xj , tn) − δ+x v

ε,n
j

)∣∣∣ . |δ+x êε,nj |.

Hence, we get

|δ+x êε,nj | . |êε,nj | + |êε,nj+1| + |δ+x êε,nj |, 0 ≤ j ≤M − 1, n ≥ 1. (7.51)

The proof is complete.

Proof of Theorem 7.2: The proof is divided into 3 main steps.

Step 1. To establish (7.30)-type error bound for êε,n. From the ’error’ equation (7.46),

multiplying both sides of (7.46) by êε,n+1
j + êε,n−1

j and summing for j ∈ TM , using sum-

mation by parts formula, taking imaginary parts, we have

‖êε,n+1‖2
2 + 4ε2 Im

(
êε,n, δ+t ê

ε,n
)
−
{
‖êε,n−1‖2

2 + 4ε2 Im
(
êε,n−1, δ+t ê

ε,n−1
)}

= −2τ Im
(
ξε,n − η̂ε,n, êε,n+1 + êε,n−1

)
, n ≥ 1. (7.52)

Adding (7.52) for 1, 2, . . . , n (n ≤ T
τ − 1), in view of Lemma 7.4 and the local truncation

’error’ (7.44), we have

‖êε,n+1‖2
2 + ‖êε,n‖2

2 + 4ε2Im
(
ên, δ+t ê

ε,n
)

. nτ

(
h2 +

τ2

ε4−α∗

)2

+ τ

n+1∑

m=1

‖êε,m‖2
2. (7.53)

Multiplying both sides of (7.46) by êε,n+1
j − êε,n−1

j and summing for j ∈ TM , using sum-

mation by parts formula, taking real parts, we have

−(ε2‖δ+t êε,n‖2
2 +

1

2
‖δ+x êε,n+1‖2

2) + (ε2‖δ+t êε,n−1‖2
2 +

1

2
‖δ+x êε,n−1‖2

2)

= −Re
(
ξε,n − η̂ε,n, êε,n+1 − êε,n−1

)
. (7.54)
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Noticing that

∣∣∣∣Re
(
ξε,n − η̂ε,n, êε,n+1 − êε,n−1

) ∣∣∣∣= τ

∣∣∣∣Re
(
ξε,n − η̂ε,n, δ+t ê

ε,n + δ+t ê
ε,n−1

) ∣∣∣∣

≤ Cτ

ε2

[(
h2 +

τ2

ε4−α∗

)2

+ ‖êε,n‖2
2

]
+ τε2

(
‖δ+t êε,n−1‖2

2 + ‖δ+t êε,n‖2
2

)
,

combined with (7.54), taking summation for 1, 2, . . . , n and using Lemma 7.3, we find that

ε2‖δ+t êε,n‖2
2 +

1

2
‖δ+x êε,n+1‖2

2 +
1

2
‖δ+x eε,n‖2

2

.
nτ

ε2

(
h2 +

τ2

ε4−α∗

)2

+ τ
n∑

m=1

ε2‖δ+t êε,m‖2
2 + τ

n+1∑

m=1

1

ε2
‖êε,m‖2

2, 1 ≤ n ≤ T

τ
− 1. (7.55)

For 1 ≤ n ≤ T
τ − 1, define

Sn = 8

(
ε2‖δ+t êε,n‖2

2 +
1

2
‖δ+x êε,n+1‖2

2 +
1

2
‖δ+x êε,n‖2

2

)
+

1

2ε2
(
‖êε,n+1‖2

2 + ‖êε,n‖2
2

)
. (7.56)

In view of the Cauchy inequality which implies

8ε2‖δ+t êε,n‖2
2 +

1

2ε2
‖êε,n‖2

2 ≥ 4|
(
δ+t ê

ε,n, êε,n
)
|,

together with 1
ε2

× (7.53) + 16 × (7.55), we obtain

Sn .
nτ

ε2
(h2 +

τ2

ε4−α∗ )2 + τ

n∑

m=1

Sm, 1 ≤ n ≤ T

τ
− 1. (7.57)

Hence, discrete Gronwall inequality [46,67] implies that for τ small enough,

Sn .
1

ε2

(
h2 +

τ2

ε4−α∗

)2

, 1 ≤ n ≤ T

τ
− 1. (7.58)

In particular, we have established the l2 error bounds

‖êε,n‖2 . h2 +
τ2

ε4−α∗ , n ≤ T

τ
. (7.59)

However, the discreteH1 convergence is not optimal. In order to derive the optimal conver-

gence rate in discrete semi-H1 norm, multiplying both sides of (7.46) by δ2x(ê
ε,n+1
j + êε,n−1

j ),

then summing together for j = 1, 2, . . . ,M − 1, after taking the imaginary parts of both

sides and applying the summation by parts formula, using the l2 error estimates (7.59),
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we have

‖δ+x êε,n+1‖2
2 + 4ε2 Im

(
δ+x ê

ε,n, δ+t δ
+
x ê

ε,n
)
−
{
‖δ+x êε,n−1‖2

2 + 4ε2 Im
(
δ+x ê

ε,n−1, δ+t δ
+
x ê

ε,n−1
)}

= −2τ Im
〈
ξε,n − η̂ε,n, δ2x(ê

ε,n+1 + êε,n−1)
〉

= 2τ Im
(
δ+x ξ

ε,n − δ+x η̂
ε,n, δ+x ê

ε,n+1 + δ+x ê
ε,n−1

)

≤ Cτ

[
‖δ+x êε,n+1‖2

2 + ‖δ+x êε,n‖2
2 + ‖δ+x êε,n‖2

2 + ‖êε,n‖2
2 +

(
h2 +

τ2

ε4−α∗

)2
]

≤ Cτ

(
h2 +

τ2

ε4−α∗

)2

+ Cτ(‖δ+x êε,n+1‖2
2 + ‖δ+x êε,n‖2

2 + ‖δ+x êε,n−1‖2
2), 1 ≤ n ≤ T

τ
− 1.

Summing above inequalities for 1, 2, . . . , n and making use of Lemma 7.3, we then have

‖δ+x êε,n+1‖2
2 + ‖δ+x êε,n‖2

2 + 4ε2 Im
(
δ+x ê

ε,n, δ+t δ
+
x ê

ε,n
)

≤ nτ

(
h2 +

τ2

ε4−α∗

)2

+ τ

n+1∑

m=1

‖δ+x êε,m‖2
2 +

1∑

m=0

‖δ+x êε,m‖2
2 + 4ε2 Im

(
δ+x ê

ε,0, δ+t δxê
ε,1
)

.

(
h2 +

τ2

ε4−α∗

)2

+ τ

n+1∑

m=1

‖δ+x êε,m‖2
2, 1 ≤ n ≤ T

τ
− 1. (7.60)

Multiplying both sides of (7.46) by δ2x(ê
ε,n+1
j − êε,n−1

j ), summing up together for j =

1, 2, . . . ,M − 1, then taking the real parts both sides and applying the summation by

parts formula, using the l2 error estimates (7.59) and the local truncation error (7.44), we

have for n ≥ 1

ε2‖δ+t δ+x êε,n‖2
2 +

1

2
‖δ2xêε,n+1‖2

2 − ε2‖δ+t δ+x êε,n−1‖2
2 −

1

2
‖δ2xêε,n−1‖2

2

= Re
〈
ξε,n − η̂ε,n, δ2x(ê

ε,n+1
j − êε,n−1

j )
〉

= −Re
(
δ+x ξ

ε,n − δ+x η̂
ε,n, δ+x (êε,n+1

j − êε,n−1
j )

)

= −τRe
(
δ+x ξ

ε,n − δ+x η̂
ε,n, δ+t δ

+
x ê

ε,n
j + δ+t δ

+
x ê

ε,n−1
j )

)

≤ τ
(
ε2‖δ+t δ+x êε,n−1‖2

2 + ε2‖δ+t δ+x êε,n‖2
2

)
+
Cτ

ε2
‖δ+x êε,n‖2

2 +
Cτ

ε2

(
h2 +

τ2

ε4−α∗

)2

.

Summing the above inequalities together for 1, 2, . . . , n and using Lemma 7.3, we find that

ε2‖δ+t δ+x êε,n‖2
2 +

1

2
‖δ2xêε,n+1‖2

2 +
1

2
‖δ2xêε,n‖2

2

. τ

n∑

m=1

ε2‖δ+t êε,m‖2
2 +

τ

ε2

n+1∑

m=1

‖δ+x êε,m‖2
2 + ‖δ+x êε,1‖2

2 + ‖δ+t δ+x êε,0‖2
2 +

1

ε2

(
h2 +

τ2

ε4−α∗

)2

. τ

n∑

m=1

ε2‖δ+t δ+x êε,m‖2
2 +

τ

ε2

n+1∑

m=1

‖δ+x êε,m‖2
2 +

1

ε2

(
h2 +

τ2

ε4−α∗

)2

, 1 ≤ n ≤ T

τ
− 1.

(7.61)
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In view of (7.60) and (7.61), define T n for n ≥ 1 as

T n = 8

(
ε2‖δ+t δ+x êε,n‖2

2 +
1

2
‖δ2xêε,n+1‖2

2 +
1

2
‖δ2xêε,n‖2

2

)
+

1

2ε2
(
‖δ+x êε,n+1‖2

2 + ‖δ+x êε,n‖2
2

)
.

