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0. Introduction

In this paper, we consider the central limit problem for dependent random
variables in two different settings. In the first setting, we deal with certain
dependent random variables indexed by an arbitrary set. Our main interest is in
a special case called finitely dependent random variables which is a generali-
zation of m-dependent random variables. Because the index set is arbitrary,
finite dependence is applicable to multi-parameter processes. On the other hand,
since the nature of dependence of a single-parameter process is in general altered
by a re-ordering of the index set, many mixing sequences and non-mixing
sequences are in fact finitely dependent sequences of random variables (see
Kesten and O’Brien [16]). In Section 2, we shall give a detailed account of this
dependence.

In the second setting, we consider a combinatorial problem which arises in
the theory of nonparametric inference and dates back to Wald and Wolfowitz
[29]. Special cases of this problem and their refinements have been considered
by many authors (see [1, 5, 10, 11, 13, 18, 19, 23 and 297). '

Although the two central limit problems are unrelated, they are solved by
taking the same approach: which combines the method of characteristic func-
tions with the techniques associated with Stein’s method (see [4, 5, 9, 11 and
287). In the first problem; it is found necessary to extend weak convergence of
probability measures to that of finite signed measures.

The main results in this paper consist of establishing a necessary and
sufficient condition for the sequence of sums of random variables in each setting

_to converge in distribution to any specified" infinitely ‘divisible distribution.
Although a number of authors (see, for example, [3, 7 and 217) have considered
‘the central limit problem for dependent random variables, their dependence
assumptions depend crucially on' the linear ordering of the index set and, in
most cases, only sufficient conditions are established. The present settings differ
from those considered by most authors in that the dependence among the
random variables is not formulated in terms of any linear ordering (in fact any
,,‘ggering in the first problem) of the index set.
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Among the known results on the central limit problem, the more notable
and perhaps most general ones are those of Dvoretzky [7]. In Section 3, we
shall construct two examples of triangular arrays which arise from finitely
dependent random variables, whose row sums converge in distribution to a
normal distribution, but which do not satisfy Dvoretzky’s conditions.

1. A Convergence Criterion

We adopt the following natural extension of weak convergence of probability
measures to that of finite signed measures. We shall denote the class of Borel
sets in IR¥, k=1, by Z(R¥.

Definition 1.1. Let {v,} be a sequence of finite signed measures on BRY, k=1. 1t
is said to converge weakly to another finite signed measure v on B(RF), if for
every continuous real-valued function f defined on R* and vanishing at infinity,

lim [ fdv,={fdv.

We note that if v, and v are probability measures then this definition of weak
convergence is equivalent to that of Billingsley [2]. Since the space Co(RM of all
continuous real-valued functions defined on R* and vanishing at infinity with
the sup norm is separable, any subset of the dual space C%(R¥) which is weak *
compact is metrizable in the weak* topology. Combining this fact with the -
Banach-Alaoglu theorem and the Riesz representation theorem, we have the
following important property: every sequence of finite signed measures {v,} on
ZA(RY such that sup||v,| <co, where |+| denotes total mass, has a subsequence

which converges weakly to a finite signed measure v on Z(R¥. Thus, in order to
prove that v, converges weakly to v, we need only to show that every weakly
convergent subsequent of {v,} has v as its limit. Clearly, if {v,} is a tight
sequence of probability measures, then v must necessarily be a probability
measure.

We first state the following easy lemma without proof.

Lemma 1.1. Let {v,} be a sequence of finite signed measures on Z(R) such that
sup ||, || < co. Then it converges weakly to a finite signed measure v on ZAMR) if

and only if
lim [(e**—1)x~*dv,(x)=f (" —1x~! dv(x)

n—oo
or every real number t, where (€*—1)x~ =it if x=0.
y

The next lemma is the main result in this section. It will be used in place of
the usual characteristic function technique. An advantage of using this lemma is
that it enables us to apply the techniques associated with Stein’s method (see [4,
5,9, 11 and 28]). This is particularly apparent in the case of the combinatorial
problem considered in Section 5.
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Lemma 1.2. Let {Z,} be a uniformly integrable sequence of random variables, {f,}
a sequence of real numbers, and {v,} a sequence of finite signed measures on %(IR)
such that sup|v,|| < co. Suppose for every real number t,

lim {EZ, e —[B,+ [(e"*— 1) x~* dv,(x)] E €%} =0 C(LD

where (e"*—1)x~*=it if x=0. Then £(Z,) converges weakly to the infinitely
- divisible distribution with characteristic function ¢ given by

p(ty=exp{it f+[ (™ —1—itx)x2dv(x)} (1.2)
where v is a finite measure, if and only if

B,—P (13)
and

v, converges weakly to v. (1.4)

Suppose, in addition, the v,’s are (positive) measures. Then any weak limit of
L(Z,) must necessarily be infinitely divisible with finite variance.

