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Abstract

In this paper we consider numerical simulation of incompressible viscous flow around an obstacle in velocity—pressure formu-
lation. Two horizontal straight line artificial boundaries are introduced and the original flow is approximated by a flow in an
infinite channel with slip boundary condition on the wall. Then two vertical segment artificial boundaries are introduced to limit
the channel to a bounded computational domain. In the region of the channel between the vertical boundaries and infinity, the
velocity of the flow is almost a constant vector, in which the Navier-Stokes equations can be linearised by Oseen equations and
thus a general solution can be derived by using separation of variables. Artificial boundary conditions on the vertical segments are
then designed by imposing the continuity of velocity and normal stress. Therefore, the original problem is reduced to a boundary
value problem on a bounded computational domain. Numerical example shows that our artificial boundary conditions are very
effective.

1. Introduction

Let £); be a bounded domain in R?, with a simple closed curve boundary. Consider the Navier-Stokes
equations in the exterior domain R?\ {};, under Dirichlet boundary conditions:

(u-VYu+Vp=vAu, inR*\{, (L.1)
V-u=0, inR>\ (2, (1.2)
ulag, =0, (1.3)
u(x) — ux = (a,0)", when r = /x? +x} — oo, (1.4)

where u = (11, u,)" is the velocity, p is the pressure, v > 0 is the viscosity coefficient, a > 0 is a constant,
x = (x1,x)7.

The boundary value problem (1.1)-(1.4) describes motion of a viscous, incompressible fluid flow
around an obstacle of shape (2, with no movement of the fluid particles on the boundary of (. In
finding numerical solutions of this kind of problem defined in unbounded domain, one difficulty is the
unboundedness of the physical domain. In engineering, the usual method is to introduce an artificial
boundary and cut off the unbounded part of the domain and to set up an artificial boundary condition
at the artificial boundary of the remaining bounded domain. For example, the Dirichlet condition and
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Neumann condition are often used for elliptic partial differential equations. In general, this artificial
boundary condition at the artificial boundary is only a rough approximation of the exact boundary
condition. Hence, the remaining bounded domain must be quite large when high accuracy is required.
In practice, in order to limit the computational cost, the artificial boundary must be chosen not too far
from the domain of interest. During the last ten years, ways to design artificial boundary conditions with
high accuracy on a given artificial boundary for solving N-S equations in an unbounded domain have
been studied often. For instance, Halpern [1], Halpern and Schatzman [2]| designed a family of artificial
boundary conditions for unsteady Oseen equations in the velocity pressure formulation and applied
them to solve unsteady N-S equations. Nataf [3] presented an open boundary condition for steady
Oseen equations in stream-function vorticity formulation, which is applied to viscous incompressible
flow around a body in a flat channel with slip boundary conditions on the wall. Hagstrom [4,5] proposed
asymptotic boundary conditions at artificial boundaries for the simulation of time-dependent fluid flow
and applied them to solve N-S equations. Han et al. [6], Han and Bao [7,8] developed artificial boundary
conditions for N-S equations with stream-function vorticity formulation in channel.

In this paper we consider a steady viscous incompressible flow around an obstacle with velocity—
pressure formulation. Two horizontal straight line artificial boundaries are introduced and the problem
(1.1)~(1.4) is approximated by a flow in an infinite channel with slip boundary condition on the wall.
Then, two vertical segments are introduced to limit the channel to a bounded computational domain. In
the region sufficiently far from the obstacle, the velocity of the flow is almost a constant vector, in which
N-§ equations can be linearised by Oseen equations. A series of artificial boundary conditions with
increasing accuracy are designed by imposing the continuity of velocity and the normal stress. Thus, the
original problem (1.1)-(1.4) is approximated by a problem defined in a bounded computational domain.
Numerical results show that our artificial boundary conditions are very effective.

