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Abstract

We consider the numerical simulation for the problem of infinite elastic foundation. A polygonal artificial boundary is introduced and a
discrete artificial boundary condition on it is presented by using the direct method of lines. Then, the original problem is reduced to a
boundary value problem on a bounded computational domain, which is solved by the finite element method. In addition, we prove an
optimal a priori error bound for the displacement in the bounded computational domain. Finally, numerical example shows that the discrete
artifictal boundary condition given in this paper is very effective and more accurate than Neumann boundary condition which is often used
in engineering literatures. © 1999 Elsevier Science S.A. All rights reserved.

1. Introduction

Let {2 be an unbounded domain with boundaries I, and I; (see Fig. 1). Consider the following problem of
infinite elastic foundation:

—pAu—(A+ p)graddivu=f in {2, (L.1)
u=g onl, (1.2)
_ (8u1+8u2 _ _)lau,+ A+ du, r )
ag,=pn ax, Tox, )T 0y = o, (A+ /.L)ax2 =0 onl,, (1.3)

. 2, 2
u is bounded when r=Vx| +x;— + (1.4)

where u = (u,, u,)" denotes the displacement, A, u are Lamé constants, g = (g,. g,)' is given function on I,
F=(f,, £2)" be the applied body force and its support is compact. Let o = (0;,),%- be the stress tensor with
entries: ‘

5. di du; ~ ou;
= —_— — <7 7
o,=A5; divu+ u 8x,+8x, 1<i, j<2, (1.5)
where §; is Kronecker Delta.

The problem (1.1)—(1.4) is a boundary value problem of Navier equations defined in an unbounded domain.
In engineering computation, the stress analysis of a dam in plane with infinite elastic foundation is usually
reduced to a similar problem. In numerical simulation of this kind of problem, the unboundedness of the domain
£2 is a common difficulty. In practical computations, it is usual to introduce an artificial boundary and design
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Fig. 1.

appropriate artificial boundary conditions on it. Then, the original problem is reduced to a boundary value
problem defined in a bounded computational domain. Thus, one can use the traditional finite element or finite
difference method to solve the new problem and derive a numerical solution of the original problem in the
bounded computational domain. Therefore, it is a common problem to introduce an appropriate artificial
boundary and design artificial boundary condition with high accuracy on it, which attracts many mathematicians
and engineers. During recent years, many authors have worked on this subject for various problems by different
techniques. For details, refer to the works by Goldstein [7], Feng [5], Han and Wu [15], Han et al. [14],
Hagstrom and Keller [8,9], Halpern and Schatzman [16], Nataf [18], Han and Bao [10,11], Givoli [6], Han et al.
[13] and references therein. Since the restriction of the methods they used, they mainly consider the regular
artificial boundaries, such as circumferences, straight lines or segments of straight lines in two-dimensional
problems. But in engineering literature, the polygonal artificial boundaries are often used. Thus, for a given
polygonal artificial boundary, how to design an artificial boundary condition with high accuracy is an important
problem. In [12], we proposed the direct method of lines to answer this question for an exterior problem of
Poisson equation. [n this paper, we extend the method to the problem of infinite elastic foundation. For a given
polygonal artificial boundary, we set up a discrete artificial boundary condition by the direct method of lines.
Then, the original problem is reduced to a boundary value problem on a bounded computational domain, which
is solved by finite element method. Moreover, the error bound of the displacement in the bounded computational
domain is given, and numerical example shows that the discrete artificial boundary condition given in this paper
is very effective and more accurate than the Neumann boundary condition which is often used in engineering
literatures.

Another approach in solving the problem defined in unbounded domain is to use infinite element, i.e. use
traditional finite element in a bounded domain and infinite element in the outer domain. For instance, see
Zienkiewicz et al. [19], Moriya [17], Beer and Meek [2], Bettess [3] and references therein.

The layout of this paper is as follows. In the next section we construct the discrete artificial boundary
condition on a given polygonal artificial boundary by using the direct method of lines. In Section 3 we
approximate the original problem in the bounded computational domain by finite element method. In Section 4
we prove optimal a priori error bound for the displacement in the bounded computational domain. Finally, in
Section 5 we report on a numerical example, which confirms our a priori error bound. Throughout, C denotes a
positive generic constant independent of the mesh size A.