Again, Cauchy inequality with 1
ε2

× (7.60) + 16 × (7.61) will give that

T n .
1

ε2

(
h2 +

τ2

ε4−α∗

)2

+ τ
n∑

m=1

T m, 1 ≤ n ≤ T

τ
− 1. (7.62)

Then the discrete Gronwall inequality [46,67] will imply that for τ small enough,

T n .
1

ε2

(
h2 +

τ2

ε4−α∗

)2

, 1 ≤ n ≤ T

τ
− 1. (7.63)

Hence, the discrete-H1 bounds for the ’error’ êε,n holds as

‖δ+x êε,n‖2 . h2 +
τ2

ε4−α∗ , n ≤ T

τ
. (7.64)

Step 2. To prove (7.31)-type error bound for êε,n. For the approximation vε,n ∈ XM

defined in (7.42), introduce the ’biased error’ function ẽε,n ∈ XM , i.e. the difference

between vε,n and the solution u(x, tn) of NLSE (7.10), for j ∈ TM as

ẽε,nj = u(xj , tn) − vε,nj , n ≥ 0. (7.65)

Define the ’local truncation error’ η̃ε,n ∈ XM for n ≥ 1 and j ∈ TM as

η̃ε,nj := (iδt − ε2δ2t + fB(|u(xj , tn)|2))u(xj , tn) +
1

2
(δ2xu(xj , tn+1) + δ2xu(xj , tn−1)). (7.66)

Similar as Lemma 7.2, we can prove that under the assumptions in Theorem 7.2,

‖η̃ε,n‖2 + ‖δ+x η̃ε,n‖2 . h2 + τ2 + ε2, 1 ≤ n ≤ T

τ
− 1. (7.67)

Subtracting (7.42) from (7.66), we obtain the ’error’ equation for ẽε,n ∈ XM as

(
iδt − ε2δ2t

)
ẽε,nj +

1

2
(δ2xẽ

ε,n+1
j + δ2xẽ

ε,n−1
j ) − η̃ε,nj + ξ̃ε,nj = 0, (7.68)

where ξ̃ε,n ∈ XM (n ≥ 1) is defined for j ∈ TM as

ξ̃ε,nj = fB(|vε,nj |2)ẽε,nj + u(xj , tn)
(
fB(|u(xj , tn)|2) − fB(|vε,nj |2)

)
. (7.69)

Then we have the following properties on ξ̃ε,n similar as Lemma 7.4,

|ξ̃ε,nj | . |ẽε,nj |, |δ+x ξ̃ε,nj | . |ẽε,nj | + |ẽε,nj+1| + |δ+x ẽε,nj |, 0 ≤ j ≤M − 1, n ≥ 1. (7.70)
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As shown in Lemma 7.3, we have ẽε,0 = 0 and

‖ẽε,1‖2 + ‖δ+x ẽε,1‖2 + ‖δ2xẽε,1‖2 . h2 + τ2 + ε2, ‖δ+t ẽε,0‖2 + ‖δ+t δ+x ẽε,0‖2 . 1. (7.71)

From ’error’ equation (7.68), multiplying both sides of (7.68) by ẽε,n+1
j + ẽε,n−1

j and

summing for j ∈ TM , using summation by parts formula, taking imaginary parts, we have

‖ẽε,n+1‖2
2 + 4ε2 Im

(
ẽε,n, δ+t ẽ

ε,n
)
−
{
‖ẽε,n−1‖2

2 + 4ε2 Im
(
ẽε,n−1, δ+t ẽ

ε,n−1
)}

= −2τ Im
(
ξ̃ε,n − η̃ε,n, ẽε,n+1 + ẽε,n−1

)
, n ≥ 1. (7.72)

Adding (7.72) for 1, 2, . . . , n (n ≤ T
τ − 1), similar as the proof of (7.27) for êε,n, we have

‖ẽε,n+1‖2
2 + ‖ẽε,n‖2

2 + 4ε2Im
(
ẽn, δ+t ẽ

ε,n
)

. nτ
(
h2 + τ2 + ε2

)2
+ τ

n+1∑

m=1

‖ẽε,m‖2
2. (7.73)

Multiplying both sides of (7.117) by êε,n+1
j − êε,n−1

j and summing for j ∈ TM , using

summation by parts formula, taking real parts, we have

− (ε2‖δ+t ẽε,n‖2
2 +

1

2
‖δ+x ẽε,n+1‖2

2) + (ε2‖δ+t ẽε,n−1‖2
2 +

1

2
‖δ+x ẽε,n−1‖2

2)

= −Re
(
ξ̃ε,n − η̃ε,n, ẽε,n+1 − ẽε,n−1

)
, n ≥ 1. (7.74)

Noticing that
∣∣∣∣Re

(
ξ̃ε,n − η̃ε,n, ẽε,n+1 − ẽε,n−1

) ∣∣∣∣= τ

∣∣∣∣Re
(
ξ̃ε,n − η̃ε,n, δ+t ẽ

ε,n + δ+t ẽ
ε,n−1

) ∣∣∣∣

≤ Cτ

ε2
(
(h2 + τ2 + ε2)2 + ‖ẽε,n‖2

2

)
+

1

2
τε2

(
‖δ+t ẽε,n−1‖2

2 + ‖δ+t ẽε,n‖2
2

)
,

summing (7.74) for 1, 2, . . . , n and making use of (7.71), we have

ε2‖δ+t ẽε,n‖2
2 +

1

2
‖δ+x ẽε,n+1‖2

2 +
1

2
‖δ+x ẽε,n‖2

2 ≤ τ

n∑

m=1

ε2‖δ+t ẽε,m‖2
2 + τ

n+1∑

m=1

1

ε2
‖ẽε,m‖2

2

+nτ
C

ε2
(h2 + τ2 + ε2)2 +Cε2 + C(h2 + τ2 + ε2)2, 1 ≤ n ≤ T

τ
− 1. (7.75)

Let

En = 8(ε2‖δ+t ẽε,n‖2
2 +

1

2
‖δ+x ẽε,n+1‖2

2 +
1

2
‖δ+x ẽε,n‖2

2) +
1

2ε2
(
‖ẽε,n+1‖2

2 + ‖ẽε,n‖2
2

)
, n ≥ 1,

(7.76)

then similar as the case of êε,n, using the Cauchy inequality together with (7.75) and

(7.73), we have

En .
1

ε2
(h2 + τ2 + ε2)2 + τ

n∑

m=1

Em, (7.77)
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and the discrete Gronwall inequality [46,67] will imply for small τ

En .
1

ε2
(h2 + τ2 + ε2)2, 1 ≤ n ≤ T

τ
− 1. (7.78)

Hence the l2 estimate holds

‖ẽε,n‖2 . h2 + τ2 + ε2, n ≤ T

τ
. (7.79)

To prove the corresponding discrete H1 error estimates, multiplying both sides of (7.68)

by δ2x(ẽ
ε,n+1
j + ẽε,n−1

j ), summing together for j = 1, 2, . . . ,M − 1, summation by parts,

taking imaginary parts of both sides and making use of the l2 estimates and (7.67), we

then have

‖δ+x ẽε,n+1‖2
2 + 4ε2Im

(
δ+x ẽ

ε,n, δ+t δ
+
x ẽ

ε,n
)
− ‖δ+x ẽε,n−1‖2

2 − 4ε2Im
(
δ+x ẽ

ε,n−1, δ+t δ
+
x ẽ

ε,n−1
)

= −2τ Im
〈
ξ̃ε,n − η̃ε,n, δ2x(ẽ

ε,n+1 + ẽε,n−1)
〉

= 2τ Im
(
δ+x (ξ̃ε,n − η̃ε,n), δ+x (ẽε,n+1 + ẽε,n−1)

)

≤ Cτ(‖δ+x ẽε,n+1‖2
2 + ‖δ+x ẽε,n‖2

2 + ‖δ+x ẽε,n−1‖2
2 + ‖ẽε,n‖2

2) +Cτ(h2 + τ2 + ε2)2

≤ Cτ
(
‖δ+x ẽε,n+1‖2

2 + ‖δ+x ẽε,n‖2
2 + ‖δ+x ẽε,n−1‖2

2

)
+ Cτ(h2 + τ2 + ε2)2, 1 ≤ n ≤ T

τ
− 1.

Adding the above inequalities together for time steps 1, 2, . . . , n, using Lemma 7.3, we

have

‖δ+x ẽε,n+1‖2
2 + ‖δ+x ẽε,n‖2

2 + 4ε2 Im
(
δ+x ẽ

ε,n, δ+t δ
+
x ẽ

ε,n
)

. (h2 + τ2 + ε2)2 + τ

n+1∑

m=1

‖δ+x ẽε,m‖2
2.

