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Abstract

In this paper we consider the numerical simulation for the problem of infinite elastic foundation. A half circle artificial boundary
is introduced and discrete artificial boundary condition on it is designed by using the direct method of lines. Then the original
problem is reduced to a boundary value problem on a bounded computational domain. Furthermore, finite element approximation
of this boundary value problem defined in the bounded domain is considered. The numerical results show that the artificial boundary
condition given in this paper is very effective and more accurate than the Neumann boundary condition which is often used in
engineering literatures.

1. Introduction

Let (2 be an unbounded domain with boundaries Iy and T (see Fig. 1). Consider the following problem
of infinite elastic foundation:

—pAu—(A+p)graddivu=f in {2, (1.1)
ulr, =g, (1.2)
anlr, = onlr, =0, (1.3)
u is bounded when r = /x{ + x — +oc, (14)

where u = (uy,u;)" denotes the displacement, A, u are Lamé constants, g = (g1, £>)’ is a given function
on I, f = (fi,f>) is the applied body force and its support is compact. Let o = (0j;)2x2 be the stress
tensor with entries

. ou; Ou; o
Uij-)‘ai’dlvu+”(8i)q+8—,tj)’ 1<4,7<2, (1.5)

where §;; is the Kronecker delta.

The problem (1.1)-(1.4) is a boundary value problem of Navier equations defined in an unbounded
domain. In engineering computation, the stress analysis of a dam in plane with infinite elastic foundation
is usually reduced to a similar problem. In numerical simulation of this kind problem, the unboundedness
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Fig. 1.

of the domain {2 is a common difficulty. In practical computation, it is a usual method to introduce an
artificial boundary and design appropriate artificial boundary condition on it. Then the original problem
is reduced to a boundary value problem defined in a bounded domain. Thus, one can use the traditional
finite element or finite difference method to solve the new problem and derive a numerical solution of the
original problem in the bounded domain. It is a common problem that how to introduce an appropriate
artificial boundary and design artificial boundary condition with high accuracy on it. This question
attracts many engineers and mathematicians working on it in the last decade. And many works on the
related problems are appeared. For instance, Goldstein [7] presented the exact boundary condition at an
artificial boundary for Helmholtz-type equation in waveguides; moreover, a sequence of approximations
to the exact boundary condition at the artificial boundary was given. Feng [5] designed the asymptotic
radiation conditions for the reduced wave equation by using the asymptotic approximation of Hankel
functions. Bayliss et al. [2] proposed a series of radiation conditions for Laplace and Helmholtz equations.
Han and Wu {16,17] presented the exact boundary conditions at an artificial boundary for the Laplace
equation and the linear elastic system; moreover, a sequence of approximations to the exact boundary
condition at the artificial boundary was given. The exact boundary condition at an artificial boundary
for partial differential equations in an infinite cylinder was obtained by Hagstrom and Keller [10,11].
Shortly thereafter, they used this technique to solve nonlinear problems. A family of artificial boundary
conditions for unsteady Oseen equations in the velocity pressure formulation with small viscosity was
developed by Halpern and Schatzman [12], which was then applied to unsteady Navier-Stokes (N-S)
equations. Nataf [19] designed an open boundary condition for steady Oseen equation in streamfunction
vorticity formulation, which is applied to viscous incompressible fluid flow around a body in a flat channel
with slip boundary conditions on the wall. Hagstrom [8,9] proposed asymptotic boundary conditions at
artificial boundary for the simulation of time-dependent fluid flows. Han et al. [13] designed discrete
artificial boundary conditions for N-S equations in an infinite channel by using a fast iterative method.
Han and Bao [14,15] proposed discrete artificial boundary conditions for incompressible viscous flows in
a channel by using the method of lines. One can find more references in [1,6].

Another approach in solving the problem defined in unbounded domain is to use infinite element,
Le. use traditional finite element in a bounded domain and infinite element in the outer domain. For
instance, see Zienkiewicz et al. [20], Moriya [18], Beer and Meek [3], Bettess [4] and the references
therein.