2. The discrete artificial boundary condition on a given polygonal artificial boundary

We introduce a polygonal artificial boundary 7 in {2, then the domain {2 is divided into two parts, the

bounded part (2, and the unbounded part £2 = {\(2 (see Fig. 1). I is given by

r=e(f) —-w=6<0, (2.6)

where (r, #) is pole coordinate. Suppose that the support of f belongs to (2.
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If a suitable boundary condition at I is given, then we can consider the boundary value problem on the
bounded domain (2. The goal of this section is to construct the artificial boundary condition at the given
polygonal artificial boundary I by the direct method of lines. We consider the restriction of u, the solution of

problem (1.1)—(1.4), in {2, then we obtain

—puAu—(A+p)graddivu=0 ind2 , (2.7)
ul, =ule®),0)=u"®) -w<H<0, (2.8)
0n,=0,,=0 onljN{2, (2.9)
u is bounded whenr— +; (2.10)

where u”(ﬁ) = (u“(&) u”(t?))‘ Since the value u’, is unknown, problem (2.7)—(2.10) is an incompletely posed
problem, it cannot be solved independently. Let He (I;) denote the usual Sobolev space on I, with real number
a [1]. If u,,, , Lt2‘1 € H''*(I’) are given, then the problem (2.7)—(2.10) has a unique solution u = (u,, u,)".
From (1.5), we obtain the vector components of stress acting on the boundary 7/ :

X, _(moy, tnyo, 211

Y, 11~ oy, T nyon ) (21D
where (1, (x), n (x)) denotes the unit outward normal on the boundary /) of the domain f2. Hence, for given
]y}, ) EH'*(I)), we obtained a bounded operator X : [H YA = H (D)), namely

Xl7
(Y,, )[("=K(u‘,:‘). (2.12)

The boundary condition (2.12) is the exact boundary condition satisfying by the solution of the original problem
(1.1)=(1.4). Thus, the restriction of the solution of the problem (1.1)~(1.4) on (2 satisfies:

—pBu—(A+p)graddivu=f in {2, (2.13)

u=g onl, (2.14)

ag,=0,,=0 onl,N _,, (2.15)
X

(Y::)I;,:K(”"L)' (2.16)

But the bounded operator K is unknown, the problem (2.13}—(2.16) cannot be solved independently as well. We
row return to the probiui. 12.7)-(2.10) under the assumption, u| r, 1 given. We will obtain a discrete
approximation of the bounded operator K. We suppor= that the polygonal artificial boundary I. has n + |
vertexes {a, = (x|, x3), i=1,2,...,n+ 1} with

v,=Rcos  x,=R;sinf, l<i<n+]l, (2.17)

as shown in Fig. 1. For the ease of exposition, we assume that 6, = —7 and 6,., =0. The rays {# =6,
Isisn+1} d|v1de {2 into n parts

.(Z(,:{x:(xl,xﬁ) XEN,6<0<6,} I<isn.
On each subdomain {2, (1 <i<n), we introduce the mapping

p, e’ cos ¢
17 Sin(d — @)
p, e’ sin ¢
%27 Sin(d — a)

fs<¢p<b, , 0sp<+4x, (2.18)

with
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i+l i i i+l
X, Xy X)X,
P = )
Iaiai-H,
i+ i i+ i
. Xy T X X T .
sin o, = cos a;, = Isisn,
|aiai~l| |afa.'+11
1 P2
X))+ =X

la,a; | =\/(x;+]
The mapping (2.18) maps £ onto a semi-infinite strip
):6<¢<b6,,0<p<+om} i=12...,n.

0, ={(p. ¢
Then, {2, is mapped onto 5 ={(p,d): —m<=¢<0,0<p<+o}and I’ is mapped onto I. ={(0, )

(2.19)

< 0}. In addition, on 2!, we have that
_pe'cosd 9 N p.e’sing 9
~sin(¢p — @) dx,  sin(¢ — @) ax,°
pecosa, 9 pe’sing, 9
sinz(qﬁ - ) dx,
(2.20)

. . 9
+ sin ¢ sin(¢ — a;) ?’E]

d
ap
0 _
ap sin’(¢p — a,) 9%,
7 | sin 9
H ap

—
=—-p; €

|

]

) ox,
d - d
Laxe—pi e [cosa + cos ¢ sin(¢p — a;) ¢]
("2 —2 -2 : .2 0 22 0
Axf_p' e [ —a/i)sg—sm ala—p
82 62
+ 2 sin «; sin ¢ sin(¢p — 6 a¢+sln d)sm (p—a) 94’2 (2.21)
_ﬁz_ — —2p 2 ’ _ _i_ 2 _(9_
6x, > =p; ‘e cos a;) ) cos @, ap
(:)2 2
+ 2 cos @, cos ¢ sin(¢ — a;) a—quS + cos’ ¢ sin“(¢ — a;) e (2.22)

82 _ -2 =2 __1_ 2 _ai_ 2 e l

o%, ox, =p, € 7 sin2a, ——5 —cos ¢sin (¢ — )57 a¢ sm 2a, 7 ap
. 62 1 ‘ . 2
—sin(¢p + a;) sin(¢p — a;) W — 7 sin 2¢sin“(¢p — ;) e (2.23)
a8
A= -j—— + =
8_ _ _i + 2(¢ az + g 2 82
o sin a,) 9p 00 sin“(¢ — a;) ag? | (2.24)
Let
Xy = (sin oy, —cos 6,0,,)] -+ <
sIsn,;

