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1. Introduction. Let x1,...,xn be random variables with Exi = 0,
n ,
var( ] x,) =B
i=1

2

L and E|Xi|3 =Yy <>. Let F, be the distribution function

n

of 8;1 2 X; and ¢ the standard normal distribution function. The Berry-
i=1 '

Esseen theorem {Berry (1941) and Esseen (1945)) states that if X1""’Xn

are independent then there exists an absolute constant C such that
-3
IF_ - 81 < CB Yoy

Here and throughout the rest of this paper l-lp, 1< p < =, denotes the
usual Lp norm on the real line and C denotes an absolute constant. If in
addition X1,...,Xn are identically distributed, then the bound on

IFn - ¢1_ if of the order n-1/2. It is known that the rate of convergence

n—1/2 is best possible.

There has been considerable interest in the literature in obtaining a
bound for IFn - ¢lm in the case when X1,...,Xn are dependent. Many
attempts have been made to obtain a bound having an order as close to n—1/2
as possible and in many cases existence Sf moments higher than the third was
assumed. Some of the early works in this direction were by Philipp (1969);
Petrov (1970), Egorov (1970), Stein (1972), Erickson (1973, 1974) and Leonenko

(1975). More recent works include those of Maejima (1978), Neaderhouser

(1978b), Shergin (1979), Tikhomirov (1980), Riauba (1980), Prakasa Rao (1981),



Schneider (1981), Bolthausen (1982a), Takahata (1981, 1983) and Guyon and
Richardson (1984). Of these the better results for sequences of random
variables are by Shergin, Tikhomirov, Schneider and Bolthausen, and the better
results for random fields are by Takahata (1983) and Guyon and Richardson.
Except for Bolthausen and Takahata these authors assumed existence of the
third and sometimes lower moments. Of the latter we will state only those
results assuming the existence of the third moment. Under this assumption,
- -1/2 2
Tikhomirov obtained a bound of order n (log n) for strongly mixing
strictly stationary sequences of random variables and a bound of order
~-1/2 3/2 . . .
n (log n) for completely regular (¢-mixing) strictly stationary
sequences. In each case the mixing rate is assumed to be exponentially
decreasing. The latter result was extended to nonstationary sequences by
~-1/2
Schneider who also improved the order of the bound to n / log n.

Tikhomirov's result for strictly stationary m-dependent sequences was

generalized by Shergin who proved that if X4,...,X, is an

n
m~dependent sequence with EXy = 0, Var(iz1 xi) = Bﬁ and EIXi|3 =Yy <,
then

n
2_-3
. IF - &1 < C(m+1)"B .
(1.1) i, . (m)nf;yi

By a result of Berk (1973), the order for m in (1.1) is best possible.
Bolthausen was able to obtain a bound of order n-1/2 for strongly mixing
stationary Harris recurrent Markov chain by assuming certain mixing rate and
the existence of a moment higher than the third.

To state the results of Takahata (1983) and Guyon and Richardson (1984},
we regard the indices 1,...,n of x1,...,Xn as being from 72  for
notational convenience. Takahata proved that for strongly mixing random

fields with exponentially decreasing mixing rate and bounded absolute (845 )th

moments for some & > 0 such that



(1.2) lim inf n_lVar( E Xi) > 0,
n+eo 1=1
we have
-1/2 d
(1.3) lF -ell, = o 2 (1ogm) 9.

_1/2(109 m 29 for strongly mixing

Guyon and Richardson obtained a rate of n
random fields with exponentially decreasing mixing rate assuming (1.2) and
only the boundedness of the absolute third moments. But the mixing condition
assumed by Guyon and Richardson is different from that assumed by Takahata who
took into account the sizes of two disjoint subsets of Zd in addition to the
distance between them. The mixing condition of Guyon and Richardson cannot be
applied to Gibbs random fields (see Dobrushin (1968)). For m-dependent random
fields, Takahata and Guyon and Richardson proved under condition (1.2) that
(1.4) I _-ell, = ot™/?) .
While Takahata assumed the boundedness of the eighth moments for’this result,
Guyon and Richardson assumed only the boundedness of the absolute third
moments. The authors did not indicéte how the constants in (1.3) and (1.4)
depend on d, the moments and the mixing rate.

If an m-dependent sequence is stationary with Bn-+ © , then (1.1) yields

-1/2

a rate of n Similarly if an m-dependent random field is stationary and

Cov(Xi, Yi) > 0 where Yi is the sum of those Xj dependent of Xi’ then

C . . . -1/2 .
condition (1.2) is satisfied and the rate of n in (1.4) holds.
However, without stationarity, even if the random variables are bounded and

identically distributed, the bound is (1.1) may tend to infinity and

condition (1.2) may not be satisfied. Here is an example due to Erickson

(1974). Define a sequence of bounded and identically distributed random
. o 2 2
variables X., ..., X with EX, = 0 and EX, =1 as follows. Let B =
X 1 n 1 1 k
. > 2 ; = -
var ( izl Xi) and let Xl’ X2 be independent. For k 2 2, define Xk+l Xk
if B2 » kl/2 and define to be independent of X . if
2 X1 e X
Bi < k1/2. It is not difficult to see that Xl’ ey Xn is a l-dependent



n

sequence, lBi - n1/2| < 2 and X Xy 1is a sum of Bi = n
i=1

independent and identically distributed random variables. By the Berry-Esseen

1/2 terms of

theorem

(1.5) IF - e < cyn~1/4

where Y = Elxil3. But the bound in (1.1) is asymptotically CYnV4 which
+ », and condition (1.2) for (1.4) is not satisfied. 1In view of the example
of Erickson it is natural to ask whether a better bound exists and if it does,

what is it? One of the objectives of this paper is to answer this question.
n

We consider random variables X;,...,X; with EX; = 0, Var(ii1 Xi) =B

and Elxi‘3 =Yy <® and satisfying the following dependence assumption. For

2

each i ¢ {1,...,n}, there exist nonempty A; C B; C Cy c {1,...,n} such

that {X;} 1is independent of X ., X, is independent of X _ and X, is
A i B i
i i
independent of X .. Here X, denotes {xi : ieA}. We also assume that