2. The exterior Navier-Stokes problem

Taking a constant L > 0, such that £ ¢ 2 =R x (0,L), then the exterior Navier-Stokes problem
(1.1)-(1.4) is approximated by the following problem when L is sufficiently large [3]:

(u-Vu+Vp=vAu, in O\, (2.1)
V-ou=0, in 2\, (2.2)
o 3]
U2l ,=0.. =0, O12l—0L =V =4y ﬁ) =0, -—oo<x <+ox, (2.3)
- - 8)(2 8x1 xa=0,L
ulgn =0, (2.4)
u(x) — Uy, when x; — oo, (2.5)

where oy, is the tangential stress on the wall. The boundary condition (2.3) is called slip boundary
condition and is equivalent to the following:
aLl]

=t]y,—0s. =0, —00 < x < +oc, (2.6)
axz .rvIU,L ) '

Taking two constants b < c, such that £ C (b,c) x (0, L), then {2 is divided into three parts {2, {2y
and (2, by the artificial boundaries I, and I'; with
Iy={xeR*|x =b0<x <L},
I={xeR|x=c,0<x <L),
0, ={xeR| —xc<x <b 0<x, <L}
Qr={xcR|b<x <c,0<x <L}\ {2,
Q. ={xeR|c<x <+00,0<x, <L}
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When |b| and c¢ are sufficiently large, in the domain (2, U {2 the velocity u is almost constant vector ..
So the N-S equations (2.1)-(2.2) can be linearised in domain (2, (and £2,), namely the solution (i, p) of
problem (2.1)-(2.5) approximately satisfies the following problem [2,6-8]:

du .
a P +Vp=vAu, inlfl, (2.7
V.-u=0, in {2, (2.8)
Bul
— =ly0s =0, c< , 29
s or Uy | 2=0,L Cs X <400 (2.9)
u(x) — Uy, when x; — +oc. (2.10)

In [9], the author derived a general solution of the above problem using separation of variables under
the assumption lim, _., p(x) = poo =0

— - - B (x,=¢) mw A= (m)(x1—=c) mmx;
=a+ et — b —_—, 2.11
uy (x) mZ::] [am Da ) ome ] cos — (2.11)
d mmwx
Uy (x) = Z [am e T4 p e)\’(m)(xlfc)] sin Tz_ , (2.12)
m=1
p(x) = —az ame” T 5179 cos mzxz , (2.13)
m=1
where
N I P o)
)F(m):a va +21zm17/ , m=1,2,...,
14
ai, by, ap, by, ... are any constants.

3. Artificial boundary conditions on I

Let £(u) = (&i(u))2x2 and o (u, p) = (03;(u, p))2x2 denote the rate of strain and stress tensors, respec-
tively. We have

1 Bui Bu,- ..
() = = [ 2 - 1
gzj(u) 2 (8)6] + BX[ ) ] 13] 1’2 (3 )
and
oij(u,p) = —pdj; + 2ve;(w), i,j=1,2, (3.2)

where §;; is the Kronecker Delta whose properties are
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1, i=j,
8ij = L
0, i#j.

o, = (a-nl,(r,,z)T denotes the normal stress on the artificial boundary I, then

du
On =101 + R0 = O = (—P +2v 8_]) , (3.3)
X1 I
ou ou
Opy =M 02 + N0y = 0y =V bt it , (3.4)
Ox;  Oxy L.
where n = (ny,n;)T = (1,0)7 is the outward normal vector on I.
We now use the transmission conditions
u(C_’XZ) = u(C+,X2), (35)
on(C,x3) = au{ct, xp), (3.6)

to obtain artificial boundary conditions on the segment I, for the problem (2.1)-(2.5). Substituting
(2.11)—(2.13) into (3.3)-(3.4), we get

> 2 2
Op, = Z [(a — VZ”T) Ay — VZm b,,,] cos mzxz , (3.7)
m=1
= 2m m*n? . ommx
Op, =V Z [— Tﬂam + (A“(m) + E\——(r—n—)> bm] sin T2 . (3.8)
m=1

