
ON LOCAL LIFTS FROM G2(R) TO Sp6(R) AND F4(R)

HUNG YEAN LOKE AND GORDAN SAVIN

Abstract. Let G2(R)× Sp6(R) and G2(R)× F4(R) be split dual pairs in split E7(R) and
E8(R), respectively. It is known that the exceptional correspondences for these dual pairs are
functorial on the level of infinitesimal characters. In this paper we show that these dual pair
correspondences are functorial for the minimal K-types of principal series representations.

1. Split real groups of type En

The Cartan decomposition for split real groups of type En can be described by Jordan
algebras of rank 4, as it has been shown by Kostant and Brylinski in [3]. To this end, let
J = Jn(Q) be a Jordan algebra of n × n-hermitian symmetric matrices over a composition
algebra Q. To each Jordan algebra J one can attach a simple Lie algebra k = k(J) with a
short Z-filtration

k = k−1 ⊕ k0 ⊕ k1

such that k1 ∼= J . The algebra k has n strongly orthogonal roots α1, . . . , αn corresponding
to the diagonal entries of J . Let

ψ =
1

2
(α1 + . . .+ αn)

Of special interest to us is the case n = 4, in which case 〈ψ, ψ〉 = 2. Let p be the irreducible
k-module of highest weight ψ. Then the exceptional lie algebras of type En have Cartan
decomposition

g = k⊕ p

where p ∼= Vψ, as a k-module, and k = k(J4(Q)) where Q is a composition algebra over C
of dimension 1, 2 and 4 for E6, E7 and E8, respectively. The minimal representation (the
corresponding (g, K)-module) has K-types

V = ⊕∞i=0Viψ

This (g, K)-module corresponds to a representation of the simply connected Chevalley group
of type En. This representation is faithful except for E7 when the center µ2 acts trivially.
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The dual pairs. Simply connected Chevalley group En(R) contains a split dual pair H×G2

where H is SL3(R), Sp6(R) and F4(R) respectively. Let K1 and K2 = SU2,l×µ2 SU2,s denote
the maximal compact subgroup of H and G2,2 respectively. The two factors of K2 correspond
to a pair of perpendicular roots, one long and one short, as the subscripts indicate. The
possible K and K1 are tabulated below.

Split group K p = V (ψ) H K1

E6 Sp8/µ2 V ($4) = ∧4C8 − ∧2C8 SL3(R) SO3

E7 SU8/µ2 V ($4) = ∧4C8 Sp6(R) U3

E8 Spin16/µ2 V ($8) F4 SU2 ×µ2 Sp6

For root systems and weights, we follow the enumeration of Bourbaki [1].
We shall now describe how K1 × K2 embeds into K. Let k2 = sl(2)s + sl(2)l be the

complexified Lie algebra of K2. Recall that k = k(J4(Q)) has four strongly orthogonal
roots. The long root sl(2)l embeds as sl(2) corresponding to the root α1 and the short root
sl(2)s embeds diagonally into three sl(2) corresponding to the remaining three roots. The
centralizer of k2 in k is k1.

The Langlands quotients. Let π1 and π2 be irreducible Harish-Chandra modules of h and
g2 respectively. Let

(1) Vmin → π1 � π2

be a nonzero morphism of (h× g2)-modules. As it has been established in [4] (see also [7]),
the infinitesimal character of π1 determines the infinitesimal character of π2, and conversely.
If x$1 + y$2 is the infinitesimal character of π2, then π1 has infinitesimal character x$1 +
(x+ 3y)$2, (x+ 2y, x+ y, y), x$4 + y$3 + ρ(sl3) for h = sl3, sp6, f4 respectively. We would
like to refine this information in the case when π1 and π2 are Langlands quotients of principal
series representations. More precisely, let B1 = M1A1N1 and B2 = M2A2N2 denote Borel

subgroups of H and G2, respectively. Note that M1 = µ
r(H)
2 , where r(H) is the rank of H.

Likewise, M2 = µ2
2. Let σi be a representation of Mi and let λi be a dominant weight of

the Lie algebra ai. We set I1(σ1, λ1) to be the Harish-Chandra module of the normalized
induced representation

IndHM1A1N1
(σ1 ⊗ aλ1).

Similarly we define I2(σ2, λ2) which is a Harish-Chandra module of G2. Next, we specify
a minimal Ki type, denoted by τ(σi), contained in the principal series Ii(σi, λi). This Ki-
type depends only on the Weyl group conjugation class of σi, and the restriction of τ(σi)
to Mi is a direct sum, with multiplicity one, of all characters of Mi Weyl group conjugated
to σi. In particular, τ(σ′i) is contained in Ii(σ

′′
i , λi) if and only if the characters σ′i and σ′′i

are conjugated by the Weyl group. This minimal Ki-type is also known as the fine Ki-type
and small Ki-type in [10]. The minimal Ki-type τ(σi) is contained in the unique irreducible
quotient Ji(σi, λi) of Ii(σi, λi). If σi is the trivial character of Mi, then τ(σi) is the trivial
Ki-type and Ji(σi, λi) is a spherical representation. Other cases are tabulated below. These
were also computed in Table 5.8 in [9].
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Table 1

G2 SL3(R) Sp6(R) F4

C� C C C C� C
C� S2(C2) C3 ∧2C3 C2 � C6,

S2(C2) � C

Remark: Note that the list does not include two minimal U3-types: C3 and ∧3C3. This is
because µ2 the center of E7, which is also the center of Sp6(R), acts trivially on the minimal
representation.

Theorem 1. Suppose Vmin → J1(σ1, λ1) � J2(σ2, λ2) is a nonzero morphism of (h × g2)-
modules. Let τi be the minimal Ki-type of Ji(σi, λi), i = 1, 2. Then τ1 and τ2 are on the
same row of the above table. Moreover, if H = F4, then representations with the minimal
K1-type S2(C2) � C do not appear as quotients of Vmin.

We remark that an irreducible spherical representation is uniquely determined by its in-
finitesimal character. In §3, we will discuss the situations when the infinitesimal characters
are generic . In that case we have more precise results (Theorem 6 and Theorem 9).

Since J1(σ1, λ1) and J2(σ2, λ2) are generated by their minimal Ki-types and Vmin|K =∑
n VK(nλ0), the above theorem follows immediately from the following technical lemma.