Ci
each Cy is relatively small compared to {1,...,n}. One can see that the
index set {1,...n} is actually arbitrary although the natural numbers are
used. This class of dependent random variables has an interesting

structure. If X1,...,Xn is the nth

YOow xn1""’xnn of a triangular
.array with ALy replacing Ay and so on, it has been proved in Chen (1978,
theorem 4.1) that under very natural conditions, L(i§1 xni) converges weakly
to an infinitely divisible distribution with finite c;nonical measure Vv if
and only 1if the signed measure Vv, converges vaguely to Vv where

n

R ¥ X,y and v (R) = b Covi(X ;.Y I(Y ;€R)) for Ae BAR). It is
JeEA_ . i=1

ni

clear that this class of dependent random variables includes m—~dependent

random fields as special cases and many spatial statistics can be represented

by a sum of such dependent random variables. (See for example Mantel (1967),

pavid (1972), Sen (1976), Shapiro and Hubert (1979), and Cliff and Ord



(1981)). Furthermore the results proved in this paper can be extended in a
fairly routine manner to mixing random fields and in particular certain Gibbs
random fields. (See Dobrushin (1968), Holley and Stroock (1976) and
Neaderhouser (1978a)). We have chosen not to include results for mixing
random fields in this paper because we want to minimize the amount of tedious
calculations in order to focus on the ideas and techniques of our proofs.

The main result in this paper is

p-1
(1.6) IF—pr <P B_3B for 1< p< o
. ‘ n
where F is the distribution function of B_1 E Xy x1,...,Xn gsatisfy our
i=1

dependence assumption, and X and B are given by (2.6) and (2.7)
respectively. We note that X 1is a dimensionless quantity and B8 is a

n
generalization of X Yi. It is reasonable to assume that A remains

i=1
bounded as n + ®. (See Remarks in Section 5.) It is shown in Section 5 that
the bound in (1.6) coincides with that in (1.5) when it is applied to the
example of Ericksoh. It is also shown that (1.6) yields

2_-3

. . n
(1.7) PE-¢1 < s~ Y y, for 1<p<e= ,

i=1

where 6 is given by (2.5). When applied to m~dependent random fields on
78, 8 < (1omt1)? (see (5.24)). For d = 1 we obtain a bound of the same
order as that in (1.1) with the best possible oraer for m.
Since I'Ig < I'|E—1l'l1 , it suffices to prove (1.6) for p =% and 1.
An Ly bound for independent random variables was first proved by Esseen
(1958) and that for m-dependent sequences by Erickson (1973, 1974) who
n
obtained a bound of the order (m+1)3 X Yi in the second paper. The result
i=1
of Erickson was generalized by ILoh (1975) to completely regular sequences.
Takahata {1983) considered the L1 problem under the same dependence

assumptions as his I problem, and under the condition (1.2), obtained L1



bounds of the same orders as in (1.3) and (1.4) assuming the boundedness of
the absolute (4+8)th moments (6>0) and the fourth moments respectively.

Most of the authors mentioned above used the characteristic function
method and Bernstein's technique of dividing the sum into blocks and
approximating the blocks by independent random variables. Stein (1972)
invented his own method. Erickson (1974) and Loh (1975) adapted the method
for L4 bounds. Takahata's works (1981, 1983) are based on Stein's results.
T{khomirov (1980) and Guyon and Richardson (1984) combined techniques
assoclated with Stein's method with the use of characteristic functions. Such
an approach was also used by Chen (13878) and Bolthausen (1982b) but these
authors‘were only concerned with limit theorems and not the rate of
convergence.

Apart from obtaining new results, another objective of this paper is to
appiy Stein's method and in doing so develop general techniques which we hope

are applicable to other problems. Stein's method may be briefly described as

follows. ILet W = B"1 § Xi where X1,...,Xn are dependent random
i= n
variables with EX; = 01 ;nd Var('21 Xi) = B%2. We derive an identity of the
i=
form
(1.8) E{f* (W) - WE(W)} = ERf(x1,...,xn)

for absolutely continuous £ such that |f(w)] < C(1 + !w]) for some
constant €, where the right hand side of (1.8) is an erxror term. By
choosing f in (1.8) to be fh' the unique bounded solution of the

differential equation
(1.9) f'(w) - wf(w) = h(w) - Nh

where h is a bounded piecewise continuous function and ¥Wh =

-1/2 f“ —X2/2

{21) - hi{x)e dx, we obtain

(1.10) Eh(W) - Nh = Eth(X1,...,X )

n



If h = I(~w,z]’ then the left hand side of (1.10) is ¥F(z) - ¢(z). We will
be concerned only with’ h = I(—w,z] and h = hz,a which 1sg defined by (5.3}).
Bounds for [IF-¢i_ = and IF—-M1 ‘can then be obtained by appropriately
bounding the right hand side of (1.10). There are two major steps in the
application of Stein's method: the derivation of an identity of the form
(1.8) and the bounding of the error term. The techniques involved in these
two steps depend on the nature of dependence among X1,...,Xn and may vary‘
from problem to problem. Our aim is to develop these techniques in such a way
that they may also be applicable to other problems.