(7.80)

Multiplying both sides of (7.68) by δ2x(ẽ
ε,n+1
j − ẽε,n−1

j ), summing together for j = 1, 2, . . . ,M−
1, summation by parts, taking real parts of both sides and making use of the l2 estimates

and (7.67), we get for 1 ≤ n ≤ T
τ − 1

ε2‖δ+t δ+x ẽε,n‖2
2 +

1

2
‖δ2xẽε,n+1‖2

2 − ε2‖δ+t δ+x ẽε,n−1‖2
2 −

1

2
‖δ2xẽε,n−1‖2

2

= Re
〈
ξ̃ε,n − η̃ε,n, δ2x(ẽ

ε,n+1 − ẽε,n−1)
〉

= −Re
(
δ+x ξ̃

ε,n − δ+x η̃
ε,n, δ+x (ẽε,n+1 − ẽε,n−1)

)

= −τRe
(
δ+x ξ̃

ε,n − δ+x η̃
ε,n, δ+t δ

+
x ẽ

ε,n+1 + δ+t δ
+
x ẽ

ε,n−1
)

≤ Cτ
(
ε2‖δ+t δ+x ẽε,n+1‖2

2 + ε2‖δ+t δ+x ẽε,n−1‖2
2

)
+
Cτ

ε2
[
‖δ+x ẽε,n‖2

2 + ‖ẽε,n‖2
2

]

+
Cτ

ε2
(h2 + τ2 + ε2)2.
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Summing the above inequalities for time steps 1, 2, . . . , n, using Lemma 7.3 on the error

of ‖δ2xẽε,1‖2 and ‖δ+t δ+x ẽε,0‖2, we have for 1 ≤ n ≤ T
τ − 1

ε2‖δ+t δ+x ẽε,n‖2
2 +

1

2
‖δ2xẽε,n+1‖2

2 +
1

2
‖δ2xẽε,n‖2

2 ≤ ε2‖δ+t δ+x ẽε,0‖2
2 + ‖δ2xẽε,1‖2

2

+ Cε2τ
n∑

m=1

‖δ+t δ+x ẽε,m‖2
2 +

1

ε2

(
τ
n+1∑

m=1

‖δ+x ẽε,m‖2
2 + nτC(h2 + τ2 + ε2)2

)

. ε2τ

n∑

m=1

‖δ+t δ+x ẽε,m‖2
2 +

τ

ε2

n+1∑

m=1

‖δ+x ẽε,m‖2
2 +

1

ε2
(h2 + τ2 + ε2)2. (7.81)

Similar as before, define Ẽn for n ≥ 1 as

Ẽn = 8(ε2‖δ+t δ+x ẽε,n‖2
2 +

1

2
‖δ2xẽε,n+1‖2

2 +
1

2
‖δ2xẽε,n‖2

2) +
1

2ε2
(
‖δ+x ẽε,n+1‖2

2 + ‖δ+x ẽε,n‖2
2

)
,

(7.82)

combining (7.80) and (7.81), applying the Cauchy inequality, we get

Ẽn .
1

ε2
(h2 + τ2 + ε2)2 + τ

n∑

m=1

Ẽm, 1 ≤ n ≤ T

τ
− 1. (7.83)

The discrete Gronwall inequality [46,67] implies that for small enough τ

Ẽn .
1

ε2
(h2 + τ2 + ε2)2, 1 ≤ n ≤ T

τ
− 1. (7.84)

Hence

‖δ+x ẽε,n‖2 . h2 + τ2 + ε2, 1 ≤ n ≤ T

τ
. (7.85)

Noticing

êε,nj = ẽε,nj + (uε(xj , tn) − u(xj, tn)), j ∈ TM , n ≥ 0, (7.86)

and assumption (B) which implies

‖uε(xj , tn) − u(xj , tn)‖2 + ‖δ+x uε(xj , tn) − δ+x u(xj, tn)‖2 . h2 + τ2 + ε2, n ≥ 0, (7.87)

combining (7.79) and (7.85) together, we then conclude that

‖êε,n‖2 + ‖δ+x êε,n‖2 . h2 + τ2 + ε2, 0 ≤ n ≤ T

τ
. (7.88)

Step 3. To obtain ε-uniform estimate (7.59). From (7.59), (7.64) and (7.88), taking

the minimum of ε2 and ε2

ε4−α∗ , we get

‖êε,n‖2 + ‖δ+x êε,n‖2 . h2 + τ
4

6−α∗ , 0 ≤ n ≤ T

τ
. (7.89)
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Noticing that 4/(6 − α∗) ≥ 2
3 , using the discrete Sobolev inequality [145]

‖êε,n‖∞ ≤ C‖δ+x êε,n‖2 . h2 + τ
4

6−α∗ . (7.90)

When τ and h become sufficiently small, we have ‖êε,n‖∞ ≤ 1, and

‖vε,n‖∞ ≤ ‖uε‖L∞(UT ) + ‖êε,n‖∞ ≤ ‖uε‖L∞(UT ) + 1 ≤
√
B, n ≤ T

τ
. (7.91)

Thus, using the properties of fB(s), scheme (7.42) collapses to SIFD (7.14), and vε,n is

the solution of SIFD (7.14). In other words, we have proved the results in Theorem 7.2

for SIFD (7.14). �

Remark 7.1 Here we emphasis that our approach can be extended to the higher dimen-

sions, e.g. 2D and 3D directly. The key point is the discrete Sobolev inequality in 2D and

3D as

‖uh‖∞ ≤ C| lnh| ‖uh‖H1
s
, ‖vh‖∞ ≤ Ch−1/2‖vh‖H1 , (7.92)

where uh and vh are 2D and 3D mesh functions with zero at the boundary, respectively,

and the discrete norms ‖ · ‖H1
s

and ‖ · ‖∞ can be defined similarly as the discrete semi-

H1 norm and the l∞ norm in (7.23) or in Chapter 6. The same proof in 2D and 3D

will lead to (7.89), and the above Sobolev inequalities will imply (7.91) by noticing that

4/(6 − α∗) ≥ 2
3 >

1
2 and the assumption τ . h.

7.4 Convergence of the CNFD scheme

In order to prove Theorem 7.1 for CNFD, again we first establish the following lemmas.

Lemma 7.5 (Conservation properties of CNFD) For CNFD scheme (7.12) with (7.15)

and (7.21), for any mesh size h > 0, time step τ > 0 and initial data (u0, u
ε
1), it satisfies

the mass and energy conservation laws in the discretized level, i.e.,

N ε
h(u

ε,n) :=
1

2

(
‖uε,n‖2

2 + ‖uε,n+1‖2
2

)
− 2ε2 Im(δ+t u

ε,n, uε,n) ≡ N ε
h(u

ε,0), n ≥ 0, (7.93)

Eεh(u
ε,n) :=ε2‖δ+t uε,n‖2

2 +
1

2

n+1∑

m=n

‖δ+x uε,m‖2
2 −

1

2
h

M−1∑

j=0

(
F (|uε,nj |2) + F (|uε,n+1

j |2)
)

≡Eεh(uε,0), n ≥ 0. (7.94)
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Proof: Follow the analogous arguments of the CNFD method for NLSE [46, 67] and

NLSW [73,154] and we omit the details here for brevity.

Lemma 7.6 (Solvability of the difference equations) For any given uε,n−1 and uε,n, there

exists a solution uε,n+1 of the CNFD discretization (7.12) with (7.15). In addition, if the

nonlinear term f(|z|2)z (z ∈ C) is global Lipschitz, i.e. there exists a constant C > 0 such

that
∣∣f(|z1|2)z1 − f(|z2|2)z2

∣∣ ≤ C|z1 − z2|, ∀z1, z2 ∈ C, (7.95)

then there exists τ0 > 0 such that the solution is unique when τ < τ0.

Proof: The proof is standard for NLSW [73,154] and we omit it here for brevity.

Denote the local truncation error ζε,n ∈ XM for CNFD (7.12) with (7.15) and (7.21)

for n ≥ 1 and j ∈ TM as

ζε,nj := (iδt−ε2δ2t )uε(xj , tn)+
1

2
(δ2xu

ε(xj , tn+1)+δ
2
xu

ε(xj , tn−1)+G(uε(xj , tn+1), u
ε(xj , tn−1)).

Similar as Lemma 7.2, we can have the following results.

Lemma 7.7 (Local truncation error for CNFD) Under assumption (B), assume f ∈
C3([0,∞)), we have

‖ζε,n‖2 + ‖δ+x ζε,n‖2 . h2 +
τ2

ε4−α∗ , 1 ≤ n ≤ T

τ
− 1. (7.96)

Proof: For n ≥ 1 and j ∈ TM , expanding Taylor series for nonlinear partG at |uε(xj , tn)|2,
and noticing (7.13) and the following

Γnj :=
1

τ

(
|uε(xj , tn+1)|2 − |uε(xj , tn)|2

)
=

∫ 1

0
∂t(|uε|2)(xj , tn + sτ) ds,

Γ̃nj :=
2

τ2

(
1

2

(
|uε(xj , tn+1)|2 + |uε(xj, tn−1)|2

)
− |uε(xj , tn)|2

)

=

∫ 1

0

∫ θ

−θ
∂tt(|uε|2)(xj , tn + sτ) dsdθ,
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then applying the Taylor expansion and NLSW (7.9), we obtain

ζε,nj =
iτ2

2

∫ 1

0

∫ θ

0

∫ s

−s
uεttt(xj , στ + tn) dσdsdθ +

τ2

2

∫ 1

0

∫ θ

−θ
uεxxtt(xj, sτ + tn)dsdθ

+
h2

2

∫ 1

0

∫ θ

0

∫ s

0

∫ σ

−σ

∑

k=±1

uεxxxx(xj + s1h, tn + kτ)ds1dσdsdθ

+

(
τ2

∫ 1

0

∫ 1

0
(1 − σ)(θΓnj − (1 − θ)Γn−1

j )2f ′′(ξj(θ, σ)) dσdθ +
τ2

2
f ′(|uε(xj , tn)|2)Γ̃nj

)

· 1

2
(uε(xj , tn+1) + uε(xj , tn−1)) +

τ2

2
f(|uε(xj, tn)|2)

∫ 1

0

∫ θ

−θ
uεtt(xj , tn + sτ) dsdθ

− ε2τ2

∫ 1

0

∫ θ

0

∫ s

0

∫ σ

−σ
uεtttt(xj , s1τ + tn) ds1dσdsdθ,

where ξj(θ, σ) = σ(θ|uε(xj, tn+1)|2 + (1 − θ)|uε(xj , tn−1)|2) + (1 − σ)|uε(xj , tn)|2. Under

assumption (B), using the triangle inequality, noticing that f ∈ C2([0,∞)), for j ∈ TM
and n ≥ 1, we get

|ζε,nj | .h2‖∂xxxxuε‖L∞ + τ2
(
‖∂tttuε‖L∞ + ε2‖∂ttttuε‖L∞ + ‖∂ttuε‖L∞‖f(|uε|2)‖L∞

+‖∂xxttuε‖L∞ +
(
‖∂t|uε|2‖2

L∞‖f ′′(|uε|2)‖L∞ + ‖f ′(|uε|2)‖L∞‖∂tt|uε|2‖L∞

)
‖uε‖L∞

)

.h2 +
τ2

ε4−α∗ .