From (2.11)-(2.12) and (3.7)-(3.8), a computation shows

[ 2v(~mm+ LA (m L mwx
0”122[ ( 12 ( ))/(; ul(c,xz)cos 7 2 d-Xz

m=1

2vma(mm + LA~ (m)) [ . mTxX; mmx;
— LA (m) /0 uy(c, x,) sin T dx, | cos 7 = Ty(u), (3.9)
~[ 2v(mmw+ LA~ (m)) [* mmx;
O, = z_:] [ I /0 uy(c, x;) cos 7 dx,
_ - L
+2V( meZL)‘ (m)) / uy(c, x;) sin mzxz dxz] sin @ = Tr(u). (3.10)
0

Therefore, we obtain artificial boundary condition (3.9)-(3.10) on the artificial boundary I,. Let

T (u)
T(u) = ( ' ) .
T (u)
Then, the problem (2.1)—(2.5) (= (1.1)-(1.4)) can be reduced to the following problem in a bounded
computational domain {27:

(u-Viu+Vp=vAu, in p, (3.11)

V.u=0, iny, (3.12)



W. Bao/Comput. Methods Appl. Mech. Engrg. 147 (1997) 263-273 267

Oy = up| =0, b<x <
8x2 iy = Wix,=0L =Y, XN &C (3.13)
ulag, =0, (3.14)
ulr, = o, (3.15)
on=T(u), onl.. (3.16)
Let
) al 2v(—mm+ LA~ (m)) [t mmx

TlN (u) = Z [ 5 / u;{c, x;) cos 2 dx,

~ L 0 L

2vmm(mw + LA~ (m L . mmx mirx

— (L3)r(m) (m) /0 u{(c, x;) sin 7 2 dsz cos T 2 ; (3.17)

N . L
™ () :Z[ 2v(mw +2L/\ (m)) / (¢, x,) cos mwx; dr,

o L 0 L

_ - L
+ 2 mﬂ;L/\ (m)) / u(c, x,) sin mzxz dxz] sin mzx2 , (3.18)
0

N
TN(u) — ( TlN(u)) .
T, (u)

Then, we get a sequence of approximate artificial boundary conditions on the segment I-.
o, =TV(w), N=012,..., (3.19)

where

T(u) = (8).

Hence, the original problem (1.1)-(1.4) is reduced to the following problem in the bounded computa-
tional domain {2 approximately for N =0,1,2,...

(u-Vu+Vp=vAu, inlr, (3.20)
V-u=0, in {2y, (3.21)
% o =U|y=0. =0, b<x <c, (3.22)
ulag, =0, (3.23)
ulr, = oo, (3.24)
on=TYu), onT,. (3.25)

In fact, N =0 in (3.19) is the stress-free boundary condition which is often used in engineering to
solve N-S equations.
In a similar way, we can derive approximate artificial boundary conditions on the artificial boundary

I,
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4. The finite element solutions of problems (3.11)-(3.16) and (3.20)-(3.25)

Let H™({)7) denote the usual Sobolev spaces on the domain {2y with integer m [10]. Furthermore, let
Fl :{xe]R2|x2=O,be1 gC}U{XER2|xZ:L,b<X1 <C},
Fi = a!)iv
V ={veH () x H Q)| v|r,ur, = 0, va|r, =0},

with norm [Jv|l}, = [lvillf, g, + lv2llf 5 0,

W = L*();) with norm |jgq|lw = lall 20,5
M={ve HI(QT) x H'(027) |v|r, =0, v|r, = Us, V2|, = 0}.
Then, the boundary value problem (3.11)—(3.16) is equivalent to the following variational problem:
Find (u,p) e M x W, such that
A(u,v) + Ag(u,u,v) + A (u,v) + B(v,p) =0, VYveV, (4.1)
B(u,q) =0, YgeW, (4.2)

where

2
A(u,v):ZV/Q S () - £(v) dx

T ij=1
521// e(u) - e(v) dx,
Oy

Ap(u,v,w)= {(u-Viv] -wdx
9
2
S
= Z u; a—vi w; dx,
Qr Q=1 X;