For X1""’Xn satisfying our dependence assumption, we use an
exchangeability argument to derive an identity of the form (1.8). Our
exchangeability arquﬁent is related to Stein's idea of an exchangeability pair
and an antisymmetric function but appears to be more intuitive and fléxible in
applications. (See Diaconis (1977) and Stein (1986).) By using (1.9) and the
boundedness properties of fh’ a bound is immediately obtained for
IF-¢I1 whereas the problem of bounding !F-8$I_ is reduced to that of
bounding Pc(ac < WKL bC) where ¢ is a random vector depending on a
relatively small subset of {X1,...,xn}.

To bound Pc(ac < W< bC)' we use a conditional version of our identity
and choose f in the identity to be dependent on ¢ and such that its
derivative f' 1is an appropriate trapezoidal function. We call tﬁe resulting
inequality for Pc(ac < WK bC) a conditional concentration inequality. The
use of a concentration inequality in bouhding VF-01  was originally due to
Stein.in proving the Berry-Esseen theorem for independent and identically
distributed random variables. A simplified version of Stein's proof is given
in Ho and Chen (1978). However Stein's proof uses the symmetry inherited from

the fact that the random variables are independent and identically distributed



and extension of the concentration inegquality by using an identity of the form
(1.8) even to independent but non-identically distributed random variables is
difficult and remained unsolved for some time. 1In a discarded chapter of his
monograph (1986), Stein has a proof of a concentration inequality involving an
exhchangeable pair. The inequality is then applied to independent but non-
identically distributed random variables. The proof of our conditional
concentration inequality which also covers the independent but non-identically
distributed case is different.

The foregoing discussion shows th%t bounding IF-¢l  is more difficult
than bounding IF-QI1 using Stein's method. This fact was first observed by
Erickson (1974).

We have only discussed the application of Stein's method to normal
approximation. For an abstract formulation of Stein's method and other
applications, see Stein (1986) or Chen (1979).

We have mentioned earlier that some of the above authors obtained their
results assuming the existence of moments lower than the third. 1In
particular, for m-dependent sequences Shergin (1979) obtained

. 2
(1.11) an - @Iw < zzg C(m+1) [RZ,n(E) + R3,n(€)]

and Erickson'(1974) obtained

3
{1.12) |Fn - ¢|1 < inf C{(mt+1) [Rzln(e) + RB,D(E)]
>0
2 T 2
where R, /(€) = B_ L oEx{r(lx | > eB)) and Ry (e) =
i=1
n
3;3 ) Elxi|31(|xi! < an).' It is possible to extend our techniques to

i=1
obtain a bound for lF—¢lp involving our B but in a way analogous to the

bound in (1.11). However we sacrifice refinement for simplicity in this

paper. Perhaps we will consider refinements and extension to mixing random

fields in another paper.



2. A class of dependent random variables. In this section we state our

dependence assumption and define notations which will be used throughout the

n

paper. Let X,,...,X, be random variables with EX; = 0, Var( 2 Xi) = B2
i=1

and E‘Xi|3 = Yy <. We assume that for each i ¢ {1,...,n}, there exist

nonempty A; T By Ce¢ C {1,...,n} such that (Xi} is independent of X _,
A

i

XA is independent of X and XB is independent of X . Here X

o] A

i Bi i C:

i
denotes {Xi : 1 € A}. It is clear that the index set of X4,...,X, 1is
arbitrary although we use the natural numbers for notational convenience.

For AC {1,...,n}, we define

(2.1) N(A) C {1,...,n} to be such that for each i ¢ N(A)®, B, N A =4¢ .

For each j € {1,...,n}, we define

(2.2) we(cd) = {1 : 3 € nepY .

We assume that the C; are relatively small compared to {1,...,n} so that
each WN(C;) is a proper subset of {1,...,n}.

For each i € {1,.f.,n}, let

/

v, = ) X, oo Y= '2 X
jcB? Jeh
1
(2.3) 5 Z
z, = ) X, , T, = X. .
L jeBi J i jeC ]

As usual ‘A‘ denotes the cardinality of the set A. We define

(2.4) ﬁf = Var( E Xj)
. ] c
JEN(Ci)
(2.5) = max {lN(Ci)I,IN*(cj)l}
1<i,j<n
(2.6) A = max %— 3 v 1
1<i<n Bi



n

(2.7) B = ) Y .
i=1 JeN(C HUN*(CT)

{E|x.X, Y

% i| + E|xjxizi|}

b 2 2
+6 {Elxiyi! + ExiElzi{}
i=1

+

o~

2 2
{Elxiyizil + E!xiYi| + Elxizi!
i=1
+ Elxiyilgtzi! + E!xiyi|E|Ti! + ElxiziIElTil
+ Elx, lEY? + ElX, |EZ2
1 1 by

+ E!XilElYizi] + ElxilElziTil + ElinElTiYi1} .

Tet AO C AC {1,...,n} be such that Xy is independent of X and
0

AC
let ¥ Dbe a random vector depending on Xy o Let x1',...,Xn' be an
0

independent copy of X4,...,X, and for i ¢ {1,...,n}, let
(2.8) yt= ) X'

jen,
We define
(2.9) W = .~§ o X

ieN(A)

~2 ~
(2.10) B® = Var(w)
(2.11) T(y,t) = I(y > £ > 0) - I(y < t < 0)
(2.12) M(t) = ) X, T(Y, - 2,,t)
ieN(A)c i i i
(2.13) K(t) = ) X, '"T(Y,' - Z,,t)
icN(A)c i i i

(2.14) X(t) = EK(t)

Note that by the definitions of Ay, A and N(A), M(t) and [ are
independent and by the dependence assumption X and Y, - Zy are
independent for each 1i. = Consequently

g

(2.15) E® M(t) = EM(t) =0 .

