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abstract

In [GW2] the K-types of the continuations of the quaternionic discrete series of a quater-
nionic Lie group G are associated with projective orbits O of certain subgroups in G(C).
In this paper, we will show that the restrictions of the representations to quaternionic sub-
groups are closely related with the intersection of the Zariski closure of O with hyperplanes.
We apply this to the minimal representations of the exceptional groups of real rank 4 and
investigate the correspondences of certain compact dual pairs.

1. Introduction

1.1. We refer to §3 of [GW2] and §2 of this paper for the definition of the double cover G of
a quaternionic real form G0 of a complex Lie group G(C). G has maximal compact subgroup
K of the form K1 ×M where K1 ' SU2. It has Cartan decomposition g = k ⊕ p. Here
p = C2 ⊗ VM where VM is a self dual representation of M(C). See Table 2 for examples of
G0.

Choose a positive root system Φ+ with respect to a compact Cartan subgroup in K such
that K1 corresponds to the highest root α̃. In this paper we will denote K1 by SU2(α̃). There
is a family of discrete series representations of G which corresponds to Φ+ and they are called
the quaternionic discrete series representations. In §2 we will investigate representations
which are continuations of the quaternionic discrete series representations. We will call their
Harish-Chandra modules quaternionic representations. We will abuse notation and continue
to refer them as representations of G.

Let G′ be a quaternionic Lie subgroup of G containing SU2(α̃). We will show in Theorem
3.4.1 that a unitary quaternionic representation of G decomposes discretely into quater-
nionic representations when restricted to G′. One explanation for such a result to hold is
that quaternionic representations are admissible with respect to SU2(α̃) and they remain
admissible when restricted to the Lie subgroup G′. In addition the theorem states that
the spectrum of the restriction is determined by the cokernels of homomorphisms of finite
dimensional representations of the compact subgroup M ∩G′.

1.2. Gross and Wallach [GW1] [GW2] construct certain unitary representations in the con-
tinuations of the quaternionic discrete series. Each representation is associated with an
M(C)-orbit O in PVM in the sense that it has K-types (K = SU2 ×M)

∞∑
n=0

Symn+k(C2)⊗ An(O).
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Here
⊕

nA
n(O) is the coordinate ring of the Zariski closure of O in PVM . In §4 we will apply

Theorem 3.4.1 and deduce Corollary 4.2.1 which states that the irreducible components of
the restriction to G′ of such a representation is almost determined by the coordinate ring of
the intersection of O with a subspace in PVM .

1.3. In §5 we will study exceptional compact dual pairs correspondences. Each of the four
exceptional Lie algebras f4, e6, e7, e8 has a unique quaternionic real form g0, which has real
root system of type F4. Let G be the corresponding real quaternionic Lie group. Then M(C)
has a unique minimal closed orbit O = Z in PVM . There is a unitary representation in the
continuation of the quaternionic discrete series which is associated with this orbit. We will
follow [GW1] and denote this representation by σZ . It is annihilated precisely by the Joseph
ideal and it is thus called the minimal representation.

A pair of subgroups H1×CH2 (cf. (1)) in G is called a dual pair if the centralizer of Hi in G
is Hi+1. The dual pair is called compact if either H1 or H2 is compact. The main motivation
and objective of this paper is to investigate the restrictions of the minimal representations
σZ to compact dual pairs.

Exceptional dual pairs correspondences are investigated by [HPS], [Li1], [Li2], [GS] and
[L1]. So far the method of solving compact dual pairs correspondences is mainly done through
the computations on K-types and branching rules. Theorem 3.4.1 provides an alternative
approach to this problem. We will show in Proposition 5.4.2 that a large number of compact
dual pairs correspondences exist and we tabulate the results in the appendix.

In §6 we work out the correspondences for the dual pairs SU(2, 1)×H2 in the four excep-
tional groups.

1.4. Finally in §7 we apply the same method to the holomorphic discrete series representa-
tions and their continuations [Wa] [RV]. We will prove analogous results on the restrictions
of the holomorphic representations to holomorphic subgroups. Restrictions of the holomor-
phic discrete series representations have been investigated in [Ma] [JV]. Compact dual pairs
correspondences of the minimal representations, in particular the Weil representations are
well known (see [Ho], [KaV] and many more).

1.5. We define some notations. πG(a1$1 + . . . + an$n) will denote the irreducible finite
dimensional complex representation of a semisimple Lie group G with highest weight a1$1 +
. . . + an$n where $i are the fundamental weights given in Planches [Bou] . If V is a
representation of G, then Sn(V ) = SymnV will denote its n-th symmetric product and V ∗

its dual representation. Un
1 will denote the n-th power of the fundamental character of the 1

dimensional compact torus U1. µn will denote the cyclic group of order n. Suppose H1 and
H2 are subgroups of G and C lies in the centers of both H1 and H2, then we denote

H1 ×C H2 := (H1 ×H2)/{(z, z) : z ∈ C}. (1)

Acknowledgments: This paper is part of the author’s Ph.D thesis at Harvard [L2]. He
would like to thank his thesis advisor Prof. Benedict Gross for suggesting the problem. He
would also like to thank Prof. N. Wallach for pointing out Theorem 7.3.2.
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2. Quaternionic Groups and Representations

2.1. In this section we define some notations. In §2.2 we briefly recall the definition of
quaternionic real form of an algebraic group. In §2.3 we will define quaternionic representa-
tions and review some of their properties. Finally we construct filtrations of the quaternionic
representations which we need in §3.

2.2. Let G(C) be a complex simple Lie group with Lie algebra g. Let Gc be a compact real
form with Lie algebra gc. Let τ be the complex conjugation on g with respect to gc. Let hc
be a compact Cartan subalgebra (CSA) of gc and define h = hc ⊗C. Choose a positive root
system Φ+ with respect to h and denote its highest weight by α̃. Define

gi =
∑
〈α,α̃〉=i

gα for i ∈ Z.

For i = 0 we will write g(0) so as to avoid confusion with g0 defined in the next paragraph.
Then gi = 0 if i 6= 0,±1,±2 and g±2 = g±α̃. Define

h0 = [g2, g−2] ⊂ h

su2(α̃) = g2 ⊕ h0 ⊕ g−2

u = g1 ⊕ g2, u = g−1 ⊕ g−2

l = h⊕ g(0)

q = l⊕ u, q = l⊕ u.

q and q are opposite two-step nilpotent parabolic subalgebras with Levi factors l. l = h0⊕m
for some reductive subalgebra m. Denote VM = g1 as the representation of m. It is a self
dual representation of m.