Lemma 2. Let τ1 and τ2 be nontrivial minimal K1-type and K2-type respectively as in the
third row of the above table. Then

(i) HomK1×K2(1K1 � τ2, Vnψ) = 0 for all n ∈ N and
(ii) HomK1×K2(τ1 � 1K2 , Vnψ) = 0 for all n ∈ N.

Furthermore, in the case H = F4, HomK1(S
r(C2)�Ss(C6), Vnψ) = 0 unless r ≤ s and r ≡ s

mod 2.

This was proven in [2] in the case E6, and in this paper we will only deal with E7 and
E8. Note that the group K1 ×K2 is much smaller than K. In particular, the lemma does
not follow from any of the known, classical, branching rules. We also do not develop any
new branching rules. In order to illustrate the main idea consider the first case of the above
Lemma. As a first step, we calculate K1 × SU2,l invariants in Vnψ. This is done on a case
by case basis and is the most difficult part of this paper. Part (i) of the lemma states that
the representation S2(C2) does not appear in the space of K1 × SU2,l invariants. Since the
highest weight of S2(C2) is 2 it suffices to show that the dimension of the weight 4 space is
the same as the dimension of the weight 2 space. In fact, using a nice trick, one can show
that the dimension of the weight 2 space is the same as the dimension of the weight −4
space. A similar trick works for the case (ii). In addition, in the case of E8, we show that
the K1-types Sr(C2) � Ss(C6) does not appear in the minimal representation unless s ≥ r
and r ≡ s (mod 2). This gives severe restrictions on possible F4-quotients of the minimal
representation.

Acknowledgement. The first author would like to thank the University of Utah and RIMS
at Kyoto University for their hospitality while part of this paper was written.
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2. Generic principal series representations

In this section, we will show that if the infinitesimal character λ1 of π1 in (1) is generic
(which we will define below), then πi is isomorphic to Ii(σ1, λ1) (for i = 1, 2) which is
irreducible.

First we recall a theorem of Speh and Vogan [8]. There is also a converse statement but
we do not need it here.

Theorem 3. Let P = MAN be a cuspidal parabolic subgroup of a real reductive group G.
Let TM be a compact Cartan subgroup of M . Let Hλ be a discrete series representation
of M with infinitesimal character λ. We consider the normalized induced principal series
representation

IndGP (Hλ � aν � 1)

of G with infinitesimal character γ = (λ, ν). Suppose γ is nonsingular. If the principal series
representation above is reducible, then there exists a non-compact root α of TMA such that
n = 2(α, γ)/(α, α) is a positive integer.

The above theorem leads us to the following definition: A weight γ is called algebraically
integral with respect to a root α if 2(α, γ)/(α, α) is an integer. In this paper, we say that
the weight γ is generic if it is not algebraically integral to any root α in the root system.

Lemmas 4 and 5 below follow from Theorem 3.

Lemma 4. (generic representations of G2(R))

• The following two statements are equivalent:
(i) The weight λ2 := x$1 + y$2 is generic with respect to the root system of G2.

(ii) None of the following six numbers are integers: x, y, x+y, x+2y, x+3y, 2x+3y.
• If π2 is an irreducible Harish-Chandra module of G2 with infinitesimal character λ2

satisfying either (i) or (ii) above, then π2 is the irreducible principal series represen-
tation I2(σ2, λ2) for some character σ2 of M2.

Proof. Items (i) and (ii) are equivalent by considering 2(α, λ2)/(α, α) for all roots α of G2.
Given π2 in the lemma, then it is the Langlands quotient of I2(σ2, λ2) for some character σ2
of M2. By Theorem 3, I2(σ2, λ2) is irreducible. This proves the lemma. �

Lemma 5. (generic representations of Sp6(R))

• The following two statements are equivalent:
(i) The weight λ1 := (x + 2y, x + y, y) is generic with respect to the root system of

Sp6(R).
(ii) None of the following six numbers are integers: x, y, x+y, x+2y, x+3y, 2x+3y.

• If π1 is an irreducible Harish-Chandra module of Sp6(R) with infinitesimal charac-
ter λ1 satisfying either (i) or (ii) above, then π1 is the irreducible principal series
representation I1(σ1, λ1) for some character σ1 of M1. �

The proof of the lemma is similar to the previous one. We will call π1 and π2 in the above
two lemmas generic principal series representation.
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In the notation of the above two lemmas, the correspondence of infinitesimal characters
for the dual pair G2 × Sp6(R) is given by λ1 ↔ λ2. We can incorporate these into Theorem
1 and we have the following result.

Theorem 6. Suppose π1 � π2 is a quotient of the minimal representation of E7. Then π1 is
a generic spherical principal series representation of Sp6(R) with infinitesimal character λ1
if and only if π2 is a generic spherical principal series representation of G2 with infinitesimal
character λ2. �

Representations of split F4. Suppose π1 is a representation of the split F4 whose infin-
itesimal character is λ1 := x$1 + y$2 + ρ(sl3) where x and y satisfies Lemma 4(ii). We
would like to know all possible Langlands parameters it can have. We assume that π1 is the
quotient of the principal series representation

(2) IndF4
MAN(Hλ � aν � 1)

where MAN is a cuspidal representation of F4 and Hλ is a discrete series representation of
M with Harish-Chandra parameter λ.

Lemma 7. Suppose π1 satisfies the above assumptions, then the parabolic subgroup P =
MAN in (2) is either

(i) the Borel subgroup, or
(ii) it is the parabolic subgroup corresponding to the long simple root α1 or α2, and the

connected component of M is M0 = SL2(R). The discrete series Hλ of M has Harish-
Chandra parameter λ = 1 or 2.

Proof. We assume that P is not the Borel subgroup. Let α be a simple root in M . Then
λ + ρ(M) is algebraically integral with respect to α. Let λ1 := x$1 + y$2 + ρ(sl3). From
the consideration of infinitesimal characters, w(λ1) = (λ, ν) for some w in the Weyl group.
Since (0, ν) is perpendicular to α and ρ(M) is algebraically integral with respect to α, we
conclude that

(3) 2(λ1, α
′)/(α′, α′) ∈ Z

where α′ = w−1α. Suppose α′ is short root, then a check by hand shows that under the
assumptions in Lemma 4(ii), (3) is impossible. This implies that α is a long simple root,
that is α = α1 or α2.