B(u,q)=—/n qV - udx.
T

Al(uav):—/ oy - vdx;

Fc
z—/ T(u) vdx,
T
[ 2v(mm — LA~ L L
=Z[ (mm 12 (m)) / uy(c, x;) cos mzxz dxz/ v1(c, x3) cos mzxz dx;,
m=1 0 0
2vmm(mm + LA~ (m L . L
(L3A(m) (m) uy(c, xp) sin qurxz dxz/ v1(c, x3) cos X2 dx,
0 0
2v(mm+ LA™ L L
+ v(mm 77 (m)) / u1(c, xz) cos mzxz dxz/ v2(c, x2) sin mzxz dx,
0 0
2vimw — LA~ (m L L
+ ( 7 (m)) / uy(c, x;) sin X dxz/ va(c, x3) sin i dx,|.
L 0 L 0 L

Furthermore, let
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A’;’(u,v):—/ TV (u) -vdx,

¢

N - L L
:Z[zv(mw LA (m)) / uy(c, x;) cos mm dxz/ vy(c, x3) cos e dx,
0 0

L? L L

m=1

2vmm(mm + LA~ (m)) [t . mmx; L mix;
LA=(m) / u,(c, xp) sin 7 de/[; v1(c, x3) cos 7

2 LA~ L L .
+ v(mm + (m)) / uy{c, xp) cos i dx2/ vy(c, x2) sin mnx dx,
L? 0 L 0 L

2 ~ LA L L .
+ v(mm (m) / us(c, xp) sin T dx2/ va(c, xy) sin s dx,|.
L? 0 L 0 L

dx;

Then, the boundary value problem (3.20)-(3.25) is equivalent to the following variational problem:
Find (u,,p,) € M x W, such that

A(u,,v) + Aglu,,u,,v) + A¥(u,,v) + Bv,p,) =0, VYveV, 4.3)

B(u,,q) =0, YqeW. (4.4)

Let 7, be a regular partition of the domain (27, suppose V,, and W,, are finite element subspaces of V

and W. Particularly, we also assume they are the optimally compatible. Then V), and W), should satisfy
the following conditions [11].

(a) The errors inf,cy, |lu — v||y and inf,ew, ||[p — gl|lw have the same order in A, i.e. there is a constant
«, such that

inf flu—vlly < ah™|ulm 2,0, inf ||p —qllw < ah™|plm20;- (4.5)
veV, qeW,

(b) There exists a constant 8 independent of A, such that

B(v,q)
vevprfoy vy

z Bllgllw, Vg€ W, (4.6)
Let M, be a subset of M, which satisfies V,, = {u;, — v, | Yuy, v, € My }. Then the finite element approx-
imation of (4.3)—(4.4) is

Find (u:,pf:,) € M, x W,, such that

AWl ,0) + Ag(udh ,0) + AY () + B(o, pl) = 0, Vv eV, *.7)
B,q) =0, YgeW, (¢

5. Numerical implementation and example

For the sake of simplicity, Let 7, be a rectangle partition of {2y, with
9= J K,
KeT,
where K is a rectangle.
For cach rectangle K € 7}, connect the mid-points of the opposite sides of K, then each rectangle K
is divided into four smaller rectangles. Let 7; denote this new partition. Let
Vi, ={v € V | v|g is a bilinear polynomial, VK € 7; },
W, = {p € W | p|k is constant, VK € T},
M, = {v € M | v|¢ is a bilinear polynomial, VK € T; }.
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Then V,, and W, satisfy the BabuSka-Brezzi (B-B) condition and the following approximation property
[11]

inf [lu—vlly < Chlulzzq,,
vev,

inf — < Ch .
qlenW,, lp —qllv |P|1,2,nr

We use this finite element method to solve the following example.

