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Abstract. Let g = k ⊕ s be a Cartan decomposition of a simple complex Lie algebra
corresponding to the Chevalley involution. It is well known that among the set of primitive
ideals with the infinitesimal character 1

2ρ, there is a unique maximal primitive ideal J . Let
Q := U(g)/J . Let K be a connected compact subgroup with Lie algebra k so that the notion
of (g,K)-modules is well defined. In this paper we show that QK is isomorphic to U(k)K .
In particular QK is commutative. A consequence of this result is that if W is an irreducible
(g,K)-module annihilated by J , then W is K-multiplicity free and two such irreducible
(g,K)-modules with a common nonzero K-type are isomorphic.

1. Statement of results

Let g be a simple complex Lie algebra, a a maximal Cartan subalgebra and Φ the corre-
sponding root system. Henceforth we fix a choice of positive roots Φ+ ⊆ Φ. Let θ be the
Chevalley involution on g, and g = k⊕ s the corresponding Cartan decomposition. Let K be
a connected compact Lie group with the complex Lie algebra k such that the adjoint action
of k on s can be exponentiated to K. Then the notion of (g, K)-modules is well defined.

Let U(g) be the universal enveloping algebra of g and Z(g) its center. Let χ(λ) : Z(g)→ C
be the Harish-Chandra homomorphism corresponding to λ ∈ a∗. Let Jχ(λ) be the two sided
ideal of U(g) generated by kerχ(λ). Suppose λ is dominant weight with respect to Φ+. Let
χ = χ(λ). We define

(1) Ω(χ) = {J ⊂ U(g) : J is a two sided ideal and J ⊇ Jχ(λ)}.

This is a partially ordered set under the usual set inclusions. A result of Dixmier states that
Ω(χ) has an unique maximal element Jλ. We recall that a two-sided ideal of U(g) is called
primitive if it is the annihilator ideal of an irreducible (left) U(g)-module. The ideal Jλ is a
primitive ideal and thus it is the maximal primitive ideal of the infinitesimal character χ(λ).
Let ρ be the half sum of the positive roots. We fix χ = χ(1

2
ρ) and we let J = J 1

2
ρ be the

corresponding maximal primitive ideal. Let Q = U(g)/J .
A vector space V is a U(g)-bimodule if it is both a left and a right U(g)-module. If that

is the case, then g acts on V by the adjoint action defined by ad(X)v = Xv − vX, where
v ∈ V . Since Q is a U(g)-bimodule, we have an adjoint action of g on Q. Let Vµ denote
a finite dimensional representation of g with the highest weight µ. Let V ∗µ denote its dual
representation. Its highest weight is −w0µ where w0 is the longest element in the Weyl group
of g. Let Λr denote the root lattice of g with respect to a. We can now state Theorem 2.1
in [Mc].
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Theorem 1.1. Let Λd
r denote the set of dominant weights in the root lattice such that Vµ '

V ∗µ . Then, under the adjoint action of g, Q is multiplicity free and Q = ⊕µ∈Λd
r
Vµ. �

The inclusion k ⊂ g induces an algebra homomorphism t̃ : U(k) → Q = U(g)/J . Let
U(k)K and QK be the subalgebras of K-invariant elements. Note that U(k)K is simply the
center of U(k).

Theorem 1.2. Suppose g is a complex simple Lie algebra. Let Q and t̃ as above. Then t̃
induces an algebra isomorphism

t : U(k)K → QK = U(g)K/JK .

In particular QK is commutative.

We state an important application of the above theorem.

Corollary 1.3. Let W1 be an irreducible Harish-Chandra (g, K)-module whose annihilator
ideal is equal to J .

(i) Then W1 is K-multiplicity free.
(ii) The set of highest weight µ of the K-types in W1 is Zariski dense in Λr ⊗ C.
(iii) Suppose W2 is another irreducible Harish-Chandra (g, K)-module whose annihilator

ideal is J . If W1 and W2 have a common K-type, then W1 and W2 are isomorphic
(g, K)-modules.

Proof. Let τ be an irreducible K-module. For i = 1, 2, we set Wi(τ) := HomK(τ,Wi). It
is finite dimensional because Wi is irreducible and hence K-admissible. The action of Q on
Wi induces an action of QK on Wi(τ). It is a result of Harish-Chandra that Wi(τ) is an
irreducible QK-module. Furthermore if both W1(τ) and W2(τ) are nonzero isomorphic QK-
modules, then W1 and W2 are isomorphic Harish-Chandra modules. See Proposition 3.5.4
in [Wa].