The first part of the Lemma is proven. For 1 ≤ j ≤ M − 1, in view of the above

representation of ζε,nj and a similar calculation as above, noticing f ∈ C3([0,∞)) when

dealing with the nonlinear term G, for 1 ≤ j ≤M − 1, it is easy to check that

|δ+x ζε,nj | .h2‖∂xxxxxuε‖L∞ + τ2

(
‖∂tttxuε‖L∞ + ε2‖∂ttttxuε‖L∞ +

[
‖∂ttuε‖L∞‖f ′(|uε|2)‖L∞

+
(
‖∂t|uε|2‖2

L∞‖f ′′′(|uε|2)‖L∞ + ‖f ′′(|uε|2)‖L∞‖∂tt|uε|2‖L∞

)
· ‖uε‖L∞

]

· ‖∂x|uε|2‖L∞ +
(
‖∂x(∂t|uε|2)2‖L∞‖f ′′(|uε|2)‖L∞ + ‖f ′(|uε|2)‖L∞‖∂ttx|uε|2‖L∞

)

· ‖uε‖L∞ +
(
‖∂t|uε|2‖2

L∞‖f ′′(|uε|2)‖L∞ + ‖f ′(|uε|2)‖L∞‖∂tt|uε|2‖L∞

)
‖∂xuε‖L∞

+ ‖∂ttxuε‖L∞‖f(|uε|2)‖L∞ + ‖∂xxxttuε‖L∞

)
. h2 +

τ2

ε4−α∗ .

For j = 0 and M−1, we apply the boundary condition to deduce that ∂k

∂tk
uε(x, t)|x∈∂Ω = 0

for k ≥ 0, and the equation (7.9) shows that uxx(x, t)|x∈∂Ω = 0 and uxxxx(x, t)|x∈∂Ω = 0.

Similarly as above, we can get the above estimates for j = 0,M − 1. Thus, we complete

the proof.
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The error bounds for eε,n at n = 0, 1 are the same as Lemma 7.3 since the boundary

and initial conditions for CNFD (7.12) and SIFD (7.14) are the same.

The proof for the CNFD scheme (7.12) is quite similar to that of the SIFD scheme,

and we outline the schedule below, i.e. we prove the key lemmas.

Let ûε,0 = uε,0, ûε,1 = uε,1 and ûε,n ∈ XM (n ≥ 1) be given by

(iδt − ε2δ2t )û
ε,n
j +

1

2
δ2x(û

ε,n+1
j + ûε,n−1

j ) +GB(ûε,n+1
j , ûε,n−1

j ) = 0, j ∈ TM , (7.97)

where GB(z1, z2) for z1, z2 ∈ C is given by

GB(z1, z2) =

∫ 1

0
fB(θ|z1|2 + (1 − θ)|z2|2) dθ · gB

(
z1 + z2

2

)

=
FB(|z1|2) − FB(|z2|2)

|z1|2 − |z2|2
· gB

(
z1 + z2

2

)
,

with g
B
(z), fB(·) and FB(·) being defined in (7.40). Actually ûε,nj can be viewed as

another approximation of uε(xj , tn). From Lemma 7.6, (7.97) is uniquely solvable for

small τ . Define the ’error’ χε,n ∈ XM for n ≥ 1 as

χε,nj = uε(xj, tn) − ûε,nj , j ∈ TM , (7.98)

and the local truncation error ζ̂ε,n ∈ XM for j ∈ TM and n ≥ 1 as

ζ̂ε,nj := (iδt − ε2δ2t )u
ε(xj , tn) +

1

2
δ2x (uε(xj , tn+1) + uε(xj , tn−1)) +GB (uε(xj , tn+1), u

ε(xj , tn−1)) .

(7.99)

Similar as Lemma 7.2, we can prove that under the assumptions in Theorem 7.1,

‖ζ̂ε,n‖2 + ‖δ+x ζ̂ε,n‖2 . h2 +
τ2

ε4−α∗ , 1 ≤ n ≤ T

τ
− 1, (7.100)

and the estimate for ‖êε,1‖2 + ‖δ+x êε,1‖2 is proved in Lemma 7.3.

Subtracting (7.97) from (7.99), we obtain

iδtχ
ε,n
j − ε2δ2t χ

ε,n
j +

1

2
δ2x

(
χε,n+1
j + χε,n−1

j

)
+ ϑε,nj − ζ̂ε,nj = 0, j ∈ TM , (7.101)

where ϑε,n ∈ XM is defined for j ∈ TM and n ≥ 1 as

ϑε,nj = GB (uε(xj , tn+1), u
ε(xj , tn−1)) −GB(ûε,n+1

j , ûε,n−1
j ). (7.102)

Then we have the following properties on ϑε,n.
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Lemma 7.8 Under the assumptions in Theorem 7.1, for ϑε,n ∈ XM (n ≥ 1) in (7.102),

we have for 0 ≤ j ≤M − 1, n ≥ 1

|ϑε,nj | . |χε,n+1
j | + |χε,n−1

j |, |δ+x ϑε,nj | .
∑

m=n−1,n+1

(
|χε,mj | + |δ+x χε,mj | + |χε,mj+1|

)
.

Proof: For j ∈ T 0
M , n ≥ 1 and θ ∈ [0, 1], denote

ρε,nj (θ) = θ|uε(xj, tn+1)|2 + (1 − θ)|uε(xj , tn−1)|2, ρ̂ε,nj (θ) = θ|ûε,n+1
j |2 + (1 − θ)|ûε,n−1

j |2,

µε,nj =
1

2
[uε(xj , tn+1) + uε(xj , tn−1)] , µ̂

ε,n
j =

ûε,n+1
j + ûε,n−1

j

2
, πε,nj = |uε(xj , tn)| + |ûε,nj |,

using the definition of GB , FB and gB , it is easy to get

ϑε,nj = µε,nj

∫ 1

0
[fB(ρε,nj (θ)) − fB(ρ̂ε,nj (θ))]dθ + [g

B
(µε,nj ) − g

B
(µ̂ε,nj )]

∫ 1

0
fB(ρ̂ε,nj (θ)) dθ.

Noticing the Lipschitz property of fB(s2) and

∣∣∣
√
ρε,nj (θ) −

√
ρ̂ε,nj (θ)

∣∣∣ ≤
θπε,n+1

j |χε,n+1
j | + (1 − θ)πε,n−1

j |χε,n−1
j |

√
ρε,nj (θ) +

√
ρ̂ε,nj (θ)

≤ |χε,n+1
j | + |χε,n−1

j |,

combined with the Lipschitz property of g
B
(z), we can obtain

|ϑε,nj | . |χε,n+1
j | + |χε,n−1

j |, j ∈ T 0
M . (7.103)

Rewriting ϑε,nj as

ϑε,nj = g
B
(µ̂ε,nj )

∫ 1

0
[fB(ρε,nj (θ) − fB(ρ̂ε,nj (θ))] dθ + [g

B
(µε,nj ) − g

B
(µ̂ε,nj )]

∫ 1

0
fB(ρε,nj (θ)) dθ,

(7.104)

and applying δ+x to ϑε,nj , we have

δ+x ϑ
ε,n
j = g

B
(µ̂ε,nj )

∫ 1

0
δ+x [f

B
(ρε,nj (θ)) − f

B
(ρ̂ε,nj (θ))] dθ

+ [g
B
(µε,nj ) − g

B
(µ̂ε,nj )]

∫ 1

0
δ+x fB

(ρε,nj (θ)) dθ + δ+x [g
B
(µε,nj ) − g

B
(µ̂ε,nj )]

∫ 1

0
f

B
(ρε,n

j+1
(θ)) dθ

+ δ+x gB (µ̂ε,nj )

∫ 1

0
[fB (ρε,n

j+1
(θ)) − fB (ρ̂ε,n

j+1
(θ))] dθ.

Firstly, for θ, s ∈ [0, 1], and n ≥ 1, we denote κε,nj (θ, s), κ̂ε,nj (θ, s) for 0 ≤ j ≤M − 1 as

κε,nj (θ, s) = sρε,nj+1(θ) + (1 − s)ρε,nj (θ), κ̂ε,nj (θ, s) = sρ̂ε,nj+1(θ) + (1 − s)ρ̂ε,nj (θ). (7.105)
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Noticing that for 1 ≤ j ≤M − 1

δ+x

[
fB

(
ρε,nj (θ)

)
− fB

(
ρ̂ε,nj (θ)

)]

=

[
δ+x ρ

ε,n
j (θ)

∫ 1

0
f ′B
(
κε,nj (θ, s)

)
ds− δ+x ρ̂

ε,n
j (θ)

∫ 1

0
f ′B(κ̂ε,nj (θ, s)) ds

]

=

∫ 1

0

[
f ′B
(
κε,nj (θ, s)

)
− f ′B

(
κ̂ε,nj (θ, s)

)]
δxρ

ε,n
j (θ) ds

+

∫ 1

0
f ′B(κ̂ε,nj (θ, s))

[
δ+x (ρε,nj (θ) − ρ̂ε,nj (θ))

]
ds,

a careful calculation shows that

δ+x

[
ρε,nj (θ) − ρ̂ε,nj (θ)

]
= θ

[
2Re

(
uε(xj , tn+1)δ

+
x χ

ε,n+1
j + χε,n+1

j+1 δ+x u
ε(xj , tn+1)