In this paper we introduce a half circle as artificial boundary for the problem of infinite elastic foun-
dation and proposed artificial boundary condition on the half circle by using the direct method of lines
to overcome the difficulty of the unboundedness of the domain. Then, the original problem is reduced
to a problem defined in a bounded computational domain. We use a finite element method to solve this
new problem and obtain an approximate solution of the original problem in the bounded computational
domain. Furthermore, numerical example shows that the method given in this paper is very effective.
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Let I, = {x = (x;,x3) | x, = Rcos #, x, = Rsin#, —m < 6 <0}, with R > 0 is a constant. In fact I,
is a half circle in {2 (see Fig. 1). Then the domain {2 is divided into a bounded part {2 and an unbounded
part {2,. We can choose R such that supp f C ). We expect to solve the original problem in the bounded
domain 2. The key point is that we must present ‘appropriate’ artificial boundary conditions on the
artificial boundary I, in order to derive a good approximation of the original problem. In the following
section we will present a method to design a discrete artificial boundary condition on I.

2. The discrete artificial boundary condition on I,

The solution of the boundary value problem (1.1)—(1.4), u(x), in the domain (2, satisfies

—pAu—(A+p)graddivu =0 in {2, (2.1)
o1 = 0 =0, r >R, 8 =0or —m, (2.2)
u is bounded when r — +oc. (2.3)

Since the boundary condition of u(x) on the artificial boundary I, is unknown, the problem (2.1)-(2.3)
is an incompletely posed problem. If we suppose that the value of u(x) on I, u(R, #), is known, i.e.

r, — u(Rv 0)7 (24)

then the problem (2.1)—(2.4) has a unique solution u(x).
Let

u

: (2.5)

I.

g1 ¢cos @ + opsin 8
071 COS 6+ (045 sin @

o,,:(rn|rP:(

where n = (cos 6,sin §)" is the unit outward normal on I. If u|r, € [H"/*(I%)}* then we have that o, €
[H~V2(I,))?, where H*(I,) denotes the usual Sobolov space on I, with real number «. Hence, we obtain
a bounded operator K : [H'*(I,)]? — [H Y*(I,)]?, namely

on = K(ulr,). (2.6)

In fact the condition (2.6) is an exact boundary condition satisfied by the solution of the original problem
(1.1)—(1.4). Hence, the restriction of the solution of the problem (1.1)-(1.4) in {2; satisfies

—pAu—(A+p)graddivu =f in £, (2.7
ulr, =g (2.8)
o, =0 =0 on IHN{Y, (2.9)
on = K(u|r,). (2.10)

Unfortunately, the bounded operator K is unknown, the problem (2.7)-(2.10) cannot be solved directly.
In the following we solve the boundary value problem (2.1)-(2.4) by the method of lines with semi-
discretization. Then we can find an approximate relation between the value u(R, ) and the boundary
stress o, by using the numerical solution of the problem (2.1)-(2.4). Thus, we derive a discrete artificial
boundary condition on [.

Introducing variable transtormation:
x| =efcosé,
. (2.11)
X, =efsing.

Then, the domain {2, maps to a strip {2, = {(p,8) | InR < p, —w < 6 < 0} and I, maps to a segment
I''={(InR,0)| —m < 8 <0}. Furthermore, we have that
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(0 0 . o
B_p =ef <00505x_1 +smea—xz),
ﬁ a

— =ef —sin()——a—+c050£— ;
o 8](] 8X2 ’

(3 15] o
—ea P i
o, e (cos 0— 3p —sin @ 3 6)

a . a a
=P —
1 S [ (sm #— +cost )

and
*F ., > & ] 3
Ec?: "[cos Bwvsxn266p89+sm Béﬁ—coszoé;+sm2986
o? 2 o g & a . 7]
T e - —- - 26—
6x§ e [sm ()ap +sm208p88+cos 0662+c0526 3p — sin 086 ,

82 1 2 2 2
e [—sinZO—a— +c0520—8——— - lsin20—a—— —sin26—8— cos20 —

Ix1 Ox, 2 p? Opod 2 092 dp a0
& o & &

PR { _,]
8x1 0x3 op? NPT

Then, the boundary value problem (2.1)—(2. 4) is equivalent to the following boundary value

defined in the domain .(2

iy Oiiy
[[.L+()\+}.L)COS 8] +(A+u {00520——+sm20a 20 SDZG—%
& i 1. i,
[[.L+(A+[.L)Sln 0]——— /\+M)[ sm20 +c0526(9 8 —ism26%7

862
. Jdity iy
—sm29—8—p——cos29—a—]:0 in £2,,

*a i 1. oy . ity dily
—(A+pu) { sin26 — 357 L 4 cos26 3p 00 - istOa—HZ— - sm26?9? - COSZOBF]