By Theorem 1.2, QK is commutative so dimW1(τ) = 1. This proves (i). Suppose τ is a
common K-type as in (iii). The ring U(k)K ' QK acts through the infinitesimal character
of τ on Wi(τ). Hence W1(τ) and W2(τ) are isomorphic QK-modules so W1 and W2 are
isomorphic Harish-Chandra modules. This proves (iii).

By the Harish-Chandra homomorphism, U(k)K ' Sym(t)WK can be interpreted as the
algebra of Weyl group invariant polynomials on Λr ⊗ C. Suppose the set of highest weights
of the K-types of W1 lies in some algebraic subset S. Then there exists f ∈ Sym(t)WK which
vanishes on S + ρK . This implies that U(k)K does not act faithfully on the K-types of W1.
However this contradicts Theorem 1.2 and proves (ii). �

In this paper we do not describe modules annihilated by J . This remains an interesting
and challenging problem, solved completely only for sln by Lucas [Lu]. For example, if
g = sl2, then the irreducible modules annihilated by J are precisely the components (even
and odd) of two Weil representations, four representations in all. Analogs of the even Weil
representations in the simply laced case are constructed as follows. Let G be the simply
connected algebraic group defined over Q, corresponding to g. Let G be a non-linear 2-fold
central extension of G(R). Now K is the maximal compact subgroup of G. Let B = MAN
be a Borel subgroup of G corresponding to our choice of positive roots. Let δ be a pseudo-
spherical K-type as in [A-V]. Then δ, restricted to M , is an irreducible representation of
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M . Let Θ be the irreducible pseudo-spherical Langlands quotient of the normalized induced
principal series representation IndGB(δ, 1

2
ρ). The representation Θ exhibits many interesting

properties and we list some of them.

• The annihilator ideal of Θ is J . One deduces this by proving that Θ has maximal
τ -invariant, using Theorem 4.12 in [V1].
• The representation Θ is the local Shimura lift of a trivial representation [A-V].
• The representation Θ appears as a local component of an automorphic representation

constructed via the residues of Eisenstein series [LS]. In particular, Θ is unitarizable.

The representation Θ was also studied in [AHV], [H], [Kn], [T] and by Wallach (unpublished).
For example, Adams, Huang and Vogan [AHV] give a conjectural description of K-types for
the Lie type E8. In particular, they predict that the types are multiplicity free. Corollary
1.3 proves that.

In the last section we generalize Corollary 1.3 to primitive ideals whose associated varieties
are contained in the boundary of the model orbit. We would like to thank a referee for
providing a crucial information here.

The authors acknowledge the hospitality of the Max Planck Institute in Bonn where this
work was finished. The first author has been supported by an NUS grant R146-000-131-112.
The second author has been supported by an NSF grant DMS-0852429.

2. Injectivity in Theorem 1.2

The main result of this section is to prove that the homomorphism t in Theorem 1.2 is
injective. We first set up some notation. We denote the root space corresponding to a root
α by gα. For every root α we pick a nonzero vector Xα in the root space gα so that Xα are
a part of a Chevalley basis. Let Hα = [Xα, X−α]. The Chevalley involution is defined by

θ(Xα) = −X−α and θ(Hα) = −Hα.

The model orbit. We now introduce the model orbit. Let Uv be the standard filtration
of U(g). Let Jv = J ∩ Uv. Then Gr(J) = ⊕∞v=1(Jv/Jv−1) is an ideal of the symmetric
algebra Sym(g) = ⊕∞v=0Symv(g). Using the Killing form, we identify g∗ and g. This gives
an identification of Sym(g) with the algebra of polynomials on g. Let V ⊆ g be the variety
defined by the ideal Gr(J). By [BB] and Corollary 4.7 in [V2], V contains a dense open orbit
denoted by O which McGovern calls the model orbit [Mc]. A general description of O is as
follows. Fix ∆ a set of simple roots. Let S be a maximal subset of ∆ consisting of mutually
orthogonal roots, such that S contains at least one short root. Then O is the adjoint orbit
of

(2) XS =
∑
α∈S

Xα

and it does not depend on the choices made.
Suppose g is a classical Lie algebra. Then nilpotent orbits are classified by partitions. In

the following table we give the partition corresponding to the model orbit O for each classical
Lie algebra.

g A2k−1 A2k B2k B2k+1 Cn D2k D2k+1

O [2k] [2k, 1] [3, 22k−2, 12] [3, 22k] [2n] [3, 22k−2, 1] [3, 22k−2, 13]



4 HUNG YEAN LOKE AND GORDAN SAVIN

Let I = ⊕∞v=1I
v be the graded ideal in Sym(g) consisting of all polynomials vanishing on

O. Note that Jv/Jv−1 ⊆ Iv for all v.
First we state a technical lemma. We recall that θ is the Cartan involution on g. Let

pr : g→ k be the projection given by pr(X) = 1
2
(X + θ(X)) for every X ∈ g.