Proof. We first note that the uniform integrability of {Z,} implies the tightness

of {Z(Z)}. It also implies limEZ, e*“«= —ig'(t) for every real number t,
k—

whenever the subsequence {¥(Z,,)} converges weakly to a probability measure

with characteristic function ¢. Thus if (1.3) and (1.4) hold, then by (1.1) and

Lemma 1.1, the characteristic function ¢ of the limit of any weakly convergent

subsequence of {£(Z,)} must satisfy the differential equation

—i§@O=[B+[(— D x~" dv(x)] $(2) (1.5)

with ¢(0)=1. As the solution of (1.5) is unique and given by (1.2), it follows that
Z(Z,) converges weakly to an infinitely divisible distribution with characteristic
function ¢ given by (1.2). For the converse, we have lim EZ, = —i¢'(0)=f. Let ¥

be the limit of any weakly convergent subsequence of {v,}. By (1.1) and Lemma
1.1 again, we have

—ig(O=TA+[ (=1 x~1di(x)1$(®) o (1.6)

for every real number ¢. Differentiating (1.2), comparing the result with (1.6) and
using the nonvanishing of ¢, we obtain ¥=v. This proves (1.3) and (1.4). The
second part of the lemma follows from the fact that the limit of any weakly
convergent subsequence of {v,} must be a finite measure.

We give an example to show that if the v,’s in Lemma 1.2 are not (positive)
measures, then £(Z,) may converge to a probability measure which is not
infinitely divisible.

Example 1.1. Let #(Z,)=(1—p) 6 +p u where 9 is the Dirac measure at zero, u a
probability measure on #(R) with finite second moment, and 0<p<3. Trivially
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F(Z,) converges weakly to (1 —p)d+p u. Now let y be the finite signed measure
given by

-5

k=1

where p* is the k-fold convolution of u. It is not difficult to see that (1.1) holds
with B,=[xdy(x) and v, defined by dv,(x)=x>dy(x). But if 4 has bounded
support, then (1 —p) &+ p p is not infinitely divisible.

2. Finitely Dependent Random Variables

In this section we define and give a few examples of finitely dependent random
variables.

Definition 2.1. A nonempty family of random variables {X,: acJ} is said to be

finitely dependent if for every nonempty finite subset A of J there exists another

finite subset B=B(A4) (including A) such that {X,: acA} is independent of {X :

aeB°} and such that sup inf|B|/|4| < co, where |-| denotes the order of a set. The -
A B

order of dependence of the family is defined to be the smallest integer not less
than sup inf|B|/|A|.
A B

Definition 2.2. Let {X,: aeJ} be a finitely dependent family of random variables
and let 4 and B be nonempty finite subsets of J. The set {X,: aeB} is said to be
a dependent set of {X,: aecA} if the latter is independent of {X,: aeB‘} and
|B|/|A| does not exceed the order of dependence.

We note that every finite set of random variables is finitely dependent, since
in this case Definition 2.1 is vacuously satisfied by taking B to be the whole
index set. However, for a triangular array, we define finite dependence as
follows. :

Definition 2.3. A triangular array of random variables X, ;,..., X, ,n=1, is said
to be finitely dependent if the sequence {d,} is bounded where d, is the order of
dependence of {X,,...,X,, }. It is said to be a finitely dependent uniformly
infinitesimal array if it is finitely dependent and X ,; converges in probability to
zero uniformly in j for 1< j<r, as n—o0.

Here and throughout the rest of this paper, a triangular array X,,,...,X,, ,
nz1, is assumed to be such that r,— o0 as n— 0. Note that if {X,} is a finitely
dependent sequence of random variables, then the triangular array X, ,..., X, ,
nx1, defined by X,;=X,/b,, where {b,} is a sequence of nonzero numbers, is a
finitely dependent array.

It is easy to see that an m-dependent sequence of random variables is finitely
dependent. Another example of finite dependence is as follows. Let J be an r-
dimensional lattice set in which the coordinates of each point are integers For

each two points x=(x,,...,x,) and y=(y,,...,y,) in J, define |x—y| = Z |x;
—y;l. Let {Y,: aeJ} be a set of independent random variables and let {X,.: oceJ }



Two Central Limit Problems ' 227

be another set of random variables such that for every aeJ, X, is a function of
%: loo— Bl <d} where d=1. Then {X,: aeJ} is a finitely dependent family of
random variables. If r>2, then {X,: «eJ} cannot be reduced to an m-dependent
sequence no matter how it is enumerated. To see this, we consider for simplicity
the special case where J={(j,k): j,k=1,2,...} and d=1. (Our argument can
easily be extended to the general case.) Suppose that {X,} is an enumeration of
{X,: aeJ} and were m-dependent for some m>0. Then for every j=1,
{X(,...,X;} would be independent of {X;, , ,,X;,,, 2, ...}. Now take j=k?
Then by the definition of {X,: «eJ}, every minimal dependent set of
{X{,...,X,2} must contain at least k?+2k random variables. Consequently
{X1,..., X2} cannot be independent of {X,2 ... 1, Xj2pmsos---f if k is suf-
f1c1ently large. This is a contradiction.

The above examples show that finite dependence includes an m-dependent
analogue for random fields. This application of finite dependence to random
fields was also suggested by Kai Lai Chung who in addition suggested that it
might also be interesting to consider finitely dependent random variables
indexed by a partially ordered set (see, for example, [27]).