We recall the definition of the quaternionic real form G0 of G(C) with Lie algebra g0 in
g (see §3 [GW2]). Let SU2(α̃) be the Lie subgroup of Gc having complexified Lie algebra
su2(α̃). Let h be the nontrivial element in the center of SU2(α̃). Then the quaternionic real
form G0 of G(C) is defined as the connected component of the identity element of the group

{g ∈ G(C) : τg = hgh−1}.

G0 has Cartan decomposition g = k ⊕ p where k = su2(α̃) ⊕ m and p = C2 ⊗ VM . We
denote the connected real Lie groups in G(C) corresponding to the various Lie algebras by
G0, K0 = SU2(α̃)×µ2M , L0 = U1×µ2M . Let G denote the double cover of G0 with maximal
compact subgroup K = SU2(α̃)×M . Define the subgroup L := U1 ×M in K. We will call
G×H a quaternionic Lie group if G is a quaternionic simple Lie group and H is a compact
Lie group.

We tabulate M(C) and VM below. Set 2d = dimVM . If g is of type D4, F4, E6, E7, E8,
then d = 3s+ 4 where s = 0, 1, 2, 4, 8 respectively.

Table 1
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g M(C) VM

(a) Ad+1, d ≥ 2 U1 × SLd (Ud+2
1 ⊗ Cd)⊕ (U−d−21 ⊗ (Cd)∗)

(b) so(d, 4), d ≥ 5 SL2 × SOd C2 ⊗ Cd

(c) Cd+1 Sp2d Cd

(d) D4 SL3
2 C2 ⊗ C2 ⊗ C2

(e1) F4 Sp6 π($3)
(e2) E6 o Z/2Z SU6 o Z/2Z π($3)
(e4) E7 Spin(12) π($6)
(e8) E8 simply connected E7 π($1)
(f) G2 SL2 S3(C2)

2.3. It is well known that G/L has a complex structure and G/K has a quaternionic struc-
ture (cf. §3 [GW2]). Let W [k] = e−kα̃/2 ⊗ W be an irreducible finite dimensional repre-
sentation of L = U1 × M . Let O(W [k]) denote the sheaf of holomorphic sections of the
G-equivariant bundle on G/L induced from the representation W [k].

Denote

H(G,U) := Γ1
K/L(HomU(q)(U(g), U)L).

as the Harish-Chandra module of G where Γ1 is the first Zuckerman derived functor and U is
a finite dimensional representation of L extended trivially to u. If k ≥ 2, then by the work of
Schmid [S1], Wong [W1] [W2] and Gross and Wallach [GW1] [GW2], H1(G/L,O(W [k])) is a
complex Frechet space and it is the maximal globalization of H(G,W [k]). It has infinitesimal
character µ+ ρ(G)− k α̃

2
and K-types (K = SU2(α̃)×M)

∞∑
n=0

Sk−2+nα̃ (C2)⊗ (Symn(VM)⊗W ). (2)

It contains a unique irreducible G-submodule which is generated by the translates of the
lowest K-types

Sk−2α̃ (C2)⊗W. (3)

Denote its Harish-Chandra module by σ(G,W [k]). Sometimes we will omit G and write
σ(G,W [k]) and H(G,W [k]) as σ(W [k]) and H(W [k]) respectively. We will call H(W [k])
and σ(W [k]) quaternionic representations.

The references for the proofs of the above results could be found in Theorem 3.3.1 of [L1]
where we give a more thorough discussion. Also see §5 [GW2].

If H(W [k]) is unitarizable, then it is irreducible for otherwise the orthogonal complement
of σ(W [k]) would be a nontrivial submodule which does not contain the lowest K-type (3).

It is clear that if W =
∑

iWi is a decomposable representation, then

H(W [k]) =
∑
i

H(Wi[k]) and σ(W [k]) =
∑
i

σ(Wi[k]). (4)
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2.4. Suppose G′ is a connected quaternionic real Lie subgroup of G containing SU2(α̃). We
have correspondingly K ′ = G′ ∩K, M ′ = G′ ∩M , L′ = G′ ∩ L and the Lie algebras g′, m′,
l′, q′ = l′ ⊕ u′, q′ = l′ ⊕ u′. Denote u′′ and u′′ to be the sum of root spaces of G such that

u = u′ ⊕ u′′ and u = u′ ⊕ u′′.

We also have VM ′ ⊂ VM . Note that V0 := VM/VM ′ = u′′ = u′′ as representations of M ′.
In order to avoid confusion, from now on, u′ and u′′ will strictly denote a representation of
L′ = U1 ×M ′ whereas VM ′ and V0 will denote representations of M ′.

2.5. Given a representation W [k] of L, we extend this to a representation of q by letting u
act trivially. We define the generalized Verma module

N(W [k]) = N(G,W [k]) = N(g, L,W [k]) := U(g)⊗U(q) W [k].

Note that this is a (g, L)-module. As a representation of M

N(g, L,W [k]) =
∞∑
n=0

Symn(u)⊗C W (5)

and the torus U1 ⊂ SU2(α̃) acts on the n-th graded piece by e−(k+n)α̃/2.
U(g) has a natural filtration

1 = U0 ⊂ U1 ⊂ U2 ⊂ . . .

where Un is generated as a vector space by elements of the form X1 · · ·Xs where Xi ∈ g and
s ≤ n.

Let Vn be the U(g′)-submodule of N(g, L,W [k]) defined by

Vn := (U(g′) · Un)⊗U(q) W [k]. (6)

If n = 0, we write V(0) so as to avoid confusion with V0 defined above. Vn forms a filtration
of N(g, L,W [k]). As a representation of L′,

Vn =
∞∑
r=0

n∑
m=0

Symr(u′)⊗C Sym
m(u′′)⊗C W [k]. (7)

It is clear that gVn = Vn+1.

2.6. For the ease of notations, let

Mn = U(g′)⊗U(q′) (Symn(u′′)⊗C W [k])

where u′′ is considered as a representation of L′ extended trivially to q′. With reference to
(7) we define

φn : Vn −→Mn

to be the natural L′-module projection of Vn into

Mn =
∞∑
r=0

Symr(u′)⊗C (Symn(u′′)⊗C W ).

This is a well defined map of (g′, L′)-modules and

0 −→ Vn−1 −→ Vn
φn−→Mn −→ 0 (8)
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is an exact sequence of (g′, L′)-modules (see §1 [JV]).

2.7. Let Γn = ΓnK/L be the n-th derived functor of the Zuckerman functor of taking K-finite

vectors. A modified proof of Prop. 9.12 of [GW2] gives the following lemma.