A similar check shows that (3) holds if and only if α′ = w−1α is either α1, α2 or α1 + α2.
Note that M0 cannot be SL3(R) because it does not have discrete series representation.
Hence M0 = SL2(R) and this proves (i). The restriction of λ1 to the diagonal Hα ∈ sl2
corresponding to α is either 0,±1 or ±2. We can remove the negative signs since SL2(R)± ⊆
M . This proves (ii). �

Next we list all the possible minimal K1-types of (2) satisfying the last lemma. If the
parabolic subgroup is the Borel subgroup, then the minimal K1-types are given in the last
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column of Table 1. If the parabolic is not the Borel subgroup, then the K1-types are given
in the following table.

Table 2
Minimal K1-types

λ = 1 S4(C2) � 1Sp6 and S3(C2) � C6

λ = 2 S6(C2) � 1Sp6 and S5(C2) � C6

The proof is a little long but not hard so we will leave it to the reader.

A degenerate principal series representation of F4. Let P12 = M12 · (R+)2 · N12 be
the (non-cuspidal) standard parabolic subgroup whose Levi factor M12 has simple long roots
{α1, α2}. Let φi : SL2(R) → F4 be the homomorphism induced by the simple real root αi.
We have

M12 = SL3(R)× L4

where L4 is the Klien four group generated by φ3(−1) and φ4(−1).
Let I12(x$4+y$3) denote the Harish-Chandra module of the normalized induced spherical

degenerate principal series representation

(4) IndF4

M12·(R+)2·N12
(1M12 � ax$4+y$3 � 1).

It has infinitesimal character x$3 + y$4 + ρ(sl3).

Lemma 8. Suppose x and y satisfy Lemma 4(ii). Then the spherical degenerate principal
series representation I12(x$4 + y$3) is irreducible.

Proof. Suppose I12(x$4 + y$3) is reducible. Hence it contains a non-spherical irreducible
subquotient, say π′1. Now π′1 will also satisfy Lemma 7 and it will contain one of non-trivial
minimal K1-types given in Table 2 or the last column of Table 1. It is straightforward to
check that none of these non-trivial K1-types is a K1-type of the degenerate principal series
representation. �

Now we can state the main result for E8. Let π1 and π2 be irreducible Harish-Chandra
modules of F4 and G2 respectively.

Theorem 9. Suppose π1 � π2 is a quotient of the minimal representation of E8. Then:

(i) Suppose that π2 is a generic spherical principal series representation with infinitesimal
character λ2 = x$1 + y$2. Then π1 is the irreducible degenerate principal series
representation I12(x$4 + y$3).

(ii) Suppose π1 = I12(x$4 + y$3) such that Lemma 4(ii) holds for these x and y. Then
π2 is a generic spherical principal series representation with infinitesimal character
λ2.

Proof. We will first prove (ii). By the correspondence of infinitesimal characters, the infinites-
imal character of π2 satisfies Lemma 4. Hence π2 is a generic principal series representation.
By Lemma 2, it cannot be the non-spherical representation and hence it is the spherical
principal series. This proves (ii).
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We will now prove (i). By the correspondence of infinitesimal character, the infinitesimal
character of π1 satisfies Lemma 7. Hence π2 contains one of the minimal K1-types in Table 2
or the last column of Table 1. By Lemma 2, the minimal K1-type must be the trivial K1-type
so π1 is the unique spherical representation with infinitesimal character x$4 + y$3 + ρ(sl3).

Now I12 := I12(x$4 + y$3) is also an irreducible spherical representation with the same
infinitesimal character as π1. Hence π1 = I12 because irreducible spherical representations are
uniquely determined by their infinitesimal characters. This completes the proof of Theorem
9. �

3. Littlewood-Richardson (LR) Rule

The rest of this paper is devoted to the proof of Lemma 2. First we recall the famous
Littlewood-Richardson branching rule (LR rule for short) for the restriction of representa-
tions from gln+m to gln ⊕ glm which we will use many times later. Recall that a partition ν
of n parameterizes an irreducible representation Vν of gln.

Theorem 10. (Littlewood-Richardson rule) Let λ, µ and ν be a partition of m+ n, m and
n, respectively. The multiplicity cµνλ of Vµ � Vν in Vλ is equal to the number of way the
Young diagram for µ can be expanded to the Young diagram of λ by a strict ν-expansion.
More precisely, if ν = (ν1, . . . , νk), a ν-expansion is obtained by first adding µ1 boxes, with
no two boxes in the same column, and putting the integer 1 in each of these boxes. We then
add µ2 boxes with a 2 in the same fashion, and so on. An expansion is called strict if, when
integers in the boxes are listed from right to left, starting with the top row and working down,
for every t between 1 and µ1 + . . .+ µk the first t integers on this list contain each integer z
between 1 and k − 1 at least as many times as the next integer z + 1.

Remark. In order to calculate LR coefficients efficiently, we note the following two proper-
ties necessarily satisfied by any strict ν-expansion:

• The integers in boxes are strictily increasing in each column, and are increasing (but
not necessarily strictly) in each row.
• The first row can contain only boxes with a 1, the second row can only contain boxes

with 1 and 2, and so on.

4. Proof of Lemma 2(i) for E7

We will work exclusively with complexified Lie algebras.
Let k2 = sl2,l + sl2,s be the Lie algebra of K2 where sl2,l corresponds to a long root, and

sl2,s to a short root. We will identify the Lie algebra k = sl8 of K with the set of 8 by 8
traceless matrices. Then sl2,l ⊆ sl8 can be arranged to occupy upper-left 2× 2 block in sl8.
The centralizer of sl2,l in sl8 is gl6 where the center of gl6 consists of the diagonal matrices

{d(z) := diag(−3z,−3z, z, z, z, z, z, z) : z ∈ C}.
The identification with gl6 is done so that the central elements d(z) act by z on the one
dimensional representation with the highest weight (1, 0, 0, 0, 0, 0). It follows easily from LR
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rule that

(5) Vsl8(n$4)
sl2,l =

n∑
k=0

Vgl6(k, k, 2k − n, 2k − n, k − n, k − n).

Next, using C6 = C2⊗C3 we can embed sl2,s+gl3 into gl6. In this way we have completely
described an embedding of

k1 + k2 = gl3 + (sl2,l + sl2,s)

into k. In order to prove Lemma, we need to analyze the gl3-invariants of representations
appearing on the right hand side of (5). First of all, if the center of gl3 acts trivially, then
n = 2k in (5). We will now denote

Vk := Vgl6(k, k, 0, 0,−k,−k).