. 5.1 &u O . i . o
_ [y, +(A+p) sm‘@] a—p;— —(A+p) [005208—;)2 +sin20 3 620 —sin26 —372]

[u+()\+p)cos 0] 80 =0 in {2,

o, Oup 61«41
(aﬂap)(,_ﬂ ( 02wy )

i is bounded when p — +00,

g=—m,0

ﬁ‘p—’—po = ii(po, 8);
where py = InR, d(p, 0) = u(e?, 0).

al

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

problem

(2.18)

(2.19)

(2.20)

221)
(2.22)
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In order to reduce the boundary value problem (2.18)-(2.22) to a variational ordinary differential
equation, we rewrite (2.18), (2.19) in the following form:

a 3121 /\+/.L Bul 8112 2 8u2
a0{[pd+()\+p,)sm 0]—— 29( +(pcos(9 Asin 0) B

a6 2 ap 60 p
i (A + % &%
[p,+(A+,u,)COS 0] 821+( 2’““) 20[822 apala]
2 ~
+ [A cos?f — ;u,sinze] 3?) 1:926 =0 in £ (2.23)
0 2 Buz A+M 8&2 8&1 2 . 2 %
86{[p.+(/\+;u,)cos6] 50 " > n26é 3 96 +()\cosﬂ—p,sm 0) 3p
A+ 2 g (25} 82142 2 ) 82121
+ sin 29[8[) +a 26 +[ucos0—-)\sm6]ap80
[,u+ (A + ) sin? 0] (?9 > =0 in 0,. (2.24)

Let H'((~m,0)) denote the usual Sobolov space on the interval (=, 0), ie.

H'((-m,0)) = {v(6) | v(8), v'(8) € L*((—m,0))}.

We also let
W =H'((~m,0)) x H'((—m,0)),

and

&v(p, 0
V= {v(p,()) = (vi(p, 8),v2(p, 8))" | for fixed p > py, v(p, 8), 8v((;>p,0) and ——%(::—2_) € W}.

Then the boundary value problem (2.18)-(2.22) is equivalent to the following variational ordinary
differential equations:

Find i(p, @) € V such that

2

dd 5 Ap(it,v) + —d—Al(u v)+Ag(d,v) =0, YveWw, (2.25)

i is bounded when p — +oo, (2.26)

ﬁ|P=Pﬂ = ﬁ(pO* 6); (227)
where

-7

0
Ag(it,v) = / {[w (A + 1) cos’8] i (p, 8)01(8) + [ + (A + w) sin®6] da(p, 8)02(6)

LA ;" $in 26 [ (p, 0)v,(6) + s (p, 0)v1(0)]} de, (2.28)
0 ~ -
Al(ﬁ,v):/_n{A " K Gin26 [al(p,mv;(e) - Ol6.0),, (g) 1 226:8),, )

~ii(p, 8)05(8) | + (A cos? — wsin0) [ 22L0) gy a5 0yuy(6)
08
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+(ucos’ — Asin’6) [aﬁ—g’g’—o)uz(a) — i (p, 0)u;(9)J } de, (2.29)

AU(IZ,U)Z—/‘O{[[.L-F (/\+[,L)SiI120:| %’;’0) 100)+ [,u,+(/\+u)cos 6] 812252,6) v5(0)

_“T"‘sinza [a 5?;’0) 16+ auz(p, ) ,(9)]} (2.30)

Aj(ii,v) (j =0,1,2) are bilinear forms on V x W. They can also be considered bilinear forms on

W x W by replacing i(p, 8) by u(6) ¢ W and a"(‘” ) by «/(6). Then, it is straightforward to check that
they have the following propertles on W x W,

LEMMA 2.1. (a) Aj(u,v) (j =0,1,2) are bounded bilinear forms on W x W
(b) Ao(u,v) and Ay(u,v) are symmerric forms, A,(u,v) is antisymmetric form.
(c) The following inequalities hold:

- AO(Ua U) 2 /‘lel%,(fn—,(])v Vv € Ws (231)
Ar(v,0) = pvllg; poy YU EW. (2.32)
In the following we will approximate the variational ordinary differential equation (2.25) by semi-
discretization. Let
—T=0 <6< - <Oy =0

be a partition of interval [—r,0]. Furthermore, let hy = | max (6;,1 — 6;) and
SIS

Sh— {vh(G) | uh(ﬂ) € CU([a'n',O]), vh(ﬂ)l[g]'(;j”] € Pl([ej,ej”]), 1<j< M- 1}.