€8 8,05,) 4 - (22)

Y,. = (sinfo,, —

{
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X, =(sinfo,, —cos0.0,,)l,.,-
oo T T o <isn+l; (2.26)
- = (sinfa,, —cos 9,‘722)|¢:9;
X, = (sin q;0, — oS a,;0,)| ,_
* 1 12 Ip 0 b<d<0.,. 2.27)
Y, = (sin @,0,, — cos ,0,,)|, -,
Then, from (1.5) and (2.25) we have
Xy = (sin G0, — cos 0,'0'12)!4;:9‘
2y 24 +A8"2 8 a"' L oy 2.28
=sin | (A + ,u) 3%, Jo-o: M COS 3%, | oo (2.28)

By the equalities (2.20), (2.28) and R, = p./(sin(6, — «,)), we get

ey (/\+2/.1,)sm051na + u cos g, cos a; au, A o
X, =R e T —— p —[p+ (A + p)sin’ ]aq5
ucosﬂisinaﬁ-/\sinﬁicosa,8u2+)t+/.L 208 59
sin(f, — «;) ap 2 sin AP |o=o+ (229)
Similarly, we obtain
oL w4 sin g, sin ¢, +(/\+2,u,)cost900sa du
= Lae 72
YH,” R, e [ S — ) [,u+(/\+u)cos 0] ¢
Acos @, sin a; + w sin 6, cos a; du, N Atu 20 au,
sin(g, — ;) ap 2 N4 |46 (2.30)
o (A+2u)sinf sina;,_, + pcos b cos a,_, du
—_ ! rl _ i -1 Y%
Xy, =R, e [ sin(n9~—a/. 3 ap = [p + (A + w)sin’ 0] a¢
cos ), sina,_, + Asin g cos a,_, du A+ ou
£ = 1 7 £ sin26 —3] : 2.31)
sin(6, — a,_ ) ap 2 0 |s-0;
T ",u,sinﬂl.sina + (A+2u)cos 6. cos o, _ l6u2
Ye; R, e [ sin(d, — a,_) [/.1,+(/\+,u,)c09 0] ¢
Acos 6 sina; | + pusiné cos a,_ p ouy At au, ,
sin(ﬂ,.- ) op +— sin 26, 3¢ | sms- (2.32)
Furthermore, from (1.5), (2.20) and (2.27) we have that
X, = (sin a0, — cos a,0,)|,,_,
1 ou,
=§ -[p,+()l+,u)sm a]———sm(qb—a)[ucosdwcosa + (A +2u)sin ¢ sin o] — ¢
At pu ou
+ 3 sin 2q; —;+ sin(¢ — @, )(A sin @, cos ¢ + u cos a, sin ¢) 6¢]
0<¢p=<6,,; (2.33)
Y, = (sin 0, — cos @,03,)]
1 [A+u 5 ou
= ) sin 2a, p+sm(¢ a;)(p sin a; cos ¢ + A cos a; smd)) 34’
—[u+ (A + p)cos® a]—-—~—sm(¢ ) u sin ¢ sin g, + (A +2u)cos ¢ cos ] a¢]

b<é<6.,. (2.34)
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In the new coordinate (p, ¢), the Eoblem (2.7)-(2.10) is reduced to the following discontinuous coefficient

problem on the semi-infinite strip (2, :

w+(A+ p)sin’a; 8°u, N u cos ¢ cos a, + (A + 2u) sin psina, 3’u, _ (A u)sin2¢, d’u,

sin'(¢p—a,)  dp’ sin(¢ — a;) p i 2sin*(¢p—a) dp°
M sin ¢ cos @, + Acos ¢ sin ¢ 82u1 (A+2u)sin ¢ sin @, + pu cos ¢ cos «, ouy
sin(¢ — a) ap 8(1) d) sin(¢ — o) ap
du, p,cosq&sma%—)ismd)cosa u, Atpu ou,
+
+ @+ (A+ w)sin” ‘b — ¢ T —— ap 5 sin 2¢ — 30
=0 6<¢<g,, 0<p<+ox, (2.35)
(A+w)sin2a; 9°u, Asincosa, +ucosdsing, d°u, -+ (A+ p)cos’e, au,
2sin’(¢p ~a;) ap° sin(¢ — «,) dp d¢ sin’(¢p — a) ap’
p,smcbsma + (A +2u)cos ¢ cos 9’ u, N ad Acos ¢ sin a; + u sin ¢ cos a; du,
sm(qb —a) dp o  d¢ sin{¢p — a;) ap
A+ u ;Lsm¢sma+()\+2,u)cos¢cosa' du
- sm2¢ ¢ e — §§+¢#+(a+#)ws¢]a¢
=0 6<¢<f, 0O0<p<+ox, (2.36)
wp, 0 )=u(p,8;) 0sp<-+ow I<i<sn, (2.37)
Xor =X, Yo=Y, O0sp<+4o I<isn, (2.38)
Xop =Ygy =Xy, =Y, =0 0sp<+oo, (2.39)
Wl,_o=u'(@) —m<$<0, (2.40)
u is bounded when p — +oo . (2.41)