Lemma 2.1. The image pr(O) of the model orbit contains an open subset of k.

We will postpone the proof of the lemma after Corollary 2.3. We will prove the following
proposition using the above lemma.

Proposition 2.2. We have U(k) ∩ J = 0. In particular, the algebra homomorphism t in
Theorem 1.2 is an injection.

Proof. We shall first show that Sym(k)∩I = 0. Let p be a non-zero element in Sym(k). Note
that

p(X) = p(
1

2
(X + θ(X)))

for every X ∈ g. Since p 6= 0 on a Zariski open subset of k, it follows from Lemma 2.1 that
there is an element X in the model orbit such that p(X) 6= 0. Thus Sym(k) ∩ I = 0.

Now let p be a non-zero element in U(k). Suppose that p ∈ Uv but p 6∈ Uv−1. We must show
that p 6∈ Jv. Let p̄ denote its image in Uv/Uv−1 ' Symv(g). If p ∈ Jv, then p̄ ∈ Jv/Jv−1 ⊆ Iv,
a contradiction since we have already proved that Sym(k) ∩ I = 0. �

Corollary 2.3. Let Qv = Uv(g)/Jv. We have

dimUv(k)
K ≤ dimQKv .

Proof. Obvious from Proposition 2.2. �

We now proceed to the proof of Lemma 2.1. Let S be a maximal subset of orthogonal
simple roots as in (2). We set S̄ = 4\S so that 4 = S ∪ S̄ is the set of simple roots. We
define

X+ =
∑
α∈S

Xα −
∑
α∈S̄

X−α.

Let g×α = gα\{0}. Let S+ = S ∪ (−S̄). Let c :=
∏

α∈S g
×
α and let c+ :=

∏
α∈S+ g×α . Clearly,

O contains c and X+ is contained in c+.

Lemma 2.4. The model orbit O contains c+.

Proof. The proof is a case by case inspection. We will only prove this when g is of type Dn,
with n even. In the standard realization of this root system (Plate IX in [B]),

S = {ε1 − ε2, ε3 − ε4, . . . , εn−1 − εn, εn−1 + εn}
and

S+ = S ∪ {−ε2 + ε3,−ε4 + ε5, . . . ,−εn−2 + εn−1}.
The adjoint actions of exp(adg−ε2+ε4), exp(adg−ε4+ε6), . . . , exp(adg−εn−2+εn) on c show that
c+ is contained O. Other cases are treated in the same manner. �

Proposition 2.5. Let X0 = pr(
∑

α∈∆ Xα). Then k = [k, X0] + pr(⊕α∈∆gα).
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We will first deduce Lemma 2.1 from this proposition. Let C+ = pr(c+) ⊆ pr(O). Note
that X0 = pr(X+) and

pr(⊕α∈S+gα) = pr(⊕α∈∆gα).

It follows that X0 is in C+ and pr(
∑

α∈∆ gα) is the tangent space of C+ at X0. Let Kc

be the complexification of K. Proposition 2.5 and the inverse function theorem imply that
AdKc(C

+) contains an open neighborhood U of X0 in k. Since pr(O) contains AdKc(C
+),

we obtain Lemma 2.1.

The rest of this section is devoted to the proof of Proposition 2.5.
If β =

∑
α∈4mαα is a sum of simple roots, we set ht(β) =

∑
α∈4mα ∈ Z. We also set

kβ := pr(gβ) ⊂ k. For an integer m, we set g(m) = ⊕ht(β)=mgβ. We set g(0) to be the
Cartan subalgebra a. For a positive integer m, we set km = ⊕1≤ht(β)≤mkβ = ⊕mj=1pr(g(j)).
For positive integers m and n, we have [km, kn] ⊆ km+n.