Lemma 2.7.1. Let Q be a (g′, L′)-subquotient of N(g, L,W [k]) for k ≥ 2. Then ΓiK′/L′Q = 0
for i 6= 1. �

By applying Lemma 2.7.1 to the exact sequence (8), we get an exact sequence

0→ Γ1(Vn−1)→ Γ1(Vn)→ Γ1(Mn)→ 0. (9)

2.8. Given a complex vector space V , let V ∧ denote the space of conjugate linear complex
functions on V . If V is a (g, K)-module, we refer to §6 [EPWW] for the definition of the
(g, K)-module structure on V ∧.

Given an irreducible representation V of L, there is a Hermitian pairing

〈 , 〉 : HomU(q)(U(g), V )L ×N(g, L, V ∧)→ C (10)

given by 〈f,X ⊗ v〉 = v(f(X)). Using this pairing one checks that each factor is the
conjugate dual of the other. Since L is compact, V ' V ∧ as representations of L. The aim
of introducing the conjugate dual is to state Thm 6.3 of [EPWW].

Theorem 2.8.1. A 7→ (Γ1A)∧ and A 7→ Γ1(A∧) are natural equivalent functors from the
category of (g, L)-modules to the category of (g, K)-modules. �

2.9. The inclusion Vn−1 ⊂ N(W [k]) induces a surjection

H(G,W [k])→ Γ1(Vn−1)
∧ → 0. (11)

Denote the kernel of the above map by H ′n. These modules form a decreasing filtration of
H(G,W [k]) and each has K ′-types (K ′ = SU2 ×M ′)

∞∑
p=0

∞∑
q=n

Sk+p+q−2α̃ (C2)⊗ (Sp(VM ′)⊗ Sq(V0)⊗W ). (12)

Moreover by (9)

H ′n/H
′
n+1 = Γ1(Vn)∧/Γ1(Vn−1)

∧ = H(G′, Sn(u′′)⊗W [k]). (13)

H ′n are the Harish-Chandra modules of a decreasing filtration Hn of H1(G,O(W [k])) con-
structed in §4 of [L1].

From now on, we will mainly work with Harish-Chandra modules of G and G′. The
symbol ResGG′ will denote the restriction of a Harish Chandra module of G to (g′, K ′). The
next proposition follows from (13).

Proposition 2.9.1. If H(G,W [k]) is unitarizable, then

ResGG′H(G,W [k]) =
∞∑
n=0

H(G′, Sn(u′′)⊗W [k])

and each summand on the right are unitarizable. �
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3. Restrictions

3.1. We retain the notations of §2 where G ⊃ G′. The goal of this section is to give the
motivation and the proof of Theorem 3.4.1.

3.2. First we review the work of [EPWW] and [GW2] in determining the unitarizability of
σ(G,W [k]). There exists a quadratic form called the Shapovalov form on N(G,W [k]) (see
[Sh]). Suppose the L-type W1[k + m] is the L-type with the smallest m among those of
N(G,W [k])g2 which lies in the radical of the Shapovalov form. Then by (5)

W1 ⊂ SymmVM ⊗W (14)

and we have an exact sequence

N(G,W1[k +m])
ρ→ N(G,W [k])→ Q→ 0 (15)

where Q denotes the quotient. Suppose that the image of ρ is the radical of the Shapovalov
form and the quadratic form induced on Q is positive definite. By Lemma 2.7.1, the functor
Γ1(−)∧ preserves the exactness of (15) and we have an exact sequence

0→ Γ1(Q)∧ → H(G,W [k])→ H(G,W1[k +m]). (16)

In addition, by Prop 6.6 of [EPWW] the positive definite quadratic form on Q induces a
(g, K)-invariant positive definite quadratic form on Γ1(Q)∧ and thus Γ1(Q)∧ is decomposable.
On the other hand H(G,W [k]) has a unique irreducible submodule, namely σ(G,W [k]).
Hence Γ1(Q)∧ = σ(G,W [k]) and it is unitarizable.

3.3. In §2 we have a filtration of (g′, K ′)-modules for each of the last two terms of (16). We
are going to use them to determine the restriction of σ(G,W [k]) to (g′, K ′).

3.4. We need some notations in order to state Theorem 3.4.1. The inclusion in (14) gives
rise to the following natural maps of M -modules

Symn−m(VM)⊗W1 → Symn−m(VM)⊗ Symm(VM)⊗W → Symn(VM)⊗W.

Let r′n denote the composite of the above maps. The direct sum VM = VM ′ ⊕ V0 (cf. §2.4)
induces a natural map of M ′-modules

r′′n : Symn(VM)⊗W → Symn(V0)⊗W.

We define rn = r′′n ◦ r′n for n ≥ m. For 0 ≤ n < m, we set rn to be the zero map into
Symn(V0)⊗W . Let Rn denote the cokernel of rn and denote R• :=

⊕∞
n=0Rn. Note that Rn

is a representation of M ′ and we write

Rn =
∑
j

Wn,j

where Wn,j are the irreducible subrepresentations of Rn.
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Theorem 3.4.1. Suppose σ(G,W [k]) is the unitarizable Harish-Chandra module obtained
from the construction given in §3.2, then

ResGG′σ(G,W [k]) =
∞∑
n=0

σ(G′, Rn[k + n]) (17)

=
∞∑
n=0

∑
j

σ(G′,Wn,j[k + n]). (18)

In particular the summands in (18) are unitarizable.

Recall §2.3 that σ(G′,Wn,j[k + n]) is the unique irreducible submodule of

Γ1
K′/L′(HomU(q′)(U(g′),Wn,j ⊗ e−(k+n)α̃/2)L′).

Proof. For the ease of notations, we denote

H′n := H(G′, Sn(u′′)⊗W [k])

H′′n := H(G′, Sn(u′′)⊗W1[k +m])

Recall that (6) forms a filtration of U(g′)-modules for a generalized Verma module. For
N(G,W [k]) and N(G,W1[k+m]) we denote their filtrations by V ′n and V ′′n respectively. We
also denote their respective kernels defined in (11) by H ′n and H ′′n. We define V ′n = V ′′n = H′′n
= 0 and H ′n = H ′′n = H ′′0 for all n < 0.

In (15), ρ maps 1 ⊗W1[k + m] to Sm(u) ⊗W [k] and thus it maps V ′′n to V ′n−m. This in
turn induces maps

tn : H ′n → H ′′n−m and sn : H′n → H′′n−m.

Therefore we get the following commutative diagram:

0 → H ′n+1 → H ′n → H′n → 0

↓ tn+1 ↓ tn ↓ sn

0 → H ′′n−m+1 → H ′′n−m → H′′n−m → 0

Let Kn and σn be the kernels of tn and sn respectively. We apply the Snake Lemma to the
commutative diagram to get an exact sequence

0→ Kn/Kn+1 → σn → H ′′n−m+1/H
′
n+1. (19)

Since σ(G,W [k]) is SU2(α̃)-admissible and unitarizable, it is decomposable as a (g′, K ′)-
module and

ResGG′σ(G,W [k]) = K0 ⊕
∞⊕
n=0

Kn+1/Kn.