Then, $* is a finite element subspace of H'((—-,0)). In addition let
Wh = §" x §*

h 82 h 0
yh {vh(p,e) | for fixed p > py 0'(p, ), 20 000, 0) W”}.

dp op?
Then, we derive an approximation of problem (2.25)-(2.27) with semi-discretization by replacing V by
V# and W by W":

Find @"(p, 8) € V" such that

2
dd—Az( o)+ %Al(ﬁh,vh) + Ag(@, 0"y =0 Vo' e W, (2.33)
@" is bounded when p — +oo, (2.34)
@ pp, = @ (po, 0):; (2.35)

where i"(py, 6) € W" such that i (po, 6,) = ii(py, 6,) forj=1,2,... M.

Suppose that {¢;(6), j=1,2,... ,M} is a basis of the finite element space S* such that d;(6;) =
8, 1<i,j <M. Then, {(¢;(6),0)", (0,¢;(6)), 1 <j< M} is abasis of the finite element space W".
Thus, for @"(p, ) = (@ (p, 8), @ (p, 8))' € V", we have that
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M
(p,0) =Y u(p)g;(8), i=12. (2.36)
j=1
Setting
Ulp) = [1 (), (p). -l (o), " (), 18" o), . ()] (237)

U(p()) = [ﬂ](po, 01)’ ﬁl (pO 02)5 s 1111 (p()’ 9M)7122(p07 0]),!12([)0, 62)\ s JZZ(PO, GM)]I

= [ul(Ra 01)7“1(R7 02)7" . aul(Ra OM)auZ(Rv 01)7“2(Ra 92)3 e auZ(Rv OM)]r7 (238)
( ¢i(0) () - dy(6) 0 0 0 )I
N(0) = : (2.39)
0 0 0 d(0) &(8) - du(6)

Substituting (2.36), (2.37), (2.38) and (2.39) into (2.33)—(2.35), a computation shows that the problem
(2.33)—(2.35) is equivalent to the following ordinary differential equations:

B,U"(p) + BiU'(p) + BoU(p) =0, p > po, (2.40)
U(p) is bounded when p — +o0, (2.41)
U(p)lo=m = U(po), (2.42)
where
+u

0 w+ (A +p)cos’d sin26
B;Z:/ N (8) N(8Y d6, (2.43)
- /\+}.L . .2
sin26 w+ (A +p)sin“0

0 ;,u sin26 Acos’0 — wsin®0
Blz/ {N(t‘)) N'(9)

- . A+
" (L cos?f — Asin’@ —2ﬁ sin20

il sin 26 Asin’6 — p cos’6
+N'(8) N(8)| de, (2.44)
.2 2 A +u .
usin“d — Acos“ @ — sin24
) A+}L .
0 w+ (A +p)sin“6 -3 sin 26
B, = _/ N’(G) N’(O)t dé. (2-45)
-7 _)\+,LL

sin26 o+ (A + p)cos?
By, B, and B, are 2M x 2M matrices. From Lemma 2.1 we have that

LEMMA 2.2. B, is a symmetric positive-definite matrix, By is an antisymmetric matrix and By is a sym-
metric negative semi-definite matrix.

Since the elements in the matrices B;, j =0,1,2 are real constants, the boundary value problem of
ordinary differential equations (2.40)—(2.42) can be solved by a direct method. Suppose

Ulp) = ¢, (2.46)
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where vy is a constant, £ € C** is to be determined. Substituting (2.46) into the ordinary differential
equations (2.40), we derive the following generalised eigenvalue problem:

[7232 +yB + Bo] £=0. (2.47)

Let n = y¢, then we have the following standard eigenvalue problem:

o ) ()00 2 C)
=y , (2.48)
-By, -B n 0 B 7

where Iy denotes 2M x 2M unit matrix.

LEMMA 2.3. If y € C is an eigenvalue of problem (2.47) (= (2.48)), then —v is also an eigenvalue of
problem (2.47).