)

− χε,n+1
j δ+x χ

ε,n+1
j − χε,n+1

j+1 δ+x χ
ε,n+1
j

]
+(1 − θ)

[
−χε,n−1

j δ+x χ
ε,n−1
j − χε,n−1

j+1 δ+x χ
ε,n−1
j

+ 2Re
(
uε(xj , tn−1)δ

+
x χ

ε,n−1
j + χε,n−1

j+1 δ+x u
ε(xj , tn−1)

)]
,

and
√

1 − θ|χε,n−1

j+1
| ≤

√
ρ̂ε,n

j+1
(θ)+|uε(xj+1 , tn−1)|,

√
1 − θ|χε,n−1

j | ≤
√
ρ̂

ε,n

j (θ)+|uε(xj , tn−1)|,
√
θ|χε,n+1

j+1 | ≤
√
ρ̂ε,nj+1(θ) + |uε(xj+1, tn+1)|,

√
θ|χε,n+1

j | ≤
√
ρ̂ε,nj (θ) + |uε(xj , tn+1)|. More-

over, from the Lipschitz property of fB (7.41), we have

∣∣∣∣
∫ 1

0
f ′B(κ̂ε,nj (θ, s)) ds

∣∣∣∣ =

∣∣∣∣∣∣

fB

(
ρ̂ε,nj+1(θ)

)
− fB

(
ρ̂ε,nj (θ)

)

ρ̂ε,nj+1(θ) − ρ̂ε,nj (θ)

∣∣∣∣∣∣
≤ C√

ρ̂ε,nj+1(θ) +
√
ρ̂ε,nj (θ)

. (7.106)

Recalling the boundedness of δ+x ρ
ε,n
j (θ), gB (·) and f ′B(·) as well as the Lipschitz property

of f ′B(s2), i.e. |f ′B(s1)−f ′B(s2)| ≤ C|√s1−
√
s2|, combining the proof for (7.103), we arrive

at

∣∣∣∣
∫ 1

0
δ+x

[
f

B
(ρε,nj (θ)) − f

B
(ρ̂ε,nj (θ))

]
dθ · g

B
(µ̂ε,nj )

∣∣∣∣ .
∑

m=n+1,n−1

(|χε,mj | + |χε,mj+1| + |δ+x χε,mj |).

(7.107)

Secondly, from the property gB (·) ∈ C∞
0 , we know

|δ+x gB (µ̂ε,nj )| ≤C
∣∣∣δ+x µ̂ε,nj

∣∣∣ ≤ C
∣∣∣δ+x χε,n+1

j + δ+x χ
ε,n+1
j − δ+x u

ε(xj , tn+1) − δ+x u
ε(xj , tn−1)

∣∣∣ .

In view of the boundedness of fB(s) as well as the proof for (7.103), we get

∣∣∣∣
∫ 1

0

[
f

B
(ρε,n

j+1
(θ)) − f

B
(ρ̂ε,n

j+1
(θ))

]
dθ · δ+x gB

(µ̂ε,nj )

∣∣∣∣ .
∑

m=n−1,n+1

(|χε,mj+1| + |χε,mj | + |δ+x χε,mj |).

(7.108)



7.4 Convergence of the CNFD scheme 179

Thirdly, noticing δ+x fB

(
ρε,nj (θ)

)
is bounded and g

B
(z) is Lipschitz, we have

∣∣∣∣
∫ 1

0
δ+x fB

(
ρε,nj (θ)

)
dθ ·

[
g

B
(µε,nj ) − g

B
(µ̂ε,nj )

] ∣∣∣∣ . |χε,n+1
j | + |χε,n−1

j |. (7.109)

Lastly, denoting σnj (θ), σ̂nj (θ) for θ ∈ [0, 1] and 0 ≤ j ≤M − 1 as

σnj (θ) = θµε,nj+1 + (1 − θ)µε,nj , σ̂nj (θ) = θµ̂ε,nj+1 + (1 − θ)µ̂ε,nj ,

recalling the definition of ρ
B
(s) and g

B
(z), we find that

δ+x

(
g

B
(µε,nj ) − g

B
(µ̂ε,nj )

)
= δ+x

[
ρ

B
(|µε,nj |2)µε,nj − ρ

B
(|µ̂ε,nj |2)µ̂ε,nj

]
= I1 + I2,

where

I1 =

∫ 1

0

[
δ+x µ

ε,n
j ∂zgB

(σnj (θ)) − δ+x µ̂
ε,n
j ∂zgB

(
σ̂nj (θ)

)]
dθ, ∂zgB

(z) = ρ
B
(|z|2) + |z|2ρ′

B
(|z|2),

I2 =

∫ 1

0

[
δ+x µ

ε,n
j ∂z̄gB

(σnj (θ)) − δ+x µ̂
ε,n
j ∂z̄gB

(
σ̂nj (θ)

)]
dθ, ∂z̄gB

(z) = z2ρ′
B
(|z|2).

Noticing δ+x µ
ε,n
j is bounded and the C∞

0 property of ρ
B
(s), we know ∂zgB

(z) is Lipschitz

and

|I1| ≤
∣∣∣∣
∫ 1

0

(
∂zgB

(σnj (θ)) − ∂zgB
(σ̂nj (θ))

)
δ+x µ

ε,n
j dθ

∣∣∣∣+
∣∣∣∣
∫ 1

0
[δ+x (µε,nj − µ̂ε,nj )] ∂zgB

(σ̂nj (θ)) dθ

∣∣∣∣

. max
θ∈[0,1]

{∣∣ |σnj (θ)| − |σ̂nj (θ)|
∣∣}+

∣∣∣δ+x (χε,n+1
j + χε,n−1

j )
∣∣∣

.
∑

m=n+1,n−1

(
|χε,mj | + |χε,mj+1| + |δ+x χε,mj |

)
.

In the same spirit, we have

|I2| . |χε,n+1
j | + |χε,n+1

j+1 | + |χε,n−1
j | + |χε,n−1

j+1 | + |δ+x χε,n+1
j | + |δ+x χε,n−1

j |. (7.110)

Hence, we obtain

∣∣∣∣
∫ 1

0
fB

(
ρε,nj+1(θ)

)
dθ · δ+x

[
g

B
(µε,nj ) − g

B
(µ̂ε,nj )

]∣∣∣∣ .
∑

m=n−1,n+1

(
|χε,mj | + |δ+x χε,mj | + |χε,mj+1|

)
.

(7.111)

Combining (7.107), (7.108), (7.109) and (7.111) together, we finally prove that

∣∣∣δ+x ϑε,nj
∣∣∣ .

∑

m=n−1,n+1

(
|χε,mj | + |δ+x χε,mj | + |χε,mj+1|

)
, 0 ≤ j ≤M − 1, n ≥ 1. (7.112)
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The proof is complete.

Having Lemma 7.8, local truncation error (7.100) and the initial error Lemma 7.3,

following the analogous proof for SIFD, we could obtain

‖χε,n‖2 + ‖δ+x χε,n‖2 . h2 +
τ2

ε4−α∗ , n ≤ T

τ
. (7.113)

To complete the proof, we have to prove (7.28) type estimate for χε,n. It is a straight

forward extension of the proof for SIFD and the proof for Lemma 7.8. More precisely,

define

χ̃ε,nj = u(xj , tn) − ûε,nj = χε,nj + u(xj, tn) − uε(xj , tn), j ∈ T 0
M , n ≥ 0. (7.114)

and the ‘local truncation error’ ζ̃ε,n ∈ XM for n ≥ 1 and j ∈ TM as

ζ̃ε,nj := (iδt−ε2δ2t )u(xj , tn)+
1

2
δ2x (u(xj , tn+1) + u(xj , tn−1))+GB(u(xj , tn+1), u(xj , tn−1)).

(7.115)

then we have

‖ζ̃ε,n‖2 + ‖δ+x ζ̃ε,n‖2 . h2 + τ2 + ε2, n ≥ 1. (7.116)

Subtracting (7.97) from (7.115), we obtain for n ≥ 1

iδtχ̃
ε,n
j − ε2δ2t χ̃

ε,n
j +

1

2
δ2x

(
χ̃ε,n+1
j + χ̃ε,n−1

j

)
+ ϑ̃ε,nj − ζ̃ε,nj = 0, j ∈ TM , (7.117)

where ϑ̃ε,n ∈ XM is given for j ∈ TM and n ≥ 1 as

ϑ̃ε,nj = GB (u(xj , tn+1), u(xj , tn−1)) −GB

(
ûε,n+1
j , ûε,n−1

j

)
. (7.118)

Then the following lemma holds and we omit the proof here.

Lemma 7.9 Under the assumptions in Theorem 7.1, for ϑ̃ε,n ∈ XM (n ≥ 1) in (7.118),

we have for 0 ≤ j ≤M − 1 and n ≥ 1,

|ϑ̃ε,nj | . |χ̃ε,n+1
j | + |χ̃ε,n−1

j |, |δ+x ϑ̃ε,nj | .
∑

m=n−1,n+1

(
|χ̃ε,mj | + |δ+x χ̃ε,mj | + |χ̃ε,mj+1|

)
.

Following the analogous proof for the SIFD, in view of Lemma 7.9, local error (7.116)

and initial error Lemma 7.3, recalling assumption (B), we can derive that

‖χε,n‖2 + ‖δ+x χε,n‖2 . h2 + τ2 + ε2, n ≤ T

τ
. (7.119)

Proof of Theorem 7.1: Combining (7.113) and (7.119) together, analogous proof for

SIFD applies and the conclusion follows. �
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7.5 Numerical results

In this section, we report numerical results for both SIFD (7.14) and CNFD (7.12) schemes

applied to NLSW (7.9) with f(|uε|2) = −|uε|2. The corresponding limiting NLSE is the

defocusing cubic NLSE.