Let σ be an irreducible submodule of σn. Since σn ⊂ H′n, σ is of the form

σ := σ(G′,W ′[k + n])

whereW ′ is an irreducibleM ′-submodule. It is generated by its lowestK ′-types Sk+n−2α̃ (C2)⊗
W ′ which by (12) is not a K ′-type of H ′′n−1. Hence by the exact sequence (19), σ ⊂
Kn/Kn+1 ⊂ σ(G′,W [k]).
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To find the irreducible representations in σn, it suffices to determine the restriction of sn
between the lowest K ′-types of H′n and H′′n−m

sn : Sk+n−2α̃ (C2)⊗ Symn(V0)⊗W → Sk+n−2α̃ (C2)⊗ Symn−m(V0)⊗W1.

Indeed the kernel of sn will generate the irreducibles in σn. Therefore it suffices to know the
kernel of the M ′-homomorphism r∧n

r∧n : Symn(V0)⊗W → Symn−m(V0)⊗W1

by further restricting sn. Recall that r∧n is obtained from ρ in (15). Hence r∧n is the conjugate
dual of rn and the kernel of r∧n is the cokernel Rn of rn as a representation of the compact
group M ′. This proves (17). Equation (18) follows from (17) and (4). �

3.5. It follows that if rm is surjective, then rn is surjective for all n ≥ m and R• =∑m−1
n=0 S

nV0.

4. Representations and Orbits

4.1. In [GW2] Gross and Wallach determine the unitarizability of σ(G,C[k]) for all simple
quaternionic Lie groups G using the method described in §3.2. In addition they show that
the K-types can be obtained from the coordinate ring of certain associated orbits in PVM .
In §4.2 we will review some facts about orbit associations. We refer the reader to [GW2] for
details. Next we will deduce Corollary 4.2.1 from Theorem 3.4.1. Finally we illustrate our
results with three examples.

4.2. H(G,C[k]) is irreducible and unitarizable if k ≥ k0 where k0 is given in Table 2 below.
If k > dimVM , then it belongs to the discrete series. If k < k0, σ(C[k]) is a proper submodule
of H(C[k]). In order to describe those σ(C[k]) which are unitarizable, we need the following
definition.

Since VM is a self dual representation of M , we identify its dual representation V ∗M with VM .
Let O be a M(C) orbit in P(VM) and O be its Zariski closure. Let I•(O) =

⊕
n≥m I

n(O),

(Im 6= 0) be the homogeneous ideal defining it and A•(O) =
⊕

An(O) be its coordinate ring.
Note that In(O) and An(O) are representations of M . We say that σ(C[k]) is associated
with O if it satisfies the following 2 conditions:

(i) It has K-types
∑∞

n=0 S
k+n−2
α̃ (C2)⊗ An(O).

(ii) It is unitarizable and it is obtained via the method given in §3.2. More specifically the
inclusion Im(O) ⊂ Sm(VM) induces a map as in (16)

0→ σ(C[k])→ H(G,C[k])→ H(G, Im(O)[k +m]). (20)

Note that [GW2] does not include (ii) in their definition of orbit association but it is a
corollary of their proofs.

We tabulate the unitarizable σ(C[k]) for 2 ≤ k < k0 in Table 2 below. Each representation
is associated with an orbit O in PV0 and it satisfies an equation of the form given in (20).
The last 2 columns in Table 2 give the values of m and Im(O) in (20). The associated orbits
as well as the K-types are described in [GW2].
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Table 2

G0 k0 σ(C[k]) m Im(O)

(a) SU(d, 2), d ≥ 2 d+ 1 (i) σ(C[d] 2 C
(b) SO(d, 4), d ≥ 5 d (i) σ(C[d− 1]) 4 C

(ii) σ(C[d− 2]) 2 S2(C2)⊗ C
(c) Sp2d,2 2

(d) SO(4, 4) 4 (i) σ(C[3]) 4 C
(ii) σ(C[2]) 2 S2 ⊕ S2 ⊕ S2

(es) F4,4 d = 3s+ 4 (i) σ(C[d− 1]) 4 C
E6,4 o Z/2Z (ii) σ(C[2s+ 2]) 3 VM
E7,4, E8,4 (iii) σ(C[s+ 2]) 2 m

(f) G2,2 2

For (es), s = 1, 2, 4, 8 if G0 is of type F4, E6, E7 and E8 respectively. The representation
σ(C[s + 2]) in (es)(iii) is the called the minimal representation. We will say more about it
in §5.2.

Corollary 4.2.1. Suppose σ = σ(G,C[k]) is associated with the M(C)-orbit O in PVM . Let
O′ = O ∩ PV0 and denote its coordinate ring in PV0 by A•(O′) =

⊕
An(O′). We consider

An(O′) as a representation of M ′, then

ResGG′σ ⊇
∞∑
n=0

σ(G′, An(O′)[k + n]). (21)

Equality holds if and only if the restriction of Im(O) to PV0 generates the homogeneous ideal
of O′.

Proof. By the definition of R• =
⊕

Rn, Rred
• := R•/Nil(R•) = A•(O′). Hence (21) follows

from Theorem 3.4.1. The last assertion follows from the fact that the sum of the images of
rn is the homogeneous ideal of Sym•(V0) generated by rm(Im(O)). �

Note that if G′ is the maximal compact subgroup K of G, then the right hand side of (21)
equals the K-types of σ.

4.3. The Hilbert polynomials of R• and A•(O′) have the same degree as they are both equal
to the Krull dimension of O′. Hence we are justified in calling the decomposition in (21)
generic. In §4.6 we will see an example where R• is non-reduced and the containment in
(21) is proper.

Since O is defined by Im(O), O′ is the projective variety cut out by rm(Im(O)). Hence
O′ = PV0 if and only if rm = 0 if and only if rn = 0 for all n (cf. §3.5). On the other
extreme, if O′ is the empty set, then by Hilbert Nullstellensatz there exists n0 such that rn
is surjective for all n ≥ n0. Thus the restriction of the associated representation decomposes
into finitely many subrepresentations.



QUATERNIONIC REPRESENTATIONS 11

4.4. The projection map VM = VM ′ + V0 → V0 induces a M ′(C)-invariant rational map

φ : P(VM) · · · → P(V0).

Let O′′ = φ(O) and
⊕

nA
n(O′′) be its coordinate ring. O′′ is the closure of a M ′-orbit in

P(V0). Then the definition of rn implies that σ′′ := σ(G′,C[k]) has K-types

∞∑
n=0

Sk+nα̃ (C2)⊗ An(O′′).