Write Xp =
∑

α∈4Xα. The nilpotent element Xp generates the principal nilpotent orbit on

g. Let (Xp, Yp, Hp) denote an sl2 triple where Hp =
∑

α∈Φ+ Hα. Thus [Hp, Xβ] = 2ht(β)Xβ

for all positive roots β. Then g(m) is the adHp-eigenspace with the eigenvalue 2m and
g = ⊕mg(m). It follows from the representation theory of sl2 that for a positive integer m,
we have

(3) g(m+ 1) = [g(m), Xp].

Lemma 2.6. We have km+1 = [km, X0] + km.

Proof. Since X0 ∈ k1, the left hand side contains the right hand side. On the other hand,
suppose ht(β) = m. Then

[prXβ, X0] =
∑
α∈4

[Xβ −X−β, Xα −X−α]

=
∑
α∈4

([Xβ, Xα] + [X−β, X−α])− ([Xβ, X−α] + [X−β, Xα])

≡ pr
∑
α∈4

[Xβ, Xα] (mod km)

≡ pr[Xβ, Xp] (mod km).

This implies that [pr(g(m)), X0] + km contains pr[g(m), Xp] = pr(g(m + 1)) by (3). Hence
[pr(g(m)), X0] + km contains km+1. This proves our lemma. �

Using the last lemma, it follows easily by induction on m that km+1 = [km, X0] + k1 for all
positive integers m. Since km = k for sufficient large m, we get k = [k, X0] + k1. This gives
Proposition 2.5 since pr(⊕α∈4gα) = k1.

We note the following interesting corollary to Proposition 2.5 which will not be used in
the paper.

Corollary 2.7. Assume that the rank of k is equal to the rank of g. Then X0 = pr(
∑

α∈∆ Xα)
is a regular element in k.
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Proof. Proposition 2.5 implies that dim([k, X0]) ≥ dim k− rank(k), and this implies that the
dimension of the centralizer of X0 in k is not more than the rank of k. However the dimension
of a centralizer of any element is at least the rank, and it is the rank if and only if the element
is regular. �

3. Surjectivity in Theorem 1.2

We have shown in the last section that the homomorphism t in Theorem 1.2 is an injection.
In order to complete the proof of Theorem 1.2 it suffices to show that the inequality in
Corollary 2.3 is an equality. To that end, we shall first compute the dimension of Uv(k)

K or,
equivalently, the dimension of Symv(k)

K where Symv(k) = ⊕vi=0Symi(k). Let t be a Cartan
subalgebra of k. Using the Killing form we identify Sym(t) with the algebra of polynomials
on t. Let WK be the Weyl group for the pair (k, t). By a result of Chevalley, restricting
polynomial functions from k to t gives an isomorphism

Sym(k)K ∼= Sym(t)WK .

Let m = dim t. It is well known that Sym(t)WK is generated by m algebraically independent
homogeneous polynomials on t of degrees d1, . . . , dm respectively. Here di are the degrees of
the Weyl group WK (See Section 3.7 in [Hu].). We will list them in Table 1 below.

Table 1

Φ k m = dim t d1, . . . , dm
A2k−1 so(2k) k 2, 4, 6, . . . , 2k − 2, k
A2k so(2k + 1) k 2, 4, 6, . . . , 2k
B2k so(2k)⊕ so(2k + 1) 2k 2, 2, 4, 4, . . . , 2k − 2, 2k − 2, 2k, k
B2k+1 so(2k + 1)⊕ so(2k + 2) 2k + 1 2, 2, 4, 4, . . . , 2k, 2k, k + 1
Cm gl(m) m 1, 2, 3, . . . ,m
D2k so(2k)⊕ so(2k) 2k 2, 2, 4, 4, . . . , 2k − 2, 2k − 2, k, k
D2k+1 so(2k + 1)⊕ so(2k + 1) 2k 2, 2, 4, 4, . . . , 2k, 2k
E6 sp(8) 4 2, 4, 6, 8
E7 sl(8) 7 2, 3, 4, 5, 6, 7, 8
E8 so(16) 8 2, 4, 6, 8, 8, 10, 12, 14
F4 sl(2)⊕ sp(6) 4 2, 2, 4, 6
G2 sl(2)⊕ sl(2) 2 2, 2

Let sv and tv denote the cardinalities of the sets

Sv = {(n1, n2, . . . , nm) ∈ Zm : ni ≥ 0 and v ≤
∑m

i=1 dini} and(4)

Tv = {(n1, n2, . . . , nm) ∈ Zm : ni ≥ 0 and v =
∑m

i=1 dini}
respectively. Then dim Symv(k)K = tv = sv − sv−1 and dim Symv(k)

K = sv. This gives
dimUv(k)

K = sv.