Further examples of finitely dependent random variables can be found in
Kesten and O’Brien [16] who showed that corresponding to each type of mixing
(strong, ¢- or y-mixing) and each mixing rate, there exists a finitely dependent
sequence of random variables with order of dependence equal to 2, which is also
a mixing sequence of the given type and with the given mixing rate. They also
showed that a finitely dependent sequence of random variables need not be a
mixing sequence.

3. Two Examples

The aim of this section is to show that some of the very general central limit
theorems are not applicable to finitely dependent random variables.

First, we observe that many central limit theorems for mixing sequences of
random variables impose some conditions on the mixing rate (see, for example,
[8, 15, 21 and 25]). The results of Kesten and O’Brien [16] show that there are
indeed many finitely dependent sequences of random variables to which these
theorems are not applicable.

Second, @ number of authors have con31dered the central limit problem for
dependent random variables (see, for example, [3, 7 and 21]), and many more
have considered the special case where the limiting distribution is normal (see,
for example, [6, 8, 14, 15, 17, 20, 24, 25 and 26]). Among these results, the more
notable and perhaps most general ones are those of Dvoretzky (se€ [7] and [8]).
However, we shall construct two finitely dependent arrays of random variables,
which do not satisfy Dvoretzky’s conditions, yet Whose row sums have asymp-
totically the normal distribution.

Let X,4,...,X,, ,n21, be a triangular array of random variables, and let S,

J
=0 and S,;= ) X,, for 1<j<r,. We shall show that our examples do not
k=1
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satisfy the following condition which is the first of the three sufficient conditions
of Theorem 1 in [7] (or Theorem 2.2 in [8]):

) E(X,S,,_1)—t50 as n-oo, (3.1)
= jin,
j= . }

where —£- denotes convergence in probability.
We need a simple lemma which we state without proof.

Lemma 3.1. Let X and Y be independent and normally distributed random
variables with zero means and variances 6> and t* respectively. Then

EX|X+Y)=c*(X+Y)o*+1?).

Example 3.1. Let {Y,} be a sequence of independent random variables each
having the standard normal distribution, and let X153 Xy, 121, be a
triangular array such that (X,,..,7tX, ) is a permutation of

(Y1, ... Yy, Yy, X ) for some k, where each Y; occurs m,; times, 2<m,; <m
kn

and m is fixed integer, and such that 7, ' " m2; converges to a positive number

j=1
1% as n—oco. Clearly the triangular array is finitely dependent and

n kn
& ( Z an) =Z (rn_% Z mnjy})
j=1 j=1
converges weakly to N(0,72). We assert that the triangular array does not satisfy
the condition (3.1).
Proof. For each n=1, let Y,,=rfX

1<j<r,. Also let S,,=0 and §, -—ZX

k=1

Jj
> Y;,k) for 1<j<r,. If none of the
=1

nj» rn
for 1 <j<r,. Further let b2,=1 and b? —Var(
k
X155 X, 51 equals X, ;, then E(X IS, ;_;)=0. Otherwise, by Lemma 3.1,
q,;var(X .)]
E(X .S . V=t 2 aille
( n_), n,q—l) [Var(S,,_j_l) -1
j—1
~ =1’,._2b,:j2_1qnj'z Y. . (3.2)
: k=1

nj1- Let U,
-y E(X,;|S, ._,) and J, be the set of Jj for which (3.2) holds (with g,;>1). Then
i n,g 1 n Anj

j=1

where g,,; is the number of times X, ; occurs in X, ,,..., X
¥

j—1 n
U Z r 2bn_] lan Zl Y;tk=kzlcnky;tk

jeJn
where

_4
an=7n * Z bnj 1qnj
i jedn, jzk+1
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Therefore for every real number ¢, ¢,(t)=exp{ —L1o2t?} where ¢, is the charac-
teristic function of U, and ¢2=var(U,). Since some of the Y,.’s are equal to one
another, o2 > i ¢2,.. Now for all n=1 we have || 2k,, r,<mk,, and for jeJ, we
have ¢,;>1 a;:llbi j—1=jmZmr,. Therefore for k<[1k,], we have
Von{k+1Lk+2,.. 1} 2k, [$k,] 23k,

so that ¢, 2k,/2mr} 21/2m* r}, where [x] denotes the integral part of the real
number x. It follows that

. . 2 . . [é‘kn] 2
liminfo; =liminf ) ¢2,
n~ o B0 g1
Zliminf[k,]/4m*r,
=1/8m°>0. (3.3)

If 62—c0 as n—oo, then clearly U, does not converge in probability to any
random variable. On the other hand, if a subsequence {62} converges to some
o’, then by (3.3), o must be positive and #(U,) converges weakly to N(0,s2).
An application of Kolmogorov’s zero-one law then implies that U, does not
converge in probability to any random variable. This proves our assertion.

The above example may appear a little artificial but the next example which
arises more naturally can be reduced to essentially a special case of it.

Example 3.2. Let {Y,: j,k=1,2,...} be a set of independent random variables
each having the standard normal distribution and let {Z;:j,k=1,2,...} be the
finitely dependent family of random variables defined by

Zy= Y ¥

Im
=jl+im—k|=1

for j,k=1,2,....