Thus σ′′ is the representation associated with O′′.
More generally, let W be an irreducible representation of Symm(V0) and let W be the

corresponding M ′ equivariant vector bundle on P(V0). Then the K ′-types of σ(W ) :=
σ(G′,W [m+ k]) is a quotient of

∞∑
n=0

Sk+n+mα̃ (C2)⊗ Γ(O′′,O(n)⊗W|O′′). (22)

In particular σ(W ) has Gelfand-Kirillov dimension not bigger than dimO′′ + 2. Unfortu-
nately the K ′-types of σ(W ) are seldom equal to those given in (22) except in the case when
O′′ = PV0.

4.5. In the remaining part of this section we will give some examples on the restrictions of
the representations of the classical groups given in Table 2.

4.6. Let G = S̃O(d, 4) ⊃ G′ = S̃O(d− 1, 4) where the tildes above the groups denote their
double covers. V0 = C2 ⊗ C as a representation of M ′ = SU2 × SO(d− 1).

Proposition 4.6.1. Let d ≥ 4 and G = S̃O(d, 4) ⊃ G′ = S̃O(d− 1, 4). Then
(a) ResGG′σ(G,C[d− 1]) =

∑∞
n=0 σ(G′, Sn(C2)[n+ d− 1]).

(b) ResGG′σ(G,C[d− 2]) = σ(G′,C[d− 2]) + σ(G′,C2[d− 1]).

Proof. (a) From Table 2(b)(i) and (d)(i), we have r4 : C → S4(C2) so rn = 0. Thus
Rn = Sn(V0).

(b) From Table 2(b)(ii) and Table 2(d)(ii) we have r2 : S2(C2) ⊗ C → S2(C2) ⊗ C. r2 is
either a surjection or the zero map. We claim that the associated orbit does not intersect
PV0. The claim implies that r2 is surjective and by §3.5, rn is surjective for all n ≥ 2. Hence
R• = R0 +R1 = C + C2 and it is non-reduced.

It remains to prove the claim. Let e1, . . . , ed be an orthonormal basis of (Cd, 〈, 〉) and we
identify C2 ⊗ Cd = Cd ⊕ Cd. Suppose d ≥ 5, then the closure of the associated orbit O is

O = P{(w1, w2) ∈ Cd ⊕ Cd : 〈w1, w1〉 = 〈w1, w2〉 = 〈w2, w2〉 = 0}. (23)

V0 is spanned by (e1, 0) and (0, e1) and clearly PV0 does not intersect O.
Next suppose d = 4, then the closure of the associated orbit O is the image of Segre

embedding

P1 × P1 × P1 ↪→ P(C2 ⊗ C2 ⊗ C2) = P(C2 ⊗ C4).

O is a subvariety of (23) which does not intersect PV0. This proves the claim. �
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4.7. Let G = S̃U(d, 2) ⊃ G′ = S̃U(d− 1, 2)× U1 and V0 = C⊕ C∗. From Table 2(a)(i) the
associated orbit of σ(G,C[d]) is

O = P{(v, v∗) ∈ Cd ⊕ (Cd)∗ : 〈v, v∗〉 = 0}. (24)

so O∩PV0 = P{e1, e∗1} (2 points) and rn : Sn−2V0 → SnV0 is the map given by multiplication
by e1e

∗
1. Hence Rn = Un

1 ⊕U−n1 . The one dimensional center U1 of M ′ acts on the summand

U±n1 of Rn by U
±n(d−1)
1 . Therefore

ResGG′σ(G,C[d]) =
∞∑

n=−∞

σ(S̃U(d− 1, 2), U
n(d−1)
1 [d+ |n|])⊗ Un

1 .

4.8. Let G = S̃U(2d, 2) ⊃ G′ = S̃p2d,2 and V0 = C2d. Then

ResGG′σ(G,C[2d]) =
∞∑
n=0

σ(G′, Sn(C2d)[2d+ n]).

Indeed (24) implies that O ∩ PV0 = PV0. Therefore r2 = 0 and Rn = Sn(V0).

5. Compact Dual Pairs

5.1. In this section we will investigate the dual pairs correspondences of the minimal repre-
sentations of the four exceptional quaternionic groups of real rank 4.

5.2. Let G0 be one of the four exceptional groups given in Table 1(es) indexed by s = 1,
2, 4, 8. Let G be its double cover with maximal compact subgroup SU2 ×M . In each case
there is a unique minimal closed M(C)-orbit Z in PVM . The unitarizable Harish-Chandra
module σ(C[s+ 2]) given in Table 2(es)(iii) is the unitary representation associated with Z.
We will follow [GW1] and denote σ(C[s+ 2]) by σZ . Its annihilator ideal is the Joseph ideal
in U(g) so σZ is called the minimal representation of G. It has K-types

∞∑
n=0

Ss+nα̃ (C2)⊗ πM(nλ)

where λ is the highest weight of VM . Note that σZ descends to a Harish-Chandra module of
G0 for groups of type E.

5.3. We will consider compact dual pair correspondences. Let G′ = H1 ×C H2 be a dual
pair in G and suppose H1 is a quaternionic Lie subgroup containing SU2(α̃). Let h1 be
the Lie algebra of H1 and K1 = SU2(α̃) × M1 be its maximal compact subgroup. Since
H2 commutes with SU2(α̃), H2 ⊂ M and it is compact. Let S be an irreducible finite
dimensional representation of H2. We define the unitarizable (h1, K1)-module Θ(S) of H1

by

ResGG′σZ =
∑
S

Θ(S)⊗ S.

If there are exactly n copies of π ⊗ S in σZ , we say that π has multiplicity n in Θ(S). Θ is
said to be 1-1 if all nontrivial Θ(S) are irreducible and the map S ↔ Θ(S) is a bijection.
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5.4. We would like to apply Theorem 3.4.1 to ResGG′σZ . Note that Rn is a representation of
M ′ = M1 ×C H2. Suppose V1 ⊗ S is an irreducible representation of M ′ = M1 ×C H2 in Rn,
then by Theorem 3.4.1 ResGG′σZ contains the representation

σ(H1 ×C H2, V1 ⊗ S[s+ 2 + n]) = σ(H1, V1[s+ 2 + n])⊗ S.
This proves the next proposition.

Proposition 5.4.1. Θ(S) is a sum of quaternionic unitarizable (h1, K1)-modules of H1. �

To determine Θ(S), it suffices to find Rn. By Table 2(es)(iii), W1 = I2(Z) = m ⊂
Sym2(VM) and Rn is the cokernel of the map of M ′ = M1 ×C H2 modules

rn : m⊗ Sn−2(V0)→ Sn(V0). (25)

In general it is difficult to determine Rn completely but it is relatively easy to find certain
irreducible subrepresentations as well as their multiplicities in Rn. This gives the existence
of a large number of correspondences which we state as the next proposition.