PROOF. Let y € C be an eigenvalue of problem (2.47) and ¢ € C*M be the corresponding eigenvector.
Then, by Lemma 2.2, we have that

0= det['ysz + ’)/Bl + B()]
= det[(y’B; + vB1 + By)']

= detl(~y)*B = yB: + Bol. (249)
Thus, we know that there exists a vector n € C*M such that
[(—¥)*B2 — ¥By + Boln = 0. (2.50)
This implies that —y is also an eigenvalue of problem (2.47) and the vector 7 is the corresponding
eigenvector.
We can solve the standard eigenvalue problem (2.48) by the numerical method. From Lemma 2.3
we know that we can derive 2M eigenvalues with non-positive real part, say vy, v, ..., y2» and the

corresponding eigenvectors:

(§1>(§2) ( &om )
né Y& Ymém )’

with vy =9, =0, & = (1,1,...,1,0,0,... ,0) € R?M, ¢, =(0,0,...,0,1,1,... 1) € R*M. Particularly,
we assume y; (1 < j < 2r) are real eigenvalues and y; (2r + 1 < j < 2M) are complex eigenvalues with
nonzero imaginary parts such that y; = 9,_; (r +1 </ < M). Thus, we have that ‘

2r M
U(p) — Zbi ev,-(p—m)gj + Z [sz_l Re(e”'(”*"”)gzj) + bZ)’ Im(e”'(”(””)gzj)] , (2.51)

j=1 j=r+l1

where Re(y) and Im(y) denote the real part and the imaginary part of the complex number y and
b; (1 <j <2M) are constants. Thus, U(p) satisfies the ordinary equations (2.40) and the boundary
condition, U(p) is bounded when p — +oc.

Introduce matrices

W(p)= [evl(pfm)gl’ el e‘)’Zr(P*Pu)gzn Re(ehuz(P‘Pu)é:ZHz)’ Im(e’z’”(p*””)éﬁz), e

Re(e”“ (p—pu)§ZM ), Im(ev:M(p—pn) Em )] ,

Wipp) = Wo=[&, ..., & Re(&ru2), Im(&r12), -+, Re(&y), Im(&u)],
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W/(Po) =W, = [71 &, -, vbor, Re(yvarnborin), Im(72r+2§2r+2)’~-' )

Re(vom &om), Im(y2y §2M)] ,

b=[by, by, ..., bay]".
Thus
U(p) = W(p)b. (2.52)
From (2.52) and (2.42) we obtain that
b=W;'U(py). (2.53)
Substituting (2.53) into (2.52), we have that
U(p) = W ()W, " U (py). (2.54)
Thus, we get the semi-discrete approximate solution of problem (2.18)-(2.22) for given u(py, 6):
@ (p,0)
#(p,0) = ( ) = N(8)'U(p) = N(6)'W(p)W; ' U (po)- (2.55)
i (p, 6)
Therefore, the approximate solution of problem (2.1)-(2.4) in polar coordinate (r, 8} is:
u(r,0) = i"(Inr,0) = N(6)W(nr)W, " U(py). (2.56)

In the polar coordinate (r, #), we have that

;'u sin26 Bp

p+ (A + p)cos’
on =

x|
QD
b
(]

+ 0. .2
sin26 w+ (A + p)sin“0 —-—
2 Op / lp=pm
. oi
- +'usin20 Acos20—p,sm20 79—01
o1 2 _ 2.57)
pcos’8 — Asin®6 ¥ Sin26 ot
30 7 lpepy
Substituting (2.55) into (2.57), we have that:
5 0.
1 w+ (A+p)cos o > sin20
R A N(8)Y W W, U (po)
T H Gin26 w+ (A +p)sin’0
. 27 E Gn26  Acostd — usin®6
T N'(8)'U (p). (2.58)
R 2 .2 + M
pmcos” 0 — Asin @ sin 20

The formula (2.58) is a relation between the normal stress and displacement on /. This is a discrete
artificial boundary condition.
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3. The numerical solution of the problem (1.1)-(1.4)

We now consider the numerical solution of the problem (1.1)-(1.4) on the bounded computational
domain (). As we know the restriction on ) of the solution of the problem (1.1)-(1.4), u(x), satisfies
the boundary value problem (2.7)—~(2.10). Let H'(£2) denote the usual Sobolov space on {2; and assume
that

Te={ve H'(Q) x H'(%) | v|r, = g},

To={v e H' () x H' (%) | v| = 0}.
Then, the boundary value problem (2.7)-(2.10) is equivalent to the following variational problem:
Find u € T, such that

a(u,v) + blu,v) = f(v), YuveT,, (3.1
where

a(u,u):/ﬂi[/{ divudive +2u (g:-: 296% +g—§;22 g—:i)

b(u,v) = —/r K{u) -v ds, (3.3)

fw) = /!)if-v dx. (3.4)