10



Likewise K(t) and ¢
(2.16)
By direct computations

(2.17) [ xerar

are independent and so

L X(t) = EK(t) = K(t)

E

= T BNt -y
1eN(A)

= 3 EX Y, = Var (W)
1eN (M€ .

If AO = ¢, then we take N(A) = ¢.

11



3. An exchangeability argument. Iet X,,...,X Dbe dependent random
n n

variables with EX; = 0 and Var( y Xi) =1 and let W= ) X; (note
i=1 i=1

B = 1). In this section we describe a method for deriving identities of the
form (1.8). For the time being we do not assume that X1,.‘.,Xn satisfy the
dependence assumption of Section 2.

Suppose there exists a probability space (Q,B8,P) on which the random
variables Xi’ ﬁi, Xi', Ei' and Ui’ i=1,...,n, are defined such that for
each i,

(1) LOXy,Eq 0% ' 0By 003) = LIXp',ES" /Xy 08 5,Up)
Then we have .
n n
(3. 1) T OEX(F(Uy + Ey) = ] EX;UE(U; 4 E4")
i=1 i=1

for absolutely continuous f such that lf(w)‘ < C(1 + \w!) for some
constant C. Suppose, in addition, for each i,
(ii) Ui is close to . W in some sense,
(iii) Xi’ Ei’ Xi" Ei' are small in some sense,
{iv) (Xi‘,Ei‘) are weakly correlated to functions of (Xi,Ei,Ui,W),
n

(v) ) EX;Ey = 1.
i=1

Then (3.1) can be rewritten as an identity ofvthe form (1.8) with the error
term small in some sense. We show heuristically how this can be done. We
will derive explicit identities of the form (1.8) later when we apply this
exchangeability argument to dependence random variables satisfying the
dependence assumption of Sectién 2. By (ii) and (iii), the left hand side of
(3.1)

EX; £(W) = EWE (W)
1

n
o~ s

i
By (iv), the right hand side of (3.1)

12



n

= § EXg'(E(Up + Ey") - £(Uy))
i=1
n

= 121 EX ' [ T(E, ' £)E' (U, +t)de

where T 1is defined by (2.11). By (ii) and (iv), the last sum

n

= f( Z EXi‘F(Ei',t))Ef'(w+t)dt
1=1
n

= J( ] Ex,r(g . 0))Ef (wre)at
1=1

it

[ X(£)Ef' (Ww+t)dt

n
where X{(t) = 2 EXiF(Ei,t). Now X 1is the density of a signed measure and
. n i=1 »
[ x(eyae = ¥ EX,E, which by (v) = 1. If the X, and &, are
=1

sufficiently small, then the mass of X is concentrated near 0 and
[ K(t)Ef' (W+t)dt = Ef'(W). Consequently (3.1) leads to

E{f' (W) - WE(W)} = 0
which is of the form (1.8) with small error term.

Sometimes it is more convenient to use

n
(3.2) ) EX (U, + &, +E,") =

EX,'F(U, +E, +E.")
121 1 i i i i

1

i~

instead 6f {(3.1) although in this paper we will usel(3.1). It is easy to see
that (i) also implies (3.2).

We now see how our exchangeability argument is related to Stein's use of
an exchangeable pair and an antisymmetric function. Suppose W takes a
‘finite number of values and there exists a probability space with W and.
W' defined on it such that [(W,W') = [(W',W). Stein (1986) used homology
theory to prove that under certain connectedness condition if Eg(W) = 0 then

2

there exists an antisymmetric function F :IR® + IR with E]F(w,w‘)| < o such

that g(W) = EWF(W,W'). Guided by this result he used the antisymmetric

13



function (w,w') v (w'-w)[f(w) + f(w'})] and the easily verified fact

E{(W'-W) [£(W)+£(W')]} = 0 to derive an identity of the form (1.8). See Stein
(1986, Lectufe I). We show that (3.1) can be rewritten as

(3.3) EFc(S,s') = 0

where [(S,S') = [(s8',8), S and 8! ére approximately equal to W and F¢

is an antisymmetric function similar to (w,w) + (w'=w)(f{w)+f(w')].

Iet I be uniformly distributed on {1,...,n} and independent of Xi’
Ei’ Xi', Ei', Uy s i=1,...,n. Define 8§ = Up + Xg and S' = Up + XI" By
(ii) and (iii), S = S' = W and by (1), L(s,s') = L(s8',8). Also by (i)
(3.4) EUIf(UI + EI) = EUIf(UI + !-;I')

where f is as in (3.1). ©Now (3.1) can be rewritten as
" (3.5) EX f(U; + Ey) = EX '£(Up + E47) .
Combining (3.4) and (3.5), we obtain
ESE(U; + E;) = ES'£(Up + E;")
which is
(3.6) ESESE(U; + £) = ES'ES £(Up + E;') -
By (i) again, the regular conditional distribution of UI + EI glven S8 = s
is the same as that of U; +IEI‘ given S' = g. By letting ¢f(s) to be the
regular conditional expectation Es=sf(UI + EI), (3.6) becomes
ESps(S) = ES'ec(S')

which is equivalent to
(3.7) E{(S'-8) [p(S) + ag(s")]} =0 .
The function (s,s') " (s'-8)[9c(s) + ¢c(s')] 1is clearly antisymmetric.