Proposition 5.4.2. In Tables 1B-4B in the appendix, Θ1(S) occurs with multiplicity one in
Θ(S).

Proof. Tables 1A - 4A in the appendix give the highest weight representations of V0 and m
as representations of M ′ = M1 ×C H2. This is done with the help of the tables in [KP].

We will use (25) and the data in Tables 1A - 4A to show that Rn contains the corresponding
irreducible representations of M ′ and each occurs with multiplicity one. This is done on a
case by case basis.

Table 3B(d) and Table 4B(c)(d) are trivial.
Suppose ω is one of the highest weight with maximal length in V0. Furthermore assume

that 2ω is not a weight of m and it is not shorter than any weights of m. Then it is clear
that π(nω) is contained in Rn with multiplicity 1. This proves (b), (c), (d), (f) of Table 1B,
(b), (d), (f), (g) of Table 2B, Table 3B(b) and Table 4B(b). A variation of this argument
proves Table 2B(c) and Table 3B(c).

Consider the situation where V0 = πM ′($)⊕ πM ′($′) and let X and Y be elements in the
highest weight spaces of πM ′($) and πM ′($′) respectively. Suppose $ (resp. $′) is not a
weight of π($) (resp. π($′)) and suppose X2, XY and Y 2 do not lie in m ⊂ Sym2(VM).
Then XaY b will not lie in the image of ra+b. Hence XaY b spans the unique highest weight
space of π(a$ + b$′) in Ra+b. This proves the remaining cases. �

Corollary 5.4.3. Θ-correspondences of the dual pairs

F4,4 ×G2 and E6,4 ×µ3 SU3

in E8,4 are not 1-1.

Proof. Table 1B(d)(e). �

5.5. The following correspondences given in Tables 1B - 4B have been shown to be the
complete decomposition of σZ .

(i) Cases (b) of Tables 1B - 4B: This is due to [HPS].
(ii) Cases (a) of Tables 1B - 4B: We will prove it in Theorem 6.1.2 using a branching rule

of [HPS].
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(iii) Table 1B(f): See §6 [GW1].
(vi) Tables 2B(d), 2B(e) and 3B(d) : See [G].
(v) Table 4B(c), 4B(d): See [L2]

It is known that the correspondences given in the tables are not complete for the dual pairs
Spin(4, 4)×K4 Spin(8) in E8,4 (Table 1B(c)) and Spin(4, 4)×SU3

2 in E7,4 (Table 2B(c)) (see
[L1]). The proofs of the above results are mainly done by considering the K-types. We can
proceed as in §4.6 to §4.8 and provide alternative proofs by computing the intersections of
the orbits. For example one can show that correspondences for E6,4 ×µ3 SU3 in Table 1B is
complete whereas that of F4,4×G2 is not. However the calculations are quite tedious and we
hope to give more details as well as the correspondences of the remaining dual pairs in our
next paper. Finally we remark that [GS] and [MS] did some calculations on intersections of
exceptional orbits in PVM .

6. The Dual Pair SU(2, 1)×H2

6.1. Let S̃U(2, 1) be the double cover of SU(2, 1) with maximal compact subgroup SU2(α̃)×
U1. Let χ be the fundamental character of M = U1. Hence VU1 = χ3 + χ−3. The center µ3

of S̃U(2, 1) is contained in the torus U1.

Lemma 6.1.1. Let a ∈ Z, then

H(S̃U(2, 1), χa[|a|+ n])

is unitarizable and irreducible if n ≥ 2.

Proof. Consider S̃U(2, 1) ⊂ G̃2,2. In this case V0 = χ + χ−1. Prop. 8.4 of [GW2] and Table

2(f) say that H(G̃2,2,C[n]) is unitarizable for n ≥ 2 and the lemma follows from Proposition
2.9.1. �

As before, let G0 be one of the 4 exceptional groups indexed by s and G be its double
cover. G contains the dual pair

S̃U(2, 1)×µ3 H2

where H2 is given in (a) of Tables 1A - 4A in the appendix. From the tables, V0 decomposes
into

(χ⊗ πH2($)) ⊕
(
χ−1 ⊗ πH2($

′)
)

as representations of U1 × H2. Note that π($) and π($′) are dual representations of each
other.

Theorem 6.1.2.

ResG
S̃U(2,1)×H2

σZ =
∑
a,b≥0

Θ(a, b)⊗ πH2(a$ + b$′)

where Θ(a, b) is the representation

Ha,b := H(S̃U(2, 1), χa−b[s+ 2 + a+ b]).
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Proof. By Lemma 6.1.1, Ha,b is unitarizable and irreducible. Tables 1B - 4B (a) read that
Θ(a, b) ⊃ Ha,b. Prop. 3.1 of [HPS] states that Θ(a, b) has K-types

∞∑
n=0

∑
p+q=n

Ss+n+a+bα̃ (C2)χ3p−3q+a−b =
∞∑
n=0

Ss+n+a+bα̃ (C2)Symn(VU1)χ
a−b

which are equal to the K-types of Ha,b (cf. (2)). Hence Θ(a, b) = Ha,b and this proves the
theorem. �

7. The Holomorphic Representations

7.1. In this section we will study the continuations of the holomorphic discrete series [Wa]
[RV]. In §7.3, we will briefly recall their constructions and we refer the reader to [Wa] for
details. The situation is similar to the quaternionic case where one associates orbits to
unitary representations. In §7.4 we derive results on the restrictions of such representations.
These results are similar to Theorem 3.4.1 and Corollary 4.2.1. The proofs are almost
identical but they are easier in this case because they do not involve the Zuckerman functors.
Hence we have omitted them.

7.2. In this section g0 will denote a real simple Lie algebra with maximal compact Lie
subalgebra k0. Let g = g0(C) and k = k0(C) and we assume they satisfy the following
properties:

(1) k0 contains a Cartan subalgebra h0 of g0
(2) k0 is of the form RiH ⊕m0 and m0 = [k, k].
(3) g = u+ ⊕ k ⊕ u− where u± is the ±1-eigenspace of ad(H) on g. Let q = u+ ⊕ k and

q = u− ⊕ k be the maximal parabolic algebras.

Let G(C) be the simply connected complex Lie group with Lie algebra g and let G0 be its
connected real subgroup with Lie algebra g0 and maximal compact subgroup K0 = U1×M .
Let Ũ1 be the double cover of U1 and let G be the double cover of G0 with maximal compact
subgroup K = Ũ1 ×M . Note that G/K is a bounded symmetric domain.