For the simplicity, we suppose that I is a polygonal line in R%. Let 7" be a regular triangulation of
(), ie. £} = Upp T with those T such that T N1, # @, and only these, having a curved side (on I3).
Furthermore, let

Th={v" =}, v8) | vy € P(T), YT €Tt j=1,2},
TV = {v" € T" | v"(d;) = g(d;) for the node d; € I}},
T¢ = (v € T" | v*|;. = 0}

Thus, we obtain the discrete form of the problem (3.1):

Find «" ¢ T} such that

a(u,v") + bl o™ =f(v"), Vvv'e Tg. (3.5)

Since the bounded operator K is unknown, we cannot solve the problem (3.5) directly. But we can use
the procedure in Section 2 in the case that the nodes on the boundary I', are mapped into the points
(0, ¢;) for j = 1,2,... , M by the mapping (2.11). Then we have the discrete artificial boundary condition
(2.58). Thus, for u*,v* € T* et

by (u", ") = -/ g, - v ds
T,

e
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0
——/ Un-vhRdH

0 w+ (A +p)cos*o ¥ sin26 \
=*V;io/ N(8) N(8) W, W,
R /\+/.L . .2
5 sin26 o+ (A+ p)sin“f
;M sin246 Acos’@ — psin’6 .
+N(0) N,(O){ dé Uh,Oa (36)
pcos’f — Asin’o M sin26 -
with
Upp = (U (R, 61), ... ,u (R, 0y), (R, 01),... ,ui(R, O], (3.7)
and
Vh,U = [U{I(Ra 01)7 e ,U?(R, OM)a Ug(Ra 01)7 e 7U§(R7 GM)]I . (38)

Using bilinear form b, (u",v") instead of b(u",v") in the problem (3.5) we obtain:

Find 4" € T such that

a(uh,v"y + by (" V*) = fO1), VYo' e TP (3.9)
After solving the problem (3.9), the solution u” € T: is an approximation of the original problem (1.1)-

(1.4) on the computational domain {(2;.
For the bilinear form b, (1", v"), we have that

LEMMA 3.1. The bilinear form b, (", v") is bounded and symmetric on T" x T*. Furthermore, b, (v",v") >
0 for all vh € T™.

PROOEF. For given u* ,v" € T", noting (3.6), (3.7), (3.8) and (2.36), we have that

uh|h = N(8)' Uy, (3.10)

|7 = N(8) V. (3.11)
On the domain f)e, let

W= NOYW(p)W; ' Uy, (312)

vh = N(8)YW(p)W, ' Vio. (3.13)

Thus, we have the continuous extension of u* and v* on £, (say £2,). A computation shows that
oul avh 6u v o Aut\ [t oul
2 1 ovy | oi, ov 1, % TN 2 ax
[) |:)\ div u div U Tk <8x1 8x1 8x2 8x2> (BXZ Bxl sz * Bxl
Ju ou" ovh ot
/1 / [(A+2u) <c0598—p— %) (cos@%—smé’%

A+2 Bauh+ Oauh i 98v§’+ oseavg
+(A+2u) | sin P cos§— sin ap c

+A 7] auh né 8u” sin 6 ng + cos 6v§’
cos ap sin o0 ' Op a6
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3uh Bvh vt
+ sm0— +Cos 0 —= 1 : 1
A( cos 0) (cosH smO—o

+ sin 0 — +cosd 6‘uh sin @ BU{Z 0 BU{I
“m 50 in op + Ccos 59

ot h oh
+ 0— 6L —= - —2
M <sm + cos 0 < cos 0 8p sin 6 50 )
. out ot ovt
+ (cosﬂ— smﬁ%) (sinGaiplecosO—é)%l)
ou ot vt
2 _ ') =2 _ 1
+p,(coseap sin 6 6>(C0506p sn@ae)}dpd()
&ul ot u h h ok
= by (", V" / / Ay | — A (—,v + Ag(u”,v )] dpde
In p? 0
=b,(u",v") (3.14)
Hence
out dvt Bl ot out  out 8v" Bv
b uh’ h :/ A di di 2 2 1 2 -1 -2
h( v ) 0, IV Ll V U Tep 8x1 6x1 " o, sz sz T 8x2 N 8x1 8x1 dx
=b, (" u"), V' v e T (3.15)
o\’ o\’ ot 8v
bu(v", v" :/ Aldiv o2 424 [ E91 2 2 ovr L 9y S h h
(V" 0") N |div v +2u o, +2u s + M o, 8x1 dx >0, vv"eT
(3.16)

From the Lemma 3.1, it is straightforward to check that the problem (3.9) is a well posed problem.