Next, we consider

k1 = gl3 ⊂ gl3 + gl3 ⊂ gl6

where gl3 is embedded diagonally. Suppose W ⊗W ′ is a representation of gl3 +gl3 appearing
in the restriction of Vk. Then W ⊗W ′ gives rise to a 1 dimensional invariant subspace of
f1 if and only if W ′ = W ∗, the dual representation of W . If λ = (λ1, λ2, λ3) is the highest
weight of W , then (W ⊗W ∗)k1 is contained in the weight 2

∑
i λi space for sl2,s.

In order to prove Lemma 2(i), we need to show that the representation S2(C2) of sl2,s does

not appear in V k1
k . To that end, it suffices to show that the dimensions of the weight 2 space

and the weight (−4) space for sl2,s are equal. This follows immediately from the following
proposition.

Proposition 11. Let W be a representation of gl3 of highest weight λ, and let m(k, λ)
denote the multiplicity of W ⊗W ∗ in Vk. If λ = (λ1, λ2, λ3) with λ1 + λ2 + λ3 = 1, then
m(λ, k) = m(λ−, k) where λ− = (λ1 − 1, λ2 − 1, λ3 − 1).

Proof. We need to calculate m(λ). This is accomplished using LR rule in the following
Lemma.

Lemma 12. Suppose W = Vgl3(λ1, λ2, λ3). Assume first that λ2 ≤ 0. Then the multiplicity
of W �W ∗ in Vk zero unless k ≤ λ1 + λ2. If it is nonzero then it is equal to{

min(λ2 − λ3, λ1) + 1 if k ≥ λ1 − λ3
min(λ2 − λ1 + k, λ3 + k) + 1 if k < λ1 − λ3.

To find the multiplicity when λ2 ≥ 0, we use the symmetry by interchanging W with W ∗.
In this case the multiplicity is{

min(λ1 − λ2,−λ3) + 1 if k ≥ λ1 − λ3
min(λ3 − λ2 + k, k − λ1) + 1 if k < λ1 − λ3.
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Proof. In order apply the LR rule, we consider U = detk⊗W , U ′ = detk⊗W ∗ and E =
detk⊗Vk. Hence U has highest weight (a, b, c) = (k, k, k) + λ, U ′ has highest weight
(a′, b′, c′) = (k, k, k) + λ∗ and E has highest weight (2k, 2k, k, k, 0, 0). The multiplicity of
U � U ′ in E is equal to m(k, λ).

From the LR rule, 0 ≤ c ≤ k and 0 ≤ b ≤ a ≤ 2k. The same is true for a′, b′, c′. Since
b+ b′ = 2k, by interchanging the role of U and U ′, we may assume that b ≤ k ≤ b′.

Let Y , Y ′ and Z denote the Young diagrams of U , U ′ and E respectively. We place Y
inside Z and fill in the remaining spaces in Z with the boxes from U ′.

By the remark after Theorem 10 there is a unique way of filling the first 2 rows of Z,
namely, c′ 1-boxes on the first row and, a − b = b′ − c′ 1-boxes on the second row and c′

2-boxes on the second row. All the 3-boxes (there are c′ of them) appear on the 4-th row of
Z. The Young diagram is given in the figure below.

Figure 1

It shows that c′ ≥ b′ − k = λ2.
It remains to fill the last 2 rows of Z with 1-boxes and 2 boxes. Suppose c + c′ < k

as shown in the Young diagram above, then some of the boxes are uniquely determined as
shown in the shaded area. It remains to fill x with 1-boxes and 2-boxes. Let

z = max(0, k − c− c′) = max(0, a− c− k).

Now x has b− c− z boxes which is the same number as the remaining 1-boxes to be filled.
Hence the number of ways of filling is equal to the number of ways of putting 1-boxes into
y = min(c, k − c′). This is equal to

min(b− c− z, c, k− c′) + 1 = min(b− c− z, c, a− k) + 1 = min(b− c, b− a+ k, c, a− k) + 1.

If we substitute λi back into a, b, c above, and the condition k ≥ λ1 − λ3 (or k < λ1 − λ3),
we would recover the multiplicity stated in the lemma. The lemma is proved. �

We will now prove Proposition 11. We first assume that λ2 ≤ 0 and λ1 + λ2 + λ3 = 1, or
λ2 < 0 and λ1 + λ2 + λ3 = −2. One easily checks that the multiplicity is{

λ2 − λ3 + 1 if k ≥ λ1 − λ3
λ2 − λ1 + k + 1 if k < λ1 − λ3.
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Assume now that λ2 > 0 and λ1 + λ2 + λ3 = 1, or λ2 ≥ 0 and λ1 + λ2 + λ3 = −2. One
easily checks that the multiplicity is{

λ1 − λ2 + 1 if k ≥ λ1 − λ3
λ3 − λ2 + k + 1 if k < λ1 − λ3.

Proposition 11 follows. �

5. Proof of Lemma 2(ii) for E7

Recall that in Section 4 we defined the following sequence of embeddings:

k1 = gl3 → gl3 × gl3 → gl6 → sl8 = k.

Hence we get an embedding of the complex groups GL3 into SL8. We will denote this GL3

by GLc3. Since K(C) = SL8/µ2 this gives an embeding of GLc3/µ2 into K(C). The group
GLc3/µ2 can be identified with K1(C) = GL3 as follows. Let zs ∈ GLc3 where z is a scalar
matrix and s ∈ SL3. Then

(6) φ(zs) = z−2s

defines a map from GLc3 onto GL3 with kernel µ2. When pulled back by φ the mini-
mal K1(C)-type with the highest weight representation (1, 1, 0) becomes the representation
Vk1(−1,−1,−2) of GLc3.

5.1. We will begin the proof of Lemma 2(ii) which states that the subrepresentation Vk1(−1,−1,−2)
does not occur in the space of sl2,s-invariants on right hand side of (5). First of all, notice
that not all summands in (5) will contain Vk1(−1,−1,−2). Indeed the central character of
Vk1(−1,−1,−2) is −4. This implies that 4(−n+2k) = −4 which is equivalent to 2k = n+1.
Thus, we only need to consider

V ′k := Vgl6(k, k,−1,−1,−k − 1,−k − 1).