Let {X,} be an enumeration of {Z ws Shk=1,2,...} such that
n~1var ( > Xj)—mz. We assert that 0<g?< oo and & (n‘% > Xj) converges
- j=1

Jj=1
weakly to N(0,0%). We also assert that there exist such an enumeration for

which n~% Y“E(X}|S;_,) does not converge in probability to any random
j=1 j

j—1
variable, where S,=0 and for j22, 5, ;=Y X,.
k=1

Proof. It is easy to prove the first assertion. For the second assertion, let {X.}
and {Y,} be the respective sequences of random variables obtained from {Z,}
and {Y,} by ordering the index set {(j,k): j,k=1,2,...} according to the
following rule: (j, k) <(l,m) if j+k <I+m or if j+k=1+m but j<I Then it is not

n n
difficult to see that n~! var ( Y X j) —25 and that n=* )" X, can be expressed as
=1 j=1
the n'® row sum of the triangular array Xoutseos Xy, 021, where r,~5n as

n
n—-oo and for each nx1, (nfX,,..,n*X is a permutation of

)



230 L.H.Y. Chen

(Yy,...Yi,.s Y, Y, ) for some k,. It is easily seen that each Y, in
(Y,....,Y, ..., Y ,..., Y, ) occurs m,; times with 1<m,;<5, but the number of j
for which m, ;=1 is of the order n* as n— co. Since this is the case and those Ys
for which m,;=1 are independent of the other Ys, our problem reduces to
essentially a special case of Example 3.1. This proves the second assertion.

We wish to remark that it is not possible to group the random variables in
both examples as in [8] (Theorems 5.1 and 5.2) or in [21], since the permutation
in Example 3.1 and the enumeration in Example 3.2 are not specified. It is not
difficult to see that even if they are specified, such grouping need not be possible.
On the other hand, the asymptotic normality in both examples follows from
Corollary 4.3 even if the Y.’s in Example 3.1 and the ¥,’s in Example 3.2 are not
normally distributed, provided that in each case they are independent and
identically distributed with zero mean and finite variance. In Example 3.2, each
Z; may even be any Borel measurable function of {¥,,: |I—j]+|m—k{£1}
provided that the function is the same for all (j, k) (except when j=1 or k=1)

and that Z,, has zero mean and finite variance and n~ !var ( Y X j) converges to
a positive number. Sy=1

4. A Dependent Central Limit Problem

We first prove the main theorem which concerns the central limit problem for
random variables satisfying a dependence assumption more general than finite
dependence. We shall later prove another theorem which concerns only asymp-
totic normality but under even more general dependence assumption.

Theorem 4.1. Let X,4,-..,X,, , n=1, be a triangular array of random variables

with means ,q, ..., My, and variances 62, ...,02, respectively. Assume that for

every n=1 and 1 <j<r, there exist subsets A,; and B,; of {1, ..., 1,} such that {X,;}

is independent of {X,,: keAl} and {X,,: keA,;} is independent of {X,: keB;;},

and such that both Y, X, and ), X, converge in probability to zero uniformly
keAnj keBnj

inj for 1<j<r, as n—co. Let

n
Y= Y Xuo  my=var(Y),  B,= 2ty
ke dn; i=1

and défine the finite signed measure v, by

v (A)= Z cov(X,,, Y, I(Y,;€A))

nj» “nj
j=

for every Ac#B(R). Suppose

SUP ) G, T, <0. 4.1)
~ nj “nj
n j=

Then & (z an) converges weakly to the infinitely divisible distribution with
j=1
characteristic function ¢ given by

P(t)=exp{it B+ [ (€ —1—itx)x~?dv(x)} 4.2)
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where v is a finite measure, if and only if
BB (4.3)
and

v, converges weakly to v. (4.9

Proof. Let W,= Z X,;- By (4.1), sup var(W,)<co and so {W,—B,} is uniformly

integrable. If §,— ,6’ then {W} is also uniformy integrable. One the other hand, if
ZL(W,) converges weakly to a probability measure, then {L (W)} is tight. This
together with the uniform integrability of {W, —g,} imply that {B,} is bounded.
It follows that {W,} is umformly integrable. Hence the uniform integrability
condition in Lemma 1.2 is satisfied under the hypotheses of the theorem.

Now let

fwy=e™, M, ;=EY,,

VVn:_Zanja Unj= Z Xnk
j=

keAf,j
an: Z D. g an= Z Xoes
keBrj keBp;
_ _ itYn;
1= Z D. ¢ aj=e =1,
keBn;— Anj

— pitZnj — pitTh;
fnj=e m_la an_e J—lz

where 1 and w are real numbers. Then we have for sufficiently large 7,
EW, £ (W)= z BUGLI W)~ O+ z s ES (T,)
={5n+j=ZlE[(X,.j—ﬂn,-) fnjj} Ef (W)
+J_;z"lE{Xn,- & LS (U= F Vi )T}
—z i ELE LS (Un)—f(V)T)
- z [EX,, &, [Ef (W)~ Ef (V)]

+ 3, i LEC,IEES %) EF (V)]
= (B, + §( — ) x~1dv, (9} EF (W)

£ cov(Xyp by s S (Vi)

=1

— 3 cov(X, &) Eny (V).

j=1
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Let R,, and R,, denote the last two sums respectively. By (4.1), sup|v,| <co.
Therefore by Lemma 1.2, it suffices to prove that lim R,;=0 for j=1,2. Now

n— o

using the independence between X ,; and {,; f(V,,), we have for 1<j<r,,

COV(X,U', énj anf(V;u))
=E{(X,;— ) (€1 Oni= M) — 1) P Mni [ £(V, ).