4. Numerical example

Let w =A/(A+2u) and

hy(e,t) = (1 - w) arctg L _ (14 )M @4.1)
X; (x1 — )2+ x2
hy(x,t) = In[(x —t)2+x2]+(l+a))£L 4.2)
o ! 2 (X —1)? +)c2 ’
h(x,t) = (h(x, 1), o (,x, 1)), (4.3)
u(x) = (uy(x),uz(x))" = h(x,0) — % [A(x,0.5) + A(x, —0.5)]. (44)

It is straightforward to check that u(x) is the unique solution of the following boundary value problem:

—uwAv —(A+p)graddive =0 in £2, (4.5)

Ul =1 = u(£1,x3), -1 < x; <0, (4.6)
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Ulg—1 = ulx;,—1), -1<x <1, (4.7)
(91)1 81)2 E)vl sz

A—+A+2p) — = — == ] = =0 =1, 4.8
a2 5 —u (G 22 =0, =0, x| “8)

v is bounded when r — +o0; (4.9)

where {2 is the domain of the lower half plane R? = {x = (x1,x2) | x, < 0} subtracted a rectangle =
{x=(x,x)] —1<x <1, -1<x<0},ie 2 =R2 \ {}. Wetake I, = {x = (2cos §,2sin8) | — 7w <
6 < 0} as artificial boundary. Then the domain {2 is divided into a bounded part {); and an unbounded
part {2, with

Qi = {XI (xlaxZ) }x € ‘Q’ x%+x§ < 4}a

Qe ={x=(x1,x) | x €, x{+x5>4}.

Since the first and second parts u;(x) and u,(x) of u(x) are antisymmetric and symmetric about x; axes,
respectively. The domain of computation is taken to be the part of £; lying in the fourth quadrant (say
{)7). The following boundary condition is posed along x, = 0:

9v2(0, x) _

vl(01x2) = axl

0, 2<xn<-1 (4.10)

The boundary condition (4.10) is equivalent to the following condition:
Vl(O,xQ) :Ulz(O,XZ) :0, —2§x2 < -1. (411)

We use the method proposed in Section 3 to solve the problem (4.5)-(4.9) on the domain (2.

Three meshes are used in the computation. Fig. 2 shows the triangulation for mesh A. On each triangle
in mesh A, we connect the midpoints of every two sides, thus this triangle is divided into four small
triangles. Then we obtained the refined mesh B. Mesh C is similarly generated from mesh B. Linear finite
element is used in our computation. We take A = 1.0 and p = 2.0. Let #* = (%, u})" denote the finite
element approximation in the domain £ by using the discrete artificial boundary condition (2.58). For

comparison we also compute the finite element approximation uN = (uq”N , u;”N ) of problem (4.5)-(4.9)
in the domain (2! by using the following Neumann artificial boundary condition on I:

Galr, = 0. (4.12)

Mesh A

Fig. 2.
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The Neumann artificial boundary condition (4.12) is often used in engineering literatures for simulating
the problem of infinite elastic foundation.

Table 1 shows the maximum of the errors u — u” over the mesh points for mesh A, B and C. Further-
more, Table 2 gives the errors [lu —~ u”|lg2 0, (4 — 4|, 2.0 and ||u — u”|; . for mesh A, B and C. For
comparison Table 3 shows the maximum of the errors u — u"" over the mesh points for mesh A, B and
C and Table 4 gives the errors |lu — u"N||o, o, [u — V]|, , o and |u — V||, for mesh A, B and C.

Furthermore, Figs. 3 and 4 show the values of numerical solution «” and u% on the mesh points of the
artificial boundary I%. Figs. 5 and 6 show the related errors |u; — u?|/|ui] x 100 and |u; — uf|/|u,| x 100

on the artificial boundary I,. Figs. 7 and 8 show uﬁ"N and u'z"N on the artificial boundary I.