Let λ = (λ1, λ2, λ3) and λ′ = (λ′1, λ
′
2, λ
′
3) denote two highest weights of gl3. We would like

to know the multiplicities of

(7) Vk1(−1,−1,−2) ⊂ Vgl3(λ)⊗ Vgl3(λ
′) ⊂ V ′k

such that S =
∑

i λi−λ′i ∈ {0, 2}. For technical reason, we allow S = −2 as well. Note that
S is the weight for the torus of sl2,s acting on W ⊗W ′. Since the central character, with
respect to k1, is −4 =

∑
i λi + λ′i, we can rewrite

S =
∑
i

λi − λ′i =
∑
i

2λi − (λi + λ′i) = 2(
∑
i

λi + 2).

Hence S ∈ {−2, 0, 2} is equivalent to
∑

i λi ∈ {−3,−2,−1}.
We consider the first inclusion in (7).

Lemma 13. The multiplicity of Vk1(−1,−1,−2) in Vgl3(λ1, λ2, λ3)⊗ Vgl3(λ′1, λ′2, λ′3) is either
0 or 1. It is 1 if and only if one of the following situations holds:
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(i) λ1 + λ′3 = −2, λ2 + λ′2 = λ3 + λ′1 = −1,
(ii) λ1 > λ2, λ1 + λ′3 = −1, λ2 + λ′2 = −2, λ3 + λ′1 = −1,

(iii) λ2 > λ3, λ1 + λ′3 = λ2 + λ′2 = −1, λ3 + λ′1 = −2. �

Note that (iii) is obtained from (i) by interchanging the role of λ and λ′. The proof is just
another exercise in LR rule and we will leave it to the reader.

We will see later that in the proof of Lemma 14 that in order for V ′k to contain Vgl3(λ1, λ2, λ3)⊗
Vgl3(λ

′
1, λ
′
2, λ
′
3) it is necessary that we have

(8) k ≥ λ1 ≥ λ2 ≥ λ3 ≥ −k − 1, k ≥ λ′1 ≥ λ′2 ≥ λ′3 ≥ −k − 1.

From now on, we will refer to the three cases in Lemma 13 satisfying (8) as Cases (i), (ii)
and (iii) respectively. For Case (i), one can show that λ1 ≤ k − 1

Let m(λ, λ′, k) denote the multiplicity of Vgl3(λ1, λ2, λ3) ⊗ Vgl3(λ′1, λ′2, λ′3) in V ′k such that
tensor product also contains Vk1(−1,−1,−2).

Lemma 14. Suppose S =
∑

i λi−λ′i = 0 or 2. Then the multiplicity m(λ, λ′, k) in the three
cases in Lemma 13 are given in the table below.

m(λ, λ′, k)
Case (i) if k ≤ λ1 − λ3 if λ2 ≥ 0 k − λ2 + λ3 + 1

if λ2 ≤ −1 k − λ1 + λ2 + 1
if k > λ1 − λ3 if λ2 ≥ 0 λ1 − λ2 + 1

if λ2 ≤ −1 λ2 − λ3 + 1
Case (ii) if k ≤ λ1 − λ3 − 1 if λ2 ≥ 0 k − λ2 + λ3 + 1

if λ2 ≤ −1 k − λ1 + λ2 + 2
if k > λ1 − λ3 − 1 if λ2 ≥ 0 λ1 − λ2

if λ2 ≤ −1 λ2 − λ3 + 1
Case (iii) if k ≤ λ1 − λ3 − 1 if λ2 ≥ 0 k − λ2 + λ3 + 2

if λ2 ≤ −1 k − λ1 + λ2 + 1
if k > λ1 − λ3 − 1 if λ2 ≥ 0 λ1 − λ2 + 1

if λ2 ≤ −1 λ2 − λ3

Proof. We would like to apply the LR rule so we set U = detk+1⊗Vgl3(λ1, λ2, λ3), U ′ =

detk+1⊗Vgl3(λ′1, λ′2, λ′3) and E ′ = detk+1⊗V ′k . The highest weight of U is (a, b, c) = (k +
1, k + 1, k + 1) + λ, the highest weight of U ′ is (a′, b′, c′) = (k + 1, k + 1, k + 1) + λ′, and the
highest weight of E ′ is (2k + 1, 2k + 1, k, k, 0, 0). Then

Vk1(2k + 1, 2k + 1, 2k) ⊂ U ⊗ U ′ ⊂ E ′.

and the multiplicities are not affected. By interchanging the U and U ′ if necessary, we may
assume that b ≤ k, that is, λ2 ≤ −1. Let Y , Y ′ and Z be the Young diagrams of U , U ′ and
E ′. We embed Y into Z and we fill Z with the boxes of Y ′. An almost identical argument
as before gives the same figure as Figure 1. Here z = max(0, k − c − c′). The number of
2-boxes in the second row is not less than the number c′ of 3-boxes.
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In all cases the number of remaining 1-boxes is not greater than the number of boxes in
x. There are b− c− z − e remaining 1-boxes where e = 0 in Cases (i) and (ii) and e = 1 in
Case (iii). Hence the multiplicity of U � U ′ in E ′ is equal to the number of ways of filling
the remaining 1-boxes in y = min(c, k − c′) which is

min(c, k − c′, b− c− z − e) + 1 = min(c, k − c′, b− c− e, b− k + c′ − e) + 1.

More explicitly, the multiplicity in the three cases are:

Case (i): min(c, a− k, b− c, k − a+ b) + 1

= min(λ3 + k + 1, λ1 + 1, λ2 − λ3, k − λ1 + λ2) + 1

Case (ii): min(c, a− k − 1, b− c, k + 1− a+ b) + 1

= min(λ3 + k + 1, λ1, λ2 − λ3, k + 1− λ1 + λ2) + 1

Case (iii): min(c, a− k − 1, b− c− 1, k − a+ b) + 1

= min(λ3 + k + 1, λ1, λ2 − λ3 − 1, k − λ1 + λ2) + 1.

The fact that
∑

i λi ∈ {−3,−2,−1} and λ2 ≤ −1 implies that λ1 + λ3 + 1 ≥ λ2. Then the
above multiplicity simplifies to

Case (i): min(λ2 − λ3, k − λ1 + λ2) + 1

Case (ii)’: min(λ2 − λ3, k + 1− λ1 + λ2) + 1

Case (iii): min(λ2 − λ3 − 1, k − λ1 + λ2) + 1.