Now we apply the exchangeability argument to Xy,...,X, satisfying the

dependence assumption of Section 2. We use the same definition and notations

n
as in Section 2. We assume B = 1 so that we have EX; = 0, Var( 2 Xi) = 1
i=1
3 n
and E|x |7 =y <= let W= 1?1 X;. Since (X;',...,X ') is an

14



independent copy of (X1,...,xn) and for each 1 € N(A)S, By NA=¢, it
follows that for each 1 ¢ N(ME,

(Xi'Yi)' (Xi‘,Yi') and (Vi,C) are independent
and

L(inYiIXil IYiI :ViIC) = L(xi. IYi‘ 'xi ’Yi’vi /L)
Let (t,w) *+ ft(w) be Borel measurable such that !fc(w)‘ < C(1 + ‘w]) for
some constant C. By the exchangeability argument

C = Y V C ] 1 '
(3.8) y EX £ (V, + ¥)) , E°X fc(vi ryn .

ien(ms  E Ptenin©
Here and throughout we drop.the term "a.s." for simplicity. Now based on
(3.8) we derive two slightly different identities of the form (1.8) which will

be used separately for the next two sections. Write the left hand side of

(3.8) as

(3.9) y ECX (£ (V. + ¥.) - £ (W) + E° WE_(W)
Len(M)C iTgi i z e .
] [ &
= E° X £ U(WHt)dt + E° WE_ (W)
icN(A)C 1o ¢ ¢

E° [ fc'(w+t);(t)dt ;B e (W)

On the other hand, the right hand side of (3.8) equals
Gy '
(3.10) y ETX IV, + YD) - £, (W)
ieN(A)

Y, -z,
T ngi' !y fC'(W+t)dt
ieN(A) '

- " £, (WH)K(E)at

B | fc'(w+t)[i(t) - K(t))at

2.k

+ EC [ [fc'(w+t) - fc'(W)]K(t)dt + B E fc'(W)

15



where we have used (2.17). Combining (3.8), (3.9) and (3.10), we obtain the

first identity

(3.11) ngCfC'(W) = EC W () + - [ fc'(w+t)i(t)dt

- B [ fc'(w+t)[i(t) - K(t))dt

- £ [£, ' (Wrt) = £ (DIK(E)IAE

For the second identity we go back to (3.8) and take A0 = ¢. Then we have

n n
= 1 ]
(3.12) .E EX £(V, + Y,) .2 EX VE(V, + Y,') .
i=1 i=1
By using the fact that X, and (Zi - Y. Vi) are independent and EX; = 0

we write the left hand side of (3.12) as

n
(3.13) ¥ EX, [£(V, + ¥Y,) - £(W)] + EWE(W)
. 1 1 1
i=1
n
= - .X B[ £V, + Y, + XTI (2, - ¥, t)at + BWE(W)
i=1
n
= - [ - [] . -
= .X E[ [f (V, + Y, +£) - £V + DIXT(Z, - ¥, £)dt + EWEW) .
i=1
Since (Xi',Yi') and (Vi,W) are independent and EXi' = EX; = 0, the right

hand side of (3.12) equals

n
(3.14) T OEXVIE(V; + Y') = £(V))]
i=1

i

n
.21 E [ £1(v; + £)%'T(Y;",t)dt
1=

e

E [ [£'(v+t) - £ (WIEX (Y, t)dt

i=1

n
+ EfT (W) ] [ Ex,'T(y;',t)dt
i=1

16



E [ (£'(W) - £'(V,+£)JEX T (¥, ,t)dt + Ef' (W)
1

ft
i
f >~

n
i BX, T (Y, ', t)dt = VooEx Y,
1=1 i=1

1

where we have used the fact that
n
= X ExiYi = Var(W) = 1. Combining (3.12), (3.13) and (3.14), we obtain the

second identity

(3.15) E{f' (W) - WE(W)}
n .
= - 111 E [ [£1(V, +Y +£) - £1(V, +£)]X, T (2, ¥, ,t)at
n
+ ) E[ [£1(W) - £1(v +£))EX T (Y, ,t)dt
i=1 ,

17



4. A conditional concentration inequality. As was mentioned in Section 1,
a conditional concentration inequality 1s required to bound I[F— @ﬁm.
Since such a concentration inequality is of interest in itself we prove it

in a separate section here.

n
. . 2
Let Xl"" ; Xn be random variables with EXi = 0, Var ( 2 Xi) =B
i=1
. 3 . . . . .

and E]Xii = Yi < » and satisfyincg the dependerce assumption of Section 2.

. o _
Let W = B 2 Xi and let AO, L and ¢ be as defined in Section 2.

i=1

PROPOSITION 4.1. For Borel measurable functions ac and b@ of ¢

11AN

"such that aC £ bg' we have

o)
A
=
A
o
A

v -3
(4.1) P (3/2) B (bC - ac) + 15B "R a.s.

N
where 8 is defined by (2.7) and B by (2.10).

N
If AO = ¢, we take PC = P, aE = a, bC = b and B = B.

To prove the proposition we assume without loss of generality that

B = 1 and bg-aC bounded and use the identity (3.11). Denote the terms

on the right hand side of (3.11) by R?(fC), i=1,2,3,4, respectively.
i

Now choose f, in (3.11) to be such that.fc(2~l(ac+b€)) =0, f

C is
continuous and given by
< <
1 , aC S w = bC ;
H
= < - >
fC (w) 0 , W £ aC o or 2 bg + o,
linear , a_~a £w £a_ or b £ w £ b + ¢
4 L 8 C

where o is a positive number to be determined later. Clearly ]fg(w)l =

2’1(13 ~a ) +a. With this f£_,
A 4 4

18



g -1 [
(4.2) R1(EC) < [2 ‘(bc—ac) + a)E"|W]

= [2_1(bc—ac) + a]E‘ﬁ|

< 3[2'1(bc—ac) +a)

By the geometric mean-arithmetic mean (GM-AM) inequality,

(4.3) Rg(fc) <275 E* [fc‘(w+t)]2dt + 27V 3V ER (M(t)] 2dt

1 -1

<27'B Ec(bc-at+2a) +2 V8 Ve M(£)] “at

1

= 5[2—1(bg—ac) vay + 271 F g var(M(t)]dt -

Likewise

1

(4.4) Rg(fc) < %[2_1(b§—ac) +a] + 2775V [ var(r(e)iat .