7.3. Let k be a non-positive integer and let Ũk
1 ⊗ W be an irreducible representation of

K = Ũ1 ×M . Denote

H(G, Ũk
1 ⊗W ) := HomU(q)(U(g(C)), Ũk

1 ⊗W )K . (26)

It is conjugate dual to a generalized Verma module (cf. (10)). Let VM denote the restriction
of u∗+ to M . Then (26) has K types (K = Ũ1 ×M)

∞∑
n=0

Ũk−2n
1 ⊗ (Symn(VM)⊗W ).

It contains a unique irreducible submodule σ(G, Ũk
1 ⊗W ) generated by the lowest K-type

Ũk
1 ⊗W .
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The Harish-Chandra module σ(G, Ũk
1 ⊗ C) is said to be associated with a M(C) orbit O

in P(V ∗M) if it has K-types (K = Ũ1 ×M)

∞∑
n=o

Ũ−c−2n1 ⊗ An(O)

where c is a nonnegative integer and
⊕

nA
n(O) is the coordinate ring of the Zariski closure

of O in P(V ∗M).
Let r be the real split rank of g. The next proposition describes the M(C)-orbits in P(V ∗M).

Proposition 7.3.1. M(C) has r − 1 orbits Oi where i = 2, . . . , r in P(V ∗M). They satisfy

{} = O1 ⊂ O2 ⊂ O3 ⊂ . . . ⊂ Or = P(V ∗M).

O2 is the minimal closed orbit and its ideal is generated by quadratic polynomials.

We refer to [Wa] for the definition of ci for i = 1, . . . , r. We can now state a version of
Thm 5.10 of [Wa].

Theorem 7.3.2. (i) H(G, Ũk
1 ⊗ C) is unitarizable if k < −cr.

(ii) When k = −ci where i = 1, . . . , r, the unique irreducible submodule σi := σ(G, Ũk
1 ⊗ C)

of H(G, Ũk
1 ⊗C) is unitarizable. σi is associated with the orbit Oi given in Proposition 7.3.1.

In particular c1 = 0 and σ1 = C is the 1 dimensional trivial representation.

If G0 = Sp(2n,R) then the ideal of annihilation of σ2 in the above theorem is the Joseph
ideal and it is called the Weil representation.

7.4. Let g′0 be a reductive Lie subalgebra of g0 containing RiH. Correspondingly we define
g′ = g′0(C), k′0 = RiH ⊕m′0, u

′
± ⊂ u± , G′ ⊂ G and K ′ = Ũ1 ×M ′ ⊂ K = Ũ1 ×M .

Suppose u∗+ = (u′+)∗⊕ V0 as representations of M ′. Using a similar argument as in §2.6 to
§2.9 gives the next proposition (also see §1 [JV]).

Proposition 7.4.1. Let k be a non-positive integer. Then H(G, Ũk
1 ⊗W ) has a filtration

H ′n of (g′, K ′) submodule such that
⋂
nH

′
n = 0 and

H ′n/H
′
n+1 ' HomU(q′)(U(g′(C)), Ũk−2n

1 ⊗ (SymnV0 ⊗W ))K′ . �

Suppose Im(Oi) ⊂ Symm(VM) generates the ideal of Oi. Define Rn to be the cokernel of
the following composition of natural maps of M ′-modules

Symn−m(VM)⊗ Im(Oi)→ Symn−mV0 ⊗ SymmV0 → SymnV0.

Note that Rn is a representation of M ′ and we write

Rn =
∑
j

Wn,j.

A similar argument as in §3 and §4 gives the following results (cf. Thm 3.4.1 and Cor 4.2.1).
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Theorem 7.4.2.

Resg,Kg′,K′σi =
∞∑
n=0

σ(G′, Ũ−ci−2n1 ⊗Rn)

=
∞∑
n=0

∑
j

σ(G′, Ũ−ci−2n1 ⊗Wn,j). �

Corollary 7.4.3. Let O′ = Oi ∩ PV0 and denote its coordinate ring in PV0 by A•(O′) =⊕
An(O′). We consider An(O′) as a representation of M ′, then

Resg,Kg′,K′σi ⊇
∞∑
n=0

σ(G′, An(O′)[k + n]). �

Following a similar treatment as in §5, we can deduce results about compact dual pairs
correspondences of the Weil representations. As we have mentioned in §1.4, such results are
well known.

Appendix

All the exceptional Lie groups that appear in the tables are real forms of simply connected
complex algebraic groups.
H1 ×C H2 are dual pairs in G where C lies in the center of H1 × H2. H1 has maximal

compact subgroup SU2 ×M1.
In Tables 1A, 2A, 3A and 4A, the last three columns give the highest weights of the

irreducible components of m = LieM(C), V0 and Sym2(V0) as representations of M1×C H2.
We use the method in [KP] but the numbering of [Bou] to denote the weights. For example,
on line 3 of Table 1A,

(-2.000001) = U−21 ⊗ πE6($6).

In Tables 1B, 2B, 3B and 4B, S is a finite dimensional representation of H1 and the column
gives its highest weight. The column labeled Θ1(S) denotes quaternionic representations of
H1. For example, on the last line of Table 1B, (a000000)[a+10] represents the (h1, K1)-
module

σ(E7,4, πSpin(12)(a$1)[a+ 10]).
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Table 1A: G = E8,4 and M(C) is the simply connected E7(C).

H1 ×C H2 M1 ×C H2 m V0 Sym2(V0)

(a) SU(2, 1)×µ3 U1 ×µ3 E6 (0.010000) (1.100000)
E6 (-2.100000) (-1.000001)

(2.000001)
(0.000000)

(b) G2,2 × F4 SU2 × F4 (0.1000) (1.0001)
(2.0001)
(2.0000)

(c) Spin(4, 4)×K4
SU3

2×K4
(0.0.0.0100) (1.0.0.1000)

Spin(8) Spin(8) (0.1.1.1000) (0.1.0.0010)
(1.0.1.0010) (0.0.1.0001)
(1.1.0.0001)
(2.0.0.0000)
(0.2.0.0000)
(0.0.2.0000)

(d) F4,4 ×G2 Sp6 ×G2 (010.01) (100.01) (200.02)
(000.10) (200.00)
(200.00) (010.01)

(010.10)
(000.01)
(000.10)

(e) E6,4 ×µ3
SU3 SU6 ×µ3

SU3 (10001.00) (10000.10) (20000.20)
(01000.01) (00001.01) (00002.02)
(00010.10) (01000.01)
(00000.11) (00010.10)

(10001.00)
(10001.11)
(00000.11)
(00000.00)

(f) E7,4 ×µ2
SU2 Spin(12)×µ2

(010000.0) (100000.1)
SU2 (000010.1)

(000000.2)
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Table 1B: G = E8,4.