Here Case (ii)’ refers all of Case (ii) except the situation where
∑

i λi = −3 and λ2 = −1,
which is of no use to us.

By interchange the role of λ and λ′, we obtain the cases where λ2 ≥ 0. This is where we
need the fact that

∑
i λ = −3 so that

∑
i λ
′
i = −1.

The table in Lemma 14 follows immediately by comparing the calculations made above.
This proves Lemma 14. �

Proof of Lemma 2(ii) for E7. In order to prove the lemma, it suffices to show that the
dimensions of the weight 2 space and weight 0 space for sl2,s are equal. This is equivalent to

(9)
∑

m(λ, λ′, k) =
∑

m(λ, λ′, k)

where the first (resp. second) sum is taken over all (λ, λ′) satisfying Lemma 13 and such
that S =

∑
i λi − λ′i = 2 (resp. S = 0). We have seen before that S = 2 (resp. S = 0) is

equivalent to
∑

i λi = −1 (resp.
∑

i λi = −2).
We refer to Lemma 14. Suppose λ = (λ1, λ2, λ3) satisfies

∑
i λ = −1. We define

λ̃ = (λ̃1, λ̃2, λ̃3) = (−λ3 − 1,−λ2 − 1,−λ1 − 1).

We gather some properties of the transformation λ 7→ λ̃.

(a) Since
∑

i λ = −1, we have
∑

i λ̃ = −2.

(b) We have λ1 − λ3 = λ̃1 − λ̃3, λ1 − λ2 = λ̃2 − λ̃3. λ2 − λ3 = λ̃1 − λ̃2.
(c) If λ2 ≥ 0, then λ̃2 ≤ −1. Conversely if λ2 ≤ −1, then λ̃2 ≥ 0.
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(d) If λ belongs to Case (i) (resp. Case (ii), Case (iii)), then λ̃ also belongs to Case (i)
(resp. Case (iii), Case (ii)).

We will say more about (d). Indeed if we refer to the table in Lemma 14, the transformation

λ 7→ λ̃ preserves multiplicities. For example, if we refer to the table in Lemma 14, then the
transformation sends the first (resp. second) line of Case (i) for (λ1, λ2, λ3) to the second

(resp. first) line of Case (i) for (λ̃1, λ̃2, λ̃3). This proves (9) and Lemma 2(ii). �

6. Proof of Lemma 2(i) for E8

6.1. Lie subalgebras of e8. Let

so16, sl
F
2,l + sp6 and slG2,l + sl2,s

be the complexified Lie algebras of the maximal compact subgroups K, K1, K2 of E8,8, F4,4

and G2,2 respectively. The Lie algebra so16 contains

so12 + so4 = so12 + (slF2,l + slG2,l).

The standard representation C12 of so12 can be written as a product of two symplectic spaces
C6 ⊗C2. This gives an embedding of sp6 + sl2,s into so12, and the embedding of k1 + k2 into
k is completely described. Using the notation of the root system of e8 in [1], slF2,l and slG2,l
correspond to the simple roots ε1 + ε2 and ε2 − ε1 respectively.

We need one additional subalgebra of so12. If we decompose the standard representation
C12 = C6 + (C6)∗ of so12 into two isotropic subspaces, then we get sp6 ⊂ gl6 ⊂ so12. The
center of gl1 of gl6 forms a torus of sl2,s.

Recall that so16 has two maximal parabolic subalgebras with Levi component isomorphic
to gl8. We set glG8 and glG2 to be the Lie subalgebras such that

so16 ⊃ glG8 ⊃ gl6 + glG2 = gl6 + (gl1 + slG2,l).

Similarly we define glF8 and glF2 . Note that the center of glG2 is equal to the split torus of slF2,l
and the center of of glF2 is equal to the split torus of slG2,l.

Two branching rules. We will state two branching rules that we will need later. The first
branching rule is a special case of one due to T. Enright and M. Hunziker. One can also give
a direct proof using Borel-Weil theorem.

Lemma 15. Let $8 denote the fundamental weight corresponding to the half-spin represen-
tation of so16 acting on p. Then $8 is perpendicular to the roots of glF8 , and

(i)

Vso16(n$8)|glF8 =
∑

Vgl8(a1, a1, a2, a2, a3, a3, a4, a4)

where the sum is taken over n
2
≥ a1 ≥ . . . ≥ a4 ≥ −n

2
such that ai − n

2
∈ Z, and

(ii)

Vso16(n$8)|glG8 =
∑

Vgl8(a1, a2, a2, a3, a3, a4, a4, a5)

where the sum is taken over n
2
≥ a1 ≥ . . . ≥ a5 ≥ −n

2
such that ai − n

2
∈ Z. �
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We now state the second branching rule.

Lemma 16. Consider sp6 in gl6. Let λ = (λ1, . . . , λ6) be a highest weight of gl6.

(i) The dimension of (Vgl6(λ))sp6 is either 0 or 1. It is one if and only if λ1 = λ2,
λ3 = λ4, and λ5 = λ6.

(ii) The representation Vgl6(λ) contains the representation Sr(C6) of sp6 with either mul-
tiplicity 0 or 1. It is 1 if and only if

r = λ1 − λ2 + λ3 − λ4 + λ5 − λ6.

Proof. Part (i) follows from the Cartan-Helgason theorem (see page 535 in [6]). For (ii), we
consider

Vgl6(λ)⊗ Sr(C6) =
∑
λ′

cλ
′

λ,rε1
Vgl6(λ

′)

as representations of gl6. Here the LR number cλ
′

λ,rε1
is either 0 or 1. The representation

Vgl6(λ) contains Sr(C6) of sp6 if and only if some Vgl6(λ
′) on the right hand side of the

equation contains the trivial representation of sp6. Now (ii) follows from (i). �

Lemma 17. Suppose Vso16(n$8) contains the irreducible representation Ss(C2) � Sr(C6) of
slF2,l + sp6, then r ≥ s and r ≡ s (mod 2).

Proof. If Vgl6(λ) contains Sr(C6) of sp6, then by Lemma 16(i), r =
∑3

i=1 λ2i−1 − λ2i. By
Lemma 15(ii), it enough to check if Ss(C2)�Vgl6(λ) is a submodule of VglF8 (a, a, b, b, c, c, d, d).