So by' the Cauchy-Schwarz inequality and the independence between X,; and
{,;f(V,;) again, we have for 1Sj=<r,,

[cOV(X 5 &y L S (V)
S1t T A BNy — 1) 1P 1
=ltlo,t [EIL, P
<ltloy;t [ max EIanlz]

nj "J

This together with (4.1) and the dependence assumption imply that lim R, ; =0.

n— o
A similar but much simpler argument proves that lim R, ,=0. This proves the
theorem. nme
We deduce a few corollaries. The first is easy and so we state it without
proof.

Corollary 4.1. Let X,,,....X,, , n=1, be a finitely dependent, uniformly in-
finitesimal array of random variables with means W,y,...,H,, and variances
621, ...,0%, respectively. For each n=1 and 15j<r,, let {X,: ked,;} be a
dependent set of {X,;}. Define Y,;, B, and v, as in Theorem 4.1. Suppose (4. 1) holds.

nj»
Then & (Z X,,j) converges weakly to the infinitely divisible distribution with

j=1

characteristic function ¢ given by (4.2) if and only if (4.3) and (4.4) hold.

The result in the next corollary is due to Diananda [6].

Corollary 4.2. Let X,,,....X,, , n=1, be a uniformly infinitesimal array of
random variables with zero means and finite variances such that each row is m-

dependent. Let W,= Z X,;. Supposes for each nzl, var(W)=1,
n ji=1
sup Y. var(X,;)<co, and for each ¢>0,

n j=1
lim Z EXZI(X,;|>¢=0.
R0 je 1
Then & (W,) converges weakly to N(O, 1).
Proof Take A,,={k: 1=k<r, lk—jlSm}. It is easy to see that
sup Z var(X,;) < oo implies (4.1). Hence it suffices to show that the Lindeberg

Jj=
condltlon implies the weak convergence of v, to the Dirac measure at zero.
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Indeed,

v, R)= Y cov(X,, Y,)=var(W)=1,

j=1

and for every ¢, §>0,
[Vl ({x: |x]>63)

< ) BIX, Y, 1(1Y,0> 6)
j=1

j=

<¢ ), E|Y,lI(Y,,1>8)+ ), EIX,; Y, |I(X,,|>¢)
j=1 j=1

<637 3 EV3+ 1400 ( 3 EY2)
J= J=

Sed6 2m+ 1) M, +(Q2m+1) I3 (e) M}

where

M,= ) var(X,) and L= Y EXZI(X,;>¢).
Jj=1 j=1
This proves the corollary.

Corollary 4.3. Let X,,X,,... be a sequence of identically distributed random
variables with zero mean and finite variance. For every j21, let A; and B; be finite
subsets of the positive integers such that {X i} is independent of {X,: keAS} and
{X\: keA}} is independent of {X,: keB;} and such that lil-lp |B;| < co. Then
=2J<®
£ (n‘alr > XJ-) converges weakly to N(0,¢?) if and only if n‘lvar( Xj)—mz,
j=1 j=1
Proof. Consider the array X, ,,...,X,,, n=1, where X,;=n"%X;for 1<j<n. Itis
clear that the dependence assumption in Theorem 4.1 is satisfied with A,;
=A;n{1,...,n} and B,;=B;n{l,...,n} and that (4.1) is also satisfied. It remains
to show that for every 6>0, |v,|({x: |x|>8})—0. As the argument for this is
almost identical to the corresponding one in the proof of Corollary 4.2, we omit
it here. Hence the corollary.
In Corollary 4.1, if for each n>1, X nis>-e» X ny, are m-dependent, then we may
take 4,;={k: 1Sk<r,, |k—jl<m} (as we have done so in the proof of Corollary
4.2). For m-dependent arrays, (4.1) is definitely weaker than the condition

n

sup > var(X nj) <o assumed in Corollary 4.2. There are examples for which
n J=1

(4.1) holds but sup Z": var(X, ;)= co (see the example in [9]). Of course Corollary
j=1

n
4.1 reduces to the classical result for sums of independent (that is 0-dependent)
random variables with finite variances.
Note that every finitely dependent sequence satisfies the dependence assump-
tion is Corollary 4.3. In this respect we wish to mention, but only briefly, that
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Corollary 4.3 covers Examples 3.1 and 3.2 as well as those mixing sequences
constructed in Theorem 1 of [16].

n

In Theorem 4.1, it can be shown that if £(W,) (where W,= )’ X nj) converges
=1

weakly to a probability measure then v, converges weakly. f{owever it is not
clear, nor have we been able to determine, whether the weak limit of v, must
necessarily be a (positive) measure. If so, then it can be shown that the class of
all possible weak limits of % (W,) which are probability measures is the class of
all infinitely divisible distributions with finite variance. Otherwise, in view of
Example 1.1, the class of all possible weak limits of #(W,) which are probability
measures is not contained in the class of infinitely divisible distributions. In this
case it would seem interesting to identify the class.