We need to show that dimQKv = sv. Let Vµ be as in Theorem 1.1 and let B = MAN
be the Borel subgroup. By the Cartan-Helgason theorem, dimV K

µ ≤ 1, and it is one if and
only if M acts trivially on the highest weight vector of Vµ. Let n = dim a denote the rank of
g. We will follow the enumeration and notation of Plate IX in [B]. Let $i denote the i-th
fundamental weight. With the help of the table on page 587 in [GW], we see that Vµ contains
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a K-fixed vector if and only if µ = n1w1 + n2w2 + . . . + nmwm where ni is a nonnegative
integer and w1, . . . , wm are linearly independent weights listed in Table 2 below. Note that
the number of weights wi’s is m = dim t. The last column of Table 2 lists µ more explicitly
using the standard notation for the classical Lie algebras. The ai’s in the table are integers.

Table 2

Φ m w1, w2, . . . , wm µ = n1w1 + . . .+ nmwm
A2k−1 k 2($1 +$2k), 2($2 +$2k−1), . . . , µ =

∑n+1
i=1 aiεi,

2($k +$k+1), 2$k ai + an+2−i = 0,
ai ≡ aj (mod 2).

A2k k 2($1 +$2k−1), 2($2 +$2k−2), . . . , Same as above and ak = 0.
2($k +$k+1)

Bm m = n 2$1, 2$2, . . . , 2$m µ =
∑m

i=1 aiεi, ai ≥ 0,
ai ≡ aj (mod 2).

Cm m = n 2$1, 2$2, . . . , 2$m µ =
∑m

i=1 2aiεi, ai ≥ 0

D2k 2k 2$1, 2$2, . . . , 2$2k µ =
∑2k

i=1 aiεi,
ai ≥ 0 for i 6= 2k,
ai ≡ aj (mod 2).

D2k+1 2k 2$1, 2$2, . . . , 2$2k−1, 2$2k + 2$2k+1 µ =
∑2k

i=1 2aiεi, ai ≥ 0.
E6 4 2$2, 2($1 +$6), 2$4, 2($3 +$5)
E7 7 2$1, 2$7, 2$6, 2$2, 2$3, 2$5, 2$4

E8 8 2$8, 2$1, 2$7, 2$2, 2$6, 2$3,
2$5, 2$4

F4 4 2$1, 2$4, 2$3, 2$2

G2 2 2$1, 2$2

Lemma 3.1. Suppose g is a simple Lie algebra. Let µ = n1w1 + · · ·+ nmwm as in Table 2.
If Vµ is a g-submodule in Symv(g), then v ≥ n1d1 + n2d2 + · · ·+ nmdm.

We begin the proof of Lemma 3.1. First we review Section 4 of [Jo]. Let g be a simple
Lie algebra. Let α̃ be the highest root in the positive root system Φ+ = Φ+(g, a). Let Φ+

⊥α̃
denote the subset of all positive roots that is orthogonal to α̃. We may write Φ+

⊥α̃ =
⋃
i Φ

+
i

as a disjoint union of simple root systems. We pick the highest root α̃i from each Φ+
i . This

process is repeated over and over again and it has to stop eventually. Then all the highest
roots would form a maximal set K of strong orthogonal positive roots in Φ+. The set K is
given in Tables I and II in [Jo] for every simple root system. It is a well known fact that the
cardinality of K is equal to the rank of k.

Let µ be a dominant weight in the root lattice of Φ+. Let ( | ) denote the inner product
on the root lattice. We define

|µ|K =
∑
β∈K

(µ|β)

(β|β)
.

We note that |µ+ µ′|K = |µ|K + |µ′|K. We can now state Lemma 4.13(iii) in [Jo].

Lemma 3.2. Suppose Vµ is a g-submodule in Symv(g). Then v ≥ |µ|K. �
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We will compute |µ|K explicitly. We write the weight µ =
∑r

i=1 aiεi for ai ∈ R as in [B].
We also refer to µ in the last column in Table 2 for classical g. We list r and |µ|K in Table 3
below.