EXAMPLE. Flow around a rectangular cylinder obstacle. The obstacle {2; is defined by the domain

2L o<k

I

Then the bounded computational domain {2 is given by
Or={xeR®|b<x <c, 0<x,<L}\ .

We take b =0,c =2.8, L = 1.0, a = 1.0. The nonlinear term (u - V)u is linearised by the Newton method.
At every iterative step, we use the finite element method to solve a linear problem.

As {); is a rectangular, we assume symmetry of the flow and consider only the upper half-domain of
(7. Thus, the following slip boundary condition is posed on the boundary I' = {(x{,L/2) | b < x; < 0.8
orl.2< x €ch:

.(2,~:{x€]R2|0.8<x1<1.2,

Ouy(x) _
8x2 -

Two meshes are used in the computation. Fig. 2 shows the partition 7, for mesh A of {2;. Mesh B
is generated by dividing each rectangle in mesh A into four equal smaller rectangles. To test the effect
of the approximate artificial boundary condition (3.19), let (1%, p) denote the finite element solutions
of the problem (4.7)-(4.8) with N = N* sufficiently large. In our computation we take N* = 100. Let
(uf,, p% ) denote the finite element solution of the problem (4.7)-(4.8).

Tables 1-6 show the maximum of the errors u”, — u, and p*, — p% over mesh points for mesh A and
B with different kinematic viscosity ». Furthermore, Fig. 3 shows the velocity field for mesh B with
v = 0.05. Figs. 4 and 5 show the velocity for mesh B with » = 0.05. Figs. 6-11 show the errors u” h

oo — Uy
and p* — p% at outflow boundary I', for meshes A and B with » = 0.01.

wkx)=0, xel. 3.1
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EERY N I I I A Y A |
[E R T B U R A |
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23]
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i

i
"

0

0 05 1 15 2 25

Fig. 2. Mesh A.
Fig. 3. Velocity field (v = 0.05).

Fig. 4. uy (v = 0.05).
Fig. 5. uy (v = 0.05).
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From Tables 1-6 and Figs. 6-11, we can see that the approximate artificial boundary condition (3.19)
is very effective for the N-S equations and more accurate than the stress-free boundary condition which
is often used in engineering literatures. Also, when N in (3.19) becomes larger, the artificial boundary
condition (3.19) becomes more accuracy. The results also suggest that only a few terms in the bilinear
form A,(u,v) are needed in order to get good accuracy.

ub, — uly (at T, Mesh A)

ub —uby (at T, Mesh A)

0.035 0.03
. -~N=0 ~N=0
003 |~ -N=1 0025 f PN -N=1
. ~N=3 - N ~N=3
0025 F \ —N=5 4 ~ —N=5
\ 002 | ; \
002 | \ / N
\ 0015 F .
0015 | \ - N\,
: 001 | ! N
001 b \ A \
~\ \ / N
0.005 | \ 0.005 |/ AN
: \ \ ! )
~ ; -~ 7 ) o mm ==~ N
0 fmre S - 0 p=z— ==
~ ~ 7
-0.005 — = == T2 005 : * ‘ : N
0 0.1 02 03 04 05 © 0 0.1 0.2 03 0.4 05
Fig. 6. v = 0.01, ¢ =2.8.
Fig. 7. v = 0.01, ¢ =2.8.
b — ply (at T, Mesh A) ub, — udy (at T., Mesh B)
0.001 0.01
-—N=0 ) —~N=0
— ~
° S ~-N=1 0008 [ '\ -N=1
I ~N=3 \ ~N=3
0.001 —N=5 0.006 '\ —N=5
\
0.002 | 0.004 |- \
- \
0.003 ooo2 |~ \
Ny |
0004 | 0 fromr =
N . -
~ \_' — - -
0005 —mmimm 0002 [ S
-0.006 : b L *2 0. . T . — ..... ] z
0 0.1 02 03 04 0.5 004 0 0.1 02 03 0.4 05
Fig. 8. v =001, c =28
Fig. 9. » =001, c =28
ub_ —uby (at T., Mesh B) p% ~ ply (at T, Mesh B)
0.03 0.001
' —~N=0 ~N=0
0.025 + - -N=1 0 -N=1
RN N=3 mim—m—m-— === - ..N=3
002 b // N\ —N=5 0.001 —N=5
\ .
/ ’\ -0.002
0015 |/ N '
/ N 0003 F
001 | ; :
! N 0004 |
4/ \
0005 | PP N 0,005 |- e -
> T N N e -
0 ~ — -0.006 F_..-—-
-0.005 . : : 2 -0.007 : : : ‘ L2
0 0.1 02 03 0.4 05 0 0.1 0.2 03 0.4 05