For the numerical tests, we choose u0(x) = π−1/4e−x
2/2 and wε(x) = e−x

2/2 in (7.9).

The computational domain is chosen as [a, b] = [−16, 16]. The ‘exact’ solution is computed

with a very fine mesh h = 1/512 and time step τ = 10−6. We study the following two

cases of initial data:

Case I. α = 2, i.e. the well-prepared case.

Case II. α = 0, i.e. the ill-prepared case.

We measure the error eh at time t = 1 with the discrete H1 norm ‖eh‖H1 = ‖eh‖2 +

‖δ+x eh‖2.

Tab. 7.1 depicts spatial errors of SIFD for Cases I and II, for different h and ε, with

fixed τ = 10−6, where the time step τ is so small such that the temporal error can be

neglected. From the Table, we can conclude that, SIFD is uniformly second order accurate

in h for all ε. Tabs. 7.2 and 7.3 list temporal errors of SIFD for Cases I and II, for different

ε and τ , with fixed h = 1/512. With this very fine mesh h = 1/512, the spatial error can

be ignored. Tab. 7.2 shows that, when τ is small (upper triangle part), the temporal error

is of second order for each ε; when ε is small (lower triangle part), the temporal error is

also of second order; near the diagonal part (for α = 2, slightly upper), the degeneracy of

the second order accuracy is observed. This confirms our error estimates (7.30) and (7.31)

for SIFD. Tab. 7.3 presents the errors of SIFD at the degeneracy regime for α = 2 in the

regime τ ∼ ε2, and resp., for α = 0 in the regime τ ∼ ε3, predicted by our error estimates.

The results clearly demonstrate that SIFD converges at O(h2 + τ) and O(h2 + τ2/3) for

α = 2 and α = 0, respectively. Similar tests were also carried out for CNFD and we obtain

similar conclusion, thus they are omitted here for brevity.
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α = 2 h = 1/2 h = 1/22 h = 1/23 h = 1/24 h = 1/25 h = 1/26 h = 1/27

ε = 1/22 1.51E-1 4.05E-2 1.03E-2 2.57E-3 6.45E-4 1.60E-4 3.90E-5
1.90 1.98 2.00 1.99 2.01 2.04

ε = 1/23 1.94E-1 5.35E-2 1.36E-2 3.41E-3 8.51E-4 2.10E-4 4.92E-5
1.89 1.98 2.00 2.00 2.02 2.09

ε = 1/24 2.15E-1 6.05E-2 1.55E-2 3.88E-3 9.67E-4 2.39E-4 5.68E-5
1.83 1.96 2.00 2.00 2.02 2.07

ε = 1/25 2.22E-1 6.29E-2 1.61E-2 4.04E-3 1.01E-3 2.49E-4 5.93E-5
1.82 1.97 1.99 2.00 2.02 2.07

ε = 1/26 2.23E-1 6.36E-2 1.63E-2 4.08E-3 1.02E-3 2.52E-4 6.00E-5
1.81 1.96 2.00 2.00 2.02 2.07

ε = 1/27 2.24E-1 6.37E-2 1.63E-2 4.10E-3 1.02E-3 2.52E-4 6.01E-5
1.81 1.97 1.99 2.01 2.02 2.07

ε = 1/210 2.24E-1 6.38E-2 1.63E-2 4.10E-3 1.02E-3 2.53E-4 6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07

ε = 1/220 2.24E-1 6.38E-2 1.63E-2 4.10E-3 1.02E-3 2.53E-4 6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07

Table 7.1: Spatial error analysis for SIFD scheme (7.14) with different ε and h for Case
I, i.e. α = 2, with norm ‖e‖H1 = ‖e‖2 + ‖δ+x e‖2. The convergence rate is calculated as
log2(‖e(2h)‖H1/‖e(h)‖H1 ).

α = 0 h = 1/2 h = 1/22 h = 1/23 h = 1/24 h = 1/25 h = 1/26 h = 1/27

ε = 1/22 1.52E-1 4.09E-2 1.04E-2 2.60E-3 6.53E-4 1.62E-4 3.94E-5
1.89 1.98 2.00 1.99 2.01 2.04

ε = 1/23 1.95E-1 5.36E-2 1.36E-2 3.41E-3 8.52E-4 2.10E-4 4.93E-5
1.86 1.98 2.00 2.00 2.02 2.09

ε = 1/24 2.15E-1 6.05E-2 1.55E-2 3.88E-3 9.67E-4 2.39E-4 5.68E-5
1.83 1.96 2.00 2.00 2.02 2.07

ε = 1/25 2.22E-1 6.29E-2 1.61E-2 4.04E-3 1.01E-3 2.49E-4 5.93E-5
1.82 1.97 1.99 2.00 2.02 2.07

ε = 1/26 2.23E-1 6.36E-2 1.63E-2 4.08E-3 1.02E-3 2.52E-4 6.00E-5
1.81 1.96 2.00 2.00 2.02 2.07

ε = 1/27 2.24E-1 6.37E-2 1.63E-2 4.10E-3 1.02E-3 2.52E-4 6.01E-5
1.81 1.97 1.99 2.01 2.02 2.07

ε = 1/210 2.24E-1 6.38E-2 1.63E-2 4.10E-3 1.02E-3 2.53E-4 6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07

ε = 1/220 2.24E-1 6.38E-2 1.63E-2 4.10E-3 1.02E-3 2.53E-4 6.02E-5
1.81 1.97 1.99 2.01 2.01 2.07

Table 7.1: (con’t) For Case II, i.e. α = 0.
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α = 2 τ = 0.1 τ = 0.1
2 τ = 0.1

22 τ = 0.1
23 τ = 0.1

24 τ = 0.1
25 τ = 0.1

26 τ = 0.1
27

ε = 1
22 1.10E-1 4.75E-2 1.49E-2 3.86E-3 9.70E-4 2.43E-4 6.10E-5 1.56E-5

1.21 1.67 1.95 1.99 2.00 1.99 1.97
ε = 1

23 1.60E-1 5.06E-2 1.46E-2 5.45E-3 3.07E-3 8.27E-4 2.08E-4 5.21E-5
1.66 1.79 1.42 0.83 1.89 1.99 2.00

ε = 1
24 1.98E-1 6.02E-2 1.85E-2 4.78E-3 1.25E-3 4.14E-4 3.74E-4 1.81E-4

1.72 1.70 1.95 1.94 1.59 0.15 1.05
ε = 1

25 1.90E-1 7.30E-2 1.92E-2 5.00E-3 1.39E-3 3.49E-4 8.75E-5 2.74E-5
1.38 1.93 1.94 1.85 1.99 2.00 1.68

ε = 1
26 1.89E-1 6.87E-2 2.18E-2 5.28E-3 1.32E-3 3.34E-4 9.09E-5 2.17E-5

1.46 1.66 2.06 2.00 1.98 1.88 2.07
ε = 1

27 1.89E-1 6.79E-2 2.06E-2 5.81E-3 1.36E-3 3.38E-4 8.26E-5 2.20E-5
1.48 1.72 1.83 2.09 2.01 2.03 1.91

ε = 1
210 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.37E-3 3.50E-4 9.27E-5 2.14E-5

1.48 1.75 1.90 1.97 1.97 1.92 2.11
ε = 1

220 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.36E-3 3.42E-4 8.56E-5 2.14E-5
1.48 1.75 1.90 1.98 1.99 2.00 2.00

Table 7.2: Temporal error analysis for SIFD scheme (7.14) with different ε and τ for Case
I, i.e. α = 2, with norm ‖e‖H1 .

α = 0 τ = 0.1 τ = 0.1
2 τ = 0.1

22 τ = 0.1
23 τ = 0.1

24 τ = 0.1
25 τ = 0.1

26 τ = 0.1
27

ε = 1
22 2.91E-1 1.39E-1 4.05E-2 1.04E-2 2.63E-3 6.59E-4 1.66E-4 4.54E-5

1.07 1.78 1.96 1.98 2.00 1.99 1.87
ε = 1

23 1.76E-1 9.04E-2 6.52E-2 7.35E-2 3.30E-2 8.71E-3 2.19E-3 5.50E-4
0.96 0.47 -0.17 1.16 1.92 1.99 1.99

ε = 1
24 1.96E-1 6.02E-2 2.10E-2 1.01E-2 1.98E-2 3.81E-3 1.92E-2 8.16E-3

1.70 1.52 1.06 -0.97 2.38 -2.33 1.23
ε = 1

25 1.90E-1 7.26E-2 1.94E-2 6.11E-3 3.36E-3 3.61E-3 4.69E-3 1.01E-3
1.39 1.90 1.67 0.86 -0.10 -0.38 2.22

ε = 1
26 1.89E-1 6.87E-2 2.17E-2 5.32E-3 1.55E-3 8.15E-4 7.31E-4 1.39E-3

1.46 1.66 2.03 1.78 0.93 0.16 -0.93
ε = 1

27 1.89E-1 6.78E-2 2.05E-2 5.81E-3 1.39E-3 4.37E-4 2.50E-4 2.03E-4
1.48 1.73 1.82 2.06 1.67 0.81 0.30

ε = 1
28 1.89E-1 6.77E-2 2.02E-2 5.48E-3 1.47E-3 3.46E-4 1.08E-4 6.21E-5

1.48 1.74 1.88 1.90 2.09 1.68 0.80
ε = 1

29 1.89E-1 6.76E-2 2.02E-2 5.39E-3 1.39E-3 3.70E-4 8.70E-5 2.35E-5
1.48 1.74 1.91 1.96 1.91 2.09 1.89

ε = 1
210 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.37E-3 3.50E-4 9.28E-5 2.22E-5