In other words, we need to find the values of s such that the LR number c
(a,a,b,b,c,c,d,d)
(s+f,f),λ 6= 0

where f is arbitrary. The lemma follows from a direct calculation. �

Proposition 18. The generic principal series representations of F4,4 are not quotients of
the minimal representations of E8,8.

Proof. Indeed there are three families of generic principal series representations and they
contain the K1-types S4(C2)�C, S2(C2)⊗C and S5(C2)�C6 respectively. On the other by
Lemma 17 these K1-types do not appear in the the restriction of the minimal representation.

�

We will begin the proof of Lemma 2(i). We need to show that the representation S2(C2)

of sl2,s does not appear in (Vso16(n$8))
slG2,l+slF2,l+sp6 . First of all, by the standard branching

rules for so16 ↓ so15 ↓ . . . ↓ so4 = slG2,l + slF2,l, the space of invariants (Vso16(n$8))
slG2,l+slF2,l is

zero if n is odd. Hence we will assume that n is even. Next, by Lemma 17,

(Vso16(n$8))
slG2,l+slF2,l+sp6 = (Vso16(n$8))

glG2 +sp6 .

Here glG2 = gl1 + slG2,l where gl1 is the torus of slF2,l. By Lemma 16(i) Vgl6(λ) contains 1sp6 if
and only if λ = (a, a, b, b, c, c). For such a λ, we have

(10) 1sp6 � 1glG2
⊂ Vgl6(λ) � 1glG2

⊂ VglG8 (a1, a2, a2, a3, a3, a4, a4, a5) ⊂ Vso16(n$8).
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Here a, b, c, ai ∈ Z. The first and the last containments are of multiplicity one due to Lemmas
16(i) and 15(ii) respectively.

The center gl1 of gl6 is the torus of sl2,s and it acts on Vgl6(λ) by
∑

i λi. We will show
that the representation S2(C2) of sl2,s does not occur by showing that the dimensions of

the weight 4 space and the weight (−2) space of sl2,s are the same on Vso16(n$8)
slG2,l+slF2,l+sp6 .

Now, Vgl6(λ) contributes to the weight 4 or -2 if 2a+ 2b+ 2c = 4 or −2, respectively. Thus,
in order to obtain the desired result it suffices to show the following.

Proposition 19. Let λ = (a, a, b, b, c, c) be such that a+b+c = 2 and let m(a, b, c; a1, a2, . . . , a5)
be the multiplicity of the middle inclusion in (10). Then

m(a, b, c; a1, a2, . . . , a5) = m(a− 1, b− 1, c− 1; a1, a2, . . . , a5).

Proof. In order to verify the proposition we need to calculate the multiplicities. This will be
accomplished using the Littlewood-Richardson rule in the following Lemma.

Lemma 20. Suppose a+ b+c = ±1,±2. Let m = m(a, b, c; a1, a2, . . . , a5) be the multiplicity
of the middle inclusion in (10). If m 6= 0, then it is necessary that a1 ≥ a ≥ b ≥ c ≥ −a1
and

(11) λ2 = a2, λ4 = a3, λ6 = a4, a5 = −a1.
Furthermore

m
b ≥ 0 a− c ≤ a1 a− b+ 1

a− c ≥ a1 a1 − b+ c+ 1
b ≤ 0 a− c ≤ a1 b− c+ 1

a− c ≥ a1 a1 − a+ b+ 1

If m takes negative values in the above table, then we set m = 0.

Proof. In order to apply the LR rule we twist representations with det
n
2 . Let a′i = ai + n

2
,

a′ = a+ n
2
, b′ = b+ n

2
, c′ = c+ n

2
. First we place the Young diagram Y of Vgl6(a

′, a′, b′, b′, c′, c′)
into that of Vgl8(a

′
1, a
′
2, a
′
2, . . . , a

′
5). Next we will fill the remaining spaces with n

2
copies of

1-boxes and 2-boxes. We show the Young diagrams below:
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Without going into the details, LR rule shows that a = a2, b = a3, c = a4, a5 = −a1. It
remains to fill the shaded region x and y with n

2
− c′ = −c 2-boxes.

First suppose b ≥ 1. Since a+ b+ c = ±1,±2, we have

Length of y ≥ −c ≥ Length of x

By the LR rule, the multiplicity m is

min(a′ − b′, a′1 − a′, a′1 − b′ + c) + 1 = min(a− b+ 1, a1 − a+ 1, a1 − b+ c+ 1).

Since a+ b+ c ≤ 2, a1 − a+ 1 ≥ a1 − b+ c. This proves the case b ≥ 1.
Next by sending (a, b, c) 7→ (−c,−b,−a) and ai 7→ a5−i+1, we pass from the case b ≥ 1 to

b ≤ −1.
The proof of the case b = 0 is similar and easier. The lemma is proved. �

The proof of proposition is now identical to the proof of Proposition 11. We leave details
to the reader. �

7. Proof of Lemma 2(ii) for E8

We continue with the notations in §6.1. The proof is almost identical with the one in
§6 but more tedious. We need show that the representations C2 � C6 and S2(C2) � 1sp6 of

slF2,l + sp6 does not appear in Vso16(n$8)
slG2,l+sl2,s . The statement for S2(C2) � 1sp6 follows

immediately from Lemma 17. We are now left with C2 � C6.
Once again, by the standard branching rules for so16 ↓ so15 ↓ . . . ↓ so4 = slG2,l + slF2,l,

HomslG2,l+slF2,l
(1slG2,l

� C2, Vso16(n$8)) is zero unless n is odd. Hence we will assume that n is

odd. Next, by Lemma 17,

Homsp6+slG2,l+slF2,l
(C6 � 1slG2,l

� C2, Vso16(n$8)) = Homsp6+glG2
(C6 � C− 1

2
, Vso16(n$8))

where C−1/2 = Vgl2(−1/2,−1/2) is a one-dimensional representation of glG2 . We recall Lemma
16(ii) that Vgl6(λ) contains C6 of sp6 if and only if λ is of the form

λI = (a+ 1
2
, a− 1

2
, b, b, c, c),

λII = (a, a, b+ 1
2
, b− 1

2
, c, c) or

λIII = (a, a, b, b, c+ 1
2
, c− 1

2
).

