CZ 5274 —– Computational Fluid Dynamics (Reference Books)

(Semester 2 2005/2006)


Reference Books:

  • Incompressible Flow:
    • L. Landau and E. Lifschitz: Fluid Mechanics (1959); (Much emphasis on ‘basics’/physics; very broadcoverage but mostly compressible)
    • G. Batchelor: An Introduction to Fluid Dynamics (1967); (Classic, at an intermediate level, focusing on incompressible flow; a ‘must’ for the serious student.)
    • M. Van Dyke: An Album of Fluid Motion (1982); Beautiful photographs of fluid mechanics; ‘a picture is worth a thousand words’)
    • A.J. Chorin and J.E. Marsden: A Mathematical Introduction to Fluid Mechanics (1990). (Texts in Applied Mathematics series).
    • D.J. Acheson: Elementary Fluid Dynamics (1990).
  • Mathematical and Numerical Analysis on Incompressible Flow:
    • O. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow (1969).
    • R. Temam: Navier-Stokes Equations (1984).
    • V. Girault and P.A. Raviart: Finite Element Methods for Navier-Stokes Equations : Theory and Algorithms (1986).
    • H.-O. Kreiss and J. Lorenz: Initial-Boundary Value Problems and the Navier-Stokes equations (1989).
    • C.R. Doering and J.D. Gibbon: Applied Analysis of the Navier-Stokes Equations (1995).
    • P.L. Lions: Mathematical Topics in Fluid Mechanics, Vol. 1 Incompressible Models (1996).
  • CFD:
    • R. Peyret and T.D. Taylor: Computational Methods for Fluid Flow (1985).
    • M. Griebel, T. Dornseifer and T. Neunhoeffer: Numerical Simulation in Fluid Dynamics : A Practical Introduction (1998). SIAM, ISBN: 0898713986
    • C.A.J. Fletcher: Computational Techniques for Fluid Dynamics (1991).
    • C. Canuto, et al.: Spectral Methods in Fluid Dynamics (1988).
    • A.J. Chorin: Computational Fluid Mechanics : Selected Papers
    • M. Gunzburger: Finite Element Methods for Viscous Incompressible Flows : A Guide to Theory, Practice, and Algorithms (1989).
    • M. Gunzburger and R.A. Nicolaides: Incompressible Computational Fluid Dynamics : Trends and Advances (1993).
    • Notes by Porf. J.-G. Liu (University of Maryland): Ch 1, 2 3, 4, 5, 6
  • Compressible Flow:
    • R.J. LeVeque: Numerical methods for conservation laws, 2nd edition, Birkhauser Verlag, Boston (1992).
    • E. Godlewski and P-A Raviart: Hyperbolic systems of conservation laws (1991).
    • E. Godlewski and P-A Raviart: Numerical approximation of hyperbolic systems of conservation laws (1996).
  • Basic Numerics, Scientific Computing, and Software Packages:
    • Numerical Recipes in Fortran or in C , Cambridge University Press.
    • H.-O. Kreiss: Numerical Methods for Solving Time-Dependent Problems for Partial Differential Equations (1978).
    • B. Gustafsson, H-O Kreiss, J. Oliger: Time Dependent Problems and Difference Methods (1995).
    • J.C. Strikwerda: Finite Difference Schemes and Partial Differential Equations (1989).
    • K.W. Morton and D.F. Mayers: Numerical Solution of Partial Differential Equations: An Introduction, 1994.
    • R.D. Richtmyer and K.W. Morton: Difference methods for initial-value problems, 2d ed. (1967).
    • G.H. Golub: Matrix Computations (1996); Publisher: Johns Hopkins U P