Let H'((—w, 0)) denote the usual Sobolev space on the interval (—1r, Q) [1]. Furthermore, we introduce

W, =H'(—m0)),
W=W, XW,,

v, 820|
V, =qv,(p, ¢)|for fixed p € [0, +x), Vo EWL
P op”

V=V, xV,.
Then, the boundary value problem (2.35)-(2.41) is equivalent to the following variational-differential problem:

Find u(p, ¢) € V such that

2

d
e — A,(u, v)+ A(u )+ A v)=0 VVEW 0<p<+>, (2.42)
u,p = () u()(QS) - = ¢ = O y (2.43)
u is bounded when p — +oc; (2.44)

where

& [ o()'K, (@)ulp, B)
2w v)= 2 , sin2(¢ - )

do, (2.45)
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. N ] t au(p7 d)) " thet ]
Awn =2 G [v(db) Ky ~ V(@) Kup, 6) | o, (246)
0
a 3
Ayl v) = —f_‘ V(B () L ¢¢) dé ; (247)
with
.2 Atu
Mt (A+ p)sin“y T sin 24
) sin2¢  u +(/\+,LL)COSZ ]
_(mcos @cosa; + (A+2u)sin @ sin g, —u sin ¢ cos a;, — Acos ¢ sin ¢, )
K _( —p cos ¢ sin a; — A sin ¢ cos g, M sin ¢ sin o, + (A + 2u) cos @ cos qa,

We consider the semi-discrete approximation of the problem (2.42)—(2.44). Assume that
=g << - <¢,=0

is a partition of the interval [—m, 0] and for every 8, (i=1,2,...,n) there is qﬁj such that ¢,. = 6. Let
n=max, .y, (&, — &) and

W=\ (@)EW, 0D 44
W, = WX Wi,

EP(d. o, ) IsjsM~1},

w1l

i ) o ) av',' azv’; R
Vi =yv,(p, ¢)EYV, :for fixed p €[0, +x), v,, i ap? T EW ¢,
V,=Vixvh,
Then, we obtain the semi-discrete formulation of problem (2.42)-(2.44):

Find u,(p, &) €V, such that

2

d
e A,(u,, v, )+ A W, )+ Ay, v,)=0 VYu, €W, , (2.48)
p
Uyl o = u(h) (2.49)
u, is bounded when p —» +o; (2.50)
where u(h)(¢) €W, and u:(¢) = uo(qﬁ) forj=1, 2 , M. Suppose that {Nj(d)), j=12,..., M} is a basis of the
finite dimensional space W such that N(¢,) = , S I=<i jsM. Let
Ni(¢) Nyp) - Ny(¢) 0 0 e 0 ]‘
N(¢p)= -
@ [ 0 0 0 N NiAe) r Nyle) (231
For u,(p, ¢) €V,, we have that
h
uy(p, @) .
u,( ,¢):( ,>=N U(p), 2.52
(P L pub) (U(p) (2.52)
where
U(p)=1ui(p, ). ... t\(p, by ) us(p, ), ..., u(p, S (2.53)

Thus, the semi-discrete problem (2.48)~(2.50) is equivalent to the following boundary value problem of a
system of ordinary differential equations:

B,U"(p)+ B,U'(p)+ BU(p)=0 0<p< +, (2.54)
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Ul,.o=U,, (2.55)
U is bounded when p— +x; (2.56)
where
Uy = [1(h))s - ot () (D), . ., us (D)1 (2.57)
n HH] N K : N t
B, - J‘ (@2 () )N(9) 14| (2.58)
=178, sin“(¢p — «)
G [ N@KGN'(8)' = N (9)KGN()'
B, = Z] L e p— do, (2.59)
B, = —ff N (@)K (AN (¢) d¢p . (2.60)

For the 2M X 2M matrices B,, B, and B, we know that B, is a positive definite symmetric matrix, B, is an
antisymmetric matrix and B, is a semi-negative definite symmetric matrix. We now solve the boundary value
problem (2.54)—(2.56) by a direct method. Let