We now prove a theorem which concerns only asymtotic normality.

Theorem 4.2. Let X ,;,...,X,,,n=l, bea triangular array of random variables
with zero means and variances ¢Z,...,o,, respectively. For every nzl and
1<j<r, let A,; be a subset of {1,....1,}, and for every keA,; let B,;, be a subset
of {1,...,n,}, such that {X,;} is independant of {X,: led;} and {X,;, X} is
independent of {X,,: leB;;}, and such that both ) X,.and Y X gconverge in

lednj leBnji
probability to zero uniformly in j and k for 1<j<r, and keA,; as n— 0. Let

V=2 X Wn'——.ZIan'

keAnj J=
Suppose
SUP Y, ). 0,0, <0 4.5)

n  j=1 kedAnj
and for every ¢>0,
lim Y EIX,; Y, |I(Y,;]>¢)=0. 4.6)
n—ow j=1 .
Then ¥ (W,) converges weakly to N(O, a2) if and only if var(W,)—a>.
Proof. Let

ank= Z X Unj= Zc D. G

leBnjx keAnj
n
ank: Z an’ Mn= Z Z Onj Onko
IeByji j=1 kednj

L,(e)= Y, E|X,; Y[ 1(1Y,;1>¢).
j=1

j=

Then for every real number ¢, we have
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EW, e""=it[var(W,)]E """~

+it Y Y E{X,;X,,(E e —E ")}

=1 kedn;

+iti > E{anXnk(eitU,.j_eitv,,jk)}

J=1 kedn;

+ ) E{X, (¢ —1—itY,) U}

j=1
z{j‘(eitx_ l)x—l dV"(X)} E itV
+Rn1+Rn2+Rn3

where R,;, R,, and R,, denote the last three sums respectively and v, is a

measure of mass var(W,) concentrated at zero. Now (4.5) implies
sup var(W,) < oo which in turn implies that {W,} is uniformly integrable and that

sup||v, || < co. Therefore by Lemma 1.2, it suffices to show that limR, ;=0 for j

=1, 2 and 3. Using arguments very similar to those in the proof of Theorem 4.1,
it can easily be shown that limR,;=0 for j=1, 2. For R,,, we have for every
e>0, no

IR,sl=3et® ) E|X, Y, |+2]t| L,(e)
j=1
<Let*M,+2[t| L (o).

This together with (4.5) and (4.6) imply that limR,,=0. This proves the
theorem. nme

Note that the triangular array in Theorem 4.2 includes that in Theorem 4.1
as well as arrays formed by the summands of the standardized U-statistics. On
the other hand the triangular array in Theorem4.1 does not include the latter.
The U-statistics form an important class of statistics in the theory of nonpara-
metric inference (see Puri and Sen [22], pp. 51-66). Their asymptotic normality
is well known and is usually proved by replacing the statistic concerned, say U,
by a sum of independent random variables which is asymptotically equivalent to
U, and to which the central limit theorem can be applied. This approach is due
to Hoeffding—7 [12]. Although we shall not discuss it here, we wish to remark that
the asymptotic normality of the U-statistics can also be deduced from Theo-
rem4.2,

5. A Combinatorial Central Limit Problem

For every n=2, let X njksJsk=1,...,n, be a square array of independent random
variables with finite variances, and let n,=(m,(1),...,7,(n)) be a random per-
mutation of (1,...,n) independent of the X, x’s. (By a random permutation of
(1,...,n) we mean an n-dimensional random vector which takes on each per-
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mutation of (1,...,n) with probability 1/n!) We consider the central limit

problem for the sums W, = Z Xoimiy 22

n

A special special case of W is the statistic &, = Z Crjmn) WHETE Cpuips Jo Kk
J—
=1,...,n, is a square array of real numbers. A further special case is the statistic

Z @y;bun, ;) Where a,; and b,;, j=1,...,n, are two sequences of real numbers.

Both statlstlcs &, and 7, occur in permutation tests in nonparametric inference
(see, for example, Puri and Sen [22], pp. 66-85). The asymptotic normality of #,,
was considered by Wald and Wolfowitz [29], Noether [19], Hajek [10] and
Robinson [23], and that of ¢, by Hoeffding [13] and Motoo [18]. Chen [5]
considered the Poisson approximation for W, in the case where the X, ;,’s are 0
1 variables. More recently von Bahr [1] considered the normal approximation
for W, in the general case but assumed the existence of third moments of the
X,’s. Taking a different approach, Ho and ‘Chen [11] also considered the
normal approximation for W, in the general case assuming only the existence of
second moments of the X,,;’s. In this section we prove the following theorem.