Table 3
Φ r |µ|K
A2k−1 2k 1

2
(a1 + a2 + . . .+ ak − ak+1 − ak+2 − . . .− a2k)

A2k 2k + 1 1
2
(a1 + a2 + . . .+ ak − ak+2 − ak+3 − . . .− a2k+1)

B2k 2k a1 + a3 + . . .+ a2k−1

B2k+1 2k + 1 a1 + a3 + . . .+ a2k+1

Cm m 1
2
(a1 + a2 + . . .+ am)

D2k 2k a1 + a3 + . . .+ a2k−1

D2k+1 2k + 1 a1 + a3 + . . .+ a2k−1

E6 8 1
2
(a8 − a7 − a6 + a5 + a4 + a3 − a2 − a1)

E7 8 1
2
(a8 − a7) + a6 + a4 + a2

E8 8 a8 + a6 + a4 + a2

F4 4 a1 + a3

G2 3 1
3
(a1 − 2a2 + a3)

Using the above table, it is easy to check that |wi|K = di where di is the degree in Table 1
and wi is the weight in Table 2. Suppose µ =

∑m
i niwi as in Lemma 3.1. Since |w|K is linear

in w, we have |µ|K =
∑m

i=1 ni|wi|K =
∑m

i=1 nidi. Now Lemma 3.1 follows immediately from
Lemma 3.2.

We recall sv = dimUv(k)
K and tv = sv − sv−1 in (4).

Lemma 3.3. Let µ = n1w1 + · · ·+ nmwm be a highest weight of a K-spherical g-module, as
in Table 2 above. Then Vµ is a g-submodule in Qv/Qv−1 where v = n1d1 + · · ·+ nmdm, and
dimQKv = sv for all v.

Proof. Let Vµ be a spherical g-submodule Vµ in Qv/Qv−1. Write µ = n1w1 + . . .+ nmwm as
in Table 2. Since Qv/Qv−1 is a quotient of Symv(g), Lemma 3.1 implies that v ≥ n1d1 +
n2d2 + · · · + nmdm. Since sv ≤ dimQKv for all v, Vµ must occur in Qv/Qv−1 where v =
n1d1 + . . .+ nmdm. It follows that dim(Qv/Qv−1)K = tv and dimQKv = sv. �

This completes the proof of Theorem 1.2.

4. The boundaries of the model orbits

In this section we will extend Theorem 1.2 to primitive ideals associated to varieties that lie
in the boundary ∂Omod of the model orbit Omod. Let O be an such an orbit in the boundary.
We will assume that O is not the zero orbit. Let R(O) denote the algebra of regular functions
on O, the Zariski closure of O. It is well known that R(O) is the normalization of R(O); for
orbits contained in Omod it is also known that O is normal apart from the model orbit itself
in type G2. Even in this case it is still true that R(Omod) surjects onto R(O) for any orbit
O lying in the boundary of Omod.

Suppose we are given a semisimple g-module W = ⊕iWi where each Wi is an irreducible
representation of g. Let Wsph denote the subrepresentation of W which is a direct sum of
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all the K-spherical irreducible summands Wi. Let J denote a primitive ideal such that GrJ
cuts out O in g∗ ' g. In particular, R(O) = Sym(g)/Rad(Gr(J)) where Rad(Gr(J)) denotes
the radical ideal of Gr(J).

Proposition 4.1. Let O be a nilpotent orbit in the boundary of the model orbit. Let J be
a primitive such that GrJ cuts out O. Let Q = U(g)/J . Suppose (Q)sph ' (R(O))sph as
g-modules. Then the canonical map U(k)K → QK is a surjection and Corollary 1.3 applies
to J too.

Proof. Let Rv(O) denote the space of regular functions of degree v. Let Jmod = J 1
2
ρ be

the model ideal. Since R(Omod) is a quotient of Sym(g)/Gr(Jmod), our main result shows
that the natural map (Symv(k))K → Rv(Omod)K is surjective. Since R(O) is a quotient of
R(Omod), we have surjections

Uv(k)
K → (Symv(k))K → Rv(O)K .

The composite surjection factors through

Uv(k)
K/Uv−1(k)K

p→ QKv /QKv−1

q→ Rv(O)K .

By the assumption the second map q is bijective. We conclude that the first map p is a
surjection. By induction on v, we conclude that Uv(k)

K → QKv is surjective. This proves the
proposition. �

There are many known primitive ideals satisfying the above proposition, for example, the
Joseph ideal and the ideals for classical Lie algebras constructed by Brylinski [Br].
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