U(p)=e™§, (2.61)
where 7 is a constant, £ € C*" to be determined. Substituting (2.61) into the equations in (2.54), we obtain the
following generalised eigenvalue problem for determining y and £

[Y°B, + B, + B,]¢ =0. (2.62)

Let n = v£, then the eigenvalue problem (2.62) is reduced to the following standard eigenvalue problem:

0 Ly\[(¢ Ly O
(_Bo —h3.>(n):“/< 0 B)(f,)’ (2.63)

where 1,,, denotes the 2M X 2M unit matrix. After solving the eigenvalue problem (2.63), we get the
eigenvalues vy, (j=1,2,...,2M) with non-positive real part corresponding to the eigenvectors

£
(5) i=1,2,...,2M

and A, = A, =0, § =(1,...,1,0,. L0 ERM, £=00,...,0,1,....,))ER™. In particular, we suppose
that y, (1 <j < 2r) are real eigenvalue and v, (2r + 1 < <2M) are complex eigenvalue with nonzero imaginary
parts such that v, = y,,_, (r+1=<I=<M). Thus, we have that

2r M
Ulp)=2 be"&+ 2 by Re@&,) + by, Ime”8,)], (2.64)
J=1

J=r+1

where Re(y) and Im(y) denote the real part and the imaginary part of the complex number . Then, we know
that U( p) satisfies the ordinary equation (2.54) and the boundary condition (2.56). By the condition U(0) = U,,
we have that

j=rt+

2r M
Uy=2 b§,+ 2 by Re(&,)+b, Im(&,)]. (2.65)
i=1 !
Introduce matrices
G(p) = [ep” §1 L eﬂYZ’er’ Re(ef"/2,+z§2r+2), Im(epyzr+2§2r+2)’ U ]
Re@e”™¢,,), Ime”"™&,,,)],

GD = G(O) = [§| LR | f?_r’ Re(§2r+2)’ Im(§2r¢2)7 s Re( sz)s Im(sz)] )
B=1[b,.b, ... b,,l.
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From 72529). ‘we Uuvdn
B=G,'U,. (2.66)
Inserting <2.663 o (264} we get
U(p)=G(p)G, U, . (2.67)
Finally, we get a semi-discrete approximate solution of problem (2.48)—(2.50):
u,(p, $)=N($)'G(p)G, Uy (2.68)
Substituting (2.68) into (2.33) and (2.34) we have
X, 1 . 4 sin(¢p — a;)
(Y ) iy K, (g)N(P)YG' ()G, Uy ———

n

KN()U, B<¢p=<6,,. (2.69)

i

The equality (2.69) is an approximation of the condition (2.12), which is a discrete artificial boundary condition
on the artificial boundary I;.

3. The finite element approximation of problem (1.1)-(1.4)

On the bounded computational domain {2, we consider the numerical solution of the problem (1.H)—(1.4). As
we have shown, the restriction of u, the solution of the problem (1.1)-(1.4), on the bounded domain {2, satisfies
the boundary value problem (2.13)-(2.16). Let H '(42) denote the usual Sobolev space on {2 [1] and suppose
that

T,={v=@,v,) EH' ) v, =g},
T,={v=w,v,) €H'U):v|, =0}
Then, the boundary value problem (2.13)—(2.16) is equivalent to the following variational problem:

Findu €T, such that

a(u,v) +bu,v)=fv)y VvET,, 3.D
where
au, v) = 0, vudvy w dx, ox, Ox, 6x2> + ,u,( ox, + ox, )(6):2 + ox, )] dx, (32)
b(u,v) = —f v'K(u)ds , (3.3)
.
f)= Jn v'fdx. (3.4)

For the ease of exposition, we assume that 7 is a polygonal line in R’. Let 7" be a regular triangulation of {2
such that the nodes on the boundary I are mapped onto the points (0, ¢), j=1,2,...,M by the mapping
(2.18). Furthermore, we introduce the finite element space 7"

T'={v, =@}, 0D v €C'(Q) and v}|, EP(T) YTET" j=1,2},
Tz ={v, € T" . v,(d;) = g(d,) for the node d, € I},
TSZ{U;,ETh :Uhlr,zo}-

Hence, we obtain the finite element approximation of the problem (3.1):
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Find u, € Tz such that
a(u,,v,) + bu,,v,)=flv,) Yv,ETE. (3.5)

Since the bounded operator K is unknown, we cannot solve the problem (3.5) directly. By the discrete artificial
boundary condition (2.69) we introduce an approximation of the bilinear form b(u,,v,): For u,,v, ET", let

b,(u,,v,)=— fl X, ] + Y, (w04 ds

- ; L gr?(;iﬁ[Xn(uh)v? + Y, (u, v do . (3.6)