Theorem5.1. For n>2, let X,;.j,k=1,...,n, be a square array of independent
random variables with EX,;, =c,;, and with finite variances, let n,,=(m, (1), s T(1))

be a random permutation independent of the X, ,’s and let W,= Z X iy
=1

Suppose
Y ¢, =0 for 1<k<n and ) c,;=0 for 1<j=n, 5.1
j=1 k=1
sup var(W,) < oo, (5.2)

and for every £>0,

limo,, =0 (5.3)
n —700
where
o,,= max {n‘l Y P(X,;l>e),n " Y P(IX,,jk|>a)}.
12jkzn =1 P’

Then the class of all possible weak limits of £ (W,) is the class of all infinitely
divisible distributions with zero means and finite variances. Furthermore Z(W))
converges weakly to the infinitely divisible distribution with charactersitic function

¢ given by
P(t)=exp{| (€™ —1—itx)x~?dv(x)} (5.9
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where v is a finite measure, if and only if v, converges weakly to v where v, is the
finite measure defined by

vn(A)zn‘IZn: fEX2 I(X,,€4)

njk
j=1k=1
for every AcAB(R).
We first state a lemma (Lemma4.3 of [11] without proof.

Lemma 5.1. With the same notation as in Theorem 5.1,

var(W)=(n—-1)"*% Y cZ+n"ty ¥ var(X,;,).
j=1k=1 j=1k=1

Proof of Theorem 5.1. From now on we drop the subscript n for simplicity but
will pick it up whenever we need it. Let the random indices I, J, K, L, M and the
random permutations #, p, t be as defined in [11] ((4.1)+4.7)). This con-
structions was first used in [5] ((2.3)2.9)) but in slightly different notation. We
reproduce the defining properties of these random indices and permutations
here for ease of reference.

For each n=2, the random indices I, J, K, L, M are each uniformly
distributed on {1,...,n}, and n=(z(1),..., n(n)), p=(p(l),:.., p(n)) and 7=

(z(1), ..., ©(n)) are random permutations of (1, ..., n) such that
{I,J,K,L,M,n,p,x} isindependent of X k=1,...,n}; (5.5)
(I, K) and (L, M) are uniformly distributed on
{G,k)ixk; i,k=1,...,n}; (5.6)
J, , K), (L, M) and 7 are mutually independent; (5.7)
J, (I, K) and p are mutually independent; (5.8)
I and 7 are mutually independent; (5.9)
(@), oafLK, 7YL), -YM)
L, =]

pl)y={ M, a=K (5.10)
(1), a=1"YL) '

1K), a=t" M)
and
p@, a#l,  p~'J)

n@=1J,  a=I ' (5.11)

p),  a=p~(J)

where p(p~ @) =p~ ' (p() =0 and 1(z~ (@) =1~ (r(@) =0 for a=1,...,n.
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Also let
yrr= Z Xio0p> V= ZXjru)»
j*xLK j=1
n n
Z=n""! X s
j=1k=1

o= 2 Cio Cor= X i
k=1 j=1
We use the following identity taken from the intermediate steps of (4.10) in [11],
E{W-2)f(W)}
=1(n—1) E{(X 1+ Xga) [f (VX 1+ X gp) = [ (V¥ + Xy + X )1} (512)

where f is any bounded Borel measurable real-valued function defined on R.
Now, using (5.10), we have

£ -
VE =X ) Xm0+ > X ey
JELK, e T(L),e= )

Hence V** depends on I, K, L, M, 7 and the X s but does not contain any X,
from the I'™® or K™ row. By (5.5) and (5.7), (I,K), (L, M), t and the X’s are
mutually independent. It follows that V** and (Xp, Xirs X, Xgu) are
conditionally independent given (I, K, L, M). Let E denote EM%L-M Then (5.12)
yields '

E{(W-2Z)e""}
—1(n—1) E{[E(X 1y + X ) (€075 X — gtne Xl [ (V] (5.13)
for every real number . Now define the finite measure ¥, by

F(A)=2(n—1)EX+ Xop)? I(X p + X g €A)
for every Ac%(IR), and let

Ry =EZ e

R,y = — 40— 1) E{LE X gy (€00 )~ D] (B}

R,y =51 —1) E{E(X 1+ X ) (€700 — D] [E(e"" — )]}

R,,={[(€*—1)x~d(F,—v,)(x)} Ee"".
Then (5.13) yields

EW,e"n—{{ (¢ — 1) x~1dv,()} E¢™™

=R,;+R,,+R,3+R 4 (5.14)

where, by (5.5), (5.7) and the fact that L(V)=Z(W), EdV =Ee" =Eé'".
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Now for each n=2, W, includes in terms of distribution sums of independent
random variables as special cases (by letting X,;;,...,X,;, have the same
distribution for each j). By (5.1) and (5.2), it follows that the class of all possible
weak limits of #(W,) contains the class of all infinitely divisible distributions
with zero means and finite variances. Next (5.1) and (5.2) imply that {W} is
uniformly integrable, and (5.1), (5.2) and Lemma5.1 imply that sup]v,[| < oo.

Furthermore, for every n2, v, is a (positive) measure. Therefore by Lemma 1.2,
the theorem is proved if we show that lim R,;=0 for j=1, 2, 3, 4. We break up

the rest of the proof into lemmas. noo
Lemma 5.2
lim R, =0.

Proof. By [11] (Lemmad4.l) and (5.1), EZ&"™" =n—E(W—E"W)e'"" so that
IR,,|<2n~ " EW?*?* which by (5.1) and (5.2) tends to zero as n—oo.
The next lemma follows from (5.3).