From Tables 14 and Figs. 3-8, we can see that our discrete artificial boundary condition (2.58) is very
effective for the problem of infinite elastic foundation and more accurate than the Neumann boundary
condition (4.12) which is often used in engineering literatures. We can derive a good numerical approx-
imation «” of the solution u of the original problem in a small domain £2; by using our discrete artificial

006 [ u (at artificial boundary points) 01 ¥ (at artificial boundary poiuts)

oMesh C 5
* o Mesh B
= Mesh A 005
—Exact Solution

0.02 ol
o Mesh C
a Mesh B
) -0. x Mash A i
° 08 —Exact Solution
002 0.1
x [
004 : 8 Q.15 - ‘ ]
-90 60 .30 0 -90 50 -30 0
(degree) (degres)
Fig. 3.
Fig. 4.
Jus — u} . . —uh
‘ITI’[ X 100 (at artificial boundary points) —""lu I'"' x 100 (at artificial boundary points)
2
20 20 -
x
F § [
X
15 15 x x Messfh'l A
o Mesh B
! ) OMah i OMesh C
r -x Mesh A
10 x 10
x
o o o
5k o o 5|
o x
o o 1] a a “ o
o [e] o o] o
O o D Q b o]
0 °%o4 0000000 o ooooo.oonoo,ooohoc.’e
90 €0 -30 0 -90 50 30 0
{degree) (degree)
Fig. 5.

Fig. 6.
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0.2

ui*N(at artificial boundary points)

383

Eu'l"N (at artificial boundary points) 0.3 E—
L ° c@opgo
015 | 8, o Mesh C 02 F o © ¢
° o Mesh B 0
8 « Mesh A
a1} @ x —Exact Solution 01 o
L o
0.05 Lo ofF
a
oMeshC
0 o 0.1 o Mesh B
) « Mesh A
e i ~—Exact Solution
005 ° < -0.2 o ]
oo g 1]
-0.1 : 8 03 : : - 8
-90 60 30 0 -90 60 -30 0
(degree) (degree)
Fig. 7.
Fig. 8.
Table 1
Maximum error of u — & over mesh points
Mesh A B C
max |u) — u| 1.1961E-2 6.7392E-3 2.6952E-3
max ju — ul| 1.9399E-2 6.6557E-3 2.1782E-3
Table 2
Errors of u — u”
Mesh A B C
lley — o 2,0, 4.2899E-2 1.1832E-2 3.2777E-3
g — 2.0, 2.9494E-1 1.7532E-1 9.1848E-2
lly — €l 2.0, 2.9804E-1 1.7572E-1 9.1907E-2
2 ~ hllo 2.0 48181E-2 1.5243E-2 41713E-3
uy — i 20, 4.6169E-1 2.5481E-1 1.3099E-1
ey ~ w1 2,0, 4.6420E-1 2.5527E-1 1.3105E-1
Table 3
Maximum error of u — u*" over mesh points
Mesh A B C
max Juy — o 1.1554E-1 1.2648E-1 1.3283E-1
max |1 — u;"| 1.6878E-1 1.7154E-1 1.7611E-1
Table 4
Errors of u — 1V
Mesh A B C
ey~ uf M lo2.0 9.6826E-2 1.2118E-1 1.3004E-1
g — M a 4.4996E-1 4.2557E-1 4.1974E-1
llwy ~ M0 4.6026E-1 4.4249E-1 4.3943E-1
llwz — s ™lo 2. 2.0704E-1 2.2585E-1 2.3780E-1
luy — ™|y 2.0, 6.4550E-1 5.5591E-1 5.3290E-1
Nz ~ dN 150, 6.7790E-1 6.0004E-1 5.8355E-1
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boundary condition at the artificial boundary. On the other hand, the Neumann artificial boundary con-
dition is a very crude artificial boundary condition. We can also see that the finite element approximation
u" converges to the solution u of the original problem in the bounded computational domain {2 when
the finite element mesh size 4 of {); goes to 0 and u" converges, but not to u, in 2; when A goes to 0.

5. Conclusions

A discrete artificial boundary condition on a half-circle artificial boundary is designed for the prob-
lem of infinite elastic foundation by using the direct method of lines. The discrete artificial boundary
condition is compared to the Neumann boundary condition which is often used in engineering litera-
tures. Numerical results show that our discrete artificial boundary condition is more accurate than the
Neumann boundary condition. Therefore it is time saving, since for a given accuracy it is possible to
use a smaller computational domain. Furthermore, when the bounded computational domain is fixed,
the finite element approximation u” converges to the solution u of the original problem by using our
discrete artificial boundary condition at the artificial boundary as the finite element mesh size & of the
bounded computational domain tends to 0. On the other hand, if we use Neumann boundary condition
at the artificial boundary, the finite element approximation #*" converges, but not to the exact solution
u, when the mesh size h tends to 0.
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