Since (2.69) and we use

wlp =N@)'u! v,|; =Np)v!, (3.7)
with

u, = [0, b)), ... (0, Byy), w0, ), ..., us(0, )] (3.8)

v, = (0100, ¢)), ..., 0}(0, ¢y, V30, @)), ..., (0, b, (3.9)

From (2.69), (3.6) and (3.7) we have

b0 = “<vf)'§ f: [N(¢)K,S(ii,2)(zvﬁ):)'(0)co ! Niﬁ)(ﬁ;zf:?)‘] . (3.10)
Using the bilinear form b,(u,,v,) instead of b(u,,v,) in the problem (3.5) we obtain

Find u, € T:f such that

alu,, v,) + by (u,,v,)=fv,) Vv, €T". (3.11)

For the bilinear form b,(u,, v,), we have that

LEMMA 3.1. The bilinear form b,(u,,v,) is bounded and symmetric on T" X T". Furthermore. b,v,,v,)=0
forallv, €T

PROOF. From the definition of b,(u,, v,), we know that b,(u,,v,) is a bounded bilinear form on 7" X T". For
given u,, v, € 7" noting (3.7), we have that

wl =N@w, v,z =N)V!. (3.12)
On the domain (2., let
u, =N@)G(p)G,'u, v, =N()G(p)G,'v" . (3.13)

Thus, we have the continuous extensions of u, and v, on 2, (say {2). Let

. . au'; 60? au; 811;
D(u,,v,) = Y Adivu, divu, +2u R vl
) | ox, S ox,

(i

. au','+ dus \ [ ov" vl
M ox, T ax, \ax, Tax, ) | & (3.14)

Then, for any u, v, € Th, we have on recalling (3.14), integrating by parts, noting (2.18), (2.20). (2.48), (2.54)
and (3.13) that
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du, du,
D(u,,v,) =b,(u,,v,)+ |- | A, 2.0, ) A, do ' Un + Ao, v,) [dp de
0, dp 0

=b,(u,,v,) - (3.15)

Hence
b,(u,,v,) =D, ,v,) = D@,,u,) =b,,,u,) Yu,v,€T", (3.16)
b,,.v,) =D, v,)=0 Yuv, €T". (3.17)

{t is straightforward to check that the problem (3.11) is a well posed problem. After solving the problem (3.11)
we obtain u,, the approximate solution of the original problem of (1.1)-(1.4) on the bounded computational
domain (2.

4. The error bound for the displacement in (2.

For ease of exposition, in this section we assume that g = 0. Let u denote the solution of the original problem
(1.1)-(1.4) with g = 0 and u,, denote the solution of approximate problem (3.11) with g = 0. Then, we have that

Find u €T, such that

au,v) + bu,v)=fv) YvET, (4.1)
and

Find u, €T} such that

au,,v,) +b,u,,v,) =flv,) Vv, ETh. (4.2)

We have the following result:

THEOREM 4.1. Suppose that u| o€ [H 2(.Qi)]z, then the following abstract error estimate holds

b, w,) = b,(ILu, w,)|
w~mmﬁscpw—amuq+wp ) = bl w)l |

w,ETH ”Wh“L.(),

(4.3)

where Il u is the interpolation of u on {2, namely HhuETg, Hhu(d_l)=u(dj), {d,} are the nodes of the
triangulation T

PROOF. Let
e =u—u,, e,;’=u—Ihu, e, ’=ILu—u,.

Then, from (4.1), (4.2), korn inequality and Lemma 3.1, we know that there exist a positive constant B, such
that

B()“eh“i!), <aley.e,) + byle, €,)

. €y) Tale,e,) +be,e,)

= —ale,, e,)+hle,e,)—bue)+b,u,e,

= —ale, e,)— (bu,e,)— b,(ILu,e,))

Lofel o, + b e,) = b, (ITu.e,)]. (4.4)

= —ale

<lall e,

Thus, from (4.4) we have that

I b, w,) — b,(Lu,
bl = ;e s PPl @

w,eTh ”Whnn,n,.
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By the triangle inequality, noting (4.5), we obtain

"e“m, = 1|€;,||1,n, + ”ea”Ln,.

- C[ lb(u, w,) — b,IT,u, wh)l:l

e,| + sup
” ull.ﬂ, weTh “Wh”L!lj

with C = max{1 + ||a||/B,, 1/B,}. The proof is completed. [J

For the first term in (4.3), we have [4]
”ea“uz, = [l — Hh“”l,n, = Ch|u|2,n,. .

Thus, we only need to estimate the second term in (4.3). On the domain {2, for w, € T}, let
Wi =N@G)Gy'w! T =N G(p)G, (),
where
we = 010, @), Wi (0, b)) WO, ), .., WHO, 6,
Ly, = Lu, (0, &) ..., uy(0, ), iy, ), ... Thuy(0, )’
=00, ). ..., u,(0, dy), uy(0, b)), ..., u,(0, B,,))'.
Then, from we have that
blu, w,) = b(u, w, —w,) + b(u, w,)

= b, w, —w,) + D, w,) ,
byIhu, w) = D(Ilu, w,).