Lemma 5.3. X,;,,, X,k and U,=V, —VE* converge to zero in probability as
n—>00.

The next three lemmas follow from (5.1), LemmaS5.1 and direct com-
putations.

Lemma5.4.
(n—1) E(cpy, + cxpp)? S4var(W).
Lemma 5.5,

lim (n—1) E(X; + X)X e+ X ) =0.

Lemma 5.6.
(n—1)? E(cyp,+ cxpn)* (Crpp + cxp)? S 16 [var (W)]2.
Lemma5.7.

lim (n— 1) E(X py + X ) [e"Xrme+Xxcr) _ 1] =0,

n—coco

Proof. The left hand side equals

t
lim i(n—1) { E(X 11, + X a) (X pag + X ) € 5Fm0 +Xxc) g ¢
0

n—o0

which by Lemma 5.5

n—*a

t
=limi(n—1) | E(X 1 + X gp) (X gy + X ) [ 5+ x0) 1748,
0
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Now
(n—DIE(X 11, + Xgp) (X pnr + Xgr) [eié(XIM kD) 1]
S —1) E{[E(X 11+ X ) (X pg + X ) TF[E | @8 me X0 _ 1214}
=(n— D) E{[E(X 1+ X ) E(X o+ X ) T [E| ¥ Fr +Xx0) — 1773}
S S(m—-1D)[E(e+ CKM)2 (crmt CKL)ZF [E|eieXrmetXxn) 11274
The lemma then follows from (5.2) and Lemmas 5.3 and 5.6.

Lemma5.8.

limR,,=0.

n— o

Proof. By Lemma‘5.7,
R,y = —4(1— 1) E{LB(X 1 + X ) ("7 +Xx5) - 1)]
x [E(e*™ —e*™")]}.
Now the absolute value of the right hand side
<3~ D HI[EX 1+ X o)X g+ X o) Bl — 1]
which by (5.2) and Lemmas 5.3 and 5.6 tends to zero as n—co. Hence the lemma.
Lemma5.9.

limR,,=0.

n— oo
Proof.

2IR,5| S(n—1) E{E|e" — 1| E(X 1, + X g0}
=(n—1) E{(c;p +cxn)” Ele"™ —1[}.

Now for every &> 0.
Ele"U —1|Z|tle+ Ca,,

wher@ C is some constant. Combining (5.3) and Lemma 5.4, we prove the lemma.
Finally we note that to prove lim R, , =0, it suffices to show that

lim (n—1) EX,, X0 (e"¥x™ —1)=0.
Now

(n—1) EX,, e (giXxm — 1)
—(n—1) E{EMKX pp ¢ ELK (ke _ 1)}

For every £>0,

n

ENK|eit¥em (| <|tle+2max n~' ) P(X;]>e).

15j2n k=1
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We also have

(n—1)E|E X X}, e¥rz|
=(n—1)E |E" X ;e o2 1))
<(n—1)lt| EXY,.

By (5.3) and Lemma 5.1, we prove lim R, ,=0. Hence the theorem.

n—oo
In the case where the limiting distribution is normal, individual centering
can be reduced to overall centering. Let ¢,; /n, €, x=c,./n and ¢

= n++/n = Z chjk/n'

j=1k=1

nj+ n+ 4

Corollary5.1. Let X, ., n, and W, be as defined in Theorem 5.1. Suppose for every
nz2, EW, =0 and var(W,)=1. If for every ¢>0,

limn~! Z Z EX2, 11X

n- o0 j=1k=1

|>¢e)=0, (5.15)

njk

then £ (W,) converges weakly to the standard normal distribution. The condition
(5.15) is also necessary provided we further assume

lim max (]anI 12, ) =0 ; (5.16)

n—ow 15j.k

and for every £>0,

lima,, =0 (5.17)
where ,
%, = max {n-lz P(1Y, | >¢), n‘lZP(I kl>s)}
124.ksn j=1
and
Y;xjk=ank_Enj+_En+k'

We first state without proof a lemma, using the same notation.

Lemma 5.10. The condition (5.15) implies
limn~! Z ZE Y2 (Y, >€=0. (5.18)
no  j1k=1

Conversely, (5.18) implies (5.15) provided (5.16) holds.

Proof of Corollary5.1. First we note that (5.15) implies (5.16) and (5.17). Let
EY;W k- The condition EW, =0 for n=2 implies that ¢,, . =0 for n>2 which
in turn implies that -

dy;.=d,,, =0 for 1<j,k<n and n=>2 (5.19)
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and that
Y Yz = 2 Xnjmaiy: (5.20)
j=1 i=1

Now (5.15) implies (5.16) and (5.17). It follows from (5.17), (5.19), (5.20), Le-
mma 5.10 and Theorem 4.1 that (5.15) is sufficient for Z(W,) to converge weakly
to the standard normal distribution. The converse is also clear from (5.17), (5.19),
(5.20), Lemma 5.10 and Theorem 5.1. This proves the corollary.

We wish to remark that the sufficiency of (5.15) also follows from [11].

Acknowledgement. We would like to thank the referees for their comments
which have helped towards the improvement of the exposition of this paper.
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