Now we abuse the notation a little and regard EF and P; as regular
conditional expectation and probability given a particular value of [ until

we state otherwise. Define

LC(G) = sup PC(x < W< xH) .

X€IR
Then by writing
. = - 5o [Tt g e r (0 (0 _ ,,
Ry(f,) = - E fo fo £, (WHs)dsK(E)dE + E o £, ' (Ws)dsK(t)at
= - a ! f: fg [Pc(ac-a<w<ac) - Pc(bc<w<bc+a)]dsK(t)dt
-1 (0 (0 I 4
—-ag - < ,
va [ (a -a<Wa, ).~ P (b Wb +a)dsK(t)dt
we have
(4.5) 4 -1 = (t -1 (0 (0
R (f,) <o fo fo L, ()ds lx(eylat + o™ [ ft L, (a)ds Ix(t)|at

- o L, (@) fim‘tK(t)ldt .
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Since pC(ac < W< bp) < szC'(W), it follows from (3.11), (4.2), (4.3),

(4.4) and (4.5) that —

Cla <w< < 3V -
(4.6) P" (2, <W<b ) (3/2) B (b -a +20)

+ 2f1 373 [ varm(e))ae + "3 [ var(x(t)lat

+ a—11t(a)%—2 [ lex(erlar .

tet p =53 [ var(M(t)ldt + B> [ var[K(t))dt. Substituting a, = x and

b, = x+0 in {(4.6), we obtain

z
(4.7) L, (o) < o5 Yas2 +0/2 + a—1LC(a)E—2 [ lex(o)lae .

Now let a = 2§—2 f 1tK(t)|dt = a* say. Then (4.7) yields
(4.8) L, (a%) < o8~ Yar/2 + p/2 + L (@*)/2 .

From this we get

~ =1
L_(a*) < 9B a* +
(4.9) C( ) p

= 18872 [ ltx(t)lat +p .

Finally combining (4.6) and (4.9) and letting a = a* we get
z ~=1 ~~3
(4.10) P (a, <W<b,) < (3/2) B (b,-a,) + 158 [ lex(e) |at

+ 373 [ varpaoyiae + 373 [ var(r(o)lae .
Now we can go back and regard the left hand side of (4.10) as ordinary
conditional probability and the right hand side as a random variable. What
remains to do is to bound the last three terms on the right hand side of

{4.10) which we denote by R1, R2 and R3 respectively. For R1 we havev

(4.11) [ lexeerfae < [ Jef 1 ElxTy,t -z t)|at
ieN(A)

n v
< I Elx'] [ lelty -z, > ©0) + T(¥ -2, < ec0))dt
i=1
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-1 B
2 YoOoElx,'(Y,"-2Z,)
. X 1 1

i=1

2

i

~

n
‘21{E]Xi'Yi‘2\ + Elxi'zi‘}
l=

i
e~

{(]x.Y2| + E|X.‘EZ?}
1 1 b % 1

i=1

For R2, direct computations yield
(4.12) [ var(M(t)lat

= 3 ) E{X. X, [(Y. =2, A (Y. ~Z )I((Y, =2 )A(Y,=Z,) > 0)
1en (M€ jen(c, ) 304t 33 o2 33

+ (Yi—zi)v(Yj—zj)I((Yi—zi)v<Yj—zj) < 0)1}

) ¥ e(|x.x. | t]y.-z, o]y -2, |1}
121 jeN(c,y R

< 27!

| o~13

Ioomtlxgx il ]+ Tz ]+ yl o+ 20

i=1 jCN(Ci)

For R3, we have

(4.13) [ var[r(t)ldat

I

[ Y 1 cow(x,'T(Y, '-Z ,t),X,'T(Y '~Z_,t))dt
1eN (M€ jeN(c,) * 1 3 33

N

 n
f Z z {Var[xi‘r(Yi'—Zi,t)]Var[X.'F(Y.'-Z.,t)]}1/2dt
i=1 jeN(c,) L

n

n
2"V YT {var(x,'T(y,'-z,,t)] + Var(x 'T(Y '-Z,t)]}dt
i=1 jen(c,) * o3 3 5 B

N

-1 n ’ 2
VT Y [ tElx ez o)+ Bl Tz e Dae
i=1 jeN(c,) * i1 3 i 3

N

-1 v 2 2
2 ) Y {Elxi' (Yi'—Zi)| + E|x." (Y,'—Zj)l}
i=1 jeN(c,) J )
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-1 ¢ 2 2 2 2
<2 y ¥ {Elxiyi| + EXiE‘Zi‘ + E\XjY,‘ + exElz. I} .
i=1 jeN(c,) ) P
By (4.10), (4.11), (4.12) and (4.13), the proposition is proved.
n
By using the HSlder and the GM-AM inequalities, B < 2109 2 Yy and
i=1

proposition 4.1 yields

z ~-1 2~-3 ¢
(4.14) P°(a <W<b_) < (3/2) B (b _-a ) + 2106 B Y vy, a.s.
4 4 z ¢ soq 1

Since B8 <contains more terms than are contributed by (4.11), (4.12) and
(4.13), the second absolute constant in (4.14) can be reduced by using (4.11),

(4.12) and (4.13) directly. The result is the following corollary.