IbGu, w,) = by (e, w,)| < b, w, = w,)| + D ~ T, 7).

b, w), —w,)| =

fr w, — ;;';)'K(u) ds

= “wh _;V\;,Hl/z,r”K(“)”uz,l‘
= Ch”wh”I /2,1‘“K(“)"1/2.I‘

= Ch”Wh”LuJ'””z_n, :

DG — I, wy)| < |u— I

*.ny|Wh 12,0

where |w, iﬂe = D(w,,w,) and

I‘:‘;;L.q, = C|;V7,|1,n£, = CHW»,”LQ .

Let 7,u denote the interpolating of u on the domain £2,, namely Lu €YV, and Lu(p, é,) = u(p, ®), j=

For the interpolating error we have that

lu—1u

B Tt [ 62u1 2 82ul 2 82u2 2 0%u, \?
C(u)—CO\/;fO L [(apa¢) +<a¢2) +(8p8¢> +(722) ]dpd(b.

On the other hand, we have

=02, <= Cwh,

with

(4.6)

4.7

(4.8)

4.9)
(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

4.15)

(4.16)
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D ~Iu,u—Iu)=Du—Iu,u—lLu, (4.17)

lu Tl

oo, <le=1Lul, , =Cah. (4.18)

Therefore, from (4.11), (4.12), (4.13), (4.14), (4.18) we get

b, w,) = b (I, w)l < Chlw, [, o (lull, o, + CG)) - (4.19)
Finally, combining (4.3), (4.7) and (4.19) we obtain the following error bound:

e = 4, o, < Chlluel g, + CG0] . (4.20)

5. Numerical example

Let w = A/(A+2u) and

h](x,r):(l—w)arctgx‘x:’—(1+w)(7f)—c‘_—%z—xg, (5.1)
hy(e, ) =1In[(x, = )" + 3] + (1 + w)—(x‘—_z—t)~2—2—, (5.2)
x, =1 +xj
h(x, 1) = (h,(x, D), hy( X, 1) 5 (5.3)
1’ (x) = @), uS () = h(x, 0) — —; [A(x, 0.5) + h(x, —0.5)] . (5.4)
It is straightforward to check that x°(x) is the unique solution of the following boundary value problem:
—pAu—(A+ p)graddivu=0 in (2, (5.5)
ul, o =u'(£lx,) —1=x,<0, (5.6)
ul, o, =u’lx,, -1 —l1=x =1, (5.7
ou, du du, ou,
/\a_xT‘f‘(/\'l-z/,L)'a;j: (ax2+5)?>:0 =0 |x|=1, (5.8)
u is bounded when r — + o0 ; (5.9)

where (2 is the domain of the lower half plane Rz: ={x = (x,,x,): x, <0} subtracted a rectangle 2, = {x =
(%) —1sx, <1, —1<x,<0}, ie. 2=R2\02. We take I, ={x:x, =+2, —2<x,<0 and x, = ~2,
—2=x, <2} as artificial boundary. Then, the domain {2 is divided into a bounded part {2, and an unbounded
part {2 with

N ={x:1<]x]|<2, ~-2<x,<0and —2<x,< — 1, =1 <x, <1},

0 =m0
Since the first component u?(x) and the second component ug(x) of u’(x) are antisymmetric and symmetric about

x, axes, respectively. The domain of computation is taken to be the part of (2 lying in the fourth quadrant (say
£). The following boundary condition is posed along x, = 0:

du,(0, x,)

u, (0,x,)= TZO -2=<x,< - 1. (5.10)

The boundary condition (5.10) is equivalent to the following condition:

u|(07x2):0-|2(09x3):0 _'2$x2S —-1. (511)
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T2
W 1 2 NEH
0
Ty
— 1.
.
-2
Mesh A
Fig. 2.
Table 1
Maximum error of u — u, over mesh points
Mesh A B C
max|u, — u)| 3.1726E-2 1.1186E-2 3.6913E-3
max|u, — u}] 2.8594E-2 8.1036E-3 2.3139E-3

Three meshes are used in the computation. Fig. 2 shows the triangulation for mesh A. On each triangle in
mesh A, we connect the midpoints of every two sides, thus this triangle is divided into four small triangles.
Then, we obtained the refined mesh B. Mesh C is similarly generated from mesh B. Linear finite element is used
in our computation. We take A = 1.0 and u = 2.0. Let u, = (u, u3)" denote the finite element approximation in
the domain {2, by using the digcrete artificial boundary condition (2.69). For comparison we also compute the
finite element approximation u = (!, u’™)" of problem (5.5)-(5.9) in the domain {2, by using the following

Neumann artificial boundary condition on /;:

ol =0. (5.12)

The Neumann artificial boundary condition (5.12) is often used in engineering literatures for simulating the
problem of infinite elastic foundation.