1.48 1.75 1.90 1.97 1.97 1.92 2.06
ε = 1

220 1.89E-1 6.76E-2 2.01E-2 5.37E-3 1.36E-3 3.42E-4 8.56E-5 2.14E-5
1.48 1.75 1.90 1.98 1.99 2.00 2.00

Table 7.2: (con’t) For Case II, i.e. α = 0.
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α = 2
ε = 1
τ = 0.2

ε = 1/2
τ = 0.2/22

ε = 1/22

τ = 0.2/24
ε = 1/23

τ = 0.2/26
ε = 1/24

τ = 0.2/28

‖e‖H1 1.07E-1 1.77E-2 3.86E-3 8.27E-4 1.81E-4
1.30 1.10 1.11 1.10

α = 0
ε = 1/22

τ = 0.1
ε = 1/23

τ = 0.1/23
ε = 1/24

τ = 0.1/26
ε = 1/25

τ = 0.1/29
ε = 1/26

τ = 0.1/212

‖e‖H1 2.91E-1 7.35E-2 1.92E-2 4.83E-3 1.21E-3
1.99/3 1.94/3 1.99/3 2.00/3

Table 7.3: Degeneracy of convergence rates for SIFD with h = 1/512, Case I and Case II.
The convergence rate is calculated as log2(‖e(22τ, 2ε)‖H1/‖e(τ, ε)‖H1 )/2 for α = 2 (Case
I), and log2(‖e(23τ, 2ε)‖H1/‖e(τ, ε)‖H1 )/3 for α = 0 (Case II).



Chapter 8
Concluding remarks and future work

This thesis is devoted to mathematical analysis and numerical simulation for the Gross-

Pitaevskii equation (GPE), focusing on the ground state and dynamical properties as well

as their efficient computation.

We payed special attention to the dipolar GPE (2.5) involving a highly singular kernel.

Upon reformulating dipolar GPE (2.5) into a Gross-Pitaevskii-Poisson system (GPPS)

(2.19)-(2.20), we analyzed the ground sates and well-posedness of dipolar GPE (2.5).

The new formulation allowed us to develop a time-splitting sine pseudospectral method

for simulating the dynamics of dipolar GPE, and a backward Euler sine pseudospectral

method for computing the ground states of (2.5), based on the gradient flow with discrete

normalization method. Then, starting from GPPS, effective 1D and 2D equations were

derived for dipolar GPE with highly anisotropic confining potential. Subsequently, we

considered the ground sates and well-posedness of the 1D and 2D equations. Furthermore,

efficient and accurate numerical methods were proposed for finding the corresponding

ground states.

The second part was to investigate the ground states of coupled GPEs, modeling a bi-

nary BEC with an atomic internal Josephson junction in optical resonators. For analytical

results, the existence and uniqueness of the ground states were proved in different param-

eter regimes. On the other hand, for numerical implementation, we developed a backward

Euler finite difference method for the computation. In addition, numerical examples were

shown to confirm our analytical results.
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The remaining part was related to numerical analysis. Firstly, we presented the analy-

sis for finite difference discretizations for rotational GPE in 2D and 3D. In literature, the

results for GPE were only available in one dimension (1D) case for conservative schemes.

Using new technique, we proved the optimal convergence results in 2D and 3D cases, for

both conservative and non-conservative schemes, confirmed by numerical results. Then,

we worked on the uniform convergence analysis of finite difference methods for nonlinear

Schrödinger equation perturbed by the wave operator (NLSW). The difficulty was that the

solution exhibited high oscillation in time when the small perturbation strength ε was con-

sidered. Due to the oscillation, it would be expected to choose the time step corresponding

to ε, so that the difference schemes could capture the true solution. We proved rigorously

that the convergence rates of the finite difference schemes were independent of ε. Hence,

it is not necessary to reduce the time step when ε decreases. Again, our approach works

for 1D, 2D and 3D, and for both conservative and non-conservation schemes. Numerical

examples confirmed our uniform convergence results.

The present work on dipolar GPE was focusing on the non-rotational case. For the

rotational frame, it is important to understand how the dipolar interaction affects the

quantized vortices. The 2D equation can be used to study the rotational dipolar GPE,

instead of analyzing the full 3D model, which is very complicated. Extensive mathematical

analysis and numerical experiments are needed to be done for the corresponding 2D model

in future. Of course, it is also desirable to study the full 3D rotational dipolar GPE directly.

We propose to do numerical experiments for the 2D model first in future. Another issue

is the convergence between the 3D model and the 2D model, which is proved in the weak

regime. It would therefore be quite interesting to prove the convergence in the strong O(1)

regime. To achieve this aim, new technique needs to be involved.

As shown in the coupled GPEs case, the ground state properties of the system depend

on the coupling among the equations. In the more general cases, we may consider the

spin-F BEC, which can be described by 2F + 1 coupled GPEs. Both ground states and

dynamical behavior will be analyzed.

In the numerical analysis part, error estimates have been proved for the finite difference

approximations of GPE, for 1D, 2D and 3D. In practical computation, the time-splitting
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pseudospectral method has shown its efficiency especially for the GPE. Thus, it is favor-

able to study the error estimates for the time-splitting methods. Convergence has been

obtained for the semi-discretization [32, 103]. To go further, we shall understand the full

discretization case. For NLSW, we have proved the uniform convergence of the finite

difference methods. In future, we will investigate the numerical methods particularly suit-

able for the highly oscillating dispersive equations, especially for NLSW. It is expected

that the new methods would achieve higher resolution on the oscillation and the uniform

convergence rates would be improved.



Appendix A
Proof of the equality (2.15)

Let

φ(x) =
1

r3

(
1 − 3(x · n)2

r2

)
, r = |x|, x ∈ R3. (A.1)

For any n ∈ R3 satisfies |n| = 1, in order to prove (2.15) holds in the distribution sense,

it is equivalent to prove the following:

∫

R3

φ(x)f(x)dx = −4π

3
f(0) −

∫

R3

f(x) ∂nn

(
1

r

)
dx, ∀f(x) ∈ C∞

0 (R3). (A.2)

For any fixed ε > 0, let Bε = {x ∈ R3 | |x| < ε} and Bc
ε = {x ∈ R3 | |x| ≥ ε}. It is

straightforward to check that

φ(x) = −∂nn

(
1

r

)
, 0 6= x ∈ R3. (A.3)

Using integration by parts and noticing (A.3), we get

∫

Bc
ε

φ(x)f(x)dx = −
∫

Bc
ε

f(x) ∂nn

(
1

r

)
dx

=

∫

Bc
ε

∂n

(
1

r

)
∂n(f(x)) dx +

∫

∂Bε

f(x)
n · x
r

∂n

(
1

r

)
dS

= −
∫

Bc
ε

1

r
∂nn(f(x)) dx + Iε1 + Iε2 , (A.4)

where

Iε1 :=

∫

∂Bε

f(x)
n · x
r

∂n

(
1

r

)
dS, Iε2 := −

∫

∂Bε

n · x
r2

∂n (f(x)) dS. (A.5)
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From (A.5), changing of variables, we get

Iε1 = −
∫

∂Bε

(n · x)2

r4
f(x) dS = −

∫

∂B1

(n · x)2

ε2
f(εx) ε2dS

= −
∫

∂B1

(n · x)2f(0) dS −
∫

∂B1

(n · x)2 [f(εx) − f(0)] dS. (A.6)

Choosing 0 6= n1 ∈ R3 and 0 6= n2 ∈ R3 such that {n1, n2, n} forms an orthornormal

basis of R3, by symmetry, we obtain

A :=

∫

∂B1

(n · x)2 dS =
1

3

∫

∂B1

[
(n · x)2 + (n1 · x)2 + (n2 · x)2

]
dS

=
1

3

∫

∂B1

|x|2dS =
1

3

∫

∂B1

dS =
4π

3
, (A.7)

∣∣∣∣
∫

∂B1

(n · x)2 (f(εx) − f(0)) dS

∣∣∣∣ =
∣∣∣∣
∫

∂B1

(n · x)2ε [x · ∇f(θεx)] dS

∣∣∣∣

≤ ε ‖∇f‖L∞(Bε)

∫

∂B1

dS ≤ 4πε ‖∇f‖L∞(Bε), (A.8)

where 0 ≤ θ ≤ 1. Plugging (A.7) and (A.8) into (A.6), we have

Iε1 → −4π

3
f(0), ε→ 0+. (A.9)

Similarly, for ε→ 0+, we get

|Iε2 | ≤ ‖∇f‖L∞(Bε)

∫

∂Bε

1

ε
dS = 4πε ‖∇f‖L∞(Bε) → 0, (A.10)

∣∣∣∣
∫

Bε

1

r
∂nn(f(x)) dx

∣∣∣∣ ≤ ‖D2f‖L∞(Bε)

∫

Bε

1

r
dx ≤ 2πε2 ‖D2f‖L∞(Bε) → 0. (A.11)

Combining (A.9), (A.10) and (A.11), taking ε→ 0+ in (A.4), we obtain

∫

R3

φ(x)f(x)dx = −4π

3
f(0) −

∫

R3

1

r
∂nn(f(x)) dx, ∀f(x) ∈ C∞

0 (R3). (A.12)

Thus (A.2) follows from (A.12) and the definition of the derivative in the distribution

sense, i.e.