COROLLARY 4.1. let T, ar and bC be as in Proposition 4.1. Then

n
2 B—3

) Y, @+S.
i=1

~=1
(4.15) P®(a Wb ) < (3/2) B (ppmag) * 349
1f X1"‘f'xn are independent, then 8§ = 1. By taking AO =A = NA) =
we have the following classical result.
COROLLARY 4.2. For a < b,
(4.16) p(a<w<b) < (3/2) 5" (b-a) + 3487 § Y, -
i=1

Of course the absolute constants in (4.16) can be substantially reduced

if we prove the inequality for independent random variables directly.
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5. The main theorem. Iet X,,...,X  be random variables with EX; = 0,

n

Var( z ’Xi) = B2 and Elxil3 =Yy <= and satisfying the dependence
i=1 '

assumption of Section 2. Let F be the distribution function of W =
n

8—1 X X; and ¢ the standard normal distribution function.
i=1

THEOREM 5.1. There exists an absolute constant C such that for

1< p < =,
p-1
(5.1) : 1P-e1_ < CA P g3

where A is given by (2.6) and B by (2.7).

To prove Theorem 5.1 we asgsume without loss of generality that B = 1
and use the identity (3.15). Denote the error terms on the right hand side of
(3.15) by R1(f) and Rz(f) respectively. ﬁow choose £ in {3.15) to be
the unique bounded solution of the differential equation
(5.2) f'{w) ~- wf({w) = hz’a(w) - NhZ:G -

where a » 0 is to be determined later and for a > 0,

1 ;, W< z ,
Z ~W
= < <
(5.3) hz,a(w) 1 + o ;s Z w z+a
0 ;y W P zZi0 R
1/2 = x2/2
and ¥Nh, , = (27) /- h, 4(x)e dx. For o =0, h, o =T .4 and
th 0 = $(z). Then (3.15) yields
r
(5.4) Ehz'a(W) - th,u = R1(fz,a) + Rz(fz,a) .

The solution of (5.2) 1is given by
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2 2
w /2 w -
£ o= e 2 M o _(x) - 1o /%ax
' aad z,Q z,a
2 2
2 (= -
= —e" / f [h (x) - Nh le x /zdx
w z,Q b AN
We need the boundedness properties of fz,a which we state in the following
lemmas .
1EMMA 5.1. For all w, z and &,

(5.5) 0< £, qtw) <1
(5.6) Iwe, 0] <1,
(5.7) ESAPCOR B

PROOF. For o = 0, see Stein (1972) or Stein (1986). For a > 0, use

-1 n-1
lim n 2 h
nH+® i=0

the fact that hz,a -1
z+an ,0

TEMMA 5.2. For all w, z and a > 0O,
‘f;lo(w+s) - f;lo(w+t)] < 2a(]s|+leh1t]wl+n

(5.8)

+ I(z-s<w<z-t)I(s>t)

+ I(z-t<w<z-s)I(s<t) .
(5.9) ‘f;'q(w+s) - f;’a(w+t)l < 2atls]+leytlwl+1r

+0.-1U: I(z<w+u<z+ﬂ)du| .

PROOF. Use (5.2), (5.5) and (5.7}, keeping in mind that the left hand

side of {(5.8) or (5.9) is at most 2.

LEMMA 5.3. For all w,

(5.10) [ £, gtwidz =1
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9 t
(5.11) f lleo(w)ldz <1
PROOF. See Ho and Chen (1978, Lemma 2.1).

LEMMA 5.4. For all w,

(5.12) / \f;lo(w+s) - f;'o(w+t)|dz < (aclsl+lentlwl+)

PROOF. Use (5.2), {5.10) and (5.11), keeping in mind that the left hand

side of (5.12) is at most 2.

We also need a lemma which relates H1F-68  to sup lEhz u(W) - th .
Z€IR ' ~
LEMMA 5.5. For a » 0,

-1/2a .

(5.13) lF-—QI°° < sup ‘Ehz,a(W) - th’al + (21)
Z€IR

PROOF. See Bolthausen (1984, Section 2) or use the fact that Ehz-a,a(w)

—1/2a.

< F(z) <€ Eh (¥) and that &(z+a) - &(z) < (27)

zZ,0
Now we bound the error terms in (5.4). Since H°lg < l°l§—1l-l1, it
suffices to prove (5.1) for p =« and 1. To facilitate calculations, we

let C denote an absolute constant with possibly different magnitudes at

different places. By Lemma 5.2,

(5.14) 1R1(fz,a)l
n Ci )
< Y e[ 2ally.+e] + lehiee Tlv ]+ 111x.T(z, -y, ,t) |4t
- i i i i i
i=1
-1 n Y, +t Ci
+a Ve[ (x>0 [ P T (Z, +z<W+s< 2, +z+a)ds
i=1 ‘ i t \1 i
v 1Y, <0) [S PFi(Z +z<Ws<Z, +z+a)ds) | X, T (2, -Y, ,t)]dt
i ¥t i 5%y SR R R
= Ryq * Ry s2Yy
where [ (Xi’Yi'zi)‘ Now

i =

25



g g 4
i i i
E |vi‘ < E lw—Til + E ‘Ti—Zi‘

g
= Elw-7,| + E ilT -7
i i 4

g
< Elw] + ElTil + E-ilTi-zil

r.
1
<1+ elr | +E lTi—Zil

Using this, we have
n
(5.15) !R11\ <c)y

E [ []Yil + 2\tl]lxir(zi-yi,t)|dt
i=1

n
+c ) E|lrlE / \xir(zi—Yi,t)ldt
i=1

n
+c )y E |Ti—zi\ lxir(zi—yi,t)\dt
i=1 .