H1 ×C H2 S Θ1(S)

(a) SU(2, 1)×µ3 E6 (a0000b) (a-b)[a+b+10]

(b) G2,2 × F4 (000a) (a)[a+ 10]

(c) Spin(4, 4)×K4
Spin(8) (a0bc) (a.b.c)[a+ b+ c+ 10]

(d) F4,4 ×G2 (0a) (a00)[a+ 10]
(01) (000)[12]

(e) E6,4 ×µ3 SU3 (ab) (a000b)[a+ b+ 10]
(00) (00000)[12]

(f) E7,4 ×µ2 SU2 (a) (a00000)[a+ 10]

Table 2A: G = E7,4 and M = Spin(12).

H1 ×C H2 M1 ×H2 m V0

(a) SU(2, 1)×µ3 SU6 U1 ×µ3 SU6 (2.01000) (1.00010)
(-2.00010) (-1.01000)
(0.10001)
(0.00000)

(b) G2,2 × PSp6 SU2 × PSp6 (2.010) (1.010)
(0.200)
(2.000)

(c) Spin(4, 4)×K4 SU
3
2 SU3

2 ×K4 SU
3
2 (110.110) (100.011)

(101.101) (010.101)
(011.011) (001.110)
(200.000)
(020.000)
(002.000)
(000.200)
(000.020)
(000.002)

(d) F4,4 × SO3 Sp6 × SO3 (010.2) (100.2)
(200.0)
(000.2)

(e) E6,4 × U1 SU6 × U1 (10001.0) (10000.1)
(01000.2) (00001.-1)
(00010.-2)
(00000.0)

(f) Spin(8, 4)× SU2 SU2 × Spin(8)× SU2 (0.0100.1) (0.0001.1)
(1.1000.1)
(2.0000.0)
(0.0000.2)

(g) Sp4,2 ×G2 Sp4 ×G2 (20.00) (10.10)
(00.10)
(00.01)
(01.10)

Table 2B: G = E7,4.
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H1 ×C H2 S Θ1(S)

(a) SU(2, 1)×µ3 SU6 (0a0b0) (a− b)[a+ b+ 6]

(b) G2,2 × PSp6 (0a0) (a)[a+ 6]

(c) Spin(4, 4)×K4 SU
3
2 (b+ c.c+ a.a+ b) (abc)[a+ b+ c+ 6]

(d) F4,4 × SO3 (2a) (a00)[a+ 6]

(e) E6,4 × U1 (a) (a0000)[a+ 6]
(−b) (0000b)[b+ 6]

(f) Spin(8, 4)× SU2 (a) (0.000a)[a+ 6]

(g) Sp4,2 ×G2 (a0) (a0)[a+ 6]

Table 3A: G = E6,4 o Z/2Z and M = SU6 o Z/2Z.

In (c), U2
1 is defined as {(x, y, z) ∈ U3

1 : xyz = 1}. The table gives the characters of U2
1

which is sufficient to derive that of Ũ except when the character is trivial. In this situation, we
write ( .000+) and ( .000-) to indicate that Z/2Z acts trivially and nontrivially respectively.

H1 ×H2 M1 ×H2 m V0

(a) SU(2, 1)×µ3
U1×µ3

(-2.10.01) (1.01.10)
(SU2

3 o Z/2Z) (SU3
2 o Z/2Z) (2.01.10) (-1.10.01){

(0.11.00)
(0.00.11)

}
(0.00.00)

(b) G2,2× SU2× (2.11) (1.11)
(PGL3 o Z/2Z) (PGL3 o Z/2Z) (0.11)

(2.00)

(c) Spin(4, 4)×K4
SU3

2×K4
(110.1 -1 0) (100.0 1 -1)

(U2
1 o Z/2Z) (U2

1 o Z/2Z) (101.1 0 -1) (010.1 0 -1)
(011.0 1 -1) (001.1 -1 0)
(200.000+)
(020.000+)
(002.000+)
(000.000+)
(000.000-)

(d) F4,4 × Z/2Z Sp6 × Z/2Z (010.1) (100.1)
(200.0)
(000.0)
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Table 3B: G = E6,4 o Z/2Z.

H1 ×C H2 S Θ1(S)

(a) SU(2, 1)×µ3
(SU2

3 o Z/2Z) (ba.ab) (a− b)[a+ b+ 4]

(b) G2,2 × (PGL3 o Z/2Z) (aa) (a)[a+ 4]

(c) Spin(4, 4)×K4 (U2
1 o Z/2Z) (a+ b.− a.− b) (0ab)[a+ b+ 4]

(−b.a+ b.− a) (b0a)[a+ b+ 4]
(−a.− b.a+ b) (ab0)[a+ b+ 4]

(d) F4,4 × Z/2Z (0) (000)[4]
(1) (100)[5]

Table 4A: G = F̃4,4 is the double cover of the split F4,4. The maximal compact subgroup
is SU2 ×M where M(C) = Sp6. The tilde ˜ above the group indicates that it is a double
cover.

For the dual pairs S̃pin(4, 4)×µ32 µ
3
2 and S̃pin(5, 4)×µ22 µ

2
2, we omit the characters of the

finite center since it is clear how they act.

H1 ×H2 M1 ×H2 m V0

(a) S̃U(2, 1)×µ3
SU3 U1 ×µ3

SU3 (-2.20) (1.20)
(2.02) (-1.02)
(0.11)
(0.00)

(b) G̃2,2 ×µ2
O3 SU2 ×µ2

O3 (2.4) (1.4)
(0.2)
(2.0)

(c) S̃pin(4, 4)×µ3
2
µ3
2 SU3

2 ×µ3
2
µ3
2 (0.1.1) (1.0.0)

(1.0.1) (0.1.0)
(1.1.0) (0.0.1)
(2.0.0)
(0.2.0)
(0.0.2)

(d) S̃pin(5, 4)×µ2
2
µ2
2 (SU2 × Spin(5))×µ3

2
µ3
2 (2.00) (0.01)

(0.02)
(1.01)



22 HUNG YEAN LOKE

Table 4B: G = F̃4,4.

H1 ×C H2 S Θ1(S)

(a) S̃U(2, 1)×µ3 SU3 (2a, 2b) (a− b)[a+ b+ 3]

(b) G̃2,2 ×µ2 O3 ({4a}) (a)[a+ 3]

(c) S̃pin(4, 4)×µ3
2
µ3
2 — (0.0.0)[3]

— (1.0.0)[4]
— (0.1.0)[4]
— (0.0.1)[4]

(d) S̃pin(5, 4)×µ2
2
µ2
2 — (0.00)[3]

— (0.01)[4]
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