Table 1 shows the maximum of the errors u — u, over the mesh points for meshes A, B and C. Furthermore,
Table 2 gives the errors [ — u, [y, o |4 — u,,l1 2.0, and [l — [l , , for meshes A, B and C. For comparison,
Table 3 shows the maximum of the errors u — u), » over the mesh points for meshes A, B and C and Table 4 gives
the errors [lu — u,||,.,. o = upl, 5 1, and [u — u, Ml o, for meshes A B and C.

Furthermore, Figs. 3 ‘and 4 show the values of numerical solution u} and u on the mesh points of the artificial

Table 2

Errors of u —u,

Mesh A B C

fley = w31l 2.0, 5.4189E-2 1.3505E-2 3.3784E-3
ey =165 0 2.8736E-1 1.5918E-1 8.2317E-2
flie, —wils “ 2.9242E-1 1.5975E-1 8.2387E-2
flae, — u,|.(,, 0 4.4933E-2 1.2433E-2 3.2787E-3
lu, —ul,, 0, 4.4296E-1 2.3448E-1 1.1906E-1

Jee, — 2”, 2.0 4.4524E-1 2.3481E-1 1.1910E-1
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Table 3
Maximum error of « — ) over mesh points
Mesh A B c
max|u, — ! 1.8181E-1 2.0972E-1 2.1950E-1
max|u, — us™ 1.9999E- 1 2.4008E-1 2.5482E-1
Table 4
Errors of u — u)
Mesh A B C
e, = a2 0, 2.2429E-1 2.4891E-1 2.6189E-1
lu, =™ 5.3353E-1 5.5275E-1 5.7002E-1
fle, — u’,"”n,_z_“i 5.7876E-1 6.0621E-1 6.2730E-1
lhey =165, 2.0, 2.9147E-1 3.3671E-1 3.6038E-1
w, = u"l g 6.5077E-1 6.1770E-1 6.2359E-1
s =15 5, 7.1306E-1 7.0351E-1 7.2023E-1
. t artificial bound 1
u (at artificial boundary points) oMesh C 01 u_-,» (at artificial boundary points)
0.08 £ o Mesh B :
: x «MeshA r
0.04 x —Exact Solution
0.03 | I
0 -
0.02 I
0.01 o Mesh C
0 o Mesh B
-0.1 x Mesh A
001 —Exact Solution
002 f
.03 8 0.2 v s
0 1 2 3 4 0 1 2 3 4
Fig. 3. Fig. 4.
luy — ub| 00 e . Jug — uh s .
T x 100 (at artificial boundary points) oMesh C —EL—I_ x 100 (at artificial boundary points)
t 2
80 o Mesh B 40 g
r x Mesh A X <
35
50 x x
: x 30 f
40 - o [ oMesh C
. x o Mesh B
« _
0 L x 20 ; x Mesh A
i 15 |
20 5 x .
10 |
10 s a °
. a a
[ o0 og aga a g @ o a 5 % o a =] 5 a
iooOOOOOoooooooooOOOOOOOOOOQOOOOO a _oa COOCaeG 2
0 ‘ i 0 - . s
0 1 2 4 0 1 2 4
Fig. 5 Fig. 6
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u, (at artificial boundary points) uy (at artificial boundary points)
0.25 03
-8°8°8°8°8 : oB°B°8°8°805
02 | 8 « x <O oMeshC x x ? 8°8
° o a Mesh B x
8 x Mesh A
0.15 o o ~—Exact Solution
01 F 8 _—
b a g
0.05 | 8
e o o Mesh C
[ o Mesh B
09 Q : x Mesh A
a —Exact Solution
0.05 °8 . 4
ogoo
0.1 : — : — s 03 ' : ‘5
0 1 2 3 4 0 1 2 3 4
Fig. 7. Fig. 8.

boundary 7. Figs. 5 and 6 show the related errors (|u, — u’)/|u,| X 100 and (|u, = u3])/|u,| X 100 on the
artificial boundary 1. Figs. 7 and 8 show u}" and 43" on the artificial boundary I;.

From Tables 1-4 and Figs. 3-8, we can see that our discrete artificial boundary condition (2.69) is very
effective for the problem of infinite elastic foundation and more accurate than the Neumann boundary condition
(5.12) which is often used in engineering literatures. We can derive a good numerjcal approximation u, of the
solution « of the original problem in a small domain, say {2, by using our discrete artificial boundary condition
at the artificial boundary.
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