We have inserted the ‘1
2
’s so that there is more symmetry in our calculations. For λ = λI ,

λII or λIII , we have by Lemma 15(ii),

(12) C6 � C−1/2 ⊂ Vgl6(λ) � C−1/2 ⊂ VglG8 (a1, a2, a2, a3, a3, a4, a4, a5) ⊂ Vso16(n$8).

where λ and ai lie in 1
2
Z\Z. The first and the last containments are of multiplicity one due

to Lemma 16(ii) and 15(ii) respectively.
The center gl1 of gl6 is the torus of sl2,s and it acts on Vgl6(λ) by

∑
i λi. We will prove

that the trivial representation of sl2,s does not occur by showing that the dimensions of
the 0-eigenspace and the 2-eigenspace of gl1 are the same. The action of gl1 implies that
2a+ 2b+ 2c = 0 or 2, that is, a+ b+ c = 0 or 1.
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Let m = m(a, b, c; a1, a2, . . . , a5) denote multiplicity of the middle inclusion in (12). There
is no ambiguity as to whether we are using λ = λI , λII or λIII in the definition of m. This
is because for λI (resp. λII , λIII), the entry a (resp. b, c) is an integer while the rest of the
entries are odd multiplies of 1

2
.

Lemma 21. Let λ = λI , λII or λIII and m = m(a, b, c; a1, a2, . . . , a5) as above. Suppose
a + b + c = −1, 0 or 1. If m 6= 0, then it is necessary that all the entries in λ lies in the
closed interval [−a1, a1] and

(13) λ2 = a2, λ4 = a3, λ6 = a4, a5 = −a1.

Furthermore

λ m
λI b ≥ 1

2
a− c ≤ a1 a− b+ 1

2
a− c ≥ a1 a1 − b+ c+ 1

2
b ≤ −1

2
a− c ≤ a1 b− c+ 1
a− c ≥ a1 a1 − a+ b+ 1

λII b ≥ 1 or (b = 0 and a = −c) a− c− 1
2
≤ a1 a− b+ 1

2
a− c− 1

2
≥ a1 a1 − b+ c+ 1

b ≤ 0 a− c− 1
2
≤ a1 b− c+ 1

2
a− c− 1

2
≥ a1 a1 − a+ b+ 1

λIII b ≥ 1
2

a− c ≤ a1 a− b+ 1
a− c ≥ a1 a1 − b+ c+ 1

b ≤ −1
2

a− c ≤ a1 b− c+ 1
2

a− c ≥ a1 a1 − a+ b+ 1
2

If m takes negative values in the above table, then we set m = 0.

Proof. First we observe a symmetry. By sending (a, b, c) 7→ (−c,−b,−a) and ai 7→ a5−i+1,
we send λI to λIII , and (λII , b ≥ 1) to (λII , b ≤ −1). The multiplicity m remains unchanged
by these transformations.

We will now prove the lemma for λI which implies the lemma for λIII by the symmetry.
Again, in order to apply the LR rule we twist representations with det

n
2 . Thus, let a′i =

ai + n
2
, a′ = a+ n−1

2
, b′ = b+ n

2
, c′ = c+ n

2
and x′ = x+ n

2
= n−1

2
. First we place the Young

diagram Y of Vgl6(a
′ + 1, a′, b′, b′, c′, c′) into that of Vgl8(a

′
1, a
′
2, a
′
2, . . . , a

′
5). Next we will fill

the remaining spaces with n−1
2

copies of 1-boxes and 2-boxes. The Young diagram is almost
identical to the one in the proof of Lemma 20 except that Y has one more box in the first
row. A check on the diagram shows that a = a2, b = a3, c = a4, a5 = −a1. It remains to fill
the shaded region x and y with n−1

2
− c′ = −1

2
− c 2-boxes.

Suppose b ≥ 1
2
. Since a+ b+ c = 0,±1, we have

Length of y ≥ −1

2
− c ≥ Length of x
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The multiplicity is nonzero if and only if a′1 − b′ − 1 ≥ −1
2
− c, that is, b− c ≤ a1 − 1

2
. If it

is nonzero, then it equals

min(a− b− 1

2
, a′1 − a−

n+ 1

2
, a′1 −

n+ 1

2
− b+ c) + 1.

Finally one checks that the second term is greater or equal to the third term.
The proof is similar for b ≤ −1

2
. This proves the lemma for λI .

We will not prove the lemma for λII but we will give an outline. First we consider b ≤ 0.
Next we apply the symmetry to get b ≥ −1. Note that the symmetry fails to produce the
formula for b = 0. �

Proof of Lemma 2(ii) for E8. Fix a1 ∈ 1
2
Z\Z. Using (13) we set

µ(a, b, c) := m(a, b, c; a1, a2 = λ2, a3 = λ4, a4 = λ6, a5 = −a1).

We note that a1 ≥ a ≥ b ≥ c ≥ −a1. For any other values a, b, c where the inequalities does
not hold, we set µ(a, b, c) = 0. Let

S =

{
(α, β, γ) ∈ (

1

2
Z\Z)3 : a1 ≥ α ≥ β ≥ γ ≥ −a1, α + β + γ =

1

2

}
For (α, β, γ) ∈ S, we define three differences

d1 = µ(α + 1
2
, β, γ)− µ(α− 1

2
, β, γ),

d2 = µ(α, β + 1
2
, γ)− µ(α, β − 1

2
, γ),

d3 = µ(α, β, γ − 1
2
)− µ(α, β, γ − 1

2
).

Lemma 22. d1 + d2 + d3 = 0.

Proof. The lemma is an immediate consequence of the following table.

d1 d2 d3
β ≥ 1

2
α− γ ≤ a1 − 1

2
1 −1 0

α− γ ≥ a1 + 1
2

a1 ≤ β − γ − 3
2

0 0 0
a1 ≥ β − γ − 1

2
0 −1 1

β ≤ −1
2

α− γ ≤ a1 − 1
2

0 1 −1
α− γ ≥ a1 + 1

2
a1 ≤ α− β − 3

2
0 0 0

a1 ≥ α− β − 1
2
−1 1 0

The proof of the table follows from the tedious case by case checking by hand. We will leave
this to the reader. �

Lemma 22 implies that the 2-eigenspace and the 0-eigenspace of torus of sl2,s has the
same dimension, that is, the trivial representation of sl2,s does not occur. This proves
Lemma 2(ii). �
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