n
' 2
< c iL{Elxiyi(zi—yi)\ + B[, (2,-¥,) ‘

n
+c ) E\xi(zi—yi)lElwil
i=1 '

0
+c ) ElXi(Zi—Yi)(Ti-Zi)l

i=1
{ CcB .
By Proposition 4.1,
-1 n
(5.16) IR, | < 2a i; Ef |y, le)|x Tz -y 0 lae
| n
= xa (a+8) Y E|X. Y (Z -Y)]
1=1 i1 1 i

< Cla—1(a+8)8
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Combining (5.14), (5.15) and (5.186),

(5.17)

14

By similar arguments,

we obtain

-1
_M‘Mza)l<<3[1+a (a+8))8

(5.18) IR (£ )] < o (1 +a” (a+8)]8

2 z,o
Now choose @ = B. Then by (5.4), (5.17), (5.18) and Lemma 5.5, we obtain
{(5.19) IF-¢1 < cAB .

This proves (5.1) for p = *.

By Lemma 5.4,

' n
(5.20) [ |r (£ )ldz <
1" 2,0 .
i=1
which is the same as R11
Likewise
(5.21)

Combining (5.4), (5.20) and (5.21), we

{(5.22) tF-¢l

This proves (5.1) for p = 1

REMARKS. (1) It is reasonable to

n+®, In fact A+ 1 as n + o if

(here X should be Xn, N(Ci)_ should

which is an infinitesimality condition
the central limit theorem to hold.
we could use

(2) In bounding lF—¢ﬂm,

use (5.8) instead of (5.9) of Lemma 5.2.

. . -2 3
having the quantity max{1, B
i=1

the bound.

COROLLARY 5.1.

except for the constants and therefore

1

) E\xiYi\, B

There exists an absolute constant C

C.
1
Y E[ [1A(|Yi+t|+|t|)][E lvil+2]|xir(zi—yi,t)!dt

< CB.

/ |R2(leo)‘dz < B

obtain

< B

and therefore theorem 5.1.

assume that A remains bounded as

max B-2Var( E X.) + 0 as n=+ =
1K ikn ch(Ci)
be N(C..) and B2 should be B2)
ni n'’

and is natural to assume in order for

h instead of hz in (5.4) and
'

z,0 a
But in doing so we would end up
2 ¢ |

Y E|X.2,|} as a factor in
i=1 7

such that for
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1< p« =,
(5.23) IF—¢|p< 8 B

where 0 1is given by (2.5).

PROOF. Without loss of generality we assume B = 1. Let p =

n
2
8 2 Y,. First, by the H8lder and the GM-AM inequalities we obtain

i=1 p—1
IF—Mp <cxP o from (5.1). It suffices to prove (5.23) for p =<=. Now

choose C » 8 so that for p ? %v FF-08 < O is trivially true. For

~ 1
p < %7 we use Bi > 1 - {Var( ; X,)142 which by the H81lder and the
jeN(C.)
1
GM-AM inequalities > 1 - [e? Y Y ]1/3 > 1 -p"3 >-%, so that X < 8.
jEN(ci)

This proves the corollary.

1f x1,...,xn are independent, then 8 = 1 and Corollary 5.1 yields the
classical result.

Recall that the distance between two points i = (i1,...,id) and
J = (3qre-v1dgq) in 78 is defined by |i~j| = max [i,-3,| and the

1<2<4d

distance between two subsets A and B of zd is defined by p(A,B) =
inf{|i—j| : ieA, jeB}. A set of random variables {Xi : ieZd} is said to be
an m~dependent random field if X, and Xp are independent whenever
'p(A,B) > m where A and B are finite sets.

Suppose {X; 179}  is an m-dependent random field with EX; = 0 and

E‘Xil3 =Yy < =@ If {Xqreeenx} = (% ¢ ieA}) where A C7Z%, then in

applying Theorem 5.1 or Corollary 5.1, we have A, = {3 :}5-i| < m} N A, B, =
PP i i

{3 : |3-i] <2m} N A, c, = {3 :135-1] < 3m} N A and N(Cy) =
{5 : |5-1] < 5m) N A = wx(Ch). Therefore
(5.24) 6 < (tom+1)<

Now suppose further that {Xi . 1e7%  is stationary and A = {iéld 1) < W
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Assume EX. ( 2 X.) =1 > 0. Then 82 ~ T2|A|. Let Yy, =Y
ik, j i
|]-1l =m

for all i. The following corollary follows from Corollary 5.1.

COROLLARY 5.2. There exists an absolute constant C such that for

sufficiently large N,

2d - -
[]F~d>Hp§C(lOm+l) v, 1 sp s e
. . . -1/4
Finally we show that Theorem 5.1 gives a rate of n if Xl' ...,Xn
is the l-dependence sequence example of Erickson (1974). Recall that the

1/4

rate of n is the correct one. It is not difficult to see that in this

example if Xi is independent of all the other random variables then

A, =B, =C, =N(C.,) ={i} and X, =Y, =2, = T.. On the other hand if
i i i i i i i i
X, ==X, _; or X . ., then A, =B, =C, = N(Ci) = {1, i-1} or {i, i+1}
accordingly. In this case Yi = Zi = Ti = 0 identically. Consequently
B £ CY (number of Xi which is independént of all

the other random variables)
= CYB2
n

n
2 3 . -
where Bn = Var ( E Xi) and Y = E[Xil for all i. Similarly, XA=C
i=1
for sufficiently large. Hence for 1 s p £ =,

IS

F-ol| cB B = CvE
p n n n

-1/4
n

A

Cy

for sufficiently large n.
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