∫

R3

f(x) ∂nn

(
1

r

)
dx =

∫

R3

1

r
∂nn(f(x)) dx, ∀f(x) ∈ C∞

0 (R3), (A.13)

and the equality (2.15) is proved. �



Appendix B
Derivation of quasi-2D equation I (3.4)

Here, we derive the 2D approximation of GPPS (2.19)-(2.20). Taking ansatz (3.3), multi-

plying both sides of GPPS (2.19) by ε−1/2w0(z/ε), integrating over z variable, we get

∂tφ(x, y, t) = [−1

2
(∂xx + ∂yy) + V2 +

β − λ

ε
√

2π
|φ|2]φ− 3λε−1φ

∫

R

∂nnϕ(x, y, z, t)w2
0(z/ε)dz.

Hence, we only need to evaluate ε−1
∫

R
∂nnϕ(x, y, z, t)w2

0(z/ε)dz term. Making use of the

Poisson equation (2.20) −∇2ϕ = ε−1|φ|2w2
0(z/ε), we can have

∂nnϕ(x, y, z, t) = ∂n⊥n⊥
ϕ+ 2n1n3∂xzϕ+ 2n2n3∂yzϕ− n2

3ϕ− n2
3ε

−1|φ|2w2
0(z/ε).

By the ansatz assumption, we know that ϕ = Udip ∗ |ψ|2 is symmetric in z, and we can

derive that by noticing the odd function’s integral is 0 in the whole space,

∫

R

∂nnϕ(x, y, z, t)w2
0(z/ε)dz

=
(
∂n⊥n⊥

− n2
3(∂xx + ∂yy)

) ∫

R

ϕ(x, y, z, t)w2
0(z/ε)dz +

−n2
3√

2π
|φ(x, y, t)|2. (B.1)
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Further calculations show that

ε−1

∫

R

ϕ(x, y, z, t)w2
0(z/ε)dz

=
1

4πε2

∫

R4

|φ(x′, y′, t)|2w2
0(z

′/ε)w2
0(z/ε)√

(x− x′)2 + (y − y′)2 + (z − z′)2
dx′ dy′ dz′ dz

=
1

4π2ε

∫

R2

|φ(x′, y′, t)|2
{∫

R2

e−(z2+(z′)2)/ε2

√
(x− x′)2 + (y − y′)2 + (z − z′)2

dz dz′
}
dx′ dy′

z−z′=α,z+z′=α′

=======

1

8π2ε2

∫

R2

|φ(x′, y′, t)|2
{∫

R2

e−
1

2ε2
(α2+(α′)2)

√
(x− x′)2 + (y − y′)2 + α2

dα dα′
}
dx′ dy′

=
1

4
√

2π3/2ε2

∫

R2

|φ(x′, y′, t)|2
{∫

R

e−
1

2ε2
α2

√
(x− x′)2 + (y − y′)2 + α2

dα

}
dx′ dy′

s=ε−1α
====

1

4
√

2π3/2

∫

R2

|φ(x′, y′, t)|2




∫

R

e−
s2

2√
(x− x′)2 + (y − y′)2 + ε2s2

ds



 dx′ dy′

= U2D
ε ∗ |φ|2. (B.2)

Combining the above results together, we then arrive at the quasi-2D I equation (3.4)-(3.5).



Appendix C
Derivation of quasi-1D equation (3.10)

Here, we derive the 1D approximation of GPPS (2.19)-(2.20). Taking ansatz (3.9), multi-

plying both sides of GPPS (2.19) by ε−1w⊥
0 (x/ε, y/ε), integrating over x, y variables, we

get

∂tφ(z, t) = [−1

2
∂zz + V1 +

β − λ

2πε2
|φ|2]φ− 3λε−2φ

∫

R2

∂nnϕ(x, y, z, t)
(
w⊥

0 (x/ε, y/ε)
)2

dxdy.

Hence, we only need to evaluate ε−2
∫

R2 ∂nnϕ(x, y, z, t)
(
w⊥

0 (x/ε, y/ε)
)2
dxdy term. Mak-

ing use of the Poisson equation (2.20) −∇2ϕ = ε−2|φ|2
(
w⊥

0 (x/ε, y/ε)
)2

, we can have

∂nnϕ(x, y, z, t) = ∂zzϕ+2n1n3∂xzϕ+2n2n3∂yzϕ+(n2
1∂xx+n

2
2∂yy)ϕ−(n2

1+n
2
2)ε

−1|φ|2
(
w⊥

0

)2
.

By the ansatz assumption (3.9), we know that ϕ = Udip ∗ |ψ|2 is symmetric in x and y,

and we can derive that by noticing the odd function’s integral is 0,

ε−2

∫

R2

∂nnϕ(x, y, z, t)
(
w⊥

0 (x/ε, y/ε)
)2

dxdy

= ε−2

∫

R2

(n2
3 −

1 − n2
3

2
)∂zzϕ(x, y, z, t)

(
w⊥

0 (x/ε, y/ε)
)2

dxdy − 3(1 − n2
3)

4πε2
|φ|2,
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and consequently

ε−2

∫

R2

ϕ(x, y, z, t)
(
w⊥

0 (y/ε, z/ε)
)2

dydz

=
1

4πε2

∫

R5

|φ(x′, t)|2
(
w⊥

0 (y′/ε, z′/ε)
)2 (

w⊥
0 (y/ε, z/ε)

)2
√

(x− x′)2 + (y − y′)2 + (z − z′)2
dx′ dy′ dz′ dy dz,

=
1

4π3ε4

∫

R

|φ(x′, t)|2
{∫

R4

e−(y2+(y′)2+z2+(z′)2)/2ε2

√
(x− x′)2 + (y − y′)2 + (z − z′)2

dy dy′ dz dz′
}
dx′

y−y′=α,y+y′=α′

z−z′=s,z+z′=s′ =
1

16π3ε4

∫

R2

|φ(x′, t)|2
{∫

R2

e−
1

2ε2
(α2+(α′)2+s2+(s′)2)

√
(x− x′)2 + α2 + β2

dα dα′ dβ dβ′
}
dx′

=
1

8π2ε2

∫

R

|φ(x′, t)|2
{∫

R2

e−
1

2ε2
(α2+s2)

√
(x− x′)2 + α2 + s2

dα ds

}
dx′

α=ρ cos θ
s=ρ sin θ =

γ

4π

∫

R

|φ(x′, t)|2




∫

R+

ρe−
ρ2

2ε2√
(x− x′)2 + ρ2

dρ



 dx′

r=ρ2/ε2
=

1

8π

∫

R

|φ(x′, t)|2
{∫

R+

e−
r
2√

(x− x′)2 + ε2r
dr

}
dx′

=
1

4
√

2πε
U1D
ε ∗ |φ|2. (C.1)

Combining the above results together, we can obtain quasi-1D I equation (3.10).



Appendix D
Outline of the convergence between

NLSW and NLSE

Here, we outline the convergence rate between the solutions of NLSW and NLSE in Rd

(d = 1, 2, 3). Let Sε0(t), S
ε
1(t) be the semi-groups associated with the linear part of equation

(7.1), i.e. Sε0(t)u0 is the solution of




i∂tu(x, t) − ε2∂ttu(x, t) + ∇2u(x, t) = 0, x ∈ Rd, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = 0, x ∈ Rd,

(D.1)

and Sε1(t)u1 is the solution of




i∂tu(x, t) − ε2∂ttu(x, t) + ∇2u(x, t) = 0, x ∈ Rd, t > 0,

u(x, 0) = 0, ∂tu(x, 0) = u1(x), x ∈ Rd.

(D.2)

There hold the estimates, for some constant C > 0,

∀φ, ∀s, ‖Sε0(t)φ‖Hs ≤ C‖φ‖Hs , ‖Sε1(t)φ‖Hs ≤ Cε2‖φ‖Hs . (D.3)

Then uε := uε(x, t) solves equation (7.1) if and only if uε satisfies the integral equation

uε(t) = Sε0(t)u
ε(0) + Sε1(t)∂tu

ε(0) − 1

ε2

∫ t

0
Sε1(t− s)f(|uε(s)|2)uε(s) ds. (D.4)

By rewriting the NLSE (7.5) as

i∂tu− ε2∂ttu+ ∇2u+ f(|u|2)u+ ε2utt = 0, (D.5)
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we can see that the solution u := u(x, t) of NLSE (7.5) satisfies the integral equation,

u(t) = Sε0(t)u(0) + Sε1(t)∂tu(0) −
1

ε2

∫ t

0
Sε1(t− s)

(
f(|u(s)|2)u(s) + ε2utt(s)

)
ds. (D.6)

Subtracting (D.6) from (D.4), and using the properties (D.3), in spirit of [31,51], we could

obtain for appropriate initial data, f(·) and T > 0

‖uε(t) − u(t)‖Hs ≤ CT ε
2, t ∈ [0, T ], s ≥ 0. (D.7)

For the behavior of ∂tu
ε(x, t), we look at the case f = 0 in NLSW (7.1), then

ûε(ξ, t) = C1(ξ)e
i
1+

√
1+4ε2|ξ|2

2ε2
t + C2(ξ)e

i
1−

√
1+4ε2|ξ|2

2ε2
t, ξ ∈ Rd, t ≥ 0, (D.8)

where

C1(ξ) =
1

2

[
û0(ξ) −

û0(ξ) + 2ε2iû1(ξ)√
1 + 4ε2|ξ|2

]
, C2(ξ) =

1

2

[
û0(ξ) +

û0(ξ) + 2ε2iû1(ξ)√
1 + 4ε2|ξ|2

]
.

Hence it is natural to make assumption (B) for the well-prepared and ill-prepared initial

data.
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[30] N. Ben Abdallah, F. Castella, F. Méhats, Time averaging for the strongly confined

nonlinear Schrödinger equation, using almost periodicity, J. Diff. Equ., 245 (2008), pp.

154–200.
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