Fig. 10. » = 0.01, ¢ = 2.8.
Fig. 11. » = 001, ¢ = 2.8,
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Table 1

v = 0.05, mesh A

N N=0 N=1 N=3 N=5

max |uf_ — ul | 1.267E-2 3.404E4 2.137E-4 2.324E-4

max [ — ul, | 1.195E-2 1.169E-3 4.605E-4 1.579E-4

max [pk, — p% | 4.297E-3 2.041E-4 4.197E-5 2.230E-5

Table 2

v = 0.05, mesh B

N N=0 N=1 N=3 N=5

max [uf  — u, | 1.069E-2 7.668E-5 2.165E-5 2.664E-5

max [uh — | 1.181E-2 5.725E-5 1.216E-5 6.459E-6

max |ph, — ph | 5.593E-3 3.171E-5 5.948E-6 7.687E-6

Table 3

v = 0.02, mesh A

N N=0 N=1 N=3 N=S5

max |uf_ —u | 2.898E-2 3.324E-3 4.403E-4 7.041E-4

max jub -l | 2.810E-2 8.572E-4 3.690E-4 2.000E-4

max |pf, — pl | 7.881E-3 1.542E-4 3.362E-S 3.147E-5

Table 4

v = (.02, mesh B

N N=0 N=1 N=3 N=5

max |uf_ - ull, | 1.259E-2 5.754E-4 6.531E-5 9.108E-5

max |uf  —uly | 2.532E-2 5.679E-4 5.437E-5 3.767E-5

max |ph. — ph | 6.333E-3 1.155E-4 9.581E-6 1.343E-5

Table 5

v = 0.01, mesh A

N N=0 N=1 N=3 N=5

max u?  — ut, | 3.271E-2 8.396E-3 5.245E-4 9.154E-4
h h

max |uf | — i, | 2.664E-2 1.551E-3 3.171E-4 2.371E-4

max |ph, — ph | 8.819E-3 6.254E-4 3.313E-5 2.689E-5

Table 6

v = 0.01, mesh B

N N=0 N=1 N=3 N=5

max |uf | — u, | 1.371E-2 2.816E-3 7.528E-5 1.194E-4

max |uf - ul, | 2.578E-2 3.606E-3 1.229E-4 7.896E-5

max [ph, — pl | 6.107E-3 7.554E-4 1.064E-5 1.270E-5
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6. Conclusions

A new series of artificial boundary conditions on the outflow boundary is designed for steady two-
dimensional incompressible viscous flow in velocity—pressure formulation by imposing the continuity
of velocity and normal stress. These boundary conditions are compared to the stress-free boundary
condition. Our new boundary conditions are proved to be more accurate. In [3,6,7], the authors show
that the stress-free boundary condition is more accurate than Dirichlet boundary condition which is
also often used in engineering literatures. Thus, our boundary conditions are also more accurate than
Dirichlet boundary condition. Therefore it is time saving, since for a given accuracy it is possible to
use a smaller computational domain. We also implement a new artificial boundary condition on inflow
boundary. Furthermore, numerical results show that only a few terms in the artificial boundary condition
are needed.
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